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CHAPTER 1 

INTRODUCTION 

With the development of meta-heuristic algorithm, high performance parallel 

machines, distributed computing and quantum computing [1], the complexity of 

cracking the encrypted communication is not as secure as before. The complexity of 

cracking the encrypted communication is controlled by the time spent to guess the 

keys in today’s asymmetric cryptography algorithms, which are mostly based on 

modulus functions. As a result, a new cryptography method for messages ought to 

be more sophisticated than current approaches such as utilizing a neural network or 

an elliptic curve [2] to make the cracking steps harder. Besides, the RSA cryptosystem 

normally used is still secure nowadays but its steps of encryption and decryption are 

inflexible. 

Based on the above, a new cryptography method is proposed by deploying 

one explicit joint conic neural structure. and a adaptable single secret key with 

multiple blocks varying lengths. With our cryptography method, the sender could 

encrypt all kinds of textual messages with different lengths, and the length of the 

cipher could be easily varied as well. Recently, various neural cryptography attempts 

have been described. To build efficient private key [3], several researchers 

synchronized the networks by using twin time-dependent weights. The effects of this 

was also used by the dynamics of neural cryptography [4], Nonetheless, those 

methods focused solely on key exchange schemes without flexible realization of 

non-linear functions depend on neural network. 

Neural cryptography is divided into three types: (1) multi-layered neural 

networks, (2) synchronized neural networks, and (3) chaotic neural networks. 

Some researchers have already used a neural network to study cryptography 

and shown that cracking the encrypted communication is difficult [5], following that, 
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the Google Brain researchers trained a new system that used a generative adversarial 

network without attempting to learn any specific techniques [6], Nonetheless, this 

schema is difficult to examine and deploy since it did not provide any information 

about what the algorithm studied [7]. While this schema proved to be robust [8]. The 

researchers in [9], used multi-layered neural networks to realize the generative 

adversarial network. The encoder and decoder of this method performs admirably, 

while the security needs to be enhanced. 

In terms of space and time complexity, this paper uses a multi-layered neural 

network technique with a special joint conic structure and secret key to strengthen 

the hardness of guessing the neural network structure and weights. Integers are used 

as the input in our cryptosystem since they are easy to check and alter for beginners 

who are unfamiliar with the cryptosystem. Integers could also be replaced by float or 

binary numbers. The binary number is used as the input for neural networks in other 

cryptosystems. 

The following sections made up the rest of this paper: 

The background of classical cryptography and other models are briefly 

summarized in Section 2. The proposed method is discussed in Section 3. The 

experiment of our method with detail are shown in Section 4. The complexity and 

security are analyzed and examined in Section 5. And some advice about the 

cryptosystem and conclusion are given in the last Section. 
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CHAPTER 2 

BACKGROUND 

2.1 Traditional cryptography 

People have used the transposition and substitution ciphers for message 

confidentiality in the beginning [7, 10]. For example, Caesar cipher is one of the most 

famous substitution ciphers which replaced each letter in the plaintext with the 

other letter several fixed number of slots further down the alphabet table. 

Two significant techniques used in encryption are secret key (symmetric) and 

public-key (asymmetric) encryption, classified based on the number of keys. 

Commonly, asymmetric encryption uses one public key known by everyone for 

encryption and another private key utilized for decryption. But for symmetric 

encryption, two individuals share the same key to code and decode the information. 

There exists another method typically implementing a digital fingerprint named Hash 

functions which uses a mathematical conversion to encrypt the message irreversibly. 

With the development of cryptography, there are also several common ways 

developed by the people used to crack the cipher, such as the brute force attack. 

The brute-force attack method only works for the cipher that could be calculated, 

and the possibility is finite. For English alphabet, since there is only 26 lower 

alphabets. Some character is used more often than other characters. For example, 

"e" is the most common alphabet is the communication of normal people. Hence, 

the frequency and distribution analysis is another powerful tool used to crack the 

cipher with only English alphabets and symbols. Another common way used to 

attack the cipher is the dictionary attack, which used a common cipher in one 

dictionary to compare with the cipher being hacked. While the dictionary will be very 

large, and it is very possible not to find any correct cipher in the end. 
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With the popular of machine learning, people have used it in the field of 

cryptography. In 2000, John Kelsey, Bruce Schneier, et al. using side channel to do 

the cryptanalysis towards product ciphers [11], And in 2019, Liyao Xiang, Haotian Ma, 

et al. proposed using the complex-valued neural network in this field as well to 

protect privacy information [9]. 

Table  2.1 The pros and cons of typical Cryptography Algorithms. 

 

Cipher Pros and cons 

1. Reverse cipher easy to operate and hack 

2. Substitution 
cipher 

 

2.1 The simple 
substitution cipher 

effectively invulnerable; the weakness is frequency and 
distributions of symbols 

2.2 Caser cipher more possible keys; while only all 66 possible keys; 
mathematical proven unbreakable while hard to practice 

2.4 Vigenere cipher invincible to the word pattern attack; the weakness is 
repeating of the key 

2.5 DES use a Feistel network while not secure now 

2.6 AES high speed and low RAM requirements; a variant of Rijndael; 
while uses simple algebraic structure and encrypt every block 
the same way 

3. Transposition 
cipher 

much more keys while still can use brute-force to hack 

4. Asymmetric 
Cryptography 

much more computationally intensive than symmetric ones; 
in theory, weak to a "brute-force key search attack." 

5. Hash Functions well-suited for ensuring data integrity; while they are not 
easily decipherable 
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Including the common hack methods, the table 2.1 briefly shows the pros 

and cons of traditional encryption and decryption algorithms. Since there are too 

many algorithms for encryption and decryption, we just select the typical 

cryptography methods in the table according to their develop time. 

In the beginning of Table 2.1, Reverse cipher may be the easiest method that 

only reverses the message to encode and decode. Additionally, there are two main 

branches of Cryptography, distinguishes as substitution and transposition 

cryptography [10]. The substitution cipher replaces units of plain text according to 

the set-up rules. The simple substitution cipher, Caesar cipher, Affine cipher, and 

Vigenère cipher are all typical examples of substitution ciphers. Furthermore, there is 

one quite particular type of substitution cipher called the one-time pad, which is 

simple and yet only mathematical proven unbreakable. One-time pad is a stream 

cipher if the key meets these criteria: 

1. it is truly random. 

2. its length must be at least as long as the plaintext. 

3. it is not reused in any part of the message. 

4. it must be kept completely secret. 

Vigenère cipher is a poly-alphabetic substitution cipher that can be taken as 

the two-time pad cipher. A brute-force dictionary attack and more advanced 

techniques such as the Kasiski examination and Friedman test can be used to find 

the prime weakness of the Vigenère cipher. It is easily broken after the attacker finds 

the key length. Compared to the substitution cryptography superseding a plain text 

with other symbols, the transposition cryptography readjusts the position of the 

letters in the plain text. The substitution and transposition ciphers may be combined 

to gain the name of product cipher. 
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In symmetric encryption, two individuals share the same key while two keys 

are normally used in asymmetric encryption, one for encryption and the other for 

decryption. The number of bits is employed to measure the robustness of the 

cryptography key. Table 2.2 summarizes the number of bits in each cipher [12]. 

Table  2.2 The minimum key length of different cryptography algorithms. 

 

Type Usage Minimum Key Length (bits) 

Symmetric key Personal 128 
 Small Business 192 

 Big Company 256 

Discrete key Personal 250 
 Business 250 

 

The key length is quite different for various cryptography, and the minimum 

length for the same algorithm also needs to be changed with the development of 

mathematics and hardware. Generally, the weakness in cryptography is 

fundamentally based upon key management rather than weak keys [11], and the 

suggestion of key size could only be a minimal setting reference around 2021. In our 

cryptosystem, the cipher key is the weights and biases of the input layer to the 

hidden layer if there is only three layers in the model, which means it is easy to 

arrive the minimal secure length that needs to be used under different conditions. 
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2.2 Other models 

There are three basic models: Restricted Boltzmann Machine (RBM), Principal 

component analysis (PCA) and Autoencoder. 

RBM only has 2 layers, the first layer is for input and second layer is for 

output. In more detail, RBM only train 2 hidden nodes in the hidden layer and send 

out either 0 or 1. 

RBM has two phases: Forward pass and Backward pass (or reconstruction). 

The output of the hidden units is the probability distribution. In other words, 

RBM uses input data to make predictions about the probability of output based on 

the given weights. 

PCA is a method using the most important components to perform a change 

of basis on the input, which mainly used for dimensionality reduction. 

As for Autoencoder, it is one kind of artificial neural networks which 

reproduces the input and improves the Restricted Boltzmann Machine (RBM). The 

difference between autoencoder and RBM is that the former has 3 layers and the 

latter has 2 layers [13]. In other words, the output of one autoencoder is the same as 

the input. Compared with our model, the autoencoder also has the encoder layer, 

coder layer, decoder layer. The main usage for autoencoder is also dimensionality 

reduction, except this, image denoising and image compression are the applications 

that autoencoder also performs well [14]. About data separation, autoencoder 

provided us with a better result comparing with PCA. 

