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CHAPTER I
INTRODUCTION

For random variables X and Y with continuous distribution functions FX and
FY , respectively, and joint distribution function FX,Y , the copula CX,Y of X and
Y is the function on I2 := [0, 1]2 for which

FX,Y (x, y) = CX,Y (FX(x), FY (y)) for x, y ∈ R.

By the probability integral transform, it is evident that CX,Y captures marginal-
free dependence structure between X and Y [9, 13].

Copulas can be constructed from measure-preserving transformations. For
measure-preserving transformations f and g on Lebesgue measure space (I,B(I), λ),
the copula Cf,g is defined by [4]

Cf,g(x, y) = λ
(
f−1([0, x]) ∩ g−1([0, y])

)
.

In fact, every copula can be constructed in this way [4]. This form of copulas
is quite well-suited for the Markov product, introduced in [5] as a tool to study
Markov processes. The generalized Markov product was later introduced in an
attempt to solve the compatibility problem. For a parametric class of copulas
A = {At}t∈[0,1], the generalized Markov product [17] is a binary operation on the
set of bivariate copulas of C and D, defined by

C ∗A D(x, y) =

∫ 1

0

At(∂2C(x, t), ∂1D(t, y))dt

for x, y ∈ [0, 1].

Complete dependence between X and Y happens when one is a Borel func-
tion of the other almost surely. If continuous random variables X and Y are
completely dependent, then their copula is called a complete dependence copula.
Every complete dependence copula can be written in the form Ce,f or Cf,e for some
measure-preserving transformation f [9, 21]. Despite its simplistic and determin-
istic nature, complete dependence copulas are ubiquitous and useful in theoretical
studies of copulas [19, 20, 21].

Less studied but more stochastic is the notion of implicit dependence which
occurs when the two random variables are equal almost surely after applying a



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

corresponding pair of Borel transformations. If continuous random variables X
and Y are implicitly dependent, then their copula is called an implicit dependence
copula. To the best of our knowledge, there have never been any characteriza-
tions of implicit dependence copulas. In this work, we prove that some implicit
dependence copulas can be written as the product of some complete dependence
copulas. More precisely, C is the copula of random variables X, Y ∼ U(0, 1) for
which Λθ(X) = Λθ(Y ) almost surely if and only if C = Ce,Λθ

∗A CΛθ,e for some
class A of sub-copulas on {0, θ, 1}2 which extend to copulas by Sklar’s theorem.
Here, Λθ(x) = min

(
x
θ
, 1−x
1−θ

)
where θ ∈ (0, 1). The only if part can be generalized

from Λθ to measure-preserving transformations α on [0, 1] that can be partitioned
by P = {0 = a0, a1, . . . , an = 1} into strictly increasing bijections from (ai−1, ai]

onto [0, 1]. We call such measure-preserving functions α simple.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II
PRELIMINARIES

2.1 Copulas

First, we introduce the notions of 2-increasing and grounded which are used to
define copula. Let I denote [0, 1].

Definition 2.1. ([13]) Let S1 and S2 be nonempty subsets of I, and let H be a two-
dimensional real-valued function whose domain is S1×S2. Let B = [x1, x2]×[y1, y2]

be a rectangle all of whose vertices are in S1 × S2. Then, the H-volume of B is
given by

VH(B) = H(x2, y2)−H(x2, y1)−H(x1, y2) +H(x1, y1). (2.1)

H is said to be 2-increasing, if VH(B) ≥ 0 for all rectangles B whose vertices lie
in S1 × S2.

Definition 2.2. ([13]) Let S1 and S2 be nonempty subsets of I such that S1 has a
least element a and S2 has a least element b. A function H : S1 × S2 → I is called
grounded if

H(x, b) = 0 = H(a, y) (2.2)

for all (x, y) ∈ S1 × S2.

Now, we define subcopulas and copulas.

Definition 2.3. ([13]) A subcopula is a function C ′ with the following properties.

1. Domain of C ′ is S1 × S2 where S1, S2 ⊆ I contains 0 and 1.

2. C ′ is grounded and 2-increasing.

3. For any x ∈ S1, y ∈ S2, C ′(x, 1) = x and C ′(1, y) = y.

Definition 2.4. A copula is a subcopula C whose domain is I2.

Definition 2.5. The copula Ct is called the transpose of a copula C if Ct(x, y) =

C(y, x) for (x, y) ∈ I2.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

Definition 2.6. The support of a copula C is defined by

supp(C) = I2 ∖
∪

{R ≡ (a, b)× (c, d) ⊆ I2 : VC(R) = 0}.

Example 2.7. Listed below are some important copulas.

1. M(x, y) = min{x, y} is called the Fréchet-Hoeffding upper bound (see
Theorem 2.8). We know that M(x, y) = x if (x, y) ∈ {(x, y) ∈ I2 : x < y} :=

A1 and M(x, y) = y if (x, y) ∈ {(x, y) ∈ I2 : y < x} := A2. Then, VM(R) = 0

for any rectangle R := (a, b)× (c, d) ⊆ A1∪A2 ; otherwise, VM(R) ̸= 0. That
is, supp(M) = {(x, x) : x ∈ I}.

2. W (x, y) = max{x+y−1, 0} is called the Fréchet-Hoeffding lower bound
(see Theorem 2.8). Then, W (x, y) = 0 if (x, y) ∈ {(x, y) ∈ I2 : x+ y < 1} :=

B1 and W (x, y) = x + y − 1 if (x, y) ∈ {(x, y) ∈ I2 : x + y − 1 > 0} := B2.
Then VW (R) = 0 for any rectangle R := (a, b)× (c, d) ⊆ B1 ∪B2; otherwise,
VW (R) ̸= 0. That is, supp(W ) = {(x, 1− x) : x ∈ I}.

3. Π(x, y) = xy is called the independence copula (see Theorem 2.13). For
any nonempty rectangle R := (a, b)× (c, d) ⊆ I2, VΠ(R) = (a− b)(c− d) > 0

which implies that supp(Π) = I2.

4. C1(x, y) = pM(x, y) + (1− p)W (x, y) where p ∈ (0, 1). It can be shown by a
similar argument as above that supp(C1) = supp(M) ∪ supp(W ).

Next, we present some properties of copulas.

Theorem 2.8. (Fréchet-Hoeffding bounds) ([13]) For every copula C and
(x, y) ∈ I2,

W (x, y) ≤ C(x, y) ≤M(x, y). (2.3)

Theorem 2.9. ([13]) The first partial derivatives ∂1C and ∂2C of a copula C exist
almost everywhere and are Borel-measurable. For any x, y ∈ I,

0 ≤ ∂1C(t, y) ≤ 1 and 0 ≤ ∂2C(x, t) ≤ 1

for almost every t ∈ I.

The next theorem demonstrates the significance of copulas in probability and
statistics. It explains the relationships between a copula and a joint distribution
function of random variables.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

Theorem 2.10. (Sklar’s Theorem) ([13]) Let X,Y be random variables, H be
the joint distribution function of X,Y with margins F and G, respectively. Then
there exists a copula C such that for all x, y ∈ R,

H(x, y) = C(F (x), G(y)).

If F and G are continuous, then C is unique and denoted by CX,Y ; otherwise, C
is uniquely determined on Ran(F )× Ran(G).

Definition 2.11. ([9, 15]) A nonempty subset Γ of R2 is said to be comono-
tonic if for all (x1, y1), (x2, y2) ∈ Γ, (x1 − x2)(y1 − y2) ≥ 0 and is said to be
countermonotonic if for all (x1, y1), (x2, y2) ∈ Γ, (x1 − x2)(y1 − y2) < 0.

A random vector (X,Y ) is called comonotonic if its support is comonotonic
and is called countermonotonic if its support is countermonotonic.

Definition 2.12. Let X and Y be random variables. X and Y are independent
if P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B) for any set A,B ∈ B(R).

Theorem 2.13. ([9, 15]) Let X, Y be random variables with copula CX,Y and
continuous marginal distributions.

1. (X,Y ) is comonotonic if and only if CX,Y =M .

2. (X,Y ) is countermonotonic if and only if CX,Y = W .

3. X, Y are independent if and only if CX,Y = Π.

Theorem 2.14. (Probability integral transformation)([9]) Let X be a random
variable whose distribution function is given by F . If F is continuous, then F ◦X
is uniformly distributed on I.

Theorem 2.15. ([9]) A copula can be extended to a joint distribution function
whose marginals are uniformly distributed on I.

2.2 Measure-preserving Transformations

In this section, we introduce a construction method of copulas from measure-
preserving transformations.

Definition 2.16. Let (I,B(I), λ) be the Lebesgue measure space. A mapping
f : I → I is said to be measure-preserving if λ(f−1(B)) = λ(B) for every set
B ∈ B(I).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

Example 2.17. 1. Let e be denotes the identity function on I, i.e., e(x) = x

for all x ∈ I. It is clear that e is measure-preserving.

2. For θ ∈ (0, 1), we define, the tent function, Λθ : [0, 1] → [0, 1] by

Λθ(x) :=

x
θ

if x ≤ θ,

1−x
1−θ if x > θ.

(2.4)

For any interval [a, b] ⊆ I, Λ−1
θ ([a, b]) = [θa, θb] ∪ [1− (1− θ)b, 1− (1− θ)a],

so λ(Λ−1
θ ([a, b])) = θ(b− a) + (1− θ)(b− a) = b− a = λ([a, b]) which implies

that Λθ is a measure-preserving transformation.

Theorem 2.18. ([4]) If f, g are measure-preserving transformations on the space
(I,B(I), λ), then the function Cf,g : I2 → I defined by

Cf,g(x, y) := λ
(
f−1([0, x]) ∩ g−1([0, y])

)
(2.5)

is a copula. Conversely, for every copula C, there exist measure-preserving trans-
formations f, g such that C = Cf,g.

Example 2.19. The copula with measure-preserving transformations e and Λθ is

Ce,Λθ
(x, y) = λ

(
e−1([0, x]) ∩ Λ−1

θ ([0, y])
)

= λ ([0, x] ∩ ([0, θy] ∪ [1− (1− θ)y, 1]))

=


yθ if Λθ(x) > y,

x if Λθ(x) < y and x < θ,

x+ y − 1 if Λθ(x) < y and x > θ.

Hence,

∂2Ce,Λθ
(x, y) =


θ if Λθ(x) > y,

0 if Λθ(x) < y and x < θ,

1 if Λθ(x) < y and x > θ.

(2.6)
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x+ y − 1

yθ

x

θ 1

1

0

y

Figure 2.1: The value of Ce,Λθ
(x, y).

Some properties of the copulas Cf,g are given next.

Theorem 2.20. ([9]) Let f, g be measure-preserving transformations on I. Then

1. Ct
f,g = Cg,f .

2. Cf,g =M if and only if f = g a.s. on I.

3. Cf,e = Cg,e if and only if f = g a.s. on I.

Example 2.21. Ce,Λθ
(x, y) = Ct

e,Λθ
(y, x) = CΛθ,e(y, x), so ∂2Ce,Λθ

(x, y) = ∂1CΛθ,e(y, x).

Theorem 2.22. ([9]) If a copula C = Cf,g, then f, g are random variables on
(I,B(I), λ) whose joint distribution function is given by C.

Theorem 2.23. ([6]) Let f, g be measure-preserving transformations. Then, the
following conditions are equivalent:

1. Cf,g = Π;

2. f and g, when regarded as random variables on the standard probability space
(I,B(I), λ), are independent.

2.3 Dependence Copulas

We will divide this section into two parts.
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2.3.1 Complete Dependence Copulas
Definition 2.24. Random variables X and Y are said to be completely depen-
dent if there exists a Borel function f such that Y = f(X) a.s. or X = f(Y )

a.s.

Definition 2.25. Let C = CX,Y be the copula of random variables X, Y with
continuous marginal distribution functions. C is called a complete dependence
copula if X and Y are completely dependent.

Theorem 2.26. ([9, 21]) Let C = CX,Y be the copula of random variables X,Y
with continuous marginal distribution functions. Then the following conditions are
equivalent:

1. X and Y are completely dependent;

2. there exists a measure-preserving transformation ψ on I such that C = Ce,ψ

or C = Cψ,e.

