MATERNAL KNOWLEDGE, ATTITUDE AND PRACTICES ON THE DIETARY OMEGA 3 AND 6 IN CHILDREN AGED 1-2 YEARS OLD IN LABUHANBATU UTARA REGENCY, INDONESIA

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Public Health in Public Health Common Course
COLLEGE OF PUBLIC HEALTH SCIENCES
Chulalongkorn University
Academic Year 2020
Copyright of Chulalongkorn University

ความรู้ ทัศนคติ และการปฏิบัติของมารดาต่ออาหารที่มีกรดโอเมกา 3 และ 6 ในเด็กอายุ $1-2$ ปี ในเขตลาบูฮานบาตู อูทารา ประเทศอินโดนีเซีย

น.ส.สินาร์ ยูนิตา เพอบาร์

วิทยานิพนธ์นี้เป็นสววหนึ่งของการศึกษาตามหลักสูตรปริญญาสาธาร ณสุขศาสตรมหาบัณฑิต สาขาวิชาสาธารณสุขศาสตร์ ไม่สังกัดภาควิชา/เทียบเท่า วิทยาลัยวิทยาศาสตร์สาธารณสุข จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2563
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	MATERNAL KNOWLEDGE, ATTITUDE AND
	PRACTICES ON THE DIETARY OMEGA 3 AND 6
	IN CHILDREN AGED 1-2 YEARS OLD IN
	LABUHANBATU UTARA REGENCY, INDONESIA
By	Miss Sinar Yunita Purba
Field of Study	Public Health
Thesis Advisor	Wandee Sirichokchatchawan, Ph.D.

Accepted by the COLLEGE OF PUBLIC HEALTH SCIENCES, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master of Public Health

Dean of the COLLEGE OF PUBLIC HEALTH SCIENCES (Professor SATHIRAKORN PONGPANICH, Ph.D.)

THESIS COMMITTEE
Chairman
(Associate Professor Ratana Somrongthong, Ph.D.)
Thesis Advisor
(Wandee Sirichokchatchawan, Ph.D.)
External Examiner
(Napaphan Viriyautsahakul, M.D., M.Sc)

สินาร์ ยูนิตา เพอบาร์ : ความรู้ ทัศนคติ และการปฏิบัติของมารดาต่ออาหารที่มีกรดโอเมกา 3 และ 6 ในเด็กอายุ $1-2$ ปี ในเขตลาบูฮานบาตู อูทารา ประเทศอินโดนีเซีย. (MATERNAL
KNOWLEDGE, ATTITUDE AND PRACTICES ON THE DIETARY OMEGA 3 AND 6 IN CHILDREN AGED 1-2 YEARS OLD IN LABUHANBATU UTARA REGENCY, INDONESIA) อ.ที่ปรึกษาหลัก : วันดี ศิริโชคชัชวาล

บทนำ : อินโดนีเซียเป็นหนึ่งในประเทศที่มีทรัพยากรมนุษย์ที่อาจไม่ได้คุณภาพ รวมถึงประเด็นด้านการทำงานของสมองต่อทักษะความ คิดสร้างสรร ค์ มารดาจึงมีบทบาทหน้าที่สำคัญต่อการที่เด็กอายุ $1-2$ ปี จะได้รับโอเมกา 3 และ 6 อย่างเพียงพอ อย่างไรก็ตาม มีการศึกษาอย่างจำกัดต่อระดับความรู้ ทัศนติ และการปฏิบัติของมารดาต่ออาหารที่มีกรดโอเมกา 3 และ 6 อย่างเพียงพอสำหรับเด็กอายุ $1-2$ ปี ดังนั้นการศึกษานี้มีวัตถุประสงค์เพื่อหาระดับความรู้ ทัศนคติ และการปฏิบัติของมารดา และปัจจัยที่เกี่ยวข้องกับการบริโภคโอเมกา 3 และ 6 ในเด็กอายุ $1-2$ ปี ในเมืองลาบูฮานบาตู อูทารา ประเทศอินโดนีเซีย. วิธีการดำเนินงานวิจัย: การศึกษาแบบภาคตัดขวางโดยดำเนินการวิจัยในมารดาของเด็กอายุ $1-2$ ปี จำนวน 428 ราย โดย ใช้การสัมภาษณ์แบบ/ตัวต่อ ตัว ด้วย แบบ สอบ ถาม จากการสุมตัวอย่างแบบหลายขั้นตอนจากหมู่บ้านในแปดตำบลของลาบูรา และ นำเสนอค่าเฉลี่ย และสวนเบี่ยงเบนมาตรฐานสำหรับการ วิเคราะห์เชิง พรรณนา และใช้สถิติวิเคราะห์การถดถอยโลจิสติคทวิเพื่อหาความสัมพันธ์ระหว่างตัวแปรอิสระต่อระดับการปฏิบัติที่ดีของม ารดาในการบริโภคโอเมกา 3 และ 6 ของเด็กอายุ $1-2$ ปี โดยมีนัยสำคัญทางสถิติที่ค่า $p<0.05$. ผลการศึกษา: ผู้เข้าร่วมการศึกษาเกือบครึ่งมีความรู้ในระดับดี (ร้อยละ 41.8) ในขณะที่มีเพียงร้อยละ 7.2 และ ร้อยละ 2.3 ของผู้เข้าร่วมทั้งหมดที่มีทัศนคติและการปฏิบัติที่ดีต่อการบริโภคอาหารที่มีโอเมกา 3 และ 6 ตามลำดับ และพบว่ามีตัวแปรอิสระ 8 ตัว ได้แก่ ศาสนาคริสต์นิกายเพนเทคอสต์ อาศัยในพื้นที่เขตเมือง ชาติพันธุ์มาเลย์ เพศของเด็กที่ได้รับการศึกษา การเลี้ยงลูกด้วยนมแม่ในปัจจุบัน และแหล่งข้อมูล 2 แหล่ง คือรายการโทรทัศน์ และสตรีที่ประสบปัญหาร่วมกับระดับทัศนคติปานกลาง มีความสัมพันธ์อย่างมีนัยสำคัญทางสถิติกับระดับการปฏิบัติที่ดีของมารดาต่อการบริโภคโอเมกา 3 และ 6 ใ น เ ด็ ก อ า ยุ $1-2$ ปี. ส รุ ป ผ ล ก า ร ศึ ก ษา : ผลการศึกษาพบว่ามีหลายปัจจัยที่เกี่ยวข้องกับการปฏิบัติที่ดีของมารดาต่อการบริโภคโอเมกา 3 และ 6 ในเด็กอายุ 1-2 ปี ในเมืองลาบูฮานบาตู อูทารา ประเทศอินโดนีเซีย ด้วยเหตุนี้ การศึกษาครั้งนี้จึงเสนอให้ การ วิจัยใน อนาคต รวม ถึงการ ทำการวิจัย แบบแทรกแซงเพิ่ ม เติม ควรมุ่งเน้นไปที่ปัจจัยเหล่านี้โดยเฉพาะทัศนคติของมารดา.
สาขาวิชา
ปีการศึกษารณสุขศาสตร์
2563

ปีการศึกษา 2563

ลายมือชื่อนิสิต
ลายมือชื่อ อ.ที่ปรึกษาหลัก
\# \# 6274506353 : MAJOR PUBLIC HEALTH
KEYWORD: maternal knowledge, attitude, practice, omega 3 and 6, associated factors, Indonesia
Sinar Yunita Purba : MATERNAL KNOWLEDGE, ATTITUDE AND PRACTICES ON THE DIETARY OMEGA 3 AND 6 IN CHILDREN AGED 1-2 YEARS OLD IN LABUHANBATU UTARA REGENCY, INDONESIA . Advisor: Wandee Sirichokchatchawan, Ph.D.

Background: Indonesia is one of the countries with low quality human resources including the issue on cognitive performances from brain functioning creativity. In the effort to fulfil Omega 3 and 6 in children aged 1-2 years, the most responsible person to the period are mothers. Therefore, the study aimed to determine the level of maternal knowledge, attitude, and practices and factors associated with the dietary omega 3 and 6 consumption in children aged 1-2 years old in Labuhanbatu Utara, Indonesia. Method: This cross-sectional study was conducted among 428 mothers of children aged 1-2 years using a face-to-face interview with a structured questionnaire. A multi-stage sampling was drawn from villages in eight subdistricts of Labura. Frequency, percentage, mean and standard deviation were presented for descriptive analysis. Chi-square and Binary logistic regression were used to describe the relationship between the selected independent variables and level of good maternal practices with statistically significant at p-value <0.05.Results: Almost half of participants has good level of knowledge (41.8%). Whereas only 7.2% and 2.3% of all participants have good level of attitude and practice on dietary omega 3 and 6, respectively. Eight variables (Pentecostal-religion, living in urban area, malay-ethnic, sex of subjected children, current breastfeeding, and sources of information, along with a fair level of attitude were significantly associated with the good level of maternal practices on consumption of omega 3 and 6 to the children aged 1-2 years.Conclusion: The study found that many factors were associated with good maternal practices on consumption of dietary omega 3 and 6 among 1-2 years old children in Labuhanbatu Utara, Indonesia. Therefore, further research and intervention focuses on those factors, especially on attitude of the mothers should be considered.

$\begin{array}{ll}\text { Field of Study: } & \text { Public Health } \\ \text { Academic Year: } & 2020\end{array}$
Student's Signature
Advisor's Signature

ACKNOWLEDGEMENTS

All praises to God, who has brought me to meet Chulalongkorn University in the path of my destiny. Blessed by God, and every detail help He gave me in studying thorugh online due to COVID-19 pandemic situation, as well as every good opportunity He gave me that I am grateful for.

First of all, I would like to thank my advisor, Ajarn Wandee Sirichoktchawan, Ph.D. that accompanying me from the first step until now of all my study and research during my master degree, for all her kindness, caring, motivation, encouragement, and all knowledge and mentally support she has given to me so I can walk so far.

After that, I would like to thank all of the committee Ajarn Asst. Prof. Ratana Somrongthong, Ph.D., and Ajarn Napaphan Viriyautsahakul, M.D. MSc. for their questions, comments, and meaningful suggestions towards my research.

I would also like to express my thanks for our Dean College of Public Health Sciences Prof. Sathirakorn Pongpanich, Ph.D. and all lecturers in this college and also all staff of our college that helped and encouraged me, and gave me many inspirational thoughts during studied in Thailand. Studying at Chulalongkorn University especially at the College of Public Health Sciences Chulalongkorn University such a blessing for me, this is my sincere gratitude.

I also would like to thank Graduate School Chulalongkorn University that fully supported me as AEC Full Scholarship student, for this beautiful opportunity given to me thank you very much, especially graduate staff of CPHS such as Khun Poohmerat Kokilanishta and Khun Vidar, Khun Suda, Khun Anothai (financial department), Khun Daonapa, Khun Surada, and Khun Chanidapha Sittikorn, Thank you for being kind and warm to communicate also to serve through facilitated my online learning studies during my master degree in CPHS Chulalongkorn University.

I also thank my life partner, Andi Fernandez, who helped me a lot to provide motivational energy, ideas, facilities, and deep understanding while I was doing this research. I also thank our healthy and strong baby that I am currently pregnant in, "Nathan (my baby's name)" who tried to understand her mother's situation during the research process of this master's degree.

For mom and dad, who accompanied and cooked eggs in the middle of the night for knowing I was doing research, make me warm ginger tea, and allow me sleep longer during the day because of my sacrifice doing research at midnight. During the process of this research, my younger siblings were also sacrificed in doing the house cleaning work that I usually do because they knew I was busy at my desk doing this research for months. Thank you very much to my family who always support me.

Last but not least, my friends in Chulalongkorn University, and student communities during my study in Chulalongkorn University, Thailand, thank you.

Sinar Yunita Purba

TABLE OF CONTENTS

Page

ABSTRACT (THAI) iii
ABSTRACT (ENGLISH) iv
ACKNOWLEDGEMENTS V
TABLE OF CONTENTS vii
LIST OF TABLES X
LIST OF FIGURES xii
CHAPTER I 13
1.1 Background 13
1.2 Research Questions 15
1.3 Research Objectives 15
1.4 Research Hypothesis 16
1.5 Conceptual Framework 19
1.6 Operational Definition 20
CHAPTER II 26
2.1 Omega-3 fatty acids 26
2.2 Omega-6 fatty acids 34
2.3 Omega-3 Omega-6 fatty acids: For Intelligence Quotient 39
2.4 Babies 1-2 years old with Omega-3 and 6 41
2.5 Growth and Development at first year of milestone in 1 year old 42
2.6 Growth and Development at second year of milestone in 2 years old 43
2.7 Food Taboo 45
2.8. KAP of Mothers in Omega-3 and 6 47
CHAPTER III 51
3.1 Research Design 51
3.2 Study Area 51
3.3 Study Population 55
3.4 Sample Size 56
3.5 Sampling Technique 57
3.6 Study Period. 60
3.7 Measurement Tools 61
3.8 Validity 66
3.9 Reliability 71
3.10 Ethical Consideration 71
3.11 Data Collection 72
3.12 Data Analysis 73
CHAPTER IV 75
4.1.Descriptive Findings 76
4.2 Maternal knowledge regarding dietary in consumption omega 3 and 6 to the children 1-2 years old 84
4.3 Maternal attitude towards dietary omega 3 and 6 consumption for children aged 1-2 years 89
4.4 Maternal practice towards dietary omega 3 and 6 consumption for children aged 1-2 years 96
4.5 Inferential Findings 111
4.5.1 Bivariate Analysis 111
4.5.2 Multivariate Analysis 123
CHAPTER V 131
5.1 Discussion on general characteristic of the study participants 131
5.2 Discussion on general characteristic towards practice of mother 132
5.3 Discussion on househould characteristic towards practice dietary omega 3 and 6 to the children 1-2 years old 134
5.4 Discussion on children characteristic towards practice dietary omega 3 and 6 to the children 1-2 years old 135
5.5 Discussion on source of information towards practice dietary omega 3 and 613
5.6 Discussion on food taboo towards practice dietary omega 3 and 6 138
5.7 Discussion on knowledge towards practice dietary omega 3 and 6 138
5.8 Discussion on attitude towards practice dietary omega 3 and 6 139
5.9 Limitation of the Study 139
5.10 Conclusion 141
5.11 Recommendation 142
5.12 Expected benefits 144
5.13 Possible obstacles and strategies to overcome 145
APPENDIX I 148
APPENDIX II 167
APPENDIX III 177
APPENDIX IV 182
REFERENCES 3
VITA 5

LIST OF TABLES

Page

Table 1 List of the subdistricts in Labuhanbatu Utara Regency 52
Table 2 List of the villages in Kualuh Hulu subdistricts 52
Table 3 The variables and their measurement scale 74
Table 4. General Characteristics of Participants ($\mathrm{n}=428$) 77
Table 5. Household Characteristics ($n=428$) 78
Table 6. Children Characteristics ($\mathrm{n}=428$) 79
Table 7. Food Taboo ($n=428$) 81
Table 8. Reason for food taboo 82
Table 9. Source of Information omega 3 and $6(n=428)$ 83
Table 10 Frequencies and Distribution of maternal knowledge scores regarding dietary in consumption omega 3 and 6 to the children aged 1-2 years ($\mathrm{n}=428$) 85
Table 11 Level of maternal knowledge towards dietary omega 3 and 6 consumption to the children aged 1-2 years ($\mathrm{n}=428$) 88
Table 12 Frequencies and distribution of maternal attitude towards dietary omega 3 consumption to the children aged 1-2 years($\mathrm{n}=428$)90
Table 13. Frequencies and distribution of maternal attitude towards dietary omega 6 consumption to the children aged 1-2 years
($\mathrm{n}=428$) 93
Table 14 Level of maternal attitude towards dietary omega 3 and 6 consumption to the children aged 1-2 years ($\mathrm{n}=428$) 95
Table 15 Frequencies and distribution of maternal practice towards dietary omega 3 and 6 consumption to the children aged 1-2
years ($\mathrm{n}=428$) 98
Table 16 Level of maternal practice towards dietary omega 3 and 6 consumption to the children ($\mathrm{n}=428$) 110
Table 17 Association between general characteristics with level of maternal practices on dietary omega 3 and 6 consumption inchildren aged 1-2 years old ($\mathrm{n}=428$)113
Table 18 Association between household characteristics and children characteristics with level of maternal practices on dietaryomega 3 and 6 consumption in children aged 1-2 years old ($n=428$)115
Table 19 Association between food taboo and level of maternal practices on dietary omega 3 and 6 consumption in children aged $1-2$ years old $(\mathrm{n}=428)$ 117
Table 20 Association between source of information and practice on the dietary omega 3 and 6 consumption in children aged 1-2 years 120
Table 21 Association between level of maternal knowledge and attitude with level of maternal practices on dietary omega 3 and 6
consumption in children aged 1-2 years old ($\mathrm{n}=428$). 121
Table 22 Association between maternal characteristics and good maternal practice in dietary omega 3 and 6 to the children aged
$1-2$ years old $(\mathrm{n}=428)$ 124
Table 23 Association between household characteristics, children characteristics and good maternal practice in dietary omega 3 and 6 to the children aged 1-2 years old. 125
Table 24 Attitude with good maternal practice in dietary omega 3 and 6 to the children aged 1-2 years old 129

LIST OF FIGURES

Page

Figure 1 Conceptual Framework 19
Figure 2. Chemical Structure of LNA. 27
Figure 3 Biosynthesis Omega-3 and 6 28
Figure 4 Positive Effect of DHA on Neuronal Survival. 30
Figure 5 Neural Free Fatty Acid Receptors 31
Figure 6 Chemical Structures of LA 35
Figure 7 Nomenclature of Polyunsaturated Fatty Acids (PUFA) 36
Figure 8 Pathways of biosynthesis of unsaturated fatty acids Omega-3 and Omega- 6 series. 37
Figure 9 Metabolic Pathways of a polyunsaturated fatty acids n3- and n-6 series. 38
Figure 10 Knowledge, attitudes and practices diagram 48
Figure 11 Map of villages of Kualuh Hulu Subdistricts [Statistics of Labuhanbatu Utara Regency, 2020(Labuhanbatu Utara inFigures, 2020)]54
Figure 12. Sampling flowchart 60

CHAPTER I INTRODUCTION

1.1 Background

Human Development Index in Asia was quite faster through 1970-2010. Indonesia get the top $4^{\text {th }}$ country who has faster growth HDI in 2010, with non-income dimension in $10^{\text {th }}$ top Asian countries and $6^{\text {th }}$ top Asian countries for economic growth. But still, it just a fifth from HDI of all over the developed countries such as European Country (Statistics 2013). Indonesia's HDI value for 2018 is 0.707 - which put the country in the high human development category-positioning it at 111 out of 189 countries and territories (Statistics 2012).

Automatically, Indonesia was one of the countries with low quality human resources. One of the parameters of quality human resources was the creativity of each individual (UNDP 2019). Problem solving is one of the cognitive performances from brain functioning creativity (Helland, Smith et al. 2003). Intelligence and creativity can be stimulated if Omega 3 and 6 are met (Talukdar, Zamroziewicz et al. 2019).

Omega 3 and 6 were essential fatty acids that play an important role in the development of the quality of the human brain. Omega 3 and 6 have $n-3$ and 6 carbon chains in their lipid molecular branches (Gvozdjáková A. 2008). Omega 3 fatty acids moleculized into Docosahexanoic Acid then particularly divided into Eicosapentanoic Acid and Alpha-Linoleic Acid (Sediaoetama, 2010). This nutrient functions for the development of nerve cells in the brain and retina (Bradbury 2011). Bryan Janet in his research "Nutrients for Cognitive Development in School-aged Children (Bryan, Osendarp et al. 2004)" stated that Omega 6 can be break into Arachidonic Acid and this molecule functioning as a myelin nerve wrapper, and coating of fat membranes in the brain. More consistent results have been found in favor of PUFA supplementation when studies have used more specific measures of cognitive performance, such as visual recognition memory or problem-solving ability (Tommy Cederholm 2013). It suggested that there is a critical timing of intervention to produce a long-term effect, such that supplementation throughout the first 24 months (Bryan, Osendarp et al. 2004).

Almost all research about Omega 3 and 6 related to the HDI come up with same conclusion during this $20^{\text {th }}$ century. From British, particularly Susan Walker, in her $16^{\text {th }}$ year follow-up study of a randomised controlled trial published on 2006, found the effect of a longer duration that more than two years dietary supplementation in early childhood of may have led to greater benefits cognitive intelligence functioning in late adolescence. From Asia, Chai Yu Chang in Taiwan wrote his findings in Essential Fatty Acids and Human Brain about clinical observation studies had related imbalance dietary intake of fatty acids to impaired brain performance and diseases. He also mentioned that the period of milestone optimum brain development was in first 5 years age of children's life, particularly in 1-2 years life of children (Chang, Ke et al. 2009).

In the effort to fulfil Omega 3 and 6 in children under aged 1-2 years, the most responsible person to the period were mothers. The mother should have knowledge about Omega 3 and 6 so that she realized that Omega 3 and 6 were very important for the development of her children's brain cells, so that the adequacy of Omega 3 and 6 in children can be fulfilled. Knowledge also influenced the Attitude of giving Omega 3 and 6 to children (Kluyts 2003). Factors that influenced the mother's knowledge, attitude, and practice are education, type of work, age, socio economic, mother's experience and the existence of information sources (Blomkvist, Hillesund et al. 2019).

Research was taken a place in Kualuh Hulu, Labuhanbatu Utara. Labura is the one of the youngest regencies in Indonesia, with the rapid growth of children population as much as 37.465 children on aged 1-5 years. Kualuh Hulu district had the most heterogeneous education and employment status and become the largest population growth in Labuhanbatu Utara with 71.274 citizen. It consisted of 13 subdistricts and 104 public health centre who covered babies on aged 1-2 years (Regency 2020).

Although prior researches had established a relationship between mother's knowledge with giving sufficient Omega 3 and 6 to the children under aged 1-2 years, no studies have specifically examined the attitude and practice of mothers in administration sufficiency Omega 3 and 6 to the children under aged 1-2 years, then researcher were interested in conducting research to examine maternal knowledge, attitude, and practice dietary Omega 3 and 6 to the children aged 1-2 years old in Labuhanbatu Utara regency, Indonesia.

1.2 Research Questions

1) What were the maternal knowledge, attitude, and practices on the dietary omega 3 and 6 consumption in children aged 1-2 years in Labuhanbatu Utara, Indonesia?
2) Was there an association between the general characteristics of the mothers and level of practices on the dietary omega 3 and 6 consumption in children aged 1-2 years old in Labuhanbatu Utara, Indonesia?
3) Was there an association between the household characteristics and level of practices on the dietary omega 3 and 6 consumption in children aged 1-2 years old in Labuhanbatu Utara, Indonesia?
4) Was there an association between the children characteristics and level of practices on the dietary omega 3 and 6 consumption in children aged 1-2 years old in Labuhanbatu Utara, Indonesia?
5) Was there an association between the food taboo and level of practices on the dietary omega 3 and 6 consumption in children aged 1-2 years old in Labuhanbatu Utara, Indonesia?
6) Was there an association between the source of information on omega 3 and 6 and level of practices on the dietary omega 3 and 6 consumption in children aged 1-2 years old in Labuhanbatu Utara, Indonesia?
7) Was there an association between the level of knowledge and level of practices on the dietary omega 3 and 6 consumption in children aged 1-2 years old in Labuhanbatu Utara, Indonesia?
8) Was there an association between level of attitude and level of practices on the dietary omega 3 and 6 consumption in children aged 1-2 years old in Labuhanbatu Utara, Indonesia

1.3 Research Objectives

1.3.1 General objective

To determine the level of maternal knowledge, attitude, and practices and factors associated with the dietary omega 3 and 6 consumption in children aged 1-2 years old in Labuhanbatu Utara, Indonesia.

1.3.2 Specific objectives

1. To determine the association between the general characteristics and level of practices on the dietary omega 3 and 6 consumption in children aged 1-2 years in Labuhanbatu Utara, Indonesia.
2. To determine the association between the household characteristics and level of practices on the dietary omega 3 and 6 consumption in children aged 1-2 years in Labuhanbatu Utara, Indonesia.
3. To determine the association between the children characteristics and level of practices on the dietary omega 3 and 6 consumption in children aged 1-2 years in Labuhanbatu Utara, Indonesia.
4. To determine the association between the food taboo and level of practices on the dietary omega 3 and 6 consumption in children aged 1-2 years in Labuhanbatu Utara, Indonesia.
5. To determine the association between source of information on omega 3 and 6 and level of practices on the dietary omega 3 and 6 consumption in children aged 1-2 years in Labuhanbatu Utara, Indonesia.
6. To determine the association between level of knowledge and level of practices on the dietary omega 3 and 6 consumption in children aged 1-2 years in Labuhanbatu Utara, Indonesia.
7. To determine the association between level of attitude and level of practices on the dietary omega 3 and 6 consumption in children aged 1-2 years in Labuhanbatu Utara, Indonesia

1.4 Research Hypothesis

1.4.1 Null Hypothesis

There is no association between the general characteristics and level of practices on the dietary omega 3 and 6 consumption in children aged 1-2 years in Labuhanbatu Utara, Indonesia.

Alternative Hypothesis

There was an association between the general characteristics and level of practices on the dietary omega 3 and 6 consumption in children aged 1-2 years in Labuhanbatu Utara, Indonesia.
1.4.2 Null Hypothesis

There was no association between the household characteristics and level of practices on the dietary omega 3 and 6 consumption in children aged 12 years in Labuhanbatu Utara, Indonesia.

Alternative Hypothesis

There was an association between the household characteristics and level of practices on the dietary omega 3 and 6 consumption in children aged 1-2 years in Labuhanbatu Utara, Indonesia.

1.4.3 Null Hypothesis

There was no association between the children characteristics and level of practices on the dietary omega 3 and 6 consumption in children aged 1-2 years in Labuhanbatu Utara, Indonesia. Alternative Hypothesis

There was an association between the children characteristics and level of practices on the dietary omega 3 and 6 consumption in children aged 1-2 years in Labuhanbatu Utara, Indonesia.

1.4.4 Null Hypothesis

There was no association between food taboo and level of practices on the dietary omega 3 and 6 consumption in children aged 1-2 years in Labuhanbatu Utara, Indonesia.

Alternative Hypothesis

There was an association between food taboo and level of practices on the dietary omega 3 and 6 consumption in children aged 1-2 years in Labuhanbatu Utara, Indonesia.

1.4.5 Null Hypothesis

There was no association between source of information on omega 3 and 6 and level of practices on the dietary omega 3 and 6 consumption in children aged 1-2 years in Labuhanbatu Utara, Indonesia.

Alternative Hypothesis

There was an association between source of information on omega 3 and 6 and level of practices on the dietary omega 3 and 6 consumption in children aged 1-2 years in Labuhanbatu Utara, Indonesia.

1.4.6 Null Hypothesis

There was no association between level of knowledge and level of practices on the dietary omega 3 and 6 consumption in children aged 1-2 years in Labuhanbatu Utara, Indonesia.

Alternative Hypothesis

There was an association between level of knowledge and level of practices on the dietary omega 3 and 6 consumption in children aged 1-2 years in Labuhanbatu Utara, Indonesia.

1.4.7 Null Hypothesis

There was no association between level of attitude and level of practices on the dietary omega 3 and 6 consumption in children aged 1-2 years in Labuhanbatu Utara, Indonesia.

Alternative Hypothesis
There was an association between level of attitude and level of practices on the dietary omega 3 and 6 consumption in children aged 1-2 years in Labuhanbatu Utara, Indonesia.

1.5 Conceptual Framework

Independent Variables

General Characteristics of the mothers:

1. Age
2. Religion
3. Marital Status
4. Educational level
5. Occupation
6. Place of Resident
7. Ethnicity

Children Characteristics

1. Weight
2. Length
3. Gender baby who will be the targeted subject
4. Current breastfeeding status
5. Food Allergy

Food taboo of Children

Source of information on dietary omega 3 and 6

> Maternal knowledge on dietary omega 3 and 6 consumption in children aged 1-2 years

Maternal attitude on dietary omega 3 and 6 consumption for children aged 1-2 years

Figure 1 Conceptual Framework

1.6 Operational Definition

General Characteristics of the mothers

1. Age: Referred to self-reported of age of the mother in last completed birthday at the time of interview.
2. Religion: Referred to the statement belief in higher power such as God, Goddess, Rabbi. Mother applied her religion rules to her daily activities and do praying as required by her religion, which categorizes into:

* Protestant
* Advent
* Pentecostal
* Orthodox
* Catholic
* Moslem
* Buddhist
* Hinduism
* Other, please specify

3. Marital Status

Referred to the distinct options that describe a person's relationship with a significant other at the time of interview. Categorized as married, divorce/separated and widowed.
4. Educational Level

Referred to the highest attained level education of respondent at the time of interview. It was categorized as Illiterate, Elementary, Intermediate, High school, higher education".
5. Occupation

Referred to the job of mother which was the source of monthly income at the time of interview. It was categorized as "government Employee", "private company employee", "entrepreneur", "housewife".
6. Place of Resident

Referred to the civil subdivision of a city in which the individual resides at the time of interview. Place residents categorized as Rural and Urban area.
7. Ethnicity

Ethnicity referred to the origins of respondent at the time of interview. It is categorized into "malay", "batak", "java", and other.

Household characteristic

1. Family arrangement

Referred to the family members those stay in one house as a family at the time of interview.

Nuclear family: Father, Mother and their children living in the same household.

Extended family: Father, mother, their children and other family members living in the same household.
2. Monthly household income

Referred to monthly income of mothers and fathers as parents who responsible to taking care children 1-2 years in the house at the time of interview.

Children Characteristics

1. Weight

Referred to body weight of children 1-2 years old in the house. Measurement was based on WHO guidelines. It was categorized according to weight for age into 3 categories; underweight (<-2SD), normal (-2SD to +2SD) and overweight (>+2SD).
2. Length

Referred to body length of children 1-2 years old in the house. It was categorized according to length for age as short ($\langle-2 \mathrm{SD}$), average (-2 SD to +2 SD) and tall (>+2SD).
3. Gender baby who was the subjected to the study

Referred to the sex type of children 1-2 years that was the targeted subject and was categorized as girl and boy.
4. Current Breastfeeding Status

Referred to the history breastfeeding of targeted children in the last 3 months (till present). It was categorized as currently breastfed which was breastmilk only, breastfed + formula milk, formula milk or UHT.
5. Food Allergy

Referred to the allergic factor from the subjected children 1-2 years in the house to some item foods. It was categorized as yes or no.

Food taboo

Referred to the personal/family beliefs as cultural part of their ethnic to consume some food at the time of interview towards the child feeding. It was categorized with "Yes" or "No" to the question.

Source of information on dietary omega 3 and 6

Referred to the how they can get the information of Omega 3 and 6. Content of information Omega 3 and 6 could be varied by knowing definition omega 3 and 6 , what was the sources of foods, where was the source of foods could be find, what was the functions of Omega 3 and 6 , when it should be given for optimum benefit to the children, why mothers should give it to their children, and how much they could give the omega 3 and 6 source foods, how often mother could give it, also were the children 1-2 years old happy to eat the sources of omega 3 and 6 . The source of these information had been categorized as

* TV Programs
* Newpaper and Magazines
* Friends/Neighbour
* Family Member
* Experiencing women in the families
* Medical Practitioner
* Social Media

Maternal knowledge on dietary omega 3 and 6 consumption in children aged 12 years

Referred to the knowledge of mothers during the interview and questionnaire given. Understand the benefit of omega 3 and 6 as most important period to eat omega 3 and 6 in first 1-2 years aged of children, and food sources of omega 3 and 6. The topics were such as definition omega 3 and 6 , benefit of omega 3 and 6 , and source of omega 3 and 6 . Omega 3 were 9 statements, omega 6 were 9 statements, and omega 3 along with omega 6 were 9 statements.

Maternal attitude on dietary omega 3 and 6 consumption in children aged 1-2 years

Attitude of the mother towards menu arrangement omega 3 and 6, food processing of omega 3 and 6 sources, serving food sources of omega 3 and 6 , and the attitude to give food sources of omega 3 and 6 in children 1-2 years. The attitude was measured by a variety of question items expressed in the response category by the Likert method. Statement of attitude referred to the topic were consist of preparation source omega 3 and 6 , appearance of daily meal which contain omega 3 and 6, food taboo appliance in the plate, variousity and regularity menu of source omega 3 and 6 , menu composition of omega 3 and 6 , the person who responsible to the meals of children in the house. The statement of omega 3 were total 9 statements, and omega 6 were total 8 statements.

Maternal practices on dietary omega 3 and 6 consumption in children aged 1-2 years.

Referred to how mothers apply what they know about omega 3 and 6 for their children aged 1-2 years. The omega 3 and 6 had administered by mother with many
food sources to the children aged 1-2 years. There were 10 food groups that will be appear in section VII for practice variables.

Group I: Yogurt, milk, and cheese.

Group II : Fruits.

Group III: Vegetables.

