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ABSTRACT (THAI) 
 วัชรีวรรณ รอดประเสริฐ : ชีววิศวกรรมฟื้นฟูสำหรับรักษาเบาหวาน: การสร้างเซลล์สังเคราะห์อินซูลิน

จากเซลล์ต้นกำเนิดมเีซนไคม์ของสุนัข. ( Bioengineered regenerative therapy for diabetes 
mellitus: establishment of canine mesenchymal stem cell-derived insulin producing 
cells.) อ.ที่ปรึกษาหลัก : อ. น.สพ. ดร.เจนภพ สว่างเมฆ 

  
แนวทางการรักษาแบบฟื้นฟูสำหรับเบาหวานในทางการแพทย์และสัตวแพทย์นั้น  ได้รับการศึกษา

ยืนยันเชิงหลักการตามวิธีการของเอ็ดมันทันและการศึกษาในสัตว์ต้นแบบ ซึ่งการศึกษาทางเลือกในการสร้างเซลล์
สังเคราะห์อินซูลินนับว่าเป็นขั้นตอนสำคัญในการพัฒนาสู่การประยุกต์ใช้ทางคลินิก  งานวิจัยนี้จึงมุ่งเน้นในการ
สร้างเซลล์สังเคราะห์อินซูลินจากเซลล์ต้นกำเนิดมีเซนไคม์ที่ได้มาจากไขกระดูกและเนื้อเยื่อไขมันของสุนัข ผล
การศึกษาพบว่าเซลล์ต้นกำเนิดมีเซนไคม์ทั ้งสองชนิดมีความสามารถและอาศัยวิธีการที่แตกต่างกันในการ
เปลี่ยนแปลงสู่เซลล์สังเคราะห์อินซูลิน โดยเซลล์ต้นกำเนิดมีเซนไคม์จากไขกระดูกสุนัขต้องอาศัยการผสมผสาน
วิธีการในการปรับพันธุกรรมและสิ่งแวดล้อมโดยใช้วิธีการ  3 ขั้นตอนในการเหนี่ยวนำเซลล์ที ่ถูกบังคับการ
แสดงออกของยีนพีดีเอ็กซ์-1 ภายใต้การเพาะเลี้ยงแบบหยดแขวนซึ่งยุ่งยากและใช้เวลา ในขณะที่การเหนี่ยวนำ
เซลล์ต้นกำเนิดมีเซนไคม์จากเนื้อเยื่อไขมันสุนัขอาศัยวิธีการ 3 ขัน้ตอน ภายใต้การเพาะเลี้ยงแบบยึดเกาะต่ำ โดย
การยับยั้งสัญญาณนอทช์ในช่วงการสร้างเอ็นโดเดิร์มหรือเซลล์ตั้งต้นของตับอ่อน  จะให้กลุ่มเซลล์สังเคราะห์
อินซูลินที่มีแนวโน้มการตอบสนองต่อการกระตุ้นด้วยระดับกลูโคส  ซึ่งแสดงให้เห็นว่าการสร้างเซลล์สังเคราะห์
อินซูลินจากเซลล์ทั้ง 2 ชนิด อาศัยวิธีการที่แตกต่างกัน และการศึกษาเชิงกลไกเพิ่มเติมจะช่วยเพิ่มประสิทธิภาพ
ของวิธีการดังกล่าว  

 

สาขาวิชา เภสัชวิทยา ลายมือช่ือนิสติ ................................................ 
ปีการศึกษา 2562 ลายมือช่ือ อ.ท่ีปรึกษาหลัก .............................. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 iv 

 
ABSTRACT (ENGLISH) 
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KEYWORD: canine bone marrow-derived mesenchymal stem cells (cBM-MSCs), canine 

adipose-derived mesenchymal stem cells (cAD-MSCs), insulin-producing cells 
(IPCs), Notch signaling 

 Watchareewan Rodprasert : Bioengineered regenerative therapy for diabetes mellitus: 
establishment of canine mesenchymal stem cell-derived insulin producing cells.. 
Advisor: Dr. CHENPHOP SAWANGMAKE, DVM.,MSc., Ph.D. 

  
Trend of regenerative therapy for diabetes in human and veterinary practice has 

conceptually been proven according to Edmonton protocol and animal models. Establishing an 
alternative insulin-producing cell (IPC) resource is a challenge task for further clinical application. 
In this study, IPC generation from two practical canine mesenchymal stem cells (cMSCs), canine 
bone marrow-derived MSCs (cBM-MSCs) and canine adipose-derived MSCs (cAD-MSCs), was of 
interest. The results illustrated that cBM-MSCs and cAD-MSCs contained distinct pancreatic 
differentiation potential and required the tailor-made induction protocols. Generation of 
functional cBM-MSC-derived IPCs needed an integration of genetic and microenvironment 
manipulation using hanging-drop culture of PDX-1-transfected cBM-MSCs under three-step 
pancreatic induction protocol. However, this protocol was resource- and time-consumed. 
Another study on cAD-MSC-derived IPC generation found that IPC-like colonies could be 
obtained by low attachment culture under three-step induction protocol. Further Notch signaling 
inhibition during pancreatic endoderm/progenitor induction yielded IPC-like colonies with trend 
of glucose-responsive C-peptide secretion. Thus, this study showed that IPC-like cells could be 
obtained from cBM-MSCs and cAD-MSCs by different induction techniques, and further signaling 
manipulation study should be conducted to maximize the protocol efficiency. 
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CHAPTER I 

INTRODUCTION 

Importance and Rational 

 Currently, diabetes mellitus (1) is not only a major metabolic disease increasingly affecting 

more than 108 million people around the world, but also expandingly detected in companion 

animals, mostly dogs and cats, which is considered as a major cause for euthanasia especially in 

severe uncontrolled diabetic animals (2-4). Based on its pathophysiological, diabetes in both human 

and animal can be relatively classified into two main types comprising of type I and II, characterizing 

by the absence and the presence of intact beta-cells, respectively (2, 5-7). Type I diabetes is closely 

related to an autoimmune-mediated beta-cell destruction causing endogenous insulin depletion, 

and type II is related to a malfunction of insulin secretion and action (3, 5-8). Although, diabetes 

treatment seems well-established, adverse events and compromised clinical efficiency have been 

periodically reported (3, 7, 9, 10). Therefore, the trend of regenerative treatment has been 

introduced for addressing the problems by using cadaveric islet transplantation, namely 

“Edmonton protocol”, in diabetes type I patients resulting in long-term omitting of exogenous 

insulin injection (11-13). However, two main obstacles have been suggested, donor shortages and 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 
 
immunosuppressive drugs’ side effects, making bioengineered SC-based regenerative approach be 

the potential clinical candidate (14-18).  

Concept of SC-derived IPC transplantation has been experimentally approved in vitro. 

However, it comes with further big challenges on finding potential candidate cell source and 

establishing efficient IPC production that are clinically applicable for human and/or veterinary 

practices (19-21). Although, the production of IPCs from animal-derived pluripotent and 

multipotent SCs has largely been studied according to the benefits on direct veterinary clinical 

application and pre-clinical approval for further human protocol establishment, obstacles on 

maximizing the protocol’s safety and efficiency are still of concern (20-26). In this regard, MSCs 

have been introduced and expandingly investigated due to their availability and less safety concern 

(27-32). However, the major problem on MSC application is the limited on differentiated potential 

compared with those pluripotent cells, embryonic SCs (ESCs) and induced pluripotent SCs (iPSCs), 

resulting in the intensive studies mainly focused on the maximization of differentiation-potential 

by genetic and/or microenvironmental manipulations (21, 24, 26, 33, 34). 

In this study, the objective was focused on the establishment of genetic- and/or 

microenvironmental-based induction protocols for in vitro generation of MSC-derived IPCs from 

two practical canine MSCs (cMSCs), canine bone marrow-derived mesenchymal stem cells (cBM-

MSCs) and canine adipose-derived mesenchymal stem cells (cAD-MSCs), which eventually benefits 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 
 
the establishment of clinical protocols for both veterinary and human applications. Additionally, 

further Notch signaling manipulation of the potential cMSC-derived IPCs was conducted to 

maximize the protocol efficiency. 

 

Objectives 

1. To generate insulin-producing cells (IPCs) from two practical canine mesenchymal stem cells 

(cMSCs), canine bone marrow-derived MSCs (cBM-MSCs) and canine adipose-derived MSCs 

(cAD-MSCs), using microenvironmental and/or genetic manipulation approaches in vitro. 

2. To optimize the potential application and the production of cMSC-derived IPCs in vitro, 

focusing on Notch signaling. 

