REFERENCES

- Alsobaai, A.M., Zakaria, R., and Hameed, B.H. (2007) Characterization and hydrocracking of gas oil on sulfided NiW/MCM-48 catalysts. <u>Chemical</u> <u>Engineering Journal</u>, 132(1–3), 173-181.
- Arandes, J.M., Abajo, I., Fernández, I., Azkoiti, M.J., and Bilbao, J. (2000) Effect of HZSM-5 zeolite addition to a fluid catalytic cracking catalyst. Study in a laboratory reactor operating under industrial conditions. <u>Industrial & Engineering Chemistry Research</u>, 39(6), 1917-1924.
- Benallal, B., Roy, C., Pakdel, H., Chabot, S., and Poirier, M.A. (1995)Characterization of pyrolytic light naphtha from vacuum pyrolysis of used tyres comparison with petroleum naphtha. <u>Fuel</u>, 74(11), 1589-1594.
- Beretta, A., Sun, Q., Herman, R.G., and Klier, K. (1996) Production of methanol and isobutyl alcohol mixtures over double-bed cesium-promoted Cu/ZnO/Cr₂O₃ and ZnO/Cr₂O₃ catalysts. <u>Journal of Industrial and Engineering Chemistry</u>, 35, 1534-1542.
- Chen, T.C., Shen, Y.H., Lee, W.J., Lin, C.C., and Wan, M.W. (2010) The study of ultrasound-assisted oxidative desulfurization process applied to the utilization of pyrolysis oil from waste tires. <u>Journal of Cleaner Production</u>, 18(18), 1850-1858.
- Choi, G.G., Jung, S.H., Oh, S.J., and Kim, J.S. (2014) Total utilization of waste tire rubber through pyrolysis to obtain oils and CO₂ activation of pyrolysis char. <u>Fuel Processing Technology</u>, 123, 57-64.
- Choosuton, A. (2007) Development of waste tire pyrolysis for the production of commercial fuels: Effect of noble metals and supports. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Choudhary, V. R., Mantri, K., and Sivadinarayana, C. (2000) Influence of zeolite factors affecting zeolitic acidity on the propane aromatization activity and selectivity of Ga/H–ZSM-5. <u>Microporous and Mesoporous Materials</u>, 37(1– 2), 1-8.

- Corma, A., MartíNez, C., Ketley, G., and Blair, G. (2001) On the mechanism of sulfur removal during catalytic cracking. <u>Applied Catalysis A: General</u>, 208(1-2), 135-152.
- Cunliffe, A.M. and Williams, P.T. (1998) Composition of oils derived from the batch pyrolysis of tyres. Journal of Analytical and Applied Pyrolysis, 44(2), 131-152.
- Danumah, C., Vaudreuil, S., Bonneviot, L., Bousmina, M., Giasson, S., and Kaliaguine, S. (2001) Synthesis of macrostructured MCM-48 molecular sieves. <u>Microporous and Mesoporous Materials</u>, 44–45, 241-247.
- Dũng, N.A., Klaewkla, R., Wongkasemjit, S., and Jitkarnka, S. (2009a) Light olefins and light oil production from catalytic pyrolysis of waste tire. <u>Journal of</u> <u>Analytical and Applied Pyrolysis</u>, 86(2), 281-286.
- Dũng, N.A., Mhodmonthin, A., Wongkasemjit, S., and Jitkarnka, S. (2009b) Effects of ITQ-21 and ITQ-24 as zeolite additives on the oil products obtained from the catalytic pyrolysis of waste tire. <u>Journal of Analytical and Applied</u> <u>Pyrolysis</u>, 85(1–2), 338-344.
- Environmental Protection Agency. "Polycyclic aromatic hydrocarbons." Epa. 2008. 6 July 2014 ">http://www.epa.gov
- Hu, H., Fang, Y., Liu, H., Yu, R., Luo, G., Liu, W., Li, A., and Yao, H. (2014). The fate of sulfur during rapid pyrolysis of scrap tires. <u>Chemosphere</u>, 97, 102-107.
- Huang, L., Huang, Q., Xiao, H., and Eic, M. (2008) Al-MCM-48 as a potential hydrotreating catalyst support: I Synthesis and adsorption study.
 <u>Microporous</u> and Mesoporous Materials, 111(1–3), 404-410.
- Jeon. J.K., Park, H.J., Yim, J.H., Kim, J.M., Jung, J., and Park, Y.K. (2007) Catalytic cracking of LLDPE over MCM-48. <u>Solid State Phenomena</u>, 124-126, 1757-1760.
- Jung, J., Kim, T., and Seo, G. (2004) Catalytic cracking of n-octane over zeolites with different pore structures and acidities. <u>Korean Journal of Chemical</u> <u>Engineering</u>. 21(4), 777-781.

