

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาคณิตศาสตร์ ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์

คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2563
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

GENERALIZED FACTORIZABILITY OF CERTAIN IMPLICIT DEPENDENCE COPULAS

A Thesis Submitted in Partial Fulfillment of the Requirements for the Master Degree Program in Mathematics

Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2020
Copyright of Chulalongkorn University

Thesis Title

By
Field of Study
Thesis Advisor
Thesis Co-advisor

GENERALIZED FACTORIZABILITY OF CERTAIN IMPLICIT DEPENDENCE COPULAS

Mr. Peerapong Panyasakulwong Mathematics
Associate Professor Songkiat Sumetkijakan, Ph.D.
Associate Professor Tippawan Santiwipanont

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master Degree

Dean of the Faculty of Science
(Professor Polkit Sangvanich, Ph.D.)
THESIS COMMITTEE

Chairman
(Assistant Professor Jiraphan Suntornchost, Ph.D.)
.. Thesis Advisor
(Associate Professor Songkiat Sumetkijakan, Ph.D.)
...................................... Thesis Co-advisor
(Associate Professor Tippawan Santiwipanont.)
... Examiner
(Raywat Tanadkithirun, Ph.D.)
....................................External Examiner
(Assistant Professor Pongpol Ruankong, Ph.D.)

พีรพงศ์ ปัญญาสกุลวงศ์ : การแยกตัวประกอบแบบทั่วไปของบางคอปูลาการขึ้นต่อกันโดย ปริยาย (GENERALIZED FACTORIZABILITY OF CERTAIN IMPLICIT DEPENDENCE COPULAS) อ.ที่ปรึกษาวิทยานิพนธ์หลัก : รศ. ดร. ทรงเกียรติ สุเมธกิจการ, อ.ที่ ปรึกษาวิทยานิพนธ์ร่วม : รศ. ทิพวัลย์ สันติวิภานนท์, 51 หน้า.

เราเรียกคอปูลา $C_{X, Y}$ ของตัวแปรสุ่ม X และ Y ที่มีการแจกแจงเอกรูปบน $[0,1]$ ว่าคอปู ลาการขึ้นต่อกันแบบปริยายถ้า $f(X)=g(Y)$ เกือบแน่นอน สำหรับบางฟังก์ชันบอเรล f และ g บน $[0,1]$ เราแสดงโดยใช้ผลคูณมาร์คอฟแบบทั่วไปว่าคอปูลาการขึ้นต่อกันโดยปริยายสมนัย แบบหนึ่งต่อหนึ่งกับคลาสอิงพารามิเตอร์ของคอปูลาย่อยบนโดเมนที่สอดคล้องกัน สำหรับกรณี $f=g=\Lambda_{\theta}$ ฟังก์ชันเต็นท์ที่มีจุดสูงสุดที่ $(\theta, 1)$ เราแสดงด้วยว่าในกรณี $f=g=\alpha$ ฟังก์ชันคง เมเชอร์อย่างง่าย คอปูลาการขึ้นต่อกันโดยปริยายสามารถแยกตัวประกอบแบบทั่วไปได้

\qquad ลายมือชื่อ อ.ที่ปรึกษาหลัก
ปีการศึกษา2563............ ลายมือชื่อ อ.ที่ปรึกษาร่วม \qquad

\# \# 6270081223: MAJOR MATHEMATICS

KEYWORDS : Markov product, copulas, implicit dependence copulas
PEERAPONG PANYASAKULWONG : GENERALIZED FACTORIZABILITY OF CERTAIN IMPLICIT DEPENDENCE COPULAS.

ADVISOR : ASSOC. PROF. SONGKIAT SUMETKIJAKAN, Ph.D., CO-ADVISOR : ASSOC. PROF. TIPPAWAN SANTIWIPANONT, 51 pp.

The copula $C_{X, Y}$ of random variables X and Y that are uniformly distributed on $[0,1]$ is called an implicit dependence copula if $f(X)=g(Y)$ almost surely for some Borel functions f and g on $[0,1]$. Via a generalized Markov product, we give a one-to-one correspondence between the implicit dependence copulas and the parametric classes of subcopulas on a corresponding domain for the cases that $f=g=\Lambda_{\theta}$, the tent function whose top is at $(\theta, 1)$. We also show in the case $f=g=\alpha$, a simple measure-preserving function, that implicit dependence copulas are generalized factorizable.

Department : Mathematics and Computer Science Student's Signature \qquad
Field of Study : \qquad Mathematics Advisor's Signature \qquad
Academic Year :
2020 Co-Advisor's Signature \qquad

ACKNOWLEDGEMENTS

Firstly, I would like to acknowledge my advisors, Associate Professor Songkiat Sumetkijakan, Ph.D. and Associate Professor Tippawan Santiwipanont for their valuable advice and help throughout this thesis. Furthermore, I would like to thank the committee, Assistant Professor Jiraphan Suntornchost, Ph.D. (chairman), Raywat Tanadkithirun, Ph.D. (examiner) and Assistant Professor Pongpol Ruankong, Ph.D. (external examiner) for their suggestions and comments to improve my work. In addition, I feel very thankful for all of my mathematics teachers at Chulalongkorn university who have taught me various knowledge in mathematics. Also, I wish to express my thankfulness to my family and my friends for their encouragement throughout my study.

Finally, I also would like to acknowledge Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University and The His Royal Highness Crown Prince Maha Vajiralongkorn Scholarship from the Graduate School, Chulalongkorn University to commemorate the 72nd anniversary of his Majesty King Bhumibol Adulyadej is gratefully acknowledged.

CONTENTS

ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH v
ACKNOWLEDGEMENTS vi
CONTENTS vii
LIST OF FIGURES viii
LIST OF TABLES ix
INTRODUCTION 1
II PRELIMINARIES 3
2.1 Copulas 3
2.2 Measure-preserving Transformations 5
2.3 Dependence Copulas 7
2.3.1 Complete Dependence Copulas 8
2.3.2 Implicit Dependence Copulas 8
2.4 The Markov Product 9
2.5 Conditional Expectation 11
III Symmetric Implicit Dependence Copulas Via Tent Functions 15
3.1 Generalized Products of $C_{e, \Lambda_{\theta}}$ and $C_{\Lambda_{\theta, e}}$ are implicit dependence copulas 15
3.2 Generalized Factorizability of $C_{X, Y}$ where $\Lambda_{\theta}(X)=\Lambda_{\theta}(Y)$ 21
IV Symmetric Implicit Dependence Copulas Via Simple Functions 33
V CONCLUSION 48
5.1 Our results 48
5.2 Further studies 48
REFERENCES 49
VITA 51

LIST OF FIGURES

2.1 The value of $C_{e, \Lambda_{\theta}}(x, y)$ 7
3.1 The four regions of $\mathbb{I}^{2} \backslash \Delta$. 18
3.2 The value of $\partial_{2} C_{e, \Lambda_{\theta}}(x, t)$ in case 1 (left) and 2 (right) 19
3.3 The value of $\partial_{1} C_{e, \Lambda_{\theta}}(x, t)$ and $\partial_{2} C_{e, \Lambda_{\theta}}(x, t)$, respectively, in case 3 20
3.4 The value of $\partial_{1} C_{e, \Lambda_{\theta}}(x, t)$ and $\partial_{2} C_{e, \Lambda_{\theta}}(x, t)$, respectively, in case 4 21
3.5 The value of $\partial_{2} C_{e, \Lambda_{\theta}}\left(x, \Lambda_{\theta}(s)\right)$. 22
3.6 The value of $\partial_{2} C_{e, \Lambda_{\theta}}\left(x, \Lambda_{\theta}(s)\right)$ in subcase 1.1 (left) and 1.2 (right). 27
3.7 The value of $\partial_{2} C_{e, \Lambda_{\theta}}\left(x, \Lambda_{\theta}(s)\right)$ in subcase 2.1 (left) and 2.2 (right). 28
3.8 The value of $\partial_{2} C_{e, \Lambda_{\theta}}\left(x, \Lambda_{\theta}(s)\right)$ in subcase 3.1 (left) and 3.2 (right). 30
3.9 The value of $\partial_{2} C_{e, \Lambda_{\theta}}\left(x, \Lambda_{\theta}(s)\right)$ in subcase 4.1 (left) and 4.2 (right). 31
4.1 An example of simple functions α. 33
4.2 The value of $\partial_{2} C_{e, \alpha}(x, \alpha(s))$. 38
4.3 The value of $\partial_{2} C_{e, \alpha}(x, \alpha(s))$ in subcase 1.1 (left) and 1.2 (right). 41
4.4 The value of $\partial_{2} C_{e, \alpha}(x, \alpha(s))$ in subcase 2.1 (left) and 2.2 (right) 42
4.5 The value of $\partial_{2} C_{e, \alpha}(x, \alpha(s))$ in subcase 3.1 (left) and 3.2 (right). 44
4.6 The value of $\partial_{2} C_{e, \alpha}(x, \alpha(s))$ in subcase 4.1 (left) and 4.2 (right). 47

LIST OF TABLES

3.1 The values of $\mathbb{1}_{B}(s)$ for given sets B at s in the interval in subcase 1.2. 27
3.2 The values of $\mathbb{1}_{B}(s)$ for given sets B at s in the interval in subcase 2.2. 28
3.3 The values of $\mathbb{1}_{B}(s)$ for given sets B in subcases 3.1 (left) and 3.2 (right). 30
3.4 The values of $\mathbb{1}_{B}(s)$ for given sets B in subcases 4.1 (left) and 4.2 (right). 32

CHAPTER I INTRODUCTION

For random variables X and Y with continuous distribution functions F_{X} and F_{Y}, respectively, and joint distribution function $F_{X, Y}$, the copula $C_{X, Y}$ of X and Y is the function on $\mathbb{I}^{2}:=[0,1]^{2}$ for which

$$
F_{X, Y}(x, y)=C_{X, Y}\left(F_{X}(x), F_{Y}(y)\right) \text { for } x, y \in \mathbb{R} .
$$

By the probability integral transform, it is evident that $C_{X, Y}$ captures marginalfree dependence structure between X and $Y[9,13]$.