Group IV: Chocolate.

Group V: Desert

Group VI: Carbohydrates

Group VII: Meat

Group VIII: Fish and Seafood

Group IX : Nuts and Legumes

Group X: Supplement

CHAPTER II

REVIEW OF RELATED LITERATURE AND STUDIES

This chapter presents the literature studies on 1) Omega-3 fatty acids, 2) Omega-6 fatty acids, 3) Omega-3 and Omega-6 for Intelligent Quotient, 4) Babies 1-2 years old with Omega-3 and 6,5) Growth and development at $1^{\text {st }}$ year of milestone in 1 year old, 6) Growth and development at $2^{\text {nd }}$ year of milestone in 2 year old, 7) Maternal Knowledge, Attitude, and Practice on dietary Omega-3 and 6.

2.1 Omega-3 fatty acids

2.1.1 Definition of Omega-3

Omega-3 is one of the unsaturated fatty acids with structure chemical chain consist of many double bonds, with carboxyl bonds founded in the 3rd methyl groups in the COOH chain. Omega-3 fatty acids are a type of polyunsaturated fat, considered an essential fatty acid because it cannot be manufactured by the body. As a result, people must obtain omega- 3 fatty acids from foods such as fish, nut, and plant-based oils such as canola oil and sunflower oils (Lauritzen 2001).

2.1.2 The types of Omega-3

a) ALA - ALA, is alpha-linolenic acid, has 18-carbon chain on 3 double bond. α - Linolenic acid constituted approximately 80% of total n-3 intake. α linolenic acid came from soybean oil, whereas that of docosahexaenoic acid and eicosapentaenoic acid is mackerel (Ha and Kim 2018).
b) EPA - EPA is eicosapentaenoic acid. EPA is a shorter chain than DHA. The EPA polyunsaturated fatty acid chain contains 20 carbons on 5 double bond. EPA is one of the most important of Omega-3. Eventhough they have an important role to the brain development, the role is tend to used for hormonal system and immune system.
c) DHA - DHA is docosahexaenoic acid which has 22-carbon chain on 6 double bond with the first double bond founded at the edge of third carbon chain of methyl. DHA makes up about $12-15 \%$ by weight of total fatty acids in the human brain (Salem, Litman et al. 2001).

Chemical structure of LNA

Figure 2. Chemical Structure of LNA.
(Gvozdjáková A. 2008).
LNA is converted to eicosapentanoic acid (EPA), and then to docosahexanoic acid (DHA), while LA is the metabolic precursor of arachidonic acid (AA)(Gocen, Bayarı et al. 2018).

Healy-Stoficl and Levant$\underline{\text { n-3 Series }}$		Page 36
		n-6 Series
α-Linolenic acid (ALA;18:3n-3)		Linoleic acid (LA;18:2n-6)
-	Δ^{6}-desaturase	-
-	elongase	-
-	Δ^{5}-desaturase	!
Eicosapentaenoic acid (EPA; 20:5n-3)		Arachidonic acid (20:4n-6)
\checkmark	elongase	-
-	elongase	-
!	Δ^{6}-desaturase	-
- per	peroxisomal oxidation	-
Docosahexaenoic acid (DHA; 22:6n-3) Doco		apentaenoic acid (n-6 DPA; 22

Figure 3 Biosynthesis Omega-3 and 6

(Healy-Stoffel and Levant 2018).

DHA transform by the results of ALA metabolism through the process of decreasing oxygen saturation and the incorporation of amino acid bonds as described in Figure 1. Through the Omega- 6 chain bonds, the same method is used to convert LA to AA then into DPA. Syntaxin-3 is a type of synapsis stimulated by DHA, wherein syntaxin- 3 is an important factor in the growth and regeneration of neurons, which can contribute to the further role of DHA, namely for optimal brain growth and development (Healy-Stoffel \& Levant, 2018).

EPA is a DHA precursor which has a chemical structure formula of $20: 3 n-3$. In $1-$ 2% of the total brain fatty acids in brain phospholipids, there is EPA. EPA acts as an anti-inflammatory mediator in its function in maintaining brain cells. Accordingly, the relative abundance of ALA and LA influences the amounts of DHA and AA produced (Healy-Stoffel \& Levant, 2018)

In the biological activity of cells, DHA plays a role in protecting the apoptotic wall culture model in which the cell membrane contains phospholipids. Phospholipids are also called phosphatidylserines. If apoptosis is protected then cell phosphatidylserine feeding will also increase. But when DHA is lost, eating phosphatidylserine is also lost. Thus, through its effects on phosphatidylserine, DHA may play an important role in the regulation of cell signaling and in cell proliferation (Salem, Litman, Kim, \& Gawrisch, 2001). An adequate intake of omega-3 PUFA is essential for optimal visual function and neural development (Dyall \& Michael-Titus, 2008).

Omega 3 is one of the fatty acids that fall into the PUFA category. PUFA are a type of dietary fat that is important for the human body. PUFA, which has a long chain of 20 carbons, serves to coat cells in the body. Its molecules are also useful for energy delivery in all body tissues including the brain. The major species of n-6 PUFAs in brain is arachidonic acid/AA or 20:4n-6, which is 20 carbons in length, with four double bonds beginning with the sixth carbon from the methyl end, and which makes up 8-11\% of the total fatty acids in the brain (Healy-Stoffel and Levant 2018).

Some literature states that the AA diet is useful for increasing the ability of cells to adapt when cell function is needed quickly. AA helps cells to form new interconnections of nerves and reorganize the brain's abilities so that the brain develops faster (Fukaya et al., 2007). AA is useful for thickening transcription of cells through PPAR uq which help to make nerve cells stronger and have rarely inflammated so that AA protects cells from free radicals. When the cells are stronger protected, the brain cells will develop properly (Whelan 2008).

Figure 4 Positive Effect of DHA on Neuronal Survival

(Kim 2008).

Based on the explanation of Figure 3, DHA is an important basis for the maintenance of long or short life of nerve cells in the brain. Why? Because DHA is in the life process of brain cells, it functions to increase PS accumulation in the central nervous system. However, DHA requires the participation of the PS itself and the PI3 kinase. From the DHA protected PS, the Akt signal will translocate very fast. Not only the translocation in the Akt signal but also the Raf-1 translocation is poared by DHA. Raf-1 plays a role in the process of delivering signals for nerve cell differentiation. Thus, if $\mathrm{n}-3$ is reduced, it will then be followed by reduced PS function in the central nerve, so that the cells have a short lifespan and can disappear significantly in the event of nerve dysfunction. In this study, cells cultured with ethanol exposure showed the function of DHA to be very clear in the process of cell differentiation. The observation that DHA increases PS particularly in nerve cells may indicate the presence of a unique PSS isoform in nerve cells (Kim 2008).

Figure 5 Neural Free Fatty Acid Receptors
(Falomir-Lockhart, Cavazzutti, Giménez, \& Toscani, 2019).

Fatty acids play a role in the function of neurons and glial cells since humans are still in embryonic form, to support memory and intellectual functions. Fatty acids are also preventive in the prevention of brain trauma and other neurological diseases. Fatty acids cannot stand alone in carrying out important functions in the brain, their chemical structures are simple and difficult to dissolve, their nature is to make fat aided by proteins called the FFAR receptor membrane, cytosol transcription protein, FABP, and PPAR nuclear transcription. These proteins are intermediates of fatty acids for the cells that contain fatty acids (Falomir-Lockhart, Cavazzutti et al. 2019). n-3 and n-6 are electron donors for PPAR, the variously self-resolving nuclear transcription factors coupled with the receptor from RXR retinoid X to bind to DNA for gene transcription assistance. This PPAR gene that has been finished will be
useful for early brain assistance. PPAR gene will thicken stem cells to increase brain function. DHA and ARA are electron donors for RXR in the brain. RXR will meet RAR and together will do its job for the development of new cells, adapt to new functions, multiply and form cells in each body tissue. If DHA is reduced, gene expression will also change. The expression of this generation will make cells less flexible in adapting, less fast in delivering signals to tissues, assembling new cell coatings, transduction of signals and forming ion channels. This will prevent the brain from developing optimally in its intellectual function (Innis 2007).

2.1.3. The sources of these omega- 3 fatty acids

a) ALA - Canola, Soybeans, Walnuts, and Flaxseed (Kris-Etherton, Harris, \& Appel, 2003) Previous study find about there is shift in production away from small, family-owned farms to industrial-scale agribusiness operations. Foods produced and consumed in the early 20th century had different essential fatty acid compositions than modern grain-fed poultry and livestock products (Blasbalg, Hibbeln et al. 2011 Majchrzak, \& Rawlings, 2011 Majchrzak, \& Rawlings, 2011).
b) EPA - Oily fishes such as Cod Liver, and fishes such as Herring, Mackerel, Salmon, and Sardines (Pike \& Jackson, 2010).
c) DHA - Oily fishes such as Cod Liver, Herring, Mackerel, Salmon, and Sardines, and also are produced from algal fermentation (Nguyen, Li, \& Oben). Seafood is currently the best and generally a safe source of long-chain omega-3 oils amongst the common food groups. LC omega-3 oils are also obtained in lower amounts per serve from red meat, egg and selected other foods. As global population increases the opportunities to increase seafood
harvest are limited, therefore new alternate sources are required. Emerging sources include microalgae and under-utilized resources such as Southern Ocean krill (Nichols, Petrie, \& Singh, 2010).

2.1.4 Benefits of omega-3 fatty acids

Omega-3 fatty acids balance the modern diet to prevent degenerative disease. Heart disease, stroke, and cancer can prevent by n-3 (Kew, Mesa et al. 2004). Previous studies found the positive result when rodent is supplemented n-3 determine substantial portion of their lives reduces risk of amyloid- β deposition and hippocampal neuron loss and improves cognitive functioning. The study recommend fish consumption to support memory abilities during elderly .

ALA - Cholesterol and triglyceride level, rigid blood vessels, and fat deposits in the artery is reduced by ALA to prevent heart disease. In fact, the National Institutes of Health has reported the majority of U.S. Diets with omega-3 fatty acids needed by our bodies for overall health and wellness ((Kew, Mesa et al. 2004).

EPA/DHA - Chang explained that Dietary decosahexaenoic acid is needed for the optimum functional maturation of the retina and visual cortex, with visual acuity and mental development seemingly improved by extra DHA. Studies show that diets high in amounts of EPA and DHA help with brain and eye development, prevents cardiovascular disease, and can help to prevent Alzheimer's disease. (Chang, Ke, \& Chen, 2009)

DHA is useful for protecting against the aging process in the retina of the eye to improve cognitive intelligence in children aged nine months. In a previous study patients with myocardial infarction who are given a dose of EPA / DHA $1.8 \pm 1.2 \mathrm{~g}$
/ day and a mean duration of follow-up is 2.2 ± 1.2 years are found to reduce the risk of cardiovascular death (Marik, Varon, \& Disease, 2009). All infant formula also now supplemented with DHA (Hoffman, Ziegler, Mitmesser, Harris, \& DiersenSchade, 2008)

DHA plays an important role in the development of brain structures, as a messenger, message, brain neurotransmitter function, and a molecule of the immune system. DHA also functions in the prevention of nerve injury (Chang, Ke, \& Chen., 2009). The role of n-3 PUFAs is strongly used in functional brain plasticity and intelligence impact on psychological health, aging, and disease (Talukdar, Zamroziewicz et al. 2019 \& Barbey, 2019 \& Barbey, 2019). n-3 serves to increase cerebral blood flow through vasodilation (Parletta \& Howe, 2008). n-3 PUFA-sensitive regions is reliably predict general intelligence. The anterior, posterior and amygdala cingulate gyrus are used for intelligence functions such as decision making, attention modulation - cognitive skills as well as in intelligence intelligence (Buckner, Andrews-Hanna, \& Schacter, 2008) (Talukdar et al., 2019).

2.2 Omega-6 fatty acids

2.2.1 Definition of Omega-6

Omega-6 is one of the unsaturated fatty acids with more than one double bond, with carboxyl bonds found in the $6^{\text {th }}$ methyl groups in the COOH chain (Gocen, Bayar1, \& Guven, 2018). Body could not produce Omega-6 fatty acid by their own, and because this is essential from human body, human should take Omega-6 fatty acid from foods (Saini \& Keum, 2018).

2.2.2. Types of Omega-6

. 2 Chemical structures of LA

Figure 6 Chemical Structures of $L A$
(Gvozdjáková A. 2008)
a) LA - LA is linolenic acid. Chemically, it is an 18-carbon chain. The first double bond is located at the sixth carbon from the edge of chain. Linoleic acid constituted 97% of total n-6 intake (Ha \& Kim, 2018).
b) $\mathrm{AA}-\mathrm{AA}$ is Arachidonic acid. It is the major species of $\mathrm{n}-6$ which contains 20-carbon chain. Its first double bond is located at the sixth carbon from the omega end of the fatty acid. Brain has $8-11 \%$ AA from the total fatty acids (Healy-Stoffel and Levant 2018).

Common Name	Chemical Name	Shorthand Notation	Chemical Formula
Linoleic (LA)	cis, cis-9,12Octadecadienoic	18:2 n-6	$\begin{aligned} & \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3}\left(\mathrm{CH}_{2} \mathrm{CH}\right. \\ & =\mathrm{CH})_{2}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{COOH} \end{aligned}$
α-Linolenic (LNA)	all cis-9, 12, 15Octadecatrienoic	18:3n-3	$\begin{aligned} & \mathrm{CH}_{3}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right)_{3} \\ & \left(\mathrm{CH}_{2}\right)_{7} \mathrm{COOH} \end{aligned}$
γ-Linolenic (GLA)	all cis-6, 9, 12Octadecatrienoic	18:3 n-6	$\begin{aligned} & \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3}\left(\mathrm{CH}_{2} \mathrm{CH}\right. \\ & =\mathrm{CH})_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH} \end{aligned}$
Stearidonic	all cis-6,9,12,15Octadecatertaenoi	18:4 n-3	$\begin{aligned} & \mathrm{CH}_{3}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right)_{4} \\ & \left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH} \end{aligned}$
Dihomo- γ - linolenic	all cis-8,11,14eicosatrienoic	20:3 n-6	$\begin{aligned} & \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3}\left(\mathrm{CH}_{2} \mathrm{CH}\right. \\ & =\mathrm{CH})_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH} \end{aligned}$
Meads	all cis-5,8,11eicosatrienoic	20:3 n-9	$\begin{aligned} & \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6}\left(\mathrm{CH}_{2} \mathrm{CH}\right. \\ & =\mathrm{CH})_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH} \end{aligned}$
Arahidonic (AA)	all cis-5,8,11,15- Eicosatetraenoic	20:4 n-6	$\begin{aligned} & \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6}\left(\mathrm{CH}_{2} \mathrm{CH}\right. \\ & =\mathrm{CH})_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOH} \end{aligned}$
Eicosapentaenoic (EPA)	$\begin{aligned} & \text { all cis- } 5,8,11,14 \text {, } \\ & 17 \text { - } \\ & \text { eicosapentaenoic } \end{aligned}$	20:5n-3	$\begin{aligned} & \mathrm{CH}_{3}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right)_{5} \\ & \left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOH} \end{aligned}$
Docosapentaenoic (DPA)	$\begin{aligned} & \text { all cis- } 7,10,13,16 \text {, } \\ & 19- \\ & \text { docosapentaenoic } \end{aligned}$	22:5n-3	$\begin{aligned} & \mathrm{CH}_{3}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right)_{s} \\ & \left(\mathrm{CH}_{2}\right)_{5} \mathrm{COOH} \end{aligned}$
Docosahexaenoic (DHA)	$\begin{aligned} & \text { all cis-4,7,10,13, } \\ & 16,19- \\ & \text { docosahexaenoic } \end{aligned}$	24:6 n-3	$\begin{aligned} & \mathrm{CH}_{3}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right)_{6} \\ & \left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH} \end{aligned}$

Figure 7 Nomenclature of Polyunsaturated Fatty Acids (PUFA)
(Finley \& Shahidi, 2001)

AA is hidden behind synaptosomes requires stimulation of the phospholipid membrane through the action of endogenous phospholipase A 2 to engage in signal transfer that is useful for cell growth until the end of the mature synapses. AA collaborates with DHA to stabilize the membrane fluid external environment and exemplify the correct neurotransmitter to replicate. Not only that, AA plus DHA summons lipids and binds them so that there are no unwanted interactions with nerve cells (Uauy \& Dangour, 2006).

2.2.3 The sources of omega-6 fatty acids

LA - Soybean oil, Corn oil, Safflower Oil, Sunflower Oil, Peanut Oil, Cottonseed oil, and Rice Bran Oil (Meyer et al., 2003).

AA - Peanut Oil, Meat, Eggs, and Dairy Product. Pork (Ha and Kim) and egg are the major food sources of arachidonic acid and dihomo- γ-linolenic acid, respectively (Øyen et al., 2018).

2.2.4. The Benefits of Omega-6 fatty acids

Figure 8 Pathways of biosynthesis of unsaturated fatty acids Omega-3 and Omega-6 series
(Wiktorowska-Owczarek, Berezinska, \& Nowak, 2015).
The omega-6 series derives from linoleic acid and includes arachidonic acid (AA or ARA; C20 :4 $\omega-6$), the last one being docosapentaenoic acid (DPA; C22 : $5 \omega-$
6) (Wiktorowska-Owczarek et al., 2015).

Metabolic pathways of a polyunsaturated fatty acids omega-6 and omega- 3 series

Figure 9 Metabolic Pathways of a polyunsaturated fatty acids n3- and n- 6 series
(Wiktorowska-Owczarek et al., 2015).

In the next Figure 8 above, states that omega- 3 and omega-6 are extracted for the latest Prostaglandins, Prostacyclins, thromboxane and leukotrienes. AA is an eicosanoid that is responsible for capturing inflammatory signals through the formation of series 2 prostanoids. Prostaglandins have a different way of keeping cells from becoming inflamed, namely by injecting lipoxygenase so that they can produce more lipoxins. AA also plays a role in the process of expanding blood vessels and decreasing the number of cancer cells (Wiktorowska-Owczarek et al., 2015). Most of the plant oils contain Omega-6. Omega-6 develops forebrain function (Bryan et al., 2004).

2.3 Omega-3 Omega-6 fatty acids: For Intelligence Quotient

Arachidonic acid and docosahexaenoic acid are essential for brain growth and cognitive development (Helland, Smith et al. 2008).

Previous studies reviewed several important points where children who are given formula milk with DHA levels had higher IQ scores than children who drank only unfortified formula. Then the long chain polyunsaturated fatty acids that the mother gives to her child through breast milk production will stimulate the child's cognitive development. Consumption at the age of 6-24 years will have long-term effects at the age of 8 children (Ghazi, md isa, Sutan, badila, \& Mehmet, 2014). Human integrity and the ability of humans to work broadly are the important roles of fatty acids. Many studies have proven that inadequately consumed fatty acids will cause impaired brain performance and degenerative diseases. This makes the role of fatty acids very important coupled with brain growth that completes at the age of 5-6 years. EFA, DHA, AA, ALA, DPA are Omega-3 and Omega-6 molecules that play a role in enhancing human brain development from the fetus (Chang, $\mathrm{Ke}, \&$ Chen, 2009).

Talking about the benefits of Omega-3 and Omega-6, this can be well explained because Omega-3 and Omega-6 are nutrients. Individual brain development follows a genetic program which is influenced by environmental factors including nutrition (Blomkvist, Hillesund, Helland, Simhan, \& Øverby, 2019). Since brain development continues through childhood, cognitive development related to Omega-3 fat levels through diet and/or supplementation in children (Eilander, Hundscheid, Osendarp, Transler, \& Zock, 2007). Provision of longer DHA consumption can increase positive results for children's cognitive development (Øyen et al., 2018).

Remember to determine the level of fatty acid balance of whatever food we consume so that if this consumption is balanced, children's brain development will be optimal at the age of 1-5 years. Among them, the age of 1-2 years is a critical age for children's brain development towards its golden age at the age of 5 years. The nutritional adequacy rate of Omega-3 and 6 for babies in 1-2 years old needs 7 grams / day of Omega-3 and 0.7 grams / day for Omega-6 (Lupton 2002). The rates is same
for boys and baby girls (Aranceta \& Pérez-Rodrigo, 2012). In the meantime it is advised to follow the general CDC dietary recommendations of 2-3 fish meals per week or the equivalent intake of long chain n-3 fatty acids, particularly DHA (Cederholm et al., 2013).

Omega-6 and omega-3 fatty acids have a similar ratio in the instant diet in the West. So that in previous studies there, it is found that the Western diet is deficient in Omega-3(Holub and acids 2009). Omega-6 and omega-3 FA are not interconvertible in the human body and are important components of practically all cell membranes (Simopoulos, 2011). Omega-3 and omega-6 reduce the effects of inflammation, improve the digestion of lipids, and sharpen cognitive (Ballard \& Morrow, 2013).

The smarter a person is, the more polyunsaturated fatty acids are in the blood. Because the adequacy of processing each function in the core network is well fulfilled so that the connection patterns between the nerves in the brain are strong. A mediation analysis is implemented to investigate the relationship between empirically derived patterns of fatty acids, general intelligence, and underlying intrinsic connectivity networks (Zamroziewicz, Paul, Zwilling, \& Barbey, 2017).

Omega-3 and 6 used to nourish hair and scalp. Adequate consumption can also heal lesions, eczema, and dermatitis on the skin (Medicines, 2002).

With the provision of Omega-3 and 6 balanced at the age of 1-2 years old, will increase the number of baby brain cells. An increasing number of brain cells will cause the child to better digest the stimulus from the environment (Sameroff, Seifer, Barocas, Zax, \& Greenspan, 1987).

This stimulates the speed at which neurotransmitters deliver stimulation to the centre of the brain and along the neurons, so that the quality of brain cells branching is getting better, the better the synaptic function between brain cells of infants and toddlers. Fatty acids make the membrane structure denser. The longer the Omega-3 and Omega- 6 carbon chains, the more necessary it is for the differentiation of brain cell function. If not fulfilled, linolenic acid is upset and disrupts the chemical composition of the brain cell membranes, in nerve cells, olidendrocytes, and astrocytes. In its application to the human body, humans experience disturbances in
touch and behaviour disorders. Membrane phospholipids in animals are more effective at relieving the effects of alpha-linolenic deficiency. In contrast, omega-9 fatty acid deficiency, specifically oleic acid deficiency, induces a reduction of this fatty acid in many tissues, except the brain (Bourre 2004).

2.4 Babies 1-2 years old with Omega-3 and 6

There is study about N-3 Long-Chain Polyunsaturated Fatty Acids for Optimal Function During Brain Development and Ageing (Dangour \& Uauy, 2008) conclude accretion of DHA in brain tissue continues after birth, reaching a total of 4 g of DHA in the brain between 1-2 years of age, suggesting that n-3 LCP intake in the early years being important for brain development.

Babies brain consists of two major parts, namely the right brain and the left brain. The right brain functions in terms of equality, fantasy, creativity, shape or space, emotions, music, and color (Ghosh et al., 2010).

The left brain mostly using in academics such as memory differences in numbers, sequence, writing, language, calculation, and logic (Corballis 2014). Some aspects of physical growth become stable in preschool years. The average time of heart rate and breathing decreased only slightly to 90 x per minute and breathing 22-24x per minute. Blood pressure rises slightly to an average value of $95 / 58 \mathrm{mmHg}$. The average body weight for 5 years is about 21 kg , almost 6 times the birth weight (WHO 2018).

At the age of 1 years, the bodyweight average of babies will increase till 3 x of bodyweight when they are born and became 4 x at the age of 2 years (Winship \& Boyle, 2012). Growth starts slowly in the pre-school period. Increase in BB is approximately $2 \mathrm{~kg} /$ year, then constant growth starts to the end (Kohl III \& Cook, 2013).

Pre-school age children grow $5-7.5 \mathrm{~cm}$ per year. This length doubled the length of birth at the age of 4 years and is at an average height of 109 cm on their fifth birthday. Leg extension results in a thinner appearance (Huelke, 1998). The more frequent consumption of DHA on three consecutive days found a significant effect on the
calculation of total saturated fatty acids in the blood (Nyaradi, Li et al. 2013). Dietary intake of fish, fruits and vegetables is also strongly associated with higher neurodevelopmental scores, even after adjustment for breastfeeding and maternal education (Blomkvist et al., 2019).

Breastfeeding is one important activity for mothers to complete the nutrients for their babies in first years and second year of baby's life. As we know, breastmilk delivery during 1-2 years old babies by mothers will increase the intelligence during the school period of the babies. Breastmilk has one of the highest and complete Omega3 and 6 nutrition as enough resource for the baby. Children who are adequately breastfed have better cognitive development and function better into adolescence. Gradual cognitive increase with continuous consumption. Omega-3 and Omega-6 given at breakfast can also be useful for children's cognitive development (Nyaradi, Li et al. 2013).

ALA is a part of Omega- 3 which is the first to show various functions that affect the structure, biochemistry, physiology of brain function (Bourre 2004). DHA is one of the main structures of brain fat membranes and is needed most for nerve function. Not alone, long chain will help ALA improve visual, nervous, and intellectual abilities (Agostoni, Trojan et al.). Consequently, the nature of polyunsaturated fatty acids present in formula milks for infants conditions the visual, neurological and cerebral abilities, including intellectual (Simopoulos 2011).

Research on children aged 1-2 years and preschool age found less when it comes to the role of nutrition in brain development. The difficulty of a mother when determining a menu for her child can determine the quality of nutrition and its levels. Differences in character, neural activity that will still be developing and emotional instability of preschool have caused research for pre-school children to have its own challenges. (Rosales, Reznick, \& Zeisel, 2009).

2.5 Growth and Development at first year of milestone in 1 year old

2.5.1 Length and weight

Anthropometric standards for children in Indonesia refer to WHO Child Growth Standards for children aged 0-5 years and WHO Reference 2007 for children 5 (five) to 18 (eighteen) years. The standard is how a child can grow meet certain conditions. Research shows that children from any country will grow up equal if nourished, health and proper upbringing are met. Through various studies and expert discussion, Indonesia decided to abolish this standard become the official standard to be used as a standard Children's nutritional status through a Ministerial Decree Health Number 1995 / Menkes /SK/XII/2010 concerning Standards Anthropometric Assessment of Children's Nutritional Status. (Agostoni, Trojan et al.)

2.5.2. Physical change

At this age, your baby's muscle strength and balance have developed to make it easier to stand without anyone's help for a few moments. He also be able to take a small object between the thumb and index finger. This ability enables him to feed himself, write with crayons, and build tower beams.

2.5.3 Communication skills

Children can follow the orders of their mother. For the simple command category like holding your own spoon. Children who eat more fish have better social skills at 15 months of age (Daniels, Longnecker et al. 2004).

2.5.4 Social Ability

A typical 1 year old is shy when meeting new people or strangers. Sometimes, babies will prefer to be around mom and cry when she wants to leave him alone.

2.6 Growth and Development at second year of milestone in 2 years old

2.6.1 Body length and weight

Body Length Index (PB) is used on children aged 0-24 months as measured in the supine position. When the child is of age 0-24 months measured in a standing position, then the measurement results are corrected by adding 0.7 cm . Meanwhile, for the height index (TB) used in children over 24 months as measured by position stand up. If the child over 24 months is measured in the supine position, then the measurement results are corrected by subtracting 0.7 cm (WHO, 2008)

Children's Anthropometry Standards are based on weight parameters and length / height consisting of 4 (four) indexes, including:

1. Weight Index for Age (BW/U)

This BB / U index describes the relative body weight in comparison with the age of the child. This index is used to assess children with underweight or severely less underweight), but cannot be used to classify overweight or very obese children. It is important to know that a children with low W / A, possibly having problems growth, so it needs to be confirmed with the W / L index or W / L or BMI/A before intervention.
2. Body Length Index according to Age or Height according To Age

The L/A index describes the growth in length or the child's height according to their age. This index can be identified children who are short (stunted) or very short (severely stunted), which is caused by malnutrition prolonged or frequent illness. Children who are classified as tall according to their age can also identified. Children with above normal height (height once) is usually caused by an endocrine disorder, however it is rarely occurs in Indonesia.
3. Weight Index according to Body Length / Height (W /L)

The body weight index or body weight/height describes what was body weight child according to growth in length/height. Index this can be used to identify undernourished children. Malnourished can be under or over nutrition.
4. Body Mass Index by Age (BMI/A)

BMI/A index was used to determine the category of malnutrition, nutrition lack, good nutrition, risk of over nutrition, over nutrition and obesity. Chart BMI/A and W/ L charts tend to show results the same one. However, the BMI/A index was more sensitive for screening child over nutrition and obesity. Children with BMI/U threshold $>+1$ SD has the risk of over nutrition so it needs to be handled further for prevent over nutrition and obesity. (Ministry of Health, 2020)
2.6.2 Physical change

Muscle strength and balance will be more honed Little. This development allows Little to run more smoothly, run slowly, and make small jumps. The ability to coordinate will also develop, so that at this age some children can already open the door, push the table, to change their own clothes.

2.6.3 Communication skills

Some children are able to put together several words at once even though they are stuttering. So, don't be surprised if baby still uses "baby language" or incomplete sentences when talking. For example, "mbim" for cars, "sawat" for planes, "mamam" for eating, and other words.

2.6.4 Social Ability

Babies are more open with new people around him. They will be interested in playing with other children, even though the mother needs to help her to get acquainted and socialize with her new environment. A child's development can be seen from three things: physical development (Agostoni et al., 1997), cognition, and emotion. Their main skills are finding out before act, and understanding everyday language (Council 2015).

From the cognitive side, understanding of objects has been steadier. Toddler language skills grow rapidly. In the early toddler period, namely the age of two years, the average vocabulary of toddlers is 50 words (Fernald, Marchman, \& Weisleder, 2013). The emotional development of children can be seen from their very egocentric characteristics (Newton \& Harrison, 2005).

2.7 Food Taboo

Taboo food is established as a way to protect a certain population of society from extinction. Keeping them from the possibility of suffering from disease as a trusted rule is an instruction from a trusted (God Meyer-Rochow, Victor Benno, 2009). Why food taboo was very important to be used as a variable in this study? Because the food taboo was one of the causes that affects the entry of nutrients into the human body. This will become more distinctly different and measurable because
of the socio-ecological system, demographics, and the political and economic environment.

The food taboo that exists in Tajikistan where dietary restrictions exist to provide an example of a natural resource where these resources are limited in the country. Accessibility and availability is other reason while gender male is highly often migrated to work. The research is conducted in Rural Area at Kathlon Province, Tajikistan. Food taboos is one of the reason in 5% of children under the age of 5 years suffering from acute undernutrition, 30% from chronic undernutrition (stunting), and 11% from underweight. Tajikistan faces the highest rate of undernutrition in Central Asia (McNamara, Katharine and Wood, Elizabeth, 2019).

In another research on Northeastern Madagascar, food taboos is a part of taboo that happen because the effects of social change on wildlife consumption. (Golden, Christopher D. and Comaroff, Jean, 2015). According to the UNICEF Food-Care Health conceptual framework, cultural norms, taboos and beliefs lie within the contextual factors included as one of the basic causes of malnutrition (UNICEF, 2014).

In the Gambia where due to some traditional belief, women of 'Fulla' ethnicity are usually forbidden from eating several types of food rich in carbohydrate, animal proteins, and micronutrients during pregnancy. Colostrum is not given to many newborn babies, who are instead fed on water with sugar or water with milk during their first days of life. (Martínez Pérez, Guillermo and Pascual García, Anna, 2013)

Food taboos and myths in South Eastern Nigeria: The belief and practice of mothers in the region is believed eating snail and grass-cutter meat makes a child sluggish and labour difficult respectively while starting egg early for a child could predispose them to stealing later in life. (Martínez Pérez, Guillermo Pascual García, Ann, 2013),

In Indonesia itself, that has 365 ethnical tribals quite diverse in practice of food taboos. As 5 big islands in over 37 provinces, has various food taboos. In Dayak tribal is constricted to eat some seafood during lactation, pregnancy and early
childhood because of smelly bad in children when child is born, in some story for other cultures mentioned it will cause morbidity in early children age. (Huda, Siti Nurul, 2014)

Research related factor related to food intake among mother under 2 years old in Indonesia However, there are no recent national data available on micronutrient status and risk factors associated with nutritional problems in children. A national study on vitamin A was conducted in 1991 and on iodine deficiency in 2002. According to Riskesdas 2010, the overall coverage of vitamin A programme is 69 \% (74% in urban areas and 66% in rural areas). The lower prevalence of vitamin A deficiency in urban areas may be attributed to a higher coverage and a better intake of vitamin A from foods in urban areas (Sandjaja, 2013).