- Kibombo, H.S., Balasanthiran, V., Wu, C.M., Peng, R., and Koodali, R.T. (2014)
 Exploration of room temperature synthesis of palladium containing cubic
 MCM-48 mesoporous materials. <u>Microporous and Mesoporous Materials</u>, 198, 1-8.
- Kosslick, H., Lischke, G., Landmesser, H., Parlitz, B., Storek, W., and Fricke, R. (1998) Acidity and catalytic behavior of substituted MCM-48. Journal of <u>Catalysis</u>, 176(1), 102-114.
- Laresgoiti, M.F., Caballero, B.M., Marco, I., Torres, A., Cabrero, M.A., and Chomón, M.J. (2004) Characterization of the liquid products obtained in tyre pyrolysis. Journal of Analytical and Applied Pyrolysis, 71, 917–934.
- Leflaive, P., Lemberton, J.L., Pérot, G., Mirgain, C., Carriat, J.Y., and Colin, J.M. (2002) On the origin of sulfur impurities in fluid catalytic cracking gasoline—Reactivity of thiophene derivatives and of their possible precursors under FCC conditions. <u>Applied Catalysis A: General</u>, 227(1–2), 201-215.
- Li, J., Ma, H., Zhang, H., Sun, Q., and Ying, W. (2014) Catalytic cracking of butene to propylene over modified HZSM-5 zeolites. Journal of Chemical, Nuclear, <u>Materials and Metallurgical Engineering</u>, 8(7), 620-623.
- Liu, B.S., Xu, D.F., Chu, J.X., Liu, W., and Au, C.T. (2006) Deep desulfurization by the adsorption process of fluidized catalytic cracking (FCC) diesel over mesoporous Al-MCM-41 materials. <u>Energy & Fuels</u>, 21(1), 250-255.
- Liu, C., Deng, Y., Pan, Y., Gu, Y., Qiao, B., and Gao, X. (2004) Effect of ZSM-5 on the aromatization performance in cracking catalyst. <u>Journal of</u> <u>Molecular Catalysis A: Chemical</u>, 215, 195-199.
- Llompart, M., Sanchez-Prado, L., Pablo, L.J., Garcia-Jares, C., Roca, E., and Dagnac, T. (2013) Hazardous organic chemicals in rubber recycled tire playgrounds and pavers. <u>Chemosphere</u>, 90(2), 423-431.
- Martínez, J.D., Puy, N., Murillo, R., García, T., Navarro, M.V., and Mastral, A.M.
 (2013) Waste tyre pyrolysis A review. <u>Renewable and Sustainable Energy</u> <u>Reviews</u>, 23, 179-213.