Copulas can be constructed from measure-preserving transformations. For measure-preserving transformations f and g on Lebesgue measure space $(\mathbb{I}, \mathscr{B}(\mathbb{I}), \lambda)$, the copula $C_{f, g}$ is defined by 4

$$
C_{f, g}(x, y)=\lambda\left(f^{-1}([0, x]) \cap g^{-1}([0, y])\right) .
$$

In fact, every copula can be constructed in this way [4]. This form of copulas is quite well-suited for the Markov product, introduced in [5] as a tool to study Markov processes. The generalized Markov product was later introduced in an attempt to solve the compatibility problem. For a parametric class of copulas $\mathcal{A}=\left\{A_{t}\right\}_{t \in[0,1]}$, the generalized Markov product 17$]$ is a binary operation on the set of bivariate copulas of C and D, defined by

$$
C *_{\mathcal{A}} D(x, y)=\int_{0}^{1} A_{t}\left(\partial_{2} C(x, t), \partial_{1} D(t, y)\right) d t
$$

for $x, y \in[0,1]$.
Complete dependence between X and Y happens when one is a Borel function of the other almost surely. If continuous random variables X and Y are completely dependent, then their copula is called a complete dependence copula. Every complete dependence copula can be written in the form $C_{e, f}$ or $C_{f, e}$ for some measure-preserving transformation f [9, 21]. Despite its simplistic and deterministic nature, complete dependence copulas are ubiquitous and useful in theoretical studies of copulas [19, 20, 21].

Less studied but more stochastic is the notion of implicit dependence which occurs when the two random variables are equal almost surely after applying a
corresponding pair of Borel transformations. If continuous random variables X and Y are implicitly dependent, then their copula is called an implicit dependence copula. To the best of our knowledge, there have never been any characterizations of implicit dependence copulas. In this work, we prove that some implicit dependence copulas can be written as the product of some complete dependence copulas. More precisely, C is the copula of random variables $X, Y \sim \mathcal{U}(0,1)$ for which $\Lambda_{\theta}(X)=\Lambda_{\theta}(Y)$ almost surely if and only if $C=C_{e, \Lambda_{\theta}} *_{\mathcal{A}} C_{\Lambda_{\theta}, e}$ for some class \mathcal{A} of sub-copulas on $\{0, \theta, 1\}^{2}$ which extend to copulas by Sklar's theorem. Here, $\Lambda_{\theta}(x)=\min \left(\frac{x}{\theta}, \frac{1-x}{1-\theta}\right)$ where $\theta \in(0,1)$. The only if part can be generalized from Λ_{θ} to measure-preserving transformations α on $[0,1]$ that can be partitioned by $P=\left\{0=a_{0}, a_{1}, \ldots, a_{n}=1\right\}$ into strictly increasing bijections from $\left(a_{i-1}, a_{i}\right]$ onto $[0,1]$. We call such measure-preserving functions α simple.

CHAPTER II
 PRELIMINARIES

2.1 Copulas

First, we introduce the notions of 2-increasing and grounded which are used to define copula. Let \mathbb{I} denote $[0,1]$.

Definition 2.1. ([13]) Let S_{1} and S_{2} be nonempty subsets of \mathbb{I}, and let H be a twodimensional real-valued function whose domain is $S_{1} \times S_{2}$. Let $B=\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right]$ be a rectangle all of whose vertices are in $S_{1} \times S_{2}$. Then, the H-volume of B is given by

$$
\begin{equation*}
V_{H}(B)=H\left(x_{2}, y_{2}\right)-H\left(x_{2}, y_{1}\right)-H\left(x_{1}, y_{2}\right)+H\left(x_{1}, y_{1}\right) . \tag{2.1}
\end{equation*}
$$

H is said to be 2-increasing, if $V_{H}(B) \geq 0$ for all rectangles B whose vertices lie in $S_{1} \times S_{2}$.

Definition 2.2. ([13]) Let S_{1} and S_{2} be nonempty subsets of \mathbb{I} such that S_{1} has a least element a and S_{2} has a least element b. A function $H: S_{1} \times S_{2} \rightarrow \mathbb{I}$ is called grounded if

$$
\begin{equation*}
H(x, b)=0=H(a, y) \tag{2.2}
\end{equation*}
$$

for all $(x, y) \in S_{1} \times S_{2}$.
Now, we define subcopulas and copulas.
Definition 2.3. ([13]) A subcopula is a function C^{\prime} with the following properties.

1. Domain of C^{\prime} is $S_{1} \times S_{2}$ where $S_{1}, S_{2} \subseteq \mathbb{I}$ contains 0 and 1 .
2. C^{\prime} is grounded and 2-increasing.
3. For any $x \in S_{1}, y \in S_{2}, C^{\prime}(x, 1)=x$ and $C^{\prime}(1, y)=y$.

Definition 2.4. A copula is a subcopula C whose domain is \mathbb{I}^{2}.
Definition 2.5. The copula C^{t} is called the transpose of a copula C if $C^{t}(x, y)=$ $C(y, x)$ for $(x, y) \in \mathbb{I}^{2}$.

Definition 2.6. The support of a copula C is defined by

$$
\operatorname{supp}(C)=\mathbb{I}^{2} \backslash \bigcup\left\{R \equiv(a, b) \times(c, d) \subseteq \mathbb{I}^{2}: V_{C}(R)=0\right\}
$$

Example 2.7. Listed below are some important copulas.

1. $M(x, y)=\min \{x, y\}$ is called the Fréchet-Hoeffding upper bound (see Theorem 2.8). We know that $M(x, y)=x$ if $(x, y) \in\left\{(x, y) \in \mathbb{I}^{2}: x<y\right\}:=$ A_{1} and $M(x, y)=y$ if $(x, y) \in\left\{(x, y) \in \mathbb{I}^{2}: y<x\right\}:=A_{2}$. Then, $V_{M}(R)=0$ for any rectangle $R:=(a, b) \times(c, d) \subseteq A_{1} \cup A_{2}$; otherwise, $V_{M}(R) \neq 0$. That is, $\operatorname{supp}(M)=\{(x, x): x \in \mathbb{I}\}$.
2. $W(x, y)=\max \{x+y-1,0\}$ is called the Fréchet-Hoeffding lower bound (see Theorem 2.8). Then, $W(x, y)=0$ if $(x, y) \in\left\{(x, y) \in \mathbb{I}^{2}: x+y<1\right\}:=$ B_{1} and $W(x, y)=x+y-1$ if $(x, y) \in\left\{(x, y) \in \mathbb{I}^{2}: x+y-1>0\right\}:=B_{2}$. Then $V_{W}(R)=0$ for any rectangle $R:=(a, b) \times(c, d) \subseteq B_{1} \cup B_{2}$; otherwise, $V_{W}(R) \neq 0$. That is, $\operatorname{supp}(W)=\{(x, 1-x): x \in \mathbb{I}\}$.
3. $\Pi(x, y)=x y$ is called the independence copula (see Theorem 2.13). For any nonempty rectangle $R:=(a, b) \times(c, d) \subseteq \mathbb{I}^{2}, V_{\Pi}(R)=(a-b)(c-d)>0$ which implies that $\operatorname{supp}(\Pi)=\mathbb{I}^{2}$.
4. $C_{1}(x, y)=p M(x, y)+(1-p) W(x, y)$ where $p \in(0,1)$. It can be shown by a similar argument as above that $\operatorname{supp}\left(C_{1}\right)=\operatorname{supp}(M) \cup \operatorname{supp}(W)$.

Next, we present some properties of copulas.
Theorem 2.8. (Fréchet-Hoeffding bounds) (13]) For every copula C and $(x, y) \in \mathbb{I}^{2}$,

$$
\begin{equation*}
W(x, y) \leq C(x, y) \leq M(x, y) \tag{2.3}
\end{equation*}
$$

Theorem 2.9. ($[13]$) The first partial derivatives $\partial_{1} C$ and $\partial_{2} C$ of a copula C exist almost everywhere and are Borel-measurable. For any $x, y \in \mathbb{I}$,

$$
0 \leq \partial_{1} C(t, y) \leq 1 \text { and } 0 \leq \partial_{2} C(x, t) \leq 1
$$

for almost every $t \in \mathbb{I}$.
The next theorem demonstrates the significance of copulas in probability and statistics. It explains the relationships between a copula and a joint distribution function of random variables.

Theorem 2.10. (Sklar's Theorem) (13]) Let X, Y be random variables, H be the joint distribution function of X, Y with margins F and G, respectively. Then there exists a copula C such that for all $x, y \in \mathbb{R}$,

$$
H(x, y)=C(F(x), G(y))
$$

If F and G are continuous, then C is unique and denoted by $C_{X, Y}$; otherwise, C is uniquely determined on $\operatorname{Ran}(F) \times \operatorname{Ran}(G)$.

Definition 2.11. ($[9,15]$) A nonempty subset Γ of \mathbb{R}^{2} is said to be comonotonic if for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \Gamma,\left(x_{1}-x_{2}\right)\left(y_{1}-y_{2}\right) \geq 0$ and is said to be countermonotonic if for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \Gamma,\left(x_{1}-x_{2}\right)\left(y_{1}-y_{2}\right)<0$.

A random vector (X, Y) is called comonotonic if its support is comonotonic and is called countermonotonic if its support is countermonotonic.

Definition 2.12. Let X and Y be random variables. X and Y are independent if $\mathbb{P}(X \in A, Y \in B)=\mathbb{P}(X \in A) \mathbb{P}(Y \in B)$ for any set $A, B \in \mathscr{B}(\mathbb{R})$.

Theorem 2.13. ($[\mathfrak{q}, 15])$ Let X, Y be random variables with copula $C_{X, Y}$ and continuous marginal distributions.

1. (X, Y) is comonotonic if and only if $C_{X, Y}=M$.
2. (X, Y) is countermonotonic if and only if $C_{X, Y}=W$.
3. X, Y are independent if and only if $C_{X, Y}=\Pi$.

Theorem 2.14. (Probability integral transformation)($\{9]$) Let X be a random variable whose distribution function is given by F. If F is continuous, then $F \circ X$ is uniformly distributed on \mathbb{I}.

Theorem 2.15. ([g]) A copula can be extended to a joint distribution function whose marginals are uniformly distributed on \mathbb{I}.

2.2 Measure-preserving Transformations

In this section, we introduce a construction method of copulas from measurepreserving transformations.