Another study has shown that weaning diets met only 50% of the energy and protein needs and that only 9.5% of poor families fed their children according to the best practice guidelines (USAID, 2010)

2.8. KAP of Mothers in Omega-3 and 6

2.8.1 Literature Review for Knowledge

Fig. 1. Diagram demonstrating the relationstip between 'knowledge' and 'attitude'. Knowledge develops from experiences and education, which come from the facts, information, and skills provided to an individual. While acquiring new knowledge, we use knowledge to help us make sense of the new information. When existing knowledge is consistent with the new information, the new information can be learned easily, but if the prior beliefs/knowledge contradicts the new information, a patient may be drawn into misconceptions and misunderstanding. A person's attitude is the way they express their beliefs and perceptions through speech (as opinions), and actions (behaviours). Knowledge influences attitude by blending beliefs and perceptions with previous experiences and education in a construct referred to as 'attitude-relevant knowledge'.

Figure 10 Knowledge, attitudes and practices diagram

(Jitkritsadakul, Boonrod et al. 20172017 2017)
Every form of facts, information, skills that come from education and experience is called knowledge. Knowledge becomes relevant coupled with beliefs and culture that underlie the building of an experience. This knowledge then determines a person in declaring (Jitkritsadakul, Boonrod, \& Bhidayasiri, 2017) (Fabrigar, Petty, Smith, \& Crites, 2006). There are three components to the traditional ("tripartite") analysis of knowledge. According to this analysis, justified, true belief is necessary and sufficient for knowledge.

The Tripartite Analysis of Knowledge:
S knows that p if p is true;
S believes that $\mathrm{p} ; \mathrm{S}$ is justified in believing that p (Ichikawa, Summer 2018).
The process of seeing and hearing which can be seen from an object is called knowledge. Knowledge is obtained from various sources such as TV, newspapers, magazines, health workers, families. Knowledge acquired with positive awareness will determine a positive attitude. This positive attitude will
last a long time. Knowledge can use written tests, questionnaire questions and interviews.

Previous research about KAP in Administration of Omega-3 and 6 with different population studies concluded that a lack of knowledge would translate into low intakes of n- 3 fats (Kaminski, 2011).

Mother's knowledge of Omega-3 and the mother's social class also affects them in providing omega-3 intake for their children. Nutritional knowledge indirectly affects behaviour by influencing attitudes and attitudes is a good predictor of fat intake. The low-fat diet group had a negative attitude towards fatty foods and the non-fat diet group had a positive attitude towards fat-containing foods (Packman \& Kirk, 2000). The insufficient knowledge of pregnant women about PUFA also triggered by lack of health care services to do not provide adequate information on the importance of eating foods high in LC n-3 PUFA during pregnancy (Sinikovic, Yeatman, Cameron, \& Meyer, 2009).

2.8.2 Literature review about attitude

In the Oxford Dictionary, the word attitude is essentially a synonym of perspective, but in social psychology there are subtle difference between these two words (Languages, June 12, 2009). Perspective, which is a particular attitude towards a way of regarding something, is a determinant of attitude change by mediating the way someone labels his/her attudinal beliefs (Ostrom, 1966).

The words "perception" is similar in meaning to the word "belief". In addition, prior knowledge is important since it helps us make sense of new information and a higher level of knowledge is associated with a greater influence on attitude. The attitude of women is due to the knowledge that if they are not in accordance with the information that has been previously available, they tend to trust old knowledge. This will make more difficult for them to accept knowledge of Omega-3 and 6 in children aged 1-2 years (Lipson, 1982).

Attitude will influence intention and planning. Changed behaviour requires a changed attitude first, then confidence must be instilled to achieve the desired
attitude (Patch, Tapsell, \& Williams, 2005). Meanwhile, in several studies, found an insignificant relationship between omega- 3 administration and eating behaviour. Because irregular eating behaviour may be more influenced by the attitude of the mother in serving her food (Cazares \& Curti, 2017).

Often the perception of the amount of fat in food is inaccurate. The group that did not care about fat intake did tend to have less concern for change, and they tended to have less knowledge than those who are concerned about the perception that fat intake is indispensable to the body. Unrealistic underestimation of fat intake is a cognitive barrier to dietary change and people who underestimate dietary fat intake may require more intensive intervention to change their diets (O'Brien, Fries, \& Bowen, 2000).

2.8.3 Literature review about Practice

Maternal eating behaviour is the most important predictor for both of these n-3 PUFA rich foods in infants' nutrition (Stimming, Mesch, Kersting, \& Libuda, 2015) Commitment in fulfilling nutrition, influence related to activity, self-motivation are important components for mothers in providing Omega-3 and Omega-6 to their children (Mh, Prahasiwi, Wahyuni, Nursalam, \& Efendi, 2018)

Mothers who have a higher level of nutritional knowledge in feeding their children will provide vegetables, fruit, legumes, and not fast-food preservative drinks. Mothers with high knowledge believe more about the importance of nutrition for health. The provision of meat in the diet has more effect on pre-school age children. The provision of fatty fish in the child's menu by the mother can improve children's cognitive (Nurcan, Kisac, \& Karakuş, 2014)

Maternal knowledge, attitudes and practices regarding nutrition are influenced by socio-demographic factors and sources of information. Increased knowledge of maternal attitudes and practices will have a direct effect that can be felt on improving children's nutrition and children's brain development (Berra, 2014).

CHAPTER III

METHODOLOGY

The chapter was constituted of research design, study area, study population, sampling technique, sample size, measurement tools, ethical considerations, limitations, expected benefits and applications.

3.1 Research Design

A cross-sectional study was employed to examine (1) maternal knowledge, attitude, and practice on dietary omega 3 and 6 consumption in children aged 1-2 years old; (2) the general characteristics and household characteristics; (3) children characteristics; (4) food taboo; (5) source of information on dietary omega 3 and 6; and (6) the association between all independent variables and dependent variable in the study.

3.2 Study Area

There were 514 regencies and 34 provinces in Indonesia. This study was conducted in the regency "Labuhanbatu Utara" in Sumatera Utara province which was one of the youngest regencies in Indonesia. Labuhanbatu Utara regency was established on 15 January 2009 and comprised of eight subdistricts as shown in Table 1. Kualuh Hulu subdistrict was the second largest subdistrict in Labuhanbatu Utara Regency, with the area of $637.39 \mathrm{~km}^{2}$. Geographically, the Kualuh Hulu subdistrict locates in 2034'6' 'NL, 99038'22 EL and 5-105 meters above sea level. The subdistrict was further subdivided into 13 villages (Table 2 and Figure 11). Aek Kanopan village was purposively selected since it was the capital village of the Kualuh Hulu subdistrict, along with the highest population all the 13 villages in this subdistrict.

Table 1 List of the subdistricts in Labuhanbatu Utara Regency
Note: information from Statistics of Labuhanbatu Utara Regency, 2020 (Labuhanbatu
Utara in Figures, 2020)

	Subdistricts	Capital of Subdistrict	Area (Km²)
$\mathbf{1}$	NA X-IX	Aek Kota Batu	554.00
$\mathbf{2}$	Merbau	Merbau	355.90
$\mathbf{3}$	Aek Kuo	Aek Korsik	250.20
$\mathbf{4}$	Aek Natas	Bandar Durian	678.00
$\mathbf{5}$	Kualuh Selatan	Damuli	344.51
$\mathbf{6}$	Kualuh Hilir	Kampung Mesjid	385.48
$\mathbf{7}$	Kualuh Hulu	Aek Kanopan	$\mathbf{6 3 7 . 3 9}$
$\mathbf{8}$	Kualuh Leidong	Tanjung Leidong	340.32
	Labuhanbatu Utara	$\mathbf{3 5 4 5 . 8 0}$	

Table 2 List of the villages in Kualuh Hulu subdistricts

No	Villages	North Latitude	East Latitude
$\mathbf{1}$	Kuala Beringin	2.3230	99.3136
$\mathbf{2}$	Pulo Dogom	2.3337	99.3321
$\mathbf{3}$	Perk. Londut	2.348	99.3317
$\mathbf{4}$	Perk. Kanopan Ulu	2.349	99.3635
$\mathbf{5}$	Parpaudangan ONGIKORN UNIV/2.336	99.3721	
$\mathbf{6}$	Perk. Membang Muda	2.3417	99.3911
$\mathbf{7}$	Aek Kanopan	2.3305	99.402
$\mathbf{8}$	Perk. Labuhan Haji	2.3208	99.4226
$\mathbf{9}$	Perk. Hanna	2.3458	99.4323
$\mathbf{1 0}$	Aek Kanopan Timur	2.3419	99.392
$\mathbf{1 1}$	Sukarame	2.3458	99.4324
$\mathbf{1 2}$	Sukarame Baru	2.3358	99.4631
$\mathbf{1 3}$	Sonomartani	2.3337	99.5203

Note: Geographical Location by Village / Kelurahan (Statistics Kualuh Hulu in Figures, 2019)

Figure 11 Map of villages of Kualuh Hulu Subdistricts [Statistics of Labuhanbatu Utara Regency, 2020(Labuhanbatu Utara in Figures, 2020)]

จุฬาลงกรณ์มหาวิทยาลัย
Chill ai nngkorn |INiversity

3.3 Study Population

The total population of Labuhanbatu Utara regency as per the 2019 census was 363,816 with the total household population in Labuhanbatu Utara 84,441 household (Regency 2020). The total population of Kualuh Hulu as per 2019 census is 71,907 population in total area of $637.39 \mathrm{~km}^{2}$. Based on the projection 2010 Population Census, population of Kualuh Hulu Subdistrict reached 71,907 with population density of 112.81 people $/ \mathrm{km}^{2}$. The largest population size of Kualuh Hulu Subdistrict is Aek Kanopan village, which is 15,379 people with population density of 6.251 .63 people/ km^{2} (Kualuh Hulu Subdistrict in Figures, 2019).

Male population in Kualuh Hulu Subdistrict was larger than female population. In 2019, the number of male population reached 36,254 compared to the number of female population of 35,653 . Kualuh Hulu subdistrict had 16,461 households in population (Kualuh Hulu Subdistrict in Figures, 2019).

The total population of mothers in Labuhanbatu Utara regency was 82,633 , and the total population of the mothers with have 1-2 years old children in Kualuh Hulu subdistrict according to 2019 census is 15,573 mothers. According to the study area, the research participants was randomly selected from Aek Kanopan village. The total population mothers who had children 1-2 years old in Aek Kanopan is 7,871 (District 2020).

3.3.1 Inclusion Criteria

The inclusion criteria in the study were:

- Mothers of 1-2 years old child
- Mothers who were responsible for her child diet/meals
- Able to communicate in Bahasa or English language or both.
- Age 18 years and above

3.3.2 Exclusion criteria

The exclusion criteria of the study were:

- Those who had some form of disability such as hearing loss, or those who were severely ill and were in no position to answer the questions.
- Those who were not willing to participate.

3.4 Sample Size

Sample size for this study was calculated based on the Taro Yamane formula using the confidence interval of 95% (Yamane 1967) with total population of 15,573 mothers, who have 1-2 years old children in Kualuh Hulu (District 2020). The sample size calculation is stated below:

$$
\begin{aligned}
n= & \frac{N}{1+\left(N *\left(e^{2}\right)\right)} \\
& =\frac{15573}{1+\left(15573 *\left(0.05^{2}\right)\right)} \\
& =389.98=390
\end{aligned}
$$

Where, $\mathrm{n}=$ sample size
$\mathrm{N}=$ total population of mothers who have 1-2 years old children in the study area $e=$ level of precision $=0.05$

Taking into account the chance of refusal to participate in the study, dropout during the interview or missing information, consideration of additional 10% will be added to the sample size. Therefore, the total sample size will be $\mathbf{4 2 8}$ participants.

3.5 Sampling Technique

Multi-stage sampling was applied in this study (Figure 12). Firstly, Labuhanbatu Utara regency was selected by simple random sampling from all the regencies in Indonesia used lottery method. Next, the same simple random sampling with lottery method was performed to select the study subdistrict.

Kualuh Hulu subdistrict was selected out of the 8 subdistricts in Labuhanbatu Utara regency as shown in Table 1.

Furthermore, Aek Kanopan village was purposively selected since it was the capital village of Kualuh Hulu subdistrict, and it also had the highest number of populations among the 13 villages in the subdistrict.

Total number citizen of each villages in Kualuh Hulu based on 2019 data as below:
1 Kuala Beringin 435
2 Pulo Dogom 415
3 Perk. Londut 909
4 Perk. Kanopan Ulu 382
5 Parpaudangan 900
6 Perk. Membang Muda 458
7 Aek Kanopan 7871
8 Perk. Labuhan Haji 775
9 Perk. Hanna 889
10 Aek Kanopan Timur 762
11 Sukarame 446
12 Sukarame Baru 678
13 Sonomartani 653
Total 15573

Then the researcher contacted and ask for the assistance from the primary healthcare centre of the village for the list of mothers with 1-2 years old children. From the list, a total of 428 participants fit the inclusion and exclusion criteria was selected randomly by generating random numbers used the random number function (RAND) in the Microsoft Excel.

However, when the mother had two or more children age 1-2 years old, only one of children was selected based on the month in which they are born. The individual member whose month of birth comes first was selected as the child related to the questions asked for the questionnaire in the study. If there was any inconvenience or the mother was not comfortable to participate further in the study, the mother with the next closest number on the list was selected. Participants was approached, and the data was collected in the conference hall centre of the primary health care centre followed the schedule of the health promotion, which was held by primary health care centre every week.

The researcher was checked the attendance of participants used medical record from the primary health care centre. Medical record was Child and Mother's Health Book. It was not the book that contain all the sickness or treatment of mother and children. Child and Mother's Health Book were one of the Indonesian government program to maximize child and mother's health under assistance of primary health care centre. The information contained at the book are information of weight and height children, menu meals of children, and the data of mother since mother was pregnant till the baby is born. The medical record was taken for necessities on looking to the weight and height of children record too. The legal permission was made with fulfil
administrative criteria from subdistrict government office and asking primary health care centre to assist on the record collection. Medical record held by research assistant who worked for primary health centre. It was given back to the primary health centre when the interview was done.

If the participants were not present in the conference hall centre according to the schedule of the health promotion, the researcher was contacted the missed participants and ask for their consent to participate in the study. If those participants were not convenient to come to the conference hall centre, the researcher went to the participant's house to do data collection. Within one day, there was approximately 20 participants attending the conference hall centre. The interview was scheduled into four time slots starting from $09.00-10.30 \mathrm{AM}, 10.30-11.30 \mathrm{AM}, 13.00-14.30 \mathrm{PM}$, to $14.30-$ 15.30 PM.

There was about 5 participants per one time slot. Seven interviewers, including both the principal researcher and research assistants, was presented to perform the data collection. Body temperature was performed before an individual can come into the centre. The mask and alcohol gel/spray was also be provided for everyone in the centre. The process of data collection was carried out until the collection reaches 428 participants. The estimated time had taken for data collection was around 20 to 30 days.

3.5.1 Sampling flowchart

3.6 Study Period

The proposed study period of the study February 2021 to April 2021.

3.7 Measurement Tools

Questionnaire

Detailed study of various literatures on similar previous researches was performed to identify potential items for the study instrument such questionnaire matched the objectives of the study. Based on the review of three studies in Nebraska and Indonesia (Angkasa, Agustina et al. 2019) (Ritter-Gooder, Lewis et al. 2008) (Lora, Lewis et al. 2010). The questionnaire was developed in English language and adjusted to suit the local context of in Labuhanbatu Utara regency, Indonesia. Two bilingual translators who were fluent English was hired to translate the questionnaire formulated in English into Indonesian language used the forward and backward translation. Then the accuracy and meaning of the translated versions, was assessed and necessary recommendations was incorporated. Lastly, a mono-lingual Indonesianese citizen who was from the study area asked to identify the items that were not clear or hard to understand. Those items had revised following the comments as appropriate.

The questionnaire consisted of a total of 161 questions and was sub-divided into five main sections: (1) general characteristics (7 question), (2) Household characteristics (3 questions), (3) Children characteristics (5 questions), (4) Food taboo (2 questions), (5) source of information on dietary omega 3 and 6 (7 questions), (6) Maternal knowledge towards dietary omega 3 and 6 consumption in children aged 1-2 years old (omega 3 contains of 9 questions; omega 6 contains of 9 questions; omega 3 dan 6 contains of 9 questions) (7) maternal attitude towards dietary omega 3 and 6 consumption in children aged 1-2 years old (9 questions for omega 3 and 8 question for omega 6), and (8) maternal practices on dietary omega 3 and 6 consumption in children
aged 1-2 years old (7 questions for food group milk, yogurt and cheese; 13 questions for fruit; 8 questions for vegetables; 9 questions for chocolates; 3 questions for dessert; 4 questions for rice/biscuits; 14 questions for meat; 23 questions for fish and seafood; 15 questions for nuts and legumes; 4 questions for supplement.

SECTION I and II: General and household characteristics

In section I, there was a total of 11 questions which comprised of questions such as age, religion, marital status, educational level, occupation, place of resident, ethnicity, family arrangement, gender of 1-2 years old children in the household, and monthly household income.

SECTION III: Children characteristics

Consist of 5 questions. It was weight, height, gender, breastfeeding status, and food allergy. Because of limited time in data collection, the data of weight body and height will be taken based on last data in child and mother's health book that permitted by primary health care centre for necessity of research. For make sure the privacy and confidentiality, the child and mother's health book (medical record) was opened by the mother directly in front of the research assistant and health workers by primary health care centre staff when the interview face to face was started. The permission to use data weight and height of her children was asked to mother before interview is start. If mother didn't allowed researcher to use the data from the book, subjected children was measured manually by weighing scale and ruler like usual at their houses. Weight and height data was used for completing data of children. The interpretation was not limited to find the effect of administration omega 3 and 6 to the growth of children 1-2 years old. For body weight measurement on age $0-60$ months criteria, was categorized by
underweight, normal and overweight. For length was categorized by short,average, and tall.

SECTION IV: Food Taboo

Food taboo consisted of 2 questions which asking about kind of food source that prohibited to eat for children 1-2 years old and the reason for considering food taboo to the mother towards the child feeding.

SECTION V: Source of information on dietary omega 3 and 6

Consisted of 7 questions which asked about the source from health practitioner, media social, newspaper, neighbour, etc.

SECTION VI: Maternal knowledge on dietary omega 3 and 6

This section consisted of 27 questions, which was designed to assess maternal knowledge on dietary omega 3 and 6 regarding omega 3 (9 questions), omega 6 (9 questions), and benefit omega 3\&6 (9 questions).

The responses were recorded into Yes, No, and Don't Know. The answers were graded as 'Right' or 'Wrong' for each statement. The 'Right' answers assigned a score of 1 while the 'Wrong' answer is 0 . The score is ranged from 0-27. Bloom's cut off point (Bloom, 1968) is used to classify the maternal knowledge into 3 categories as mentioned below:

Poor	Moderate	Good
$<\mathbf{1 6}$ score	16-21 score	>21 score
$(<\mathbf{6 0 \%})$	$(60-80 \%)$	$(>80 \%)$

Section VII: Maternal attitude towards dietary omega 3 and 6 consumption in children aged 1-2 years

This section consisted of a total of 17 statements/questions on attitude towards dietary omega 3 and 6 consumption in children aged 1-2 years. The 17 positive attitude statements were regarded completion of menu arrangement omega 3 and 6 , food processing of omega 3 and 6 sources, serving foods sources of omega 3 and 6, administer omega 3 and 6 .

A five-point Likert scale categorized as "Strongly Disagree", "Disagree", "Neutral", "Agree" and "Strongly Disagree" is used to evaluate the study participant's responses. The rating scale was measured as follows

Positive Statement	
Choice	Score
Strongly Agree	5
Agree	4
Neutral	3
Disagree	2
Strongly Disagree	1

Answers from all the respondents will be summed up and mean and standard deviation was calculated and represented as mean \pm standard deviation. The attitude of respondent was categorized as follows:

Poor attitude	Score \leq mean - standard deviation
Fair attitude	Mean - standard deviation $<$ score $<$ mean + standard deviation
Good attitude	Score \geq mean + standard deviation

SECTION VIII: Maternal practice on dietary omega 3 and 6 consumption in children aged 1-2 years

The 10 statements were regarded the self-administration practice of mothers with Omega 3 and 6 in last 3 months measured as on a 6-point Likert scale ranging from "Never", "Rarely", "Sometimes", "Often", "Always", and "Everyday".

The 10 statements for 10 food group as consisted of milk/yoghurt/cheese, dessert, fruit, vegetable, rice, meat, nuts/legume, chocolate, fish and seafood, and supplement.

Questions was measured in 6-point Likert Scale ranging from Never", "Rarely", "Sometimes", "Often", "Always", "Everyday". The score was calculated as:

Positive Statements

Choice	Score
Never	1
Rarely	2
Sometimes	3
Often	4
Always	5
Every day	6

Poor practice
Fair practice

Good practice

Score \leq mean - standard deviation
Mean - standard deviation < score < mean + standard deviation

Score \geq mean + standard deviation

3.8 Validity

The questionnaire in this study was revised based on the previous relevant researches conducted in Nebraska and Indonesia and was modified to meet the study's context. (Angkasa, Agustina, Khusun, \& Prafiantini, 2019) (Ritter-Gooder, Lewis, Barber-Heidal, \& Waltz-Hill, 2008) (Lora, Lewis, Eskridge, Stanek-Krogstrand, \& Ritter-Gooder, 2010)

To ensure the content validity of this study's questionnaire, Item-Objective Congruence (IOC) Index was conducted by at least three experts to evaluate the content of the questionnaire. A content expert was evaluated each item by gave the item a rate of 1 (for clearly measuring), -1 (clearly not measuring), or 0 (degree to which it measured the content area is unclear). The average IOC score for each item must be over 0.5 as recommended (Rovinelli \& Hambleton, 1977). The IOC calculation is as follows:

IOC calculation:
IOC = Sum (R)/n
Where, $\mathbf{R}=$ total score of the it item,

$\mathrm{n}=$ number of experts

IOC of at least 0.5 is considered acceptable.

IOC Result as below:

	Name of Expert							
Statement No.	Dr. Avi	Aj.Napaphan	Aj. Ratana	Total (R)	Total Number of Expert (n)	IOC Result		
1	1	1	1	3	3	1		
2	0	1	1	2	3	0.666667		

$\left.\begin{array}{|c|r|r|r|r|r|}\hline 3 & 1 & 1 & 1 & 3 & 3\end{array}\right) 1$

20B. 7	1	1	1	3	3	1
20B. 8	1	1	1	3	3	1
20B. 9	1	1	1	3	3	1
20C. 1	1	1	1	3	3	1
20C. 2	1	1	1	3	3	1
20C. 3	1	1	1	3	3	1
20C. 4	1	1	1	3	3	1
20C. 5	1	1	1	3	3	1
20C. 6	1	1	1	3	3	1
20C. 7	1	1	1	3	3	1
20C. 8	1	1	1	3	3	1
20C. 9	1	1	1	3	3	1
21A. 1	1	1	- 1	3	3	1
21A. 2	1	1	1	3	3	1
21A. 3	1	1	1	3	3	1
21A. 4	1	1	1	3	3	1
21A. 5	1	1	1	3	3	1
21A. 6	1	1	1	3	3	1
21A. 7	1	$\square \quad 0$	1	2	3	0.666667
21A. 8	1	0	1	2	3	0.666667
21A. 9	1	0	1	2	3	0.666667
21B. 1	0	0	Q 1	1	3	0.333333
21B. 2	1	- 0	$\begin{array}{r}1 \\ \hline\end{array}$	2	3	0.666667
21B. 3	1	0	1	2	3	0.666667
21B. 4	1	0	1	2	3	0.666667
21B. 5	1	0	1	2	3	0.666667
21B. 6	อง 1	ลงกรณม 0	วทย 1	18 2	3	0.666667
21B. 7	-1	0	1	2	3	0.666667
21B. 8	1	0	1	2	3	0.666667
22.1	1	0	1	2	3	0.666667
22.2	0	0	1	1	3	0.333333
22.3	0	0	1	1	3	0.333333
22.4	0	0	1	1	3	0.333333
22.5	0	0	1	1	3	0.333333
22.6	0	0	1	1	3	0.333333
22.7	0	0	1	1	3	0.333333
22.8	0	0	1	1	3	0.333333
23.1	1	0	1	2	3	0.666667
23.2	1	0	1	2	3	0.666667
23.3	1	0	1	2	3	0.666667
23.4	1	0	1	2	3	0.666667
23.5	1	0	1	2	3	0.666667

23.6	1	0	1	2		3	0.666667
23.7	1	0	1	2		3	0.666667
23.8	1	0	1	2		3	0.666667
23.9	1	0	1	2		3	0.666667
23.10	1	0	1	2		3	0.666667
23.11	1	0	1	2		3	0.666667
23.12	1	0	1	2		3	0.666667
23.13	1	0	1	2		3	0.666667
24.1	1	0	1	2		3	0.666667
24.2	1	0	1	2		3	0.666667
24.3	1	0	1	2		3	0.666667
24.4	1	0	1	2		3	0.666667
24.5	1	0	- 1	2		3	0.666667
24.6	1	$\bigcirc \quad 0$	1	2		3	0.666667
24.7	1	0	1	2		3	0.666667
24.8	1	0	1	2		3	0.666667
25.1	0	0	1	1		3	0.333333
25.2	1	- 0	1	2		3	0.666667
25.3	0	- 0	1	1		3	0.333333
25.4	1	0	1	2		3	0.666667
25.5	1	0	1	2		3	0.666667
25.6	1	0	Q 1	2		3	0.666667
25.7	0	0	$\begin{array}{r}1 \\ \hline\end{array}$	1		3	0.333333
25.8	1	0	1	2		3	0.666667
25.9	1	0	1	2		3	0.666667
25.10	1	0	1	2		3	0.666667
26.1	อ 1	ลงกรณม 0	水ทย1	18 2		3	0.666667
26.2	0	0	1	1		3	0.333333
26.3	1	0	1	2		3	0.666667
27.1	1	1	1	3		3	1
27.2	1	1	1	3		3	1
27.3	1	1	1	3		3	1
27.4	1	1	1	3		3	1
28.1	1	0	1	2		3	0.666667
28.2	1	1	1	3		3	1
28.3	1	0	1	2		3	0.666667
28.4	1	0	1	2		3	0.666667
28.5	1	0	1	2		3	0.666667
28.6	1	0	1	2		3	0.666667
28.7	1	0	1	2		3	0.666667
28.8	1	0	1	2		3	0.666667
28.9	1	0	1	2		3	0.666667

30.15	1	0	1	2	3	0.666667
31.1	1	0	1	2	3	0.666667
31.2	1	0	1	2	3	0.666667
31.3	1	0	1	2	3	0.666667
31.4	1	0	1	2	3	0.666667
Total	156	64	168			

The result of validity test stated some of questions could not be used because the score was less than 0.5 . It was deleted from the questionnaire. The questions with less than 0.5 score were question no.16, 18A.1, 18A.1, 18A.1, 18A.1, 18A.1, 18A.1, 21B.1, 22.2, $22.3,22.4,22.5,22.6,22.7,22.8,25.1,25.3,25.7,26.2$.

3.9 Reliability

The reliability of the questionnaire was ensured by performing a pre-test carried out by the principal research among 20 participants in a nearby village. The pilot tested of the questionnaire was done among women with young children. The internal consistency was tested by using Cronbach's Alpha coefficient. The alpha value of 0.70.9 is considered as an indication of good internal consistency (Tavakol \& Dennick, 2011). Value of Cronbach Alpha for the questionnaire was 0.75 . The questionnaire was reliable.

3.10 Ethical Consideration

Prior to data collection, ethical approval was taken from National Research Committee North Sumatera, Indonesia (IRB No 94/XII/2020) or by the Ethics Review Committee of Chulalongkorn University for the research involving human (COA No. 103/2021). Before conducted face to face interview with the study participants, the purpose of the study, each section of the questionnaire, and expected benefits was explained to the participants. A written informed consent was taken by the research
assistants, indicating their anonymity, voluntary participation, freedom of withdrawal at any point and use of data strictly for the purpose of the study conducted. For participants who were illiterate and cannot read or write, thumb impression was taken instead of a signature.

3.11 Data Collection

The data collection was done through face-to-face interview from the mothers of 1-2 years old children in Aek Kanopan village, Kualuh Hulu subdistrict used a structured questionnaire developed in this study. Six research assistants who had background education in Bachelor and Master of Nutrition, health promoter with background midwifery, or public health from 10 sites of Public Health Centres was hired for the purpose of data collection. A one-day training program was organized and performed to brief them on the overall purpose and objectives of the study. Training was provided by the principal researcher on data collection, that was, how to conduct interviews and elicit informed consent. Even interviewers were 6 person, but because of covid 19, time constraint and procedure of prevention covid-19, limited effort only in one day training.

Practice session held to assess the knowledge and skills of the research assistants regarding the objectives of the study and method of collecting data. The interview was conducted in either Indonesian or English based on the comfortability of the participants. The interview was around 30-45 minutes. It took longer time to do interview, the interview was done till questions were finished for one participant. But it will be avoided due to limited slot in each day. Finally, after completion of each
interview, the research assistants will check the questionnaire to ensure all sections are answered completely.

3.12 Data Analysis

After completion of data collection, the data will be cleaned, coded, entered and analyzed using Statistical Package for the Social Sciences (SPSS) version 25.

Descriptive statistic

The variables that are in nominal or ordinal scale will be presented as frequency and percentage(\%). Whereas the continuous variables will be presented in mean \pm standard deviation (SD). The variables and their measurement scale are presented in the Table 1.

Inferential statistic

Bivariate analysis was conducted to determine the association between independent and dependent variables. For categorical data, Chi-square test was performed to analyse the association between independent and dependent variables. Binary and multiple logistic regression analyses were used to determine the association between independent and dependent variables in this study. The statistically significant was determined at $\mathrm{p}<0.05$.

Table 3 The variables and their measurement scale.

Variables	Measurement	
Age	Ordinal	Mean \pm SD
Religion	Nominal	Frequency and \%
Marital Status	Nominal	Frequency and \%
Ethnicity	Nominal	Frequency and \%
Educational level	Ordinal	Frequency and \%
Occupation	Nominal	Frequency and \%
Place of resident	Nominal	Frequency and \%
Family arrangement	Nominal	Frequency and \%
Gender of 1-2 years old children	Nominal	Frequency and \%
Monthly household income	Ordinal	Mean \pm SD
Weight	Ordinal	Mean \pm SD
Length	Ordinal	Mean \pm SD
	Nominal	Frequency and \%
Breastmilk history HULALONGIKORN	Nominal TY	Frequency and \%
Food allergy	Ordinal	Frequency and \%
Food taboo	Nominal	Frequency and \%
Source of information on omega 3 and 6	Nominal	Frequency and \%
Level of Knowledge	Ordinal	Frequency and \%
Level of Attitude	Ordinal	Frequency and \%
Level of Practices	Ordinal	Frequency and \%

CHAPTER IV

RESULT

The main objectives of this study were to determine level of maternal knowledge, attitude, and practices on the dietary omega 3 and 6 consumption in children aged 1-2 years, to determine the factors associated with the practices on the dietary omega 3 and 6 consumption in children aged 1-2 years in Labuhanbatu Utara, Indonesia.

The results are divided into three main parts as follow:

1. Descriptive Findings include:

- General characteristic of participants
- Household characteristics of participants
- Children characteristics
- Food taboo
- Source of information of Omega 3 and 6

2. Maternal knowledge of dietary Omega 3 and 6 consumptions to the children aged 1-2 years
3. Maternal attitude of dietary Omega 3 and 6 consumptions to the children aged 1-2 years
4. Maternal practice of dietary Omega 3 and 6 consumptions to the children aged 1-2 years
5. Inferential findings.

Study Findings

4.1. Descriptive Findings

4.1.1 General Characteristics

Table 4 shows the general characteristics of participants. More than one third of the participants, 33.9% mothers were age ≤ 25 years old. More than a half of the participants, 52.1% were Moslem. Most of the participants were in married status (82.0%), and more than a half of the participants have graduated from higher education, 54.4%. More than one third of participants, 38.6% are occupied as private company employee. More than a half of participants are staying in urban area (62.6\%). Almost a half of total participants are batak (45.6\%).

Table 4. General Characteristics of Participants ($\mathrm{n}=428$)

4.1.1.2 Household Characteristics

Based on household characteristics in Table 5, more than half participants (65.2%) were nuclear family, where they stayed with their children only. Most of participants (84.8\%) have only 1 child aged 1-2 years stayed in their house. Majority of the participants (88.8\%) had monthly income higher than district minimum wage \geq IDR 2,869,292 (Kalderakita, 2021) or approximately 202.16 U.S. Dollar.

Table 5. Household Characteristics ($n=428$)
Characteristics Frequency Percent (\%) Family Arrangement

Nuclear family 279 65.2

Extended family 149 34.8

Monthly household income
≤ 2.869 mill IDR per month (USD 202.16)
48
11.2
≥ 2.870 mill IDR per month (USD 202.17) 380

[^0]- Cut-off according to district minimum salary rate

Currency rate: 1 USD $=14,176$ IDR

4.1.1.3 Children Characteristics

For the children characteristics, all subjected children were examined for their birthdate to make sure that their age is $1-2$ years old. As shown in Table 6, more than half of participants (86.9\%) has 1-2 years old children with average ideal body weight as normal (-2 SD till 2 SD). Majority of children were categorized as Tall ($\geq 2 \mathrm{SD}$) with 38.8% and normal (-2 SD till 2 SD) with 61.2% respectively. Most of the subjected children 1-2 years old were boys (62.1\%).