- Meng, X., Wang, Z., Zhang, R., Xu, C., Liu, Z., Wang, Y., and Guo, Q. (2013) Catalytic conversion of C4 fraction for the production of light olefins and aromatics. <u>Fuel Processing Technology</u>, 116, 217-221.
- Muenpol, S., Yuwapornpanit, R., and Jitkarnka, S. (2015) Valuable petrochemicals, petroleum fractions, and sulfur compounds in oils derived from waste tyre pyrolysis using five commercial zeolites as catalyst: Impact of zeolite properties. <u>Cleaner Technology and Environmental Policy</u> (accepted)
- Navid, N.A., Hassan, H.K., Mahmood, K., and Farideh G. (2013) Application of spherical mesoporous silica MCM-41 for adsorption of dibenzothiophene (a sulfur containing compound) from model oil. <u>Iranian Journal of Chemistry</u> and Chemical Engineering, 33(3), 37-42
- Ning, Z., Xiuzhi, W., Xiaopin, C., Jie, R., and Yuhan, S. (2000) Synthesis of higher alcohols over double-bed catalysts. Journal of Natural Gas Chemistry, 9(2), 147-174.
- Olazar, M., Arabiourrutia, M., López, G., Aguado, R., and Bilbao, J. (2008) Effect of acid catalysts on scrap tyre pyrolysis under fast heating conditions. <u>Journal</u> <u>of Analytical and Applied Pyrolysis</u>, 82(2), 199-204.
- Park, H.J., Yim, J.H., Jeon, J.K., Man, K.J., Yoo, K.S. and Park, Y.K. (2008)
 Pyrolysis of polypropylene over mesoporous MCM-48 material. Journal of <u>Physics and Chemistry of Solids</u>, 69(5–6), 1125-1128.
- Pera, C. and Knop, V. (2012) Methodology to define gasoline surrogates dedicated to auto-ignition in engines. <u>Fuel</u>, 96, 59-69.
- Pithakratanayothin, S. and Jitkarnka, S. (2014) Analysis of a tire-derived oil using GC×GC/ TOF- MS for better identification and grouping of hydrocarbon compounds. Paper presented at 29th International Conference on Solid Waste Technology and Management, Philadelphin, PA, USA.
- Quek, A. and Balasubramanian R. (2013) Liquefaction of waste tires by pyrolysis for oil and chemicals—A review. Journal of Analytical and Applied Pyrolysis, 101, 1-16.
- Seddegi, Z.S., Budrthumal, U., Arfaj, A.A., Amer, A.M., and Barri, S. (2002) Catalytic cracking of polyethylene over all-silica MCM-41 molecular sieve. <u>Applied Catalysis A: General</u>. 225(1–2), 167-176.

- Tsomaia, N., Brantley, S.L., Hamilton, J.P., Pantano, C.G., and Mueller, K.T. (2003) NMR evidence for formation of octahedral and tetrahedral Al and repolymerization of the Si network during dissolution of aluminosilicate glass and crystal. <u>American Mineralogist</u>, 88, 54–67.
- Unapumnuk, K., Keener, T.C., Lu, M., and Liang, F. (2008) Investigation into the removal of sulfur from tire derived fuel by pyrolysis. <u>Fuel</u>, 87(6), 951-956.
- Van Der Voort, P., Vercaemst, C., Schaubroeck, D. and Verpoort, F. (2008). Ordered mesoporous materials at the beginning of the third millennium: New strategies to create hybrid and non-siliceous variants. <u>Physical Chemistry</u> <u>Chemical Physics</u>. 10(3), 347-360.
- Wehatoranawee, A. (2011) Catalytic pyrolysis of waste tire over Ag-loaded catalysts.M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Williams, P.T. and Bottrill, R.P. (1995). Sulfur-polycyclic aromatic hydrocarbons in tyre pyrolysis oil. <u>Fuel</u>, 74(5), 736-742.
- Witpathomwong, C., Longloilert, R., Wongkasemjit, S., and Jitkarnka, S. (2011) Improving light olefins and light oil production using Ru/MCM-48 in catalytic pyrolysis of waste tire. <u>Energy Procedia</u>, 9, 245-251.
- Yuwapornpanit, R. and Jitkarnka, S. (2015) Cu-doped catalysts and their impacts on tire-derived oil and sulfur removal. <u>Journal of Analytical and Applied</u> <u>Pvrolysis</u>, 111, 200-208.
- Zhang, C.L., Li, S., Yuan, Y., Zhang, W.X., Wu, T.H. and Lin, L.-W. (1998).
 Aromatization of methane in the absence of oxygen over Mo-based catalysts supported on different types of zeolites. <u>Catalysis Letters</u>, 56(4), 207-213.