Definition 2.16. Let $(\mathbb{I}, \mathscr{B}(\mathbb{I}), \lambda)$ be the Lebesgue measure space. A mapping $f: \mathbb{I} \rightarrow \mathbb{I}$ is said to be measure-preserving if $\lambda\left(f^{-1}(B)\right)=\lambda(B)$ for every set $B \in \mathscr{B}(\mathbb{I})$.

Example 2.17. 1. Let e be denotes the identity function on \mathbb{I}, i.e., $e(x)=x$ for all $x \in \mathbb{I}$. It is clear that e is measure-preserving.
2. For $\theta \in(0,1)$, we define, the tent function, $\Lambda_{\theta}:[0,1] \rightarrow[0,1]$ by

$$
\Lambda_{\theta}(x):= \begin{cases}\frac{x}{\theta} & \text { if } x \leq \theta \tag{2.4}\\ \frac{1-x}{1-\theta} & \text { if } x>\theta\end{cases}
$$

For any interval $[a, b] \subseteq \mathbb{I}, \Lambda_{\theta}^{-1}([a, b])=[\theta a, \theta b] \cup[1-(1-\theta) b, 1-(1-\theta) a]$, so $\lambda\left(\Lambda_{\theta}^{-1}([a, b])\right)=\theta(b-a)+(1-\theta)(b-a)=b-a=\lambda([a, b])$ which implies that Λ_{θ} is a measure-preserving transformation.

Theorem 2.18. (健) If f, g are measure-preserving transformations on the space $(\mathbb{I}, \mathscr{B}(\mathbb{I}), \lambda)$, then the function $C_{f, g}: \mathbb{I}^{2} \rightarrow \mathbb{I}$ defined by

$$
\begin{equation*}
C_{f, g}(x, y):=\lambda\left(f^{-1}([0, x]) \cap g^{-1}([0, y])\right) \tag{2.5}
\end{equation*}
$$

is a copula. Conversely, for every copula C, there exist measure-preserving transformations f, g such that $C=C_{f, g}$.

Example 2.19. The copula with measure-preserving transformations e and Λ_{θ} is

$$
\begin{aligned}
C_{e, \Lambda_{\theta}}(x, y) & =\lambda\left(e^{-1}([0, x]) \cap \Lambda_{\theta}^{-1}([0, y])\right) \\
& =\lambda([0, x] \cap([0, \theta y] \cup[1-(1-\theta) y, 1])) \\
& = \begin{cases}y \theta & \text { if } \Lambda_{\theta}(x)>y, \\
x \cap ร ณ \text { if } \Lambda_{\theta}(x)<y \text { and } x<\theta, \\
x+y-1 & \text { if } \Lambda_{\theta}(x)<y \text { and } x>\theta .\end{cases}
\end{aligned}
$$

Hence,

$$
\partial_{2} C_{e, \Lambda_{\theta}}(x, y)= \begin{cases}\theta & \text { if } \Lambda_{\theta}(x)>y \tag{2.6}\\ 0 & \text { if } \Lambda_{\theta}(x)<y \text { and } x<\theta \\ 1 & \text { if } \Lambda_{\theta}(x)<y \text { and } x>\theta\end{cases}
$$

Figure 2.1: The value of $C_{e, \Lambda_{\theta}}(x, y)$.
Some properties of the copulas $C_{f, g}$ are given next.

1. $C_{f, g}^{t}=C_{g, f}$.
2. $C_{f, g}=M$ if and only if $f=g$ a.s. on \mathbb{I}.
3. $C_{f, e}=C_{g, e}$ if and only if $f=g$ a.s. on \mathbb{I}.

Example 2.21. $C_{e, \Lambda_{\theta}}(x, y)=C_{e, \Lambda_{\theta}}^{t}(y, x)=C_{\Lambda_{\theta}, e}(y, x)$, so $\partial_{2} C_{e, \Lambda_{\theta}}(x, y)=\partial_{1} C_{\Lambda_{\theta}, e}(y, x)$.
Theorem 2.22. ($\mid g]$) If a copula $C=C_{f, g}$, then f, g are random variables on $(\mathbb{I}, \mathscr{B}(\mathbb{I}), \lambda)$ whose joint distribution function is given by C.

Theorem 2.23. (ib]) Let f, g be measure-preserving transformations. Then, the following conditions are equivalent:

1. $C_{f, g}=\Pi$;
2. f and g, when regarded as random variables on the standard probability space $(\mathbb{I}, \mathscr{B}(\mathbb{I}), \lambda)$, are independent.

2.3 Dependence Copulas

We will divide this section into two parts.

2.3.1 Complete Dependence Copulas

Definition 2.24. Random variables X and Y are said to be completely dependent if there exists a Borel function f such that $Y=f(X)$ a.s. or $X=f(Y)$ a.s.

Definition 2.25. Let $C=C_{X, Y}$ be the copula of random variables X, Y with continuous marginal distribution functions. C is called a complete dependence copula if X and Y are completely dependent.

Theorem 2.26. ($\{9,21])$ Let $C=C_{X, Y}$ be the copula of random variables X, Y with continuous marginal distribution functions. Then the following conditions are equivalent:

1. X and Y are completely dependent;
2. there exists a measure-preserving transformation ψ on \mathbb{I} such that $C=C_{e, \psi}$ or $C=C_{\psi, e}$.

Example 2.27. 1. $C_{e, e}(x, y)=\lambda([0, x] \cap[0, y])=\min \{x, y\}=M(x, y)$. Then M is a complete dependence copula.
2. Let $g(x)=1-x$. Then $C_{e, g}(x, y)=\lambda([0, x] \cap[1-y, 1])=\max \{x+y-1,0\}=$ $W(x, y)$, so W is a complete dependence copula.
3. Since $\Lambda_{\theta}(x)$ is a measure-preserving transformation, $C_{e, \Lambda_{\theta}}$ is a complete dependence copula.

2.3.2 Implicit Dependence Copulas

Definition 2.28. Random variables X and Y are said to be implicitly dependent if there exist Borel functions f and g such that $f(X)=g(Y)$ a.s.

Definition 2.29. Let $C=C_{X, Y}$ be the copula of random variables X, Y with continuous marginal distribution functions. C is called an implicit dependence copula if X and Y are implicitly dependent.

Definition 2.30. We call the copula C is symmetric implicit dependence copulas via function f if there exist random variables X and Y are uniformly distributed on \mathbb{I} such that $f(X)=f(Y)$ a.s. and $C=C_{X, Y}$.

Example 2.31. Let $X \sim \mathcal{U}(0,1)$ and $Z \sim \operatorname{Ber}(p)$, where $p \in(0,1)$, be independence random variables and define $Y=\delta_{1}(Z) X+\delta_{0}(Z)(1-X)$. Then $Y \sim \mathcal{U}(0,1)$, $\Lambda_{0.5}(X)=\Lambda_{0.5}(Y)$ and $C_{X, Y}=p M+(1-p) W$.

Solution. First, we will show that $Y \sim \mathcal{U}(0,1)$.

$$
\begin{aligned}
\mathbb{P}(Y \leq y) & =\mathbb{P}\left(\delta_{1}(Z) X+\delta_{0}(Z)(1-X) \leq y\right) \\
& =\mathbb{P}(1-X \leq y \mid Z=1) \mathbb{P}(Z=1)+\mathbb{P}(X \leq y \mid Z=0) \mathbb{P}(Z=0) \\
& =(1-(1-y)) p+y(1-p)=y
\end{aligned}
$$

It is easy to see that $\Lambda_{0.5}(1-X)=\Lambda_{0.5}(X)$, so $\Lambda_{0.5}(Y)=\Lambda_{0.5}(X)$. Next, we will compute the copula of X, Y.

$$
\begin{aligned}
C_{X, Y}(x, y)= & \mathbb{P}(X \leq x, Y \leq y) \\
= & \mathbb{P}(X \leq x, X \leq y \mid Z=1) \mathbb{P}(Z=1) \\
& +\mathbb{P}(X \leq x, 1-X \leq y \mid Z=0) \mathbb{P}(Z=0) \\
= & p \cdot \min \{x, y\}+(1-p) \max \{x+y-1,0\} \\
= & p \cdot M(x, y)+(1-p) \cdot W(x, y) .
\end{aligned}
$$

Example 2.31 shows that $p M+(1-p) W$ is an implicit dependence copula for $0<p<1$. Evidently, their support is $\operatorname{supp}(M) \cup \operatorname{supp}(W)$. However, there are many other implicit dependence copulas with this support. We shall give thier characterizations in Chapter III.

2.4 The Markov Product

Let \mathscr{C} be the class of all copulas. In $[3,5,14]$, the Markov product, defined as a binary operation on \mathscr{C}, was studied in many aspects, especially its relationship with the Markov processes. It is then later called the Markov product in [9].

Definition 2.32. The Markov product is the binary operation on \mathscr{C} defined, for $A, B \in \mathscr{C}$, by

$$
\begin{equation*}
A * B(x, y)=\int_{0}^{1} \partial_{2} A(x, t) \partial_{1} B(t, y) d t \tag{2.7}
\end{equation*}
$$

for all $x, y \in[0,1]$.
The next theorem says that the Markov product of copulas is a copula, as well as some properties of the Markov product.

Theorem 2.33. ((fy) Let A, B, C be copulas and $\alpha, \beta \in[0,1]$ such that $\alpha+\beta=1$. Then:

1. $A * B$ is copula.
2. $A *(\alpha B+\beta C)=\alpha(A * B)+\beta(A * C)$.
3. $(\alpha B+\beta C) * A=\alpha(B * A)+\beta(C * A)$.
4. $M * C=C=C * M$.
5. $\Pi * C=\Pi=C * \Pi$.
6. $A *(B * C)=(A * B) * C$.
7. $W * W=M$.

In fact, the copula M is the identity of the Markov product.
Definition 2.34. A copula A is called a left inverse of a copula C if $A * C=M$ and is called a right inverse of a copula C if $C * A=M$.

Definition 2.35. Let A be a copula. A is right invertible if there exists a copula B such that $A * B=M$.

Definition 2.36. Let B be a copula. B is left invertible if there exists a copula A such that $A * B=M$.