Almost a half of participants (49.1\%) fed their 1-2 years old child only with formula milk since last 3 months till present. As far as the participants realized, almost of all children did not have any allergy to the foods, 98.8%.

Table 6. Children Characteristics ($\mathrm{n}=428$)

Characteristics	Frequency	Percent (\%)
Body weight (weight for age)		
Underweight (<-2 SD)	0	0
Normal (-2 SD till 2 SD)	372	86.9
Overweight (>+2 SD)	56	13.1
Mean \pm SD	10.92 ± 1.10971	
Min - Max	$8.20-13.90$	
Length (length for age)		
Short (<-2 SD)	0	0
Average (-2 SD till 2 SD)	262	61.2
Tall (>+2 SD)	166	38.8
Mean \pm SD	81.00 ± 4.299	
Min - Max	$72.0-88.9$	
Sex of child subjected to this study		
Boys	266	62.1
Girls	162	37.9
Current breastfeeding status		
breastmilk only	59	13.8
Breastmilk+formula milk	137	32.0
Formula based milk only าลงกรณ์มหาวิทยาล์ย		
	210	49.1
	22	5.1
Food Allergy ($\mathrm{n}=428$)		
Yes	5	1.2
No	423	98.8

4.1.2 Food Taboo

Table 7 shows that almost all participants have no taboos on meat, 89.5%. However, 45 participants (10.5%), who showed taboo on meat, selected all three meat products (chicken, beef, duck). All participants did not have any taboos on staple food. 45.6% of the participants had taboo towards jackfruit, while the rest of the participants had no taboos with other kinds of fruits. 10.5% of the participants show taboo towards fish, where most had taboo to bale fish (3.3\%), followed by balana fish (2.1%). However, there were about 3.3% of participants who had taboo towards many kinds of fish (the catfish, bale fish, balana, ciko and shark). About one-fourth of the participants showed taboo towards seafood, with most of them had taboos with octopus (25.2%), and only one participant had taboo with crab. With vegetables category, there is no taboo on other vegetables, while less than one third of participants were taboos to the eggplants. More than a half of participants (75.7%) mentioned the reason of they avoided those food was because hygiene reason like children will get worm, and urine will smell fishy with some of seafood consumption as presented in Table 8.

Table 7. Food Taboo ($n=428$)

Characteristics	Yes	No
	n (\%)	n (\%)

Meat

Total taboo on meat
45 (10.5)
383 (89.5)
Chicken, beef, duck (each participant thick all
45 (10.5)
383 (89.5)
three of them)

Staple Food

Taboos on staple food
$0(0.0) \quad 428$ (100.0)
(For examples, rice, cassava, and purple sweet potatoes)

Fruit

Jackfruit

195 (45.6) 233 (54.4)
*Remark: No taboos on other fruit

Egg

Taboos on egg product

$0(0.0) \quad 428$ (100.0)

Fish

Total taboo on fish
45 (10.5) 383 (89.5)

- Catfish

1 (0.2)
427 (94.5)

- Bale

14 (3.3)
414 (96.7)

- Balana fish

9 (2.1)
419 (97.9)

- Shark fish

5 (1.2)
423 (88.8)

- Ciko fish

2 (0.5)
426 (99.5)

- Catfish, bale, balana, shark, ciko

14 (3.3)
414 (96.7)

Seafood

Total taboo on seafood

- Shrimp

109 (25.5)
319 (74.5)

- Crab
- Octopus

0 (0.0)
0 (100.0)
1 (0.2)
427 (99.8)
108 (25.2)
320 (75.8)

Vegetables

- Eggplants
*Remark: No taboos on other vegetables (cassava leaves, moringa leaves, and kales)

Table 8. Reason for food taboo

Reason for food taboo	Frequency	Percentage	
-	Hygiene (children will get worm, urine	324	75.7
	smell fishy)		
-	Health (cause diseases, allergies, veganism,	100	23.3
	vegetarianism)		34
-	Culture/norms/belief		16
- \quad Two or more reasons		2	7.9
-			3.7

4.1.3 Source of information omega 3 and 6

Table 9 shows more than half of participants (87.9\%) had been heard information about omega 3 and 6 from friends or neighbor and only some participants received information about omega 3 and 6 from twitter (5.4\%). More than half of participants have not received information about omega 3 and 6 from experiencing women (52.1\%).

Table 9. Source of Information omega 3 and 6 ($n=428$)

4.2 Maternal knowledge regarding dietary in consumption omega 3 and 6 to the children 1-2 years old

4.2.1 Scores of maternal knowledge regarding dietary in consumption omega 3 and 6 to the children 1-2 years old

Related to the "omega 3" topic as shows by Table 10, more than half of participants (60.5%) knew about the definition of omega 3 and 6 . Almost half of participants (42.1%) knew that omega 3 could not produce by human body, and more than half of participants (55.1%) know about definition and function of DHA in brain and retina. However, 54.7% did not know that omega 3 help retina development at early age of children. For the food sources of omega 3, more than half of participants acknowledge the freshwater fish (66.1\%), seawater fish (61.0\%), algae oil (63.3\%), and meats (67.5\%), but only 38,3\% of participants realized shrimps is one of food source omega 3.

For "omega 6" topic, more than half of participants (61.9\%) know the definition of omega 6 . While more than half of participant know coconut (61.7%), spinach (62.9%), nuts (68.2%), tofu (62.6%), and eggs (62.4%) are the food source whose contain omega 6, 70.1% of participants does not know that pumpkin and corn oil (59.3\%) are another food source of omega 6. Two third of participant does not know that omega 6 can reduce high blood pressure.

Table 10 Frequencies and Distribution of maternal knowledge scores regarding dietary in consumption omega 3 and 6 to the children aged 1-2 years ($n=428$)

Statement	Omega 3	
	Incorrect Answers $\mathrm{n}(\%)$	Correct Answers $\mathrm{n}(\%)$
Omega 3 is a component of fatty acid	169 (39.5)	25.8 (60.5)
Human body cannot produce omega 3	248 (57.9)	180 (42.1)
DHA (Docosahexaenoic acid) is a major fatty acid in brain and the retina	$192 \text { (44.9) }$	236 (55.1)
Freshwater fish is an important	145 (33.9)	283 (66.1)
Seawater fish is an important	167 (39.0)	261 (61.0)
source of omega 3	9 -20mer 0	
Algae oil is an important source	157(36.7)	271(63.3)
of omega 3		
Meats are an important source of	129(32.5)	289(67.5)
omega 3 จูพาลงกรถูมหาวิยาลีย		
Shrimps are an important source of omega 3	$264(61.7)$	164(38.3)
Omega 3 helps in the retina	234(54.7)	194(45.3)
development during an early age		
of children		

Table 10 Frequencies and Distribution of maternal knowledge scores regarding dietary in consumption omega 3 and 6 to the children aged 1-2 years ($n=428$) (continue)

Statement

Omega 6

 Incorrect Answers Correct Answersn (\%) $\quad \mathbf{n}$ (\%)

Omega 6 is a part of fatty acid
163(38.1)
265(61.9)
and cannot be produced by
human body
Nuts are an important source of
136(31.8)
292(68.2) omega 6

Coconut is rich in omega 6
164(38.3)
264(61.7)
Spinach is an important source
159(37.1)
269(62.9)
of omega 6
Pumpkin is an important source
300(70.1)
128(29.9)
of omega 6
Corn oil are an important source \quad 254(59.3) 174(40/7) of omega 6

Tofu is an important source of $160(37.4)$
omega 6
Eggs are an important source of
161(37.6)
267(62.4)
omega 6
Omega 6 can help reduce high
310(72.4)
118(27.6)
blood pressure

Table 10 Frequencies and Distribution of maternal knowledge scores regarding dietary in consumption omega 3 and 6 to the children aged 1-2 years ($n=428$) (continue)

Statement	Omega 3 and 6	
	Incorrect Answers $\mathrm{n}(\%)$	Correct Answers $\mathrm{n}(\%)$
Omega 3 and 6 can help in prevention of anxiety and depressive disorder	151(35.3)	277(64.7)
Omega 3 and 6 can help prevent skin rash	171(40.0)	257(60.0)
Omega 3 and 6 help supporting the development of learning and memory abilities	146(34.1)	282(65.9)
Consumption of Omega 3 and 6 is better to start at an early age	159(37.1)	269(62.9)
Omega-3s help improve inattention and task completion on hyperactivity behavior in children	135(31.5)	293(68.5)
Omega 3 and 6 can help in decreasing cholesterol	167(39.0)	261(61.0)
Omega 3 and 6 help keeping the heart healthy	162(37.9)	266(62.1)
Omega 3 and 6 can help increasing the ability to focus on reading	149(34.8)	279(65.2)
Omega 3 and 6 help in strengthening hair and hair growth	179(41.8)	249(58.2)

From "omega 3 and 6" topic, more than half of participants know omega 3 and 6 can help in prevention of anxiety and depressive disorder (64.7\%), can help to prevent skin rash (60.0\%), supporting development of learning and memory abilities (68.5\%), improve inattention and task completion on hyperactivity behavior of children (61.0\%), decrease cholesterol (65.2%), healthy heart living (62.1%), be able to focus on reading book, and strengthening hair (58.2%). However, more than half of participants does not know omega 3 and 6 has to started in early age of children (62.9\%).

4.2.2 Level of maternal knowledge towards dietary omega 3 and 6 consumption to the children aged 1-2 years

Knowledge score were categorized into poor knowledge, moderate, and good knowledge by Bloom's cut off point. As shows in Table 11, among a total 428 participants, almost half of participants had good knowledge level (41.8\%) towards dietary omega 3 and 6 consumption in the children aged 1-2 years, followed by poor level (35.7\%) and moderate level of knowledge (22.4\%).

Table 11 Level of maternal knowledge towards dietary omega 3 and 6 consumption to the children aged 1-2 years $(\mathrm{n}=428)$

Level of knowledge	Frequencies	Percentage (\%)
Poor	153	35.7
\quad Moderate	96	22.4
\quad Good	179	41.8
Mean \pm SD	15.87 ± 8.927	
Min - Max	$1-26$	
Range	$0-27$	

4.3 Maternal attitude towards dietary omega 3 and 6 consumption for children aged 1-2 years

4.3.1 Distribution of maternal attitude towards dietary omega 3 and 6 consumption for children aged 1-2 years

There are 17 statements in attitude section which contain 9 statements for highlighted omega 3 and 8 statements represent omega 6. All statement are positive statements. Table 12 shows the frequency of participants' response to the statements. The score of each statement is given by 5 points Likert scale. More than half of participants are strongly agree (54.7\%) the importance of paying attention omega 3 in the meal composition for their children. More than half of participants also strongly agree variation of omega 3 in children meal is important (54.2%) even variation in processing method such as boiled, steamed or baked (58.6\%). Not only that, more than half of participants strongly agree to consider the food source of omega 3 will provide for their children based on what their children likes (54.4%). For any food sources of omega 3, more than half of participants (52.6\%) are strongly agree to provide meat in their children meal when in the same time participants also strongly agree (55.6\%) to consider food taboo before they provide omega 3 in their children plates. More than half of participants has strongly agree to give formula milk as food source omega 3 to their children (58.2\%).

Table 12 Frequencies and distribution of maternal attitude towards dietary omega 3 consumption
to the children aged 1-2 years $(\mathrm{n}=428)$

Statement	Frequencies	Percent (\%)
(Omega 3)		
1. I think it is important to pay attention on the meal composition with omega		
3 for my children		
Strongly disagree	22	5.1
Disagree	1	0.2
Neutral	154	36.0
Agree	17	4.0
Strongly Agree	234	54.7

2. Variation of omega 3 in children's meal is important for their growth

| Strongly disagree | 21 | 4.9 |
| :--- | ---: | ---: | ---: |
| Disagree | 1 | 0.2 |
| Neutral | 157 | 36.7 |
| Agree | 17 | 4.0 |
| Strongly Agree | 232 | 54.2 |

3. I consider the food source of omega 3 for the children based on the food she likes

Strongly disagree	21	4.9
Disagree	1	0.2
Neutral	Cุพาลงกรณัมหาวิทยาลัย	1
Agree	157	36.7
Strongly Agree	16	3.7
	233	54.4

4. I pay attention to food taboo in determining the food source of omega 3 for my children

Strongly disagree	12	2.8
Disagree	1	0.2
Neutral	155	36.2
Agree	22	5.1
Strongly Agree	238	55.6

Table 12 Frequencies and distribution of maternal attitude towards dietary omega 3 consumption to the children aged 1-2 years ($\mathrm{n}=428$) (continue)

Statement (Omega 3)	Frequencies	Percent (\%)
5. I agree to provide meat which rich in omega 3 (such as fish and beef) to		
my children anytime whenever one of those sources are available		
Strongly disagree	12	2.8
Disagree	24	5.6
Neutral	133	31.1
Agree	34	7.9
Strongly Agree	225	52.6

6. I prefer the formula milk based as daily source of omega 3 to my children

Strongly disagree	14	3.3
Disagree	0	0

Neutral 140 32.7
Agree 25 5.8

Strongly Agree 249 58.2
7. The provision of omega 3 food sources for children is carried out regularly according to the meal schedule

| Strongly disagree | 12 | 2.8 |
| :--- | ---: | ---: | ---: |
| Disagree | 0 | 0 |
| Neutral | 133 | 31.1 |
| Agree | 33 | 7.7 |
| Strongly Agree ChULALONGIKORN UNIVERSITY | 350 | 58.4 |

8. Not just on prepare the menu, but the processing method that I do in processing omega 3 food for children must vary (for example: boiled, baked, blended or steamed

Strongly disagree	12	2.8
Disagree	1	0.2
Neutral	141	32.9
Agree	23	5.4
Strongly Agree	251	58.6

Table 12 Frequencies and distribution of maternal attitude towards dietary omega 3 consumption to the children aged 1-2 years ($\mathrm{n}=428$) (continue)

Statement	Frequencies	Percent (\%)
(Omega 3)		
9. When making meals for children, I will add omega 3 source to the		
porridge		
Strongly disagree	12	2.8
Disagree	0	0
Neutral	134	31.3
Agree	33	7.7
Strongly Agree	249	58.2

Table 13 shows frequencies and distribution of maternal attitude towards dietary omega 6 consumption to the children aged 1-2 years where more than half of participants has agree not only to concern to the menu composition when omega 6 provided to their children (58.4\%) but also the appearance and interesting decoration of plant-based diet will help their children to eat better (60.5\%). More than half participants disagree to provide omega 6 various and regularly (54.7\%), and to limited the amount of omega 6 consumption for their children in daily basis (54.7\%). But more than half of participants agree to balancing omega 6 to their children's plate.

Table 13. Frequencies and distribution of maternal attitude towards dietary omega 6 consumption to the children aged 1-2 years ($\mathrm{n}=428$)

Statement (Omega 6)	Frequencies	Percent (\%)
1. I think the appearance and interesting decoration of plant-based diet will		
help my children to eat better		
Strongly Disagree	0	0.0
Disagree	6	1.4
Neutral	141	32.9
Agree	250	58.4
Strongly Agree	31	7.2

2. I agree to use plant source based that rich in omega 6 (such as walnut, soybean, flexseed, almond or leaf lettuce) to my children anytime when one of those sources is available

Strongly Disagree	0	0.0
Disagree	7	1.6
Neutral	133	31.1
Agree	259	60.5
Strongly Agree	29	6.8

3. I am concern with the amount of omega 6 that I give to my children

| Strongly Disagree | 0.0 |
| :--- | :--- | :--- |

Disagree จูพาลงกรณูมหาวทยาลยย 234 54.7

Neutral GHULALONGIORN UNIVERSITY 130 30,4
$\begin{array}{lll}\text { Agree } & 33 & 7.7\end{array}$
Strongly Agree $\quad 31 \quad 7.2$
4. I think making various menu from food rich in omega 6 for children is important, even they are from the same ingredients

Strongly Disagree	0	0.0
Disagree	234	54.7
Neutral	132	30.8
Agree	33	7.7
Strongly Agree	29	6.8

Table 13 Frequencies and distribution of maternal attitude towards dietary omega 6 consumption to the children aged 1-2 years ($\mathrm{n}=428$) (Continue)

Statement	Frequencies	Percent (\%)
(Omega 6)		

5. I pay attention to the menu composition of omega 6 for my children

Strongly Disagree	0	0.0
Disagree	7	1.6
Neutral	131	30.5
Agree	260	60.7
Strongly Agree	30	7.0

6. It is important to provide omega 6 food sources for children regularly

Strongly Disagree	0	0.0
Disagree		
Neutral	234	54.7
Agree	130	30,4
Strongly Agree	33	7.7
31	7.2	

7. I agree that balancing food that rich in omega 6 to my children is important for their health

| Strongly Disagree | 0 | 0.0 |
| :--- | ---: | ---: | ---: |
| Disagree | 7 | 1.6 |
| Neutral | 130 | 30.4 |
| Agree | 259 | 60.5 |
| Strongly Agree | 32 | 7.5 |

8. I think I am the only person who responsible to fulfil the needs of Omega 6 my children in my house

Strongly Disagree	0	0.0
Disagree	233	54.4
Neutral	130	30.4
Agree	32	7.5
Strongly Agree	33	7.7

4.3.2 Level of attitude towards dietary omega 3 and 6 consumption to the children aged 1-2 years

Attitude score were categorized into poor attitude, fair, and good attitude. The mean score of attitude section is 62.51 . The standard deviation is 10.514 .From Table 14, there was 31 (7.2\%) participants who has good attitude regarding dietary omega 3 and 6, and more than half of the participants (59.8\%) have fair attitude towards dietary omega 3 and 6 consumption to their children aged 1-2 years.

Table 14 Level of maternal attitude towards dietary omega 3 and 6 consumption to the children aged 1-2 years ($\mathrm{n}=428$)

4.4 Maternal practice towards dietary omega 3 and 6 consumption for children aged 1-2 years

4.4.1 Distribution of maternal practice towards dietary omega 3 and 6 consumption for children aged 1-2 years

The 10 statements are regarding the self-administration practice of mothers with Omega 3 and 6 in last 3 months measured as on a 6 -point Likert scale ranging from "Never", "Rarely", "Sometimes", "Often", "Always", and "Everyday". The 10 statements for 10 food group as consist of milk/yoghurt/cheese, dessert, fruit, vegetable, rice, meat, nuts/legume, chocolate, fish and seafood, and supplement.

The result from Table 4.12 shows participant's practice towards dietary omega 3 and 6. For the group of milk, yoghurt, and cheese, majority of participants sometimes used soymilk (e.g. vanilla or fortified chocolate soymilk) for their children, $328(76.6 \%$) followed by baby food cereal brown rice dry instant, 198(46.3\%). Half of participants most often cooked baby food cereal oatmeal banana prepared with whole milk, 219 participants (50.2%) followed by cereal green bean flavor, 217 (50.7\%).

For fruits category, almost all participants had fed papaya in most often times to eat, 387(90.4\%), but more than two third participants always used banana 385 (78.3\%), followed by avocado, 339 (79.2%). Only some of participants had papaya, $3(0.7 \%)$, honeydew melon, $2(0.5)$, banana, $4(0.9)$, starfruit, $4(0.9 \%)$, grape, $3(0.7 \%)$, pear, $2(0.5 \%)$, and apple, $2(0.5 \%)$, everyday to the children aged 1-2 years.

Table 15 also shows majority participants giving broccoli everyday to their children, 338 (79.0\%) and more than half of participants always put spinach in their children's meal, $341(79.7 \%)$. But almost all participants most often to used Kale in their child meals, 373(87.1\%), and in 1 day/ week participants choose cauliflower to the plates for children, 363 (84.8%).

At the dessert food group, found majority of participants never had snack potato chips lightly salted giving to the children aged 1-2 years, 360 (84.1\%).

For giving rice/biscuits, brown rice is most often used by participants to their children, 194(45.3\%), while some participant had spinach egg noodles, $2(0.5 \%)$ and milk biscuit, 4 (0.9%) given everyday to their children.

For meats category, almost half of participants had chicken liver cooked to the children aged 1-2 years, 171 (40.0\%), followed by chicken soup cream, 166(38.8\%). Interestingly, almost all participants never had chicken intestine to consumed by their children, 418 (97.7%).

For fish and seafood, majority of participants always had fried anchovy in their children meal, 347 (81.1%). Sardine canned has never consume by their children, 421(98.1\%).

For practice to give nuts and legumes sources of omega 3 and 6, almost half of participants ensure red kidney beans is always given to the children, 205 (47.9\%). It followed by cooked soft tofu, 199 (46.5\%). Almost all the participants, 346 (92.5%) never has cowpeas cooked to their children aged 1-2 years.

For any supplement which enriched omega 3 and 6, almost half participants give cod liver oil to their children aged 1-2 years, 178 (41.6\%) while corn oil and olive oil never used to their children by all the participants, 428 (100%).
Table 15 Frequencies and distribution of maternal practice towards dietary omega 3 and 6 consumption to the children aged 1-2 years ($\mathrm{n}=428$)

Food group I: Milk, yogurt, and cheese	Never (Never or less than once a month)	$\begin{gathered} \text { Rarely } \\ (1-3 \text { days a } \\ \text { month }) \end{gathered}$	Sometimes (1 day a week)	Often (2-4 days a week)	$\begin{gathered} \text { Always } \\ (5-6 \text { days a } \\ \text { week }) \end{gathered}$	Everyday
Food item	-		Frequ	ies (\%)		
Soymilk (e.g. Vanilla, or fortified chocolate soymilk)	$7 \text { (1.6) }$	52(12.1)	328 (76.6)	34(7.9)	7(1.6)	0 (0.0)
babyfood cereal brown rice dry instant	139(32.5)	56(13.1)	198(46.3)	33(7.7)	2(0.5)	0 (0.0)
babyfood cereal oatmeal dry fortified	$144(33.6)$	53(12.4)	184(43.0)	45(10.5)	2(0.5)	0 (0.0)
babyfood cereal oatmel banana prepared with whole milk	139(32.5)	$54(12.6)$	14(3.3)	219(51.2)	2(0.5)	0 (0.0)
babyfood cereal green bean dices toddler	143(33.4)	38(8.9)	28(6.5)	217(50.7)	2(0.5)	0 (0.0)
babyfood cereal mix prepared with whole milk	143(33.4)	38(8.9)	42(9.8)	203(47.4)	2(0.5)	0(0.0)
babyfood vegetable spinach cream strained	143(33.4)	53(12.4)	185(43.2)	45(10.5)	2(0.5)	0 (0.0)

ลั
Table 15 Frequencies and distribution of maternal practice towards dietary omega 3 and 6 consumption to the children aged 1-2 years ($\mathrm{n}=428$) (cont.)

Food group II: Fruit	Never (Never or less than once a month)	Rarely $(1-3$ days a month $)$	Sometimes $(1$ day a week $)$	Often $(2-4$ days a week $)$	Always $(5-6$ days a week $)$	Everyday	
			Frequencies (\%)				

Table 15 Frequencies and distribution of maternal practice towards dietary omega 3 and 6 consumption to the children aged 1-2 years ($\mathrm{n}=428$) (cont.)

Food group III: Vegetables	Never (Never or less than once a month)	Rarely (1-3 days month)	Sometimes (1 day a week)	Often (2-4 days a week)	Always $\begin{gathered} (5-6 \text { days a } \\ \text { week) } \end{gathered}$	Everyday
Food item			Frequ	ies (\%)		
Kale	$1(0.2)$	$2(0.5)$	45(10.5)	373(87.1)	3(0.7)	4(0.9)
Cauliflower	1(0.2)	12(2.8)	363(84.8)	37(8.6)	14(3.3)	1(0.2)
Spinach	1(0.2)	2(0.5)	9(2.1)	59(13.8)	341(79.7)	16(3.7)
Broccoli	1(0.2)	16(3.7)	7(1.6)	39(6.1)	27(6.3)	338(79.0)
Enoki Mushroom	52(12)	359(83.9)	16(3.7)	1(0.2)	0 (0.0)	0 (0.0)
Tomato	15(3.5)	27(6.3)	343(80.1)	30(7.0)	8(1.9)	5(1.2)
Eggplant	391(91.4)	20(4.7)	16(3.7)	0 (0.0)	1(0.2)	0 (0.0)
Yellow sweet corn	15(3.5)	25(5.8)	347(81.1)	38(8.9)	3(0.7)	0 (0.0)

$\stackrel{\rightharpoonup}{\square}$

Food group IV: Chocolate	Never (Never or less than once a month)	$\begin{aligned} & \text { Rarely } \\ & (1-3 \text { days a } \\ & \text { month) } \end{aligned}$	Sometimes (1 day a week)	$\begin{aligned} & \text { Often } \\ & \text { (2-4 days a } \\ & \text { week) } \end{aligned}$	$\begin{gathered} \text { Always } \\ (5-6 \text { days a } \\ \text { week }) \end{gathered}$	Everyday
Food item	$三 8$ (190		Frequencies (\%)			
Fudge Chocolate with Nuts prepared from recipes	$369(86.2)$	15(3.5)	39(9.1)	2(0.5)	3(0.7)	0 (0.0)
Soft fruit and Nut squares	195(45.6)	189(44.2)	39 (9.1)	$2(0.5)$	3(0.7)	0 (0.0)
Fudge vanilla with nuts	380(88.8)	1 (0.2)	39(9.1)	$2(0.5)$	5(1.2)	1(0.2)
Toblerone Chocolate with honey and Almond Nouget	$380(88.8)$	$1(0.2)$	39(9.1)	2(0.5)	4(0.9)	2(0.5)
Nestle 100 grand bar	380(88.8)	1 (0.2)	39(9.1)	2(0.5)	6(1.4)	0 (0.0)
White Chocolate	366(85.5)	1(0.2)	53(12.4)	2(0.5)	5(1.2)	1(0.2)
Milk Chocolate with Almond	4(0.9)	207(48.4)	212(49.5)	2(0.5)	3(0.7)	0 (0.0)
Milk Chocolate with rice cereal	5(1.2)	411(96.0)	7(1.6)	2(0.5)	3(0.7)	0 (0.0)
Sweet Chocolate	2(0.5)	379(88.6)	42(9.8)	2(0.5)	3(0.7)	0 (0.0)

Table 15 Frequencies and distribution of maternal practice towards dietary omega 3 and 6 consumption to the children aged 1-2 years ($n=428$) (cont.)

Food group V: Dessert Food item	Never (Never or less than once a month)	Rarely (1-3 days a month)	Sometimes (1 day a week) Frequen	$\begin{aligned} & \text { Often } \\ & \text { (2-4 days a } \\ & \text { week) } \\ & \text { ies (\%) } \end{aligned}$	Always (5-6 days a week)	Everyday
Soft Chocolate Ice cream Extruded corn chips Snack Potato Chips Lightly Salted	$\begin{aligned} & \hline 170(39.7) \\ & 169(39.5) \\ & 360(84.1) \end{aligned}$	$\begin{aligned} & 213(49.8) \\ & 214(50.0) \\ & 9(2.1) \end{aligned}$	$\begin{aligned} & 40(9.3) \\ & 40(9.3) \\ & 40(9.3) \end{aligned}$	$\begin{aligned} & 2(0.5) \\ & 2(0.5) \\ & 16(3.7) \end{aligned}$	$\begin{aligned} & 3(0.7) \\ & 3(0.7) \\ & 3(0.7) \end{aligned}$	$\begin{aligned} & \hline 0(0.0) \\ & 0(0.0) \\ & 0(0.0) \end{aligned}$
Food group VI: Rice/Biscuits	Never (Never or less than once a month)	Rarely (1-3 days a month)	Sometimes (1 day a week)	$\begin{gathered} \text { Often } \\ (2-4 \text { days a } \\ \text { week }) \end{gathered}$	$\begin{gathered} \text { Always } \\ (5-6 \text { days a } \\ \text { week }) \end{gathered}$	Everyday
Food item	Frequencies (\%)					
brown rice	1(0.2)	164(38.3)	66(15.4)	194(45.3)	3(0.7)	0 (0.0)
spinach egg noodles	1(0.2)	164(38.3)	78 (18.2)	178(41.6)	5(1.2)	2(0.5)
milk biscuit	0 (0.0)	11(88.8)	227(53.0)	183(42.8)	3(0.7)	4(0.9)
White bread	1(0.2)	164(38.3)	50(11.7)	194(45.3)	19(4.4)	0 (0.0)

$\stackrel{\cong}{2}$
Table 15 Frequencies and distribution of maternal practice towards dietary omega 3 and 6 consumption to the children aged 1-2 years ($\mathrm{n}=428$) (cont.)

Table 15 Frequencies and distribution of maternal practice towards dietary omega 3 and 6 consumption to the children aged $1-2$ years ($\mathrm{n}=428$) (cont.)

Food group VIII: Fish and Seafood	Never (Never or less than once a month)	$\begin{gathered} \text { Rarely } \\ \text { (1-3 days } \end{gathered}$ a month)	Sometim es (1 day a week)	$\begin{gathered} \text { Often } \\ (2-4 \text { days a } \\ \text { week }) \end{gathered}$	$\begin{gathered} \text { Always } \\ (5-6 \text { days a } \\ \text { week }) \end{gathered}$	Everyday
Food item			Frequencies (\%)			
egg, chicken, raw	331(77.3)	5(1.2)	8(1.9)	47(11.0)	22(5.1)	15(3.5)
egg, chicken, omelette	0 (0.0)	0 (0.0)	$11(9.1)$	222(51.9)	179(41.8)	16(3.7)
egg, fried	0 (0.0) कै	0 (0.0)	11(9.1)	221 (51.6)	181(42.3)	15(3.5)
egg, scrambled	0 (0.0)	0 (0.0)	10(2.3)	238(55.6)	164(38.3)	16(3.7)
Eel, boiled	0 (0.0)	37(8.6)	192(44.9)	184(43.0)	15(3.5)	0 (0.0)
fish gabus, fried	28(6.8)	0 (0.0)	6(1.4)	217(50.7)	176(41.1)	0 (0.0)
fish, freshwater, fried gurami	28(6.8)	0 (0.0)	6 (1.4)	217(50.7)	176(41.1)	0 (0.0)
fish, freshwater, cooked in turmeric spice	43(10.0)	0 (0.0)	6(1.4)	217(50.7)	162(37.9)	0 (0.0)
fish, freshwater, steamed in banana leaf	374(87.4)	1 (0.2)	5(1.2)	47(11.0)	1(0.2)	0 (0.0)
egg, chicken, half boiled	29(6.8)	1(0.2)	188(43.9)	209(48.8)	1(0.5)	0 (0.0)
fish, milk fish (gurami, nila)	29(6.8)	1(0.2)	189(48.2)	208(48.6)	1(0.5)	0 (0.0)
Fish mujaer	49(11.4)	1(0.2)	51(11.9)	318(74.3)	9(2.1)	0 (0.0)

Table 15 Frequencies and distribution of maternal practice towards dietary omega 3 and 6 consumption to the children aged $1-2$ years ($\mathrm{n}=428$) (cont.)