The autoencoder has several common variations: Sparse autoencoder (SAE), 

Concrete autoencoder, Variational autoencoder (VAE). On the code layer, the sparse 

autoencoder involves a sparsity penalty to the training criterion. The sparsity penalty 

helps model to activate specific areas of the neural network on the basis of the 

input data while inactivating all other neurons. 
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While our model compared with the autoencoder, we have the secret 

dimension as the secret key to the input layer. The secret key could not only be the 

hash value to check the consistency of the information, but also with plasticity 

dimensions could help to resize the input data. 
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CHAPTER 3 

PROPOSED METHOD 

3.1 Our Method 

Figure 3.1 illustrates the proposed concept. Only a three-layered network 

topology consisting of is explored to simplify the proposed method’s explanation. 

The input contains the message to be encrypted, a secret key dealt by the 

cryptosystem will be added to the input in the input layer of the neural network. 

The cryptosystem would continue to train the network until the outputs match the 

input (loss less than 0.5) automatically. 

In the beginning, the weight and bias matrix between the input layer and 

hidden layer, as well as the secret key, are utilized as keys to encode the message, 

which are then dealt by the cryptosystem to produce the cipher. To decode the 

cipher and verify it, the receiver uses the upper part of the same network structure 

to get the original message along with the secret key to verify no third person alter 

the cipher. The secret key including the number of secret dimensions and accurate 

value, structure of the network consisting of number of hidden neurons and input 

neurons, and number of layers could be set by the cryptosystem automatically or 

decided by the sender and receiver. 
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Figure  3.1 Proposed concept 

The first layer including (1) a set of input neurons which represents the 

message X = {𝑥1, 𝑥2, … , 𝑥𝑀 | 𝑥𝑖 ∈ 𝑅}; (2) a secret key S = {𝑠1, 𝑠2, … , 𝑠𝐵 | 𝑠𝑖 ∈

𝑅}. 

The cryptosystem would randomly allocate the physical positions of M and S 

in the input layer. In more detail, the first 𝑛1 neurons may be allocated for M, 

whereas the remaining are allocated for S. Normally, number of layers may be varied 

freely depending on the encryption message’s resilience and security. 

The second layer is made up of a group of nodes H = {ℎ1, ℎ2, … , ℎ𝐶}, 𝐶 

could be larger, equal or smaller than 𝑀 + 𝐵. As a result, the cipher size may be 

smaller, equal to, or bigger than the plaintext. The number of neurons in third layer 

is totally the same as in first. 

Both the message Y = {𝑦1, 𝑦2, … , 𝑦𝑀 | 𝑦𝑖 ∈ 𝑅} and the secret key S′ =

{𝑠1
′ , 𝑠2

′ , … , 𝑠𝐵
′  | 𝑠𝑖

′ ∈ 𝑅} are produced by the output neurons, and Y = X, S’ = S. 
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Use w𝑖
(ℎ𝑖𝑑𝑑𝑒𝑛), and b𝑖

(ℎ𝑖𝑑𝑑𝑒𝑛) to represent the weight, bias matrix of hidden 

neurons ℎ𝑖 . 

So every input pattern is a matrix represented as XS. The following is how ℎ𝑖  

it is calculated. 

ℎ𝑖 = 𝑔(XS ⋅ w𝑖
(ℎ𝑖𝑑𝑑𝑒𝑛)

+ b𝑖
(ℎ𝑖𝑑𝑑𝑒𝑛)

) 

In our Python application, the default activation function 𝑔(⋅) was Rectified 

Linear Unit (Leaky-Relu) which could also be changed to others. 

The value of each w𝑖
(ℎ𝑖𝑑𝑑𝑒𝑛) and b𝑖

(ℎ𝑖𝑑𝑑𝑒𝑛) are generated by training the 

network with the Adam [15] algorithm. We employ the adaptive learning rate in our 

model instead of the schedule learning rate in our structure. All w𝑖
(ℎ𝑖𝑑𝑑𝑒𝑛) are 

placed in the set W. 

The third layer will produce 2 sets of neurons. The first set Y generates the 

same message as X. The weight and bias matrices of output neurons 𝑦𝑖 in Y are 

represented as w𝑖
(𝑜𝑢𝑡) and b𝑖

(𝑜𝑢𝑡). The second set S’ generates the same output as 

S. The weight and bias matrices of secret-dimension neurons 𝑠𝑖
′ are represented as 

w𝑖
(𝑠𝑒𝑐𝑟𝑒𝑡) and b𝑖

(𝑠𝑒𝑐𝑟𝑒𝑡). 

For each output, the neuron utilizes the result of the dot product of the 

weights and inputs, and that result is adjusted according to the biases. The integer 

outputs of the network must be rounded to have the same value as the inputs. Each 

output neuron’s 𝑦𝑖  and 𝑠𝑖 could be calculated as follows. 

 

𝑦𝑖 = {
⌈𝑔(ℎ𝑖 ⋅ w𝑖

(𝑜𝑢𝑡)
+ b𝑖

(𝑜𝑢𝑡)
)⌉ if 𝑔(⋅) ≥ 0.5

⌊𝑔(ℎ𝑖 ⋅ w𝑖
(𝑜𝑢𝑡)

+ b𝑖
(𝑜𝑢𝑡)

)⌋ if 𝑔(⋅) < 0.5

𝑠𝑖
′ = {

⌈𝑔(ℎ𝑖 ⋅ w𝑖
(𝑠𝑒𝑐𝑟𝑒𝑡)

+ b𝑖
(𝑠𝑒𝑐𝑟𝑒𝑡)

)⌉ if 𝑔(⋅) ≥ 0.5

⌊𝑔(ℎ𝑖 ⋅ w𝑖
(𝑠𝑒𝑐𝑟𝑒𝑡)

+ b𝑖
(𝑠𝑒𝑐𝑟𝑒𝑡)

)⌋ if 𝑔(⋅) < 0.5
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The cipher includes w𝑖
(𝑜𝑢𝑡), w𝑖

(𝑠𝑒𝑐𝑟𝑒𝑡), b𝑖
(𝑜𝑢𝑡), b𝑖

(𝑠𝑒𝑐𝑟𝑒𝑡), and 𝑖. The W′ 

and b′ are cipher part. 

The processes for our method are shown in Algorithm 1 and Algorithm 2. 

Algorithm 1: Encryption 

Inputs: (1) a secret key represented by S. (2) the message values represented 

by X. (3) the number of hidden neurons if the sender want to set. 

Output: (1) w𝑖
(𝑜𝑢𝑡), w𝑖

(𝑠𝑒𝑐𝑟𝑒𝑡), b𝑖
(𝑜𝑢𝑡), and b𝑖

(𝑠𝑒𝑐𝑟𝑒𝑡) for all 𝑖. (2) the 

cipher H. 

The network structure information including the number of layers and 

number of neurons in different layers. 

Algorithm 2: Decryption 

Inputs: (1) cipher H. (2) one weight matrix W′ and one bias matrix b′. (3) a 

secret key represented by S. (3) the information about network structure including 

the layer count and neuron count in different layers. 

Output: decrypted message. 

1. Use the upper neural network part for decryption. 

2. The weights and biases matrix represented by W′ and b′ automatically 

calculated by the cryptosytem using the received information from the sender. 

3. Feed H and calculate output O = {Y, S′}. 

4. Extract the secret key S′, Y from O, if one attacker has altered the cipher, 

then the secret key would also be affected and different with the original one. 

5. Check If S = S’, Y = X, then the cipher has not been altered. 
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3.2 Difference with other models 

Compared with other models, out cryptosystem is more flexible and 

adjustable according to different status. There are several differences between our 

cryptosystem and other approaches in these aspects, e.g. the model design, 

normalization of the data, running time, the length of the message change, the 

encryption and decryption key, the fail rate to decode the cipher and the secret key 

used in our model. The model design is the prototype of the cryptosystem which 

could also be added more hidden layers. Not only the secret dimensions, but also 

the hidden layer in our neural cryptosystem has plasticity. 

If the model has many layers, the encrypted message could be taken from 

the output of any layer. For example, except the input and output layer, one neural 

model has six hidden layers, the first three hidden layers used for encryption and the 

later three layers used for decryption part. Then, the cipher of the cryptosystem 

could be produced by the any layer of the first three hidden layers. Normally, we set 

the last hidden layer for the encryption part as the output of the cipher. Technically, 

any hidden layer including the hidden layer used for the decryption could also be 

used for generating the cipher. 

The structure of our model is shown in Figure 3.2. The upper part of the 

cryptosystem is for the sender to set and adjust the configuration. The latter part of 

the cryptosystem is used for the receiver to adjust and set the configuration to 

obtain the decrypted message. 

In our model, it is clear that the encryption key and decryption key are 

distinguish. It is convenient to let the cryptosystem to generate a new unique key if 

one loses the encryption key by using a random seed number. The structure of the 

network can be adjusted according to this key to speed up the convergence of 

encryption process based on synaptic weight adjusting. 
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Figure  3.2 The structure of our model. 