 

Keywords (English) 

canine bone marrow-derived mesenchymal stem cells (cBM-MSCs), canine adipose-derived 

mesenchymal stem cells (cAD-MSCs), insulin-producing cells (IPCs), Notch signaling 

Keywords (Thai) 

เซลล์ต้นกำเนิดมีเซนไคม์จากไขกระดูกสุนัข, เซลล์ต้นกำเนิดมีเซนไคม์จากเนื้อเยื่อไขมันของสุนัข, เซลล์สังเคราะห์

อินซูลิน, สัญญาณนอทช์ 
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Hypotheses 

1. Two cMSCs, cBM-MSCs and cAD-MSCs, can be differentiated toward IPCs by 

microenvironmental and/or genetic manipulation approaches in vitro. 

2. Manipulation on Notch signaling influences the cMSCs-derived IPCs potential application and 

production in vitro. 
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CHAPTER II 

LITERATURE REVIEW 

According to the problems in diabetes treatment informed above, trend of regenerative 

diabetes therapy has been introduced especially for DM type I. Pancreas transplantation was the 

first alternative treatment by transplanting the whole cadaveric pancreas into the DM type I 

recipient (35-37). Anywise, this procedure is hampered by the surgical morbidity which is leading to 

the coming of  islets transplantation, so called “Edmonton protocol”, as an implantation method 

of pancreatic islets collected from deceased donor and transplanted to DM type I patient, 

considered as a low morbidity transplantation procedure (11-13). Although, this protocol can attain 

insulin independent at approximately 2 years, there are some limitations i.e. adverse events of 

immunosuppressants, limited available of donors, and limited duration of insulin independent 

period (15-18).  

Therefore, the new trend in regenerative medicine using stem cell-based therapy has been 

introduced (21, 38-40). Embryonic stem cells (ESCs), the stem cells derived from the inner cell 

mass (ICM) of embryo, (41, 42) show the pluripotent ability to differentiate toward any cell types 

in three germ layers (endoderm, mesoderm, and ectoderm) and the self-renewal ability to divide 

indefinitely into themselves which are retaining their pluripotency (43-45).  
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From these potentials, they provide a possibility in regenerative therapy using stem cells 

for replacing and restoring the damaged cells, tissues and organs (46, 47). MSCs are the multipotent 

stem cells, the daughter progenitor cells of pluripotent or ESCs, which can give rise to any cells in 

mesodermal lineage i.e. osteocyte, adipocyte, and chondrocyte (21, 48). Furthermore, this stem 

cell type can be used to overcome the limitation on the rejection between donors and recipient 

and the adverse effect from immunosuppressants since they can be collected from patient’s own 

body (28-32). Various types of MSCs have been used for generation of IPCs in vitro. Bone marrow-

derived mesenchymal stem cells (BM-MSCs) and adipose-derived mesenchymal stem cells (AD-

MSCs), respectively collected from bone marrow and adipose tissue, had been reported as an in 

vitro IPCs inducible cells with various methods (22, 25, 26, 49, 50). 

Recently, the study on the stem cell-based therapy for diabetes in companion animal has 

been proposed. Gabr and colleagues have reported a preliminary study about transplanted human 

BM-MSCs-derived IPCs into the chemically induced diabetes dogs. Although, the human IPCs were 

able to control the blood glucose of dogs after transplantation, the dogs had still to receive the 

immunosuppressive drugs along the experimental period due to the trigger by human insulin and 

C-peptide (proinsulin) in serum of transplanted dog on host cellular immunity that could against 

and caused the rejection of xenograft transplantation (51). This led to the adverse events related 

to the immunosuppressants.  
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From these findings, it clues an idea in using of canine MSCs (cMSCs) for reprogramming 

into IPCs which will be suitable for stem cell-based therapy for diabetes dog that capable to 

overcome some limitations like a transplant rejection and the immunosuppressant-related adverse 

events. 

Pancreatic endocrine development 

Naturally, pancreatic endocrine cells are generated during embryonic development by 

ESCs in ICM of blastocyst (52). In addition, the differentiation into endocrine cells is divided into 6 

steps including 1) the pluripotent or multipotent stem cell stage 2) mesendoderm stage 3) 

definitive endoderm (DE) stage, an important germ layer in pancreas development which formed 

as a flat sheet of cells 4) pancreatic endoderm stage 5) pancreatic endocrine precursor stage and 

6) pancreatic beta-cell or IPCs stage (53, 54). In each stage, they are stimulated by the numerous 

signaling which promotes the specific markers for helping in pancreatic developmental process 

(20). By diving into 6 sets of stage-specific marker genes and proteins, the lists of those markers are 

as follows: the pluripotent or multipotent stem cell (Oct4, Nanog, and Rex1 etc.); mesendoderm 

(Mixl1, and Brachyury etc.); definitive endoderm (Cxcr4, Goosecoid, FoxA2, Sox17, and Bmp2 etc.); 

pancreatic endoderm (Pdx1, and  Hnf6 etc.); pancreatic endocrine precursor (Ngn3, Neurod1, Maf-

B, Nkx-2.2, and Pax-4 etc.); and pancreatic beta-cell or IPCs (Nkx-6.1, Maf-A, Insulin, Isl-1, Glut-2, 

Glp-1r, and Glucagon etc.) (54-56). 
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IPCs induction by microenvironmental manipulation approach 

The microenvironmental manipulation is an indirect differentiation method for an in vitro 

IPCs production in the way of activation or inhibition of embryonic signaling pathway using active 

small molecules to enhance the IPCs differentiation by changing phenotype and genotype of 

pluripotent or multipotent stem cells (20). In term of in vitro IPCs production protocol 

establishment using microenvironmental manipulation have been tried and reported in various 

studies with numerous strategies (22, 24, 57, 58). In 2005, D’Amour et al. had reported that the 

presence of activin A, a soluble molecule of transforming growth factor (TGF)-beta family, with low 

concentration of fetal bovine serum (FBS) could induce cells in definitive endoderm (DE) which is 

the first step of endoderm lineage. Human ESCs by up to 80% highly expressed DE-specific marker 

genes (SOX17, GSC, and FOXA2), while the expression of mesendoderm marker (BRACHYURY) was 

downregulated (57). 

Subsequently, the multi-step IPCs induction/differentiation approach had been 

introduced. A five-stage IPCs induction protocol had been used for generating IPCs (59) by induction 

through five differentiation stages including 1) definitive endoderm (DE), an important germ layer 

in pancreas development which formed as a flat sheet of cells (53), 2) primitive gut tube, a second 

step in the developed of pancreas after DE (53), 3) posterior foregut, a place that pancreas is 

emerging from the gut tube (53), 4) pancreatic endoderm and endocrine precursor, and 5) hormone 
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expression endocrine cells. The low concentration of FBS with activin A, Wnt3a (a primitive streak 

marker, fibroblast growth factor (FGF) 10, KAAD-cyclopamine (CYC, the hedgehog-signaling inhibitor), 

B27 (an optimized serum for supported cells without differentiation), retinoic acid (RA), exendin-4 

(Ex4), a glucagon-like protein (Glp)-1 receptor agonist, DAPT (a Notch inhibitor), IGF1 (insulin-like 

growth factor), and hepatocyte growth factor (HGF) were used in induction which showed the 

successfulness IPCs induction following the stage of pancreatic organogenesis and increased a 160-

fold of INSULIN mRNA during stage 5 differentiation process compared with activin removal alone 

(57). 

After that, Timper et al. demonstrated the initial prospect of human AD-MSCs into IPCs 

using various concentration of glucose in differentiated media (49). Then, Chandra et al. published 

a three-step differentiation protocol for induced murine AD-MSCs into functional islet-like cell 

aggregates (ICA) in define SFM. Following the pancreatic endocrine development, the three-stages 

differentiation protocol was used including 1) DE stage, 2) pancreatic endoderm stage, and 3) 

pancreatic endocrine precursor stage (24). By first step, murine AD-MSCs were resuspended in 

differentiated media in term of ‘SFM-A’ comprising high glucose SFM supplemented with bovine 

serum albumin (BSA) , insulin-transferrin-selenium (60), activin A, sodium butyrate, and beta-

mercaptoethanol by plating suspended cells into ultralow attachment tissue culture plated. After 

that, SFM-A were replaced to ‘SFM-B’ for second stage comprising high glucose SFM with BSA, ITS, 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10 
 
and taurine. For the last stage, the media were changed to ‘SFM-C’ consisting of high glucose SFM 

with BSA, taurine, GLP-1, nicotinamide, and nonessential amino acids (NEAAs). Each stage had 

showed the successfulness on committing by the upregulation of specific marker genes in each 

stage (24). To check the maturation of produced ICAs, after incubated ICAs in differentiate glucose 

concentrations, the levels of insulin and C-peptide secretion in media were increasing in 

concentration dependent manner (24). Besides, the transplantation of ICAs in streptozotocin (STZ)-

induced diabetic mice showed the normoglycemia after 2 weeks of transplantation and they could 

maintain the blood glucose level until 4 weeks (24). From previous reports, ITS and beta-

mercaptoethanol showed the highly protection of stress during the AD-MSCs culture in SFM 

condition (61), and beta-mercaptoethanol could be enhancing the insulin secretion in insulin-

secreting cells (24). Sodium butyrate is a histone deacetylase inhibitor as known as a chromatin 

rearrangement inducer that can alter gene transcription and reduce the proliferation helping in 

differentiation process (23, 62). Taurine is a non-essential amino acids (NEAAs) required for the 

functional beta-cell production by supporting the secretion of insulin (24, 63). Moreover, GLP-1 and 

nicotinamide are the supplement involving in beta-cell maturation by helping in functional beta-

cell production, supplying the expansion of beta-cells and increasing beta-cell sensing in glucose-

stimulated insulin secretion (24, 64, 65). Because of the highly efficiency on the differentiation of 