APPENDICES

Appendix A Temperature Profiles

 Table A1
 Pyrolysis conditions: Non-catalytic pyrolysis

Tire = 30.043 g, N₂ flow = 30 ml/min

Catalytic Temperature (T1): set value = 350 °C

Time (min)	TI	Т2	Time (min)	Т1	Т2	Time (min)	Т1	T2	Time (min)	TI	Т2
2	20	20	32	258	501	62	350	501	02	3/18	407
4	38	20	34	242	102	6.1	250	100	94	240	501
4	40	45	- 34	343	493	04	333	499	94	348	501
6	60	76	36	353	505	66	350	499	96	350	499
8	87	115	38	354	496	68	348	501	98	354	499
10	122	166	40	347	505	70	349	501	100	345	499
12	163	222	42	348	496	72	354	499	102	343	500
14	208	283	44	351	502	74	360	500	104	344	499
16	249	342	46	340	500	76	352	499	106	350	501
18	289	408	48	345	501	78	350	503	108	349	500
20	333	446	50	345	499	80	346	501	110	354	500
22	296	471	52	350	498	82	351	499	112	352	500
24	323	505	54	352	500	84	349	501	114	354	500
26	347	501	56	357	500	86	347	498	116	352	501
28	362	488	58	353	498	88	352	500	118	353	499
30	348	495	60	347	503	90	348	501	120	353	499

Figure A1 Temperature profiles of the non-catalytic pyrolysis.

 Table A2
 Pyrolysis conditions: Catalytic pyrolysis using Si-MCM-48

Tire = 30.020 g, N₂ flow = 30 ml/min

Catalytic Temperature (T1): set value = 350 °C

Time (min)	TI	T2	Time (min)	TI	Т2	Time (min)	TI	Т2	Time (min)	Tl	Т2
2	27	28	32	360	498	62	352	501	92	351	500
4	32	42	34	354	500	64	350	503	94	351	499
6	44	68	36	349	504	66	349	499	96	351	501
8	63	105	38	343	503	68	348	499	98	350	502
10	87	151	40	350	499	70	347	501	100	350	499
12	118	200	42	355	502	72	348	498	102	350	501
14	152	258	44	347	497	74	348	501	104	350	500
16	185	315	46	346	503	76	348	500	106	351	501
18	225	381	-48	349	502	78	348	499	108	350	501
20	282	423	50	351	500	80	348	499	110	350	499
22	321	497	52	353	501	82	349	499	112	351	503
24	312	504	54	354	500	84	351	501	114	351	502
26	300	505	56	354	500	86	350	498	116	351	503
28	352	502	58	354	501	88	350	498	118	351	503
30	359	496	60	354	501	90	350	500	120	351	500

Figure A2 Temperature profiles of catalytic pyrolysis using Si-MCM-48.

 Table A3 Pyrolysis conditions: Catalytic pyrolysis using Al-MCM-48 (82)

Tire = 30.009 g, N₂ flow = 30 ml/min

Catalytic Temperature (T1): set value = 350 °C

Pyrolysis Temperature (T2): set value = $500 \degree C$

Time (min)	ΤI	Т2	Time (min)	TI	T2	Time (min)	TI	T2	Time (min)	T1	Т2
2	26	29	32	371	497	62	352	500	92	350	500
4	31	43	34	354	499	64	351	502	94	350	499
6	44	68	36	342	504	66	349	499	96	350	500
8	62	105	38	343	502	68	348	499	98	350	501
10	87	151	40	349	499	70	347	501	100	350	499
12	117	200	42	354	501	72	348	499	102	350	501
14	151	258	44	346	496	74	348	501	104	350	500
16	185	314	46	346	503	76	349	501	106	350	501
18	225	380	48	348	502	78	348	500	108	350	501
20	282	422	50	350	500	80	348	499	110	350	499
22	322	497	52	352	501	82	348	499	112	350	503
24	281	503	54	353	500	84	350	502	114	350	502
26	317	504	56	354	499	86	349	499	116	350	503
28	352	502	58	354	500	88	350	498	118	350	503
30	359	495	60	354	500	90	350	501	120	350	500