 

3.3 Model Design 

In the proposed method section, the picture we showed only has one hidden 

layer. If the input dimensions is large (more than 1,000), the cryptosystem will use 

the network with deeper layers. Comparing with other models, our model design is 

more flexible which could be adjusted according to the specific situation. 
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Since our cryptosystem is used for textual message, the output needs to be 

the same with the input. So the input of each character will be one training data, as 

well as one input node, the label of training data is itself, so the whole process is 

unsupervised learning [16]. According to this, we designed the cryptosystem mainly 

depending on DNN (deep neural network). For our future study, if we resized the 

input data, we could also use other popular neural network structure to realize our 

cryptosystem [17]. For example, if we change the 1-D input data to 2-D pictures, then 

we are able to deal with the input data as the images. For images, CNN 

(convolutional neural network) [18] is a good choose to select the main feature of 

the input data. Besides this, the reinforcement learning could also help to realize our 

cryptosystem since the reinforcement study could study according the feedback of 

our data [19]. 

3.3.1 Scale the data 

        Our cryptosystem uses the integer as the input data. While if you want 

to use the min-max scaling to normalize the data to binary data, it will be faster if 

the input dimension is large (more than 1,000) to encrypt the information. Most of 

the other model used the technique of normalization [20] to make the gradient 

descent converge quicker towards the minima. 

        While the benefits of using the integers is that we could easily check 

and compare the decoded text with the plaintext. And it is also more friendly for the 

sender and receiver to use the integers. Since Unicode is the extent of the ASCII 

code, for the same alphabet, the ASCII code is the same with its Unicode value. So 

another advantage of using integers as the input can transfer from the ASCII code to 

Unicode easily without so much change and vice versa. 

        For our future study, for image and video input information, we consider 

taking normalization to change the integer data to binary data to faster the training 

process. 
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3.3.2 Running Time 

        The main time used for the message is to find the suitable structure of 

the model. In the section 4, we introduced the way to find the suitable number for 

the secret dimension and the hidden nodes with the minimum loss. This part of the 

training time is decided by the hyperparameters we set in the model, such as the 

learning rate, the EarlyStopping, the number of epochs. The accurate time is 

different for all kinds of lengths of the message and hyperparameters. Since our 

cipher is multiple blocks cipher, so it is free to set the block size. If the user has set 

the block size, such as two users agreed to encrypt every 10 symbols as the 

plaintext in this month. Then the structure of the model could be decided in the 

beginning after found the suitable number of secret key and the number of hidden 

dimensions. So the first part of the model just needs to be run once in this month to 

decide the structure of the cryptosystem model at first. Later, the users just need to 

encrypt and decrypt the message based on the built mode. For the short message, if 

the input dimension is less than one thousand (1,000), the whole cryptosystem 

could be trained in less than 5 seconds with GPU. If already get the suitable number 

of secret dimensions and the number of hidden nodes, the encryption part could be 

finished in 1 second and the same for the decryption part. For long message, if the 

plaintext has more than one thousand (1,000) while less than twenty thousand 

(20,000) symbols, the input could be resized otherwise the loss will high. After the 

input dimensions have been adjusted, the cryptosystem could use different strategy 

depends on the hardware to compile and train the model. After that, the encryption 

time and decryption is similar to the short message. 

3.3.3 Message Length change 

        Different from our model, the encrypted string length changes from N 

to 2𝑁 after encryption in [5]. The hidden layer of our cryptosystem is plasticity. And 

we used the block cipher, the block size could be set or unfixed. Each block of the 
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message after being encrypted, the cipher could be larger, equal or less than the 

original one. 

        Normally if the input message is less than one thousand characters, it is 

recommendable to take the second encryption in the cryptosystem or combine 

other encryption method as the second encryption to make the whole system 

harder to be hacked. In more detail, the length of every encrypted block changes 

from the input layer to the hidden layer, which is the encryption part and turns back 

to the original size from the hidden layer to the output layer after decryption. 

3.3.4 Encryption And Decryption key 

        As for the encryption key, it is a matrix which composed of random 

numbers and used between the input layer and the hidden layer in the 

cryptosystem. Additionally, without second encryption, the key is part of the 

cryptosystem. Furthermore, the decryption key is the matrix which composed of 

random numbers as well, and it used between the hidden layer and the output 

layer. It should be emphasized that when the length of the encryption key is 

precisely as long as the encrypted message, our model is the one-time pad cipher 

and in theory unbreakable under such situation. However, in terms of the program, 

the treacherous built-in random function will generate pseudo-random numbers. 

These may be clues to a solution for attack the encryption and decryption key for 

one attacker.It was interesting to note that there is no specific relationship between 

the cipher and the plaintext. In other words, the cipher can be longer, equal, or 

shorter in relation to the original message. 

3.3.5 Fail Rate Of Decryption 

        Different from other works in the cryptosystem, our model does not 

have the fail rate. In [6, 8] they use symmetric encryption systems, and the neural 

network structure will be changed during the training. At the same time, our model 

sets the parameters of neural networks in the beginning without the training and 
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learning process. In [6, 7], the training of the neural network failed half of the time. 

And in [8], the system needed about 25000 trails to get a robust result, and the fail 

rate is 1/3. There was no unmatched text in large amounts of experiments with plain 

text, which proves that our model is robust, and it must get the correct decipher 

according to the proven mathematics. 

3.3.6 The Secret Key 

        The secret key plays several vital roles in our cryptosystem. On the one 

hand, we could flexibly adjust the size of input if the dimension of the input is too 

large. For the secret key, not only it could be the noise adding into the original data, 

it could also change the input dimensions flexible to meet the requirement of 

cryptosystem. 

        Except this, the secret key could be used as the hash function to check 

if the receiver receives the correct data. If one attacker modified the data on the 

way, the secret key will also be changed and the receiver will know that the data 

has been cracked. In other word, it makes the cryptosystem safer and the receiver 

could check the cipher as well. 

        For our future study, we will use the cryptosystem to encrypt the image 

and video data. While if we just add one pixel to one RGB picture, the picture could 

not be resized to the original width and height. So the secret key could be used in 

two ways. One is the secret key could be used as the noise data, adding to some 

pixels of the picture without changing the original height and width. The other is we 

can add more pixels to change the picture size, and it could be resized to the new 

height or new width. For instance, we could add one row of the pixels to the picture 

so after resized, the height of the picture should plus one to get the new image. 

        Except these, since the secret key could be string or random numbers, 

it could take a lot of information to the receiver. If we use the timestamp to 
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generate the random numbers for the secret key, the receiver could get the time 

information with the sender. The generated random numbers could also add some 

random information such as the weather today to make the cipher become more 

complex and hard to crack. Besides, the secret dimensions could also be a good 

interface for other coded information such as Morse code. 

        There are also many types of design for the secret key of the 

cryptosystem. For example, you could use the Huffman code to code the plaintext 

first, and store the information in the secret key. When the receiver gets the cipher, 

the decoded plaintext needs to use the information in the secret key to decrypt 

again. 

        For our cryptosystem, we just use the normal way to design the model. 

The secret key of our cryptosystem consists of some random numbers. According to 

various situation, it is also flexible to adjust and change the number of secret 

dimensions. 
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CHAPTER 4 

EXPERIMENTS 

4.1 Data set 

We construct a plain text of various lengths for the data set. 

One sample is like figure 4.3, which is only the mix of all common symbols. 

The benefits of our cryptosystem is that even just a few data it could work. So if you 

do not have a dataset, just create some toy examples and used in the cryptosystem 

directly, adjust it and tuning the hyperparameters of the model. 

 

 

Figure  4.3 One sample in the samples directory. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 31 

Our cryptosystem could be extended to use Unicode easily. So we also 

prepared the Chinese, Japanese, Korean and Thai language in the data set to test the 

cryptosystem, as shown in the figure 4.4. In each other language directory, the 

subdirectory is similar like we prepared in the English directory. From the testing 

result, our cryptosystem could also work well with the Unicode representation. 

 

 

Figure  4.4 Dataset 

In the experiment, the following three samples with varying numbers of 

characters (including symbols such as space, ?, and!) were encoded and decoded to 

demonstrate how our method works. Encoding and decoding details are provided 

below. 

4.2 Encryption part 

Message 1: Hello, World! with secret key "13 10 108 111 118 101" 

Message 2: What do you want to eat in the evening? with secret key "33 116 

182 143 154 196 127" 

Message 3: How about we eat in the same restaurant we ate yesterday 

evening? with secret key "85 172 180 133" 

Leaky-Relu activation function was used for the hidden and output layers. 

After training the network 1000 epochs for each number of hidden neurons and each 

number of secret dimensions, the cryptosystem would pick up the suitable number 
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of hidden neurons and number of secret dimensions automatically according to the 

loss. It should be noted that if there are many numbers of hidden neurons providing 

the lowest loss depending on the input message and the number of secret 

dimensions, we will choose a random one as the number of hidden neurons, which 

could also be determined by the sender. 