PDX1-positives cells, as known as the pancreatic endocrine precursor, toward insulin- or C-peptide-
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positive cells using three-step differentiation protocol, this protocol had been used in various IPCs 

studies and had promoted the successful generation of IPCs from MSCs (58, 66).  

Regarding the details described above, it can be suggested whether microenvironment 

manipulation approach will be able to stimulate the differentiation of pluripotent or multipotent 

cells toward pancreatic lineage and forming the functional beta-like cells or IPCs using in vitro 

experiment. 

IPCs induction by genetic manipulation approach 

Even though the microenvironmental manipulation are able to produce IPCs, but the 

amount of maturated IPCs is still low at approximately 10-15% (24, 66). To encourage the efficiency 

of differentiation protocol, genetic manipulation as a direct differentiation method, has been 

introduced and widely studied (67). In the last decade, the results on forcing the hierarchy 

expression of transcriptional factor-related beta-cell identity during embryogenesis i.e. Pdx1, Ngn3, 

Maf-A, and Insulin, showed the sufficiency to differentiate ESCs (68), MSCs (26, 50, 69), pancreatic 

duct cells (34), and Glucagonoma cell line (33) toward beta-like cells. 

During pancreatic endocrine development, several important genes will be expressed to 

commit the cells into each stage (66). Therefore, the initial transduction of gene involving in beta-

cell differentiation lineage will be able to optimize IPCs production (26, 33, 34, 50). The homeobox 

gene Pdx1 (pancreatic and duodenal homeobox-1) is expressing in the first hierarchy of pancreatic 
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fate during organogenesis, and the cells expressing Pdx1 gene can be giving rise to all three types 

of pancreatic tissue comprising exocrine, endocrine, and duct (20, 52). Thus, activation Pdx1 is 

considered as the prerequisite for pancreatic differentiation in vitro which can enhance the 

progressive expression of more mature markers of the endocrine lineage including Ngn3, Nkx-2.2, 

Nkx-6.1, Maf-A, and Maf-B (20, 55, 56). Besides, the inactivation of Pdx1 gene can affect in the loss 

of beta-cell or insulin positive cells, yet the glucagon positive cells had been rising in Pdx1 mutant 

mice, Thus, the late age of mutant mice had developed to diabetic mice (70). In 2003, Ritz-Laser 

et al. had been using lentiviral vector-mediated transfection of Pdx1 into glucagonoma (InR1G9) 

cells resulted in the inhibition of endogenous glucagon gene transcription, an alpha-cells’ specific 

hormone for releasing glucose from the storage cells, while induced insulin gene expression in the 

InR1G9 cells (33). 

From above information, IPCs formation using the direct differentiation for forcing stem 

cells toward pancreatic endocrine lineage has been published. In 2013, the non-integrated 

lentiviruses harboring PDX1 gene were transduced to human AD-MSCs (50), and mouse BM-MSCs 

(26). The adherent spindle and fibroblast-like morphology of MSCs had been becoming the round 

ball-like appearance or three dimensions spherical or clusters aggregated colonies after transfection 

for 7-10 days. In addition, the transduced MSCs were upregulating the pancreatic lineage-related 

genes expression, that could be able to release insulin after stimulated with glucose (26, 50). The 
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potential of transduced cells from direct differentiation protocol had been reported. After the 

induction, diabetes rats were transplanted with PDX1 transduced-human AD-MSCs. Blood glucose 

level was gradually decreased and normalize within 3 days (50). Furthermore, all of transplanted 

mice did not detect the tumor formation after treatment for 12 months of follow up (50). However, 

it was the transiently efficiency because the blood glucose level had been increased after 10 day 

of transplantation (50). 

There were other interesting models supporting the efficiency of direct reprogramming 

toward IPCs by forcing the stem cell resources with multi-transcription factors. From previously 

reports, it had been presented that the insulin positive cells were appearing at day 3 after 

transfected with the separated of three adenoviral monocistronic vectors carrying Pdx1, Ngn3, and 

Maf-A. The results showed the increasing in the insulin positive cells production up to 20% (19). In 

2015, Yamada and colleagues had reported the potential of a single polycistronic (Ngn3/Pdx1/Maf-

A) adenoviral vector on differentiation mouse pancreatic duct cells (mPDCs) toward IPCs. Pdx1 is 

necessary in both of pancreatic and beta-cell development, Ngn3 (neurogenin 3) is essential for 

driving toward endocrine islet lineage (55), and Maf-A is a pancreatic islet beta-cell-specific 

transcription factor in beta-cell maturation (71). The results suggested that the combination of 

three factors could be helpfulness for reprogramming exocrine cells to IPCs by producing IPCs 

approximately up to 30% after 2 days of transfection also with the highly expression of pancreatic 
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endocrine beta-cell-specific marker genes and the enhancing on insulin releasing during glucose 

stimulation with various concentrations (34). 

These reports illustrate that the direct differentiation by forcing one or set of transcription 

factors will be synergistically achieve normal pancreatic endocrine islet development with 

functional property.  

The Notch pathway in beta-cell growth and differentiation 

During pancreatic organogenesis, the plenty of transcription factors are regulating the 

hierarchy of gene expression which initiate and maintain downstream gene expression required for 

their unique phenotypes (55). Several molecules and signaling pathways play crucial roles in 

regulating transcription factors involved in pancreatic development i.e. Wnt/beta-catenin pathway 

which is essential in acinar cell, an exocrine cells for secreting digestive enzyme, and enrichment 

in beta-cell generation from pluripotent or multipotent stem cells to DE stage (59, 72, 73); 

hedgehog pathway which plays an important role in early pancreas development by the absence 

of hedgehog proteins resulted in the reduction of pancreatic mass and beta-cell population (72, 

74, 75); and Notch pathway, a crucial signaling in regulating the expression of  precious transcription 

factors in pancreatic endocrine precursor cells which will be driving to beta-cells (55, 72, 73, 76, 

77) 
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 Recently, Notch signaling was particularly interesting pathway in pancreatic endocrine 

lineage. The activation of Notch signaling cascades will be happening when Notch ligand is binding 

with Notch receptor on cell membrane, then Notch intracellular domain (NICD) of Notch receptor 

located in cytoplasm will be cleaved by gamma-secretase enzyme, translocate into nucleus and 

interact with the promoter region of targeted gene; Hes-1 and Hey-1 (78). Beside, during pancreatic 

lineage formation, endocrine cells will be becoming the cluster and forming aggregation which will 

be permitting cell-to-cell contact and cause the interaction of each other during development, 

from this incidents, there are leading to the activation of Notch signaling and causing the regulation 

of endocrine cell fate descended from Pdx1 positive progenitors (79). 

 Previous studies had confirmed that Notch involved in control the endocrine progenitor 

fate toward beta-cell via the expression of Ngn3, a transcription activator for controlling endocrine 

cells fate driving into one of endocrine subtypes (beta or alpha-cell) in pancreatic endocrine 

precursor stage (52, 55, 80, 81).  In addition, the inhibition of Notch using genetic modification 

methods in in vivo study (77, 82) or using N-(S)-phenyl-glycine-t-butyl ester (DAPT), gamma-

secretase inhibitor, in in vitro study (66) had showed the interesting results. The study of Jensen 

and colleagues used the mice lacking function of Hes-1, a Notch targeted gene involving in cell 

fate regulation (78). From the experiment, they found a few Pdx1 positive cells, an endocrine 

precursor cells, with the observation of pancreatic hypoplasia in Hes-1 unfunctional mice, but they 
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found the upregulation of Ngn3 expression, a subset of Pdx1-positive pancreatic precursor cells 

(82). After that, Qu et al. had studied about the DAPT treatment with collected mice pancreas, and 

the results of pre-DAPT treatment showed the expression of Hes1 protein which caused by Notch 

activation and led to reduction of Ngn3 protein together with the increasing number of endocrine 

and ductal cells. However, after DAPT treatment they found the increasing of Ngn3 protein and 

regained the capacity in insulin-cell differentiation (77). Additionally, to estimate the effect of Notch 

on IPCs generation, Sawangmake and colleagues reported the using DAPT during three-step 

differentiation of human dental tissue-derived MSCs, and found that the Notch inhibition on second 

step (from pancreatic endoderm cells toward pancreatic endocrine precursor) showed high 

expression of PDX1 and NGN3, together with the increasing number of IPCs colonies (66).  

