HEAT EXCHANGER NETWORK SYNTHESIS/RETROFIT USING MINLP STAGE-WISE SUPERSTRUCTURE WITH NON-ISOTHERMAL MIXING

•

Supiluck Koraviyotin

•

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole

a

2015

Thesis Title:	Heat Exchanger Network Synthesis/Retrofit Using MINLP
	Stage-wise Superstructure with Non-isothermal Mixing
By:	Supiluck Koraviyotin
Program:	Petroleum Technology
Thesis Advisors:	Asst. Prof. Dr. Kitipat Siemanond

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

o

-

Kitipat Siemancel

(Asst. Prof. Dr. Kitipat Siemanond)

K. _____

(Dr. Uthaiporn Suriyapraphadilok)

t -----

(Asst. Prof. Dr. Chanin Panjapornpon)

ABSTRACT

5673028063: Petroleum Technology Program
Supiluck Koraviyotin: Heat Exchanger Network Synthesis/Retrofit
Using MINLP Stage-wise Superstructure with Non-isothermal
Mixing.
Thesis Advisors: Asst. Prof. Kitipat Siemanond 234 pp.
Keywords: Heat exchanger network (HEN)/ Mathematical programming/ Stagewise superstructure/ Mixed-integer nonlinear programming

To enhance the energy recovery through heat integration, heat exchanger network (HEN) synthesis has been introduced for industrial processes. The design of an optimal-cost HEN is a challenging research topic in recently decade. This work modifies a mixed-integer nonlinear programming (MINLP) stage-wise model by commercial optimization software; GAMS, for simultaneous synthesis where the main objective is to minimize total annual cost composing of capital and operational expenses. The proposed model overcomes the area trade-off restriction caused by the assumption of isothermal mixing and allows any split stream flow through multiple exchangers in series as well as bypass stage before mixing non-isothermally for simultaneous synthesis. Dealing with the MINLP case, the initialization strategy is developed to find feasible starting point for the optimization problem resulting in better HENs compared to published results from the literatures. In addition, the retrofit of HENs is done by applying retrofit constraints to HENS model.

บทคัดย่อ

สุภิลักษณ์ โกระวิโยธิน : การออกแบบและปรังปรุงเครือข่ายเครื่องแลกเปลี่ยนความร้อน โดยใช้โปรแกรมทางคณิตศาสตร์ (Heat Exchanger Network Synthesis/Retrofit Using MINLP Stage-wise Superstructure with Non-isothermal Mixing) อ.ที่ปรึกษา : ผศ. คร. กิติพัฒน์ สีมานนท์ 234 หน้า

การออกแบบเครือข่ายเครื่องแลกเปลี่ยนความร้อนอย่างมีประสิทธิภาพเป็นหนึ่งใน วิธีการที่สามารถลดการสูญเสียพลังงานในกระบวนการทางอุตสาหกรรมให้น้อยที่สุด โดยการ แลกเปลี่ยนพลังงานระหว่างสายร้อนและสายเย็นให้มากที่สุด ในปัจจุบันการออกแบบเครือข่าย เครื่องแลกเปลี่ยนความร้อนที่มีการใช้หลังกการทางเศรษฐศาสตร์ร่วมในการพิจารณาได้รับความ สนใจเป็นอย่างมาก ดังนั้นในงานวิจัยนี้จำได้ทำการออกแบบและปรับปรุงเครือข่ายเครื่อง แลกเปลี่ยนความร้อนโดยใช้โปรแกรมทางคณิตศาสตร์ (General Algebraic Modelling System; GAMS) ซึ่งวัตถุประสงค์หลักในการออกแบบเครือข่ายเครื่องแลกเปลี่ยนความร้อนเพื่อลด ค่าใช้จ่ายซึ่งเกิดจากการลงทุนและดำเนินการ แบบจำลองที่สร้างขึ้นมานั้นสามารถลดพื้นที่ที่ใช้ใน การแลกเปลี่ยนความร้อนในสายที่ทำการแยกย่อยออกไปก่อนที่จะมีการรวมกันเข้าเป็นสายหลัก วิธีการขั้นเริ่นค้นถูกพัฒนาขึ้นสำหรับการแก้ไขปัญหาระบบปัญหาที่ความสัมพันธ์ของตัวแปรไม่ เป็นแบบเชิงเส้น (Mixed-Integer Nonlinear Programming; MINLP) เพื่อให้ได้ผลลัพธ์ที่ดีขึ้นเมื่อ เปรียบเทียบกับเอกสารทางวิชาการ นอกจากนี้ การปรังปรุงเครือข่ายเครื่องแลกเปลี่ยนความร้อน สามารถทำได้โดยการใส่ขีดจำกัดให้กับแบบจำลองที่สร้างขึ้นมาก่อนหน้านี้