 

 

Figure  4.5 Loss vs number of hidden neurons for 𝑯𝒆𝒍𝒍𝒐,  𝑾𝒐𝒓𝒍𝒅!. 

After the size of encrypted messages is determined, the size of the secret 

dimensions must be selected to match the loss. 

Figure 4.5 indicates the relation of loss and the number of hidden neurons 

and secret dimensions for the first message. The subfigure (a) in figure 4.5 shows the 

mean squared error (loss) changes versus the number of hidden nodes. 

The number of hidden nodes can range from one to twice the number of 

input neurons to test. In this range, for each integer, one model will be compiled 

and trained on the GPU or TPU, resulting in faster process of encryption. 
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(a) (b) 
Figure  4.6: Loss vs number of hidden neurons and secret key for message one 

 

Every loss in the subgraph (a) was less than 0.5. Adam’s initial learning rate 

was set at 0.01, and the number of secret dimensions was determined as 6 including 

"13 10 108 111 118 101". Figure 4.6 summarizes the minimum mean squared error 

(loss) with the change of the number of hidden neurons. The graphs also have 

comparable shapes for the same message testing. 

When the number of secret dimensions was less than three or greater than 

eight, the loss was unstable for subgraph (b). When other parameters were 

unchanged, we got the minimal loss with six secret nodes. From the experiment, the 

minimal loss might occur in the region between 1 and number of input neurons. 
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Figure  4.7 Loss vs secret key for 𝑯𝒆𝒍𝒍𝒐,  𝑾𝒐𝒓𝒍𝒅!. 

If the number of hidden neurons is fixed, then the size of the secret 

dimensions must be determined in relation to the loss. Figure 4.7 illustrates the 

relationship between loss and the number of secret dimensions. Because it required 

most of the time and effort to train the proper amount of secret dimensions and 

hidden nodes for one model, the model after trained for the first time could be 

used as a pre-trained model which could be reused. Transfer learning is the 

particular field under consideration here. And when a pre-trained model is used in 

the cryptosystem to generate a new message, all that required is to alter the last 

layer or add multiple additional levels. To accommodate the new input message 

with the same length, the model just needs little modification. However, pre-trained 

models are not frequently employed in the industry or academic community today. 
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Figure  4.8 Loss vs hidden neurons and secret key for What do you want to eat in 

the evening?. 

A representation of the loss of the second message as compared to the 

number of hidden neurons and secret dimensions is shown in Figure 4.8. When the 

hidden nodes exceeded the number of nodes above 19, the loss became stable. 

After that, the cryptosystem picked up the number of hidden nodes as 20, and 

trained the neural network again for getting the suitable number of secret 

dimensions. When the number of secret dimensions (secret key) reached 6, the loss 

was minimal. When the number of secret dimensions was more than 11, the 

instability increased. The secret dimensions and the number of hidden neurons for 

the second sample were set as follows: "33 116 182 143 154 196 127". And the loss 

of the second message was 1.1216 in one experiment. 

 

Figure  4.9 Loss, hidden neurons and secret key for How about we eat in the 

same restaurant we ate yesterday evening?.  
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The third message’s loss versus hidden neurons and secret dimensions are 

displayed in Figure 4.9. We obtained the least loss when the number of hidden 

neurons was 62. After setting the number of hidden neurons to 62, we were able to 

obtain the number of secret dimensions as 4 from the experiment according to the 

loss. The value of the secret key can be established arbitrarily or according to 

predefined rules agreed upon by the sender and receiver. It might be a single string 

or a collection of digits. The activation function for the hidden and output layers was 

implemented using the Leaky-Relu function, with the alpha parameter initialized to 

0.2. For the third message, the secret dimensions were set to "85 172 180 133" and 

the number of hidden neurons was set to 62. 

The encryption and decryption time for each sampled message are 

summarized in Table 4.1.  

Based on numerous trials, we recommend to test number of hidden neurons 

between half to whole of the number of input neurons to obtain lowest loss. For 

the range of secret key, it should be appropriate to test between one and half of the 

neural network’s input neurons. 

Table  4.1 Encryption and decryption time of three examples 

 

Samples 
# Input 
neurons 

# Secret 
keys 

# Hidden 
neurons 

# output 
neurons 

Encryption 
time (sec) 

message 1 13 6 10 1
9 

2.294 

message 2 39 6 20 4
5 

2.186 

message 3 65 4 62 6
9 

2.697 

 

4.3 Decryption part 

The receiver uses the upper part of the corresponding model to decrypt the 

cipher. For the first message, the output O was "Hello, World! 13 10 108 111 118 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 37 

101". The string part Y is "Hello, World!" and the secret dimensions S′ is "13 10 108 

111 118 101". For the second message, the decrypted text Y is "What do you want to 

eat in the evening?" and the secret dimensions S′ is "33 116 182 143 154 196 127". 

For the third message, the decrypted text Y is "How about we eat in the same 

restaurant we ate yesterday evening?" and the secret dimensions S′ is "85 172 180 

133". All output messages and secret keys are correctly decrypted. Figure 4.10 

summarizes the number of input nodes, number of secret nodes, and number of 

hidden nodes with the loss of each message. The loss shown in the Figure was 

rounded to 3 decimal places. 

 

Figure  4.10 Network structure to encrypt and decrypt three example messages. 

 

4.4 Testing environment 

The whole cryptosystem uses the TensorFlow 2.4.1 to build with the main 

coding language is python 3. We build several models both in the local and on the 
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cloud environment. In the local, the main computer our team used is one MacBook 

Pro (15-inch, 2018), whose system is macOS Big Sur with the processor 2.6 GHz 6-

Core Intel Core i7, and the memory is 32 GB 2400 MHz DDR4. There is one built-in 

GPU in the computer: Intel UHD Graphics 630 1536 MB. If the cryptosystem used for 

the plaintext less than 1000 characters, the use of GPU in the experiment will not 

make such a big difference. If we need to train thousands of characters together, the 

speed of CPU is far slower than using GPU in the experiments. 

The cloud environment such the Google Colab was not used in our 

experiment due to the service charge. There are also some limits for the normal 

users to use GPU and TPU, such as the Jupyter Notebook will lose the connection if 

the page did not use for too long time. And the maximum using time for GPU and 

TPU is around 12 hours, although we can deploy the cryptosystem to several google 

users to make the cryptosystem work all the time with GPU or TPU. For message not 

longer than 1000 characters, (one character is one input node to the cryptosystem), 

the time of the whole process including the encryption and decryption is not so 

much different with CPU, GPU or TPU. While for long message which is more than 

1000 characters, normally using TPU is faster than just using the GPU, and GPU is 

faster than just using the CPU. 

4.5 Training strategies 

Normally, when the input data is huge (more than 10,000 input dimensions 

trained once for one block) and full utilization of the computer resources is needed, 

it would be beneficial to employ some strategies as the followings. 

4.5.1 Weights and biases initialization 

        The first step to build the model is initializing the weights and biases. 

The weights and biases should all be initialized as random numbers whose range is 

the range of the input data which will be dealt with later in the cryptosystem. For 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 39 

our model, one cannot use the zero initialization since it will make all the outputs 

become zeros. 

        If the test data is only English alphabet with symbols, the range of the 

weights and biases can be 0 to 1. Since when the weights and biases is larger than 

one, the cipher or final output should still be dealt with, which should be in the 

range of ASCII code. If one uses the Unicode as input data, the weights and biases 

could be 0 to 1 as well (cannot be initialized as 0 to make it converge to 1). There 

are also some other advanced techniques that one can use if the initialization code 

by oneself, not by the application program. For example, He initialization [21] is a 

good choice for ReLu activation function used in the cryptosystem, which could help 

to train the model faster with large input data and avoid slow convergence. In our 

cryptosystem, the initialization code already has been optimized with the Google’s 

TensorFlow API. 

4.5.2 Input size 

        When the input message is more than 10,000 characters, if we take all 

one character as one input node, and if one input nodes will be dealt with as one 

dimension, so the input will be a one by 10000 matrix, and it will take longer time to 

train and hard to get every decoded result correct after training. Since it is fast for 

the mode to train the short messages, if we can change the input to one 100 by 100 

matrix, which means we resize the input dimension to 100, while deal with 100 

groups of such data together, the time for the cryptosystem is very short. 

        From the experiment, the cryptosystem can deal with the maximum 

input dimension is around twenty thousand (20,000). While for the input message, 

the cryptosystem is able to deal with much large data since the input could be 

resized. For instance, there is one input message which has one hundred thousand 

(100,000) symbols, the input matrix could be resized to 1,000 by 100, which means 

we change the input dimension to be 100, and the cryptosystem will deal with 1,000 
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groups of such data together. Such way is proved to be highly efficient in the 

experiment. It will also be used in the image and video cryptography for future 

study. 

4.5.3 Learning rate 

        The initial learning rate was set to be 0.001 in the beginning. For 

different input dimensions, the learning rate, number of epochs will be adjusted. 