Theorem 2.37. (ig) Let C be a copula. The inverse of C (if exists) must be C^{t}.
The copulas satisfy some nice properties under the Markov product. Recall that e is the identity on \mathbb{I}.

Theorem 2.38. (gh) Let f, g, h be measure-preserving transformations on \mathbb{I}. Then

1. $C_{f, g}=C_{f, e} * C_{e, g}$.
2. $C_{f, e} * C_{g, e}=C_{f \circ g, e}$ and $C_{e, g} * C_{e, f}=C_{e, f \circ g}$.
3. $C_{f, e}$ is right invertible and $C_{e, f}$ is left invertible.

Definition 2.39. Let $\mathcal{A}=\left\{A_{t}\right\}_{t \in[0,1]}$ be a parametric class of copulas. The generalized Markov product of copulas C and D with respect to \mathcal{A} is defined as

$$
\begin{equation*}
C *_{\mathcal{A}} D(x, y)=\int_{0}^{1} A_{t}\left(\partial_{2} C(x, t), \partial_{1} D(t, y)\right) d t \tag{2.8}
\end{equation*}
$$

for all $(x, y) \in[0,1]^{2}$ at which the integral exists.
Notice that if $A_{t}=\Pi$ for all $t \in[0,1]$, then the generalized markov product reduces to the Markov product. In general, the measurability of the integrand in 2.8 needs to be verified. See [9, 17].

Theorem 2.40. (14) If the map $(t, x, y) \rightarrow A_{t}(x, y)$ is Borel measurable, then
(*) for all $x, y \in[0,1]$ and for all $C, D \in \mathscr{C}, A_{t}\left(\partial_{2} C(x, t), \partial_{1} D(t, y)\right)$ is Lebesgue measurable in $t \in[0,1]$
and hence $C *_{\mathcal{A}} D$ is a well-defined function on \mathbb{I}^{2}.
Let \mathcal{M} denote the collection of families $\left\{A_{t}\right\}$ such that $(*)$ holds.
Theorem 2.41. (1 1 $]$) Let $\mathcal{A} \in \mathcal{M}$. For every copulas C and $D, C *_{\mathcal{A}} D$ is a copula.

In this thesis, the word Markov will be omitted and we shall call the Markov product simply as the product and the generalized Markov product as the generalized product or the $\left\{A_{t}\right\}$-product.

2.5 Conditional Expectation

In the last section, we will review some properties of conditional expectation and some main tools used in next/chapter. By the Radon-Nikodym theorem, we recall the definition of conditional expectation.

Definition 2.42. ([2, 7]) Let X be a random variable on a probability space $(\Omega, \mathscr{F}, \mathbb{P})$ with finite expectation and let \mathscr{G} be a sub- σ-algebra of \mathscr{F}. The conditional expectation of X given \mathscr{G}, written $\mathbb{E}[X \mid \mathscr{G}]$, is the random variable on (Ω, \mathscr{G}) satisfying

$$
\begin{equation*}
\int_{A} X d \mathbb{P}=\int_{A} \mathbb{E}[X \mid \mathscr{G}] d \mathbb{P} \tag{2.9}
\end{equation*}
$$

for all $A \in \mathscr{G}$.
In general, there are many random variables that satisfy the equation (2.9), all of which must, of course, be equal \mathbb{P}-a.s. Any one of them is called a version of the conditional expectation $\mathbb{E}[X \mid \mathscr{G}]$.

Definition 2.43. Let X be a random variable on a probability space $(\Omega, \mathscr{F}, \mathbb{P})$ and let \mathscr{G} be a sub- σ-algebra of $\mathscr{F} . X$ and \mathscr{G} are independent if $\mathbb{P}(X \in B \mid G)=$ $\mathbb{P}(X \in B)$ for every $B \in \mathscr{B}(\mathbb{R}), G \in \mathscr{G}$.

Theorem 2.44. (国, 田) Let X, Y be random variables on a probability space $(\Omega, \mathscr{F}, \mathbb{P})$ with finite expectations and let \mathscr{G} be a sub- σ-algebra of \mathscr{F}. Then

1. If X and \mathscr{G} are independent, then $\mathbb{E}[X \mid \mathscr{G}]=\mathbb{E}[X]$ a.s.
2. If X and Y are independent, then $\mathbb{E}[X \mid Y]=\mathbb{E}[X]$ a.s.
3. For $a, b \in \mathbb{R}, \mathbb{E}[a X+b Y \mid \mathscr{G}]=a \mathbb{E}[X \mid \mathscr{G}]+b \mathbb{E}[Y \mid \mathscr{G}]$ a.s.
4. If X is \mathscr{G}-measurable and $\mathbb{E}[|X Y|]<\infty$, then $\mathbb{E}[X Y \mid \mathscr{G}]=$ $X \mathbb{E}[Y \mid \mathscr{G}]$ a.s.
5. $\mathbb{E}[\mathbb{E}[X \mid \mathscr{G}]]=\mathbb{E}[X]$ a.s.

Definition 2.45. Let $(\Omega, \mathscr{F}, \mathbb{P})$ be a probability space, \mathscr{G} a sub- σ-algebra of \mathscr{F} and $B \in \mathscr{F}$. The conditional probability of B given by \mathscr{G} is

$$
\begin{equation*}
\mathbb{P}(B \mid \mathscr{G})=\mathbb{E}\left[\mathbb{1}_{B} \mid \mathscr{G}\right] . \tag{2.10}
\end{equation*}
$$

Definition 2.46. (10,12$])$ Let $\left(\Omega_{1}, \mathscr{F}_{1}\right)$ and $\left(\Omega_{2}, \mathscr{F}_{2}\right)$ be measurable spaces. A mapping $K: \Omega_{1} \times \mathscr{F}_{2} \rightarrow \mathbb{R}$ is called a Markov kernel (from Ω_{1} to \mathscr{F}_{2}) if $\omega_{1} \mapsto K\left(\omega_{1}, B\right)$ is \mathscr{F}_{1}-measurable for every fixed $B \in \mathscr{F}_{2}$ and $B \mapsto K\left(\omega_{1}, B\right)$ is a probability measure for every fixed $\omega_{1} \in \Omega_{1}$.

Theorem 2.47. (Regular conditional distribution)(10, 12J) Let X, Y be real-valued random variables on a common probability space. Then there exists a Markov kernel, called a regular conditional distribution of Y given $X, K: \mathbb{R} \times \mathscr{B}(\mathbb{R}) \rightarrow[0,1]$ satisfying

$$
K(X(\omega), B)=\mathbb{P}(Y \in B \mid X)(\omega) \mathbb{P} \text {-a.s. }
$$

Remark 2.48. (see 10, 12])

1. For every random vector (X, Y), a regular conditional distribution $K(\cdot, \cdot)$ of Y given X exists.
2. $K(\cdot, \cdot)$ is unique \mathbb{P}_{X}-a.s. where \mathbb{P}_{X} is the probability measure induced by X : $\mathbb{P}_{X}(B)=\mathbb{P}\left(X^{-1}(B)\right)$.
3. $K(\cdot, \cdot)$ only depends on the distribution of (X, Y).

Theorem 2.49. (Disintegration) (10, 12]) Let X, Y be real-valued random variables such that $\mathbb{P}(Y \in \cdot \mid X)=K(X, \cdot)$ for some Markov kernel K and let f be a Borel function on $\mathscr{B}\left(\mathbb{R}^{2}\right)$ with $\mathbb{E}[|f(Y, X)|]<\infty$. Then

$$
\begin{equation*}
\mathbb{E}[f(Y, X) \mid X]=\int_{\mathbb{R}} f(s, X) K(X, d s) \text { a.s. } \tag{2.11}
\end{equation*}
$$

Let C be the copula of random variables X and Y uniformly distributed on \mathbb{I}. We denote by $K_{C}(\cdot, \cdot)$ a version of the regular conditional distribution of Y given X.

The next theorem shows a relationship between copulas and Markov kernels.

Theorem 2.50. Let X, Y be random variables uniformly distributed on \mathbb{I} with copula C. Then

$$
C(x, y)=\int_{0}^{x} K_{C}(s,[0, y]) d s
$$

Proof. Using $f(Y, X)=\mathbb{1}_{A \times B}(X, Y)$ where $A=[0, x]$ and $B=[0, y]$. Then,

$$
C(x, y)=\mathbb{P}(X \in A, Y \in B)=\mathbb{E}[f(Y, X)]
$$

Since $\mathbb{E}[\mathbb{E}[f(Y, X) \mid X]]=\mathbb{E}[f(Y, X)]$, by disintegration, we have

$$
\begin{aligned}
\mathbb{E}[f(Y, X)] & =\mathbb{E}\left[\int_{\mathbb{R}} f(s, X) K_{C}(X, d s)\right] \\
& =\mathbb{E}\left[\int_{B} \mathbb{1}_{A}(X) K_{C}(X, d s)\right] \\
& =\int_{A} \int_{B} K_{C}(t, d s) d t \\
& =\int_{A} K_{C}(t,[0, y]) d t .
\end{aligned}
$$

Next, we recall some theorems in approximating the conditional probability given $X=x$ by the conditional probability given $X \in E_{j}$ where E_{j} is a sequence that shrinks to x nicely.

Theorem 2.51. (16$]$) Let X be a random variable on $(\Omega, \mathscr{F}, \mathbb{P})$ and let B be a set in \mathscr{F}. Then there exists a function $\mathbb{P}(B \mid X=x)$ such that for each $A \in \mathscr{B}(\mathbb{R})$,

$$
\mathbb{P}(B \cap\{X \in A\})=\int_{A} \mathbb{P}(B \mid X=x) d \mathbb{P}_{X}(x)
$$

Definition 2.52. ([18]) Suppose $x \in \mathbb{R}$. A sequence $\left\{E_{j}\right\}$ of Borel sets in \mathbb{R} is said to shrink to x nicely if there is a number $\alpha>0$ with the following property: There is a sequence of ball $B\left(x, r_{i}\right)$, with $\lim _{i \rightarrow \infty} r_{i}=0$ such that $E_{i} \subset B\left(x, r_{i}\right)$ and

$$
\lambda\left(E_{i}\right) \geq \alpha \lambda\left(B\left(x, r_{i}\right)\right)
$$

for $i=1,2, \ldots$.
Theorem 2.53. (18]) For each x in \mathbb{R}, let a sequence $\left\{E_{j}(x)\right\}_{j=1}^{\infty}$ shrink to x nicely and let $f \in L^{1}(\mathbb{R})$. Then, at almost every x,

$$
f(x)=\lim _{j \rightarrow \infty} \frac{1}{\lambda\left(E_{j}(x)\right)} \int_{E_{j}(x)} f d \lambda .
$$

The next theorem is a consequence of Theorem 2.51 and 2.53 . We use this theorem to show some properties in the next chapter (see Lemma 3.3).