From these data, it can conclude that the activation of Notch in early stage may be 

enhancing the generation of endocrine precursors, then the inhibition on the following stage will 

be supporting the regulation of cell fate toward endocrine lineage. Therefore, the Notch activation 

in the appropriate time and the proper amount can be optimizing the potential of differentiation 

protocol.  

For this regard, the objectives of study are aimed into two aspects consisting with 

Objective 1) the in vitro generation of insulin-producing cells (IPCs) from canine mesenchymal 

stem cells (cMSCs), employing microenvironmental manipulation approach by using the three-step 
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differentiation protocol (24, 58, 66), genetic manipulation approach by delivering a key pancreatic 

development regulating factor emphasizing on pancreatic and duodenal homeobox 1 (PDX1), or 

the combination of genetic and microenvironmental manipulation, and Objective 2) the most 

potential application and cMSCs-derived IPCs in vitro production will be optimizing, focusing on 

Notch signaling. 
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Conceptual Framework 
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CHAPTER III 

METHODOLOGY 

Cell isolation, culture, and expansion 

Canine mesenchymal stem cells (cMSCs) were isolated from bone marrow and fat tissue 

of healthy dogs according to the inclusion criteria and owners’ consent which had approved by 

the Institutional Animal Care and Use Committee (IACUC), Faculty of Veterinary Science, 

Chulalongkorn University. Canine bone marrow-derived MSCs (cBM-MSCs) were isolated from 

heparin-containing bone marrow aspirate following the previous published protocol (83). Briefly, 

cells were washed twice with Hank’s Balanced Salt solution (HBSS) (Thermo Fisher Scientific 

Corporation, USA), then resuspended and seeded in T-75 tissue culture flasks (Corning, USA) 

containing high glucose Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12 (DMEM /F-12) 

(Thermo Fisher Scientific Corporation, USA) supplemented with 10% fetal bovine serum (FBS) 

(Thermo Fisher Scientific Corporation, USA), 1% GlutaMAX™) (Thermo Fisher Scientific Corporation, 

USA), and 1% Antibiotics-Antimycotic (Thermo Fisher Scientific Corporation, USA). 

Canine adipose-derived MSCs (cAD-MSCs) were isolated from biopsied adipose tissues. 

Tissues were minced and incubated with Cell Recovery Solution® (Corning, USA) for 2 hours at 

37℃, then passed through 70 µm strainer and washed twice with PBS. Pellet was resuspended 

and seeded in 60 mm culture dishes (Corning, USA). Cells were maintained in high glucose 
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Dulbecco's Modified Eagle Medium (DMEM) (Thermo Fisher Scientific Corporation) supplemented 

with 10% fetal bovine serum (FBS) (Thermo Fisher Scientific Corporation, USA), 1% GlutaMAX™) 

(Thermo Fisher Scientific Corporation, USA), and 1% Antibiotics-Antimycotic (Thermo Fisher 

Scientific Corporation, USA).  

Both cell types were maintained at 37℃ in humidified atmosphere with 5% CO2 and fresh 

air. Culture media was replaced every 48 hours. Cells were subcultures when 80% confluence 

reached. Cells in passage 2-6 were used for the experiments.  

 

Characterization of cBM-MSCs and cAD-MSCs 

 The isolated cells were characterized by assessing mRNA expression regarding stemness 

markers (Rex1, Nanog, and Oct4), proliferative marker (Ki67), mesenchymal cell surface markers 

(Cd44, Cd45, Cd73, and Cd90), and hematopoietic cell surface marker as a negative control (Cd45) 

by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). It should be noted that 

cell surface analysis by flow cytometry could not applied due to the unavailability of canine cross-

reactive antibodies.  

 Cell differentiation potential was assessed using osteogenic induction protocol. Briefly, 

cells were seeded onto 24-well culture plate (Corning, USA) in a concentration of 2.5x105 cells/well. 

After 24 hours, cells were maintained in osteogenic induction medium for 14 days. The osteogenic 
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induction medium was a growth medium supplemented with 50 mg/mL L-ascorbic acid, 100 mM 

dexamethasone, and 10 mM β-glycerophosphate (66). Osteogenic differentiation potential was 

analyzed according to extracellular matrix (ECM) mineralization by Alizarin Red (84) and Von Kossa 

staining (85), and osteogenic-related gene marker expression (Alp, Runx2, Osx, Opn, Ocn and 

Col1a1) by RT-qPCR. Undifferentiated cells were used as a control.  

 

IPC induction by microenvironmental manipulation  

In this regard, three-step induction protocol modified from previous published reports was 

used (24, 58, 66). Briefly, cells were trypsinized and resuspended in a series of three pancreatic 

induction media, namely serum-free medium (SFM)-A, SFM-B, and SFM-C, respectively. Cells were 

consequently maintained in SFM-A for 3 days (72 hours), SFM-B for 2 days (48 hours), and SFM-C 

for 5 days (120 hours). SFM-A was SFM-DMEM/F12 or SFM-DMEM (basal medium) supplemented 

with 1% bovine serum albumin (BSA) (Sigma, USA), 1X insulin-transferrin-selenium (60) (Invitrogen, 

USA), 4 nM activin A (Sigma, USA), 1 nM sodium butyrate (Sigma, USA), and 50 µM β-

mercaptoethanol (Sigma, USA). SFM-B was basal medium supplemented with 1% BSA, 1X ITS, and 

0.3 mM taurine (Sigma, USA). SFM-C was basal medium containing 1.5% BSA, 1X ITS, 3 mM taurine, 

100 nM glucagon-like peptide (GLP-1) (Sigma, USA), 1 mM nicotinamide (Sigma, USA), and 1X non-

essential amino acids (NEAAs) (Sigma, USA).  
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Regarding culture maintenance, three different techniques were employed: low 

attachment, hanging-drop, and hydrogel (Matrigel®)-embedded culture techniques. For 2D low 

attachment culture, 60 mm non-treated culture dishes (Eppendorf, USA) were used. 1x106 cells 

were collected and suspended onto each dish using three induction media mentioned above. For 

3-dimensional (3D) hanging-drop culture, GravityPLUSTM 96-well plate hanging-drop culture system 

(PerkinElmer, USA) was used. Cells were suspended in induction media and seeded into hanging-

drop wells at concentration 20,000 cells per 40 µL per well. Another protocol was 3D hydrogel-

embedded culture. Cell colonies obtained from hanging-drop culture were collected and 

embedded in hydrogel (Matrigel® Matrix: growth factor reduced type, Corning, USA). In this regard, 

100-150 µL of hydrogel and induction medium mixture (1:1) was used to form a dome-like structure 

onto each well of 24-well culture plate (Coring, USA). Cell Recovery Solution® (Corning, USA) was 

used for gel digestion.  

 

IPC induction by genetic manipulation  

Overexpression of PDX1 by lentiviral vector was used for genetic reprogramming of the 

cells. Lentivirus carried human pancreatic and duodenal homeobox 1 (PDX1), a transcription factor 

necessary for pancreatic development, was produced from the packaging of pWPT-PDX1 (Addgene 

plasmid #12256, gift from Didier Trono) (http://n2t.net/addgene:12256; RRID: Addgene_12256) (33),  
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psPAX2 (Addgene plasmid #12260, gift from Didier Trono) (http://n2t.net/addgene:12260; RRID: 

Addgene_12260), and pMD2.G (Addgene plasmid #12259, gift from Didier Trono) 

(http://n2t.net/addgene:12259; RRID: Addgene_12259) in human embryonal kidney (HEK 293FT) 

cells. The supernatant containing lentiviral particles were collected at 48- and 72-hours post-

packaging and filtered through 0.45 µm filter. Viral particles were harvested using Plasmid Midiprep 

Plus Purification Kit (Gene Mark Bio, Taiwan) and then freshly concentrated by Amicon® Ultra 

Centrifugal Filter (Merck Millipore, USA).  