ACKNOWLEDGEMENTS

This thesis could not have been completed without the participation of the following individuals and organizations. This thesis work was partially supported by the Ratchadapisek Sompoch Endowmant Fund (2013), Chulalongkorn University (CU-56-900-FC) and Thailand Research Fund (IRG5780012).

I would like to express the greatest pleasure and the deepest appreciation to have such opportunities to learn the modelling and optimization from my supervisor Asst. Prof. Kitipat Siemanond at the Petroleum and Petrochemical College, Chulalongkorn University. Throughout my research work in the last year of Master degree, he has been a great mentor and a marvellous scholar of great enthusiasm, insights, constant encouragement, and considerations. The suggestions and comments on heat exchanger network design and mathematical program are very valuable to this thesis.

My gratitude also extends to Dr. Uthaiporn Suriyapraphadilok, and Asst. Prof. Chanin Panjapornpon for serving on my examination committee.

I am really thankful to all my lab mates for sharing their knowledge, insights and optimization algorithms with me. My two-year study at the Petroleum and Petrochemical College, Chulalongkorn University, is very meaningful to me. I appreciate and thank all my friends, my colleagues for constantly encouraging and supporting throughout my entire studies.

Most of all, I would like to express my sincere and deepest gratitude to my parents for their tender love, understanding, generous encouragement and financial and moral support to me all the times.

TABLE OF CONTENTS

	PAGE
Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	x
Abbreviations	xi
List of Symbols	xiii

CHAPTER

I	INTRODUCTION	1
II	LITERATURE REVIEW	2
	2.1 Mathematical methods	2
	2.2 Heat exchanger network synthesis	3
	2.2.1 Sequential synthesis	ø 3
	2.2.2 Simultaneous synthesis	6
	2.3 HEN Retrofit	13
III	METHODOLOGY	23
	3.1 Materials and Equipment	23
	3.1.1 Equipment	23
	3.1.2 Software	23
	3.2 Research Procedures	23
	3.2.1 Grassroots Design for HEN with	
	the Assumption of Isothermal Mixing	23
	3.2.2 Grassroots Design for HEN without	
	the Assumption of Isothermal Mixing	23

σ

-

CHAPTER			PAGE
	3.2.3 Re	trofit Design for HEN with	
	the	e Assumption of Isothermal Mixing	23
	3.2.4 Re	trofit Design for HEN without	•
	the	e Assumption of Isothermal Mixing	24
IV	RESULTS A	ND DISCUSSION	25
	4.1 The Mod	ified Synheat Model	25
	4.1.1 Mc	odel A1: The Modified Synheat Model with	
	No	on-isothermal Mixing	26
	4.1.2 M	odel A2: The Modified and Extended Synheat I	Model
	wi	th Non-isothermal Mixing	27
	4.2 HEN Syr	thesis	29
	4.2.1 Mc	del A1 Formulation for HEN Synthesis	33
	4.2.2 Mo	del A2 formulation for HEN synthesis	39
	4.2.3 Sol	lution Strategy	45
	4.3 Heat Exc	hanger Network Retrofit	47
	4.3.1 Mc	del Formulation for HEN Retrofit	48
	4.3.2 So	lution Strategy	50
	4.4 Examples	5	50
	4.4.1 Syr	nthesis and Retrofit HEN	50
	4.4.2 Re	trofit of CDU Case Study	59
V	CONCLUSI	ONS AND RECOMMENDATIONS	69
	REFERENC	ES	70
	APPENDICI	ES	74
	Appendix A	The intermediate results of each step	
		for case study 2	74
	Appendix B	The Comparison of the HEN with Isothermal	
		and Non-isothermal for Case Study 2	100