Never	Rarely	Sometimes	$\begin{array}{c}\text { Often } \\ \text { (Never or }\end{array}$	$\begin{array}{c}\text { Always } \\ \text { (1-3 days } \\ \text { (1 day a }\end{array}$	Everyday
$\begin{array}{c}\text { (2-4 days a } \\ \text { once a }\end{array}$	a month)	week)	week)	$\begin{array}{c}\text { days a } \\ \text { month) }\end{array}$	
		week)			

Food item	Frequencies (\%)					
fish, sea, dried, salted (kembung)	$48(11.2)$	$1(0.2)$	$51(11.9)$	$318(74.3)$	$10(2.1)$	$0(0.0)$
fish, sea, fried	$45(10.5)$	$15(3.5)$	$9(2.1)$	$346(80.8)$	$13(3.0)$	$0(0.0)$
fish, tongkol, fried	$175(40.9)$	$221(51.6)$	$2(0.5)$	$8(1.9)$	$15(3.5)$	$7(1.6)$
Lobster, cooked	$187(43.7)$	$210(49.1)$	$1(0.2)$	$9(2.1)$	$15(3.5)$	$6(1.4)$
Shrimp, fried	$360(84.1)$	$1(0.2)$	$35(8.2)$	$9(2.1)$	$10(2.3)$	$13(3.0)$
Scallop, cooked	$347(81.1)$	$14(3.3)$	$33(7.7)$	$11(2.6)$	$14(3.3)$	$9(2.1)$
Crab, boiled	$207(48.4)$	$172(40.2)$	$33(7.7)$	$2(0.5)$	$14(3.3)$	$0(0.0)$
Cod, cooked	$207(48.4)$	$172(40.2)$	$33(7.7)$	$2(0.5)$	$14(3.3)$	$207(48.4)$
anchovy, fried	$35(8.2)$	$0(0.0)$	$41(9.6)$	$5(1.2)$	$347(81.1)$	$0(0.0)$
anchovy dried	$50(11.7)$	$0(0.0)$	$41(9.6)$	$4(0.9)$	$333(71.8)$	$0(0.0)$
sardine, canned, in tomato sauce	$420(98.1)$	$0(0.0)$	$8(1.9)$	$0(0.0)$	$0(0.0)$	$0(0.0)$

จุฬาลงกรณ์มหาวิทยาลัย
Chulanonekopn ||nivercity
©

Food group IX: Nuts and Legume	Never (Never or less than once a month)	Rarely (1-3 days a month)	Sometimes (1 day a week)	$\begin{gathered} \text { Often } \\ (2-4 \text { days a } \\ \text { week) } \end{gathered}$	$\begin{gathered} \text { Always } \\ (5-6 \text { days a } \\ \text { week }) \end{gathered}$	Everyday
Food item	-	Frequencies (\%)				
Edamame	$365(85.3)$ ¢	$33(7.7)$$8(1.9)$$15(3.5)$$25(0.5)$$34(7.9)$$14(3.3)$$204(47.7)$$189(44.2)$$175(40.9)$$13(3.0)$$43(0.2)$$11(2.6)$$44(10.3)$$43(10)$	10(2.3)	9(2.1)	11(2.6)	0 (0.0)
Kidney beans	$356(83.2)$		(1.9)	22(5.1)	$1(0.2)$	0 (0.0)
Red Kidney beans, cooked	149(34.8)		43 (10.0)	11(2.6)	205(47.9)	5(1.2)
Red Kidney beans, boiled	140(32.7)		58(13.6)	9(2.1)	191(38.3)	5(1.2)
Lentils, cooked	182(42.5)		191(44.6)	$11(2.6)$	7 (1.6)	3(0.7)
Soybean Flour, powder	389(90.9) $=$		9(1.9)	5(1.2)	7(1.6)	$4(0.9)$
Oncom/Fermented Tofu	$34(7.9)$		177(41.4)	4(0.9)	7(1.6)	3(0.7)
Mung beans, cooked	202(47.2)		25(5.8)	4(0.9)	6(1.4)	$2(0.5)$
Peanut, butter	$49(11.4)$ -		189 (44.2)	4(0.9)	10(2.3)	1(0.2)
Peanut, raw	408(95.3)		7 (1.6)	0 (0.0)	0 (0.0)	0 (0.0)
Black eyed peas, cooked	2(6.8)		189(48.2)	208(48.6)	1(0.5)	0 (0.0)
Cowpeas, cooked	396(92.5)		6(1.4)	14(3.3)	1(0.2)	0 (0.0)
Firm Tofu, cooked	170(39.7)		15(3.5)	198(46.3)	1(0.2)	0 (0.0)
Soft Tofu, cooked	2(0.5)		182(42.5)	199(46.5)	2(0.5)	0 (0.0)

$\stackrel{\infty}{\circ}$

| Tofu prepared with | $174(40.9)$ | $45(51.6)$ | $10(0.5)$ | $184(1.9)$ | $1(3.5)$ | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Calcium | | | | | | |

Table 15 Frequencies and distribution of maternal practice towards dietary omega 3 and 6 consumption to the children aged 1-2 years ($\mathrm{n}=428$) (continue)

จุฬาลงกรณ์มหาวิทยาลัย
Chuinionekopal |hmimepeity

4.4.2 Level of maternal practice towards dietary omega 3 and 6 consumption for children aged 1-2 years

Table 16 shows among 428 participants, only 10 participants (2.3\%) had good practice on dietary omega 3 and 6 consumption to the children aged 1-2 years, followed by fair practice 260 (60.7\%).

Table 16 Level of maternal practice towards dietary omega 3 and 6 consumption to the children ($\mathrm{n}=428$)

Level of Practice	Frequencies	Percentage (\%)
Poor practice	158	36.9
Fair practice	260	60.7
Good practice	10	2.3
Mean \pm SD		252.70 ± 32.624
Min - Max		$161-334$

4.5 Inferential Findings

4.5.1 Bivariate Analysis

4.5.1.1 Association between the general characteristics and practice on the dietary omega 3 and 6 consumption in children aged 1-2 years in Labuhanbatu Utara, Indonesia

Bivariate analysis using Chi-square test was conducted to determine the association between independent and level of maternal practices on dietary omega 3 and 6 consumption in children aged 1-2 years old (dependent variable).

Table 17 describes association between general characteristics with level of maternal practices which was analyzed by Chi-Square test. Categories of age was merged to the four group, "less than or equal twenty-five years old, 26-30 years old, 31-35 years old and more than or equal 36 years old". Religion was merged to the five group- "protestan, advent, pentecostal, moslem, and others" which was comprised of chatolic, buddhism, and hindu". Marital status merged into two groups as "married, divorced/widowed". Educational level was merged into two group as" middle and high school, and higher education". Occupation categorized into four groups such as "civil servant, private company employee, entrepreneur, and housewife". Place of resident was categorized into "urban and rural area". Ethnicity was merged into three groups- "Malay, batak, and java".

According to table 17, there was statistically significance difference between religion and practice, educational level, occupation, resident area, and ethnicity (p- value <0.001). However, found no association between age to the level practice of mother and marital status. Highest good level of practice found in pentacostal religion with $6(18.0 \%)$. Highest fair level of practice found in moslem religion with 111 (49.8\%) along with highest poor level of practice 111 (49.8\%). Participant who graduated from higher education had the highest fair level of practice as much as 175 (75.1%) and $7(3.0 \%$ had a good level of practice. Middle high school had the poorest level of practice as much as 107 (67.7\%). Mother who worked on private company had highest good level of practice $5(3.0 \%)$, with $151(91.5 \%)$ had highest number of fair practice. The
poorest level of practice was applied by housewife group which was 80 (70.8 \%).

Table 17 Association between general characteristics with level of maternal practices on dietary omega 3 and 6 consumption in children aged 1-2 years old ($n=428$)

Variables	Level of practice			Chisquare	p-value
	$\begin{gathered} \text { Poor } \\ \text { n (\%) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Fair } \\ \mathrm{n}(\%) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Good } \\ & \text { n (\%) } \\ & \hline \end{aligned}$		
General Characteristics					
Age group (years)				3.617	0.728
≤ 25	46 (31.7)	94 (64.8)	5 (3.4)		
26-30	52 (38.5)	81 (60.0)	2 (1.5)		
31-35	40 (40.8)	56 (57.1)	2 (2.0)		
≥ 36	20 (40.0)	29 (58.0)	1 (2.0)		
Religion				75.322	<0.001*
Protestant	25 (24.5)	77 (75.5)	0 (0.0)		
Advent	11 (24.4)	32 (71.1)	2 (4.4)		
Pentecostal	8 (24.2)	19 (56.6)	6 (18.2)		
Moslem	111 (49.8)	111 (49.8)	1 (0.4)		
Others	- 3 (12.0)	21 (84.0)	1 (4.0)		
Marital Status				2.089	0.352
Married	134 (38.2)	210 (80.8)	7 (2.0)		
Divorced/Widowed	24 (31.2)	50 (19.2)	3 (3.9)		
Education Level				49.619	<0.001*
Middle and High	107 (67.7)	85 (32.7)	3 (1.5)		
School					
Higher Education	51 (21.9)	175 (75.1)	7 (3.0)		
Occupation				142.769	<0.001*
Civil servant	30 (35.3)	52 (5.5)	3 (30.0)		
Private company employee	$9(5.7)$	151 (91.5)	5 (3.0)		
Entrepreneur	39 (60.0)	24 (36.9)	2 (3.1)		
Housewife	80 (70.8)	ห33 (29.2)	0 (0.0)		
Place of resident				33.434	<0.001*
Urban Area	73(7.2)	191(71.3)	4(1.5)		
Rural Area	85(53.1)	69(43.1)	6(3.8)		
Ethnicity				50.021	<0.001*
Malay	43(39.8)	58(53.7)	7(6.5)		
Batak	19(15.2)	104(83.2)	2(1.6)		
Java	96(49.2)	98(50.3)	1(0.5)		

*Significant at p-value <0.05

4.5.1.2 Association between the household and children characteristics and practice on the dietary omega 3 and 6 consumption in children aged 1-2 years in Labuhanbatu Utara, Indonesia

Table 18 described association between household and children characteristics towards the maternal practice. Household characteristics categorized by two variables such as family arrangement and monthly income. Family arrangement categorized to two groups, "Nuclear", "extended" family. Monthly income merged to be two groups -" ≤ 2.86 mill" and " ≥ 2.87 mill".

According to table 18 , there was statistically significance difference between family arrangement (p-value <0.001) to the maternal practice. There was not any association between monthly income (p-value $=0.589$) of parents to the maternal practice. Highest poor level of practice occurred in extended family, 101 (67.8%). Highest fair level of practice found in nuclear family 215 (77.1%) and good level of practice was $7(2.5 \%)$.

Table 18 described the children characteristics which was represented by body weight, height, sex of subjected children, current breastfeeding status, and food allergy. Body weight was merged by three categories - "underweight," "normal", "overweight". Body length of children was merged to the three categories - "short"."average", "tall". Sex of subjected children for the research consist of two groups, "boys" and "girls". Current breastfeeding status merged into four groups such as "breastmilk only" "breastmilk +formula milk, ," "formula-based milk only, and "UHT milk only". Food allergy was categorized into two groups based on the answers of participants to the question" Do your children have any food allergy?", "yes" or "no".

According to table 18, there was statistically significance difference between height of children (p -value $=0.003$), sex of children (p-value <0.001), and current breastfeeding status (p -value <0.001). However, it found there was no association between body weight (p -value 0.563) of children to the level of maternal practice to the dietary omega 3 and 6 consumption to their children, and so do food allergy (p-value 0.195) to the level of practice.

Average length of children found to be the fairest of level practice mother to dietary omega 3 and 6,112 (69.1\%), and tall children 89 (53.6%) had the second highest number in fair level of maternal practice.

Mother, who had boys, had highest number fair of level practice - 146 (54.9 \%) among mothers who had girls. However, 7 (4.3\%) mothers who had girls had good practice on dietary omega 3 and 6 , more than mothers who had boys which was $3(1.1 \%)$. For current breastfeeding status, children who consumed formula-based milk only as much as $116(79.0 \%)$ been highest fair level of practice dietary omega 3 and 6 . Seven participant (3.3\%) in category formulabased milk had good level of practice dietary omega 3 and 6 . Poorest level of
maternal practice found in current breastfeeding status and or breastmilk by cup along with formula-based milk, 83 (60.6\%).

Table 18 Association between household characteristics and children characteristics with level of maternal practices on dietary omega 3 and 6 consumption in children aged 1-2 years old $(\mathrm{n}=428)$

Variables	Level of practice			Chisquare	p-value
	$\begin{gathered} \text { Poor } \\ \text { n (\%) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Fair } \\ \text { n }(\%) \end{gathered}$	$\begin{aligned} & \text { Good } \\ & \text { n }(\%) \\ & \hline \end{aligned}$		
Household Characteristics					
Family Arrangement				94.213	<0.001*
Nuclear	57(20.4)	215(77.1)	7(2.5)		
Extended	101(67.8)	45(30.2)	3(2.0)		
Monthly Income				1.059	0.589
$<=2.86$ mill IDR	19(39.6)	27(56.3)	2(9.2)		
> $=2.87$ mill IDR	$139(36.4)$	233(61.3)	8(2.1)		
Children Characteristics					
Body weight				2.967	0.240
Underweight	0 (0.0)	$0(0.0)$	$0(0.0)$		
Normal	133(36.0)	229(61.5)	10(2.5)		
Overweight	25(44.6)	31(55.4)	$0(0.0)$		
Length				16.314	0.001*
Short	$0(0.0)$	O(0.0)	O(0.0)		
Average	$83(29.6)$	171(69.1)	8(1.2)		
Tall	75(45.2)	89(53.6)	2(1.2)		
Sex of subjected ch				17.880	<0.001*
Boys	117(44.0)	146(54.9)	3(1.1)		
Girls	41(25.3)	114(70.4)	$7(4.3)$		
Current Breastfeed				86.700	<0.001*
Breastmilkonly	35(54.3)	22(37.3)	2(3.4)		
Breastmilk+formula milk	83(60.6)	53(38.7)	$1(0.7)$		
Formula Based Milk	37(17.6)	166(79.0)	7(3.3)		
UHT	3(13.6)	19(86.4)	$0(0.0)$		
Food Allergy				3.269	0.195
Yes	$0(0.0)$	5(100.0)	$0(0.0)$		
No	158(37.4)	255(60.3)	10(2.4)		

*Significant at p-value <0.05

4.5.1.3 Association between food taboo and practice on the dietary omega 3 and 6 consumption in children aged 1-2 years in Labuhanbatu Utara, Indonesia

From table 19, described food taboo with five food items such as food taboo on "meat", "fruit", "fish", "seafood", "vegetables", and reason to do food taboo in children. The answers for each item comprised by two categories, "yes"- means parents applied food taboo in their daily consumption omega 3 and 6 to their children, and "no" answers if they did not applied any food taboo to their children. Reason to do food taboo merged to four categories, "none", "health", "hygiene", "culture", "and if mothers have more than 1 reason include health, hygiene, culture".

According to table 4.15, there was found statistically significance difference between meats (p-value 0.036^{*}), fruit (p-value $<0.001^{*}$), fish (p-value 0.036^{*}), seafood (p-value 0.003^{*}), vegetables (p -value $<0.001 *$), and reason to do food taboo (p-value 0.001^{*}) to the maternal practice. There was 6 variables in food taboo associated significant to the maternal practice in dietary omega 3 and 6 consumption to their children.

Mothers who did not have any food taboo on meats had fair practice 226(59.0\%) and good practice as much as $8(2.1 \%)$ compared to group of mothers who have any food taboo on meats. However, mothers who did not have any food taboo on fish had highest percentage of poor practice $149(38.9 \%)$ in dietary omega 3 and 6 consumption to their children among all other food item. In the same time, mothers who did not have any food taboo on fish also had the highest number of fair practice dietary omega 3 and 6 as much as $226(59.0 \%)$. Mothers who did not have any food taboo on fruits had the highest number of good practices as much as 9 (3.9\%) dietary omega 3 and 6 consumption to their children among all other food item.

Highest number of fair practices in dietary omega 3 and 6 to the children found when mothers did food taboo because of hygiene reason 177(57.5\%) followed by health reason, $59(70.2 \%$) then culture reason, $15(83.3 \%)$, then the last one was if the mothers had more than one reason to do food taboo $7(43.8 \%)$. Highest number participant to do good practice found at health reason as much as $5(1.3 \%)$ then followed by hygiene reason 4(1.3\%).

Table 19 Association between food taboo and level of maternal practices on dietary omega 3 and 6 consumption in children aged 1-2 years old ($\mathrm{n}=428$)

Variables	Level of practice			Chi-	p-value
	$\begin{array}{c}\text { Poor } \\ \mathbf{n}(\%)\end{array}$	Fair		(\%)	Good
square					

*Significant at p-value <0.05
4.5.1.4 Association between source of information and practice on the dietary omega 3 and 6 consumption in children aged 1-2 years

Based on table 20, described source of information variables with consist of "TV Programs", "Magazine", "Family member", "Friends/Neighbor", "medical practitioner", "experiencing women", and "social media". Social media was categorized into three group "Twitter", "Facebook", "and Instagram". Mothers who had not received or heard any information about omega 3 and 6 from one of those source information had chosen "no" answer. If mothers received any information about omega 3 and 6 at one of all sources mentioned, mothers had chosen "yes" answer.

According to table 20, there was statistically significant difference between TV program (p -value <0.001)) to the level of maternal practice, magazine (p value $<0.001^{*}$) to the level of maternal practice, friends/neighbor (p-value $<0.001^{*}$) to the level of maternal practice, family member (p -value 0.002^{*}), medical practitioner (p -value $<0.001^{*}$), experiencing women (p -value $<0.001^{*}$) to the maternal practice and social media (p -value $<0.001^{*}$) to the level of maternal practice.

Mothers who received any information about omega 3 and 6 from medical practitioner $8(80.0 \%)$ had highest percentage of good practice in dietary omega 3 and 6 consumption to their children compared to all other source information. Mothers who received any information about omega 3 and 6 from social mediainstagram as much as 164 (96.7%) was the highest percentage in did fair practice dietary omega 3 and 6 to their children compared to all source information, followed
by information about omega 3 and 6 which was received from experiencing women, $188(91.7 \%)$ fit well in fair practice dietary omega 3 and 6 consumption to their children.

In the reverse, the poorest practice dietary omega 3 and 6 consumption to the children found in group of mothers who had not looked after information about omega 3 and 6 from medical practitioner, 102 (70.3\%) followed by group of mothers who had not received information omega 3 and 6 from family member, 105 (70.2%) and experiencing women, 151 (67.7%).

Table 20 Association between source of information and practice on the dietary omega 3 and 6 consumption in children aged 1-2 years

Variables	Level of practice			Chi-square	p-value
	$\begin{aligned} & \text { Poor } \\ & \mathrm{n}(\%) \end{aligned}$	$\begin{gathered} \text { Fair } \\ \mathrm{n}(\%) \end{gathered}$	$\begin{gathered} \text { Good } \\ \text { n (\%) } \end{gathered}$		
TV Program				31.349	<0.001*
Yes	147(43.8)	182(54.2)	7(2.1)		
No	11(12.0)	78(84.8)	3(3.3)		
Magazine and Newspaper				137.285	<0.001*
Yes	26(11.4)	196(86.0)	6(2.6)		
No	$8(15.4)$	43(82.7)	1(1.9)		
Friends/Neighbour				12.169	0.002*
Yes	150(39.9)	217(57.7)	9(2.4)		
No	8(15.4)	43(82.7)	1(1.9)		
Family Member				111.183	<0.001*
Yes	52(18.8)	216(78.0)	9(3.2)		
No	106(70.2)	44(29.1)	1(0.7)		
Medical Practitioner				105.306	<0.001*
Yes	56(19.8)	219(77.4)	8(80.0)		
No	102(70.3)	41(28.3)	$2(20.0)$		
Experiencing Women				192.578	<0.001*
Yes	7(3.4)	188(91.7)	10(4.9)		
No UHU	151(67.7)	$72(32.3)$	$0(0.0)$		
Social Media				162.584	<0.001*
Twitter	$3(13.0)$	18(78.3)	2(8.7)		
Facebook	147(63.9)	78(33.9)	5(2.2)		
Instagram	8(7.6)	164(93.7)	3(1.7)		

[^1]* Significant at p <0.05

4.5.1.5 Association between knowledge and attitude towards practice on the dietary omega 3 and 6 consumption in children aged 1-2 years

Table 21 Association between level of maternal knowledge and attitude with level of maternal practices on dietary omega 3 and 6 consumption in children aged 1-2 years old ($\mathrm{n}=428$)

Variables	Level of Practices		Chi-square	p-value
	Poor $\mathbf{n (\%)}$	Fair $\mathbf{n (\%)}$	Good $\mathbf{n}(\%)$	
Knowledge				
Poor	$132(93.6)$	$8(5.7)$	$1(0.7)$	216.043
Moderate	$5(2.0)$	$244(95.3)$	$7(2.7)$	
Good	$21(67.7)$	$8(25.8)$	$2(6.5)$	
Attitude				
Poor	$126(82.4)$	$26(17.0)$	$1(0.7)$	346.544
Fair	$4(4.2)$	$90(93.8)$	$2(2.1)$	
Good	$28(15.6)$	$144(80.9)$	$7(3.9)$	

From Table 21, described knowledge and attitude level towards practices mother in dietary omega 3 and 6 consumption to their children. Knowledge was categorized into three groups- "poor", "moderate knowledge", and "good knowledge" of omega 3 and 6. Attitude level was categorized into three groups-"poor attitude", "fair attitude", and "good attitude".

According to Table 21, there was statistically significant between knowledge (p-value $<0.001^{*}$) and attitude $\left(\mathrm{p}\right.$-value $\left.<0.001^{*}\right)$ to the maternal practice, which means moderate knowledge, 244 (95.3\%) was resulted fair practice of dietary omega 3 and 6. The next highest number of good attitudes had led to fair practice as much as 144 (80.9\%).

Most poor attitude had led to poorest practice into 82.4% and poor knowledge led to highest number of poor practices as much as 132 participants (93.6%).

4.5.2 Multivariate Analysis

4.5.2.1 Factor significantly associated with level of maternal practice

Ordinal regression analyses was used to determine the association between independent and dependent variables in this study. The statistics significant will be determined at $\mathrm{p}<0.05$. Ordinal regression was to analysed predictors for level of practice-classified as "poor, fair practice, and good practice". The reference category for the outcome variables was: good practice", was compared to the reference group. Religion, educational level, occupation, place of resident, ethnicity, family arrangement, sex of subjected children, current breastfeeding, source of information, food taboo, knowledge and attitude were found to be the predictors of maternal practice.

4.5.2.1.1 Factor of General Characteristic associated with level of maternal practice

Table 22 described pentecostal-religion (p-value 0.001^{*}), urban area (p value 0.040^{*}), and malay-ethnic (p -value 0.024^{*}) were found independently associated to the good level of maternal practice. Pentecostal (OR=10.158, p -value $=0.001^{*}, \mathrm{CI}=1.361-5.710$) were more like 10 times higher than other religion listed in the research who had good practice in dietary omega 3 and 6 to the children. Urban area was 4 times higher more than rural area significant associated to the maternal practice $(\mathrm{OR}=4.197$ times, $\mathrm{CI}=0.048$ - 2.165, p-value 0.040^{*}). Malay ethnic was times higher associated to the maternal practice more than batak ethnic $(\mathrm{OR}=0.043$, p -value $=0.836, \mathrm{CI}=-$ 15.707-19.417).

Table 22 Association between maternal characteristics and good maternal practice in dietary omega 3 and 6 to the children aged 1-2 years old ($\mathrm{n}=428$)

Variables	Category	Good level of maternal practice			
		AOR	p-value		
		(Exp.B)		Lower	Upper
General Characteristics of mothers					
1.Religion	Protestant	0.133	0.715	-1.593	2.322
	Advent	$2.986 \quad 0.084$		-0.249	3.958
	Pentecostal	10.158	0.001*	1.361	5.710
	Moslem	1.534	0.215	-3.307	0.746
2.Education	Middle and high	0.559	0.455	-1.577	0.706
level	school				
3.Occupation	Civil servant	0.178	0.673	-2.379	1.536
	Private company 1.635		0.201	-0.715	3.398
	employee				
	Entrepreneur	0.000	0.986	-1.915	1.880
4. Place of	Urban area	4.197	0.040*	0.048	2.165
resident					
4.Ethnicity	Malay	5.130	0.024*	0.211	2.929
	Batak	0.043	0.836	-15.707	19.417

[^2]
4.5.2.1.2 Factor of household characteristic associated with level of maternal practice

Table 23 describes household characteristic which was family arrangement who had predictor of good level maternal practice. But when it measured by ordinal regression test found it was independently not significant associated to the good level of maternal practice $(\mathrm{OR}=0.027, \mathrm{p}$-value $=0.868, \mathrm{CI}=-$ 1.272-1.074).

Table 23 Association between household characteristics, children characteristics and good maternal practice in dietary omega 3 and 6 to the children aged 1-2 years old

Variable	Category	Good level of maternal practice			
		AOR	p-	95\% CI	
			value	Lower	Upper
I.Household Characteristics					
Family arrangement	Nuclear family	0.027	0.868	-1.272	1.074
II. Children Characteristics					
1.Sex of	Boys	11.997	0.001*	-3.009	-0.834
subjected					
2. Body	Average LA	6.250	0.012*	0.129	1.067
Length					
3. Current breastfeeding	Breastmilk by cup with breastfeeding;	10.587	0.001*	-3.057	-0.759
	Current breastfeeding or breastmilk by cup and with formula milk	13.193	$\begin{aligned} & <0.001 \\ & * \end{aligned}$	-3.088	-0.923
	Formula based milk only	0.013	0.909	-1.133	1.009

*Significant at p <0.05

Table 23 describes children characteristic which were sex of subjected children, body length of children, and current breastfeeding as predictors to the good level of maternal practice. Body length of children was categorized as three categories. It was short, average body length, and tall. But, when it analyzed by ordinal regression through SPSS, showed that average body length of children was the factor of body length of children associated with level of maternal practice (p -value $=0.012^{*}$). Average body length of 1-2 years old children was likely 6 times higher to had good level of maternal practice than mother who had fair level practice of maternal practice in dietary omega 3 and 6 consumption to their children ($\mathrm{OR}=6.250 ; \mathrm{p}$-value $=0.012$; $\mathrm{CI}=0.129-1.067$). Current breastfeeding was merged as four group, and two groups were independently significant associated to good level of maternal practice. Those variables were (1) exclusive breastfeeding; and breastmilk by cup with exclusive (p-value 0.001*) breastfeeding; (2) Current breastfeeding or breastmilk by cup with formula milk (pvalue $<0.001^{*}$). Current breastfeeding or breastmilk by cup with formula milk was likely 13 times higher more than exclusive breastfeeding to had good level of maternal practice than mother who used formula-based milk only ($\mathrm{OR}=0.013$; p -value $=0.909$; $\mathrm{CI}=-1.133-1.009)$.

4.4.2.1.4 Factor of food taboo and source of information associated with level of maternal practice

Table 24 describes source information variables and food taboo as predictors to the good level of maternal practice. Some of source information variables were independently significant associated to the good practice of mother such as information that received from TV Program (p -value 0.056^{*}) and experiencing women (p -value $<0.001^{*}$). TV program likely 3.6 times higher than social media/twitter ($\mathrm{OR}=1.173$; p-
value $0.279 ; \mathrm{CI}=-2.917-0.841)$ to made mother had good practice in dietary omega 3 and 6 consumption to their children. Experiencing women was the highest significant associated to the good level of maternal practice 13 times higher more than medical practitioner $(\mathrm{OR}=0.273$; p - value $0.602, \mathrm{CI}=-1.750-1.014)$ and TV program $(\mathrm{OR}=3.664$; p-value 0.056*; $\mathrm{CI}=-2.612-0.031$).

According to table 24, there was no significant association between food taboo to the good maternal of practice $(p-v a l u e=0.775)$ independently .

Table 24 Association of source of information and food taboo with of good maternal practice in dietary omega 3 and 6

*Significant at p <0.05

4.4.2.1.5 Level of knowledge with level of maternal practice

Table 25 described knowledge variables as predictor to the good level of maternal practice. Knowledge was divided as poor (p-value 0.252), and moderate (p-value 0.466) which was both of them found there was no any significant associated to the good level of maternal practice.

Table 25 Level of knowledge with good maternal practice in dietary omega 3 and 6 to the children aged 1-2 years old

	Variable	Category	Good level of maternal practice			
		AOR (ExpB)	p-value	95% CI		
				Lower	Upper	
V. Knowledge	Poor knowledge	1.311	0.252	-3.259	0.855	
		Moderate knowledge	0.530	0.466	-0.800	1.747

* Significant at $\mathrm{p}<0.05$

4.5.2.1.6 Factor of attitude associated with level of maternal practice

Table 26 described variable of attitude as predictor significant to the good level of maternal practice dietary omega 3 and 6 consumption to their children. It was divided by two categories such as poor attitude and fair attitude. According to table 27 found there was no significant association between poor attitude as the independent factor of good practice. However, fair attitude was found significant associated to the good level of maternal
practice (p -value 0.001), and likely 10 times higher effected good level of practice more than groups of mothers who had poor attitude ($\mathrm{OR}=1.924$, p value $=0.165$, $\mathrm{CI}=-3.750-0.642$).

Table 24 Attitude with good maternal practice in dietary omega 3 and 6 to the children aged 1-2 years old

	Variable	Category	Good level of maternal practice			
			AOR	p-value	95% CI	
			(ExpB)		Lower	Upper
VI.	Attitude	Poor attitude	1.924	0.165	-3.750	0.642
		Fair attitude	10.994	$\mathbf{0 . 0 0 1 *}^{*}$	1.328	5.169

[^3]Table 27. Summary Of Factors Significant To The Good Practice

Variable	Category	Good level of maternal practice				
			aOR	p-value	95\% CI	
				Lower	Upper	

$\begin{array}{llllll}\text { IV.Attitude } & \text { Fair attitude } & 10.994 & \mathbf{0 . 0 0 1 *} & 1.328 & 5.169\end{array}$

* significant at $\mathrm{p}<0.05$

CHAPTER V

The objective of this study was to determine the maternal practice on dietary omega 3 and 6 to the children aged 1-2 years old in Labuhanbatu Utara Regency, Indonesia, to assess the general characteristics of mothers and to enhance the association towards practice, to assess the household characteristics and find the association to the practices, to assess children characteristics and its association toward practices, to determine the association between the food taboo and practices, source of information toward practices, to assess level of knowledge and its association towards practice on the dietary omega 3 and 6 consumption, and to assess the level of attitude and its association towards practices on the dietary omega 3 and 6 consumption in children aged 1-2 years in Labuhanbatu Utara, Indonesia.

The study population was mothers who has children 1-2 years old stayed with them in their house at Labuhanbatu Batu Utara Regency, Indonesia.

5.1 Discussion on general characteristic of the study participants

Out of 428 participants, majority group age of mother was less than 25 years old,145 participants. Moslem was 223 participant which presented Indonesia as a country with huge moslem population among other religion in Indonesia (Anwar,Dewi; 2011). Similar findings was found in other study conducted in Jakarta, Indonesia that being Indonesian Moslem family is a privilege due to Indonesia was a largest moslem country in the world. (JM Muslimin, 2011). Participants had been married when researched conducted in Labuhanbatu Utara, Indonesia as much as 351 participants. This result findings supported statement that Indonesia as general quite strict in socio-culture norm which was
adult woman should be engage in marriage status better than a single or widow (Utomo,A.2016). However, based on previous study in comparation North Sumatera province and Jakarta, Indonesia by Utomo Aria, found the tendencious of endogamy which was married with same ethnic quite strongly found in both provinces. Labuhanbatu Utara was the regency in North Sumatera province, ethnicity could be the reason of marriage status of adult woman.

Out of 428 participants, there was 233 participants were graduated from higher education. Growth development in education and economic at Labuhanbatu Utara regency was rapidly increased observed since many years ago (Fahmi Mohammad, 2017). Private company employee was the most highest participant group which was 165 participants. Mother who stayed in urban area was 268 mothers. Batak was the most participant with 195 mother. North Sumatera was a province with originally Batak was came from. Labuhanbatu Utara regency was the urban regency that has pluralism on ethnicity include Malay and Java, the ethnic who transmigrated from Java Island.

5.2 Discussion on general characteristic towards practice of mother

5.2.1 Religion as the predicting factor towards practice dietary omega 3 and

 6 to the children 1-2 years oldPentecostal is significant related to how mother could practice dietary omega 3 and 6 to their children's meal in daily basis. This is because of some prohibited food due to belief requirement to God, if Pentecostal insisted to take those prohibited food, they believe that they will fall to the sin. Prohibited food will takes more chance to did not get any omega 3 and 6, also other nutrition. As the substitute, other food resources will be taken
with the contain a bit difference than usual. In India, infant mortality is lowest in the prov-inces with the highest percent Christian. In addition, conversion to Pentecostalism is generally associated with increased religiosity-which, as mentioned above, is associated with health (Woodberry, R., 2006).

5.2.2 Place of resident as the predicting factor towards practice dietary omega 3 and 6 to the children 1-2 years old

Urban area is 0.040 times more likely higher to contribute the chance doing practice dietary omega 3 and 6 to the children 1-2 years old but it was not significant related to the maternal practice dietary omega 3 and 6 consumption to the children 1-2 years old. The findings of the study were consistent with findings of study conducted in Jakarta, Indonesia when the traditional diets high in cereal and plant products, as well as traditional food practices continue to be dominant in both rural and urban areas, despite the context of rapid socio-economic change and urbanisation. (Coloza D.2019). Similar findiings was also reported from study conducted in West Africa which was researched food consumption in urban area was not significant to the dietary consumption, but food consumption by people maintaining their in-home food habits shows the pertinence of studies focusing on individuals (Ag.Bendech, 1996). Previous study mentioned urban and rural area may strongly influence food intake, as indicated by the remarkable gaps observed between urban and rural areas. This is likely due to many grocery store, convenience store, and food outlets found more in urban areas, but
similar result mention differ dietary intake not only because of urban or rural area as resident place independently (Kosaka, Satoko.2018) (N. Sudharsanan and J. Y. Ho, 2020)

5.2.3 Ethnicity as the predicting factor towards practice dietary omega 3 and

6 to the children 1-2 years old

Malay is 5.130 times more likely higher effecting practice dietary omega 3 and 6 to the children than other ethnic such as Batak (0.043) and Javanese (0.027). As we know, malay has many requirement in their culture/beliefs, and it was effected to the practice dietary omega 3 and 6 to the children. Most of them still believe that some prohibited food such as shrimps and jackfruit, if it is consume by children, children will get worm and urine will smell fishy (Ali, Husin, 1975).