Different from the constant learning rate, there are two ways to adjust the learning 

rate: schedule learning rate and adaptive learning rate. For the first one, it normally 

includes time-based decay, exponential decay and step decay. 

        For our model, since we use the Adam, we applied the adaptive 

learning rate method. The range of the learning rate in our model is from 1e-8 to 0.9, 

and it is adjusted by hand with experiences. If we would like to freeze the hidden 

layer weights during training, the optimizer will use the stochastic gradient descent 

(SGD) algorithm with different learning rate schedules and initial momentum as 0.9 to 

train the model. However, the default optimization algorithm is Adam. 

4.5.4 Loss function 

        For binary values, which means if we used the normalization to the 

input data, the loss function could choose the sum of Bernoulli’s cross-entropy 

method instead of Adam optimization algorithm. For binary data, the structure of the 

model also needs to adjust, especially the activation function in the model. Instead 

of Relu or Leaky-Relu activation function, the softmax function is better for the 

cryptosystem if the input dimension is large, while the Relu activation could be 

trained faster to get the result if the input dimension is not so large. 

        In the experiments, we mainly used the method that used integers as 

the input data, which uses the mean squared error loss function is more suitable. 

And for real values, the activation function of the output layer can not use softmax 
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activation function which would only produce the value between 0 and 1. And when 

the output is larger (i.e. larger than 100), the output will be all one, and the same for 

the small number, the output will all be zero. 

4.5.5 Optimization function 

        If one wants to freeze the layer weights and biases (the encryption key) 

during training, the optimization function could choose the Stochastic Gradient 

Descent (SGD) algorithm. Otherwise, it is suggested to use the other more popular 

gradient descent optimization algorithm: Adaptive Moment Estimation (Adam) in the 

cryptosystem. In our model, we just used the Adam. 

        There are some other optimizers that improved from SGD algorithm 

which can also used in our cryptosystem: Momentum, Adagrad optimizer and 

RMSprop with Adagrad etc. Momentum helps SGD to solve the local optimum 

problem that dampens oscillations as well as accelerates SGD in the connected 

direction. 

        Adagrad is well-suited for dealing with short message because of the 

updates of the weights bias will also change according to the learning rate. 

        RMSprop with Adagrad divides the learning rate by an exponentially 

decaying, so it only relies on the average of current and previous gradient, normally, 

the learning rate of RMSprop with Adagrad is smaller than the Adagrad algorithm 

mentioned above. Whatever optimization function you pick up, paralleling, batch 

normalization and distributing strategy could make it more powerful and the specific 

optimizer depends on the model and condition. 

4.5.6 Early stopping 

        The EarlyStopping of TensorFlow could set the monitor and patience to 

stop the model earlier if the model did not meet the requirements. For example, if 

we set the monitor is the loss of the model, and the patience is equal to five. Then 
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when we train the model, if the loss of the model did not go down for 5 epochs, the 

training would be stopped. 

        The 𝑚𝑖𝑛_𝑑𝑒𝑙𝑡𝑎 parameter of the EarlyStopping was set to be 0.0001 in 

the beginning, which means minimum change in the monitored quantity to qualify as 

an improvement in the training process. 

4.5.7 Callback 

        The callback function used one or more functions as the parameters, 

and it will be dealt as the argument passed to another function. And in Machine 

Learning, the callback is the function that could be applied at various stages of the 

training procedure. 

        Except Google’s callback interface, we can also implement our own 

callback functions. Our own build callback function could be inherited from the 

original callback so that our own implementation of callback could use all the 

functions that could be used in the built-in callback interface. 

        And if we add the test data, the confusion matrix could be calculated. 

And based on the confusion matrix, we could log it as the data summary for per-

epoch callback. If that, we will also add the per-epoch callback to the callback 

function. 

        In the next subsection, we will introduce the TensorBoard, including the 

"ModelCheckpoint" in TensorFlow which is able to periodically save your model 

during the training process and the EarlyStopping we mentioned in above subsection, 

they are all being used as the parameters for the callback tool in our cryptosystem. 

4.5.8 TensorBoard 

        TensorBoard is one of the most powerful and useful visualization tools. 

In our cryptosystem, we use it as the tool to track and visualize the mean squared 
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loss. Except this, the TensorBoard could be used to check the plaintext, cipher and 

decoded test easily. Besides, if we want to check the weights and biases of the 

hidden layer, it is convenient to check the change of the histograms of them over 

time. The usage of TensorBoard in our cryptosystem is like the following. 

        At first, you need to use the command %𝑙𝑜𝑎𝑑_𝑒𝑥𝑡 𝑡𝑒𝑛𝑠𝑜𝑟𝑏𝑜𝑎𝑟𝑑 to 

load the TensorBoard notebook. 

        Secondly, clear out data in the previous logging directory and set the 

position to put the logging data. Next, you can define the basic TensorBoard callback 

which will put in the callback (reference last subsection) parameter. In the end, you 

are able to use the command %𝑡𝑒𝑛𝑠𝑜𝑟𝑏𝑜𝑎𝑟𝑑 –𝑙𝑜𝑔𝑑𝑖𝑟 adding your logging directory 

path to start the TensorBoard. After open the TensorBoard, there are several 

common modes you can pick up depends on your purpose that we mentioned 

above: CUSTOM SCALARS, HISTOGRAMS, MESH, TEXT, PR CURVES and PROFILE. The 

TensorBoard also supports to use SSH tunneling for working on a remote server. 

        In TensorBoard, you could check the scalars (such as 𝑒𝑝𝑜𝑐ℎ_𝑙𝑜𝑠𝑠) of 

our cryptosystem. The tooltip sorting method could be adjusted to default, 

descending, ascending and nearest. And for horizontal axis, it is free to set the STEP, 

RELATIVE or WALL for it. In the model’s scalar graphs on TensorBoard the 

"Smoothing" parameter is the exponential moving average of all the real scalar values 

in our model. In the settings of TensorBoard, you could set reload period or 

pagination limit for reloading data. The logging data can also add other useful 

information such as the specific time to complete the model. 

        And one of our models’ TensorBoard is like the figure 4.11. In the figure, 

we could find that the mean squared loss is large in the beginning, which is more 

than 10,000 for this model. And the mean squared loss decreased very fast in one 

epoch. From the picture, we could find that each epoch also stores the information 

about the date and time to finish it. 
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        The Scalars tab shows changes in the loss and metrics over the epochs, 

which could be used to track other scalar values such as training speed and learning 

rate. 

 

Figure  4.11 TensorBoard of one model of our cryptosystem. 

        The "graphs" tab on TensorBoard is used to show the model layers. One 

can use the "graphs" tab to check if the architecture of the model looks as intended, 

as shown in figure 4.11. As shown in figure 4.12, we can trace the inputs and 

separate the structure graphs according to their structure, different devices, 

computing time, used memory, TPU compatibility and XLA (Accelerated Linear 

Algebra) Cluster which is a domain specific compiler that could accelerate 

cryptosystem with potentially no source code changes. XLA Cluster is a simple way 

to start using XLA in the compiled and executed process of the cryptosystem model, 

which just needs to add several lines of the code. 
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        While in our normal cryptosystem in the lab, we mainly use the 

common mode with GPU to accelerate the models. 

 

 

Figure  4.12 The GRAPHS tab of TensorBoard. 
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Figure  4.13 The GRAPH of architecture of the model on TensorBoard. 

 

Figure  4.14 Time Series tab on TensorBoard. 
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        The architecture of one model could be show like figure 4.13. About 

the Time Series tab, the data of one experiment as shown in figure 4.14. The number 

of epochs is 7. And with the time passing, the loss became smaller. There are some 

settings just beside the 𝑒𝑝𝑜𝑐ℎ_𝑙𝑜𝑠𝑠 image which could be adjusted.  

        In conclusion, TensorBoard is one of the most powerful tools that used 

in the training. And we introduced some common setting for the TensorBoard which 

is only part of its great features. We suggest you to go to the official website of 

TensorBoard to look up the latest information and have a better command more 

skills. While using TensorBoard is not all rosy, there are also some limitations for 

using it. 

        1. difficult for one team to use when needs to set the environment; 

        2. If you want to track various experiments, cannot perform data and 

model visualization; 

        3. cannot visualize and log some other data formats, such as or normal 

HTML, video or audio; 

        4. there is no workspace and user management. 

4.5.9 Device strategy 

        When the input data is huge, there are several ways to choose to faster 

the training process depends on the hardware. If the device only have one GPU 

(Graphics processing unit), the cryptosystem will use one device strategy of 

TensorFlow for large input data. Normally, the GPU has a minimum of eight cores, 

while if the GPU has less than 8 cores, it could also be set in the beginning when the 

cryptosystem use this one device strategy. 

        As shown in figure 4.15, if the system has more than one GPU, the 

cryptosystem could set up cross device strategy with the "MirroredStrategy" of 
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TensorFlow which is able to make full use of multi GPU. The other synchronous 

distributed strategy similar to the "MirroredStrategy" called 

"MultiWorkerMirroredStrategy" of TensorFlow could implement training across 

multiple computers, each has potentially multiple GPUs. Another strategy called 

"ParameterServerStrategy" of TensorFlow is a common data-parallel training method 

to scale up the model, which used on multiple machines as well. 