For transfection protocol, cells at concentration of 5x104 cells/well were seeded onto 24-

well plates (Corning, USA) for 24 hours, then treated with 4 µg/mL polybrene infection/transfection 

reagent (Millipore/Chemicon, USA) for 30 minutes. Concentrated viral particles at MOI 20, 30, or 50 

were used for each 24-hour-transfection course.  

 

IPC induction by integration of genetic and microenvironmental manipulation  

Integration of genetic and microenvironmental manipulation was performed by hanging-

drop culture of PDX1-transfected cells using three induction media. PDX1-transfected cells at MOI 

20 were seeded into GravityPLUSTM 96-well plate hanging-drop culture system at concentration of 

20,000 cells per 40 µL per well. Series of induction media were substituted as described above.  
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Reverse transcription-quantitative polymerase chain reaction  

Reverse transcription-quantitative polymerase chain reaction (RT-qCR) was used for mRNA 

analysis. The total RNA was collected using TRIzol-RNA isolation reagent (Thermo Fisher Scientific 

Corporation, USA), and extracted by DirectZol-RNA isolation kit (ZymoResearch, USA) according to 

the manufacture’s protocol. Then, RNA was converted to complementary DNA (cDNA) using 

ImPromTM Reverse Transcription System (Promega, USA). The amplification of targeted genes was 

carried out by FastStart Essential DNA Green Master (Roche Diagnostics, Switzerland) using CFX96™ 

Real-Time PCR Detection System (BioRad, USA) with specific amplification primers. Glyceraldehyde 

3-phosphate dehydrogenase, Gapdh, was used as the reference gene. mRNA expression of target 

genes was normalized with reference gene and control group. The primer sequences were listed 

in Table 1. 

Table 1 Primer sequences 

Genes Accession number Sequences 5’ 3’ 
Length 

(bp) 

Tm 

(℃) 

Stemness genes 

Zinc finger protein 42 

(Zep42 or Rex1) 

XM_003639567.1  Forward 

Reverse 

AGGTTCTCACAGCAAGCTCA 

CCAGCAAATTCTGCGCACTG 

199 59.24 

60.73 

      

POU class 5 homeobox 1 

(Pou5f1 or Oct4) 

XM_538830.1  Forward 

Reverse 

AGGAGAAGCTGGAGCAAAACC 

GTGATCCTCTTCTGCTTCAGGA 

100 60.55 

59.50 
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Proliferation marker 

Proliferation marker 

protein Ki-67 (Ki67) 

 

XM_014108788.1 Forward 

Reverse 

GTGCAACTAAAGCACGGAGA 

GAGATTCCTGTTTGCGTTTTCGT 

124 58.49 

58.49 

Stem cell surface markers 

Cd44 molecule (Cd44) NM_001197022 Forward 

Reverse 

CCCCATTACCAAAGACCACGA 

TGGGATTTGAGGTTTCCGCA 

148 60 

59.89 

      

5'-nucleotidase, ecto 

(Nt5e or Cd73) 

XM_532221.5 Forward 

Reverse 

GGCAACCTGATTTGTGATGCT 

AGGTAATTGTGCCGTTGTTCC  

142 59.42 

59.12 

      

Thy-1 cell surface 

antigen  

(Thy1 or Cd90) 

NM_001287129.1  Forward 

Reverse 

AGGACGAGGGGACATACACA 

ATGCCCTCACACTTGACCAG 

109 59.96 

59.96 

      

Endoglin (Eng or Cd105) XM_005625330.2 Forward 

Reverse 

CGAGGAGTCTGTCACCGGAAA 

GCGCCAAAGGTGATACCCAG 

118 61.76 

61.38 

      

Protein tyrosine 

phosphatase, receptor 

type, C (Ptprc or Cd45) 

 

XM_005622282.1 Forward 

Reverse 

GTTTCCAGTTCTGTTTCCCCAG 

CATTGGTCACAATTCACGGTATCA 

137 59.38 

59.61 

Osteogenic markers 

Alkaline phosphatase 

(Alp) 

NM_001197137.1 Forward 

Reverse 

CCTGCCAGATAACTGCCTCT 

GTGGAGACACCCATCCCATC 

168 59.16 

59.82 
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Runt-related 

transcription factor 2 

(Runx2) 

XM_005642335.1 Forward 

Reverse 

GGAAGAGGCAAGAGTTTCACC 

GTGCTCACTTGCCAACAGAA 

209 58.84 

58.89 

       

Sp7 transcription factor 

(Spp or Osx) 

XM_844688.3 Forward 

Reverse 

GCGTCCTCCCTGCTTGAG 

GCTTTGCCCAGTGTCGTTG 

122 60.13 

60.01 

      

Secreted phosphoprotein 

1 (Spp1 or Opn) 

XM_003434024.2 Forward 

Reverse 

GCCACAGAGCAAGGAAAACTC 

CTGCTTCTGAGATGGGTCAGG 

180 59.73 

60.13 

      

Bone gamma-

carboxyglutamate  

protein (Bglap or Ocn) 

XM_547536.4 Forward 

Reverse 

GCCAGCCTATGGTCTCCTCTG 

CCACCAGCTCCTTCTGTTCTCT 

249 61.90 

54.55 

       

Collagen type I alpha 1 

chain (Col1a1) 

NM_001003090.1 Forward 

Reverse 

CCAGCCGCAAAGAGTCTACAT 

CTGTACGCAGGTGACTGGTG 

150 60.41 

60.67 

       

Pancreatic markers 

Pancreatic endoderm marker 

Pancreatic and duodenal 

homeobox 1 (Pdx1) 

NM_001284471.2 Forward 

Reverse 

AAGTCTACCAAGGCTCACGC 

GTGCCTCTCGGTCAAGTTCA 

201 60.04 

59.97 

Pancreatic beta-cell or insulin-producing cells (IPCs) markers 

NK6 homeobox 1  

(Nkx-6.1) 

XM_544960.5 Forward 

Reverse 

CAGGAGTTATGCAGAGCCCG 

 ACGTGGGTCTCGTGTGTTTT 

111 60.53 

60.11 

       

ISL LIM homeobox 1 (Isl-

1) 

XM_848628.4, 

XR_001315955.1 

Forward 

Reverse 

TGGCTTACAGGCAAACCCAG 

GACATCGACGCCACTTCACT 

171 60.54 

60.39 
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V-maf avian 

musculoaponeurotic 

fibrosarcoma oncogene 

homolog A (Maf-A) 

XM_003431814.3 Forward 

Reverse 

GCTTCAGCAAGGAGGAGGTC 

CTCTGGAGCTGGCACTTCTC 

136 60.39 

60.11 

       

Solute carrier family 2 

(facilitated glucose 

transporter), member 2 

(Slc2a2 or Glut-2) 

XM_545289.5 Forward 

Reverse 

ACTCATCACAGGACGTGGAG 

AGCTGAGTGTAGCGGTGAAG 

108 59.11 

59.76 

       

Insulin (Ins or Insulin) NM_001130093.1 Forward 

Reverse 

TGGTAGAGGCTCTGTACCTGG 

CGCCCCTAGTTGCAGTAATTC 

235 60.34 

59.06 

Pancreatic-relating markers   
 

Glucagon (Gcg or 

Glucagon) 

NM_001003044.1 Forward 

Reverse 

TCCAATCGCGGTGTCAGAAG 

ACCCTGAGAATGACGCTTGT 

197 60.39 

59.31 

       

Glucagon-like peptide 1 

receptor (Glp1r) 

XM_014118246.1 Forward 

Reverse 

CACGGTGGGCTATACACTCTC 

AGGACGCAAACAGGTTCAGG 

116 59.93 

60.54 

  

Notch targeted genes 

Hes Family BHLH 

Transcription Factor 1 

(Hes-1) 

XM_025478075.1 Forward 

Reverse 

GAGAAGGCGGACATTCTGGA 

ACCTCGTTCATACACTCGCTG 

137 59.46 

60.14 

      

Hes Related Family BHLH 

Transcription Factor with 

YRPW Motif 1 (Hey-1) 

NM_001002953.1 

 

Forward 

Reverse 

ACCTGAAAATGCTGCACACG 

GCTGGGAGGCGTAGTTGTTA 

195 59.69 

59.75 
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Reference gene 

Glyceraldehyde 3-

phosphate 

dehydrogenase (Gapdh) 

 

NM_001003142.1 

 

Forward 

Reverse 

CCAACTGCTTGGCTCCTCTA 

GTCTTCTGGGTGGCAGTGAT 

100 59.38 

59.67 

 

Functional analysis for IPCs  

Glucose-stimulated c-peptide secretion (GSCS) was used for functional analysis of IPCs. 

