ETHYLATION OF BENZENE WITH ETHANOL TO ETHYLBENZENE USING SYNTHESIZED HZSM-5 CATALYSTS: EFFECTS OF TEXTURAL PROPERTIES AND ACIDITY

Tanakrit Rugwong

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2012

128374231

Thesis Title:	Ethylation of Benzene with Ethanol to Ethylbenzene Using
	Synthesized HZSM-5 Catalysts: Effects of Textural
	Properties and Acidity
By:	Tanakrit Rugwong
Program:	Petrochemical Technology
Thesis Advisors:	Assoc. Prof. Thirasak Rirksomboon
	Asst. Prof. Siriporn Jongpatiwut

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

Curult->

(Assoc. Prof. Thirasak Rirksomboon)

/

(Asst. Prof. Siriporn Jongpatiwut)

Karroch 2

(Assoc. Prof. Pramoch Rangsunvigit)

Gisupsayder D.

(Dr. Siraprapha Dokjampa)

ABSTRACT

5371026063: Petrochemical Technology Program
Tanakrit Rugwong: Ethylation of Benzene with Ethanol to
Ethylbenzene Using Synthesized HZSM-5 Catalysts: Effects of
Textural Properties and Acidity
Thesis Advisors: Assoc. Prof. Thirasak Rirksomboon and Asst. Prof.
Siriporn Jongpatiwut 98 pp.

Keywords: Alkylation/ Benzene/ Ethanol/ Ethylbenzene/ HZSM-5

Ethylbenzene (EB), which is a key intermediate in the manufacture of styrene in the petrochemical industry is usually produced via alkylation of benzene with ethylene. The direct use of ethanol as an alkylating agent has also become a suitable substitute for ethylene. Ethanol has gained more attention because it provided a longer catalyst life and higher production efficiency when it was used for the ethylation of benzene accompanied by a HZSM-5 catalyst. In this work, HZSM-5 catalysts were synthesized at a desired SiO₂/Al₂O₃ molar ratio of ca.195 with different textural properties and Brönsted acid sites via hydrothermal synthesis. The catalytic activity of the catalysts was tested using a fixed-bed continuous down-flow reactor under various conditions: reaction temperature (300-600 °C), weight hourly space velocity (10-20 h⁻¹), and benzene to ethanol ratio (1:1, 2:1, and 4:1). The results showed that textural properties and acidity of the synthesized HZSM-5 catalysts significantly affected the catalytic activity.

บทคัดย่อ

ธนกฤด รักษ์วงศ์ : ปฏิกิริยาเอธิลเลชันของเบนซีนกับเอทานอลเพื่อผลิตเอทิลเบน-ซีน โดยใช้ตัวเร่งปฏิกิยา HZSM-5 ที่สังเคราะห์ได้เอง : ผลกระทบของลักษณะทางสัณฐานและ ความเป็นกรด (Ethylation of Benzene with Ethanol to Ethylbenzene Using Synthesized HZSM-5 Catalysts: Effects of Textural Properties and Acidity) อ.ที่ ปรึกษา: รศ.ดร. ธีรศักดิ์ ถูกษ์สมบูรณ์, ผศ.ดร. ศิริพร จงผาติวุฒิ 98 หน้า

เอทิลเบนซีนเป็นสารที่สำคัญในอุตสาหกรรมปิโตรเคมี เพราะเป็นหนึ่งในด้วกลางที่ใช้ ในการผลิตสไตรีน โดยปกติแล้วเอทิลเบนซีนจะผลิตผ่านปฏิกิริยาแอลคิลีชั่นของเบนซีนและเอที ลีน เนื่องด้วยการนำเอทานอลมาใช้ในปฏิกิริยาแอลคิลีชั่นโดยตรง กลายเป็นสิ่งที่ได้รับความ สนใจมากกว่าการใช้เอทีลีน เนื่องจากเอทานอลสามารถยืดอายุของด้วเร่งในกระบวนการผลิตและ ให้ประสิทธิภาพในการผลิตที่สูงกว่าเมื่อผลิตผ่านปฏิกิริยาแอลคิลีชั่นของเบนซีน ควบคู่ไปกับการ ใช้ HZSM-5 เป็นด้วเร่ง ในงานวิจัยนี้ HZSM-5 ซึ่งเป็นตัวเร่งได้ถูกสังเคราะห์ที่อัตราส่วนของซิลิ กาต่ออะลูมินาให้ใกล้เคียงกับ 195 และใช้วิธีการสังเคราะห์แบบไฮโครเธอมอลเพื่อจะให้ลักษณะ ทางสัณฐานและความเป็นกรคที่ต่างกัน อัตราการเกิดปฏิกิริยาผ่านตัวเร่งได้ถูกทดสอบโดยใช้ ปฏิกรณ์แบบ Fixed-bed ภายใต้การศึกษาผลกระทบจากตัวแปรต่าง ๆ ได้แก่ อุณหภูมิในการทำ ปฏิกิริยา (300-600 องศาเซลเซียส) Weight Hourly Space Velocity (10-20 ต่อชั่วโมง) และ อัตราส่วนของเบนซีนต่อเอธานอล (1:1, 2:1 และ 4:1) ผลของปฏิกิริยาแสดงให้เห็นว่า ลักษณะ ทางสัณฐานและความเป็นกรคของตัวเร่งปฏิกิยา ส่งผลต่ออัตราการเกิดปฏิกิริยา