Theorem 2.54. Let X, Y be random variables and $A \in \mathscr{B}(\mathbb{R})$ and $\left\{E_{j}(x)\right\}_{j=1}^{\infty}$ be a sequence that shrink to x nicely. Then,

$$
\mathbb{P}(Y \in A \mid X=x)=\lim _{j \rightarrow \infty} \mathbb{P}\left(Y \in A \mid X \in E_{j}\right)
$$

Proof. We apply Theorem 2.53 to the function $f=\mathbb{P}(Y \in A \mid X)$ and obtain

$$
\mathbb{P}(Y \in A \mid X=x)=\lim _{j \rightarrow \infty} \frac{1}{\mathbb{P}\left(X \in E_{j}\right)} \int_{E_{j}} \mathbb{P}(Y \in A \mid X=t) d \mathbb{P}_{X}(t) .
$$

By Theorem 2.51, we have

$$
\int_{E_{j}} \mathbb{P}(Y \in A \mid X=t) d \mathbb{P}_{X}(t)=\mathbb{P}\left(Y \in A, X \in E_{j}\right)
$$

Hence,

$$
\begin{aligned}
\mathbb{P}(Y \in A \mid X=x) & =\lim _{j \rightarrow \infty} \frac{\mathbb{P}\left(Y \in A, X \in E_{j}\right)}{\mathbb{P}\left(X \in E_{j}\right)} \\
& =\lim _{j \rightarrow \infty} \mathbb{P}\left(Y \in A \mid X \in E_{j}\right) .
\end{aligned}
$$

CHAPTER III

Symmetric Implicit Dependence Copulas Via Tent Functions

3.1 Generalized Products of $C_{e, \Lambda_{\theta}}$ and $C_{\Lambda_{\theta}, e}$ are implicit dependence copulas

In this section, we show that the generalized products of some complete dependence copulas are implicit dependence copulas. We shall consider only the complete

For $0<\theta<1$, we define injections $\Lambda_{\theta}^{1}, \Lambda_{\theta}^{2}: \mathbb{I} \rightarrow \mathbb{R}$ by $\Lambda_{\theta}^{1}(x):=\frac{x}{\theta}$ and $\Lambda_{\theta}^{2}(x):=\frac{1-x}{1-\theta}$, so that $\Lambda_{\theta}=\Lambda_{\theta}^{1} \mathbb{1}_{[0, \theta]}+\Lambda_{\theta}^{2} \mathbb{1}_{(\theta, 1]}$. Denote $\Lambda_{\theta}^{i j}:=\left(\Lambda_{\theta}^{i}\right)^{-1} \circ \Lambda_{\theta}^{j}$. In particular, $\Lambda_{\theta}^{12}(x)=\frac{\theta}{1-\theta}(1-x)$ and $\Lambda_{\theta}^{21}(x)=1-\frac{1-\theta}{\theta} x$. Technically, Λ_{θ}^{12} and Λ_{θ}^{21} map \mathbb{I} onto $\left[0, \frac{\theta}{1-\theta}\right]$ and $\left[\frac{2 \theta-1}{\theta}, 1\right]$, respectively. But they are usually considered as $\Lambda_{\theta}^{12}([0, y])=\left(\Lambda_{\theta}^{1}\right)^{-1}\left(\Lambda_{\theta}^{2}([0, y])\right)=\left(\Lambda_{\theta}^{1}\right)^{-1}\left(\left[\frac{1-y}{1-\theta}, \frac{1}{1-\theta}\right]\right)=\left[\frac{\theta}{1-\theta}(1-y), \frac{\theta}{1-\theta}\right]$ and

$$
\Lambda_{\theta}^{21}([0, y])=\left(\Lambda_{\theta}^{2}\right)^{-1}\left(\Lambda_{\theta}^{1}([0, y])\right)=\left(\Lambda_{\theta}^{2}\right)^{-1}\left(\left[0, \frac{y}{\theta}\right]\right)=\left[1-\frac{1-\theta}{\theta} y, 1\right] .
$$

Lemma 3.1. Let $\mathcal{A}:=\left\{A_{t}\right\}_{t \in[0,1]}$ be a class of copulas. If $A_{t}(\theta, \theta)$ is measurable in t, then, for every $x, y \in \mathbb{I}, A_{t}\left(\partial_{2} C_{e, \Lambda_{\theta}}(x, t), \partial_{2} C_{e, \Lambda_{\theta}}(y, t)\right)$ is measurable in t, i.e., $C_{e, \Lambda_{\theta}} *{ }_{\mathcal{A}} C_{\Lambda_{\theta}, e}$ is a copula.

Proof. Notice from Example 2.19 that

$$
\partial_{2} C_{e, \Lambda_{\theta}}(x, y)= \begin{cases}\theta & \text { if } \Lambda_{\theta}(x)>y \\ 0 & \text { if } \Lambda_{\theta}(x)<y \text { and } x<\theta \\ 1 & \text { if } \Lambda_{\theta}(x)<y \text { and } x>\theta\end{cases}
$$

Let $g(x, t)=\partial_{2} C_{e, \Lambda_{\theta}}(x, t)$ and $f(x, y, t)=A_{t}(g(x, t), g(y, t))$. Then

$$
f(x, y, t)= \begin{cases}0 & \text { if } g(x, t)=0 \text { or } g(y, t)=0 \\ A_{t}(\theta, \theta) & \text { if } g(x, t)=\theta=g(y, t) \\ \theta & \text { if }(g(x, t), g(y, t))=(\theta, 1) \text { or }(1, \theta) \\ 1 & \text { if } g(x, t)=1=g(y, t)\end{cases}
$$

Let $\beta \in \mathbb{R}$ and consider the set $B:=\{t: f(x, y, t)<\beta\}$.
Case 1: $\beta>1$. Then, $B=[0,1]$ is measurable.
Case 2: $\theta<\beta \leq 1$. Then,

$$
\begin{aligned}
B & =[0,1] \backslash\{t: g(x, t)=1=g(y, t)\} \\
& = \begin{cases}{[0,1] \backslash\left\{t: t>\max \left\{\Lambda_{\theta}(x), \Lambda_{\theta}(y)\right\}\right\}} & \text { if } x>\theta \text { and } y>\theta \\
{[0,1]} & \text { otherwise }\end{cases} \\
& = \begin{cases}{\left[0, \max \left\{\Lambda_{\theta}(x), \Lambda_{\theta}(y)\right\}\right]} & \text { if } x>\theta \text { and } y>\theta \\
{[0,1]} & \text { otherwise. }\end{cases}
\end{aligned}
$$

Thus, B is measurable.
Case 3: $0<\beta \leq \theta$. Then, $B=\{t: f(x, y, t)=0\} \cup\{t: 0<f(x, y, t)<\beta\}$. Denote $B_{1}=\{t: 0<f(x, y, t)<\beta\}$. Then,

$$
\begin{aligned}
B_{1} & =\left\{t: 0<A_{t}(\theta, \theta)<\beta, t<\Lambda_{\theta}(x), t<\Lambda_{\theta}(y)\right\} \\
& =\left\{t: 0<A_{t}(\theta, \theta)<\beta\right\} \cap\left[0, \min \left\{\Lambda_{\theta}(x), \Lambda_{\theta}(y)\right\}\right] .
\end{aligned}
$$

By assumption, we have that B_{1} is measurable and

$$
\begin{aligned}
\{t: f(x, y, t)=0\} & = \begin{cases}\left\{t: t>\min \left\{\Lambda_{\theta}(x), \Lambda_{\theta}(y)\right\}\right\} & \text { if } x<\theta \text { or } y<\theta, \\
\varnothing & \text { otherwise }\end{cases} \\
& = \begin{cases}{\left[\min \left\{\Lambda_{\theta}(x), \Lambda_{\theta}(y)\right\}, 1\right]} & \text { if } x<\theta \text { or } y<\theta, \\
\varnothing & \text { otherwise }\end{cases}
\end{aligned}
$$

Then, B is measurable.

Theorem 3.2. Let $\mathcal{A}:=\left\{A_{t}\right\}_{t \in[0,1]}$ be a class of copulas such that $A_{t}(\theta, \theta)$ is measurable in t. Then, $C_{e, \Lambda_{\theta}} *_{\mathcal{A}} C_{\Lambda_{\theta}, \text { e }}$ is an implicit dependence copula, i.e., there exist random variables X and Y uniformly distributed on $[0,1]$ such that $\Lambda_{\theta}(X)=$ $\Lambda_{\theta}(Y)$ a.s. and $C_{e, \Lambda_{\theta}} *_{\mathcal{A}} C_{\Lambda_{\theta}, e}=C_{X, Y}$.

Proof. Denote $C^{\prime}:=C_{e, \Lambda_{\theta}} *_{\mathcal{A}} C_{\Lambda_{\theta}, \text { e }}$. By Lemma 3.1, C^{\prime} is a copula. Let \mathbb{Q} be the Borel probability measure extension of $V_{C^{\prime}}$ to $\mathscr{B}\left(\mathbb{I}^{2}\right)$. Define functions X and Y on $\mathbb{I}^{2} \rightarrow \mathbb{I}$ by $X(x, y):=x$ and $Y(x, y):=y$, which are both random variables on the probability space $\left(\mathbb{T}^{2}, \mathscr{B}\left(\mathbb{I}^{2}\right), \mathbb{Q}\right)$. Then,

$$
\begin{aligned}
C^{\prime}(x, y) & =V_{C^{\prime}}([0, x] \times[0, y]) \\
& =\mathbb{Q}(([0, x] \times[0,1]) \cap([0,1] \times[0, y])) \\
& =\mathbb{Q}\left(X^{-1}([0, x]) \cap Y^{-1}([0, y])\right) \\
& =\mathbb{Q}(X \leq x, Y \leq y) .
\end{aligned}
$$

Thus, C^{\prime} is the joint distribution function of X and Y. Since

$$
\begin{aligned}
\mathbb{Q}(X \leq x) & =\mathbb{Q}\left(X^{-1}([0, x])\right) \\
& =V_{C^{\prime}}([0, x] \times[0,1]) \\
& =C^{\prime}(x, 1)=x
\end{aligned}
$$

and, similarly, $\mathbb{Q}(Y \leq y)=y, X$ and Y are uniformly distributed on $[0,1]$. Hence, $C^{\prime}=C_{X, Y}$.