Figure A3 Temperature profiles of catalytic pyrolysis using Al-MCM-48 (82).

 Table A4
 Pyrolysis conditions: Catalytic pyrolysis using Al-MCM-48 (42)

Tire = 30.009 g, N₂ flow = 30 ml/min

Catalytic Temperature (T1): set value = $350 \text{ }^{\circ}\text{C}$

Time (min)	T1	T2	Time (min)	TI	T2	Time (min)	TI	Т2	Time (min)	T1	Т2
2	25	24	32	367	494	62	342	502	92	351	501
4	31	35	34	357	501	64	346	502	94	351	500
6	44	57	36	344	504	66	352	500	96	351	500
8	62	93	38	347	504	68	356	500	98	349	501
10	86	134	40	354	498	70	355	500	100	349	500
12	118	186	42	358	500	72	354	500	102	351	500
14	148	241	44	349	497	74	352	499	104	350	501
16	185	295	46	347	501	76	350	500	106	349	501
18	224	353	48	354	501	78	351	500	108	349	499
20	262	414	50	357	500	80	350	500	110	349	500
22	326	459	52	356	498	82	348	501	112	351	500
24	275	497	54	347	500	84	349	499	114	352	499
26	314	505	56	353	500	86	349	501	116	349	500
28	354	500	58	360	499	88	350	500	118	349	501
30	378	497	60	357	499	90	351	500	120	348	500

Figure A4 Temperature profiles of catalytic pyrolysis using Al-MCM-48 (42).

 Table A5
 Pyrolysis conditions: Catalytic pyrolysis using Al-MCM-48 (25)

Tire = 30.015 g, N₂ flow = 30 ml/min

Catalytic Temperature (T1): set value = $350 \text{ }^{\circ}\text{C}$

Time (min)	T1	T2	Time (min)	TI	T2	Time (min)	Tl	Т2	Time (min)	TI	Т2
2	27	27	32	353	507	62	353	498	92	345	499
4	31	40	34	357	495	64	346	500	94	344	501
6	41	65	36	348	497	66	350	503	96	344	500
8	58	97	38	342	505	68	353	498	98	345	500
10	79	140	40	342	500	70	355	500	100	347	502
12	105	188	42	343	499	72	351	499	102	352	500
14	135	242	44	345	500	74	352	502	104	355	497
16	162	295	46	350	501	76	354	499	106	354	500
18	194	352	48	355	500	78	356	499	108	351	501
20	256	410	50	358	499	80	355	501	110	348	501
22	338	456	52	345	496	82	355	500	112	345	500
24	317	497	54	339	502	84	355	500	114	344	500
26	356	505	56	343	503	86	352	500	116	343	498
28	369	498	58	350	500	88	350	500	118	344	501
30	348	500	60	355	500	90	347	500	120	344	500

Figure A5 Temperature profiles of catalytic pyrolysis using Al-MCM-48 (25).