ACKNOWLEDGEMENTS

This work has been memorable, interesting, and important experience. This work would not have been possible, if the following people were not present.

First of all, I would like to express my gratefully thanks my advisor Assoc. Prof. Thirasak Rirksomboon, for suggestion, encouragement, discussions and problem solving throughout of the course of my reresearch work.

I am pleased to Asst. Prof. Siriporn Jongpatiwut, who provides me encouragragement and suggestion during doing this thesis work.

I deeply appreciate and thank Dr. Siraprapha Dokjampa and Assoc. Prof. Pramoch Rangsunvigit for their valuable comments and suggestions and being my thesis committee.

I am grateful for the scholarship and funding of the thesis work provided by the Petroleum and Petrochemical College; and Center of Excellence on Petrochemical and Materials Technology (PETRO-MAT).

I sincerely extent my appreciation to all my friends and all PPC's staff for their help and creative suggestions.

Finally, I would like to extend the most sincere thank to my lovely family for providing me their love, endless encouragement and forever love during my two year study at the college.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	xi
Abbreviations	kiv

CHAPTER

I	INTRODUCTION	1
II	LITERATURE REVIEW	3
	2.1 Alkylation of Aromatics	3
	2.1.1 Electrophilic Substitutions	3
	2.1.2 Nucleophilic Substitutions	4
	2.2 Free Radical Mechanism	4
	2.3 Zeolites	8
	2.3.1 Structure of Zeolites	9
	2.3.2 Properties of Zeolite	11
	2.3.2.1 Shape and Size Selectivity	11
	2.3.2.2 Acid Sites (Acidity)	13
	2.3.3 ZSM-5 (Zeolite Socony Mobil-5)	17
	2.4 Aromatization	20
	2.5 Hydrothermal Treatment	21

	2.6 Zeolite Synthesis	22
	2.6.1 Effect of Si/Al Ratio	26
	2.6.2 Effects of Crystallization Temperature and Time	27
	2.6.3 Effect of H ₂ O/SiO ₂ Molar Ratio	30
	2.7 Nanoscale Zeolites	31
III	EXPERIMENTAL	35
	3.1 Materials	35
	3.1.1 Chemicals	35
	3.1.2 Gases	35
	3.2 Equipment	35
	3.3 Methodology	36
	3.3.1 Catalytic Preparation	36
	3.3.1 Catalytic Characterization	37
	3.3.2 Catalytic Activity Testing	39
IV	RESULTS AND DISCUSSION	42
	4.1 Catalyst Characterization	44
	4.1.1 X-ray Diffraction	44
	4.1.2 Scanning Electron Microscope	45
	4.1.3 Surface Area Measurements	47
	4.1.4 Catalysts Composition	49
	4.1.5 Acidity Determination	49
	4.2 Catalytic Activity Testing	53
	4.2.1 Effects of Textural Properties and Acidity	53
	4.2.2 Effects of Temperature	56
	4.2.3 Effect of B/E Feed Molar Ratio	59

4.2.4 Effect of WHSV
4.2.5 Coke Formation
CONCLUSIONS AND DECOMMENDATIONS
5.1 Conclusions
5.2 Recommendations
REFERENCES

APPENDICES		
Appendix A Experimental Data of Liquid Feed Calibration		
of GC 5890	73	
Appendix B Experimental Data of Gas Flow Calibration of		
Sierra C100L Mass Flow Controller	74	
Appendix C Experimental Data of Liquid Feed Flow		
Calibration of Gilson 307 Pump	75	
Appendix D Calculation of Si/Al Ratio and Theoretical Acidity	76	
Appendix E The Other Catalyst Preparation	78	
Appendix F Experimental Data of Catalytic Activity Test for		
Ethylation of Benzene with Ethanol over		
synthesized HZSM-5 Catalyst.	85	
Appendix G Calculation of the minimum ratio the bed length		
to the particle size	97	