        If the computer only has one GPU, except using the "MirroredStrategy" 

(can be used on one or more than one GPU), "CentralStorageStrategy" is another 

choose while is not flexible as "MirroredStrategy". "CentralStorageStrategy" will place 

all operations and variables on the single GPU, and it also trains the model 

synchronous. Compared with "MirroredStrategy", the "CentralStorageStrategy", the 

variables are not mirrored, instead they are stored on CPU and operations are 

replicated across all local GPUs. 

        In a word, there are many strategies offed by Google TensorFlow that 

you can choose according to your working situation. 

 

Figure  4.15 GPU MirroredStrategy: Supports Synchronous Distributed 

Training With Multiple GPUs On Single Machine. 
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        Meanwhile, the TPU (Tensor Processing Unit) is similar, one can also set 

the clusters for training the model with distributed "TPUStrategy" of TensorFlow. 

Since until 2021, April, the TPU is still only available on Google’s Colab, we could 

only test the TPU on the cloud. The TPU strategy is shown in figure 4.16. There will 

be some warning if the TPU has already been initialized, since it may cause 

previously created variables on TPU to be lost. 

 

 

Figure  4.16 TPU Strategy Our team used in the lab 

        The information of the output is like figure 4.17. From the figure 4.17, 

we can get that the TPU has 8 accelerators. Similar like CPU, there is one common 

distribution strategy could train on TPUs and TPU Pods synchronous: "TPUStrategy". 
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With this strategy, the program cannot use the pure eager execution. So if using the 

"TPUStrategy" of TensorFlow, several parts of code need to be changed from 

"GPUStrategy". Since TPU could only use on Google Colab, so we mainly use the GPU 

strategy in the program which could easily deploy on different platforms to test. With 

different strategies, it helps us to test and run the program with the scalability of 

distributed computing. 

 

Figure  4.17 Output of the TPU after using the TPU strategy in the lab. 

        The advantage for us to use the cloud is that it is convenient and 

economic for our team to deploy and train many models with various 

hyperparameters on multi devices. The disadvantage is that there will be some delay 

if we compile and train the model. And the process will be interrupted if the session 

is inactive for too long or the computer lost the internet. 
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        For our cryptosystem, when we encrypt the message and start to 

compile and train the model, the data sent to the service center of the cloud needs 

at least one second, and the vice versa. After the model finished the training, the 

Jupyter notebook update the new data needs more than one second as well, which 

depends on the internet speed. So even for a very short message, the Jupyter 

notebook on the Colab will take more than 3 seconds to get the cipher. While for 

long message (more than 1000 input dimensions) to be encrypted, the time delay 

could be omitted if the GPU/TPU of the cloud is powerful enough. 

4.6 Why choosing TensorFlow 

There are many open source models used in the industry now. We picked up 

TensorFlow to deploy the cryptosystem mainly based on the following reasons: 

1. Our cloud environment mainly uses the Google’s Colab which support the 

built-in 

TensorFlow and help our team to connect with other products of Google such as 

Google Drive to help to test the model. 

2. TensorFlow 2.x is one of the most popular framework for deep learning 

used, so it will be easier to help other people use our code, and we can learn from 

other excellent programmers as well. 

3. Google’s Colab already installed the latest TensorFlow, and it supports free 

GPU and TPU testing for as long as 12 hours now, the Google’s Colab Pro has been 

available in the following countries until 2021 April: Brazil, United States, India, 

Canada, Germany, France, Japan, United Kingdom, and Thailand. 

4. There are many great APIs in the TensorBoard including the above 

strategies that we introduced, such as weights and biases initialization, already been 

optimized in the TensorFlow. 
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4.7 Save and load models 

If the block size is fixed or the sender and the receiver will not change the 

block size during a short time, then for the model structure unchanged, the best 

model will be saved after the training process of the first time. The model saved for 

the fixed block size can also be shared to someone who needs to use the 

cryptosystem for a short time. 

After the new training of the model, the parameters, trained weights and 

biases of the model all be adjusted again to keep other information secret. If the 

block size has been changed, then the model will be generated again, the old model 

cannot be used to hack the new information. 

About saving the model, the TensorFlow’s built-in function uses the 

checkpoint callback option, you could choose save the weights only or save the 

model. The frequency of saving the model could be picked, such as save the model 

once every 10 epochs or just save the best model after the training. The entire 

model could be saved in several formats: HDF5 format and JSON format. HDF5 is the 

basic standard save format and JSON format is the other common format used in 

TensorFlow. The saved model could be load whenever want to be use. For the 

cryptosystem, some unused model could be exploited as the tool to attack the 

cryptosystem in the lab as well. 

4.8 Maintenance cryptosystem 

If the cryptosystem did not work in the training process sometimes, you can 

refer the section 4.5 and try some new training strategies to improve the model. 

While after training, there should be some predictive program to do the automated 

anomaly detection for the cryptosystem. In other words, the maintenance program is 

part of the cryptosystem as well. Normally the model should work well, and if the 

output is different with the input, there will be some warning or error. The 
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cryptosystem should check by itself to maintenance. And if the program did not find 

any problem, you should check it to understand which part is wrong, wrote the 

maintenance documents for other programmers to check. There should be error 

history, cryptosystem operating situations, the data of the model and repair history in 

the maintenance documents. The information about the error should be accurate 

and specific. In addition, the error should be fixed as soon as possible. If the 

cryptosystem did not work in the training process sometimes, you can refer the 

section 4.5 and try some new training strategies to improve the model. While after 

training, there should be some predictive program to do the automated anomaly 

detection for the cryptosystem. In other words, the maintenance program is part of 

the cryptosystem as well. Normally the model should work well, and if the output is 

different with the input, there will be some warning or error. The cryptosystem 

should check by itself to maintenance. And if the program did not find any problem, 

you should check it to understand which part is wrong, wrote the maintenance 

documents for other programmers to check. There should be error history, 

cryptosystem operating situations, the data of the model and repair history in the 

maintenance documents. The information about the error should be accurate and 

specific. Furthermore, the error should be fixed as soon as possible. 
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CHAPTER 5 

ANALYSIS OF OUR MODEL 

5.1 Complexity analysis 

To improve the security and robustness of cipher, the suggested network 

structure has the following 6 configurable components. These components serve as 

mutually recognized keys. 

1. Secret key. Assume that each number is in radix 𝑟 and that there are 𝐵 

dimensions. As a result, the set of feasible hidden dimensions is 𝑟𝐵. 

2. Number of hidden layers. Number of hidden layer 𝐿 could be defined freely as 

another key sent to the receiver. As a result, the number of layers could be in 

the range [3, 𝑛]. Thus, for total 𝐿 hidden layers, the total number of hidden 

neurons is ∑ |𝐿
𝑖=1 𝐻𝑖|. 

3. Number of input message to be encrypted. The suggested network topology is 

capable of encrypting any statement regardless of its length in terms of 

characters. Let 𝑙 represent the length of cipher, the number of sentences that 𝑐 

characters formed is equal to 𝑙𝑐 (independent of their semantics). 

4. Set of weights. Assume there are 𝐿 hidden layers and each with |𝐻𝑖| neurons. 

As a result, the number of weights is ∑ |𝐿−1
𝑖=1 𝐻𝑖| × |𝐻𝑖+1|. 

5. Cipher. Only the first layer’s output values are used as the cipher in our 

experiment.The length of the cipher is |𝐻1|. 

Prior to delivering the cipher, the receiver receives the secret key and the 

information about upper part of the neural network for decrypting the message. 

There are 𝑟𝐵 + 𝐿 + 𝑙𝑐 + ∑ |𝐿
𝑖=1 𝐻𝑖| bits in the keys, which are equal to log2(𝑟𝐵 + 𝐿 +

𝑙𝑐 + ∑ |𝐿
𝑖=1 𝐻𝑖|). There are log2(|𝐻1| + ∑ |𝐿−1

𝑖=1 𝐻𝑖| × |𝐻𝑖+1|) bits of the weights and 

cipher. If the length of the cipher is equal to the length of the plain text (and thus 

also to the decoded text), and the cipher is composed of true random numbers 

(adding the true random secret key), the cipher would meet the criteria of the one-

time pad (introduced in the section 2 background part), which is impossible to hack. 
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5.2 Cryptanalysis 

Cryptanalysis was used to assess the resilience of the proposed method 

against any attack. There are three normal ways to crack one cryptosystem: Normal 

attack, cipher text-only attack and chosen plain text attack. In our experiment, we 

tried all kinds of ways to attack our cryptosystem while all failed. The following is 

the detail of the experiment. 

5.2.1 Normal attack 

        We have tried all kinds of software programs or apps on the market to 

attack our cryptosystem while none of them got a good result in the threshold 

testing time. First, the normal attack tool failed to attack our cipher since the cipher 

is all float numbers. Frequency analysis also fails since one alphabet is replaced by a 

random matrix composed of many symbols without a fixed length. 