Table A6 Pyrolysis conditions: Catalytic pyrolysis using Si-MCM-48/HZSM-5

Tire = 30.016 g, N₂ flow = 30 ml/min

Catalytic Temperature (T1): set value = 350 °C

Pyrolysis Temperature (T2): set value = 500 °C

Time (min)	TI	T2	Time (min)	Tl	Т2	Time (min)	Tl	Т2	Time (min)	Tl	Т2
2	26	27	32	357	501	62	352	500	92	350	500
4	28	33	34	348	500	64	352	499	94	350	500
6	42	9	36	353	498	66	352	499	96	351	500
8	51	70	38	354	500	68	350	500	98	351	500
10	63	90	40	356	499	70	349	500	100	352	500
12	89	120	42	351	499	72	350	500	102	351	500
14	119	182	- 44	346	500	74	350	501	104	349	499
16	145	247	46	345	502	76	343	500	106	350	500
18	190	288	48	345	501	78	347	500	108	349	500
20	261	345	50	346	499	80	367	500	110	350	500
22	287	419	52	348	500	82	346	500	112	351	500
24	317	430	54	349	500	84	346	499	114	350	500
26	333	479	56	350	499	86	347	501	116	350	500
28	347	496	58	350	500	88	349	500	118	350	500
30	352	498	60	351	501	90	349	500	120	350	500

Figure A6 Temperature profiles of catalytic pyrolysis using Si-MCM-48/HZSM-5.

 Table A7
 Pyrolysis conditions: Catalytic pyrolysis using Si-MCM-48/HBETA

Tire = 30.004 g, N₂ flow = 30 ml/min

Catalytic Temperature (T1): set value = 350 °C

Pyrolysis Temperature (T2): set value = 500 °C

[r	T								
Time	T1	T2	Time	TI	Т2	Time	ТІ	Т2	Time	TI	Т2
(min)			(min)			(min)			(min)		
2	26	27	32	357	501	62	352	500	92	350	500
4	28	33	34	348	500	64	352	499	94	350	500
6	42	9	36	353	498	66	352	499	96	351	500
8	51	70	38	354	500	68	350	500	98	351	500
10	63	90	40	356	499	70	349	500	100	352	500
12	89	120	42	351	499	72	350	500	102	351	500
14	119	182	44	346	500	74	350	501	104	349	499
16	145	247	46	345	502	76	343	500	106	350	500
18	190	288	48	345	501	78	347	500	108	349	500
20	261	345	50	346	499	80	367	500	110	350	500
22	287	419	52	348	500	82	346	500	112	351	500
24	317	430	54	349	500	84	346	499	114	350	500
26	333	479	56	350	499	86	347	501	116	350	500
28	347	496	58	350	500	88	349	500	118	350	500
30	352	498	60	351	501	90	349	500	120	350	500

Figure A7 Temperature profiles of catalytic pyrolysis using Si-MCM-48/HBETA.

 Table A8
 Pyrolysis conditions: Catalytic pyrolysis using Si-MCM-48/HY

Tire = 30.008 g, N₂ flow = 30 ml/min

Catalytic Temperature (T1): set value = 350 °C

Pyrolysis Temperature (T2): set value = 500 °C

<u></u>	,		· · · · · · · · · · · · · · · · · · ·			-					
Time (min)	TI	Т2	Time (min)	TI	Т2	Time (min)	T1	Т2	Time (min)	T1	Т2
2	29	29	32	357	492	62	346	497	92	343	502
4	36	37	34	345	507	64	357	502	94	348	499
6	61	62	36	346	501	66	351	497	96	350	500
8	89	95	38	342	502	68	343	501	98	350	501
10	123	137	40	338	505	70	349	501	100	348	502
12	162	189	42	344	502	72	355	503	102	349	497
14	201	240	44	353	496	74	352	494	104	348	498
16	245	298	46	345	504	76	345	501	106	349	501
18	287	373	48	344	501	78	350	501	108	350	501
20	329	424	50	341	500	80	348	503	110	350	500
22	301	447	52	347	501	82	352	501	112	350	501
24	310	468	54	348	497	84	348	494	114	350	502
26	358	488	56	353	499	86	347	499	116	349	502
28	362	482	58	345	503	88	346	503	118	349	502
30	358	487	60	348	502	90	344	500	120	350	500

Figure A8 Temperature profiles of catalytic pyrolysis using Si-MCM-48/HY.