Example 2.27. 1. Ce,e(x, y) = λ([0, x] ∩ [0, y]) = min{x, y} = M(x, y). Then
M is a complete dependence copula.

2. Let g(x) = 1−x. Then Ce,g(x, y) = λ([0, x]∩ [1−y, 1]) = max{x+y−1, 0} =

W (x, y), so W is a complete dependence copula.

3. Since Λθ(x) is a measure-preserving transformation, Ce,Λθ
is a complete de-

pendence copula.

2.3.2 Implicit Dependence Copulas
Definition 2.28. Random variables X and Y are said to be implicitly depen-
dent if there exist Borel functions f and g such that f(X) = g(Y ) a.s.

Definition 2.29. Let C = CX,Y be the copula of random variables X, Y with
continuous marginal distribution functions. C is called an implicit dependence
copula if X and Y are implicitly dependent.

Definition 2.30. We call the copula C is symmetric implicit dependence
copulas via function f if there exist random variables X and Y are uniformly
distributed on I such that f(X) = f(Y ) a.s. and C = CX,Y .

Example 2.31. Let X ∼ U(0, 1) and Z ∼ Ber(p), where p ∈ (0, 1), be indepen-
dence random variables and define Y = δ1(Z)X+δ0(Z)(1−X). Then Y ∼ U(0, 1),
Λ0.5(X) = Λ0.5(Y ) and CX,Y = pM + (1− p)W.
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Solution. First, we will show that Y ∼ U(0, 1).

P(Y ≤ y) = P(δ1(Z)X + δ0(Z)(1−X) ≤ y)

= P(1−X ≤ y | Z = 1)P(Z = 1) + P(X ≤ y | Z = 0)P(Z = 0)

= (1− (1− y))p+ y(1− p) = y.

It is easy to see that Λ0.5(1 − X) = Λ0.5(X), so Λ0.5(Y ) = Λ0.5(X). Next, we
will compute the copula of X,Y .

CX,Y (x, y) = P(X ≤ x, Y ≤ y)

= P(X ≤ x,X ≤ y | Z = 1)P(Z = 1)

+P(X ≤ x, 1−X ≤ y | Z = 0)P(Z = 0)

= p ·min{x, y}+ (1− p)max{x+ y − 1, 0}
= p ·M(x, y) + (1− p) ·W (x, y).

■

Example 2.31 shows that pM + (1− p)W is an implicit dependence copula for
0 < p < 1. Evidently, their support is supp(M) ∪ supp(W ). However, there are
many other implicit dependence copulas with this support. We shall give thier
characterizations in Chapter III.

2.4 The Markov Product

Let C be the class of all copulas. In [3, 5, 14], the Markov product, defined as
a binary operation on C , was studied in many aspects, especially its relationship
with the Markov processes. It is then later called the Markov product in [9].

Definition 2.32. The Markov product is the binary operation on C defined,
for A,B ∈ C , by

A ∗B(x, y) =

∫ 1

0

∂2A(x, t)∂1B(t, y)dt (2.7)

for all x, y ∈ [0, 1].

The next theorem says that the Markov product of copulas is a copula, as well
as some properties of the Markov product.

Theorem 2.33. ([9]) Let A,B,C be copulas and α, β ∈ [0, 1] such that α+β = 1.
Then:

1. A ∗B is copula.

2. A ∗ (αB + βC) = α(A ∗B) + β(A ∗ C).
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3. (αB + βC) ∗ A = α(B ∗ A) + β(C ∗ A).

4. M ∗ C = C = C ∗M .

5. Π ∗ C = Π = C ∗ Π.

6. A ∗ (B ∗ C) = (A ∗B) ∗ C.

7. W ∗W =M .

In fact, the copula M is the identity of the Markov product.

Definition 2.34. A copula A is called a left inverse of a copula C if A ∗C =M

and is called a right inverse of a copula C if C ∗ A =M.

Definition 2.35. Let A be a copula. A is right invertible if there exists a copula
B such that A ∗B =M .

Definition 2.36. Let B be a copula. B is left invertible if there exists a copula
A such that A ∗B =M .

Theorem 2.37. ([9]) Let C be a copula. The inverse of C (if exists) must be Ct.

The copulas satisfy some nice properties under the Markov product. Recall
that e is the identity on I.

Theorem 2.38. ([9]) Let f, g, h be measure-preserving transformations on I. Then

1. Cf,g = Cf,e ∗ Ce,g.

2. Cf,e ∗ Cg,e = Cf◦g,e and Ce,g ∗ Ce,f = Ce,f◦g.

3. Cf,e is right invertible and Ce,f is left invertible.

Definition 2.39. Let A = {At}t∈[0,1] be a parametric class of copulas. The
generalized Markov product of copulas C and D with respect to A is defined
as

C ∗A D(x, y) =

∫ 1

0

At(∂2C(x, t), ∂1D(t, y))dt (2.8)

for all (x, y) ∈ [0, 1]2 at which the integral exists.

Notice that if At = Π for all t ∈ [0, 1], then the generalized markov product
reduces to the Markov product. In general, the measurability of the integrand in
2.8 needs to be verified. See [9, 17].

Theorem 2.40. ([17]) If the map (t, x, y) → At(x, y) is Borel measurable, then
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(∗) for all x, y ∈ [0, 1] and for all C,D ∈ C , At(∂2C(x, t), ∂1D(t, y)) is Lebesgue
measurable in t ∈ [0, 1]

and hence C ∗A D is a well-defined function on I2.

Let M denote the collection of families {At} such that (∗) holds.

Theorem 2.41. ([17]) Let A ∈ M. For every copulas C and D, C ∗A D is a
copula.

In this thesis, the word Markov will be omitted and we shall call the Markov
product simply as the product and the generalized Markov product as the gen-
eralized product or the {At}-product.

2.5 Conditional Expectation

In the last section, we will review some properties of conditional expectation
and some main tools used in next chapter. By the Radon-Nikodym theorem, we
recall the definition of conditional expectation.

Definition 2.42. ([2, 7]) Let X be a random variable on a probability space
(Ω,F ,P) with finite expectation and let G be a sub-σ-algebra of F . The condi-
tional expectation of X given G , written E[X | G ], is the random variable on
(Ω,G ) satisfying ∫

A

XdP =

∫
A

E[X | G ]dP (2.9)

for all A ∈ G .

In general, there are many random variables that satisfy the equation (2.9), all
of which must, of course, be equal P-a.s. Any one of them is called a version of
the conditional expectation E[X | G ].

Definition 2.43. Let X be a random variable on a probability space (Ω,F ,P)
and let G be a sub-σ-algebra of F . X and G are independent if P(X ∈ B | G) =
P(X ∈ B) for every B ∈ B(R), G ∈ G .

Theorem 2.44. ([2, 7]) Let X,Y be random variables on a probability space
(Ω,F ,P) with finite expectations and let G be a sub-σ-algebra of F . Then

1. If X and G are independent, then E[X | G ] = E[X] a.s.

2. If X and Y are independent, then E[X | Y ] = E[X] a.s.
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3. For a, b ∈ R, E[aX + bY | G ] = aE[X | G ] + bE[Y | G ] a.s.

4. If X is G -measurable and E[|XY |] <∞, then E[XY | G ] =

X E[Y | G ] a.s.

5. E[E[X | G ]] = E[X] a.s.

Definition 2.45. Let (Ω,F ,P) be a probability space, G a sub-σ-algebra of F

and B ∈ F . The conditional probability of B given by G is

P(B | G ) = E[1B | G ]. (2.10)

Definition 2.46. ([10, 12]) Let (Ω1,F1) and (Ω2,F2) be measurable spaces. A
mapping K : Ω1 × F2 → R is called a Markov kernel (from Ω1 to F2) if
ω1 7→ K(ω1, B) is F1-measurable for every fixed B ∈ F2 and B 7→ K(ω1, B) is a
probability measure for every fixed ω1 ∈ Ω1.

Theorem 2.47. (Regular conditional distribution)([10, 12]) Let X, Y be real-valued
random variables on a common probability space. Then there exists a Markov
kernel, called a regular conditional distribution of Y given X, K : R×B(R) → [0, 1]

satisfying
K(X(ω), B) = P(Y ∈ B | X)(ω) P-a.s.

Remark 2.48. (see [10, 12])

1. For every random vector (X, Y ), a regular conditional distribution K(·, ·) of
Y given X exists.

2. K(·, ·) is unique PX-a.s. where PX is the probability measure induced by X:
PX(B) = P(X−1(B)).

3. K(·, ·) only depends on the distribution of (X, Y ).

Theorem 2.49. (Disintegration) ([10, 12]) Let X, Y be real-valued random vari-
ables such that P(Y ∈ · | X) = K(X, ·) for some Markov kernel K and let f be a
Borel function on B(R2) with E[|f(Y,X)|] <∞. Then

E[f(Y,X) | X] =

∫
R
f(s,X)K(X, ds) a.s. (2.11)

Let C be the copula of random variables X and Y uniformly distributed on I.
We denote by KC(·, ·) a version of the regular conditional distribution of Y given
X.

The next theorem shows a relationship between copulas and Markov kernels.
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Theorem 2.50. Let X,Y be random variables uniformly distributed on I with
copula C. Then

C(x, y) =

∫ x

0

KC(s, [0, y])ds.

Proof. Using f(Y,X) = 1A×B(X, Y ) where A = [0, x] and B = [0, y]. Then,

C(x, y) = P(X ∈ A, Y ∈ B) = E[f(Y,X)]

Since E[E[f(Y,X) | X]] = E[f(Y,X)], by disintegration, we have

E[f(Y,X)] = E
[∫

R
f(s,X)KC(X, ds)

]
= E

[∫
B

1A(X)KC(X, ds)

]
=

∫
A

∫
B

KC(t, ds)dt

=

∫
A

KC(t, [0, y])dt.

Next, we recall some theorems in approximating the conditional probability
given X = x by the conditional probability given X ∈ Ej where Ej is a sequence
that shrinks to x nicely.

Theorem 2.51. ([16]) Let X be a random variable on (Ω,F ,P) and let B be a set
in F . Then there exists a function P(B | X = x) such that for each A ∈ B(R),

P(B ∩ {X ∈ A}) =
∫
A

P(B | X = x)dPX(x).

Definition 2.52. ([18]) Suppose x ∈ R. A sequence {Ej} of Borel sets in R is
said to shrink to x nicely if there is a number α > 0 with the following property:
There is a sequence of ball B(x, ri), with lim

i→∞
ri = 0 such that Ei ⊂ B(x, ri) and

λ(Ei) ≥ αλ(B(x, ri))

for i = 1, 2, . . . .

Theorem 2.53. ([18]) For each x in R, let a sequence {Ej(x)}∞j=1 shrink to x

nicely and let f ∈ L1(R). Then, at almost every x,

f(x) = lim
j→∞

1

λ(Ej(x))

∫
Ej(x)

fdλ.
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The next theorem is a consequence of Theorem 2.51 and 2.53. We use this
theorem to show some properties in the next chapter (see Lemma 3.3).

Theorem 2.54. Let X,Y be random variables and A ∈ B(R) and {Ej(x)}∞j=1 be
a sequence that shrink to x nicely. Then,

P(Y ∈ A | X = x) = lim
j→∞

P(Y ∈ A | X ∈ Ej).

Proof. We apply Theorem 2.53 to the function f = P(Y ∈ A | X) and obtain

P(Y ∈ A | X = x) = lim
j→∞

1

P(X ∈ Ej)

∫
Ej

P(Y ∈ A | X = t)dPX(t).

By Theorem 2.51, we have∫
Ej

P(Y ∈ A | X = t)dPX(t) = P(Y ∈ A,X ∈ Ej).

Hence,

P(Y ∈ A | X = x) = lim
j→∞

P(Y ∈ A,X ∈ Ej)

P(X ∈ Ej)

= lim
j→∞

P(Y ∈ A | X ∈ Ej).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III
Symmetric Implicit Dependence Copulas Via Tent

Functions

3.1 Generalized Products of Ce,Λθ
and CΛθ,e are implicit de-

pendence copulas

In this section, we show that the generalized products of some complete depen-
dence copulas are implicit dependence copulas. We shall consider only the complete
dependence copulas Ce,Λθ

and CΛθ,e where Λθ(x) = min{x
θ
, 1−x
1−θ} for 0 < θ < 1.