We will prove the final claim that $\Lambda_{\theta}(X)=\Lambda_{\theta}(Y) \mathbb{Q}$-a.s. Since $\left\{\Lambda_{\theta}(X)=\right.$ $\left.\Lambda_{\theta}(Y)\right\}=\left\{(x, y) \in \mathbb{I}^{2}: \Lambda_{\theta}(x)=\Lambda_{\theta}(y)\right\}=: \Delta$, it suffices to show that $V_{C^{\prime}}(B)=0$ for all rectangles $B \subseteq \mathbb{I}^{2} \backslash \Delta$. Note that

$$
\Delta=\left\{(x, y): y=x \text { or } y=\left(1-\frac{1-\theta}{\theta} x\right) \mathbb{1}_{[0, \theta]}(x)+\frac{\theta}{1-\theta}(1-x) \mathbb{1}_{(\theta, 1]}(x)\right\}
$$

(see the blue line in Fig 3.1). Observe that each rectangle in $\mathbb{I}^{2} \backslash \Delta$ can be written as the difference between two rectangles in $\mathbb{I}^{2} \backslash \Delta$ both of which have one side lying on the boundary S of \mathbb{I}^{2}. For instance, if all four corners of a rectangle $B:=\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right]$ are in the triangular region 2 bounded above by the line $y=\Lambda_{\theta}^{21}(x)$ and bounded below by the line $y=x$, then $B=B_{1} \backslash B_{2}$ where both $B_{1}:=\left[0, x_{2}\right] \times\left[y_{1}, y_{2}\right]$ and $B_{2}:=\left[0, x_{1}\right] \times\left[y_{1}, y_{2}\right]$ lie in the same region 2. So, it suffices to show that $V_{C^{\prime}}(B)=0$ for every rectangle $B \subseteq \mathbb{I}^{2} \backslash \Delta$ whose one side lies in S. Our proof naturally splits into four cases, depending on the region that B lies in. The four regions are partitioned by the graphs of $y=x, y=\Lambda_{\theta}^{21}(x)$ and $y=\Lambda_{\theta}^{12}(x)$, illustrated in Figure 3.1.

Case 1: $B=\left[x_{1}, x_{2}\right] \times[0, y] \subseteq \mathbb{I}^{2} \backslash \Delta$. Equivalently, both $\left(x_{i}, y\right), i=1,2$, lie below $y=x$ and $y=\Lambda_{\theta}^{12}(x)$. So, for $i=1,2, x_{i}>y$ and $\Lambda_{\theta}^{12}\left(x_{i}\right)>y$. Consequently, $y<\theta$ and $\Lambda_{\theta}^{21}(y)>x_{i}$. Thus

$$
C^{\prime}\left(x_{i}, y\right)=\int_{0}^{1} A_{t}\left(\partial_{2} C_{e, \Lambda_{\theta}}\left(x_{i}, t\right), \partial_{1} C_{\Lambda_{\theta}, e}(t, y)\right) d t
$$

Figure 3.1: The four regions of $\mathbb{I}^{2} \backslash \Delta$.

$$
\begin{aligned}
& =\int_{0}^{1} A_{t}\left(\partial_{2} C_{e, \Lambda_{\theta}}\left(x_{i}, t\right), \partial_{2} C_{e, \Lambda_{\theta}}(y, t)\right) d t \\
& =\int_{0}^{\frac{y}{\theta}} A_{t}(\theta, \theta) d t+\int_{\frac{y}{\theta}}^{1} A_{t}\left(\partial_{2} C_{e, \Lambda_{\theta}}\left(x_{i}, t\right), 0\right) d t \\
& =\int_{0}^{\frac{y}{\theta}} A_{t}(\theta, \theta) d t .
\end{aligned}
$$

In the third equality, we separate the interval $[0,1]$ into $\left[0, \frac{y}{\theta}\right]$ and $\left[\frac{y}{\theta}, 1\right]$ because, by equation (2.6), the value of $\partial_{2} C_{e, \Lambda_{\theta}}(y, t)$ on intervals $\left[0, \frac{y}{\theta}\right]$ and $\left[\frac{y}{\theta}, 1\right]$ are different. Hence, $V_{C^{\prime}}(B)=C^{\prime}\left(x_{1}, 0\right)-C^{\prime}\left(x_{2}, 0\right)-C^{\prime}\left(x_{1}, y\right)+$ $C^{\prime}\left(x_{2}, y\right)=0$.

Case 2: This case is similar to case 1. $B=[0, x] \times\left[y_{1}, y_{2}\right] \subseteq \mathbb{I}^{2} \backslash \Delta$. Equivalently, both $\left(x, y_{i}\right), i=1,2$, lie below $y=x$ and $y=\Lambda_{\theta}^{21}(x)$. So, for $i=1,2$, $y_{i}>x, \Lambda_{\theta}^{21}(x)>y_{i}$. Consequently, $x<\theta$ and $\Lambda_{\theta}^{12}\left(y_{i}\right)>x$. Thus

$$
\begin{aligned}
C^{\prime}\left(x, y_{i}\right) & =\int_{0}^{1} A_{t}\left(\partial_{2} C_{e, \Lambda_{\theta}}(x, t), \partial_{2} C_{e, \Lambda_{\theta}}\left(y_{i}, t\right)\right) d t \\
& =\int_{0}^{\frac{x}{\theta}} A_{t}(\theta, \theta) d t+\int_{\frac{x}{\theta}}^{1} A_{t}\left(0, \partial_{2} C_{e, \Lambda_{\theta}}\left(y_{i}, t\right)\right) d t \\
& =\int_{0}^{\frac{x}{\theta}} A_{t}(\theta, \theta) d t .
\end{aligned}
$$

Hence, $V_{C^{\prime}}(B)=C^{\prime}\left(0, y_{1}\right)-C^{\prime}\left(x, y_{1}\right)-C^{\prime}\left(0, y_{2}\right)+C^{\prime}\left(x, y_{2}\right)=0$.

Figure 3.2: The value of $\partial_{2} C_{e, \Lambda_{\theta}}(x, t)$ in case 1 (left) and 2 (right).

Case 3: $B=\left[x_{1}, x_{2}\right] \times[y, 1] \subseteq \mathbb{I}^{2} \backslash \Delta$. Equivalently, both $\left(x_{i}, y\right), i=1,2$, lie below $y=x$ and $y=\Lambda_{\theta}^{21}(x)$. So, for $i=1,2, y>x_{i}, \Lambda_{\theta}^{21}\left(x_{i}\right)<y$. Consequently, $y>\theta$ and $\Lambda_{\theta}^{12}(y)<x_{i}$. Thus,

$$
\begin{aligned}
C^{\prime}\left(x_{i}, y\right) & =\int_{0}^{1} A_{t}\left(\partial_{2} C_{e, \Lambda_{\theta}}\left(x_{i}, t\right), \partial_{2} C_{e, \Lambda_{\theta}}(y, t)\right) d t \\
& =\int_{0}^{\frac{1-y}{1-\theta}} A_{t}(\theta, \theta) d t+\int_{\frac{1-y}{1-\theta}}^{1} A_{t}\left(\partial_{2} C_{e, \Lambda_{\theta}}\left(x_{i}, t\right), 1\right) d t \\
& =\int_{0}^{\frac{1-y}{\theta}} A_{t}(\theta, \theta) d t+\int_{\frac{1-y}{1-\theta}}^{1} \partial_{2} C_{e, \Lambda_{\theta}}\left(x_{i}, t\right) d t,
\end{aligned}
$$

where in the third equality, we separate the interval $[0,1]$ into $\left[0, \frac{1-y}{1-\theta}\right]$ and $\left[\frac{1-y}{1-\theta}, 1\right]$ because, by equation (2.6), the value of $\partial_{2} C_{e, \Lambda_{\theta}}(y, t)$ on intervals $\left[0, \frac{1-y}{1-\theta}\right]$ and $\left[\frac{1-y}{1-\theta}, 1\right]$ are different. We have

$$
\begin{aligned}
C^{\prime}\left(x_{1}, y\right)-C^{\prime}\left(x_{2}, y\right)= & \int_{\frac{1-y}{1-\theta}}^{1} \partial_{2} C_{e, \Lambda_{\theta}}\left(x_{1}, t\right)-\partial_{2} C_{e, \Lambda_{\theta}}\left(x_{2}, t\right) d t \\
= & C_{e, \Lambda_{\theta}}\left(x_{1}, 1\right)-C_{e, \Lambda_{\theta}}\left(x_{1}, \frac{1-y}{1-\theta}\right) \\
& -C_{e, \Lambda_{\theta}}\left(x_{2}, 1\right)+C_{e, \Lambda_{\theta}}\left(x_{2}, \frac{1-y}{1-\theta}\right) \\
= & x_{1}-x_{2}+\int_{x_{1}}^{x_{2}} \partial_{1} C_{e, \Lambda_{\theta}}\left(t, \frac{1-y}{1-\theta}\right) d t \\
= & x_{1}-x_{2}+\int_{x_{1}}^{x_{2}} 0 d t=x_{1}-x_{2} .
\end{aligned}
$$

Hence, $V_{C^{\prime}}(B)=C^{\prime}\left(x_{1}, y\right)-C^{\prime}\left(x_{2}, y\right)-C^{\prime}\left(x_{1}, 1\right)+C^{\prime}\left(x_{2}, 1\right)=0$.

Figure 3.3: The value of $\partial_{1} C_{e, \Lambda_{\theta}}(x, t)$ and $\partial_{2} C_{e, \Lambda_{\theta}}(x, t)$, respectively, in case 3.