CURRICULUM VITAE

CHAPTER

 \mathbf{V}

98

PAGE

61

62

63

63

64

65

LIST OF TABLES

PAGE **TABLE** Crystal sizes of the synthesized HZSM-5 catalysts 46 4.1 4.2 Textural properties of the synthesized HZSM-5 catalysts 48 49 4.3 The chemical compositions of synthesized HZSM-5 catalysts 4.4 The quantitative values of acidity for the HZSM-5 catalysts 50 4.5 The activity and surface properties catalytic characterization of the synthesized HZSM-5 at T = 500 °C, B/E = 4, $WHSV = 20 h^{-1}$, and TOS = 410 min55 Effect of temperature on the products selectivity over HZ5-4.6 $A2(25)^{a}$ 58 4.7 Effect of B/E feed molar ratio on the products selectivity over HZ5-A2(25) 60 Coke formation of the spent HZ5-A2(25) catalysts 4.8 62 El The chemical compositions of synthesized HZSM-5 catalysts 83 F1 Catalytic activity testing over HZSM-5 with different synthesis at temperature 500 °C, B/E = 4, $WHSV = 20 h^{-1}$ 85 F2 Catalytic activity testing on different temperature for HZ5-A2(25), B/E = 4, $WHSV = 20 h^{-1}$ 86 Catalytic activity testing on different molar feed ratio for F3 HZ5-A2(25), WHSV = 20 h^{-1} , T = 500 °C86 Catalytic activity testing on different feed ratio for HZ5-F4 A2(25), B/E = 4, T = 500 °C 86 Product selectivity of liquid sample over HZSM-5 with F5 different synthesis at temperature 500 °C, B/E = 4, WHSV =20 h⁻¹, and TOS 410 min. 87

F6	Product selectivity of liquid sample over HZSM-5 with	
	different synthesis at temperature 500 °C, $B/E = 4$, $WHSV =$	
	20 h ⁻¹ , and TOS 410 min.	89
F7	Product selectivity of liquid sample over HZ5-A2(25) at	
	different temperature, $B/E = 4$, $WHSV = 20$ h ⁻¹ , and TOS	
	410 min.	91
F8	Product selectivity of liquid sample over HZ5-A2(25) at	
	different feed molar ratio of B/E, Temperature 500 °C,	
	WHSV = 20 h^{-1} , and TOS 410 min.	93
F9	Product selectivity of liquid sample over HZ5-A2(25) at	
	different WHSV, Temperature 500 °C, $B/E = 4$, and TOS	
	410 min.	95

PAGE

LIST OF FIGURES

FIGURE

PAGE

2.1	ZSM-5 zeolite pores and channels.	10
2.2	Active sites of zeolite structure.	11
2.3	Diagram depicting the three types of selectivity.	12
2.4	Bronsted acid sites ("bridging hydroxyl groups") in	
	zeolites.	14
2.5	Formation of Lewis acid sites in zeolites.	14
2.6	Diagram of the "surface" of a zeolite framework.	16
2.7	The pore dimensions of ZSM-5.	18
2.8	Structure of ZSM-5 showing two different channel	
	structures.	19
2.9	A schematic representation of zeolite crystallization process.	23
2.10	Structure of ZSM-5.	25
2.11	Scanning electron micrographs of the as-synthesized	
	zeolites with different molar ratios of Si/Al.	27
2.12	SEM photographs of treated products obtained from	
	synthesis at various holding temperatures.	29
2.13	SEM images of HZSM-5 of microscale and nanoscale	
	HZSM-5.	34
3.1	Schematic of the experimental system.	40
4.1	Flow diagram of the synthesized catalysts.	43
4.2	X-ray diffraction patterns of the synthesized HZSM-5	
	catalysts.	44
4.3	The SEM images of HZSM-5 catalysts.	45