Two glucose concentrations were used, 5.5 and 22 mM. Krebs-Ringer bicarbonate HEPES (KRBH) at 

pH 7.4 was used as physiological buffer solution according to previous reports (66, 86, 87). KRBH 

buffer solution contained 120mM NaCl, 5mM KCl, 2.5mM CaCl2, 1.1mM MgCl2, 25mM NaHCO3, and 

10mM HEPES. IPCs were gently collected and maintained with KRBH buffer solution at 37℃ for 60 

minutes as basal c-peptide secretion (0 mM glucose), then respectively incubated in 5.5 mM (99 

mg/dL) and 22 mM (396 mg/dL) glucose (Sigma, USA) for 60 minutes each. Buffer solution in each 

incubation period was collected for measuring c-peptide concentration using canine c-peptide 

enzyme-linked immunosorbent assay (ELISA) kit (Millipore, USA) according to the manufacturing 

protocol. Secreted c-peptide levels were then normalized with total DNA (9) and incubation time 

(minutes).   
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Statistical analysis 

The results were illustrated as whisker and box plot (N=4). Statistical analysis was 

determined using SPSS statistics 22 software (IBM Corporation, USA). Mann-Whitney U test was 

used for comparing two sample groups, while Kruskal-Wallis test was used for three or more 

sample group comparison. The significant difference was considered when p-value < 0.05. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30 
 

CHAPTER IV 

RESULTS and DISCUSSION 

RESULTS 

cBM-MSCs and cAD-MSCs characterization 

 The isolated cBM-MSCs (Fig 1A and B) and cAD-MSCs (Fig 1C and D) showed fibroblast-like 

structure upon 2-dimensional (2D) culture. mRNA expression of stemness-related markers (Rex1, 

Nanog, and Oct4) and proliferation marker (Ki67) were detected (Fig 1E and F). MSC-related markers 

(Cd44, Cd73, Cd90, and Cd105) were also expressed, while hematopoietic cell surface marker 

(Cd45) was not detected (Fig 1G and H).  

 Both cells illustrated an osteogenic differentiation potential upon an in vitro 14-day 

induction regarding ECM mineralization as demonstrated by Alizarin Red S and Von Kossa staining 

(Fig 1I and J) and osteogenic mRNA marker expression (Alp, Runx2, Osx, Opn, Ocn, and Col1a1) (Fig 

1K and L). The expression of stemness-, proliferation- and MSC-related markers were normalized 

with Gapdh, a reference gene. 

 The results revealed the MSC-related characteristics of the isolated cBM-MSCs and cAD-

MSCs. 
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Figure 1 cBM-MSCs and cAD-MSCs characterization.  

Morphological appearances of cBM-MSCs (A and B) and cAD-MSCs (C and D) were observed under 

phase-contrast microscope with magnification of 40X and 200X. mRNA expression regarding 

stemness and proliferation markers (E and F), and surface markers (G and H) were determined by 

RT-qPCR. mRNA expression was normalized with reference gene. Osteogenic differentiation 

potential at day 14 post-induction was determined by Alizarin Red S and Von Kossa staining (I and 

J). Osteogenic mRNA marker expression was analyzed by RT-qPCR (K and L). mRNA expression was 

normalized with reference gene and undifferentiated control. Bars indicated significant difference 

(*, p-value < 0.05).  
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Generation of IPC-like cells from cBM-MSCs requires 3D culture condition 

 To generate IPC-like colonies from cBM-MSCs, three different culture techniques were 

investigated (Fig 2A-C). In all culture techniques, three pancreatic induction media were used as a 

microenvironmental manipulating/small molecule inducing approach. The results as illustrated in 

Fig 2D showed that suspending the cells in low attachment culture dish (Eppendorf, USA) (Protocol 

I) was unable to deliver IPC-like colonies, while maintain the cells using hanging-drop technique 

(GravityPLUSTM plate, PerkinElmer, USA) (Protocol II) could successfully generate IPC-like colonies 

with 50-200 µm in diameter. However, the colonies seemed loose cell aggregates. Further 

investigation was performed by maintaining the colonies collected from hanging-drop culture in 

Matrigel®-embedded culture condition (Matrigel® Matrix, Corning, USA) (Protocol III). Although, the 

generated colonies were dense and compact, they could not maintain colony structure after gel 

digestion (Cell Recovery Solution®, Corning, USA) making them unable to be harvested for further 

functional testing.    

 Comparison of the pancreatic mRNA markers of the generated IPC colonies revealed that 

colonies from Protocol II expressed high pancreatic endoderm marker (Pdx1), but low pancreatic 

beta-cell markers (Nkx6.1, Isl-1, Maf-A, Glut-2, and Insulin), comparing with those from Protocol III 

(Fig 2E and F). However, the mRNA expression of pancreatic-relating markers (Glucagon and Glp-

1r) were not detected in Protocol III (Fig 2G).   
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 Further functional testing showed that IPC-like colonies collected from Protocol II 

secreted C-peptide under basal condition but could not produce a significant response upon low 

(5.5mM) and high (22mM) glucose stimulation. There was only trend of increased C-peptide 

secretion compared to basal control (Fig 2H).    

 Thus, generating IPC-like cells from cBM-MSCs employing microenvironmental 

manipulating/ small molecule inducing approach required 3D culture condition. However, the 

generated IPC-like cells showed limited function and maturity. 
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Figure 2 Generation of cBM-MSC-derived IPC-like cells by microenvironmental manipulation.  

Diagrams of three culture techniques used for the generation of cBM-MSC-derived IPC-like cells 

were showed: i) low attachment (A), ii) hanging-drop (B), and iii) hydrogel-embedded (C) culture 

techniques. Morphological appearances of cells undergone each of induction technique were 

observed under phase-contrast microscope with magnification of 100X and 200X (D). mRNA markers 

relating to pancreatic endoderm (E), pancreatic beta-cell (F), and pancreatic-relating markers (G) 

were analyzed by RT-qPCR. mRNA expression was normalized with reference gene and 

undifferentiated control. Functional testing by glucose-stimulated C-peptide secretion (GSCS) was 

illustrated (H). Bars indicated significant difference (*, p-value < 0.05; **, p < 0.01). 
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Overexpression of PDX1 fells to generate IPC-like cells from cBM-MSCs 

 Generating IPC-like cells from cBM-MSCs using genetic manipulating approach was 

conducted by overexpression of the pancreatic commitment regulator, PDX1. Lentiviral vector 

carrying human PDX1 (Addgene plasmid #12256, gift from Didier Trono) was transfected into cBM-

MSCs at MOI 20, 30, and 50 (Fig 3A-C). The results showed that all transfected cells started forming 

loose cell aggregates since 48-hour post-transfection. Then, at 168-hour post-transfection, 

transfected cells at MOI 20 formed small-size cell clusters (< 50 µm in diameter), while those 

transfected at MOI 30 and 50 formed medium- to large-size cell clusters (100-200 µm in diameter). 

None of them formed floating colony-like structure (Fig 3D).   

 Further analysis on pancreatic mRNA markers showed that transfected cells at MOI 20 

significantly illustrated high expression of pancreatic endoderm marker (Pdx1) and some of 

pancreatic beta-cell markers (Maf-A, Glut-2, and Insulin), comparing with those transfected at MOI 

30 and 50 (Fig 3E and F). However, alpha-cell hormonal marker (Glucagon) was significantly 

expressed in MOI 20 transfection (Fig 3G), while Glp-1r was not detected in all groups (data not 

shown). 

 The results suggested that overexpression of PDX1 could not successfully generate IPC-

like colonies from cBM-MSCs in terms of pancreatic islet morphology and genotype. 
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Figure 3 Generation of cBM-MSC-derived IPC-like cells by genetic manipulation.  

Diagrams of three PDX1 transfection condition for the generation of cBM-MSC-derived IPC-like cells 

were showed: MOI 20 (A), MOI 30 (B), and MOI 50 (C). Morphological appearances of cells undergone 

each of transfection condition were observed under phase-contrast microscope with magnification 

of 40X, 100X and 200X (D). mRNA markers relating to pancreatic endoderm (E), pancreatic beta-cell 

(F), and pancreatic-relating markers (G) were analyzed by RT-qPCR. mRNA expression was 

normalized with reference gene and undifferentiated control. Bars indicated significant difference 

(*, p-value < 0.05; **, p < 0.01; ***, p < 0.001). 
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Integration of PDX1 overexpression with 3D culture efficiently generates IPC-like cells from 

cBM-MSCs  

In order to efficiently generate IPC-like cells from cBM-MSCs, combination of genetic and 

microenvironmental manipulating approaches were used. Cells were transfected with lentiviral 

vector carrying human PDX1 at MOI 20 then maintained with three-step induction protocol under 

3D culture condition (hanging-drop technique using GravityPLUSTM plate) (Fig 4A). The results 

illustrated that IPC-like colonies started forming since day 5 of the induction, and size of colonies 

at day 12 was approximately 100-200 µm (Fig 4B).  