Case 4: This case is similar to case 3. $B=[x, 1] \times\left[y_{1}, y_{2}\right] \subseteq \mathbb{I}^{2} \backslash \Delta$. Equivalently, both $\left(x, y_{i}\right), i=1,2$, lie below $y=x$ and $y=\Lambda_{\theta}^{12}(x)$. So, for $i=1,2$, $x>y_{i}, \Lambda_{\theta}^{12}(x)>y_{i}$. Consequently, $x>\theta$ and $\Lambda_{\theta}^{21}\left(y_{i}\right)<x_{i}$. Thus,

$$
\begin{aligned}
C^{\prime}\left(x, y_{i}\right) & =\int_{0}^{1} A_{t}\left(\partial_{2} C_{e, \Lambda_{\theta}}(x, t), \partial_{2} C_{e, \Lambda_{\theta}}\left(y_{i}, t\right)\right) d t \\
& =\int_{0}^{\frac{1-x}{1-\theta}} A_{t}(\theta, \theta) d t+\int_{\frac{1-x}{1-\theta}}^{1} A_{t}\left(1, \partial_{2} C_{e, \Lambda_{\theta}}\left(y_{i}, t\right)\right) d t \\
& =\int_{0}^{\frac{1-x}{1-\theta}} A_{t}(\theta, \theta) d t+\int_{\frac{1-x}{1-\theta}}^{1} \partial_{2} C_{e, \Lambda_{\theta}}\left(y_{i}, t\right) d t .
\end{aligned}
$$

We have

$$
\begin{aligned}
C^{\prime}\left(x, y_{1}\right)-C^{\prime}\left(x, y_{2}\right)= & \int_{\frac{1-x}{1}}^{1} \partial_{2} C_{e, \Lambda_{\theta}}\left(y_{1}, t\right)-\partial_{2} C_{e, \Lambda_{\theta}}\left(y_{2}, t\right) d t \\
= & C_{e, \Lambda_{\theta}}\left(y_{1}, 1\right)-C_{e, \Lambda_{\theta}}\left(y_{1}, \frac{1-x}{1-\theta}\right) \\
& -C_{e, \Lambda_{\theta}}\left(y_{2}, 1\right)+C_{e, \Lambda_{\theta}}\left(y_{2}, \frac{1-x}{1-\theta}\right) \\
= & y_{1}-y_{2}+\int_{y_{1}}^{y_{2}} \partial_{1} C_{e, \Lambda_{\theta}}\left(t, \frac{1-x}{1-\theta}\right) d t \\
= & y_{1}-y_{2}+\int_{y_{1}}^{y_{2}} 0 d t=y_{1}-y_{2} .
\end{aligned}
$$

Hence, $V_{C^{\prime}}(B)=C^{\prime}\left(x, y_{1}\right)-C^{\prime}\left(x, y_{2}\right)-C^{\prime}\left(1, y_{1}\right)+C^{\prime}\left(1, y_{2}\right)=0$.

Figure 3.4: The value of $\partial_{1} C_{e, \Lambda_{\theta}}(x, t)$ and $\partial_{2} C_{e, \Lambda_{\theta}}(x, t)$, respectively, in case 4.

3.2 Generalized Factorizability of $C_{X, Y}$ where $\Lambda_{\theta}(X)=\Lambda_{\theta}(Y)$

In this section, we will write some implicit dependence copulas as the products of two complete dependence copulas. We will consider only the implicit dependence copulas of random variables X and Y where $\Lambda_{\theta}(X)=\Lambda_{\theta}(Y)$ a.s.

First, let random variables $X, Y \sim \mathcal{U}(0,1)$ be such that $\Lambda_{\theta}(X)=\Lambda_{\theta}(Y)$ a.s. where Λ_{θ} is defined in equation (2.4) and $\Lambda_{\theta}=\Lambda_{\theta}^{1} \mathbb{1}_{[0, \theta]}+\Lambda_{\theta}^{2} \mathbb{1}_{(\theta, 1]}$.

Let $A_{1}=\{X \leq \theta, Y \leq \theta\}, A_{2}=\{X \leq \theta, Y>\theta\}, A_{3}=\{X>\theta, Y \leq \theta\}$ and $A_{4}=\{X>\theta, Y>\theta\}$. Since $\Lambda_{\theta}(X)=\Lambda_{\theta}(Y)$ a.s., we have that $X=Y$ a.s. in $A_{1} \cup A_{4}, \Lambda_{\theta}^{1}(X)=\Lambda_{\theta}^{2}(Y)$ a.s. in A_{2} and $\Lambda_{\theta}^{2}(X)=\Lambda_{\theta}^{1}(Y)$ a.s. in A_{3}. So,

$$
\begin{equation*}
Y=X \mathbb{1}_{A_{1}}+\Lambda_{\theta}^{21}(X) \mathbb{1}_{A_{2}}+\Lambda_{\theta}^{12}(X) \mathbb{1}_{A_{3}}+X \mathbb{1}_{A_{4}} \text { a.s. } \tag{3.1}
\end{equation*}
$$

By equation (2.6), for $s<\theta$ and using change of variable with $t=\Lambda_{\theta}(s)$, we have

$$
\partial_{2} C_{e, \Lambda_{\theta}}\left(x, \Lambda_{\theta}(s)\right)= \begin{cases}\theta & \text { if } \Lambda_{\theta}(x)>\Lambda_{\theta}(s) \tag{3.2}\\ 0 & \text { if } \Lambda_{\theta}(x)<\Lambda_{\theta}(s) \text { and } x<\theta \\ 1 & \text { if } \Lambda_{\theta}(x)<\Lambda_{\theta}(s) \text { and } x>\theta\end{cases}
$$

Next, for a.e. s, we denote

$$
\omega_{1}(s)=\mathbb{E}\left[\mathbb{1}_{\{Y \leq \theta\}} \mid X=s\right] \text { and } \omega_{2}(s)=\mathbb{E}\left[\mathbb{1}_{\{Y>\theta\}} \mid X=s\right]
$$

Since $K(s, \cdot)$ is a probability measure, we have $\omega_{1}(s)+\omega_{2}(s)=1$ a.s.
Lemma 3.3. Let random variables X and Y uniformly distributed on $[0,1]$ be such that $\Lambda_{\theta}(X)=\Lambda_{\theta}(Y)$ a.s. For $s<\theta, \omega_{1}(s)+\frac{1-\theta}{\theta} \omega_{1}\left(1-\frac{1-\theta}{\theta} s\right)=1$ a.s.

Figure 3.5: The value of $\partial_{2} C_{e, \Lambda_{\theta}}\left(x, \Lambda_{\theta}(s)\right)$.
Proof. Let $s<\theta, t=\Lambda_{\theta}(s)$ and $A_{j}(t):=\left(t-\frac{1}{j}, t+\frac{1}{j}\right) \cap[0,1]$ shrink to t nicely. By Theorem 2.54, we have

$$
\mathbb{P}\left(Y \leq \theta \mid \Lambda_{\theta}(X)=t\right)=\lim _{j \rightarrow \infty} \mathbb{P}\left(Y \leq \theta \mid \Lambda_{\theta}(X) \in A_{j}(t)\right) \text { a.e. t. }
$$

Let the event $B_{j}(t):=\left\{\Lambda_{\theta}(X) \in A_{j}(t)\right\}=\left\{X \in\left(\Lambda_{\theta}^{1}\right)^{-1}\left(A_{j}(t)\right)\right\} \cup\left\{X \in\left(\Lambda_{\theta}^{2}\right)^{-1}\left(A_{j}(t)\right)\right\}$. Then the event $\left\{X \in\left(\Lambda_{\theta}^{1}\right)^{-1}\left(A_{j}(t)\right)\right\}$ and $\left\{X \in\left(\Lambda_{\theta}^{2}\right)^{-1}\left(A_{j}(t)\right)\right\}$ are disjoint as $j \rightarrow \infty$. Thus, by conditional probability,

$$
\begin{aligned}
& \mathbb{P}\left(Y \leq \theta \mid \Lambda_{\theta}(X)=t\right) \\
& =\lim _{j \rightarrow \infty} \mathbb{P}\left(Y \leq \theta \mid B_{j}(t)\right) \\
& =\lim _{j \rightarrow \infty} \frac{\mathbb{P}\left(Y \leq \theta, B_{j}(t)\right)}{\mathbb{P}\left(B_{j}(t)\right)} \\
& =\lim _{j \rightarrow \infty}\left[\frac{\mathbb{P}\left(Y \leq \theta, X \in\left(\Lambda_{\theta}^{1}\right)^{-1}\left(A_{j}(t)\right)\right)}{\mathbb{P}\left(B_{j}(t)\right)}+\frac{\mathbb{P}\left(Y \leq \theta, X \in\left(\Lambda_{\theta}^{2}\right)^{-1}\left(A_{j}(t)\right)\right)}{\mathbb{P}\left(B_{j}(t)\right)}\right] \\
& =\lim _{j \rightarrow \infty}\left[\frac{\mathbb{P}\left(Y \leq \theta, X \in\left(\Lambda_{\theta}^{1}\right)^{-1}\left(A_{j}(t)\right)\right)}{\mathbb{P}\left(X \in\left(\Lambda_{\theta}^{1}\right)^{-1}\left(A_{j}(t)\right)\right)} \cdot \frac{\mathbb{P}\left(X \in\left(\Lambda_{\theta}^{1}\right)^{-1}\left(A_{j}(t)\right)\right)}{\mathbb{P}\left(B_{j}(t)\right)}\right. \\
& \\
& \left.+\frac{\mathbb{P}\left(Y \leq \theta, X \in\left(\Lambda_{\theta}^{2}\right)^{-1}\left(A_{j}(t)\right)\right)}{\mathbb{P}\left(X \in\left(\Lambda_{\theta}^{2}\right)^{-1}\left(A_{j}(t)\right)\right)} \cdot \frac{\mathbb{P}\left(X \in\left(\Lambda_{\theta}^{2}\right)^{-1}\left(A_{j}(t)\right)\right)}{\mathbb{P}\left(B_{j}(t)\right)}\right] \\
& =\lim _{j \rightarrow \infty}\left[\mathbb{P}\left(Y \leq \theta \mid X \in\left(\Lambda_{\theta}^{1}\right)^{-1}\left(A_{j}(t)\right)\right) \cdot \frac{\mathbb{P}\left(X \in\left(\Lambda_{\theta}^{1}\right)^{-1}\left(A_{j}(t)\right)\right)}{\mathbb{P}\left(B_{j}(t)\right)}\right. \\
& \left.\quad+\mathbb{P}\left(Y \leq \theta \mid X \in\left(\Lambda_{\theta}^{2}\right)^{-1}\left(A_{j}(t)\right)\right) \cdot \frac{\mathbb{P}\left(X \in\left(\Lambda_{\theta}^{2}\right)^{-1}\left(A_{j}(t)\right)\right)}{\mathbb{P}\left(B_{j}(t)\right)}\right] .
\end{aligned}
$$