-

o

CHAPTEI	R		PAGE
÷.	Appendix C	HEN Synthesis	103
	Appendix D	HEN Retrofit	 146
	Appendix E	HEN Retrofit for CDU case study	202
		•	
CURRIC	ULUM VITAI	Ξ	235

0

-

LIST OF TABLES

TABL	E .	PAGE
4.1	Stream, cost and solution data for the examples 1	
	(Biegler <i>et al.</i> , 1997)	51
4.2	Stream, cost and solution data for the examples 2	
	(Björk and Westerlund, 2002)	51
4.3	Stream, cost and solution data for the examples 3	
	(Yee and Grossmann, 1987)	52
4.4	Heat exchangers and area distribution of retrofitted HEN	
	from Liu <i>et al.</i> (2014).	56
4.5	Heat exchangers and area distribution of retrofitted HEN	
	from this work	57
4.6	Stream, cost and solution data for CDU case study	66
4.7	Stream, cost and solution data for CDU case study	66
4.8	Heat exchanger area from Siemanond and Kosol (2012)'s	
	result.	67
4.9	Heat exchangers from our retrofitted HEN result compared	
	to base case	68

LIST OF FIGURES

FIGURE		PAGE
2.1	Energy versus area curves	20
4.1	The modified Synheat model (model A1) with non-	
	isothermal mixing.	27
4.2	The modified and extended Synheat model (model A2) with	
	non-isothermal mixing with allowing several matches per	
	branch of splitting stream.	28
4.3	The HEN synthesis strategy.	48
4.4	HEN result of example 1.	53
4.5	HEN from Jongsuwat et al. (2014) for example 1.	54
4.6	HEN from Björk and Westerlund (2002) and Huang and	
	Karimi (2012) for example 2.	54
4.7	HEN from Jongsuwat et al. (2014) for example 2.	55
4.8	HEN result of example 2.	55
4.9	Existing HEN of example 3.	57
4.10	Retrofitted HEN from Liu et al. (2014).	58
4.11	Retrofitted HEN for example 3.	58
4.12	The HEN retrofit strategy.	61
4.13	The grid diagram of the original HEN from Siemanond and	
	Kosol (2012).	63
4.12	The grid diagram of retrofit case from Siemanond and Kosol	
	(2012).	64
4.13	The grid diagram of our retrofitted HEN.	65
B1	The HEN under isothermal mixing for case study 2 with the	
	TAC of \$100,720 and total exchange area of 210.9 m^2 .	100
B2	The HEN from this work considering non-isothermal mixing	
	for case study 2 with the TAC of \$94,183 and total exchange	
	area of 187.55 m ² .	101

LIST OF ABBREVIATIONS

А	Exchange area
AC	Total area cost
С	Cold stream
CAT	Constant approach temperature
CDU	Crude Distillation Unit
CU	Cold utility
DE	Differential evolution
EA	Evolution Algorithms
EMAT	Exchanger minimum approach temperature
ERS	Exchanger reassignment strategies
FC	Total fixed cost
F_{Cp}	Heat content
GA	Genetic algorithm
GAMS	General Algebraic Modeling System
Н	Hot stream
HEN	Heat exchanger network
HIT	Heat integration transportation
 HRAT	Heat recovery approach temperature
HU	Hot utility
IBMS	Interval-based mixed integer nonlinear program superstructure
IDE	Integrated differential evolution
k	Stage or temperature location
LMTD	Log mean temperature difference
LP	Linear programming
MAT	Minimum approach temperature
MILP	Mixed-integer linear programming
MINLP	Mixed-integer nonlinear programming
MOO	Multi-objective optimization
MP	Mathematical programming