Pancreatic mRNA analysis showed that pancreatic endoderm marker (Pdx1) and pancreatic 

beta-cell markers (Isl-1, Maf-A, Glut-2, and Insulin) were significantly upregulated (Fig 4C and D). 

However, alpha-cell hormonal marker (Glucagon) was highly expressed (Fig 4E), while Glp-1r was 

not detected (data not shown). Functional testing also showed that IPC colonies secreted C-

peptide under basal condition and could produce a significant response upon low (5.5mM) glucose 

stimulation. However, the significant response upon high (22mM) glucose stimulation was not 

accomplished (Fig 4F).  

 Thus, combination of genetic and microenvironmental manipulating approaches 

efficiently generated IPCs from cBM-MSCs with pancreatic islet characteristics and functional 

property.    
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Figure 4 Generation of cBM-MSC-derived IPC-like cells by integration of genetic and 

microenvironmental manipulation.  

Diagram of culture technique used for the generation of cBM-MSC-derived IPC-like cells was showed 

(A). Morphological appearances of cells undergone induction technique were observed under 

phase-contrast microscope with magnification of 40X and 200X (B). mRNA markers relating to 

pancreatic endoderm (C), pancreatic beta-cell (D), and pancreatic-relating markers (E) were 

analyzed by RT-qPCR. mRNA expression was normalized with reference gene and undifferentiated 

control. Functional testing by glucose-stimulated C-peptide secretion (GSCS) was illustrated (F). 

Bars indicated significant difference (*, p-value < 0.05). 
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Low attachment culture is efficient to generate IPC-like cells from cAD-MSCs  

 To generate IPC-like cells from cAD-MSCs, microenvironmental manipulating approach was 

used by suspending the cells onto low attachment culture dish and maintaining in three-step 

induction media (Fig 5A). It was quite interesting that cells formed colony-like structure since day 

3 of the induction, and the colonies become denser and bigger along the culture period (Fig 5B). 

At day 12, approximately 834 colonies (median) were obtained from 1x106 seeding cells (Fig 5C), 

and the colony size was varied from <50 µm to > 700 µm (Fig 5D).      

Analysis of pancreatic mRNA expression revealed that pancreatic beta-cell markers 

(Nkx6.1, Isl-1, Maf-A, Glut-2, and Insulin) were significantly upregulated (Fig 5E). Alpha-cell hormonal 

marker (Glucagon) was a bit expressed, while Glp-1r was downregulated (Fig 5F). Functional testing 

showed that IPC-like colonies secreted C-peptide under basal condition and showed trend of 

glucose-responsive C-peptide secretion upon high (22mM) glucose stimulation. However, it was 

not significant (Fig 5G).   

The results suggested that microenvironmental manipulating approach using low 

attachment culture was efficient to generate IPC-like cells from cAD-MSCs in term of pancreatic 

islet characteristics. However, their functional property was still limited. 
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Figure 5 Generation of cAD-MSC-derived IPC-like cells by microenvironmental manipulation.  

Diagram of culture technique used for the generation of cAD-MSC-derived IPC-like cells was showed 

(A). Morphological appearances of cells undergone induction technique were observed under 

phase-contrast microscope with magnification of 40X and 200X (B). Total colony number (C) and 

colony size proportion (D) were evaluated. mRNA markers relating to pancreatic beta-cell (E), and 

pancreatic-relating markers (E) were analyzed by RT-qPCR. mRNA expression was normalized with 

reference gene and undifferentiated control. Functional testing by glucose-stimulated C-peptide 

secretion (GSCS) was illustrated (G). Bars indicated significant difference (*, p-value < 0.05). 
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Notch signaling optimization generates potential cAD-MSC-derived IPC-like cells 

 According to the summary of IPC-like cell induction protocol efficiency illustrated in Table 

2, it has been suggested that generation of cAD-MSC-derived IPC-like cells using 

microenvironmental manipulating approach seemed the most efficient protocol in terms of 1) 

morphological appearance and colony number, 2) pancreatic mRNA marker expression, and 3) 

functional property (glucose-stimulated C-peptide secretion: 0, 5.5, and 22 mM glucose). In this 

regard, Notch signaling optimization was performed for generating the potential cAD-MSC-derived 

IPC-like cells using protocol mentioned in our previous report (66).  

cAD-MSC-derived IPCs were generated using optimized three-step induction protocol (Fig 

6A) with Notch signaling manipulation using gamma-secretase inhibitor, DAPT, during definitive 

endoderm induction (DAPT-A) (Fig 6B) or pancreatic endoderm/progenitor induction (DAPT-B) (Fig 

6C). The results showed that, in all conditions, cells started colony formation since day 3 post-

induction, then colony size and number were increased during the induction period (Fig 6D). Total 

colony counts (median) were 834, 691.5, and 504 colonies per batch (1x106 seeding cells) for 

control, DAPT-A, and DAPT-B, respectively (Fig 6E). It seemed that DAPT-B delivered more 

proportion of small-size colony (<50 µm and 50-100 µm), but statistical difference was not applied 

due to variation among groups (Fig 6F). 
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Pancreatic mRNA analysis illustrated that cAD-MSC-derived IPC-like cells from DAPT-B 

condition significantly showed lesser degree of pancreatic endoderm marker (Pdx1) and pancreatic 

beta-cell markers (Isl-1, Maf-A, Glut-2, and Insulin), comparing with those from DAPT-A condition 

(Fig 7A and B). However, alpha-cell hormonal marker (Glucagon) of DAPT-B group was much lower 

than that in DAPT-A group. Glp-1r was downregulated in all conditions (Fig 7C). Interestingly, 

analysis of Notch target genes, Hes-1 and Hey-1, showed that DAPT-B group showed significant 

upregulation of both genes comparing with others (Fig 7D). Functional testing showed that cAD-

MSC-derived IPC-like cells from DAPT-B condition yielded highest basal C-peptide secretion as well 

as the higher glucose-responsive C-peptide secretion upon low (5.5 mM) and high (22mM) glucose 

stimulation, comparing with control and DAPT-A groups. It should be noted that, due to variation 

within group, statistical difference within each group was not found (Fig 7E).     

Taken together, the results suggested that cAD-MSC-derived IPC-like cells could be 

efficiently generated using microenvironmental manipulating approach with Notch optimization. 

The obtained IPC-like cells from Notch inhibition during pancreatic endoderm/progenitor induction 

showed pancreatic islet/beta-cell characteristics and positive trend of functional property. 
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Table 2 Summary of IPC-like cell generation from cBM-MSCs and cAD-MSCs 
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Figure 6 Generation of cAD-MSC-derived IPC-like cells with Notch signaling manipulation. 

Diagrams of Notch signaling manipulation used for the generation of cAD-MSC-derived IPC-like cells 

were showed (A-C). Morphological appearances of cells undergone each of induction technique 

were observed under phase-contrast microscope with magnification of 40X and 200X (D). Total 

colony number (E) and colony size proportion (F) were evaluated.  
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Figure 7 Generation of cAD-MSC-derived IPC-like cells with Notch signaling manipulation.  

mRNA markers relating to pancreatic endoderm (A), pancreatic beta-cell (B), pancreatic-relating 

markers (C), and Notch target genes (D) were analyzed by RT-qPCR. mRNA expression was 

normalized with reference gene and undifferentiated control. Functional testing by glucose-

stimulated C-peptide secretion (GSCS) was illustrated (E). Bars indicated significant difference (*, p-

value < 0.05; **, p < 0.01; ***, p < 0.001).  
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DISCUSSION 

As the proof-of-concept evidences for treating diabetes by regenerative therapy have 

been reported in human and animal models (15, 17, 18, 32, 51, 68), MSCs have been proposed as 

one of the promising resources for generating clinical applicable IPCs (48, 51, 54, 88-92). In this 

study, the pancreatic differentiation potential of cBM-MSCs and cAD-MSCs was evaluated aiming 

for determining the feasibility of IPC formation in vitro and the potential of their clinical application. 

The cBM-MSCs and cAD-MSCs were isolated, cultured, and expanded using previous published 

protocols (83, 92-94). Their characteristics were similar as described in previous reports including 

fibroblast-like structure; mRNA expression related to stemness, proliferation, and MSC markers; 

and osteogenic differentiation potential (83, 93-97). These evidences supported the consistency of 

the cMSCs’ properties used in this report. It should be suggested that comparing the expression 

of stemness-, proliferation-, and MSC-related markers of the isolated cMSCs with the initial tissues 

(bone marrow aspirate and adipose tissue) might reflect the homogeneity of the isolated MSC 

population.     