        Suppose one attacker C who grasps all the particular information 

exchanged between A and B and comprehends the detail about the cryptosystem. In 

principle, C could start from all the possible permutations. The following is the 

analysis that breaking the construction of our model is an underlying untoward 

dilemma. 

        When C tries to hack the cipher, it is possible to cut the cipher from 

four bits (M is greater than 3) to 𝐿 ×𝑀 bits, according to the possibility analysis, C 

may hack what is M while he still needs enormously time to get the numbers of Z1. 

From Z1 to X, it is impossible to use the brute force because there are infinite 

possibilities of the W2 (part of the decryption key). In conclusion, the brute force, 

dictionary attacks and frequency analysis can not work on our method. 

5.2.2 Cipher text only attack 

        A successful hack is observed together with the secret keys and cipher 

as well as how long it took for the assault to succeed. If the time to decrypt the 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 56 

cipher is substantially longer than the maximum specified limit or the retrieved key-

value pairs are erroneous, it shows that the attacker has failed to break cipher. 

Though an attacker is aware that the cryptography employs a neural network 

structure, the intruder has to estimate various factors, including the network 

topology, all synaptic weights, number of characters, and size of secret key. Thus, in 

order to imitate the assault process, the following stages are set up. 

        1. Generate number of hidden and output neurons, as well as synaptic 

weights randomly 

        2. Send one cipher to the network and estimate the result. 

        3. Check the message’s accuracy in comparison to the original. 

        4. While there is a mistake or time < threshold time do 

        5. Renew the network as well as its weights. 

        6. Check for accuracy in relation to the original 

message. 

        7. EndWhile. 

        In this attacking simulation, the same cipher (in Section Four’s 

Encryption section) were employed. 

        Message 1: Hello, World! 

        Message 2: What do you want to eat in the evening? 

        Message 3: How about we eat in the same restaurant we ate 

yesterday evening? 

        To break the encrypted communication, a 2-layered network is 

employed. The first layer inserts every encrypted message needs to be encrypted 
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and the last issues the decrypted message. The attack will guess the plain text from 

the encryption during the attacking procedure. 

Table  5.1 Three examples of network structure. 

 

 
Sentences 

Message 
+ Secret 
keys 

 
Input 

Nodes 

 
Secret Nodes 

 
Hidden 

Nodes 

 
Output 

Nodes 

 
Total Time 

Sentence 1 
Hello, 
World! 
+ 13 10 
108 111 
118 101 

13 6 10 19 2.294 sec. 

 
Sentence 2 

What do 
you want to 

eat in the 
evening? 33 
116 
182 143 
154 196 

127 

 
39 

 
6 

 
20 

 
45 

 
2.186 sec. 

 
Sentence 3 

How about 
we eat in the 

same 
restaurant we 
ate yesterday 

evening? 
+ 85 172 
180 133 

 
65 

 
4 

 
62 

 
69 

 
2.697 sec. 

        Table 5.1 illustrates the network structure of the three sentences. To 

preserve consistency, we utilized the same messages with the same secret key as 

before to demonstrate the cracking process. The message’s secret key is made up of 

random numbers. If the secret key is an integer, it is simpler to convert it to a string 

using ASCII or Unicode. And if the model uses data normalization, which converts 

integers to binary numbers, the output will be binary numbers before being 

converted back to integers. 
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Table  5.2 Attack result. 

 

Message 1 (13 characters) with 6 nodes of the secret key 
#guessed neurons cracking time (secs) #incorrect 

characters 
2-20 > 30,000 19 

 

Message 2 (39 characters) with 6 nodes of the secret key 
#guessed neurons cracking time (secs) #incorrect 

characters 
2-46 > 90,000 45 

 

Message 3 (65 characters) with 4 nodes of the secret key 
#guessed neurons cracking time (secs) #incorrect 

characters 
2-70 > 150,000 69 

 

        The cracking time, the amount of wrongly guessed characters, and the 

secret keys are summarized in Table 5.3 for each number of guessed neurons. We 

have many python scripts to run parallelly on multiple machines for message 1, as 

shown in picture 5.1. 

        The attack script will count and compute the erroneous amount of 

characters as well as the erroneous number of secret key nodes. For message 1, 19 

python files will be processed in parallel. And for message 2, 45 python files will be 

performed at the same time. For message 3, 69 python files will be performed 

concurrently on various computers. If we put the attacking software in the cloud, the 

internet latency was taken into account. 

        The final result is recorded in a single table, and we put the conclusion 

together as shown in the table 5.3. For all messages, the attack scripts incorrectly 

predicted all message nodes. 
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Figure  5.1 The python files we used to test for the message one in local computer. 

        To save time, we shall run numerous attack scripts concurrently. For 

example, suppose we guess the nodes from 2 to 13, then execute "Nodes2.py" to 

"Nodes13.py", as shown in Figure 5.2. 

        The attack iterates 401,866 times while attempting to determine 

whether the number of concealed nodes equals 8 in figure 5.2. And the smallest 
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error remains 19, which is equal to the sum of the number of characters and the 

number of secret keys. It indicates that all 401,866 assaults failed to get any cipher 

information. The threshold time for the message one is 30,000 seconds. 

 

Figure  5.2 Hacking the Message 1 and guessing from nodes 2 to 13. 

        The "Nodes14.py" to "Nodes20.py" will be performed at a different 

running time, as illustrated in figure 5.3. To replicate the attack procedure for the 

brief message, we utilized the local computer as the primary platform. While for 
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larger messages with more than one hundred characters, we will employ cloud 

computing capacity such as "Google Colab" with distributed computing, which will 

allow us to receive the simulation result in less time. In terms of cloud platforms, in 

addition to "Google Colab," we have utilized IBM’s "Watson Studio" ("Jupyter 

Notebook" comparable to "Google Colab"), "Kaggle Notebook" (a large data research 

platform), and "Heywhale Notebook" (a platform comparable to Kaggle). Aside from 

this, each email address may only register for one account on any platform. Each 

account may create one or more free "Jupyter Notebook" to deploy our application 

at the same time, allowing our team to test a large message in a short period of 

time. The simulated attack procedure on cipher text-only assault is similar for other 

messages in the trials. 

 

Figure  5.3 Hacking the Message 1 and guessing from nodes 14 to 20. 
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        According to the simulation, all encrypted communications cannot be 

cracked vs various network structures within the set threshold time (calculated based 

on message length), which is significantly more than the decryption time. 

        For the same message, the encryption will be different with a different 

private key. And, if the sender did not specify the fixed seed for random numbers 

(weights and biases) in the program, the encrypted message is modified each time 

the sender uses the cryptosystem to encrypt the same message. 

        According to our simulated studies, the attacker was unable to get any 

relevant information within the maximum time limit, implying the proposed 

method’s security and resilience. 

5.2.3 Chosen plain text attack 

        We used the way of [22] to crack the cipher. In the paper, the 

researchers tried to train one neural network with the cipher text and plain text as 

input and output. When the loss is less than 0.5, the neural network succeeds in 

cracking the cipher. 

        The neural network could be trained with only one block, and the crack 

time depends on the length of cipher text and plain text. However, the time is 

considerable to crack two blocks depends on the program used to analyze each 

block’s size. The crack time also varied with different messages. 

        When we tried several blocks of plain text and cipher text as the input 

and output of the neural network, the cryptanalysis failed to crack the cryptosystem 

since the cipher text of each is unfixed. The attacker could not make sure which part 

of the cipher was for the first block and how large it was for each block. 

        The range of each block size of the cipher text can range from 4 to a 

huge number. The neural network would fail to crack the whole cipher text if it 

could not analyze each block size. Overall, it would be more difficult and 
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complicated with more blocks of cipher text. The possibilities are already 

complicated when there are two blocks in the cipher text. And the attacker has to 

analyze the size of each block of cipher text first to continue the remaining attack. 

        In a word, breaking the framework of our model can not be finished in 

linear cryptanalysis time, which proves the security of our algorithm. 

        In more detail, there are three different situations for the experiment: 

(1) the number of cipher nodes is less than the number of plain text nodes; (2) the 

number of cipher nodes is larger than the number of plain text nodes; (3) the 

number of cipher nodes is equal to the number of plain text nodes. Since the above 

three examples only show the first situation, we will use another 3 samples to show 

three different situations that the attacker will meet. 

        The structure of three examples is shown in table 5.1. When there are 

multiple blocks in one cipher, it is the same situation and harder to crack. The 

examples are only part of our crack experiments, while it implies that our 

cryptosystem is very robust. The chosen plain text attack combined with the neural 

network is one popular attacking method recently [14] which uses the advantage of 

strong computation power and learning ability of neural network. Though for a very 

short message, it is possible that the cipher will be hacked. But in the real life, the 

cipher will be designed, and normally the cipher length should follow the suggestion 

of Section 2 (Background), considering Table 2.2 as one reference around 2021 to 

keep the communication between the sender and the receiver safe. 
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Table  5.3 Detail of the examples of three situations. 