MP	master problem
NLP	Nonlinear programming
NPV	Net present value
NSGA	Non-dominated sorting genetic algorithm
OA/ER/AP	Outer approximation with equality relaxation and augmented penalty
РТ	Pinch technology
SA	Simulated Annealing
sk	Sub-stage within each main stage k
SOO	Single objective optimization
STEPS	Stream Temperature vs. Enthalpy Plot Supertargeting
TAC	Total annualized cost
UC	Total utility cost
WAP	Water allocation planning
WN	Water network

Ø

•

-

4.4

LIST OF SYMBOLS

ΔT^{min}	Minimum temperature difference
$\Omega_{i,j}$	Upper bound of heat content for heat exchanger
	Upper bound of heat content for cooling utility and hot process
Ω_i	stream i
	Upper bound of heat content for heating utility and cold process
Ω_j	stream j
ACCU _{i,cu}	Area cost coefficient of cooling utility cu
ACHU _{j,hu}	Area cost coefficient of heating utility hu
ACHX _{i,j}	Area cost coefficient of heat exchanger $i - j$
C _{CU}	Cost of cold utility
CCU_i	Cost of cooling utility cu
CFCU _{i,cu}	Fixed charges for cooling utility cu
CFHU _{j,hu}	Fixed charges for heating utility hu
$CFHX_{i,j}$	Fixed charges for exchanger $i - j$
C _{HU}	Cost of hot utility
CHU _j	Cost of heating utility hu
FC _i	Heat capacity of cold process stream j
FH _i	Heat capacity of hot process stream i
F _{In}	Inlet flowrate
Fout	Outlet flowrate
Q _{CU}	Heat load of cold utility
Q_{HU}	Heat load of hot utility
TCUcu, _{IN}	Inlet temperature of cooling utility cu
TCU _{cu,OUT}	Outlet temperature of cooling utility cu
TC _{j,IN}	Supply temperature of cold process stream j
TC _{j,OUT}	Target temperature of cold process stream j
THU _{hu,IN}	Inlet temperature of heating utility hu
THU _{hu,OUT}	Outlet temperature of heating utility hu

-

σ

÷

TH _{i,IN}	Supply temperature of hot process stream i
TH _{i,OUT}	Target temperature of hot process stream <i>i</i>
UCU _{i,cu}	Overall heat transfer coefficient of cooling utility cu and hot
	process
	stream i
UHU _{j,hu}	Overall heat transfer coefficient of heating utility hu and cold
	process
	stream j
$U_{i,j}$	Overall heat transfer coefficient of heat exchanger of process
	stream $i - j$
ahui _{j,hu}	Area for heating utility hu raised to the power of β (for model
	A1)
ahu _{j,hu}	Area for heating utility hu raised to the power of β (for model
	A2)
acu _{i,cu}	Area for cooling utility cu raised to the power of β (for model
	A2)
acui _{i,cu}	Area for cooling utility cu raised to the power of β (for model
	A1)
a _{i,j,k,bh,bc,sk}	Area for heat exchanger $i - j$ in stage k raised to the power of β
	(for model A2)
ai _{i,j,k}	Area for heat exchanger $i - j$ in stage k raised to the power of β
	(for model A1)
dth _{i,j,k,bh,bc,sk}	Temperature approach for match $i - j$ at hot end of heat
	exchanger in sub-stage sk and stage k (for model A2)
dthi _{i,j,k}	Temperature approach for match $i - j$ at hot end of heat
	exchanger (for model A1)
dthui _{j,hu}	Temperature approach for match of heating utility hu and cold
	process stream jafter heat exchanger (for model A1)
dthu _{j,hu}	Temperature approach for match of heating utility hu and cold
	process stream jafter heat exchanger (for model A2)