5.3 Discussion on househould characteristic towards practice dietary omega 3 and 6 to the children 1-2 years old

Family arrangement had the association significantly to the maternal practice dietary omega 3 and 6 to the children. Half of participant, 279 stayed in nuclear family which was consist of mother's spouse and children only. The findings of the study was found the reason of nuclear family become significant to the practice of mother, because mother would concern more to fed their children and family member in the house more better than stayed in house with extended family. Timely management occurred effectively used to take care the family member along with smaller daily food expenditure. The findings of the study was consistent to other study in Pakistan stated nuclear family system showed
that people having higher education level and higher socioeconomic status were more satisfied as compared to no education \& low SES respectively (F. Saqib Lodhi, A. Ahmed Khan, O. Raza, T. Uz Zaman, U. Farooq and K. Holakouie-Naieni, 2019). In reverse of this study, the overall health status of members of nuclear families was poor as compared to members of joint families (B.Sb, S.Dixit, 2014). Another study whose concern for well-being health outcome, suggested besides of nuclear or extended family, the companionship and the presence of family or other people concerned for one's well being acts as a buffer against deleterious influence of living in small family that will lead to improved quality of health outcome (A. R. Turagabeci, K. Nakamura, M. Kizuki and T. Takano, 2007).

5.4 Discussion on children characteristic towards practice dietary omega 3 and 6 to the children 1-2 years old

5.4.1 Sex of children that subjected to the study towards practice dietary ome ga 3 and 6

Boys were 11.996 times more likely higher in effecting maternal practice dietary omega 3 and 6 than having girls as children at home. This was caused of their growth and development more rapidly looked by appearance, and so they need a lot more nutrition for their body structure. Boys also often spend time to waste their energy after meals, they use their body nutrition more often than girls do.

5.4.2 Length of children towards practice dietary omega 3 and 6

Average length of children were 6 times more likely higher found in mother that had a good practice in dietary omega 3 and 6 consumption to their 1-2 years old
children. The limited researches had been found to support part of this findings. But, there were many literatures mentioned the effect of omega 3 and 6 in pregnancy period. One of the studies, with title "A balance of omega-3 and omega-6 polyunsaturated fatty acids is important in pregnancy", studies have suggested that the intake of longer chain n-3 PUFA can improve pregnancy outcomes, especially in birth weight and gestational length, but not specifically body length of newborn till they infant. (Akerele and Cheema 2016)

In other research on children and adolscents categories, "Effect of omega-3 fatty acids supplementation on anthropometric indices in children and adolescents: A systematic review and meta-analysis of randomized controlled trials", found Omega-3 FAs supplementation did not change anthropometric indices in children and adolescents ((Jazayeri, Heshmati et al. 2020).

It may not significant related to the body length or body weight because omega 3 and 6 was one of the micronutrients that related to other nutrient to contribute effects in anthropometries measurement during 1-2 years old children period. Mothers who had good practice on dietary omega 3 and 6 consumption to their 1-2 years old children may have practice the balance of other macronutrient such as vitamin D and A , calcium, that needs to be found furthermore in detail. Then, when the research of practice dietary omega 3 and 6 consumption was done to the 1-2 years old children, the good practice significantly found in categories of average body length children.

5.4.3 Current breastfeeding as the predicting factor towards practice dietary omega 3 and 6 to the children 1-2 years old

Current breastfeeding with formula milk or Breastmilk by cup with formula milk 13.193 times more likely higher effecting practice in dietary omega 3 and 6 than breastfeeding only or Breastmilk by cup along with breastfeeding (10.587 times). Current breastfeeding with formula milk become more important in its contribution to dietary omega 3 and 6 to the children 1-2 years old, since formula milk have nutritious composition to support development of golden age. But it is not the one that WHO recommend for mother to fed their children. WHO recommend exclusive breastfeeding for the first 6 months of life and introduction of nutritionally-adequate and safe complementary (solid) foods at 6 months together with continued breastfeeding up to 2 years of age or beyond. (Victora, Bahl et al. 2016) (Rollins, Bhandari et al. 2016)It is reasonable since the breastmilk has natural nutritious, especially omega 3 and 6 . In the result of chapter 4, current breastfeeding status significantly related to the practice dietary omega 3 and 6 for children 1-2 years old which means if the mother could not fed the children with breastmilk or and along with formula milk, will give more source omega 3 and 6 to their growth and development milestone.

5.5 Discussion on source of information towards practice dietary omega 3 and

 6Experiencing women as the predicting factor 13.707 times more likely higher to the practice of dietary omega 3 and 6 than other source of information. It was caused by the longer women living life, the deeper they get the experience. The second factor is TV Program that 3.456 times more likely
second higher often give more information about Omega 3 and 6 to the practice of dietary omega 3 and 6 . Since we know is TV Program has many informative channel that contain information about health promotion, medicines or multivitamin from pharmacies product, also often has many TV talk show that invited great resources from health practitioner related how nutritious omega 3 and 6, the importance of omega 3 and 6 for human body, etc. This result in chapter IV means that more often we see TV program and watch even some advertisement about omega 3 and 6 , we reached more possibilities to gain information about omega 3 and 6 .

5.6 Discussion on food taboo towards practice dietary omega 3 and 6

Different social environments can also result in different cultural values regarding food and nutrition, such as food taboos and ideal body shape, which affect individuals' food-related behaviors. Considering these social and food environments, it seems likely that the relationships between individual characteristics and food intake patterns differ according to the level of urbanization (Kosaka, Satoko.2018). Ethnographic research from poor communities in Latin America also stated that Pentecostals have better hygiene (Woodberry, 2006).

5.7 Discussion on knowledge towards practice dietary omega 3 and 6

Many of participants had poor knowledge and fair knowledge. Poor knowledge led to poor practice dietary omega 3 and 6 because human being could not practice the things if they did not have any knowledge behind as the
reason why human practice the things. This findings study was consistent to other study that stated Nutrition knowledge is a fundamental factor for obtaining a healthy diet. Studies have shown that attitudes on diet, food choices, and dietary quality can be influenced by good nutrition knowledge and can later provide a beneficial effect against obesity among children and young adolescents (Guntari Prasetya1*, Ali Khomsan; 2021). Similarly result found in other research at Parental nutrition knowledge and attitudes play a fundamental role in their children's food knowledge. However, little is known about their influence on their children's diet quality and micronutrient intake (A. Romanos-Nanclares, I. Zazpe, S. Santiago, L. Marín, A. Rico-Campà and N. Martín-Calvo, 2018)

5.8 Discussion on attitude towards practice dietary omega 3 and 6

Fair attitude was become the factor if mother want to have good practice dietary omega 3 and 6 to children aged 1-2 years old. It is 10.994 times more likely higher to support the reason behind practice dietary omega 3 and 6 of mother to their children.

5.9 Limitation of the Study

Because ot study in time limited, practically research on the field was not properly openness, as the pandemic COVID-19 reason behind. Most of participants a bit uncomfortable with the interview face-to face during data collection due to limitation time and talks with mask used. It was more possible validity in result when study sample could be larger than the sample used in this research. The use of multi-stage sampling technique can lead to large errors due to involvement of division and sub-divisions of various strata
in each stage. A study using non-probability, so that the results can not be generalized to the entire population.

5.10 Conclusion

The cross-sectional study conducted among 428 participants in Labuhanbatu Utara regency provides a baseline data regarding the knowledge, attitude and practice of dietary omega 3 and 6 consumption to the children 1-2 years old. The study found the prevalence of good level maternal practice was low (10 participants only). The analysis of the level of knowledge, attitude and practice showed that 35.7% of the respondents had poor knowledge of omega 3 and 6 , more than half participants had fair attitude (59.8\%) and 60.7% had fair practice. The study highlighted that religion, educational level of mother, occupation of mother, place of resident mother, and ethnicity were general characteristics factors significantly associated to the practice of mother in dietary opmega 3 and 6 consumption to their children 1-2 years old. The study highlighted that nuclear family as family arrangement was the one household characteristics factor associated significant to the maternal practice. Children characteristics resulted some variables significant associated to the maternal practice such as body height of children, sex of subjected children to the study, and current breastfeeding status. Surprisingly, independent variables on food allergy was not significant associated to the maternal practice. Food taboos did not have any significant relationship to the good level of maternal practice. It was because mother could look the other alternative food items that can substituted the micronutrient that children needs, instead of take food which was prohibited by culture, norms, and habit. Reason for food taboo more likely higher in belief in hygiene reason, followed by belief in health reason The finding was quite similar to other studies as well where Palu, eastern part of Indonesia's one of
tribune had culture that support to do food taboo in term of belief smell fishy if the children eats the fish. Further, very limited number of participants were able to received information about omega 3 and 6 from medical practitioner.. This indicates a need of health promotion in primary care center with topic "Food source and Benefit of Omega 3 and 6 to the 1-2 years old children". Most of participants stayed in urban area instead of rural area, which supported health practitioner do mapping health promotion to rural area more regularly in order to balance the information received on Omega 3 and 6.

5.11 Recommendation

5.11.1 Recommendation for future research

1. This study was carried out in only three districts of Labuhanbatu Utara regency, Indonesia ; hence, future research can involve the general public of all the three districts to give a better picture of the prevalence insufficient omega 3 and 6 data in children 1-2 years old.
2. Because of resource constraints, multi stage sampling and random sampling was used in the study. A study using probability sampling could be done in future so that the results can be generalized to the entire population.
3. A comparative study could be done comparing rural and urban locations in the village to understand how the factors associated with maternal practice were vary in the two locations.
4. Several other factors like food allergy and food taboo in different setting which could be associated with knowledge, attitude and practice can also be studied in future research.
5. Effectiveness of educational interventions programs on intake omega 3 and 6 in children 1-2 years old can be conducted which would be helpful in providing information on its impact on knowledge, attitude and practice of dietary omega 3 and 6 consumption to the children 1-02 years old.
6. Qualitative studies such as in-depth interviews and focused group interviews could be conducted to provide further information on the omega 3 and 6 .

5.11.2 Recommendation for policy maker

1. The key findings of this study will help policy makers in designing appropriate intervention programs targeting key population (those with low level of education, negative attitude and inappropriate practices) to promote omega 3 and 6. All possible media such as television, newspaper and the internet should be utilized for effective public educational programs.
2. There should be stringent monitoring and regulation of health promotion omega 3 and 6 in children aged 1-2 years old in health care facilities to update maternal knowledge about omega 3 and 6
3. Communication should also be improved between personnel involved in health care and the mothers regarding benefit omega 3 and 6 to the children 12 years old.
4. The government should also highlight the role of health promoter in health education and promotion and in information delivery with training skilled.
5. Policy makers should also make strict regulations regarding involvement of only those who have correct qualification and knowledge to deliver the information about omega 3 and 6 .
5.11.3 Recommendation for health practitioner
6. Provide information regarding prevalence maternal knowledge, attitude, and practice dietary of Omega 3 and 6 to the 1-2 years old children based on the research as reference.
7. Developing and initiating effective interventions to increase the administration of food related to omega 3 and 6 such as provide regularity distribution of food source package omega 3 and 6 (tempeh and tofu and formula milk to the community.
8. Distribution of leaflet and booklet regulary once a week for mothers in "administration Omega 3 and 6 also with health promotion title omega 3 and 6 for children 1-2 years old", through coordinated efforts from the government, private and the public side. This will help in increasing human development index in the future of Indonesia, especially will have brighter future of children in the long run.

5.12 Expected benefits

The study was expected to provide information regarding maternal knowledge, attitude, and practice dietary of Omega 3 and 6 to the 1-2 years old children. The findings were expected to be particularly useful in developing and initiating effective interventions to increase the administration of food related to omega 3 and 6 . Also, the information from the study could be used in developing a program to increase health promotion for mothers in administration Omega 3 and 6, through coordinated efforts from the government, private and the public side. This helped in increasing human development index in the future of Indonesia,
especially to had brighter future of children in the long run. Lastly, although the study was not intended to measure the prevalence of mothers who did administration Omega 3 and 6 for their 1-2 years old children in Labuhanbatu Utara, it could provide a rough estimate of the prevalence.

5.13 Possible obstacles and strategies to overcome

The possible difficulties for this study are (1) asked and approached the primary healthcare centre for their assistance and cooperation; (2) COVID19 situation in Indonesia may lead to difficulty to travel and perform interview, along with the fear of participants on COVID-19 infection. Additionally, time was limited during the data collection phase of the study which was another obstacle. To overcome the mentioned obstacles, the researcher tried to convince and reach out to the primary healthcare officers to explain the objectives and benefits of the study. Ensured the safety of participants during the data collection by measured their temperature, and provided mask and alcohol spray or hand sanitizer. Everyone wore mask at all time.
5.14 Budget
The budget required for the research is estimated below:

	Description	Cost
1	Research assistance allowance (10 persons x 1000 BHT)	$10,000 \mathrm{BHT}$
2	Training and Orientation	$8,000 \mathrm{BHT}$
3	Ethical Approval process	$3,000 \mathrm{BHT}$
4	Participant's compensation (440 persons x 50 BHT for fabric mask)	$22,000 \mathrm{BHT}$
5	Printing and photocopy cost	$2,000 \mathrm{BHT}$
6	Pre-testing of questionnaires	5,000 BHT
	TOTAL	$\mathbf{5 0 , 0 0 0}$ BHT

147

APPENDIX I
 QUESTIONNAIRE OF MATERNAL KNOWLEDGE, ATTITUDE AND PRACTICE ON OMEGA 3 AND 6 CONSUMPTION TO THE 1-2 YEARS AGED CHILDREN

SECTION 1 - GENERAL CHARACTERISTICS				
1	Age years old		
2	Religion	\square 1. Protestant	$\square 2$. Advent	$\square 3$. Pentecostal
		\square 4. Catholic	\square 5.Moslem	\square 6. Buddhist
		$\square 7$. Hinduism	\square 8.Orthodox	\square 9. Other, please specify.
3	Marital Status1. Married2. Divorced/Separated3. Widowed			
4	Educational level1. Illiterate2. Elementary3. Intermediate4. High school5. Undergraduate or higher			
5	Occupation1. Government Officer2. Private Officer3. Self-Employed4. Housewife			
6	Place of Resident1. Urban Area2. Rural Area			
7	Ethnicity1. Malay2. Batak3. Javanese4. Others, please specify			
SECTION II - HOUSEHOLD CHARACTERISTIC				
8	Family arrangement1. Nuclear family			

	\square 2. Extended family
9	Gender of 1-2 years old children in the household (Tick all applicable) 1. Boy, \qquad .person 2. Girl, \qquad person
10	Monthly household income (per month)
SECTION III: CHILDREN CHARACTERISTICS	
11	Weight................kilogram
12	Height.....................centimetre
13	Gender (for the target subject in this questionnaire) 1. Boy 2. Girl
14	Breast milk 1. Currently breastfed 1.1 Exclusive breastfed 1.2 Breastfed + Formula milk 1.3 Breastfed + pasteurized, sterilized or UHT 2. Breast milk by cup or bottle 2.1 Only having breast milk by cup or bottle 2.2 Breast milk + breastfed 2.3 Breast milk + Formula milk 2.4 Breast milk + pasteurized, sterilized or UHT 3. Only formula milk 4. Only pasteurized, sterilized or UHT
15	Food allergy (of your child) 1. Yes, please specify \qquad 2. No
SECTION IV - Food Taboo	
18A: $\bar{\square}$ Check all that apply. What food items on this list do you consider to be taboo or forbidden for your children?	
18A. 1	

	1.3 Fruit \rightarrow 1. Jackfruit 2. Corn 3. Pineapple 4. Orange 5. Banana 6. Other, please specify.
	1.4 Egg and Fish $-\rightarrow$ 1. Egg 2. Catfish 3. bale-bale fish 4. balana fish 5. Shark fish 6. Ciko fish 7. Other, please specify.
	1.5 Seafood \rightarrow 1. Shrimp 2. Crab 3. Octopus 4. Other, please specify. 1.6 Vegetables \rightarrow 1. Cassava Leaves 2. Moringa Leaves 3. Kale 4. Eggplant 5. Other, please specify.

18A. 2	2. If you checked any of the above, what reason do you consider the food to be taboo? Check all that apply 1. Religion 2. Culture/Social Norms/ Beliefs 3. Hygiene (children will get worm, urine smell fishy, etc) 4. Health (cause diseases, allergies, veganism, vegetarianism, etc) 5. Ethics 6. Other (please specify

SECTION V: SOURCE OF INFORMATION ON DIETARY OMEGA 3 AND 6	
19A Did you receive information on dietary omega 3 and 6 from?	
19A. 1	TV Programs 1. Yes 2. No
19A. 2	Newspaper and Magazines \square 1. Yes 2. No
19A. 3	Friends/Neighbour 1. Yes 2. No
19A. 4	Family Member \square 1.Yes $\square 2$.No
19A. 5	Medical Practitioner 1.Yes $\square 2$.No
19A. 6	Experiencing women in the families $\square 1$.Yes $\square 2$.No
19A. 7	Did you receive information on dietary omega 3 and 6 from other sources (Check all that apply)? 1.Twitter จุฬาลงกรณ่มหาวิทยาลัย 2.Facebook 3.IG 4. Other, please specify......

SECTION VI-Maternal knowledge on dietary omega 3 and 6 consumption in children aged					
1-2 years old					
	Question		Yes	No	Do not know
20A: Omega 3					
20A.1	Omega 3 is a component of fatty acid				
20A.2	Human body cannot produce omega 3				
20A.3	DHA (Docosahexaenoic acid) is a major fatty acid in brain and the retina				
20A.4	Freshwater fish is an important source of omega 3				
20A.5	Seawater fish is an important source of omega 3				
20A.6	Algae oil is an important source of omega 3				
20A.7	Meats are an important source of omega 3				
20A.8	Shrimps are an important source of omega 3				
20A.9	Omega 3 helps in the retina development during an early age of children				
20B: Omega 6					
20B.1	Omega 6 is a part of fatty acid and cannot be produced by human body				
20B.2	Nuts are an important source of omega 6				
20B.3	Coconut is rich in omega 6				
20B.4	Spinach are an important source of omega 6				
20B.5	Pumpkin are an important source of omega 6				
20B.6	Corn oil are an important source of omega 6				
20B.7	Tofu are an important source of omega 6				
20B.8	Eggs are an important source of omega 6				
20B.9	Omega 6 can help reduce high blood pressure				

20C: Omega 3 and 6				
	Question	Yes	No	Do not know
20C. 1	Omega 3 and 6 can help in prevention of anxiety and depressive disorder			
20C. 2	Omega 3 and 6 can help prevent skin rash			
20C. 3	Omega 3 and 6 help supporting the development of learning and memory abilities			
20C. 4	Consumption of Omega 3 and 6 is better to start at an early age.			
20C. 5	Omega-3s help improve inattention and task completion on hyperactivity behaviour in children			
20C. 6	Omega 3 and 6 can help in decreasing cholesterol			
20C. 7	Omega 3 and 6 help keeping the heart healthy			
20C. 8	Omega 3 and 6 can help increasing the ability to focus on reading			
20C. 9	Omega 3 and 6 help in strengthening hair and hair growth			

SECTION VII - Maternal attitude on dietary omega 3 and 6 consumption in children aged 12 years old						
No	Statement	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree
21A	Omega 3					
21A. 1	I think it is important to pay attention on the meal composition with omega 3 for my children					
21A. 2	Variation of omega 3 in children's meal is important for their growth					
21A. 3	I consider the food source of omega 3 for the children based on the food she likes					
21 A .4	I pay attention to food taboo in determining the food source of omega 3 for my children					
21A. 5	I agree to provide meat which rich in omega 3 (such as fish and beef) to my children anytime whenever one of those sources are available	践	\checkmark			
21A. 6	I prefer the formula milk based as daily source of omega 3 to my children		6)			
21A. 7	The provision of omega 3 food sources for children is carried out regularly according to the meal schedule	แหาวทย	าลัย ERSIT			
21A. 8	Not just on prepare the menu, but the processing method that I do in processing omega 3 food for children must vary (for example: boiled, baked, blended or steamed)					
21A. 9	When making meals for children, I will add omega 3 source to the porridge					

21B	Omega 6					
No	Statement	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree
21B. 1	I think the appearance and interesting decoration of plantbased diet will help my children to eat better					
21B. 2	I agree to use plant source based that rich in omega 6 (such as walnut, soybean, flexseed, almond or leaf lettuce) to my children anytime when one of those sources is available.	195				
21B. 3	I am concern with the amount of omega 6 that I give to my children					
21B. 4	I think making various menu from food rich in omega 6 for children is important, even they are from the same ingredients					
21B. 5	I pay attention to the menu composition of omega 6 for my children		B)			
21B. 6	It is important to provide omega 6 food sources for children regularly					
21B. 7	I agree that balancing food that rich in omega 6 to my children is important for their health		RSIT			
21B. 8	I think I am the only person who responsible to fulfil the needs of Omega 6 my children in my house.					

SECTION VIII - Maternal practices on dietary omega 3 and 6 consumption in children aged 1-2 years
Omega 3 and Omega 6 Food group I: Milk, yogurt, and cheese
Note: How frequently your child consumes at least 200 ml of the milk (e.g. a cup of milk at the picture)? How frequently your child consumes at least $250 \mathbf{~ m l}$ of the babyfood cereal (e.g. $3 / 4$ bowl of food at the p Please response with the match choice of your practice.
Never $=$ Never or less than once a month. Rarely = 1-3 days a month; Sometimes $=1$ day a week; Often =2-4 days a week; Always = 5-6 days a week; Everyday

$\begin{array}{c}\text { Never } \\ \text { (Never or less than } \\ \text { once a month) }\end{array}$	$\begin{array}{c}\text { Rarely } \\ \text { (1-3 days a } \\ \text { month) }\end{array}$

Never	
$\begin{array}{c}\text { (Never or less than } \\ \text { once a month) }\end{array}$	$\begin{array}{c}\text { Rarely } \\ \text { (1-3 days a } \\ \text { month) }\end{array}$

Sometimes
(1 day a week)

24	Omega 3 and 6 Food group III: Vegetable						
	Note: How frequently your child consumes at least $\mathbf{3 0}$ gram of the food (e.g. two tablespoons per serving of vegetable picture). Please response with the match choice of your practice. Never $=$ Never or less than once a month; Rarely =1-3 days a month; Sometimes = 1 day a week; Often =2-4 days a week; Always = 5-6 days a week; Everyday						
	Question	(Never or once a	$\begin{gathered} \text { Rarely } \\ (1-3 \text { days a } \\ \text { month }) \end{gathered}$	Sometimes (1 day a week)	Often (2-4 days a week)	$\begin{gathered} \text { Always } \\ (5-6 \text { days a } \\ \text { week) } \end{gathered}$	Everyday
$24.1(3,6)$	Kale	$三 \square$					
24.2 (3,6)	Cauliflower						
24.3 (3)	Spinach	$\underline{5}$					
24.4 (6)	Broccoli	-	\% ${ }^{2}$				
24.5 (6)	Enoki Mushroom	\leq					
24.6 (6)	Tomato	0 -					
24.7 (6)	Eggplant	=					
24.8 (6)	Yellow sweet corn						

25	Omega 3 and 6 Food group IV: Chocolate						
	Note: How frequently your child consumes at least $\mathbf{2 5}$ gram of the chocolate (e.g. a quarter bar of chocolate at the picture) Please response with the match choice of your practice. Never $=$ Never or less than once a month; Rarely $=1-3$ days a month; Sometimes = 1 day a week; Often = 2-4 days a week; Always = 5-6 days a week; Everyday						
Question		Never (Never or less than once a month)	$\begin{gathered} \text { Rarely } \\ (1-3 \text { days a } \\ \text { month }) \end{gathered}$	Sometimes (1 day a week)	Often (2-4 days a week)	$\begin{gathered} \text { Always } \\ (5-6 \text { days a } \\ \text { week }) \end{gathered}$	Everyday
25.1 (6)	Fudge Chocolate with Nuts prepared from recipes	20					
25.2 (6)	Soft fruit and Nut squares	\square					
25.3 (6)	Fudge vanilla with nuts	- 5					
25.4 (3,6)	Toblerone Chocolate with honey and Almond Nouget						
25.5 (6)	Nestle 100 grand bar	팜					
25.6 (6)	White Chocolate	-					
25.7 (6)	Milk Chocolate with Almond	-					
25.8 (6)	Milk Chocolate with rice cereal						
25.9 (6)	Sweet Chocolate						

26	Omega 3 and 6 Food group V: Dessert						
	Note: How frequently your child consumes at least 25 gram of the food (e.g. a spoon scope of dessert at the picture) Please response with the match choice of your practice. Never $=$ Never or less than once a month; Rarely $=1-3$ days a month; Sometimes $=1$ day a week; Often = 2-4 days a week; Always = 5-6 days a week; Everyday						
	Questions	Never (Never or less than once a month)	$\begin{gathered} \text { Rarely } \\ (1-3 \text { days a } \\ \text { month) } \end{gathered}$	Sometimes (1 day a week)	$\begin{aligned} & \hline \text { Often } \\ & \text { (2-4 days } \\ & \text { a week) } \end{aligned}$	$\begin{gathered} \text { Always } \\ (5-6 \text { days a } \\ \text { week }) \end{gathered}$	Everyday
26.1 (3,6)	Soft Chocolate Ice cream	2					
26.2 (3,6)	Extruded corn chips	\bigcirc					
26.3 (3,6)	Snack Potato Chips Lightly Salted						
Food group VI: Rice/biscuits (carbohydrates) Note: How frequently your child consumes at least $\mathbf{4 0}$ gram of the food (e.g. two plates per serving or 3-4 tablespoon rice Please response with the match choice of your practice. Never $=$ Never or less than once a month; Rarely $=1-3$ days a month; Sometimes $=1$ day a week; Often = 2-4 days a week; Always = 5-6 days a week; Everyday							
	Questions	Never (Never or less than once a month)	$\begin{gathered} \text { Rarely } \\ \text { (1-3 days a } \\ \text { month) } \\ \hline \end{gathered}$	Sometimes (1 day a week)	$\begin{aligned} & \text { Often } \\ & \text { (2-4 days } \end{aligned}$ a week)	$\begin{gathered} \text { Always } \\ (5-6 \text { days a } \\ \text { week }) \end{gathered}$	Everyday
27.1 (6)	brown rice						
27.2 (6)	spinach egg noodles						
27.3 (3,6)	milk biscuit						
27.4 (3,6)	White bread						

28	Food group VII = Meat						
Note: How frequently your child consumes at least $\mathbf{3 0}$ gram per serving of the meat (e.g. two tablespoon per serving at the picture)? Please response with the match choice of your practice. Never $=$ Never or less than once a month; Rarely $=1-3$ days a month; Sometimes $=1$ day a week; Often = 2-4 days a week; Always = 5-6 days a week; Everyday							
	Questions	(Never (Never or less than once a month)	$\begin{gathered} \text { Rarely } \\ (1-3 \text { days a } \\ \text { month }) \\ \hline \end{gathered}$	Sometimes (1 day a week)	$\begin{aligned} & \text { Often } \\ & (2-4 \text { days } \\ & \text { a week) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Always } \\ (5-6 \text { days a } \\ \text { week) } \\ \hline \end{gathered}$	Everyday
28.1 (3,6)	Chicken liver, cooked	() 3					
28.2 (3,6)	Chicken soup, cream	-					
28.3 (3,6)	Chicken, boiled, light meat	-					
28.4 (3,6)	Chicken, roasted, breast	2		- 10			
28.5 (3,6)	Chicken, meat, fried, breast	-					
28.6 (3,6)	Chicken, intestine, cooked	-	-				
28.7 (3,6)	Chicken, meat, leg	E					
28.8 (3,6)	duck, meat, roasted	-					
28.9 (6)	beef, braised meat, short-ribs chuck stew	3					
28.10 (3,6)	buffalo, meat, roasted						
28.11 (3,6)	buffalo, meat, cooked						
28.12 (6)	buffalo, meat, broiled						
28.13(3,6)	lamb, liver, cooked						
28.14 (3,6)	lamb, meat						

จุฬาลงกรณ์มหาวิทยาลัย

29	Omega 3 and 6 Food group VIII: Fish and seafood						
Note: How frequently your child consumes at least $\mathbf{4 0}$ gram of the fish (e.g. two tablespoon per serving) and at least 30 half of egg per serving at the picture)? Please response with the match choice of your practice. Never $=$ Never or less than once a month; Rarely $=1-3$ days a month; Sometimes = 1 day a week; Often = 2-4 days a week; Always = 5-6 days a week; Everyday							
	Questions		Rarely (1-3 days a month)	Sometimes (1 day a week)	Often (2-4 days a week)	Always (5-6 days a week)	Everyday
29.1 (3,6)	egg, chicken, raw	a of					
$29.2(3,6)$	egg, chicken, omelette						
29.3 (3,6)	egg, fried	\geq					
29.4 (3,6)	egg, scrambled	- ${ }^{\text {d }}$	- 2				
29.5 (3)	Eel, boiled						
29.6 (3,6)	fish gabus, fried	暏		(1) (8)			
29.7 (3,6)	fish, freshwater, fried gurami	은 ¢					
29.8 (3,6)	fish, freshwater, cooked in turmeric spice	-					
29.9 (3,6)	fish, freashwater, steamed in banana leaf						
29.10 (3,6)	egg, chicken, half boiled						
29.11 (3,6)	fish, milk fish (gurami, nila)						
29.12 (3,6)	fish, sea (mujaer)						

Note: How frequently your child consumes at least $\mathbf{4 0}$ gram of the fish (e.g. two tablespoon per serving) and at least $\mathbf{3 0}$ gram boiled serving at the picture)? Please response with the match choice of your practice. Never = Never or less than once a month; Rarely =1-3 days a month; Sometimes = 1 day a week; Often = 2-4 days a week; Always = 5-6 days a week; Everyday							
	Question	Never (Never or less than once a month)	Rarely $(1-3$ days a month $)$	Sometimes (1 day a week)	Often (2-4 days a week)	$\begin{gathered} \text { Always } \\ (5-6 \text { days a } \\ \text { week }) \\ \hline \end{gathered}$	Everyday
29.13 (3,6)	fish, sea, dried, salted (kembung)	S					
29.14 (3,6)	fish, sea, fried	- 9)					
29.15 (3,6)	fish, tongkol, fried						
29.16 (3,6)	Lobster, cooked	-					
29.17 (3,6)	Shrimp, fried	-					
29.18 (3,6)	Scallop, cooked	-					
29.19 (3,6)	Crab, boiled	0	d				
29.20 (3,6)	Cod, cooked	K		(1)			
$29.21(3,6)$	anchovy, fried	\#-		r			
$29.22(3,6)$	anchovy dried	- <					
29.23 (3)	sardine, canned, in tomato sauce	-					

30	Omega 3 and 6 Food group IX: Nuts and Legumes						
Note: How frequently your child consumes at least $\mathbf{5 0}$ gram of the nuts and legumes (e.g. a half of cupped palm at that picture Please response with the match choice of your practice. Never $=$ Never or less than once a month; Rarely $=1-3$ days a month; Sometimes $=1$ day a week; Often $=2-4$ days a Always = 5-6 days a week; Everyday							
	Questions	Never (Never or less than once a month)	Rarely (1-3 days a month)	Sometimes (1 day a week)	$\begin{gathered} \hline \text { Often } \\ (2-4 \\ \text { days a } \\ \text { week }) \\ \hline \end{gathered}$	$\begin{gathered} \text { Always } \\ \text { (5-6 days a } \\ \text { week) } \end{gathered}$	Everyday
$30.1(3,6)$	Edamame	$\bigcirc \leq$					
$30.2(3,6)$	Kidney beans	[0 af					
30.3 (3,6)	Red Kidney beans, cooked	88					
30.4 (3,6)	Red Kidney beans, boiled	≥ 3					
30.5 (3,6)	Lentils, cooked	-	-				
30.6 (3,6)	Soybean Flour, powder	E					
30.7 (3,6)	Oncom/Fermented Tofu	-		\square (
30.8 (6)	Mung beans, cooked	¢ ¢					
30.9 (6)	Peanut, butter	-					
30.10 (6)	Peanut, raw						
30.11 (3)	Black eyed peas, cooked						
30.12 (3,6)	Cowpeas, cooked						
30.13 (3,6)	Firm Tofu, cooked						
30.14 (3,6)	Soft Tofu, cooked						
30.15 (3,6)	Tofu prepared with Calcium						

Omega 3 and 6 Food group X: Supplement

APPENDIX II

LIST OF FOOD WHICH CONTAINS OF OMEGA 3 AND 6 COMMONLY CONSUMED IN INDONESIA

List of Food which contains of Omega 3 and 6 in Indonesia.

Rank order	Food	Omega-3 fatty acid intake 1	English walnuts of total

a. Intake assessed by food frequency questionnaire.