 

Examples 
Input 
Nodes 

Secret Nodes 

(S) 

Message Nodes (X) Output 

Nodes 

Total Time Decryption 

Time 
Cipher 
nodes 
< plain text 
nodes 

 
2 

 
4 

 
10 

 
14 

 
2.89 sec. 

 
1.232 sec. 

Cipher 
nodes 
> plain text 
nodes 

 
20 

 
1 

 
4 

 
5 

 
3.12 sec. 

 
1.445 sec. 

Cipher 
nodes = plain 
text nodes 

 
10 

 
1 

 
9 

 
10 

 
1.93 sec. 

 
0.96 sec 

 

5.2.3.1 Number of cipher nodes less than number of plain text nodes 

                    Chosen plain text attack also has a maximum cracking time 

which set to be the 30,000 (8.34 hours) in the beginning in the attacking program. 

                    For the first example, our cryptosystem encrypted 

"abandoned∖nQcH<" (14 nodes, including X and S, one node is one symbol), got the 

cipher −314.42844, 70.05509 (2 nodes). The decryption time was 1.232 seconds, 

and the whole running time was 2.89 seconds with 1000 epochs. The crack program 

generate the output nodes from 2 to 14 (can also generate more). 

                    When the crack program generated 2 nodes (2 symbols) from 

the cipher, if no symbol is correct in 8.34 hours (maximum cracking time), then the 

error will be 14 (the number of symbols in plain text.) Suppose the generated 2 

symbols were ac, then the error would be 13. From the result, figure 5.4, we did not 

get any symbol correct when generating 2 to 14 nodes in 8.34 hours. For different 

message, the threshold will be adjusted according to their length and hack difficulty. 

The chosen plain text attack using the method of neural network to attack and 

suppose the attacker knows the detail of our cryptosystem. While even like this, the 
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final cracking result is still not good. The attacker did not get any correct node of the 

message, neither the secret node. 

                    The detail of the cracking process is the attacking program 

takes one number in one categorial, and use one hot label to classify which number 

it is. Since our data has no label (or the label is the data itself), so there is no testing 

data, the one hot coding will be very slow and waste of a lot of space to attack the 

cryptosystem. The attacking program will change the integers into binary numbers 

which can accelerate the attacking process, and training the neural network model to 

crack the cipher. The loss function of the attacking program is binary cross-entropy 

loss which actually predict the probabilities of each number (one number is one 

class). 

 

 

Figure  5.4 2-14 Hack Result. 

 

5.2.3.2 Number of cipher nodes larger than number of plain text nodes 

                    And for second situation, our cryptosystem encrypted "abeZW", 

got 20 float numbers for the cipher after 1000 epochs in one test. The decryption 

time was around 1.445 seconds and the whole running time was 3.12 seconds. The 

crack result is like figure 5.5, we did not get any symbol correct in 8 hours  
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5.2.3.3 Number of cipher nodes equal to number of plain text nodes 

 

Figure  5.5 20-5 Hack Result. 

 

                    One node in our example represents one integer (in ASCII 

code), so even the number of cipher nodes is equal to the number of plain text 

nodes, does not mean that the length of the cipher is equal to the length of the 

plain text. When the number of cipher is the same with the number of encrypted 

message, our cryptosystem encrypted "Thank you!" (10 nodes, including X and S), got 

10 float numbers for the cipher after 1000 epochs in one test. The decryption time 

was around 0.96 seconds and the whole running time was 1.93 seconds. The crack 

result is like figure 5.6. Within 8.34 hours, the output nodes did not meet any correct 

character. 
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Figure  5.6 10-10 Hack Result. 

 

                      When there are multiple blocks in one cipher, it is the same 

situation and harder to crack. The examples are only part of our crack experiments, 

while it implies that our method is very robust. Compared with other asymmetric 

cryptography such as DES, AES and RSA, the table 5.4 briefly shows the difference of 

encryption time, decryption time and cryptanalysis time between our method with 

other method. Our method used longer time than other methods to encrypt the 

message while it take shorter time to decrypt the message compare with the RSA 

which is commonly used in our daily life. RSA, AES and our method are all have high 

security since these three methods cannot be cracked in a threshold testing time. 

While our method with the malleable structure is more flexible than RSA and AES. 

Table  5.4 Comparative of DES, AES, RSA with our method of 

encryption time, decryption time and cryptanalysis time. 

 

Algorithm Size of input 
(bits) 

Encryption Time Decryption 
Time 

Cryptanalysis Time 

56-bit Data Encryption 
Standard (DES) 

1000000 2.8 seconds 1.1 seconds Under 30 minutes 

128-bit-AES 1000000 1.3 seconds 0.8 seconds More than 3 days 
cannot crack 

128-bit-RSA 1000000 7.2 seconds 4.8 seconds More than 3 days 
cannot crack 

Our method (flexible for one 
block) 

1000000 12.8 seconds 1.9 seconds More than 3 days 
cannot crack 
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CHAPTER 6 

SUGGESTION AND CONCLUSION 

6.1 Suggestion of setting cryptosystem 

From our experiments, the suggestion for the setting of the cryptosystem is 

like figure 6.1. 

The first subgraph of Figure 6.1 shows one experiment for one short message 

(not more than one hundred input dimensions). The loss became small just after 

several epochs in the training process. 

The second subgraph of Figure 6.1 shows the relation between the mean 

squared error and the number of input dimensions with the number of secret 

dimensions. When the input neurons (including the input dimensions of the message 

and the secret dimensions of the secret key) becomes larger, the loss becomes 

larger as well. 

The third subgraph of Figure 6.1 shows the relation between the learning rate 

and the input neurons (including the input dimensions of the message and the secret 

dimensions of the secret key). When there is more input nodes, The learning rate 

should be smaller. In other words, the initial learning rate should set smaller when 

the number of input dimension is larger. 

 

Figure  6.1 Reference when setting the cryptosystem from our experiments. 
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In more detail, the following number could be taken as a reference. And the 

data mainly get from the "macOS Big Sur" whose processor is 2.6 GHz 6-Core Intel 

Core i7 and memory is 32 GB 2400 MHz DDR4. The number maybe different on 

different testing machine. 

When the number of input dimension is around four to ten, the minimal 

number for hidden dimension is 3 to 7. And the learning rate of Adam or SGD 

algorithm should be set around 0.01. 

When the number of input dimension is around ten to one hundred, the 

minimal number for hidden dimension should get from 7 to 50. And the initial 

learning rate of Adam or SGD algorithm should set from 0.007 to 0.01. 

When the number of input dimension is around one hundred to four 

hundred, the minimal number for hidden dimension should get from 50 to 500. And 

the initial learning rate of Adam or SGD algorithm should set from 0.0004 to 0.007. 

When the number of input dimension is around four hundred to seven 

hundred, the minimal number for hidden dimension could get from 500 to 700. And 

the suitable learning rate of Adam or SGD algorithm could set from 0.0004 to 0.0006. 

When the number of input dimension is around seven hundred to one 

thousand two hundred, the minimal number for hidden dimension could get from 

700 to 1400. And the suitable learning rate of Adam or SGD algorithm could set from 

0.00045 to 0.0006. 

When the number of input dimension is larger, we did not do the experiment 

to test while one could take the 6.1 as a reference when the number of input 

dimension is larger than 1200. 
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6.2 Suggestion when cryptosystem fails 

If it is overfitting when one trains the model, the cryptosystem could still 

work well if the loss is less than 0.5. And one could set the "patience" parameter in 

the training process if one uses TensorFlow in the cryptosystem. For example, if one 

sets the "patience" parameter as 3, then if the loss is less than 0.5 for 3 epochs, the 

training process will stop, and it could save the time to encrypt for the cryptosystem. 

When the final mean squared loss (or other loss if one changed the format of the 

input data) is larger than 0.5, which means some characters could not be 

reconstructed, then one can tune the learning rate first to try. If the learning rate 

does not work as well, it is possible that the number of input dimension is too large. 

If the training process is slow, one can use distributed strategies that we introduced 

in the Section 4 to take less time for training the model. 

6.3 Conclusion 

In a nutshell, an innovative asymmetric neural cryptography model dealt with 

textual messages was introduced in this research to increase the complexity of 

guessing the cipher. With a malleable neural network topology, our model integrated 

extra secrete dimensions as one key. In terms of time complexity to guess accurate 

messages, the cryptanalysis test demonstrates the resilience and security of the 

proposed approach. The future research will concentrate on image and video 

cryptography. 
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Appendix I 

SAMPLE CHAPTER 

A.1 Sample 

This is the appendix ... 
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Appendix II 

LIST OF PUBLICATIONS 

B.1 International Conference  

1. Hangyi Wang, Chidchanok Lursinsap. Neural Crytosystem for Textual 

Message with Plasticity and Secret Dimensions. In 2021 18th International Conference 

on Electrical Engineering/Electronics, Computer, Telecommunications and 

Information Technology (ECTI-CON), 2021, pp. 27-30, doi: 10.1109/ECTI-

CON51831.2021.9454684. 
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