For 0 < θ < 1, we define injections Λ1
θ,Λ

2
θ : I → R by Λ1

θ(x) :=
x

θ
and

Λ2
θ(x) :=

1− x

1− θ
, so that Λθ = Λ1

θ1[0,θ] + Λ2
θ1(θ,1]. Denote Λijθ := (Λiθ)

−1 ◦ Λjθ. In
particular, Λ12

θ (x) = θ
1−θ (1 − x) and Λ21

θ (x) = 1 − 1−θ
θ
x. Technically, Λ12

θ and Λ21
θ

map I onto
[
0, θ

1−θ

]
and

[
2θ−1
θ
, 1
]
, respectively. But they are usually considered as

Λ12
θ ([0, y]) = (Λ1

θ)
−1
(
Λ2
θ([0, y])

)
= (Λ1

θ)
−1

([
1− y

1− θ
,

1

1− θ

])
=

[
θ

1− θ
(1− y),

θ

1− θ

]
and

Λ21
θ ([0, y]) = (Λ2

θ)
−1
(
Λ1
θ([0, y])

)
= (Λ2

θ)
−1
([

0,
y

θ

])
=

[
1− 1− θ

θ
y, 1

]
.

Lemma 3.1. Let A := {At}t∈[0,1] be a class of copulas. If At(θ, θ) is measurable
in t, then, for every x, y ∈ I, At(∂2Ce,Λθ

(x, t), ∂2Ce,Λθ
(y, t)) is measurable in t, i.e.,

Ce,Λθ
∗A CΛθ,e is a copula.

Proof. Notice from Example 2.19 that

∂2Ce,Λθ
(x, y) =


θ if Λθ(x) > y,

0 if Λθ(x) < y and x < θ,

1 if Λθ(x) < y and x > θ.
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Let g(x, t) = ∂2Ce,Λθ
(x, t) and f(x, y, t) = At(g(x, t), g(y, t)). Then

f(x, y, t) =


0 if g(x, t) = 0 or g(y, t) = 0,

At(θ, θ) if g(x, t) = θ = g(y, t),

θ if (g(x, t), g(y, t)) = (θ, 1) or (1, θ),
1 if g(x, t) = 1 = g(y, t).

Let β ∈ R and consider the set B := {t : f(x, y, t) < β}.

Case 1: β > 1. Then, B = [0, 1] is measurable.

Case 2: θ < β ≤ 1. Then,

B = [0, 1]∖ {t : g(x, t) = 1 = g(y, t)}

=

[0, 1]∖ {t : t > max{Λθ(x),Λθ(y)}} if x > θ and y > θ

[0, 1] otherwise

=

[0,max{Λθ(x),Λθ(y)}] if x > θ and y > θ

[0, 1] otherwise.

Thus, B is measurable.

Case 3: 0 < β ≤ θ. Then, B = {t : f(x, y, t) = 0} ∪ {t : 0 < f(x, y, t) < β}. Denote
B1 = {t : 0 < f(x, y, t) < β}. Then,

B1 = {t : 0 < At(θ, θ) < β, t < Λθ(x), t < Λθ(y)}
= {t : 0 < At(θ, θ) < β} ∩ [0,min{Λθ(x),Λθ(y)}] .

By assumption, we have that B1 is measurable and

{t : f(x, y, t) = 0} =

{t : t > min{Λθ(x),Λθ(y)}} if x < θ or y < θ,
∅ otherwise

=

[min{Λθ(x),Λθ(y)}, 1] if x < θ or y < θ,
∅ otherwise.

Then, B is measurable.

Theorem 3.2. Let A := {At}t∈[0,1] be a class of copulas such that At(θ, θ) is
measurable in t. Then, Ce,Λθ

∗A CΛθ,e is an implicit dependence copula, i.e., there
exist random variables X and Y uniformly distributed on [0, 1] such that Λθ(X) =

Λθ(Y ) a.s. and Ce,Λθ
∗A CΛθ,e = CX,Y .
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Proof. Denote C ′ := Ce,Λθ
∗A CΛθ,e. By Lemma 3.1, C ′ is a copula. Let Q be the

Borel probability measure extension of VC′ to B(I2). Define functions X and Y

on I2 → I by X(x, y) := x and Y (x, y) := y, which are both random variables on
the probability space (I2,B(I2),Q). Then,

C ′(x, y) = VC′([0, x]× [0, y])

= Q (([0, x]× [0, 1]) ∩ ([0, 1]× [0, y]))

= Q
(
X−1([0, x]) ∩ Y −1([0, y])

)
= Q(X ≤ x, Y ≤ y).

Thus, C ′ is the joint distribution function of X and Y . Since

Q(X ≤ x) = Q(X−1([0, x]))

= VC′([0, x]× [0, 1])

= C ′(x, 1) = x

and, similarly, Q(Y ≤ y) = y, X and Y are uniformly distributed on [0, 1]. Hence,
C ′ = CX,Y .

We will prove the final claim that Λθ(X) = Λθ(Y ) Q-a.s. Since {Λθ(X) =

Λθ(Y )} = {(x, y) ∈ I2 : Λθ(x) = Λθ(y)} =: ∆, it suffices to show that VC′(B) = 0

for all rectangles B ⊆ I2 ∖∆. Note that

∆ =

{
(x, y) : y = x or y =

(
1− 1− θ

θ
x

)
1[0,θ](x) +

θ

1− θ
(1− x)1(θ,1](x)

}
(see the blue line in Fig 3.1). Observe that each rectangle in I2∖∆ can be written
as the difference between two rectangles in I2 ∖ ∆ both of which have one side
lying on the boundary S of I2. For instance, if all four corners of a rectangle
B := [x1, x2] × [y1, y2] are in the triangular region 2 bounded above by the line
y = Λ21

θ (x) and bounded below by the line y = x, then B = B1 ∖ B2 where both
B1 := [0, x2] × [y1, y2] and B2 := [0, x1] × [y1, y2] lie in the same region 2. So, it
suffices to show that VC′(B) = 0 for every rectangle B ⊆ I2 ∖ ∆ whose one side
lies in S. Our proof naturally splits into four cases, depending on the region that
B lies in. The four regions are partitioned by the graphs of y = x, y = Λ21

θ (x) and
y = Λ12

θ (x), illustrated in Figure 3.1.

Case 1: B = [x1, x2] × [0, y] ⊆ I2 ∖∆. Equivalently, both (xi, y), i = 1, 2, lie below
y = x and y = Λ12

θ (x). So, for i = 1, 2, xi > y and Λ12
θ (xi) > y. Consequently,

y < θ and Λ21
θ (y) > xi. Thus

C ′(xi, y) =

∫ 1

0

At
(
∂2Ce,Λθ

(xi, t), ∂1CΛθ,e(t, y)
)
dt
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Region 3

Region 4

Region 1

R.2

θ

θ

x

y

x

y

Figure 3.1: The four regions of I2 ∖∆.

=

∫ 1

0

At
(
∂2Ce,Λθ

(xi, t), ∂2Ce,Λθ
(y, t)

)
dt

=

∫ y
θ

0

At(θ, θ)dt+

∫ 1

y
θ

At(∂2Ce,Λθ
(xi, t), 0)dt

=

∫ y
θ

0

At(θ, θ)dt.

In the third equality, we separate the interval [0, 1] into
[
0, y

θ

]
and

[
y
θ
, 1
]

because, by equation (2.6), the value of ∂2Ce,Λθ
(y, t) on intervals

[
0, y

θ

]
and[

y
θ
, 1
]
are different. Hence, VC′(B) = C ′(x1, 0) − C ′(x2, 0) − C ′(x1, y) +

C ′(x2, y) = 0.

Case 2: This case is similar to case 1. B = [0, x] × [y1, y2] ⊆ I2 ∖ ∆. Equivalently,
both (x, yi), i = 1, 2, lie below y = x and y = Λ21

θ (x). So, for i = 1, 2,
yi > x,Λ21

θ (x) > yi. Consequently, x < θ and Λ12
θ (yi) > x. Thus

C ′(x, yi) =

∫ 1

0

At
(
∂2Ce,Λθ

(x, t), ∂2Ce,Λθ
(yi, t)

)
dt

=

∫ x
θ

0

At(θ, θ)dt+

∫ 1

x
θ

At(0, ∂2Ce,Λθ
(yi, t))dt

=

∫ x
θ

0

At(θ, θ)dt.

Hence, VC′(B) = C ′(0, y1)− C ′(x, y1)− C ′(0, y2) + C ′(x, y2) = 0.
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1

θ

0

θy x1 x2Λ21
θ (y) 1

y
θ

1

0

t

1

θ

0

θx y1 y2Λ21
θ (x) 1

x
θ

1

0

t

Figure 3.2: The value of ∂2Ce,Λθ
(x, t) in case 1 (left) and 2 (right).

Case 3: B = [x1, x2] × [y, 1] ⊆ I2 ∖∆. Equivalently, both (xi, y), i = 1, 2, lie below
y = x and y = Λ21

θ (x). So, for i = 1, 2, y > xi,Λ
21
θ (xi) < y. Consequently,

y > θ and Λ12
θ (y) < xi. Thus,

C ′(xi, y) =

∫ 1

0

At

(
∂2Ce,Λθ

(xi, t), ∂2Ce,Λθ
(y, t)

)
dt

=

∫ 1−y
1−θ

0

At(θ, θ)dt+

∫ 1

1−y
1−θ

At(∂2Ce,Λθ
(xi, t), 1)dt

=

∫ 1−y
θ

0

At(θ, θ)dt+

∫ 1

1−y
1−θ

∂2Ce,Λθ
(xi, t)dt,

where in the third equality, we separate the interval [0, 1] into
[
0, 1−y

1−θ

]
and[

1−y
1−θ , 1

]
because, by equation (2.6), the value of ∂2Ce,Λθ

(y, t) on intervals[
0, 1−y

1−θ

]
and

[
1−y
1−θ , 1

]
are different. We have

C ′(x1, y)− C ′(x2, y) =

∫ 1

1−y
1−θ

∂2Ce,Λθ
(x1, t)− ∂2Ce,Λθ

(x2, t)dt

= Ce,Λθ
(x1, 1)− Ce,Λθ

(
x1,

1− y

1− θ

)
− Ce,Λθ

(x2, 1) + Ce,Λθ

(
x2,

1− y

1− θ

)
= x1 − x2 +

∫ x2

x1

∂1Ce,Λθ

(
t,
1− y

1− θ

)
dt

= x1 − x2 +

∫ x2

x1

0dt = x1 − x2.

Hence, VC′(B) = C ′(x1, y)− C ′(x2, y)− C ′(x1, 1) + C ′(x2, 1) = 0.
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1

0

1

θΛ12
θ (y)

x1 x2 y 1

1−y
1−θ

1

0

t

1

θ

0

θΛ12
θ (y)

x1 x2 y 1

1−y
1−θ

1

0

t

Figure 3.3: The value of ∂1Ce,Λθ
(x, t) and ∂2Ce,Λθ

(x, t), respectively, in case 3.

Case 4: This case is similar to case 3. B = [x, 1] × [y1, y2] ⊆ I2 ∖ ∆. Equivalently,
both (x, yi), i = 1, 2, lie below y = x and y = Λ12

θ (x). So, for i = 1, 2,
x > yi,Λ

12
θ (x) > yi. Consequently, x > θ and Λ21

θ (yi) < xi. Thus,

C ′(x, yi) =

∫ 1

0

At(∂2Ce,Λθ
(x, t), ∂2Ce,Λθ

(yi, t))dt

=

∫ 1−x
1−θ

0

At(θ, θ)dt+

∫ 1

1−x
1−θ

At(1, ∂2Ce,Λθ
(yi, t))dt

=

∫ 1−x
1−θ

0

At(θ, θ)dt+

∫ 1

1−x
1−θ

∂2Ce,Λθ
(yi, t)dt.