 In term of IPC formation in vitro, various protocols employing either microenvironmental 

manipulation or genetic manipulation have been reported (21, 24, 26, 33, 34). The strategies used 

in these studies usually relied on origin and pluripotency/multipotency of the cells (43-46, 98). It 

should be noted that pluripotent SCs, embryonic SCs (ESCs) and induced pluripotent SCs (iPSCs), 
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contained high capability of pancreatogenesis in vitro (99-104). However, due to their ethical and 

safety concerns, MSCs have been proposed as an alternative source for IPC generation (20, 21, 25, 

26, 28-32, 100).  

Here, we illustrated that cBM-MSCs and cAD-MSCs could be differentiated toward 

pancreatic lineage in vitro. However, each cell type contained different pancreatic differentiation 

potential and required a tailor-made induction technique. For IPC generation by cBM-MSCs, it has 

been shown that microenvironmental manipulating approach with low attachment culture (2D 

culture) could not produce an islet-like cell aggregate in vitro, but it required 3D culture technique 

for generating and maintaining the colony-like structure of IPC-like cells. By using hanging-drop 

culture technique, cBM-MSCs formed cell aggregates since day 3 post-induction, then size of the 

colony was increased along with the expression of pancreatic mRNA markers. Further experiment 

showed that Matrigel®-embedded culture of the colonies derived from hanging-drop culture could 

give a dense colony structure and higher levels of pancreatic marker expression.  

Previous publications reported that small molecule induction could imitate the 

environment during pancreatic endocrine development (20, 66, 103, 105-110). Generally, an in vitro 

pancreatic differentiation from SCs could be categorized into 6 differentiation stages: 

pluripotent/multipotent SCs, mesendoderm, definitive endoderm, pancreatic endoderm, 

pancreatic endocrine, and pancreatic beta-cells/IPCs (54, 111). In this study, activin A was used to 
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mimic the effects of endogenous noggin for shortcutting the definitive endoderm establishing step 

as described in previous reports (24, 54, 57, 58, 66, 112-116). It was quite interesting that maintaining 

the cBM-MSCs with pancreatic induction media in low attachment culture was unable to form 

colony-like structure which is the natural pancreatic islet topology and crucial for an in vitro 

pancreatic differentiation (24, 58, 66, 104, 117-119). Therefore, the 3D culture condition using 

hanging-drop and Matrigel®-embedded culture techniques were used for generating the cBM-MSC-

derived IPC-like colony. It has been shown that hanging-drop culture was an efficient technique for 

embryoid body/cell colony formation in vitro (120-123), and natural/synthetic hydrogel-embedded 

culture was one of effective culture techniques used for organoid formation and expansion (124-

128). In this study we demonstrated the successful IPC-like colony formation by these two culture 

techniques. However, it was quite difficult to collect and expand the IPC-like colonies since colony 

maintaining and medium changing for hanging-drop culture were time-consumed, and treating the 

Matrigel®-embedded colony with hydrogel digesting solution (Cell Recovery Solution®, Corning, 

USA) caused colony dissociation. Further functional assay could only be performed for IPC-like 

colonies derived from hanging-drop culture and found that the obtained IPC-like colonies could 

basally secrete C-peptide but not a significant response to glucose stimulation.  Additional genetic 

manipulating approach was performed and showed that overexpression of PDX1 at MOI 20 could 
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enhance pancreatic beta-cell marker expression but was unable to produce 3D IPC-like colony. 

Expression of Glucagon, a hormonal gene of alpha-cell (33, 49), was also found. 

At MOI 30 and MOI 50, cell cluster formation was apparently found, correlating with 

previous report (129). However, the expression of pancreatic mRNA markers was very much lower 

comparing with MOI 20 transfection. This might due to a decreased cell viability after high viral titer 

transfection as mentioned in previous study (130). 

These findings led to the integration of genetic and microenvironment manipulating 

approaches by hanging-drop culture of PDX1-transfected cBM-MSCs under three-step induction 

cocktails. The results demonstrated the successful formation of 3D IPC colonies with significant 

pancreatic marker expression. Functional assay also confirmed the glucose-responsive C-peptide 

secretion of the obtained colonies. These findings were correlated to previous reports. PDX1 is an 

essential gene in the first hierarchy of pancreatic organogenesis progressing toward beta-cell 

maturation (53, 54). PDX1-positive cells were considered as the pancreatic progenitors for three 

pancreatic lineages, comprising endocrine, exocrine, and ductal cells (20). It has been shown that 

overexpression of PDX1 by lentiviral vector into mouse MSCs could enhance IPC generation by 

triggering the morphological change from adherent spindle fibroblast-like cells toward a ball-like 

cell colonies (26, 50). For cBM-MSCs, we found that 3D culture condition was required to form the 

IPC-like colony which was considered as the native pancreatic islet morphology (69, 117, 119).  
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 Thus, cBM-MSC-derived IPC-like cells were able to obtain from the integrating protocol of 

genetic and microenvironmental manipulation. However, hanging-drop 3D culture technique was 

time- and labor-consumed, making it less clinical applicable.     

To find an alternative way, cAD-MSCs has been proposed as a potential MSC candidate for 

regenerative diabetes therapy as mentioned in previous reports (49-51, 108, 131). We showed in 

this study that cAD-MSC-derived IPC-like colonies could efficiently be generated from low 

attachment culture with the expression of crucial pancreatic mRNA markers. Functional assay 

showed a basally C-peptide secretion with trend of glucose-responsive c-peptide secretion in high 

glucose (22 mM) stimulation. In order to compare the potential for further clinical application, it 

seemed that cBM-MSC-derived IPC-like cells showed less clinical application potential due to the 

complicated and time/labor-consumed induction protocol, so cAD-MSC-derived IPC-like cells were 

further optimized.      

Various factors and signaling have been studied and shown the potential effects on IPC 

generation in vitro. In this regard, Notch signaling was of interest due to its significant effect during 

pancreatogenesis both in vivo and in vitro (55, 72, 73, 77, 79, 132-134, 135 , 136). cAD-MSC-derived 

IPC-like cells were generated using optimized three-step induction protocol with Notch signaling 

manipulation using gamma-secretase inhibitor, DAPT, during definitive endoderm induction or 

pancreatic endoderm/progenitor induction. We found that Notch inhibition during pancreatic 
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endoderm/progenitor induction yielded a significant functional benefit for cAD-MSC-derived IPC-

like cells as seen in significant higher basal C-peptide secretion and positive trend of glucose-

responsive C-peptide secretion stimulated by low (5.5 mM) and high (22 mM) glucose. 

These findings were correlated with previous studies that Notch signaling played a major 

role in embryonic development during pancreatic organogenesis by the activation on the early 

stage of development, enhancing Pdx1-postive pancreatic precursors and inhibiting the latterly 

stage driving on  pancreatic endocrine differentiation (73, 77, 134, 135 , 136). Inhibition of Notch 

during pancreatic endoderm induction in human dental pulp stem cells (hDPSCs) resulted in high 

number of IPC colony production with high expression of PDX1, while NKX6.1, an essential 

pancreatic beta-cell marker, was downregulated (55). It has been suggested that Notch signaling 

was required during late state IPC production and maturation (66, 134, 137). Hes-1 play and 

important role in preventing premature differentiation. Therefore, the Hes-1-defficiency showed 

the acceleration on all pancreatic endocrine cell differentiation which might affect the property of 

generated endocrine cells (82, 135). It was quite crucial that the IPC generated by the in vitro 

protocol should be fully matured as shown by an expression of crucial pancreatic beta-cell marker, 

an insulin production along with a significant C-peptide/insulin secretion in both of basal condition 

and glucose stimulation. To address this concern, various components should be further optimized. 

In addition, the positive control for pancreatic mRNA marker expression by using canine pancreas, 
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the negative control for glucose-stimulated C-peptide secretion (GSCS) study using undifferentiated 

cMSCs, and the ideal control using pre- and  post-prandial levels of secreted C-peptide/insulin 

from canine model should also be considered. 
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CHAPTER V 

CONCLUSION 

In conclusion, we illustrated that cMSC-derived IPC-like cells could be generated from 

cBM-MSCs and cAD-MSCs in vitro. However, these two cMSCs contained different pancreatic 

differentiation potential and required specific induction techniques. Thus, to make the clinical 

applicable cMSC-derived IPCs, further studies should be focused on IPC maturation, glucose-

responsive function, and transplantation platform.    
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