Jenis Ikan (fishes Item)	URT (Household measurement) Tuna	Asam Lemak Omega 3 (gram)/fatty acid Omega 3
2 pieces middle size (2 pieces middle size)	2,1	
Sardine	2 potong sdg $(2$ pieces middle size $)$	1,2
Salmon	2 potong sdg $(2$ pieces middle size $)$	1,6
Mackarel	2 potong sdg $(2$ pieces middle size $)$	1,9
Hering	2 potong sdg $(2$ pieces middle size $)$	1,2
Teri	8 sdm $(8$ tbsp)	1,4
Tongkol	2 potong sdg $(2$ pieces middle size $)$	1,5
Tenggiri	2 potong sdg $(2$ pieces middle size $)$	2,6
Tawes	2 potong sdg $(2$ pieces middle size $)$	1,5
Kembung	2 potong sdg $(2$ pieces middle size $)$	2,2
Kepiting	2 potong sdg $(2$ pieces middle size $)$	0,5
Kerapu	2 potong sdg $(2$ pieces middle size $)$	2,0
Kerang	$11 / 4$ gelas $(750$ ml $)$	2,0
Lobster	1 potong sdg $(1$ pieces middle size $)$	1,5
Lele	2 potong sdg $(2$ pieces middle size $)$	1,2
Gurami	2 ptg sdg $(2$ pieces middle size $)$	2,2
Nila	2 ptg sdg $(2$ pieces middle size $)$	1,2

Mujahir	2 ptg sdg (2 pieces middle size)	1,4
Kakap	1 potong (1 pieces middle size)	1,3
Udang	$1 / 2$ gelas (a half of glass)	1,5
1 potong sedang (1 middle piece size) same as $5 \mathrm{~cm} \times 4 \mathrm{~cm} \mathrm{x} 0.6 \mathrm{~cm}$		
$1 \mathrm{oz}=29.5 \mathrm{ml}$		

b. Values obtained from Food Processor, Version 8.1, 2003, ESHA Research, Salem, OR.

Daftar Bahan Makanan: Jenis Daging dan Telur beserta Olahannya yang mengandung Omega 3 dan 6 (g/ 100 gram makanan)

Jenis Daging dan Telur (Kind of meat and eggs)	URT (household measurement)	Tanpa Kulit		Dengan Kulit	
		Omega 3	Omega 6	Omega 3	$\begin{gathered} \text { Omeg } \\ \text { a } 6 \\ \hline \end{gathered}$
Babat	$1 \mathrm{ptg} \operatorname{sdg}$ (1 pieces middle size)	0,1	0,00	0,01	0,00
Dadih Ayam	2 ptg sdg (2 pieces middle size)	0,00	0,00	0,00	0,00
Dadih Sapi	$1 \mathrm{ptg} \operatorname{sdg}$ (1 pieces middle size)	0,00	0,00	0,00	0,00
Daging Babi Gemuk	1 ptg sdg (1 piece middle size)	2,0	1,2	2,5	0,00
Daging ayam Kampung	$1 / \mathrm{ptg} \operatorname{sdg}(1$ piece middle size)	0,4	0,005	2,2	0,00
Daging sapi	2 ptg sdg (1 piece middle size)	0,2	0,00	0,2	0,00
Daging Kambing	$\begin{gathered} 2 \mathrm{ptg} \text { sdg }(2 \text { pieces } \\ \text { middle size }) \end{gathered}$	(5) 0,2	0,00	0,2	0,00
Daging Kerbau	$2 \mathrm{ptg} \operatorname{sdg}$ (2 pieces middle size)	0,2	0,00	0,2	0,00
Daging ayam direbus	2 ptg sdg (2 pieces middle size)	0,22	0,01	1,33	0,08
Daging Ayam Broiler	$\begin{gathered} 2 \mathrm{ptg} \text { sdg (} 2 \text { pieces } \\ \text { middle size }) \end{gathered}$	0,08	0,8	2,07	0,10
Daging Raw Turkey	2 ptg sdg (2 pieces middle size)	0,27	0,01	1,48	0,10
Daging bebek	2 ptg sdg (2 pieces middle size)	0,80	0,10	10,7	0,7
Hati bebek	4 ptg sdg (2 pieces middle size)	0,37	-	-	-
Hati angsa	4 ptg sdg (2 pieces middle size)	0,18	0,01	-	-
Hati ayam	4 ptg sdg (2 pieces middle size)	24,7	0,9	24,7	0,9
Hati sapi	2 ptg sdg (2 pieces middle size)	24,7	0,9	-	-

Otak	2 ptg sdg (2 pieces middle size)	0,00	0,00	-	-
Telur ayam bagian kuning	$1 / 2$ gelas (2 pieces middle size)	0,1	4,2	-	-
Telur ayam bagian putih	$1 / 2$ gelas (2 pieces middle size)	0,5	4,8	-	-
Telur ayam bagian Kuning (Segar)	$1 / 2$ gelas (2 eggs)	13,9	0,4	-	-
Telur bagian kuning yang dikulkaskan	$1 / 2$ gelas (2.5 eggs)	2,94	0,06	-	-
Telur Olahan (kuning)	$1 / 2$ gelas (2.5 eggs)	6,42	0,13	-	-
Telur ayam	2 butir (2 eggs)	0,4	0,04	-	-
Telur bebek	1 butir (1 egg)	0,8	0,08		
Telur bebek (Kuning)	1 butir (1 egg)	0,5	0,05		
Telur bebek (Putih)	1 butir (1 egg)	0,3	0,03	-	-
Usus Sapi	2 ptg sdg (2 pieces				
middle size)	0,00	0,00	-	-	

(Disadur dari Fatty Acids in Foods and their Health Implications,Third Edition, 2012.
ISSFAL. pp. 126)

Daftar Bahan Makanan: Camilan dan Lauk yang Mengandung Omega 3 dan 6 beserta kadar kandungan Omega 3 dan 6 di dalamnya. (g/100 gram makanan) List of Food
Ingredients: Snacks and Side Dishes Containing Omega 3 and 6 along with the levels of Omega 3 and 6 in them. ($\mathrm{g} / 100 \mathrm{grams}$ of food)

Jenis Makanan (Food Item)	URT (household measurement)	Omega 3	Omega 6
Brokoli	1 gls $(600 \mathrm{ml})$ 2 gls $(1200 \mathrm{ml})$ Indomie	-	0,307
Makaroni	-	0,392	
Kentang manis	2 ptg sdg $(2$ pieces middle size $)$	0,015	0,032
Kacang Granola, Almond	10 sdm $(10$ tbsp $)$	0,080	0,980
Coklat Chip	10 sdm $(10$ tbsp $)$	0,060	0,940
Selai Kacang	10 sdm $(10$ tbsp $)$	0,010	0,760
Puding Pisang	10 sdm $(10$ tbsp $)$	0,050	0,020
Spaghetti	2 ptg sdg $(2$ pieces middle size $)$	0,062	-
Pizza	2 ptg sdg $(2$ pieces middle size $)$	2,511	0,112
Kentang goreng	2 ptg sdg $(2$ pieces middle size $)$	52,9	0,7
Keju	3 ptg sdg $(3$ pieces middle size $)$	0,11	0,04

(ISSFAL, 2012)

Bahan Pangan (Food material)	Jenis Makanan (Food Item)	Ukuran/Porsi (Size/Portion)	Jumlah Kandungan Asam Lemak (Fatty Acid contains quantity)	
			n-3	n-6
	Sate Ayam/Sapi	$\begin{gathered} 6 \text { tusuk (} 6 \text { small } \\ \text { size) } \\ \hline \end{gathered}$	0,3	0,6
	Ayam Panggang	1 porsi (1 portion)	0,1	2,4
	Bebek Panggang	1 porsi (1 portion)	0,3	4,8
	Kambing Bakar	1 potong (1 piece middle size)	0,6	0,9
	Babi Panggang	1 potong (1 piece middle size)	0,7	1,0
Daging	Ayam Goreng Dada	1 potong (1 piece middle size)	0,3	2,9
	Ayam Goreng Paha	1 potong (1 piece middle size)	0,3	2,9
	Rendang Sapi	1 potong (1 pieces middle size)	0,3	2,9
Catatan: 1 potong ± 50 gram, 1 porsi ± 100 gram				
Makanan Laut	Bakso Ikan Rebus	8 biji sedang (8 pieces middle size)	1,7	1,4
	Udang Goreng	4 ekor sedang (4 shrimp middle size)	0,2	0,1
	Udang Rebus	5 ekor sedang (5 shrimp middle size)	0,2	0,1
Catatan: 1 biji ± 10 gram; 1 ekor ± 10 gram				
Sayuran	Gado-Gado	1 porsi	0,00	0,00
	Sayur Hijau Cah	1 porsi	0,00	0,00
	Sayur Rebus	1 porsi		

Catatan: 1 porsi ± 100 gram						0,00
Kue Biskuit	Kue Basah	1 potong	0,00	0,2		
	Kue Mentega	1 potong	0,00	0,00		
	Kue Bolu	1 potong	0,00	0,1		
	Roti Cokelat	1 potong	0,00	0,1		
	Pisang Goreng	1 potong	0,00	3,6		
	Cokelat	1 potong kecil	2,3	0,00		
	Risoles	1 potong	0,00			

Catatan: 1potong kue ± 50 gram ; 1 biji bakcang ± 100 gram				
Minuman	Soft Drink	1 gelas	0,1	0,00
	Coklat Susu	1 gelas	0,1	0,1
	Milo tanpa Gula	2 sendok	2,1	1,2
	Susu Kedelai	1 gelas	2,8	35,4
	Kacang Hijau	1 mangkok	0,3	0,7
	Cendol	1 gelas	0,00	0,00

Catatan: 1 gelas $\pm 200 \mathrm{cc} ; 1 \mathrm{sdk} \pm 10$ gram; 1 mangkok ± 100 gram
Catatan: Jumlah Omega 3 dan 6 di atas merupakan kurang lebih, karena bergantung pada jumlah minyak atau gula yang digunakan.

Daftar Buah-buahan beserta kadar Kandungan Omega 3 dan 6 di dalamnya ($\mathrm{g} / 100 \mathrm{gr}$ makanan) List of Fruits and theirs Omega 3 and 6 in them ($\mathrm{g} / 100 \mathrm{gr}$ food)

Jenis Makanan (Food Item)	URT (household measures)	Omega 3	Omega 6
Apel	3/4 buah sedang	0,1	0,2
Belimbing	1 buah sedang	0,1	0,2
Bengkuang	1 biji besar	0,00	0,00
Jambu biji	1 buah besar	0,00	0,00
Jambu air	2 buah sedang	0,00	0,00
Jambu bol	1 buah sedang	0,00	0,00
Jeruk (Lokal)	1 buah sedang	0,00	0,00
Jeruk (Bali)	$1 / 2$ buah sedang	0,00	0,00
Kedondong	1 buah besar	0,00	0,00
Nanas	1 buah sedang	0,00	0,00
Papaya	1 potong sedang	0,00	0,00
Semangka	1 potong besar	0,2	0,4
Alpukat	1 buah besar	0,1	0,9
Duku	20 biji	0,1	0,2
Durian	6 biji	0,2	0,4
Mangga Golek	1 buah besar	0,1	0,3
Mangga Indramayu	1 buah besar	0,1	0,4
Nangka masak	6 biji	0,00	0,00
Pisang Ambon	2 buah sedang	0,3	0,9
Pisang emas	2 buah sedang	0,3	0,9
Pisang Raja	3 buah kecil	0,3	0,9
	2 buah sedang	0,4	0,8
Pisang Susu		0,1	0,3
Pisang Uli	3 buah kecil	0,1	0,3
Rambutan	3 buah sedang	0,1	0,2
Raspberry	15 biji	0,1	0,2
Strawberry	3 buah sedang	0,1	
			0

Salak	$1 \frac{1}{4}$ buah sedang	0,00	0,00
Sawo	2 buah sedang	0,00	0,3
Sirsak	$3 / 4$ gelas	0,00	0,00
Srikaya	1 gelas	0,00	0,00

Buah-Buahan ditimbang tanpa kulit dan biji.
Daftar Bahan Makanan: Golongan Serealia, Umbi dan Hasil Olahannya yang mengandung Omega 3 dan 6 (g/100 gram makanan) List of Food Material: Cereals, Side Dish and Their Processed Products that contain Omega 3 and 6 (g/l 100 grams of food)

Jenis Makanan (Food Item)	URT (Household measures)	Omega 3	Omega 6
Beras Merah	$3 / 4$ gelas	0,3	0,6
Beras Giling	$3 / 4$ gelas	0,1	0,2
Beras Jagung	3/4 gelas	0,2	0,3
Bubur Beras	$1 / 2$ gelas	0,1	0,3
Biskuit	10 bh	0,00	0,00
Bihun	$1 / 2$ mangkok	-	-
Havermout	1 potong	-	-
Kentang	2 potong sedang	0,3	0,5
Kraker	2 lembar	-	-
Mayonaisse	10 sdm	2,0	16,0
Mi kering	$1 / 4$ mangkok	0,00	0,00
Mi basah	$1 / 4$ mangkok	0,00	0,00
Nasi Putih	$1 / 2$ mangkok	0,1	0,3
Nasi Tim	$1 / 2$ mangkok	0,1	0,3
Roti Putih	2 lembar	0,2	0,4
Singkong	2 potong sedang	0,00	0,00
Talas	10 sdm	0,00	0,00
Tape singkong	10 sdm $0 R G R$	0,00	0,00
Tepung beras	10 sdm	0,2	0,4
Tepung Gaplek	10 sdm	0,00	0,00
Tepung Hunkwee	10 sdm	0,1	0,3
Tepung terigu	10 sdm	0,1	0,3
Ubi Jalar Merah	2 potong sedang	0,00	0,00
Ubi Jalar Putih	2 potong sedang	0,00	0,00

Daftar Kacang-Kacangan, Biji-Bijian, dan hasil Olahannya yang mengandung Omega 3 dan 6 (g/100 gram makanan) List of Nuts, Seeds, and Processed Products that contain Omega 3 and 6 (g / 100 grams of food)

Jenis Makanan (Food Item)	URT (Household Measures)	Omega 3	Omega 6
Kacang Hijau	$81 / 2 \mathrm{sdm}$	0,1	6,7
Kacang Kedelai	$81 / 2 \mathrm{sdm}$	1,6	9,3

Kacang Merah	$81 / 2 \mathrm{sdm}$	0,1	3,9
Kacang Mete	$81 / 2 \mathrm{sdm}$	0,3	6,7
Kacang Polong	$81 / 2 \mathrm{sdm}$	0,5	3,9
Kacang Almond	$81 / 2 \mathrm{sdm}$	1,4	7,2
$\begin{array}{ll} \hline \begin{array}{l} \text { Kacang } \\ \text { (Rebus) } \end{array} & \text { tanah } \\ \hline \end{array}$	10 sdm	0,2	0,2
Kacang (Sangrai) Tanah	10 sdm	0,1	0,5
Kacang Kulit	10 butir	0,1	0,4
Keju Kacang Tanah	10 sdm	0,7	0,6
Gandum	10 sdm	1,4	11,0
Biji Matahari Bunga	5 sdm	$3,9$	3,4
Biji Labu	5 sdm	0,1	5,4
Biji zaitun	5 sdm	1,4	2,5
Biji blueberry	10 sdm	13,3	14,2
Biji berry merah	10 sdm	13	14,4
Biji Ghooseberry	10 sdm	12,3	5,5
Biji Redcurrant	$10 \mathrm{sdm} / \square$	29-31	15,1
Biji Blackcurrant	10 sdm	12-14	4,2
Biji Walnut	10 sdm	10,4	12,3
Biji Canola	10 sdm	11,1	11,1
Bubur Kacang Hijau	$1 / 2$ gelas ($1 / 2$ cup)	2) 0,2	3,1
Bubur Kedelai Kacang	$1 / 2$ gelas (1/2 cup)	$2,8$	3,1
Bubur Kacang Merah	$1 / 2$ gelas (1/2 cup)	0,1	3,9
Kwaci	$1 / 2$ gelas (1/2 cup)	0,1	14,1
Oncom	1/2 gelas ($1 / 2$ cup)	IIIV 2,4	1,2
Tahu	4 potong sedang	5,1	3,2
Tempe Kedelai	4 potong sedang	0,5	3,8
Tofu	4 potong sedang	0,3	2,1
Nato	5 lembar	1,3	9,6

Daftar Susu dan Hasil Olahannya yang mengandung Omega 3 dan $6(\mathrm{~g} / 100 \mathrm{gr}$ makanan) List of Milk and Processed Products that contain Omega 3 and 6 (g / 100 grfood)

Jenis Makanan (Food Item)	URT (Household measures)	Omega 3	Omega 6
Keju Cheddar	3 potong sedang	0,4	0,5
Keju Roquefort	3 potong sedang	0,7	0,6
Susu Sapi	1 gelas	0,1	-
Susu Kambing	$1 / 2$ gelas	0,1	-

Susu Kedelai	$1 / 2$ gelas	2,8	35,4
Susu Kerbau	$1 / 2$ gelas	0,1	-
Susu Kental Manis	1 gelas	-	-
Tepung Whole Milk	15 sdm	0,1	-
Tepung skim*	15 sdm	0,1	-
Tepung saridele	20 sdm	5,1	40,1
Yoghurt	$1 / 2$ gelas	4,0	5,8

Keterangan: yang diberi tanda (*) berarti perlu tambahan $11 / 2$ satuan penukar minyak untuk melengkapi lemaknya

Daftar Bahan Makanan: Minyak dan Lemak beserta hasil olahannya yang mengandung Omega 3 dan 6 (g/100 gram makanan) List of Food Material: Oils and Fats and their processed products containing Omega 3 and 6 ($\mathrm{g} / 100 \mathrm{grams}$ of food)

Food Item	URT (Household measures	Omega 3	Omega 6
Daging Kelapa Tua	2 potong sedang (2 pieces of middle size)	2,1	12,2
Kelapa	2 potong kecil	1,0	11,1
Kelapa Parut	15 sdm	1,0	11,1
Lemak Ayam	10 potongan kecil	0,05	19,9
Lemak Bebek	10 potongan kecil	1,0	11,9
Lemak Babi	10 potong kecil	1,0	11,1
Lemak Sapi	10 potong kecil	0,08	11,1
Minyak Sayur	10 sdm	1,1	9,8
Margarin	10 sdm	2,4	31,0
Mentega (Butter)	10 sdm	1,2	1,8
Minyak hati Ikan Kod	10 sdm	28,1	30,0
Minyak Sardin\quad Ikan	10 sdm	3,7	0,5
Minyak Hering	10 sdm	12,0	4,1
Minyak Salmon\quad Ikan	10 sdm	20,9	9,0
Minyak biji tomat	10 sdm	2,3	51,1
Minyak Walnut	10 sdm	10,4	53,3
Minyak Gandum	10 sdm	6,9	59,0
Minyak Kelapa	10 sdm	1,6	9,8
Minyak Sawit Kelapa	10 sdm	1,1	

Minyak Wijen	10 sdm	1,8	2,9
Minyak Kedele	10 sdm	2,8	35,4
Minyak Jagung	10 sdm	0,3	17,7
Minyak Zaitun	10 sdm	0,1	1,1
Minyak Kanola	10 sdm	11,1	22,2
Minyak biji bunga Matahari	10 sdm	6,8	51,1
Santan Kental	1 gelas	0,00	0,00
Gula Aren	10 sdm	0,00	0,00
Gula Kelapa	10 sdm	0,00	0,00
Gula Pasir	10 sdm	0,00	0,00
Madu	10 sdm	0,00	0,00
Selai Kacang	10 sdm	8,7	40,0
Sirup	10 sdm	0,00	0,00

Daftar Sayur-Sayuran beserta dengan Kandungan Omega 3 dan 6 di dalamnya (g/100 gram makanan) List of Food Material: Oils and Fats and their processed products containing Omega 3 and 6 (g/100 grams of food)

Jenis Makanan	URT	Omega 3	Omega 6
Baligo	1 gelas	0,1	Trace
Bayam	1 gelas	0,1	0,00
Biet	1 gelas	Trace	Trace
Buncis	1 gelas	0,3	0,2
Bunga kol	1 gelas	0,1	
Cabe hijau Besar	1 gelas	0,1	
Daun Bluntas	1 gelas	0,1	Trace
Daun bawang	1 gelas	0,1	0,1
Daun Ketela Rambat	1 gelas	0,1	
Daun Kecipir	1 gelas	Trace	0,1
Daun Kacang Panjang	1 gelas	Trace	0,1
Daun Koro	1 gelas	0,1	Trace
Daun Labu Siam	1 gelas	Trace	Trace
Daun Leunca	1 gelas	0,1	0,1
Daun Lompong	1 gelas	0,1	Trace
Daun Mangkokan	1 gelas	0,1	0,1
Daun Melinjo	1 gelas	0,1	0,1
Daun Pakis	1 gelas	0,1	0,67
Daun Singkong	1 gelas	0,1	0,77
Daun Pepaya	1 gelas	0,2	0,35
Daun Waluh	1 gelas	0,67	0,1
Daun Lobak	1 gelas	0,67	0,1
Genjer	1 gelas	0,1	1
Jagung Muda	1 gelas	0,3	1

Jamur Segar	$1 / 2$ mangkok	0,1	Trace
Oyong (Gambas)	1 gelas	0,1	Trace
Kacang Panjang	1 gelas	0,67	Trace
Kacang Kapri	1 gelas	2,6	10,8
Kacang Mete	1 gelas	2,6	10,8
Kangkung	1 gelas	0,00	0,00
Katuk	1 gelas	0,00	0,00
Ketimun	1 gelas	0,00	0,00
Kucay	1 gelas	0,00	0,00
Tomat	1 gelas	0,00	0,00
Kecipir Muda	1 gelas	0,00	0,00
Kol	1 gelas	0,1	0,2
Labu Air	1 gelas	0,1	5,4
Labu Siam	1 gelas	0,1	5,4
Labu Waluh	1 gelas	0,1	5,4
Lobak	1 gelas	0,1	Trace
Nangka Muda	1 gelas	0,00	0,00
Pare	1 gelas	0,00	0,3
Pepaya muda	1 gelas	0,00	0,2
Percay	1 gelas	0,00	0,1
Rebung	1 gelas	0,3	0,2
Sawi	1 gelas	0,1	Trace
Seledri	1 gelas	0,2	0,1
Selada ijo	1 gelas	0,7	0,4
Selada merah	1 gelas	0,7	0,4
Taoge	1 gelas	0,8	0,2
Tebu Terubuk	1 gelas	0,00	0.00
Tekokak	1 gelas	0,8	0,2
Terong	1 gelas	0,1	Trace
Wortel	1 gelas	$\mathbf{0 , 1}$	Trace
Kery			

Ket:

Satu satuan penukar= 100 gram sayuran mentah= $\mathbf{1}$ gelas setelah direbus dan ditiriskan.

Sayuran ditimbang bersih dan dipotong seperti biasa di rumah tangga

APPENDIX III Inform Consent in Bahasa Indonesia

Lembar Informasi Peserta Penelitian dan Formulir Persetujuan

Judul proyek penelitian Pengetahuan, sikap, dan praktik ibu tentang pola makan konsumsi omega 3 dan 6 pada anak usia 1-2 tahun di Labuhanbatu Utara, Indonesia Nama Peneliti Kepala Sekolah Sinar Yunita Purba Jabatan MPH Mahasiswa di CPHS Alamat Rumah Jl. Kutilang No 301 Wonosari Lk 1 Aek Kanopan, Kecamatan Kualuh hulu, Kabupaten Labuhanbatu Utara, Indonesia

Telepon (kantor) - Telepon (rumah) +6282330036488
Telp +62 82330036488 E-mail: sinarpurba@gmail.com
Anda diundang untuk mengambil bagian dalam proyek penelitian. Sebelum Anda memutuskan untuk berpartisipasi, penting bagi Anda untuk memahami mengapa penelitian dilakukan dan apa yang akan tercakup di dalamnya. Mohon luangkan waktu untuk membaca informasi berikut dengan hati-hati dan jangan ragu untuk bertanya jika ada yang kurang jelas atau Anda ingin informasi lebih lanjut.

1. Proyek penelitian ini dilakukan dengan tujuan utama untuk mengetahui tingkat pengetahuan, sikap, dan praktik ibu tentang pemberian makanan omega 3 dan 6 pada anak usia 1-2 tahun di Kabupaten Labuhanbatu Utara, Indonesia. Informasi dan hasil yang diperoleh dapat digunakan untuk mendukung pengembangan pedoman yang mempromosikan konsumsi diet omega 3 dan 6 pada anak usia 1-2 tahun.
2. Peneliti dan asisten peneliti akan memberikan semua dokumen dan secara lisan menjelaskan semua dokumen dan informasi termasuk lembar informasi, kuesioner, dan formulir persetujuan mengenai penelitian ini secara rinci kepada masing-masing peserta. Formulir persetujuan akan diperoleh dengan meminta tanda tangan peserta setelah semua informasi dijelaskan dengan jelas. Bagi peserta yang buta huruf dan tidak bisa membaca atau menulis, akan diambil cap jempol sebagai pengganti tanda tangan di inform consent.

3. Rincian peserta

Karakteristik populasi sampel dalam penelitian ini adalah ibu yang memiliki anak usia 1 sampai 2 tahun yang bertempat tinggal di Kabupaten Labuhanbatu Utara, Indonesia. Jumlah partisipan dalam penelitian ini adalah 429 ibu dengan anak usia 1-2 tahun.

Untuk mendekati peserta, peneliti menghubungi dan bekerja sama dengan petugas di puskesmas di wilayah studi. Daftar ibu dengan anak 1-2 tahun akan diperoleh dari Puskesmas. Dari daftar tersebut, sebanyak 429 peserta yang memenuhi kriteria inklusi dan eksklusi akan dipilih secara acak dengan menghasilkan bilangan acak menggunakan fungsi bilangan acak (RAND) di Microsoft Excel. Peserta terpilih akan didekati, dan datanya akan dikumpulkan di gedung pertemuan Puskesmas mengikuti jadwal promosi kesehatan yang akan diadakan oleh puskesmas setiap minggu. Peneliti akan mengecek kehadiran peserta dengan menggunakan rekam medis dari puskesmas. Jika peserta tidak hadir di gedung pertemuan sesuai dengan jadwal promosi kesehatan, peneliti akan menelepon untuk menghubungi peserta yang hilang dan meminta persetujuan mereka untuk berpartisipasi dalam penelitian. Jika peserta tersebut merasa tidak nyaman untuk datang ke conference hall center, peneliti akan mendatangi rumah peserta untuk melakukan pendataan.

Dalam satu hari, akan ada sekitar 20 peserta yang menghadiri pusat gedung pertemuan. Wawancara akan dijadwalkan dalam empat slot waktu mulai pukul 10.00-11.00, 11.00 - 12.00, 13.00-14.00, hingga 14.00-15.00. Akan ada sekitar 5 peserta per satu slot waktu. Tujuh pewawancara, termasuk peneliti utama dan asisten peneliti, akan disajikan untuk melakukan pengumpulan data. Suhu tubuh akan dilakukan sebelum seseorang dapat masuk ke tengah. Masker dan gel / semprotan alkohol juga akan disediakan untuk semua orang di tengah. Proses pendataan akan dilakukan hingga pendataan mencapai 429 peserta.
4. Detail proses penyaringan kriteria atau kualifikasi inklusi / eksklusi.

Ibu yang mengikuti program promosi kesehatan di gedung pertemuan pusat Puskesmas, dan memenuhi kriteria inklusi dan eksklusi berikut ini yaitu:

Kriteria inklusi dalam penelitian ini adalah:

1. Ibu dari anak 1-2 tahun
2. Ibu yang bertanggung jawab atas pola makan / makan anaknya
3. Mampu berkomunikasi dalam Bahasa Indonesia atau Bahasa Inggris atau keduanya.
4. Usia 18 tahun ke atas

Kriteria eksklusi dari penelitian ini adalah:

1. Mereka yang memiliki beberapa bentuk kecacatan seperti kehilangan pendengaran, atau mereka yang sakit parah dan tidak dalam posisi untuk menjawab pertanyaan.
2. Mereka yang tidak mau berpartisipasi dalam studi.
akan diminta untuk tinggal selama 30-45 menit lagi setelah program selesai. Kuisioner akan dikumpulkan di hall center pada pukul 10.00 pagi dan seterusnya. Daftar ibu sudah dikelompokkan oleh petugas promotor kesehatan. Peneliti bersama asisten akan mengumpulkan kuesioner.
akan diminta untuk tinggal selama 30-45 menit lagi setelah program selesai. Kuisioner akan dikumpulkan di hall center pada pukul 10.00 pagi dan seterusnya. Daftar ibu sudah dikelompokkan oleh petugas promotor kesehatan. Peneliti bersama asisten akan mengumpulkan kuesioner dari para ibu dengan menggunakan wawancara tatap muka. Wawancara akan memakan waktu sekitar 30-45 menit untuk setiap peserta.

Jika dalam proses penapisan calon peserta menemukan seseorang tidak memenuhi kriteria inklusi dan membutuhkan bantuan / nasehat, peneliti akan memberikan nasehat yang sesuai dan merujuk peserta kepada otoritas yang relevan dengan masalah yang dihadapi peserta tersebut.