We have

C ′(x, y1)− C ′(x, y2) =

∫ 1

1−x
1−θ

∂2Ce,Λθ
(y1, t)− ∂2Ce,Λθ

(y2, t)dt

= Ce,Λθ
(y1, 1)− Ce,Λθ

(
y1,

1− x

1− θ

)
− Ce,Λθ

(y2, 1) + Ce,Λθ

(
y2,

1− x

1− θ

)
= y1 − y2 +

∫ y2

y1

∂1Ce,Λθ

(
t,
1− x

1− θ

)
dt

= y1 − y2 +

∫ y2

y1

0 dt = y1 − y2.

Hence, VC′(B) = C ′(x, y1)− C ′(x, y2)− C ′(1, y1) + C ′(1, y2) = 0.
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1

0

1

θΛ12
θ (x)
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1

0

t

1

θ
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θ (x)
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1−x
1−θ

1

0
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Figure 3.4: The value of ∂1Ce,Λθ
(x, t) and ∂2Ce,Λθ

(x, t), respectively, in case 4.

3.2 Generalized Factorizability of CX,Y where Λθ(X) = Λθ(Y )

In this section, we will write some implicit dependence copulas as the products
of two complete dependence copulas. We will consider only the implicit dependence
copulas of random variables X and Y where Λθ(X) = Λθ(Y ) a.s.

First, let random variables X,Y ∼ U(0, 1) be such that Λθ(X) = Λθ(Y ) a.s.
where Λθ is defined in equation (2.4) and Λθ = Λ1

θ1[0,θ] + Λ2
θ1(θ,1].

Let A1 = {X ≤ θ, Y ≤ θ}, A2 = {X ≤ θ, Y > θ}, A3 = {X > θ, Y ≤ θ} and
A4 = {X > θ, Y > θ}. Since Λθ(X) = Λθ(Y ) a.s., we have that X = Y a.s. in
A1 ∪ A4, Λ1

θ(X) = Λ2
θ(Y ) a.s. in A2 and Λ2

θ(X) = Λ1
θ(Y ) a.s. in A3. So,

Y = X1A1 + Λ21
θ (X)1A2 + Λ12

θ (X)1A3 +X1A4 a.s. (3.1)

By equation (2.6), for s < θ and using change of variable with t = Λθ(s), we
have

∂2Ce,Λθ
(x,Λθ(s)) =


θ if Λθ(x) > Λθ(s),

0 if Λθ(x) < Λθ(s) and x < θ,

1 if Λθ(x) < Λθ(s) and x > θ.

(3.2)

Next, for a.e. s, we denote

ω1(s) = E
[
1{Y≤θ} | X = s

]
and ω2(s) = E

[
1{Y >θ} | X = s

]
.

Since K(s, ·) is a probability measure, we have ω1(s) + ω2(s) = 1 a.s.

Lemma 3.3. Let random variables X and Y uniformly distributed on [0, 1] be such
that Λθ(X) = Λθ(Y ) a.s. For s < θ, ω1(s) +

1−θ
θ
ω1(1− 1−θ

θ
s) = 1 a.s.
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θ

1

θ

0

θ

θ

x

s

Figure 3.5: The value of ∂2Ce,Λθ
(x,Λθ(s)).

Proof. Let s < θ, t = Λθ(s) and Aj(t) :=
(
t− 1

j
, t+ 1

j

)
∩ [0, 1] shrink to t nicely.

By Theorem 2.54, we have

P(Y ≤ θ | Λθ(X) = t) = lim
j→∞

P(Y ≤ θ | Λθ(X) ∈ Aj(t)) a.e. t.

Let the eventBj(t) := {Λθ(X) ∈ Aj(t)} = {X ∈ (Λ1
θ)

−1(Aj(t))}∪{X ∈ (Λ2
θ)

−1(Aj(t))}.
Then the event {X ∈ (Λ1

θ)
−1(Aj(t))} and {X ∈ (Λ2

θ)
−1(Aj(t))} are disjoint as

j → ∞. Thus, by conditional probability,

P(Y ≤ θ | Λθ(X) = t)

= lim
j→∞

P(Y ≤ θ | Bj(t))

= lim
j→∞

P(Y ≤ θ, Bj(t))

P(Bj(t))

= lim
j→∞

[
P(Y ≤ θ,X ∈ (Λ1

θ)
−1(Aj(t)))

P(Bj(t))
+

P(Y ≤ θ,X ∈ (Λ2
θ)

−1(Aj(t)))

P(Bj(t))

]
= lim

j→∞

[
P(Y ≤ θ,X ∈ (Λ1

θ)
−1(Aj(t)))

P(X ∈ (Λ1
θ)

−1(Aj(t)))
· P(X ∈ (Λ1

θ)
−1(Aj(t)))

P(Bj(t))

+
P(Y ≤ θ,X ∈ (Λ2

θ)
−1(Aj(t)))

P(X ∈ (Λ2
θ)

−1(Aj(t)))
· P(X ∈ (Λ2

θ)
−1(Aj(t)))

P(Bj(t))

]

= lim
j→∞

[
P(Y ≤ θ | X ∈ (Λ1

θ)
−1(Aj(t))) ·

P(X ∈ (Λ1
θ)

−1(Aj(t)))

P(Bj(t))

+ P(Y ≤ θ | X ∈ (Λ2
θ)

−1(Aj(t))) ·
P(X ∈ (Λ2

θ)
−1(Aj(t)))

P(Bj(t))

]
.

Since X ∼ U(0, 1) and Λθ is measure-preserving, we have

P(X ∈ (Λiθ)
−1(Aj(t))) = λ((Λiθ)

−1(Aj(t)))
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and
P(Bj(t)) = λ((Λθ)

−1(Aj(t))) = λ(Aj(t)).

By Theorem 2.53, for a.e. t,

lim
j→∞

P(X ∈ Λ1
θ)

−1(Aj(t)))

P(Bj(t))
= (Λ1

θ)
−1(t) = θ for i = 1, 2

and
lim
j→∞

P(X ∈ Λ1
θ)

−1(Aj(t)))

P(Bj(t))
= (Λ2

θ)
−1(t) = 1− θ.

The sequence (Λ1
θ)

−1(Aj(t)) =
(
θt− θ

j
, θt+ θ

j

)
shrinks nicely to θt := a and

(Λ1
θ)

−1(Aj(t)) =
(
1− (1− θ)t− 1−θ

j
, 1− (1− θ)t+ 1−θ

j

)
shrinks nicely to b :=

1− (1− θ)t. By Theorem 2.54 as j → ∞,

P(Y ≤ θ,X ∈ (Λ1
θ)

−1(Aj(t))) → P(Y ≤ θ,X = a)

and
P(Y ≤ θ,X ∈ (Λ2

θ)
−1(Aj(t))) → P(Y ≤ θ,X = b).

Hence, for s < θ,

P(Y ≤ θ | Λθ(X) = t) = θ P(Y ≤ θ | X = a) + (1− θ)P(Y ≤ θ | X = b)

= θ P(Y ≤ θ | X = s) + (1− θ)P
(
Y ≤ θ | X = 1− 1− θ

θ
s

)
= θω1(s) + (1− θ)ω1

(
1− 1− θ

θ
s

)
.

Similarly, we have

P(Y ≤ θ | Λθ(Y ) = t) = θ P(Y ≤ θ | Y = s)+(1−θ)P
(
Y ≤ θ | Y = 1− 1− θ

θ
s

)
.

(3.3)
Next, we find the value of P(Y ≤ θ | Λθ(X) = t). Since Λθ(X) = Λθ(Y ) a.s., we
have

P(Y ≤ θ | Λθ(X) = t) = P(Y ≤ θ | Λθ(Y ) = t)

= θ P(Y ≤ θ | Y = s) + (1− θ)P
(
Y ≤ θ | Y = 1− 1− θ

θ
s

)
= θ.

The second equality holds because of equation(3.3) and the last equality holds
because for s < θ, 1− 1−θ

θ
s > θ. Hence, θ = θω1(s) + (1− θ)ω1

(
1− 1−θ

θ
s
)
.
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Lemma 3.4. Let random variables X, Y ∼ U(0, 1) be such that Λθ(X) = Λθ(Y )

a.s. Then,

KC(s, [0, y]) = ω1(s)1[0,y]∩[0,θ](s) + ω2(s)1Λ12
θ ([0,y])∩[0,θ](s)

+ ω1(s)1Λ21
θ ([0,y])∩(θ,1](s) + ω2(s)1[0,y]∩(θ,1](s).

Proof. By equation (3.1), we have Y = X1A1 + Λ21
θ (X)1A2 + Λ12

θ (X)1A3 +X1A4

a.s. Since 0 ≤
∫
A

1{Y=0}(ω)dP(ω) ≤
∫
Ω

1{Y=0}(ω)dP(ω) = P(Y = 0) = 0 for all

A ∈ σ(X), we have E
[
1{Y=0} | X = s

]
= 0. To prove the lemma, it is sufficient

to consider 1(0,y] ◦ Y . Observe that for any J ⊆ (0, 1] and a random variable Z
taking values in [0, 1], 1J ◦ (Z1Ai

) = (1J ◦ Z)1Ai
for every i = 1, 2, 3, 4. Thus,

1(0,y] ◦ (X1A1) =
(
1(0,y] ◦X

)
1A1 ,

1(0,y] ◦
(
Λ21
θ (X)1A2

)
=
(
1(0,y] ◦ Λ21

θ (X)
)
1A2 ,

1(0,y] ◦
(
Λ12
θ (X)1A3

)
=
(
1(0,y] ◦ Λ12

θ (X)
)
1A3

and
1(0,y] ◦ (X1A4) =

(
1(0,y] ◦X

)
1A4 .

We can derive that(
1(0,y] ◦ Λ21

θ (X)
)
1A2 =

(
1Λ12

θ ((0,y]) ◦X
)
1A2

and (
1(0,y] ◦ Λ12

θ (X)
)
1A3 =

(
1Λ21

θ ((0,y]) ◦X
)
1A3 .

Thus,

E
[
1(0,y] ◦ Y | X

]
= E

[(
1(0,y] ◦X

)
1A1 | X

]
+ E

[(
1Λ12

θ ((0,y]) ◦X
)
1A2 | X

]
+ E

[(
1Λ21

θ ((0,y]) ◦X
)
1A3 | X

]
+ E

[(
1(0,y] ◦X

)
1A4 | X

]
.

Since 1(0,y] ◦X,1Λ12
θ ((0,y]) ◦X and 1Λ21

θ ((0,y]) ◦X are σ(X)-measurable, we have

E
[(
1(0,y] ◦X

)
1A1 | X

]
=
(
1(0,y] ◦X

)
E [1A1 | X] ,

E
[(
1Λ12

θ ((0,y]) ◦X
)
1A2 | X

]
=
(
1Λ12

θ ((0,y]) ◦X
)
E [1A2 | X] ,

E
[(
1Λ21

θ ((0,y]) ◦X
)
1A3 | X

]
=
(
1Λ21

θ ((0,y]) ◦X
)
E [1A3 | X] ,

and
E
[(
1(0,y] ◦X

)
1A4 | X

]
=
(
1(0,y] ◦X

)
E [1A4 | X] .
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We can show that

E [1A1 | X] = E
[
1{X≤θ,Y≤θ} | X

]
= 1{X≤θ} E

[
1{Y≤θ} | X

]
,

E [1A2 | X] = E
[
1{X≤θ,Y >θ} | X

]
= 1{X≤θ} E

[
1{Y >θ} | X

]
,

E [1A3 | X] = E
[
1{X>θ,Y≤θ} | X

]
= 1{X>θ} E

[
1{Y≤θ} | X

]
,

and
E [1A4 | X] = E

[
1{X>θ,Y >θ} | X

]
= 1{X>θ} E

[
1{Y >θ} | X

]
.

Hence,

KC(s, [0, y]) = E
[
1[0,y] ◦ Y | X = s

]
= ω1(s)1[0,y]∩[0,θ](s) + ω2(s)1Λ12

θ ([0,y])∩[0,θ](s)

+ ω1(s)1Λ21
θ ([0,y])∩(θ,1](s) + ω2(s)1[0,y]∩(θ,1](s).