-

 $dthup_{j,hu}$ Temperature approach in hot end of heating utility hu

•

dtc _{i,j,k,bh,bc,sk}	Temperature approach for match $i - j$ at cold end of heat
	exchanger in sub-stage sk and stage k (for model A2)
dtci _{i,j,k}	Temperature approach for match $i - j$ at cold end of heat
	exchanger (for model A1)
dtcu _{i,cu}	Temperature approach for match between cooling utility cu and
	hot process stream <i>i</i> before heat exchanger (for model A2)
dtcui _{i,cu}	Temperature approach for match between cooling utility cu and
	hot process stream <i>i</i> before heat exchanger (for model A1)
dtcup _{i,cu}	Temperature approach in cold end of cooling utility cu
fhp _{i,k,bh}	Fractional flow of branch bh of hot process stream i stage k (for
	model A2)
$fcp_{j,k,\mathrm{bc}}$	Fractional flow of branch bc of cold process stream j in stage k
	(for model A2)
f _{i,j,k}	Fractional flow of hot process stream <i>i</i> exchanged with
	coldprocess stream j in stage k (for model A1)
gi,j,k	Fractional flow of cold process stream jexchanged with
	hotprocess stream i in stage k (for model A1)
qhui _{j,hu}	Heat exchanged between hot utility hu and cold process stream j
	(for model A1)
qhu _{j,hu}	Heat exchanged between hot utility hu and cold process stream j
	(for model A2)
qcu _{i,cu}	Heat exchanged between cold utility cu and hot process stream i
	(for model A2)
qcui _{i,cu}	Heat exchanged between cold utility cu and hot process stream i
	(for model A1)
qi,j,k,bh,bc,sk	Heat exchanged between branch BH of hot process stream iand
	branch BC of cold process stream j in sub-stage sk in stage k (for
	model A2)

 $qi_{i,j,k}$ Heat exchanged between hot process stream *i* and cold process

 \sim

•

th _{i,k}	Temperature of hot process stream i at "hot end" of stage k
thp _{i,k,bh,sk}	Temperature of fractional hot process stream i at "cold end" of
	heat exchanger at the stage k (for model A2)
thpi _{i,j,k}	Temperature of fractional hot process stream i at "cold end" of
	heat exchanger at the stage k (for model A1)
tc _{j,k}	Temperature of cold process stream j at "hot end" of stage k
tcpi _{i,j,k}	Temperature of fractional cold process stream jat "hot end" of
	heat exchanger at the stage k (for model A1)
tcp _{j,k,bc,sk}	Temperature of fractional cold process stream jat "hot end" of
	heat exchanger at the sub-stage sk in stage k (for model A2)
zhui _{j,hu}	Existence of an exchanger for match between heating utility hu
	and cold process stream j (for model A1)
zhu _{j,hu}	Existence of an exchanger for match between heating utility hu
	and cold process stream <i>j</i> (for model A2)
zcu _{i,cu}	Existence of an exchanger for match between cooling utility cu
	and hot process stream i (for model A2)
zcui _{i,cu}	Existence of an exchanger for match between cooling utility cu
	and hot process stream i (for model A1)
Z _{i,j,k,bh,bc,sk}	Existence of an exchanger for match $i - j$ in sub-stage sk and
	stage k (for model A2)
zi _{i,j,k}	Existence of an exchanger for match $i - j$ in stage k (for model
	A1)
β	Exponent for area costs of heat exchanger $i-j$, hot and cold utility
EMAT	Minimum-approach temperature difference
Q	Heat load
ST	Number of stage (often chosen as maximum between number of
	hot and cold streams)
ST	Number of stage
STSK	Number of sub-stage

0

U Overall heat coefficient

 Γ Upper bound for temperature difference

.

σ