 Table B1
 Effect of mesoporous MCM-48 on product distribution (wt%)

	New Cat	Si-MCM-	AI-MCM-	Al-MCM-	Al-MCM-
	Non-Cat.	48	48 (82)	48 (42)	48 (25)
Gas	8.9	10.6	6.9	8.3	7.3
Liquid	46.2	38.9	43.3	43.3	43.8
Solid	44.9	43.7	43.2	43.1	42.9
Coke	-	6.8	6.6	5.4	6.0

Table B2 Effect of double beds of silica MCM-48 and zeolites on productdistribution (wt%)

	Si-MCM- 48/HZSM-5	Si-MCM- 48/HBETA	Si-MCM-48/HY
Gas	11.2	5.7	5.6
Liquid	39.1	44.0	44.5
Solid	43.2	43.4	42.9
Coke	6.5	6.9	6.9

	Non-Cat.	Si-MCM- 48	Al-MCM- 48 (82)	Al-MCM- 48 (42)	Al-MCM- 48 (25)
Gas Products	1			1	1
Methane	2.0	2.3	1.5	1.6	1.4
Ethylene	0.8	1.0	0.7	0.7	0.6
Ethane	1.5	2.1	1.3	1.4	1.2
Propylene	0.9	1.1	0.8	0.9	0.7
Propane	0.8	1.2	0.7	0.8	0.7
Mixed-C ₄	1.9	2.2	1.6	1.9	1.6
Mixed-C ₅	1.0	0.8	0.8	01.0	0.7
Total	<u>8.9</u>	<u>10.6</u>	7.3	<u>8.3</u>	<u>6.9</u>
Petroleum Pro	ducts				
Full range naphtha	13.4	19.7	20.4	16.1	18.8
Kerosene	11.3	10.5	12.9	12.8	12.0
Light gas oil	8.5	5.4	6.0	8.3	7.3
Heavy gas oil	7.0	2.5	2.8	4.5	4.4
Long residue	6.0	0.8	1.1	1.6	1.2
Total	46.2	38.9	<u>43.3</u>	43.3	<u>43.8</u>

 Table B3
 Effect of mesoporous MCM-48 on product compositions (wt%)

	Si-MCM-	Si-MCM-	Si-MCM-
	48/HZSM-5	48/HBETA	48/HY
Gas Products			
Methane	1.8	0.9	1.0
Ethylene	0.7	0.3	0.4
Ethane	1.5	0.7	0.9
Propylene	0.9	0.4	0.5
Propane	2.4	0.8	0.7
Mixed-C ₄	2.8	1.8	1.4
Mixed-C ₅	1.2	0.8	0.7
Total	<u>11.2</u>	5.7	5.6
Petroleum Products			
Full range naphtha	20.8	20.9	19.5
Kerosene	11.1	13.3	12.4
Light gas oil	5.2	6.7	7.8
Heavy gas oil	2.0	2.9	4.0
Long residue	0.0	0.3	0.8
Total	<u>39.1</u>	44.0	44.5

Table B4 Effect of double beds of silica MCM-48 and zeolites on productcompositions (wt%)

	Non-Cat	Si-MCM- 48	Al-MCM- 48 (82)	Al-MCM- 48 (42)	Al-MCM- 48 (25)
Р	2.94	3.52	4.01	4.02	4.16
Ole	9.39	10.08	8.04	8.75	6.95
Nap	15.53	13.52	10.21	10.24	7.49
Mono	47.74	54.26	56.22	53.18	56.31
Di	7.55	4.31	5.11	6.03	8.66
Poly	9.09	6.68	8.24	9.67	10.28
Polar	7.77	7.63	8.16	8.11	6.17

Table C1 Maltene compositions in mesoporous MCM-48 cases

Table C2 Maltene compositions in double beds of silica MCM-48 and zeolite cases

	Si-MCM-	Si-MCM-	Si-MCM-4
	48/HZSM-5	48/HBETA	8/HY
Р	2.80	2.99	4.75
Ole	11.42	7.28	6.19
Nap	15.92	11.63	11.56
Mono	54.36	53.49	48.31
Di	5.61	8.31	8.07
Poly	4.95	9.31	13.17
Polar	4.93	6.99	7.95