Lemma 3.5. Let random variables X, Y be uniformly distributed on [0, 1] with
copula C such that Λθ(X) = Λθ(Y ) a.s. Then KC(s, [0, s]) = KC(s, [0, y]) for all
s ≤ θ satisfying Λθ(s) ≤ Λθ(y) where y ∈ [0, 1].

Proof. SinceAj :=
(
s− 1

j
, s
]
shrinks nicely to s as j → ∞ and the sets Λθ ((s, y]) ⊆

(Λθ(s), 1] and Λθ

((
s− 1

j
, s
])

=
(
Λθ(s− 1

j
),Λθ(s)

]
, we have

P (Y ∈ (s, y] , X ∈ Aj(s)) ≤ P
(
Λθ(Y ) ∈ Λθ ((s, y]) ,Λθ(X) ∈ Λθ

((
s− 1

j
, s

]))
= 0

for j large enough. Therefore, P (s < Y ≤ y | X = s) = 0.

Next, we will show that simple implicit dependence copulas can be written as
generalized products of complete dependence copulas.

Theorem 3.6. Let random variables X, Y ∼ U(0, 1) be such that Λθ(X) = Λθ(Y )

a.s. Then there exists A = {At}t∈[0,1] such that CX,Y = Ce,Λθ
∗A CΛθ,e.

Proof. For each s ∈ [0, θ], let AΛθ(s) be the subcopula on {0, θ, 1}2 defined by

AΛθ(s) (θ, θ) = θ ·KC(s, [0, s]).

We can extend subcopula AΛθ(s) to copula by Sklar’s theorem. Since s ≤ θ,Λθ(s) ≤
1 = Λθ(θ) andKC(s, [0, θ]) is measurable in s, by Lemma 3.5, we haveKC(s, [0, s]) =

KC(s, [0, θ]) is measurable in s. Thus, At(θ, θ) is measurable in t where t = Λθ(s).
By Lemma 3.1, At(∂2Ce,Λθ

(x, t), ∂2Ce,Λθ
(y, t)) is measurable in t.
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The generalized product of CeΛθ
and CΛθe with respect to A = {At}t∈[0,1] is

Ce,Λθ
∗A CΛθ,e(x, y) =

∫ 1

0

At(∂2Ce,Λθ
(x, t), ∂2Ce,Λθ

(y, t)) dt (3.4)

=

∫ θ

0

1

θ
AΛθ(s)(∂2Ce,Λθ

(x,Λθ(s)), ∂2Ce,Λθ
(y,Λθ(s))) ds. (3.5)

The last equality uses the change of variable t = Λθ(s) =
s

θ
for s ∈ [0, θ].

The proof of this theorem will be divided into four cases. Using the equation
(3.5), the values of ∂2Ce,Λθ

(x,Λθ(s)) in equation (3.2) and Lemma 3.5, at the end of
each subcase, Theorem 2.50 gives

∫ x
0
KC(s, [0, y])ds = CX,Y (x, y) which completes

the proof.

Case 1: x, y ≤ θ.

1. If x < y, then Ce,Λθ
∗A CΛθ,e(x, y) is

=

∫ x

0

1

θ
AΛθ(s)(θ, θ)ds+

∫ y

x

1

θ
AΛθ(s)(0, θ)ds+

∫ θ

y

1

θ
AΛθ(s)(0, 0)ds

=

∫ x

0

KC(s, [0, s])ds

=

∫ x

0

KC(s, [0, y])ds.

The first equality uses the equations (3.2) and (3.5) and the last equality
uses Lemma 3.5.

2. If y ≤ x, then by Table 3.1 and Lemma 3.4, we have
∫ x

y

KC(s, [0, y]) ds =

0 and Ce,Λθ
∗A CΛθ,e(x, y) is

=

∫ y

0

1

θ
AΛθ(s)(θ, θ) ds+

∫ x

y

1

θ
AΛθ(s)(θ, 0) ds+

∫ θ

x

1

θ
AΛθ(s)(0, 0) ds

=

∫ y

0

KC(s, [0, s]) ds

=

∫ y

0

KC(s, [0, y]) ds+

∫ x

y

KC(s, [0, y]) ds

=

∫ x

0

KC(s, [0, y]) ds.

The first equality uses the equations (3.2) and (3.5) and the third equal-
ity uses Lemma 3.5.
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B s ∈ (y, x]

[0, y] ∩ [0, θ] 0
Λ12
θ ([0, y]) ∩ [0, θ] 0

Λ21
θ ([0, y]) ∩ (θ, 1] 0
[0, y] ∩ (θ, 1] 0

Table 3.1: The values of 1B(s) for given sets B at s in the interval in subcase 1.2.

1

θ

0

θx y 1

x

y

θ

0

s

1

θ

0

θy x 1

y

x

θ

0

s

Figure 3.6: The value of ∂2Ce,Λθ
(x,Λθ(s)) in subcase 1.1 (left) and 1.2 (right).

Case 2: x ≤ θ, y > θ. Consider b := Λ12
θ (y) = θ

1−θ (1−y) ∈ [0, θ] and use the fact that
Λθ (b) = Λθ(y).

1. If x < b, then Ce,Λθ
∗A CΛθ,e(x, y) is

=

∫ x

0

1

θ
AΛθ(s)(θ, θ)ds+

∫ b

x

1

θ
AΛθ(s)(0, θ)ds+

∫ θ

b

1

θ
AΛθ(s)(0, 1)ds

=

∫ x

0

KC(s, [0, s])ds

=

∫ x

0

KC(s, [0, y])ds

The first equality uses the equations (3.2) and (3.5) and the last equality
uses Lemma 3.5.

2. If b < x, then by Table 3.2 and Lemma 3.4, we have∫ x

b

KC(s, [0, y])ds =

∫ x

b

ω1(s) + ω2(s)ds = x− b

and Ce,Λθ
∗A CΛθ,e(x, y) is

=

∫ b

0

1

θ
AΛθ(s)(θ, θ)ds+

∫ x

b

1

θ
AΛθ(s)(θ, 1)ds+

∫ θ

x

1

θ
AΛθ(s)(0, 1)ds
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=

∫ b

0

KC(s, [0, s])ds+ (x− b)

=

∫ b

0

KC(s, [0, y])ds+

∫ x

b

KC(s, [0, y])ds

=

∫ x

0

KC(s, [0, y])ds.

The first equality uses the equations (3.2) and (3.5) and the third equal-
ity uses Lemma 3.5.

1

θ

0

θx b y 1

x

b

θ

0

s

1

θ

0

θb x y 1

b

x

θ

0

s

Figure 3.7: The value of ∂2Ce,Λθ
(x,Λθ(s)) in subcase 2.1 (left) and 2.2 (right).

B s ∈ (b, x]

[0, y] ∩ [0, θ] 1
Λ12
θ ([0, y]) ∩ [0, θ] 1

Λ21
θ ([0, y]) ∩ (θ, 1] 0
[0, y] ∩ (θ, 1] 0

Table 3.2: The values of 1B(s) for given sets B at s in the interval in subcase 2.2.

Case 3: x > θ, y ≤ θ. Consider a := Λ12
θ (x) = θ

1−θ (1 − x), y ∈ [0, θ] and use the fact
that Λθ(a) = Λθ(x).

1. If y < a, then by Table 3.3 and Lemma 3.4, we have
∫ x

y

KC(s, [0, y])ds =

0 and Ce,Λθ
∗A CΛθ,e(x, y) is

=

∫ y

0

1

θ
AΛθ(s)(θ, θ)ds+

∫ a

y

1

θ
AΛθ(s)(θ, 0)ds+

∫ θ

a

1

θ
AΛθ(s)(1, 0)ds

=

∫ y

0

KC(s, [0, s])ds
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=

∫ y

0

KC(s, [0, y])ds+

∫ x

y

KC(s, [0, y])ds

=

∫ x

0

KC(s, [0, y])ds.

The first equality uses the equations (3.2) and (3.5) and the third equal-
ity uses Lemma 3.5.

2. If a < y, then by Table 3.3 and Lemma 3.4, we have∫ 1− 1−θ
θ
y

y

KC(s, [0, y])ds = 0,

∫ y

a

KC(s, [0, y])ds+

∫ x

1− 1−θ
θ
y

KC(t, [0, y])dt

=

∫ y

a

ω1(s)ds+

∫ x

1− 1−θ
θ
y

ω1(t)dt

=

∫ y

a

ω1(s) +
1− θ

θ
ω1

(
1− 1− θ

θ
s

)
ds

= y − a,

where we have made a change of variable t = 1− 1−θ
θ
s and

Ce,Λθ
∗A CΛθ,e(x, y) =

∫ a

0

1

θ
AΛθ(s)(θ, θ)ds+

∫ y

a

1

θ
AΛθ(s)(1, θ)ds

+

∫ θ

y

1

θ
AΛθ(s)(1, 0)ds

=

∫ a

0

KC(s, [0, s])ds+ (y − a) + 0

=

∫ a

0

KC(s, [0, y])ds+

∫ 1− 1−θ
θ
y

y

KC(s, [0, y])ds

+
(∫ y

a

KC(s, [0, y])ds+

∫ x

1− 1−θ
θ
y

KC(s, [0, y])ds
)

=

∫ x

0

KC(s, [0, y])ds.

The first equality uses the equations (3.2) and (3.5) and the third equal-
ity uses Lemma 3.5.
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1

θ

0

θy a x 1

y

a

θ

0

s

1

θ

0

θa y x 1

a

y

θ

0

s

Figure 3.8: The value of ∂2Ce,Λθ
(x,Λθ(s)) in subcase 3.1 (left) and 3.2 (right).

B s ∈ (y, x]

[0, y] ∩ [0, θ] 0
Λ12
θ ([0, y]) ∩ [0, θ] 0

Λ21
θ ([0, y]) ∩ (θ, 1] 0
[0, y] ∩ (θ, 1] 0

s ∈ (a, y] s ∈ (y,Λ21
θ (y)] s ∈ (Λ21

θ (y), x]

1 0 0
0 0 0
0 0 1
0 0 0

Table 3.3: The values of 1B(s) for given sets B in subcases 3.1 (left) and 3.2 (right).

Case 4: x, y > θ. Consider a, b ∈ [0, θ] and use the fact that Λθ(a) = Λθ(x) and
Λθ(b) = Λθ(y). Notice that x− a = x−θ

1−θ and y − b = y−θ
1−θ .

1. If x < y, then by Table 3.4 and Lemma 3.4, we have∫ a

b

KC(s, [0, y])ds =

∫ a

b

(ω1(s) + ω2(s)) ds = a− b,

∫ x

a

KC(s, [0, y])ds =

∫ θ

a

(ω1(s)+ω2(s)) ds+

∫ x

θ

(ω1(s)+ω2(s)) ds = x−a

and Ce,Λθ
∗A CΛθ,e(x, y) is

=

∫ b

0

1

θ
AΛθ(s)(θ, θ)ds+

∫ a

b

1

θ
AΛθ(s)(θ, 1)ds+

∫ θ

a

1

θ
AΛθ(s)(1, 1)ds

=

∫ b

0

KC(s, [0, s])ds+ (a− b) +

(
x− θ

1− θ

)
=

∫ b

0

KC(s, [0, y])ds+

∫ a

b

KC(s, [0, y])ds+

∫ x

a

KC(s, [0, y])ds

=

∫ x

0

KC(s, [0, y])ds.
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The first equality uses the equations (3.2) and (3.5) and the third equal-
ity uses Lemma 3.5.