5. Prosedur peserta:

Tidak ada intervensi, atau pengumpulan data campur tangan dengan perawatan dalam penelitian ini. Peserta hanya diminta menjawab kuesioner mengenai pengetahuan, sikap, dan praktik ibu tentang pemberian diet omega 3 dan 6 pada anak usia 1-2 tahun di Kabupaten Labuhanbatu Utara, Indonesia. Kuisioner terdiri dari 8 bagian yaitu Bagian I - Ciri umum terdiri dari 7 pertanyaan, Bagian II - Ciri rumah tangga terdiri dari 4 pertanyaan, Bagian III - Ciri Anak terdiri dari 6 pertanyaan, Bagian IV - Tabu
makanan terdiri dari 7 pertanyaan, Bagian V-Sumber Informasi 7 pertanyaan, Bagian VI - Pengetahuan ibu tentang pola makan konsumsi omega 3 dan 6 pada anak usia 1-2 tahun terdiri dari 26 pertanyaan, Bagian VII - Sikap ibu terhadap pola makan omega 3 dan konsumsi 6 pada anak usia 1-2 tahun tahun terdiri dari 17, Bagian VIII - Sikap ibu terhadap pola makan omega 3 dan 6 konsumsi pada anak usia 1-2 tahun terdiri dari 10 pertanyaan. Wawancara akan memakan waktu sekitar 30-45 menit untuk setiap peserta.
6. Penelitian ini tidak diantisipasi akan menyebabkan kerugian atau ketidaknyamanan bagi Anda. Tidak ada potensi bahaya atau tekanan fisik dan / atau psikologis lebih dari apa yang para peserta hadapi dalam kehidupan sehari-hari.
7. Hasil dari penelitian ini diharapkan dapat memberikan waisan tentang pengetahuan, sikap, dan praktik ibu tentang pemberian diet omega 3 dan 6 kepada anak usia 1-2 tahun di Kabupaten Labuhanbatu Utara Indonesia untuk lebih mendukung pembangunan. pedoman untuk mendukung praktik ibu tentang diet omega 3 dan 6 untuk anak usia 12 tahun.
8. Informasi yang berhubungan langsung dengan Anda akan dijaga kerahasiaannya. Hasil penelitian akan dilaporkan sebagai gambaran total. Anda tidak akan dapat diidentifikasi atau diidentifikasi dalam laporan atau publikasi apa pun. Setiap data yang dikumpulkan tentang Anda dalam kuesioner akan dihancurkan setelah proyek berakhir.
9. Hardcopy kertas kuisioner akan dimusnahkan dengan menggunakan kertas mesin penghancur setelah dilakukan penelitian. Softcopy akan dihapus secara permanen.
10. Paket makanan ringan dan buku gambar anak akan diberikan sebagai kompensasi kepada setiap peserta atas kehilangan waktu / ketidaknyamanan.
11. Keikutsertaan dalam studi bersifat sukarela dan setiap saat peserta berhak untuk menolak dan / atau mengundurkan diri dari studi, tidak perlu memberikan alasan apapun, dan tidak akan berdampak buruk bagi peserta tersebut. Jika peserta memutuskan untuk ambil bagian, Anda akan dapat menyimpan salinan lembar informasi ini dan Anda harus menunjukkan persetujuan Anda pada formulir
persetujuan. Anda tetap bisa menarik dana kapan saja. Anda tidak perlu memberi alasan.
12. Jika Anda memiliki pertanyaan atau ingin mendapatkan informasi lebih lanjut, peneliti dapat dihubungi setiap saat. Jika peneliti memiliki informasi baru mengenai manfaat risiko / bahaya, peserta akan diinformasikan secepatnya.
13. Jika peneliti tidak melakukan pada peserta seperti yang ditunjukkan dalam lembar informasi peserta dan formulir persetujuan, peserta dapat melaporkan kejadian tersebut kepada Komite Peninjau Etika Penelitian untuk Penelitian yang Melibatkan Peserta Penelitian Manusia, Kelompok I, Universitas Chulalongkorn (RECCU) Jamjuree 1 Bldg. , 254 Phyathai Rd., Distrik Patumwan, Bangkok 10330, Thailand, Tel./Fax. 0-2218-3202, 0-2218-3049 Email: eccu@chula.ac.th "

Saya telah dijelaskan oleh peneliti dan memahami semua detail yang diberikan. Dan saya secara sukarela menandatangani nama saya untuk mendaftar dalam proyek ini dan menerima salinan dokumen ini.
\qquad

Peneliti/Assisten peneliti
Tgl......../. \qquad ./. \qquad Partisipan
\qquad

TTD. \qquad
\qquad

Saksi

APPENDIX IV
QUESTIONNAIRE IN BAHASA INDONESIA LANGUAGE
KUESIONER PENGETAHUAN, SIKAP, DAN PERILAKU IBU TERHADAP PEMBERIAN OMEGA 3 DAN 6 PADA ANAK USIA 1-2 TAHUN DI LABUHANBATU UTARA

BAGIAN 1 - Karakteristik Umum				
1	Usia tahun		
2	Agama	$\square 1$. Protestan	$\square 2$. Adven	\square 3. Pentakosta
		\square 4. Katolik	\square 5. Islam	\square 6. Buddha
		$\square 7$. Hindu	\square 8.Orthodoks	$\square 9$. Lainnya
3	Status Pernikahan1. Menikah2. Cerai hidup3. Cerai mati			
4	Pendidikan Terakhir1. Tidak sekolah2. SD3. SMP4. SMA5. S1-S3			
5	Pekerjaan1. PNS2. Pegawai Sista3. Wirasista4. Ibu Rumah Tangga			
6	Daerah Pemukiman Tempat Tinggal1. Perkotaan2. Pedesaan			
7	Suku จพาลงกรณ์มหาวิทยาลัย 1. Melayu 2. Batak 3. Jawa 4. Lainnya			
BAGIAN II - HOUSEHOLD CHARACTERISTIC				
8	Susunan Anggota Keluarga yg tinggal di rumah 1. Keluarga Inti 2. Keluarga Besar			
9	Jumlah anggota keluarga yang berusia 1-2 tahun tinggal di rumah (anak kandung/tiri/angkat) \qquad orang.			
10	Jenis kelamin anak usia 1-2 tahun yang tinggal di rumah (Centang jika semua ada) 1. Laki-laki, \qquad .orang			

	2. Perempuan,orang
11	Penghasilan dalam sebulan (per bulan)
BAGIAN III: CHILDREN CHARACTERISTICS	
12	Tanggal Lahir anak \qquad Catatan- Format internasional: DD/MM/YYYY [Contoh, 25/12/2020]
13	BB.................kilogram
14	TB..................sentimeter
15	Jenis Kelamin (untuk anak yang akan dijadikan subjek penelitian) 1. Laki-laki 2. Perempuan
16	Penggunaan ASI saat ini 1. Menyusui saat ini 1.1 ASI eksklusif 1.2 ASI + Susu formula 1.3 ASI + susu UHT 2. ASI yang disendok lewat cangkir 2.1 Hanya ASI saja 2.2 ASI sendok + dan ASI eksklusif 2.3 ASI + susu formula 2.4 ASI + susu UHT 3. Hanya susu formula 4. Hanya susu UHT
17	Alergi makanan (si anak usia 1-2 tahun) 1. Ya \qquad 2. Tidak

	$\square 5$. Lainnya $\ldots \ldots \ldots \ldots \ldots \ldots$

จุฬาลงกรณ์มหาวิทยาลัย

18A. 2	2. Dari beberapa alasan di bawah ini, manakah yg menjadi alasan itu dipertimbangkan menjadi pantangan makanan? Silahkan centang jika semua alasan ini berlaku. 1. Agama 2. Budaya/Norma sosial/ kepercayaan 3. Kebersihan diri (anak akan mengalami kecacingan, air seni akan bau amis,dll) 4. Kesehatan (dapat menyebabkan penyakit, allergi, hanya makan sayur, budaya tidak makan daging-dagingan, dll) 5. Etika 6. Lainnya \qquad
BAGIAN V: SUMBER INFORMASI TENTANG OMEGA 3 DAN 6	
19A Did you receive information on dietary omega 3 dan 6 from?	
19A. 1	TV Programs 1. Ya 2. Tidak
19A. 2	Majalah dan Koran 1. Ya 2. Tidak
19A. 3	Teman/tetangga 1. Ya 2. Tidak
19A. 4	Anggota Keluarga 1.Ya 2.Tidak
19A. 5	Praktisi Kesehatan 1.Ya $\square 2$. Tidak
19A. 6	Wanita berpengalaman dalam keluarga 1.Ya 2. Tidak
19A. 7	Apakah ibu menerima informasi tentang omega 3 dan 6 dari media sosial di bawah ini (Centang jika semuanya berlaku)? 1.Twitter 2.Facebook 3.IG

	\square Lainnya $\ldots \ldots$

จุฬาลงกรณ์มหาวิทยาลัย

BAGIAN VI- Pengetahuan Ibu tentang Pemberian Omega 3 dan 6 pada anak usia 1-2 tahun				
	Nama Item	Yes	No	$\begin{aligned} & \text { Do not } \\ & \text { know } \end{aligned}$
20A: Omega 3				
20A. 1	Omega 3 adalah komponen dari asam lemak			
20A. 2	Tubuh manusia tidak dapat memproduksi omega 3			
20A. 3	DHA (Docosahexaenoic acid) adalah asam lemak yang terdapat di otak dan retina.			
20A. 4	Ikan tawar adalah sumber makanan penting yang mengdanung omega 3			
20A. 5	Ikan laut adalah sumber makanan penting yang mengdanung omega 3			
20A. 6	Minyak ganggang adalah sumber makanan penting yang mengdanung omega 3			
20A. 7	Daging adalah sumber makanan penting yang mengdanung omega 3			
20A. 8	Udang adalah sumber makanan penting yang mengdanung omega 3			
20A. 9	Omega 3 membantu perkembangan retina selama usia awal masa kanak kanak			
20B: Omega 6				
20B. 1	Omega 6 adalah bagian dari asam lemak dan tidak dapat diproduksi oleh tubuh manusia			
20B. 2	Kacang adalah sumber informasi yang mengdanung omega 6			
20B. 3	Kelapa kaya akan omega 6			
20B. 4	Bayam adalah sumber makanan penting yang mengdanung omega 6			
20B. 5	Labu adalah sumber makanan penting yang mengdanung omega 6			

20B.6	Minyak jagung adalah sumber makanan penting yang mengdanung omega 6			
20B.7	Tofu adalah sumber makanan penting yang mengdanung omega 6			
20B.8	Telur adalah sumber makanan penting yang mengdanung omega 6			
20B.9	Omega 6 dapat membantu menurunkan tekanan darah			

20C: Omega 3 dan 6	Ya	Tidak	Tidak tau			
	Nama Item					
20C.1	Omega 3 dan 6 dapat membantu dalam pencegahan munculnya rasa cemas dan depresi					
20C.2	Omega 3 dan 6 dapat membantu mengurangi alergi kulit					
20C.3	Omega 3 dan 6 membantu perkembangan belajar dan daya ingat					
20C.4	Konsumsi Omega 3 dan 6 sebaiknya dimulai sejak dini					
20 C .5	Omega-3 meningkatkan fokus dan penyelesaian tugas pada anak dengan tingkah laku hiperaktif					
20C.6	Omega 3 dan 6 dapat menurunkan kolesterol				\quad	Omega 3 dan 6 dapat menjaga kesehatan jantung
:---						

BAGIAN VII - Sikap Ibu dalam memberikan makanan yang mengandung omega 3 dan 6						
No	Statement	Sangat setuju	Setuju	Neutral	Tidak setuju	Sangat tidak setuju
21A	Omega 3					
21A. 1	Saya pikir itu penting untuk memperhatikan komposisi makanan omega 3 pada anak saya					
21A. 2	Menu yang bervariasi pada omega 3 sangat penting bagi anak					
21A. 3	Saya mempertimbangkan sumber makanan omega 3 untuk anak berdasarkan makanan yang dia suka					
21A. 4	Saya memperhatikan pantangan makanan saat menghidangkan sumber makanan yang mengandung omega 3 untuk anak saya					
21A. 5	Saya setuju untuk menyediakan makanan yang kaya dengan omega 3 seperti ikan dan sapi untuk anak saya kapanpun dan dimanapun saat sumber makanan tersebut tersedia.					
21A. 6	Saya lebih memilih susu formula sebagai sumber nutrisi omega 3 sehari hari untuk anak saya		าลัย ERSITY			
21 A .7	Pemberian sumber omega 3 dilakukan mengikuti jadwal pemberian makanan.					
21A. 8	Tidak hanya mempersiapkan menu, tapi cara memproses dapat dilakukan dengan memproses omega 3 secara bervariasi.					
21A. 9	Ketika membuat makanan untuk anak-anak, saya akan menambahkan sumber omega 3 ke makanannya.					

21B	Omega 6					
No	Pernyataan	Sangat setuju	Setuju	Netral	Tidak Setuju	Sangat tidak setuju
21B. 1	Saya berpikir tampilan dan dekorasi hidangan makanan dapat membantu anak-anak saya makan dengan baik.					
21B. 2	Saya setuju untuk menggunakan tanaman yang kaya omega 6 seperti walnut, kacang kedele, almond dan daun bayam) ketika salah satu atau semua sumber tersedia.					
21B. 3	Saya perduli dengan jumlah omega 6 yang saya berikan kepada anakanak.					
21B. 4	Saya pikir membuat menu bervariasi dari makanan yang kaya omega 6 untuk anak-anak itu penting.					
21B. 5	Saya memperhatikan untuk komposisi menu omega 6 untuk anak-anak.					
21B. 6	Penting untuk menyediakan sumber makanan omega 6 untuk anak-anak secara teratur.	\%	าลัย			
21B. 7	Saya setuju menyeimbangkan makanan kaya omega 6 untuk anakanak menjadi penting bagi kesehatan mereka.		RSIT			
21B.8	Saya pikir saya hanya orang-orang yang bertanggung jawab untuk memenuhi kebutuhan omega 6 anak-anak.					

BAGIAN VIII - Tingkah laku ibu saat memberikan omega 3 dan 6 pada anak							
22	Kelompok makanan I: Milk, yogurt, dan cheese						
	Tolong response dengan jawaban yang cocok. Tidak pernah $=$ Tidak pernah atau kurang dari sekali sebulan. Jarang $=1-3$ Kadang $=1$ hari dalam se minggu; Sering $=2-4$ hari dalam se minggu; Selalu $=5-6$ hari dalam se minggu; Setiap hari						
	Nama Item	Tidak pernah (Tidak pernah atau kurang dari sekali sebulan)	Jarang (1-3 hari dalam sebulan)	Kadang(1 hari dalam se minggu)	Sering (2-4 hari dalam se minggu)	Selalu $(5-6$ hari dalam se minggu)	Setiap hari
$\begin{gathered} \hline 22.1 \\ (3 \& 6) \end{gathered}$	Susu kedelai (e.g. Vanilla, or sortiran susu kedelai cokelat)	on er er					
$\begin{gathered} 22.2 \\ (3 \& 6) \end{gathered}$	Makanan sereal beras merah bayi instan						
22.3 (6)	Makanan sereal beras merah bayi sortiran						

$\begin{aligned} & 22.4 \\ & (3,6) \end{aligned}$	Sereal gandum dan pisang dicampur susu						
22.5 (6)	Sereal kacang hijau untuk bayi						
22.6 (6)	sereal mix dengan susu bayi	[
22.7 (6)	Sup krim bayam untuk bayi	5	-				
	Kelompok makanan II: Buah-Buahan Note: Berapa sering anak anda mengkonsumsi paling sedikit 90 gram (e.g.tiga potongan kecil buah seperti di gambar Tolong dijawab dengan pilihan yang sesuai dengan yang ibu praktikkan. Tidak pernah $=$ Tidak pernah atau kurang dari sekali sebulan; Jarang $=1-3$ hari dalam sebulan; Kadang $=1$ hari dalam se minggu. Sering $=2-4$ hari dalam se minggu; Selalu $=5-6$ hari dalam se minggu; Setiap hari						
	Nama Item	Tidak pernah (Tidak pernah atau kurang dari sekali sebulan)	Jarang (1-3 hari dalam sebulan)	Kadang (1 hari dalam se minggu)	Sering (2-4 hari dalam se minggu)	Selalu $(5-6$ hari dalam se minggu)	Setiap hari
$23.1(3,6)$	Mangga						
$23.2(3,6)$	Jambu						
$23.3(3,6)$	Alpukat						
23.4 (3)	Nangka						
23.5 (3,6)	Strawberi						

$23.6(3,6)$	Mangga mentah						
$23.7(3)$	Pepaya						
$23.8(3)$	Melon Madu						
$23.9(3,6)$	Pisang						
$23.10(3,6)$	Belimbing						
$23.11(3,6)$	Anggur						
$23.12(6)$	Pir	Apel					
$23.13(6)$							

25	Kelompok makanan IV: Coklat						
	Note: Berapa sering anak anda mengkonsumsi paling sedikit 25 gram of the chocolate (e.g. $1 / 4$ bar coklat di gambar) Tolong dijawab dengan pilihan yang sesuai dengan yang ibu praktikkan. Tidak pernah $=$ Tidak pernah atau kurang dari sekali sebulan; Jarang $=1-3$ hari dalam sebulan; Kadang = 1 hari dalam se minggu; Sering $=2-4$ hari dalam se minggu; Selalu $=5-6$ hari dalam se minggu; Setiap hari						
	Nama Item	Tidak pe (Tidak pern kurang dar sebula	Jarang (1-3 hari dalam sebulan)	Kadang (1 hari dalam se minggu)	Sering (2-4 hari dalam se minggu)	Selalu $(5-6$ hari dalam se minggu)	Setiap hari
25.1 (6)	Cokelat campur kacang batangan	중 을					
25.2 (6)	Kacang dan buah buahan dibuat dalam cokelat lembut		2				
25.3 (6)	Extra vanilla dan kacang kacangan						
25.4 (3,6)	Cokelat Toblerone	- <					
25.5 (6)	Cokelat batangan nestle						
25.6 (6)	Cokelat putih						
25.7 (6)	Cokelat susu dengan almond						
25.8 (6)	Cokelat susu dan sereal						
25.9 (6)	Cokelat manis						

26	Kelompok makanan V: Dessert						
	Note: Berapa sering anak anda mengkonsumsi paling sedikit $\mathbf{2 5}$ gram of the food (e.g. satu scope seperti di gambar) Tolong dijawab dengan pilihan yang sesuai dengan yang ibu praktikkan. Tidak pernah $=$ Tidak pernah atau kurang dari sekali sebulan; Jarang $=1-3$ hari dalam sebulan; Kadang $=1$ hari dalam se minggu; Sering $=2-4$ hari dalam se minggu; Selalu $=5-6$ hari dalam se minggu; Setiap hari						
	Nama Items	Tidak pernah (Tidak pernah atau kurang dari sekali sebulan)	$\begin{gathered} \hline \text { Jarang } \\ \text { (1-3 hari } \\ \text { dalam sebulan) } \end{gathered}$	Kadang (1 hari dalam se minggu)	Sering (2-4 hari dalam se minggu)	Selalu (5-6 hari dalam se minggu)	Setiap hari
$26.1(3,6)$	Es krim coklat lembut						
26.2 (3,6)	Es serut jagung						
26.3 (3,6)	Keripik kentang asin			2-40			
Tolong dijawab dengan pilihan yang sesuai dengan yang ibu praktikkan. k pernah $=$ Tidak pernah atau kurang dari sekali sebulan; Jarang $=1-3$ hari dalam sebulan; Kadang $=1$ hari se minggu; Sering $=2-4$ hari dalam se minggu; Selalu $=5-6$ hari dalam se minggu; Setiap hari							
	Nama Items	Tidak pernah (Tidak pernah atau kurang dari sekali sebulan)	$\begin{gathered} \text { Jarang } \\ \text { (1-3 hari } \\ \text { dalam sebulan) } \end{gathered}$	Kadang (1 hari dalam se minggu)	Sering (2-4 hari dalam se minggu)	Selalu (5-6 hari dalam se minggu)	Setiap hari
27.1 (6)	Nasi merah						
27.2 (6)	Mi bayam dengan telur						
27.3 (3,6)	Biscuit susu						

28	Kelompok makanan VII = Daging						
Note: Berapa sering anak anda mengkonsumsi paling sedikit 30 gram per serving of the daging (e.g. two tablespoon per serving at the picture)? Tolong dijawab dengan pilihan yang sesuai dengan yang ibu praktikkan. Tidak pernah $=$ Tidak pernah atau kurang dari sekali sebulan; Jarang $=1-3$ hari dalam sebulan; Kadang $=1$ hari dalam se minggu; Sering $=2-4$ hari dalam seminggu; Selalu $=5-6$ hari dalam seminggu; Setiap hari							
	Nama Items	Tidak pernah (Tidak pernah atau kurang dari sekali sebulan)	$\begin{gathered} \hline \text { Jarang } \\ \text { (1-3 hari } \\ \text { dalam sebulan) } \end{gathered}$	$\begin{gathered} \text { Kadang } \\ \text { (1 hari dalam se } \\ \text { minggu) } \end{gathered}$	Sering (2-4 hari dalam se minggu)	Selalu (5-6 hari dalam se minggu)	Setiap hari
28.1 (3,6)	Hati ayam, matang	三 ${ }^{\text {a }}$					
28.2 (3,6)	Sup Krim Ayam	\bigcirc					
28.3 (3,6)	Ayam daging, rebus	-		O			
28.4 (3,6)	Ayam bakar, dada	-					
28.5 (3,6)	Ayam, daging goreng, dada	$\underline{3}$					
28.6 (3,6)	Usus ayam dimasak matang	\leq ¢					
28.7 (3,6)	Ayam daging, kaki						
28.8 (3,6)	Bebek, daging, dibakar	-					
28.9 (6)	Sapi, daging, iga bakar						
28.10 (3,6)	kerbau, daging, bakar						
28.11 (3,6)	kerbau, daging, matang						
28.12 (6)	kerbau, daging, rebus						
28.13(3,6)	domba, hati, matang						
28.14 (3,6)	domba, daging						

29	Kelompok makanan VIII: Ikan dan makanan laut						
Note: Berapa sering anak anda mengkonsumsi paling sedikit 40 gram of the ikan (e.g. two tablespoon per serving) dan paling rebus egg (e.g a half of egg per serving at the picture)? Tolong dijawab dengan pilihan yang sesuai dengan yang ibu praktikka Tidak pernah $=$ Tidak pernah atau kurang dari sekali sebulan; Jarang $=1-3$ hari da Kadang $=1$ hari dalam se minggu; Sering $=2-4$ hari dalam se minggu; Selalu $=5-6$ hari dalar							
	Nama Items	Tidak pernah (Tidak pernah atau kurang dari sekali sebulan)	Jarang (1-3 hari dalam sebulan)	Kadang (1 hari dalam se minggu)	Sering (2-4 hari dalam se minggu)	Selalu (5-6 hari dalam se minggu)	Setiap hari
$29.1(3,6)$	telur, ayam, mentah	三 $\square^{\text {a }}$					
$29.2(3,6)$	telur, ayam, dadar	-					
29.3 (3,6)	telur, goreng	-		$\underline{40}$			
29.4 (3,6)	telur, scrambled	1					
29.5 (3)	Belut rebus	$=0$					
29.6 (3,6)	ikan gabus, goreng	E		(1)11			
29.7 (3,6)	Ikan tawar, goreng gurami	P 2e ces					
29.8 (3,6)	Ikan air tawar, dimasak di tungku	-					
$29.9(3,6)$	Ikan air tawar, di kukus di daun pisang						
29.10 (3,6)	Telur ayam setengah matang						
29.11 (3,6)	Ikan susu (gurami, nila)						
29.12 (3,6)	Ikan laut (mujaer)						
Note: Berapa sering anak anda mengkonsumsi paling sedikit 40 gram of the ikan (e.g. two tablespoon per serving) dan palig rebus egg (e.g a half of egg per serving at the picture)?							

203

	Tolong dijawab dengan pilihan yang sesuai dengan yang ibu praktikkan. Tidak pernah $=$ Tidak pernah atau kurang dari sekali sebulan; Jarang $=1-3$ hari dalam sebulan; Kadang $=1$ hari dalam se minggu; Sering $=2-4$ hari dalam se minggu; Selalu $=5-6$ hari dalam se minggu; Setiap hari						
	Nama Item	Tidak pernah (Tidak pernah atau kurang dari sekali sebulan)	Jarang (1-3 hari dalam sebulan)	Kadang $\left(\begin{array}{c}\text { hari dalam se } \\ \text { minggu })\end{array}\right.$	Sering (2-4 hari dalam se minggu)	Selalu $(5-6$ hari dalam se minggu)	Setiap hari
29.13 (3,6)	Ikan kembung kering diasinkan	En					
29.14 (3,6)	Ikan goreng laut	- 9					
29.15 (3,6)	ikan, tongkol, goreng	-					
29.16 (3,6)	Lobster, matang	2					
29.17 (3,6)	Shrimp, goreng	E		,			
29.18 (3,6)	Scallop, matang	\triangle					
29.19 (3,6)	Crab, rebus	z					
29.20 (3,6)	Cod, matang	\%					
29.21 (3,6)	ikan teri, goreng						
29.22 (3,6)	ikan teri kering	-					
29.23 (3)	Sardine kalengan dalam saus						

30	Omega 3 dan 6 Kelompok makanan IX: Kacang dan biji bijian						
Note: Berapa sering anak anda mengkonsumsi paling sedikit $\mathbf{5 0}$ gram of kacang dan biji bijian (e.g. setengah telapak tang pada gambar)? Tolong dijawab dengan pilihan yang sesuai dengan yang ibu praktikkan. Tidak pernah $=$ Tidak pernah atau kurang dari sekali sebulan; Jarang $=1-3$ hari dalam sebulan; Kadang $=1$ hari dalam se minggu; Sering $=2-4$ hari dalam se minggu; Selalu $=5-6$ hari dalam se minggu; Setiap hari							
	Nama Items	Tidak pernah (Tidak pernah atau kurang dari sekali sebulan)	Jarang (1-3 hari dalam sebulan)	Kadang (1 hari dalam se minggu)	Sering (2-4 hari dalam se minggu)	Selalu (5-6 hari dalam se minggu)	Setiap hari
$30.1(3,6)$	Edamame	三 3					
$30.2(3,6)$	Kacang mete	\square	4F				
30.3 (3,6)	Kacang merah, matang	三 3					
$30.4(3,6)$	Kacang merah, rebus	m					
30.5 (3,6)	Lentils, matang	0 -					
30.6 (3,6)	Kacang kedelai, bubuk	-					
$30.7(3,6)$	Oncom						
30.8 (6)	Kacang kapri matang						
30.9 (6)	Selai kacang						
30.10 (6)	Kacang, mentah						
30.11 (3)	Kacang black eyed peas matang						
30.12 (3,6)	Kacang sapi, matang						

205

$30.13(3,6)$	Tahu keras, matang						
$30.14(3,6)$	Tahu sutra, matang						
$30.15(3,6)$	Tahu tinggi kalsium						

31	Kelompok makanan X: Supplement							
Note: Berapa sering anak anda mengkonsumsi paling sedikit 0,7 gram of the ikan oil (e.g. 1/8 teaspoon ikan oil at that picture)? Tolong dijawab dengan pilihan yang sesuai dengan yang ibu praktikkan. Tidak pernah $=$ Tidak pernah atau kurang dari sekali sebulan; Jarang $=1-3$ hari dalam sebulan; Kadang $=1$ hari dalam se minggu; Sering = 2-4 hari dalam se minggu; Selalu $=5-6$ hari dalam se minggu; Setiap hari								
	Nama Items	Tidak (Tidak atau k dari s sebu	nah nah ng ali)	Jarang (1-3 hari dalam sebulan)	Kadang (1 hari dalam se minggu)	Sering (2-4 hari dalam se minggu)	Selalu (5-6 hari dalam se minggu)	Setiap hari
$31.1(3,6)$	Minyak Ikan kod	-						
$31.2(3,6)$	Minyak kelapa	-						
31.3 (6)	Minyak jagung				(
31.4 (3)	Minyak zaitun	-						

REFERENCES

Agostoni, C., et al. (1997). "Developmental quotient at 24 months and fatty acid composition of diet in early infancy: a follow up study." Archives of disease in childhood 76(5): 421-424.

Akerele, O. A. and S. K. Cheema (2016). "A balance of omega-3 and omega-6 polyunsaturated fatty acids is important in pregnancy." Journal of Nutrition \& Intermediary Metabolism 5: 23-33.

Angkasa, D., et al. (2019). "Validation of a semi-quantitative food frequency questionnaire for estimating dietary omega-3 fatty acids intake among urban Indonesian pregnant women." Malaysian Journal of Nutrition 25.

Blasbalg, T. L., et al. (2011). "Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century." 93(5): 950-962.

Blomkvist, E. A. M., et al. (2019). "Diet and Neurodevelopmental Score in a Sample of One-YearOld Children-A Cross-Sectional Study." Nutrients 11(7).

Bourre, J. M. (2004). "Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing." J Nutr Health Aging 8(3): 163-174.

Bradbury, J. J. N. (2011). "Docosahexaenoic acid (DHA): an ancient nutrient for the modern human brain." 3(5): 529-554.

Bryan, J., et al. (2004). "Nutrients for cognitive development in school-aged children." 62(8): 295306.

Chang, C.-Y., et al. (2009). "Essential fatty acids and human brain." 18(4): 231-241.

Corballis, M. C. (2014). "Left brain, right brain: facts and fantasies." PLoS biology 12(1): e1001767-e1001767.

Council, I. o. M. a. N. R. (2015). Transforming the workforce for children birth through age $8:$ a unifying foundation/ Committee on the Science of Children Birth to Age 8: Deepening and

Broadening the Foundation for Success, Board on Children, Youth, and Families. The National Academic Press, Washington Press.]

Daniels, J., et al. (2004). "Fish Intake During Pregnancy and Early Cognitive Development of Offspring." Epidemiology (Cambridge, Mass.) 15: 394-402.

District, K. H. (2020). Population Data of District Kualuh Hulu. ․ 0. District Kualuh Hulu, District Kualuh Hulu: 4.

Falomir-Lockhart, L. J., et al. (2019). "Fatty Acid Signaling Mechanisms in Neural Cells: Fatty Acid Receptors." Front Cell Neurosci 13: 162.

Gocen, T., et al. (2018). "Effects of chemical structures of omega-6 fatty acids on the molecular parameters and quantum chemical descriptors." 1174: 142-150.

Gvozdjáková A., P. D., Kucharská J., Otsuka K., Singh R.B (2008). Omega-3-PUFA, Omega-6PUFA and Mitochondria. In: Gvozdjáková A. (eds) Mitochondrial Medicine. Springer, Dordrecht.

Ha, A. W. and W. K. Kim (2018). "Intake ratio and major food sources of n-3 and n-6 fatty acids in Korea: a study based on the sixth Korea national health and nutrition examination survey (20132014)." Asia Pac J Clin Nutr 27(2): 433-440.

Healy-Stoffel, M. and B. Levant (2018). "N-3 (Omega-3) Fatty Acids: Effects on Brain Dopamine Systems and Potential Role in the Etiology and Treatment of Neuropsychiatric Disorders." CNS \& neurological disorders drug targets 17(3): 216-232.

Helland, I. B., et al. (2008). "Effect of Supplementing Pregnant and Lactating Mothers With \<em\>n\</em\>-3 Very-Long-Chain Fatty Acids on Children\&\#039;s IQ and Body Mass Index at 7 Years of Age." Pediatrics 122(2): e472.

Helland, I. B., et al. (2003). "Maternal supplementation with very-long-chain $n-3$ fatty acids during pregnancy and lactation augments children's IQ at 4 years of age." 111(1): e39-e44.

Holub, B. J. J. P., leukotrienes and e. f. acids (2009). "Docosahexaenoic acid (DHA) and cardiovascular disease risk factors." 81(2-3): 199-204.

Innis, S. M. (2007). "Dietary (n-3) fatty acids and brain development." J Nutr 137(4): 855-859.

Jazayeri, S., et al. (2020). "Effect of omega-3 fatty acids supplementation on anthropometric indices in children and adolescents: A systematic review and meta-analysis of randomized controlled trials." Complementary Therapies in Medicine 53: 102487.

Jitkritsadakul, O., et al. (2017). "Knowledge, attitudes and perceptions of Parkinson's disease: A cross-sectional survey of Asian patients." J Neurol Sci 374: 69-74.

Kew, S., et al. (2004). "Effects of oils rich in eicosapentaenoic and docosahexaenoic acids on immune cell composition and function in healthy humans." The American Journal of Clinical Nutrition 79(4): 674-681.

Kim, H. Y. (2008). "Biochemical and biological functions of docosahexaenoic acid in the nervous system: modulation by ethanol." Chem Phys Lipids 153(1): 34-46.

Kluyts, M.-P. (2003). "an evaluation of knowledge and current trends of omega-3 (n3) supplementation in parents of children at public primary schools in the city of cape town." Sunscholar Faculty Medicine and Health Science Stellenbousch University: 127.

Lauritzen, L. (2001). "The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina." Prog Lipid Res 40: 1-94.

Lora, K. R., et al. (2010). "Validity and reliability of an omega-3 fatty acid food frequency questionnaire for first-generation Midwestern Latinas." Nutrition Research 30(8): 550-557.

Lupton, J. R. (2002). "Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids."

Nyaradi, A., et al. (2013). "The role of nutrition in children's neurocognitive development, from pregnancy through childhood." Front Hum Neurosci 7(PMC3607807): 97.

Regency, B.-S. o. L. U. (2020). Labuhanbatu Utara Regency in Figures. BPS, BPS Indonesia. 1: 395.

Ritter-Gooder, P. K., et al. (2008). "Development and pilot testing of an omega-3 fatty acid food frequency questionnaire." Journal of Food Composition and Analysis 21: S43-S49.

Rollins, N. C., et al. (2016). "Why invest, and what it will take to improve breastfeeding practices?" The Lancet 387(10017): 491-504.

Salem, N., Jr., et al. (2001). "Mechanisms of action of docosahexaenoic acid in the nervous system." Lipids 36(9): 945-959.

Simopoulos, A. P. (2011). "Evolutionary aspects of diet: the omega-6/omega-3 ratio and the brain." Mol Neurobiol 44(2): 203-215.

Statistics, I. (2012). Statistical Yearbook of Indonesia Jakarta.

Statistics, I. (2013). Human Development Index 2012. Statistics Indonesia, Statistics Indonesia.
Talukdar, T., et al. (2019). "Nutrient biomarkers shape individual differences in functional brain connectivity: Evidence from omega-3 PUFAs." 40(6): 1887-1897.

Tommy Cederholm, N. S. J., Jan Palmblad (2013)." ω-3 Fatty Acids in the Prevention of Cognitive Decline in Humans."

UNDP (2019). Inequalities in Human Development in the 21 st Century Briefing note for countries on the 2019 Human Development Report, UNDP: 10.

Victora, C. G., et al. (2016). "Breastfeeding in the 21 st century: epidemiology, mechanisms, and lifelong effect." The Lancet 387(10017): 475-490.

Whelan, J. (2008). "(n-6) and (n-3) Polyunsaturated fatty acids and the aging brain: food for thought." J Nutr 138(12): 2521-2522.

WHO (2018). Interpreting on Child Growth Assestment.

Yamane, T. (1967). Elementary sampling theory. Englewood Cliffs, N.J, Prentice-Hall.

จุฬาลงกรณ์มหาวิทยาลัย

REFERENCES

จุฬาลงกรณ์มหาวิทยาลัย

VITA

NAME

DATE OF BIRTH

PLACE OF BIRTH
INSTITUTIONS ATTENDED

HOME ADDRESS

PUBLICATION

SINAR YUNITA PURBA

22 JUNE 1991
PEMATANG SIANTAR, INDONESIA

1. Saint of Elizabeth Medical and Health Science College, Medan, Indonesia
2. Sebelas Maret University, Surakarta, Indonesia
3. College of Public Health Sciences- Chulalongkorn

University, Bangkok, Kingdom of Thailand
JL. K.S Tubun Blok B No. 73, Perum Sapphire Regency, Kel. Kober, Kec. Purwokerto Barat, Purwokerto, Central Java, Indonesia
1.The Relationship Between Mother's Knowledge and Omegas 3 and 6 Administration Sufficiency in Under-Five Aged Children in Kandang Sapi Jebres Surakarta
2. Maternal knowledge, attitude and practice of dietary omega 3 and 6 to the children aged 1-2 years old in Labuhanbatu Utara Regency, Indonesia

[^0]: *Remark:

[^1]: * significant at p<0.05

[^2]: * Significant at $\mathrm{p}<0.05$

[^3]: * Significant at p <0.05.