P = Paraffins Mono = Mono-aromatics Polar = Polar-aromatics Ole = Olefins Di = Di-aromatics Nap = Naphthenes

Poly = Poly-aromatics

Appendix D Sulfur-containing Compound Species in Oils

 Table D1
 Sulfur-containing compound species in oils in mesoporous MCM-48

 cases

	Non	Si-	Al-	Al-	Al-
	Non- Cat	MCM-	MCM-	MCM-	MCM-
		48	48 (82)	48 (42)	48 (25)
Thiophenes	0.74	0.96	0.69	0.62	0.62
Benzothiophenes	0.98	0.60	0.98	1.10	0.79
Dibenzothiophenes	0.05	0.02	0.02	0.03	0.03
Benzothiazoles	1.31	1.62	1.22	1.09	0.96
Isothiocyanates	0.59	0.34	0.56	0.56	0.36
Others	0.10	0.25	0.25	0.22	0.08

Table D2 Sulfur-containing compound species in oils in double beds of silicaMCM-48 and zeolite cases.

	Si-MCM- 48/HZSM-5	Si-MCM- 48/HBETA	Si-MCM-4 8/HY
Thiophenes	0.7	0.8	0.5
Benzothiophenes	0.6	1.2	1.0
Dibenzothiophenes	0.0	0.1	0.1
Benzothiazoles	0.5	0.7	0.9
Isothiocyanates	0.0	0.3	0.4
Others	0.3	0.2	0.3

	Non- Catalyst	Si- MCM-48	Al- MCM-48 (82)	Al- MCM-48 (42)	Al- MCM- 48 (25)
Oil	29	16	26.14	24.05	21.89
Spent Catalyst	-	10	7.14	5.16	6.40
Gas	18	19	15.18	17.11	20.28
Char	53	55	51.53	53.68	51.44

Appendix E Sulfur Analysis by Using S-Analyzer

4

Table E1	Effect of mesoporous MCM-48 on overall sulfur distribution	(wt%)
----------	--	-------

 Table E2
 Effect of double beds of silica MCM-48 and zeolites on overall sulfur distribution (wt%)

	Si-MCM- 48/HZSM-5	Si-MCM- 48/HBETA	Si-MCM-4 8/HY
Oil	16.26	21.01	21.44
Spent Catalyst	20.16	14.06	12.84
Gas	11.19	13.71	14.79
Char	52.39	51.22	50.92

CURRICULUM VITAE

Name: Ms. Sarinthip Trongyong

Date of Birth: November 24, 1990

Nationality: Thai

University Education:

2008–2012 Bachelor Degree of Petrochemical and Polymeric Materials, Faculty of Engineering and Industrial Technology, Silpakorn University, Bangkok, Thailand

Work Experience:

April 2010	Position:	Student Internship
	Company name:	Abric Eastern International Ltd.

Proceedings:

- Trongyong, S.; and Jitkarnka, S. (2015, April 21) Enhancement of Petrochemicals in tire-derived oil using aluminosilicate MCM-48. <u>Proceeding of</u> <u>the 6th Research Symposium on Petroleum, Petrochemicals, and Advanced</u> <u>Materials and the 21th PPC Symposium on Petroleum, Petrochemicals, and</u> <u>Polymers</u>, Chamchuri 10 building Chulalongkorn University, Bangkok, Thailand.
- Trongyong, S.; and Jitkarnka S. (2015, August 23 27) Enhanced sulfur removal from tire-derived oil using aluminosilicate MCM-48 with pyrolysis of waste tires. <u>Proceeding of the 18th Conference Process Integration, Modelling and</u> <u>Optimisation for Energy Saving and Pollution Reduction (PRES 2015)</u>, Kuching, Sarawak, Malaysia.