2. If y < x, then by Table 3.4 and Lemma 3.4, we have∫ x

a

KC(s, [0, y])ds =

∫ b

a

ω1(s) ds+

∫ θ

b

(ω1(s) + ω2(s)) ds

+

∫ y

θ

(ω1(s) + ω2(s)) ds+

∫ x

y

ω1(s) ds

=

∫ b

a

ω1(s) ds+

∫ x

y

ω1(t) dt+ (y − b)

=

∫ b

a

ω1(s) +
1− θ

θ
ω1

(
1− 1− θ

θ
s

)
ds+

(
y − θ

1− θ

)
= (b− a) +

(
y − θ

1− θ

)
,

where we have made a change of variable t = 1− 1−θ
θ
s and

Ce,Λθ
∗A CΛθ,e(x, y) =

∫ a

0

1

θ
AΛθ(s)(θ, θ)ds+

∫ b

a

1

θ
AΛθ(s)(1, θ)ds

+

∫ θ

b

1

θ
AΛθ(s)(1, 1)ds

=

∫ a

0

KC(s, [0, s])ds+ (b− a) +

(
y − θ

1− θ

)
=

∫ a

0

KC(s, [0, y])ds+

∫ x

a

KC(s, [0, y])ds

=

∫ x

0

KC(s, [0, y])ds.

The first equality uses the equations (3.2) and (3.5) and the third equal-
ity uses Lemma 3.5.

1

θ

0

θb a x y 1

b

a

θ

0

s

1

θ

0

θa b y x 1

a

b

θ

0

s

Figure 3.9: The value of ∂2Ce,Λθ
(x,Λθ(s)) in subcase 4.1 (left) and 4.2 (right).
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B s ∈ (b, a] s ∈ (a, x]

[0, y] ∩ [0, θ] 1 1( θ
1−θ

(1−x),θ]

Λ12
θ ([0, y]) ∩ [0, θ] 1 1( θ

1−θ
(1−x),θ]

Λ21
θ ([0, y]) ∩ (θ, 1] 0 1(θ,x]

[0, y] ∩ (θ, 1] 0 1(θ,x]

s ∈ (a, b] s ∈ (b, x]

1 1( θ
1−θ

(1−y),θ]

0 1( θ
1−θ

(1−y),θ]

0 1(θ,x]

0 1(θ,y]

Table 3.4: The values of 1B(s) for given sets B in subcases 4.1 (left) and 4.2 (right).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV
Symmetric Implicit Dependence Copulas Via Simple

Functions

In this chapter, we will generalize the result in section 3.2 by giving a suffi-
cient condition on the measure-preserving transformation α, replacing Λθ, under
which the implicit dependence copulas CX,Y , where α(X) = α(Y ), are generalized
factorizable.

Let α be a measure-preserving (Borel) transformation on [0, 1] for which there
is a partition P := {0 = a0, a1, a2, . . . , an = 1} such that, for i = 1, . . . , n, αi := α|Ii
is one-to-one where Ii := (ai−1, ai]. By [11], α−1

i is also Borel measurable and hence
each αij := α−1

i ◦αj is an injective Borel functions from Ij into Ii. Note that αii is
the identity on Ii; αij is onto Ii provided that αj(Ij) = αi(Ii); and αij is an empty
map if αi(Ii) ∩ αj(Ij) = ∅. Clearly, α =

∑n
i=1 αi1Ii on (0, 1]. In this chapter, we

assume further that each αi is strictly increasing and maps Ii onto (0, 1]. Under
these additional assumptions, every αij is a bijection (in fact, a strictly increasing
function) from Ij to Ii. Hence, all αi’s and αij’s are differentiable a.e. on their
domains. Such a measure-preserving function α satisfying all above assumptions
will be called simple.

a1 a2 1

1

0

α(x)

Figure 4.1: An example of simple functions α.
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Remark 4.1. For s ∈ (0, 1] and i = 1, 2, . . . , n, let s(i) denote the unique number
in Ii such that α(s(i)) = α(s). Obviously, s(1) < s(2) < · · · < s(n); and that s = s(i)

if and only if s ∈ Ii. Consequently, if s ∈ Ij, then s(i) = αij(s). Since every αi is
strictly increasing, it holds that s(i) < t(i) if and only if s(j) < t(j). It is also the
case that α−1 ((0, α(s)]) =

∪n
i=1(ai, α

−1
i (α(s))] =

∪n
i=1(ai, s(i)].

Let random variables X, Y ∼ U(0, 1) be such that α(X) = α(Y ) a.s. for some
simple measure-preserving transformation α on [0, 1]. For each i = 1, . . . , n and
j = 1, . . . , n, denote Aij := {X ∈ Ii, Y ∈ Ij} on which αi(X) = αj(Y ) a.s. Hence
Y = αji(X) a.s. on Aij and

Y =
n∑
j=1

n∑
i=1

αji(X)1Aij
a.s. (4.1)

For convenience, we denote ωi(s) := KCX,Y
(s, Ii) which is equal to E

[
1{Y ∈Ii} | X = s

]
for almost every s ∈ [0, 1]. Since KCX,Y

(s, ·) is a probability measure for all s and∪n
i=1 Ii = (0, 1], we always have

∑n
i=1 ωi(s) = 1.

Next, we introduce Lemma 4.2 - 4.4 which are counterparts of Lemma 3.3 - 3.5
in section 3.2

Lemma 4.2. Let random variables X and Y be uniformly distributed on [0, 1] such
that α(X) = α(Y ) a.s. for some simple measure-preserving transformation α on
[0, 1]. Then, for k = 1, 2, . . . , n and a.e. s ∈ I1,

n∑
i=1

1

α′(s(i))
P(Y ∈ Ik|X = s(i)) =

1

α′(s(k))
. (4.2)

Proof. Let t = α(s) and Aj(t) =
(
t− 1

j
, t+ 1

j

)
shrinks to t nicely. By Theorem

2.54, we have

P(Y ∈ Ik | α(X) = t) = lim
j→∞

P(Y ∈ Ik | α(X) ∈ Aj(t)) a.e. t.

Let the event Bj := {α(X) ∈ Aj(t)} =
∪̇
i{X ∈ α−1

i (Aj(t))}. Notation
∪̇

mean
disjoint union. Thus, by conditional probability, for a.e. t

P(Y ∈ Ik | α(X) = t) = lim
j→∞

P(Y ∈ Ik | Bj)

= lim
j→∞

[
n∑
i=1

P(Y ∈ Ik, X ∈ α−1
i (Aj(t))

P(Bj)

]

= lim
j→∞

[
n∑
i=1

P(Y ∈ Ik, X ∈ α−1
i (Aj(t))

P(X ∈ α−1
i (Aj(t))

· P(X ∈ α−1
i (Aj(t))

P(Bj)

]
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= lim
j→∞

[
n∑
i=1

P(Y ∈ Ik | X ∈ α−1
i (Aj(t))) ·

P(X ∈ α−1
i (Aj(t)))

P(Bj)

]
.

SinceX ∼ U(0, 1) and α is measure-preserving, P(X ∈ α−1
i (Aj(t))) = λ

(
α−1
i (Aj(t))

)
and P(Bj(t)) = λ (α−1(Aj(t))) = λ (Aj(t)). Therefore, by Theorem 2.53, for a.e. t,

lim
j→∞

P(X ∈ α−1
i (Aj(t)))

P(Bj(t))
=
(
α−1
i

)′
(t) =

1

α′
i(t)

=: βi.

Since the sequence α−1
i (Aj(t)) =

(
α−1
i (t− 1

j
), α−1

i (t+ 1
j
)
)
shrinks nicely to s(i) as

j → ∞, we have by Theorem 2.54 that

P(Y ∈ Ik | X ∈ α−1
i (Aj(t))) → P(Y ∈ Ik | X = s(i)).

Hence, P(Y ∈ Ik | α(X) = t) =
∑n

i=1 βi P(Y ∈ Ik | X = s(i)).

Since α(X) = α(Y ) a.s., we have P(Y ∈ Ik | α(X) = t) = P(Y ∈ Ik | α(Y ) = t)

which, by the same arguments as above, is equal to
∑n

i=1 βi P(Y ∈ Ik | Y = s(i)).
Finally, as it is clear that P(Y ∈ Ik | Y = s(i)) = 1 if i = 1 and 0 if i ̸= 1, we
obtain that

n∑
i=1

βi P(Y ∈ Ik | X = s(i)) = βi.

Lemma 4.3. Let α be a simple measure-preserving transformation on [0, 1] and
random variables X, Y ∼ U(0, 1) with copula C = CX,Y and such that α(X) = α(Y )

a.s. Then, for y ∈ Ik, k ∈ {1, . . . , n} and a.e. s ∈ [0, 1],

KC(s, [0, y]) =



k∑
j=1

ωj(s) if s ∈ (ai−1, y(i)] for some i,

k−1∑
j=1

ωj(s) if s ∈ (y(i), ai] and k ≥ 2 for some i,

0 if s ∈ (y(i), ai] and k = 1 for some i.

(4.3)

Proof. Recall from (4.1) that Y =
∑n

j=1

∑n
i=1 αji(X)1Aij

a.s.

Since 0 ≤
∫
A

1{Y=0}(ω)dP(ω) ≤
∫
Ω

1{Y=0}(ω)dP(ω) = P(Y = 0) = 0 for all

A ∈ σ(X), we have E
[
1{Y=0} | X

]
= 0 a.s. To prove the lemma, it is sufficient to

consider 1(0,y] ◦Y . Observe that for any J ⊆ (0, 1] and a random variable Z taking
values in [0, 1], 1J ◦ (Z1Aij

) = (1J ◦ Z)1Aij
for every i, j. Thus, for every i, j,

1(0,y] ◦
(
αji(X)1Aij

)
=
(
1(0,y] ◦ αji(X)

)
1Aij

a.s.
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Then
1(0,y] ◦ Y =

n∑
j=1

n∑
i=1

(
1(0,y] ◦ αji(X)

)
1Aij

a.s.

Since αi is bijective on Ii for each i, we have that αji(X) ∈ (0, y] if and only if

X ∈ αij((0, y]). Thus, 1(0,y]◦Y =
n∑
j=1

n∑
i=1

(
1αij((0,y])(X)

)
1Aij

a.s. Since 1αij((0,y])◦X

and 1Ii ◦X are σ(X)-measurable, we have

E
[(
1αij((0,y]) ◦X

)
1Aij

| X
]
= E

[(
1αij((0,y]) ◦X

)
1Ii(X)1Ij(Y ) | X

]
=
(
1αij((0,y])∩Ii ◦X

)
E
[
1Y ∈Ij | X

]
= ωj(X)

(
1αij((0,y])∩Ii ◦X

)
a.s.

Hence,

KC(s, [0, y]) = E
[
1[0,y] ◦ Y | X = s

]
=

n∑
j=1

n∑
i=1

ωj(s)1αij((0,y])∩Ii(s) a.s.

Next, we will consider s ∈ Ii, soKC(s, [0, y]) =
∑n

j=1 ωj(s)1αij((0,y])(s). If j < k,
then αij((0, y]) = α−1

i ([0, 1]) = Ii, so 1αij((0,y])(s) = 1. For j > k, since αj define on
Ij, so αj((0, y]) = ∅, then αij((0, y]) = α−1

i (∅) = ∅, i.e., 1αij((0,y])(s) = 0. If j = k,
then αij((0, y]) = α−1

i ([0, α(y)]) = (ai−1, y(i)], i.e. 1αij((0,y])(s) = 1(ai−1,y(i)](s). This
completes the proof of equation (4.3)

Lemma 4.4. Let α be a simple measure-preserving transformation on [0, 1] and
random variables X,Y uniformly distributed on [0, 1] with copula C = CX,Y such
that α(X) = α(Y ) a.s. Then, for i, k = 1, . . . , n, y ∈ Ik, and a.e. s ∈ [0, 1],

1. KC(s(i), [0, s(k)]) = KC(s(i), [0, y]) if s(k) ≤ y; and

2. KC(s(i), [0, s(k−1)]) = KC(s(i), [0, y]) if s(k) > y.

Proof. Equivalently, it suffices to show that P
(
s(k) < Y ≤ y | X = s

)
= 0. Since

Aj :=
(
s− 1

j
, s
]
shrinks nicely to s as j → ∞ and the sets

α
((
s(k), y

])
⊆ [0, α(y)) ∪

(
α(s(k)), 1

]
and

α

((
s− 1

j
, s

])
⊆
(
α(s− 1

j
), α(s)

]
=

(
α(s− 1

j
), α(s(k))

]
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are eventually disjoint. Note the use of the assumption that α can be partitioned
into finitely many αi’s. Hence,

P
(
Y ∈

(
s(k), y

]
, X ∈ Aj(s)

)
≤ P

(
α(Y ) ∈ α

((
s(k), y

])
, α(X) ∈ α

((
s− 1

j
, s

]))
= 0,

for j large enough. Therefore, P
(
s(k) < Y ≤ y | X = s

)
= 0 which proves the

claim.