The plots of acidity variation as functions of synthesis	
conditions.	51
The plots of Mi/T ratio vs EB Selectivity and benzene	
conversion ((\blacksquare) EB selectivity, and (\blacksquare) benzene conversion)	
at T= 500 °C, $B/E = 4$, WHSV = 20 h ⁻¹ , and TOS = 410	
min.	55
Graph plotted between TA/(B/L) vs EB Selectivity and	
benzene conversion ((\blacksquare) EB selectivity, and (\bowtie) benzene	
conversion) at T = 500 °C, B/E = 4, WHSV = 20 h^{-1} , and	
TOS = 410 min.	56
Effect of reaction temperature: on (\blacksquare) EB selectivity, (\blacksquare)	
ethanol conversion, and (\mathbb{R}) benzene conversion for HZ5-	
A2(25), $B/E = 4$, $WHSV = 20 h^{-1}$, and $TOS = 410 min$.	57
Effect of reaction temperature: on () EB/Xylenes and ()	
EB/DEBs ratios for HZ5-A2(25), $B/E = 4$, $WHSV = 20 h^{-1}$,	
and $TOS = 410 \text{ min.}$	59
Effect of B/E feed ratio: on () EB selectivity, () ethanol	
conversion, and (a) benzene conversion for HZ5-A2(25), T	
= 500 °C, WHSV = 20 h ⁻¹ , and TOS = 410 min.	60
Effect of WHSV: on (\blacksquare) EB selectivity, (\blacksquare) ethanol	
conversion, and (a) benzene conversion for HZ5-A2(25),	
B/E = 4, T = 500 °C, and TOS = 410 min.	61
Calibration curve of benzene.	73
Calibration curve of ethanol.	73
Calibration curve of nitrogen.	74
Calibration curve of liquid feed.	75
	The plots of acidity variation as functions of synthesis conditions. The plots of Mi/T ratio vs EB Selectivity and benzene conversion ((•) EB selectivity, and (•) benzene conversion) at T = 500 °C, B/E = 4, WHSV = 20 h ⁻¹ , and TOS = 410 min. Graph plotted between TA/(B/L) vs EB Selectivity and benzene conversion ((•) EB selectivity, and (•) benzene conversion) at T = 500 °C, B/E = 4, WHSV = 20 h ⁻¹ , and TOS = 410 min. Effect of reaction temperature: on (•) EB selectivity, (•) ethanol conversion, and (•) benzene conversion for HZ5-A2(25), B/E = 4, WHSV = 20 h ⁻¹ , and TOS = 410 min. Effect of reaction temperature: on (•) EB/Xylenes and (•) EB/DEBs ratios for HZ5-A2(25), B/E = 4, WHSV = 20 h ⁻¹ , and TOS = 410 min. Effect of B/E feed ratio: on (•) EB selectivity, (•) ethanol conversion, and (•) benzene conversion for HZ5-A2(25), T = 500 °C, WHSV = 20 h ⁻¹ , and TOS = 410 min. Effect of WHSV: on (•) EB selectivity, (•) ethanol conversion, and (•) benzene conversion for HZ5-A2(25), T = 500 °C, and TOS = 410 min. Effect of WHSV: on (•) EB selectivity, (•) ethanol conversion, and (•) benzene conversion for HZ5-A2(25), B/E = 4, T = 500 °C, and TOS = 410 min. Calibration curve of benzene. Calibration curve of nitrogen. Calibration curve of nitrogen.

PAGE

XRD patterns of the synthesized catalysts: (a) Z5-(120, 48, El 20), (b) Z5-(140, 72, 20), (c) Z5-(130, 24, 30), (d) Z5-(140, 72, 30), (e) Z5-(110, 240, 82), (f) Z5-(130, 240, 82), and (g) 79 HZ5-F3(33). SEM images of the synthesized ZSM-5 catalysts using E2 NaOH as a mineralizing agent : (a) Z5-(120, 48, 20), (b) Skin surface of Z5-(120, 48, 20), (c) Z5-(110, 240, 82), and 81 (d) Z5-(130, 240, 82). SEM images of the synthesized HZSM-5 catalysts using E3 NH₄F as a mineralizing agent : (a) HZ5-F1(25), (b) HZ5-F2(25), and (c) HZ5-F3(33). 82

ABBREVIATIONS

а	Synthesis temperature (°C)
b	Synthesis time (h)
$AI(NO_3)_3 \cdot 9H_2O$	Aluminium nitrate
B/E	Benzene to ethanol feed molar ratio
B/L ratio	Brönsted acid site to the Lewis acid site ratio
DEBs	Diethylbenzenes
EB	Ethylbenzene
HT	Hydrothermal
Mi/T	Micropore to total pore volume
Т	Reaction temperature
TA	Theoretical Acidity
TA/(B/L)	Theoretical Acidity per Brönsted acid site to the Lewis acid site
	ratio
TOS	Time on stream
TPD-IPA	Temperature Programmed Desorption (TPD) Technique of
	Isopropylamine
W	Molar ratio of the water to silica in the initial gel
WHSV	Weight hourly space velocity