Lemma 4.5. Let α be a simple measure-preserving transformation on [0, 1]. For
x ∈ Ij and a.e. s ∈ I1,

∂2Ce,α(x, α(s)) =


j−1∑
i=1

1

α′(s(i))
= βj−1 if x ≤ s(j),

j∑
i=1

1

α′(s(i))
= βj if x > s(j).

(4.4)

Proof. By definition, Ce,α(x, y) = λ
(∪n

i=1[0, x] ∩ (ai−1, α
−1
i (y)]

)
. Let x ∈ Ij. Then,

the intersection is empty for i > j and

Ce,α(x, y) =


j−1∑
i=1

(α−1
i (y)− ai−1) + (x− aj−1) if x ≤ s(j),

j∑
i=1

(α−1
i (y)− ai−1) if x > s(j).

Let s ∈ I1. For x ≤ s(j), a.e. s

∂2Ce,α(x, α(s)) = lim
h→0

Ce,α(x, α(s) + h)− Ce,α(x, α(s))

h

=

j−1∑
i=1

lim
h→0

α−1
i (α(s) + h)− α−1

i (α(s))

h

=

j−1∑
i=1

(
α−1
i

)′
(α(s))

=

j−1∑
i=1

1

α′
i(s(i))

.

Also for x > s(j), a.e. s

∂2Ce,α(x, α(s)) = lim
h→0

Ce,α(x, α(s) + h)− Ce,α(x, α(s))

h
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=

j∑
i=1

lim
h→0

α−1
i (α(s) + h)− α−1

i (α(s))

h

=

j∑
i=1

(
α−1
i

)′
(α(s))

=

j∑
i=1

1

α′
i(s(i))

.

Computing ∂2Ce,α(1, α(s)) in two different ways, i.e., by using (4.4) and by the

boundary condition of copulas, gives βn =
n∑
i=1

1

α′(s(i))
= 1.

For less cumbersome notation, we denote βk :=
k∑
i=1

1

α′(s(i))
for k = 1, . . . , n

and B := {0 = β0, β1, . . . , βn−1, βn = 1}. For s ∈ (0, a1), let Aα(s) be defined on
B ×B by

Aα(s) (βk, βℓ) :=
1

α′(s)

k∑
i=1

α′
i1(s)KC(s(i), [0, s(ℓ)]) for k, ℓ ∈ {1, . . . , n− 1} (4.5)

and Aα(s) (βk, 1) = Aα(s) (1, βk) = βk for k = 0, 1, . . . , n.

s(1) s(2) s(3) 1

1

0

α(s)

0

1

α′(s(1))

2∑
i=1

1

α′(s(i))

1

Figure 4.2: The value of ∂2Ce,α(x, α(s)).

Lemma 4.6. For every s ∈ (0, a1), Aα(s) is a subcopula on B ×B.
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Proof. It is only left to show that Aα(s) has 2-increasing property. Let βp ≤ βq and
βk ≤ βℓ. For j = k, ℓ,

Aα(s)(βq, βj)− Aα(s)(βp, βj) =
1

α′(s)

q∑
i=p+1

α′
i1(s)KC(s(i), [0, s(j)]).

So VAα(s)
([βp, βq]× [βk, βℓ]) =

1
α′(s)

∑q
i=p+1 α

′
i1(s)KC

(
s(i), (sk, s(ℓ)]

)
≥ 0.

Lemma 4.7. At(∂2Ce,α(x, t), ∂2Ce,α(y, t)) is measurable in t ∈ [0, 1].

Proof. Let s ∈ I1. For each k, ℓ ∈ {1, . . . , n− 1}, consider

Aα(s) (βk, βℓ) =
1

α′(s)

k∑
i=1

α′
i1(s)KC(s(i), [0, s(ℓ)]).

Since s(ℓ) ≤ aℓ and s(i) is a linear function of s, by Lemma 4.4, KC(s(i), [0, s(ℓ)]) =

KC(s(i), [0, a(ℓ)]) is measurable in s. Hence, Aα(s) (βk, βℓ) is measurable in s. Next,
it is similar to Lemma 3.1 to show that Aα(s)(∂2Ce,α(x, α(s), ∂2Ce,α(y, α(s)) is mea-
surable in s. Using a change of variable t = α1(s), the proof is complete.

Theorem 4.8. Let random variables X,Y ∼ U(0, 1) be such that α(X) = α(Y )

a.s. for some simple measure-preserving transformation α on [0, 1]. Then, there
exists A = {At}t∈[0,1] ⊆ C such that CX,Y = Ce,α ∗A Cα,e.

Proof. For each s ∈ (0, a1), we extend the subcopula Aα(s) defined above to a
copula, still denoted by Aα(s). A0 and A1 can be taken to be any copulas as
they do not affect the A-product. By Lemma 4.7, At(∂2Ce,α(x, t), ∂2Ce,α(y, t)) is
measurable in t ∈ [0, 1]. Putting A := {At}t∈[0,1], we have

Ce,α ∗A Cα,e(x, y) =
∫ 1

0

At(∂2Ce,α(x, t), ∂2Ce,α(y, t)) dt

=

∫ a1

0

α′(s)Aα(s) (∂2Ce,α(x, α(s)), ∂2Ce,α(y, α(s))) ds, (4.6)

where the last equality uses the change of variable t = α(s). Denote C := CX,Y

and let KC be its Markov kernel. The rest of the proof is devoted to deriving
that (4.6) equals

∫ x
0
KC (s, [0, y]) ds which, by Theorem 2.50, is equal to C(x, y).

The proof is divided into four cases according to where (x, y) is. By Lemma
4.5, if (x, y) ∈ Ip × Iq then ∂2Ce,α(x, α(s)) = βp1(0,x(1))(s) + βp−11[x(1),a1](s) and
∂2Ce,α(y, α(s)) = βq1(0,y(1))(s) + βq−11[y(1),a1](s) for a.e. s ∈ (0, a1].

Case 1: x ∈ I1, y ∈ Iq where q = 1, . . . , n.
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1.1. If x ≤ y(1), then Ce,α ∗A Cα,e(x, y) is

=

∫ x

0

α′(s)Aα(s) (β1, βq) ds+

∫ y(1)

x

α′(s)Aα(s) (0, βq) ds

+

∫ a1

y(1)

α′(s)Aα(s) (0, βq−1) ds

=


∫ x
0
KC

(
s, [0, s(q)]

)
ds if q < n,∫ x

0
α′(s)β1 ds =

∫ x
0
1 ds if q = n.

The case q = n is done by noting from (4.3) that KC(s, [0, y]) =
∑n

1 ωj(s) =

1. Consider q < n. For s ≤ x ≤ y(1), it follows from Remark 4.1 that
s(q) ≤ y(q). So, we have KC(s, [0, s(q)]) = KC(s, [0, y]) by Lemma 4.4.

1.2. If x > y(1), then Ce,α ∗A Cα,e(x, y) is

=

∫ y(1)

0

α′(s)Aα(s) (β1, βq) ds+

∫ x

y(1)

α′(s)Aα(s) (β1, βq−1) ds (4.7)

+

∫ a1

x

α′(s)Aα(s) (0, βq−1) ds

=


∫ y(1)
0

KC(s, [0, s])ds if q = 1,∫ y(1)
0

KC(s, [0, s(q)])ds+
∫ x
y(1)

KC(s, [0, s(q−1)])ds if 1 < q < n,∫ y(1)
0

1ds+
∫ x
y(1)

KC(s, [0, s(q−1)])ds if q = n.

(4.8)

For 1 < q < n, it follows from Remark 4.1 and Lemma 4.4 thatKC(s, [0, s(q)]) =

KC(s, [0, y]) if s ≤ y(1), and KC(s, [0, s(q−1)]) = KC(s, [0, y]) if y(1) < s ≤ x.
Hence, (4.8) is equal to

∫ x
0
KC(s, [0, y])ds.

For q = 1, we obtain by using Lemma 4.4 that KC(s, [0, s]) = KC(s, [0, y]) if
s ≤ y(1) = y. For y(1) < s ≤ x, we have KC(s, [0, y]) = 0 by Lemma 4.3.

For q = n, we note from Lemma 4.3 that KC(s, [0, y]) =
∑n

j=1 ωj(s) = 1 if
s ≤ y(1), and KC(s, [0, s(q−1)]) = KC(s, [0, y]) if y(1) < s ≤ x.

Case 2: x ∈ Ip, y ∈ Iq where 1 < p < n and 1 ≤ q < n.

2.1. If x(1) ≤ y(1), then Ce,α ∗A Cα,e(x, y), for q > 1, is

=

∫ x(1)

0

α′(s)Aα(s) (βp, βq) ds+

∫ y(1)

x(1)

α′(s)Aα(s) (βp−1, βq) ds

+

∫ a1

y(1)

α′(s)Aα(s) (βp−1, βq−1) ds
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a(1)x y(1) y

α(x)

α(y)

1

1

0 a(1)y(1) x y

α(y)

α(x)

1

1

0

Figure 4.3: The value of ∂2Ce,α(x, α(s)) in subcase 1.1 (left) and 1.2 (right).

=

∫ x(1)

0

p∑
i=1

α′
i1(s)KC(s(i), [0, s(q)])ds+

∫ y(1)

x(1)

p−1∑
i=1

α′
i1(s)KC(s(i), [0, s(q)])ds

+

∫ a1

y(1)

p−1∑
i=1

α′
i1(s)KC(s(i), [0, s(q−1)])ds

=

∫ x(1)

0

p∑
i=1

α′
i1(s)KC(s(i), [0, y])ds+

∫ y(1)

x(1)

p−1∑
i=1

α′
i1(s)KC(s(i), [0, y])ds

+

∫ a1

y(1)

p−1∑
i=1

α′
i1(s)KC(s(i), [0, y])ds

=

p∑
i=1

∫ x(i)

ai−1

KC(s, [0, y])ds+

p−1∑
i=1

∫ y(i)

x(i)

KC(s, [0, y])ds+

p−1∑
i=1

∫ ai

y(i)

KC(s, [0, y])ds.

The third equality holds because, by Remark 4.1 and Lemma 4.4,KC(s, [0, s(q)]) =

KC(s, [0, y]) for s ∈ [0, y(1)] and KC(s, [0, s(q−1)]) = KC(s, [0, y]) for s ∈
(y(1), a1], and the last equality uses the change of variable s(1) = αi1(s(1))

[= s(i)].

Case q = 1 is similar to case q > 1 except for that Aα(s) (βp−1, βq−1) = 0.

This case is proved because
p−1∑
i=1

∫ ai

y(i)

KC(s, [0, y])ds = 0 by equation (4.3).

2.2. If x(1) > y(1), then Ce,α ∗A Cα,e(x, y), for q > 1, is

=

∫ y(1)

0

α′(s)Aα(s) (βp, βq) ds+

∫ x(1)

y(1)

α′(s)Aα(s) (βp, βq−1) ds
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+

∫ a1

x(1)

α′(s)Aα(s) (βp−1, βq−1) ds

=

∫ y(1)

0

p∑
i=1

α′
i1(s)KC(s(i), [0, s(q)])ds+

∫ x(1)

y(1)

p∑
i=1

α′
i1(s)KC(s(i), [0, s(q−1)])ds

+

∫ a1

x(1)

p−1∑
i=1

α′
i1(s)KC(s(i), [0, s(q−1)])ds

=

∫ y(1)

0

p∑
i=1

α′
i1(s)KC(s(i), [0, y])ds+

∫ x(1)

y(1)

p∑
i=1

α′
i1(s)KC(s(i), [0, y])ds

+

∫ a1

x(1)

p−1∑
i=1

α′
i1(s)KC(s(i), [0, y])ds

=

p∑
i=1

∫ y(i)

ai−1

KC(s, [0, y])ds+

p∑
i=1

∫ x(i)

y(i)

KC(s, [0, y])ds+

p−1∑
i=1

∫ ai

x(i)

KC(s, [0, y])ds.

The third equality holds because, by Remark 4.1 and Lemma 4.4,KC(s, [0, s(q)]) =

KC(s, [0, y]) for s ∈ [0, y(1)] and KC(s, [0, s(q−1)]) = KC(s, [0, y]) for s ∈
(y(1), a1], and the last equality uses the change of variable s(1) = αi1(s(1))

[= s(i)].

Case q = 1 is similar to case q > 1 except for that Aα(s) (βp, β0) = 0 =

Aα(s) (βp−1, β0). Using equation (4.3), we have
p∑
i=1

∫ x(i)

y(i)

KC(s, [0, y])ds =

0 =

p−1∑
i=1

∫ ai

x(i)

KC(s, [0, y])ds to complete this case.

a(1)x(1) xy

α(x)

α(y)

1

1

0 a(1)x(1) xy(1) y

α(y)

α(x)

1

1

0

Figure 4.4: The value of ∂2Ce,α(x, α(s)) in subcase 2.1 (left) and 2.2 (right).

Case 3: x ∈ Ip, y ∈ In where 1 < p ≤ n.
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3.1. If x(1) ≤ y(1), then Ce,α ∗A Cα,e(x, y) is

=

∫ x(1)

0

α′(s)Aα(s) (βp, βn) ds+

∫ y(1)

x(1)

α′(s)Aα(s) (βp−1, βn) ds

+

∫ a1

y(1)

α′(s)Aα(s) (βp−1, βn−1) ds

=

∫ x(1)

0

α′(s)

p∑
i=1

1

α′(s(i))
ds+

∫ y(1)

x(1)

α′(s)

p−1∑
i=1

1

α′(s(i))
ds

+

∫ a1

y(1)

p−1∑
i=1

α′
i1(s)KC(s(i), [0, s(n−1)])ds

=

p∑
i=1

∫ x(1)

0

α′(s)

α′(s(i))
ds+

p−1∑
i=1

∫ y(1)

x(1)

α′(s)

α′(s(i))
ds+

∫ a1

y(1)

p−1∑
i=1

α′
i1(s)KC(s(i), [0, y])ds

=

p∑
i=1

∫ x(i)

ai−1

1ds+

p−1∑
i=1

∫ y(i)

x(i)

1ds+

p−1∑
i=1

∫ ai

y(i)

KC(s, [0, s(n−1)])ds.

The third equality holds because, by Remark 4.1 and Lemma 4.4,KC(s, [0, s(n−1)]) =

KC(s, [0, y]) for s ∈ (y(1), a1], and the last equality uses the change of variable
s(1) = αi1(s(1))[= s(i)]. Note that dαi1(s(1)) = α′(s)

α′(s(i))
ds(1).

3.2. If x(1) > y(1), then Ce,α ∗A Cα,e(x, y) is

=

∫ y(1)

0

α′(s)Aα(s) (βp, βn) ds+

∫ x(1)

y(1)

α′(s)Aα(s) (βp, βn−1) ds

+

∫ a1

x(1)

α′(s)Aα(s) (βp−1, βn−1) ds

=

∫ y(1)

0

α′(s)

p∑
i=1

1

α′(s(i))
ds+

∫ x(1)

y(1)

p∑
i=1

α′
i1(s)KC(s(i), [0, s(n−1)])ds

+

∫ a1

x(1)

p−1∑
i=1

α′
i1(s)KC(s(i), [0, s(n−1)])ds

=

p∑
i=1

∫ y(1)

0

α′(s)

α′(s(i))
ds+

∫ x(1)

y(1)

p∑
i=1

α′
i1(s)KC(s(i), [0, y])ds

+

∫ a1

x(1)

p−1∑
i=1

α′
i1(s)KC(s(i), [0, y])ds

=

p∑
i=1

∫ y(i)

ai−1

1ds+

p∑
i=1

∫ x(i)

y(i)

KC(s, [0, y])ds+

p−1∑
i=1

∫ ai

x(i)

KC(s, [0, y])ds.

The third equality holds because, by Remark 4.1 and Lemma 4.4,KC(s, [0, s(n−1)]) =

KC(s, [0, y]) for s ∈ (y(1), a1], and the last equality uses the change of variable
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s(1) = αi1(s(1))[= s(i)]. Note that dαi1(s(1)) = α′(s)
α′(s(i))

ds(1).

a(1)x(1) xy(1) y

α(x)

α(y)

1

1

0 a(1)x(1) xy(1) y

α(y)

α(x)

1

1

0

Figure 4.5: The value of ∂2Ce,α(x, α(s)) in subcase 3.1 (left) and 3.2 (right).

Case 4: x ∈ In, y ∈ Iq where 1 ≤ q < n.

4.1. If x(1) ≤ y(1), then Ce,α ∗A Cα,e(x, y), for q > 1, is

=

∫ x(1)

0

α′(s)Aα(s) (βn, βq) ds+

∫ y(1)

x(1)

α′(s)Aα(s) (βn−1, βq) ds

+

∫ a1

y(1)

α′(s)Aα(s) (βn−1, βq−1) ds

=

∫ x(1)

0

α′(s)

q∑
i=1

1

α′(s(i))
ds+

∫ y(1)

x(1)

n−1∑
i=1

α′
i1(s)KC(s(i), [0, s(q)])ds

+

∫ a1

y(1)

n−1∑
i=1

α′
i1(s)KC(s(i), [0, s(q−1)])ds

=

∫ x(1)

0

α′(s)

q∑
i=1

1

α′(s(i))
ds+

∫ y(1)

x(1)

n−1∑
i=1

α′
i1(s)KC(s(i), [0, y])ds

+

∫ a1

y(1)

n−1∑
i=1

α′
i1(s)KC(s(i), [0, y])ds

=

∫ x(1)

0

α′(s)

q∑
i=1

1

α′(s(i))
ds+

n−1∑
i=1

∫ y(i)

x(i)

KC(s, [0, y])ds+
n−1∑
i=1

∫ ai

y(i)

KC(s, [0, y])ds.

The third equality holds because, by Remark 4.1 and Lemma 4.4,KC(s, [0, s(q)]) =

KC(s, [0, y]) for s ∈ (x(1), y(1)], and KC(s, [0, s(q−1)]) = KC(s, [0, y]) for s ∈
(y(1), a1] and the last equality uses the change of variable s(1) = αi1(s(1))

[= s(i)].
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The first term in the last equality, by Lemma 4.2, becomes∫ x(1)

0

α′(s)

q∑
i=1

1

α′(s(i))
ds =

∫ x(1)

0

α′(s)

q∑
i=1

(
n∑
j=1

1

α′(s(j))
ωi(s(j))

)
ds.

Using the change of variable s(1) = αj1(s(1))[= s(j)], we have∫ x(1)

0

α′(s)

q∑
i=1

n∑
j=1

1

α′(s(j))
ωi(s(j))ds =

n∑
j=1

∫ x(j)

aj−1

q∑
i=1

ωi(s)ds.

By equation (4.3),
n∑
j=1

∫ x(j)

aj−1

q∑
i=1

ωi(s)ds =
n∑
j=1

∫ x(j)

aj−1

KC(s, [0, y])ds.

Case q = 1 is similar to case q > 1 except for that Aα(s) (βn−1, βq−1) = 0.

Using equation (4.3), we have
n−1∑
i=1

∫ ai

y(i)

KC(s, [0, y])ds = 0. This completes

the case.

4.2. If x(1) > y(1), then Ce,α ∗A Cα,e(x, y) is equal to

=

∫ y(1)

0

α′(s)Aα(s) (βn, βq) ds+

∫ x(1)

y(1)

α′(s)Aα(s) (βn, βq−1) ds

+

∫ a1

x(1)

α′(s)Aα(s) (βn−1, βq−1) ds

=

∫ y(1)

0

α′(s)

q∑
i=1

1

α′(s(i))
ds+

∫ x(1)

y(1)

α′(s)

q−1∑
i=1

1

α′(s(i))
ds

+

∫ a1

x(1)

n−1∑
i=1

α′
i1(s)KC(s(i), [0, s(q−1)])ds

=

∫ y(1)

0

α′(s)

q∑
i=1

1

α′(s(i))
ds+

∫ x(1)

y(1)

α′(s)

q−1∑
i=1

1

α′(s(i))
ds

+

∫ a1

x(1)

n−1∑
i=1

α′
i1(s)KC(s(i), [0, y])ds

=

∫ y(1)

0

α′(s)

q∑
i=1

1

α′(s(i))
ds+

∫ x(1)

y(1)

α′(s)

q−1∑
i=1

1

α′(s(i))
ds+

n−1∑
i=1

∫ ai

x(i)

KC(s, [0, y])ds.

The third equality holds because, by Remark 4.1 and Lemma 4.4,KC(s, [0, s(q−1)]) =

KC(s, [0, y]) for s ∈ (y(1), a1], and the last equality uses the change of variable
s(1) = αi1(s(1))[= s(i)].
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The first term in the last equality, by Lemma 4.2, becomes∫ y(1)

0

α′(s)

q∑
i=1

1

α′(s(i))
ds =

∫ y(1)

0

α′(s)

q∑
i=1

(
n∑
j=1

1

α′(s(j))
ωi(s(j))

)
ds

and ∫ x(1)

y(1)

α′(s)

q−1∑
i=1

1

α′(s(i))
ds =

∫ x(1)

y(1)

α′(s)

q−1∑
i=1

(
n∑
j=1

1

α′(s(j))
ωi(s(j))

)
ds.

Using the change of variable s(1) = αj1(s(1))[= s(j)], we have∫ y(1)

0

α′(s)

q∑
i=1

n∑
j=1

1

α′(s(j))
ωi(s(j))ds =

n∑
j=1

∫ y(j)

aj−1

q∑
i=1

ωi(s)ds

and ∫ x(1)

y(1)

α′(s)

q−1∑
i=1

n∑
j=1

1

α′(s(j))
ωi(s(j))ds =

n∑
j=1

∫ x(j)

y(j)

q−1∑
i=1

ωi(s)ds.

By equation (4.3),

n∑
j=1

∫ y(j)

aj−1

q∑
i=1

ωi(s)ds =
n∑
j=1

∫ y(j)

aj−1

KC(s, [0, y])ds

and
n∑
j=1

∫ x(j)

y(j)

q−1∑
i=1

ωi(s)ds =
n∑
j=1

∫ x(j)

y(j)

KC(s, [0, y])ds.

Case q = 1 is similar to case q > 1 except for that Aα(s) (βn, βq−1) = 0 =

Aα(s) (βn−1, βq−1). Using equation (4.3), we have
n∑
i=1

∫ x(i)

y(i)

KC(s, [0, y])ds =

0 =
n−1∑
i=1

∫ ai

x(i)

KC(s, [0, y])ds.
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Figure 4.6: The value of ∂2Ce,α(x, α(s)) in subcase 4.1 (left) and 4.2 (right).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V
CONCLUSION

5.1 Our results

We started out trying to characterize implicit dependence copulas and finally
found a relationship between implicit dependence copulas and products of complete
dependence copula.

In section 3.1, we show that generalized products of complete dependence cop-
ulas Ce,Λθ

and CΛθ,e are implicit dependence copulas of some random variables X
and Y uniformly distributed on [0, 1] with Λθ(X) = Λθ(Y ) a.s. Vice versa, we
factor some implicit dependence copula into a generalized product of complete de-
pendence copulas, i.e., for every random variables X and Y uniformly distributed
on [0, 1] with Λθ(X) = Λθ(Y ) a.s. and with copula CX,Y , there exists a class of
copulas A such that CX,Y = CeΛθ

∗A CΛθe (section 3.2). Moreover, in chapter IV,
we generalize the result in section 3.2 from the function Λθ to the function α.

5.2 Further studies

Naturally, we conjecture that, for measure-preserving transformations f and
g, C is the copula of implicitly dependent U(0, 1)-random variables X and Y

with f(X) = g(Y ) a.s. if and only if C = Ce,f ∗A Cg,e for some class of copulas
A = {At}t∈[0,1].
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