Since $X \sim \mathcal{U}(0,1)$ and Λ_{θ} is measure-preserving, we have

$$
\mathbb{P}\left(X \in\left(\Lambda_{\theta}^{i}\right)^{-1}\left(A_{j}(t)\right)\right)=\lambda\left(\left(\Lambda_{\theta}^{i}\right)^{-1}\left(A_{j}(t)\right)\right)
$$

and

$$
\mathbb{P}\left(B_{j}(t)\right)=\lambda\left(\left(\Lambda_{\theta}\right)^{-1}\left(A_{j}(t)\right)\right)=\lambda\left(A_{j}(t)\right) .
$$

By Theorem 2.53, for a.e. t ,

$$
\lim _{j \rightarrow \infty} \frac{\left.\mathbb{P}\left(X \in \Lambda_{\theta}^{1}\right)^{-1}\left(A_{j}(t)\right)\right)}{\mathbb{P}\left(B_{j}(t)\right)}=\left(\Lambda_{\theta}^{1}\right)^{-1}(t)=\theta \text { for } i=1,2
$$

and

$$
\lim _{j \rightarrow \infty} \frac{\left.\mathbb{P}\left(X \in \Lambda_{\theta}^{1}\right)^{-1}\left(A_{j}(t)\right)\right)}{\mathbb{P}\left(B_{j}(t)\right)}=\left(\Lambda_{\theta}^{2}\right)^{-1}(t)=1-\theta
$$

The sequence $\left(\Lambda_{\theta}^{1}\right)^{-1}\left(A_{j}(t)\right)=\left(\theta t-\frac{\theta}{j}, \theta t+\frac{\theta}{j}\right)$ shrinks nicely to $\theta t:=a$ and $\left(\Lambda_{\theta}^{1}\right)^{-1}\left(A_{j}(t)\right)=\left(1-(1-\theta) t-\frac{1-\theta}{j}, 1-(1-\theta) t+\frac{1-\theta}{j}\right)$ shrinks nicely to $b:=$ $1-(1-\theta) t$. By Theorem 2.54 as $j \rightarrow \infty$,

$$
\mathbb{P}\left(Y \leq \theta, X \in\left(\Lambda_{\theta}^{1}\right)^{-1}\left(A_{j}(t)\right)\right) \rightarrow \mathbb{P}(Y \leq \theta, X=a)
$$

and

$$
\mathbb{P}\left(Y \leq \theta, X \in\left(\Lambda_{\theta}^{2}\right)^{-1}\left(A_{j}(t)\right)\right) \rightarrow \mathbb{P}(Y \leq \theta, X=b) .
$$

Hence, for $s<\theta$,

$$
\begin{aligned}
\mathbb{P}\left(Y \leq \theta \mid \Lambda_{\theta}(X)=t\right) & =\theta \mathbb{P}(Y \leq \theta \mid X=a)+(1-\theta) \mathbb{P}(Y \leq \theta \mid X=b) \\
& =\theta \mathbb{P}(Y \leq \theta \mid X=s)+(1-\theta) \mathbb{P}\left(Y \leq \theta \left\lvert\, X=1-\frac{1-\theta}{\theta} s\right.\right) \\
& =\theta \omega_{1}(s)+(1-\theta) \omega_{1}\left(1-\frac{1-\theta}{\theta} s\right) .
\end{aligned}
$$

Similarly, we have

$$
\begin{equation*}
\mathbb{P}\left(Y \leq \theta \mid \Lambda_{\theta}(Y)=t\right)=\theta \mathbb{P}(Y \leq \theta \mid Y=s)+(1-\theta) \mathbb{P}\left(Y \leq \theta \left\lvert\, Y=1-\frac{1-\theta}{\theta} s\right.\right) . \tag{3.3}
\end{equation*}
$$

Next, we find the value of $\mathbb{P}\left(Y \leq \theta \mid \Lambda_{\theta}(X)=t\right)$. Since $\Lambda_{\theta}(X)=\Lambda_{\theta}(Y)$ a.s., we have

$$
\begin{aligned}
\mathbb{P}\left(Y \leq \theta \mid \Lambda_{\theta}(X)=t\right) & =\mathbb{P}\left(Y \leq \theta \mid \Lambda_{\theta}(Y)=t\right) \\
& =\theta \mathbb{P}(Y \leq \theta \mid Y=s)+(1-\theta) \mathbb{P}\left(Y \leq \theta \left\lvert\, Y=1-\frac{1-\theta}{\theta} s\right.\right) \\
& =\theta .
\end{aligned}
$$

The second equality holds because of equation(3.3) and the last equality holds because for $s<\theta, 1-\frac{1-\theta}{\theta} s>\theta$. Hence, $\theta=\theta \omega_{1}(s)+(1-\theta) \omega_{1}\left(1-\frac{1-\theta}{\theta} s\right)$.

Lemma 3.4. Let random variables $X, Y \sim \mathcal{U}(0,1)$ be such that $\Lambda_{\theta}(X)=\Lambda_{\theta}(Y)$ a.s. Then,

$$
\begin{aligned}
K_{C}(s,[0, y])= & \omega_{1}(s) \mathbb{1}_{[0, y] \cap[0, \theta]}(s)+\omega_{2}(s) \mathbb{1}_{\Lambda_{\theta}^{12}([0, y]) \cap[0, \theta]}(s) \\
& +\omega_{1}(s) \mathbb{1}_{\Lambda_{\theta}^{21}([0, y]) \cap(\theta, 1]}(s)+\omega_{2}(s) \mathbb{1}_{[0, y] \cap(\theta, 1]}(s) .
\end{aligned}
$$

Proof. By equation (3.1), we have $Y=X \mathbb{1}_{A_{1}}+\Lambda_{\theta}^{21}(X) \mathbb{1}_{A_{2}}+\Lambda_{\theta}^{12}(X) \mathbb{1}_{A_{3}}+X \mathbb{1}_{A_{4}}$ a.s. Since $0 \leq \int_{A} \mathbb{1}_{\{Y=0\}}(\omega) d \mathbb{P}(\omega) \leq \int_{\Omega} \mathbb{1}_{\{Y=0\}}(\omega) d \mathbb{P}(\omega)=\mathbb{P}(Y=0)=0$ for all $A \in \sigma(X)$, we have $\mathbb{E}\left[\mathbb{1}_{\{Y=0\}} \mid X=s\right]=0$. To prove the lemma, it is sufficient to consider $\mathbb{1}_{(0, y]} \circ Y$. Observe that for any $J \subseteq(0,1]$ and a random variable Z taking values in $[0,1], \mathbb{1}_{J} \circ\left(Z \mathbb{1}_{A_{i}}\right)=\left(\mathbb{1}_{J} \circ Z\right) \mathbb{1}_{A_{i}}$ for every $i=1,2,3,4$. Thus,

$$
\begin{gathered}
\mathbb{1}_{(0, y]} \circ\left(X \mathbb{1}_{A_{1}}\right)=\left(\mathbb{1}_{(0, y]} \circ X\right) \mathbb{1}_{A_{1}}, \\
\mathbb{1}_{(0, y]} \circ\left(\underline{\left.\Lambda_{\theta}^{21}(X) \mathbb{1}_{A_{2}}\right)}=\left(\mathbb{1}_{(0, y]} \circ \Lambda_{\theta}^{21}(X)\right) \mathbb{1}_{A_{2}},\right. \\
\mathbb{1}_{(0, y]} \circ\left(\Lambda_{\theta}^{12}(X) \mathbb{1}_{A_{3}}\right)
\end{gathered}=\left(\mathbb{1}_{(0, y]} \circ \Lambda_{\theta}^{12}(X)\right) \mathbb{1}_{A_{3}}, ~ .
$$

and

$$
\mathbb{1}_{(0, y]} \circ\left(X \mathbb{1}_{A_{4}}\right)=\left(\mathbb{1}_{(0, y]} \circ X\right) \mathbb{1}_{A_{4}} .
$$

We can derive that

$$
\left(\mathbb{1}_{(0, y]} \circ \Lambda_{\theta}^{21}(X)\right) \mathbb{1}_{A_{2}}=\left(\mathbb{1}_{\Lambda_{\theta}^{12}((0, y])} \circ X\right) \mathbb{1}_{A_{2}}
$$

and

$$
\left(\mathbb{1}_{(0, y]} \circ \Lambda_{\theta}^{12}(X)\right) \mathbb{1}_{A_{3}}=\left(\mathbb{1}_{\Lambda_{\theta}^{21}((0, y])} \circ X\right) \mathbb{1}_{A_{3}} .
$$

Thus,

$$
\begin{aligned}
\mathbb{E}\left[\mathbb{1}_{(0, y]} \circ Y \mid X\right]= & \mathbb{E}\left[\left(\mathbb{1}_{(0, y]} \circ X\right) \mathbb{1}_{A_{1}} \mid X\right]+\mathbb{E}\left[\left(\mathbb{1}_{\Lambda_{\theta}^{12}((0, y])} \circ X\right) \mathbb{1}_{A_{2}} \mid X\right] \\
& +\mathbb{E}\left[\left(\mathbb{1}_{\Lambda_{\theta}^{21}((0, y])} \circ X\right) \mathbb{1}_{A_{3}} \mid X\right]+\mathbb{E}\left[\left(\mathbb{1}_{(0, y]} \circ X\right) \mathbb{1}_{A_{4}} \mid X\right] .
\end{aligned}
$$

Since $\mathbb{1}_{(0, y]} \circ X, \mathbb{1}_{\Lambda_{\theta}^{12}((0, y])} \circ X$ and $\mathbb{1}_{\Lambda_{\theta}^{21}((0, y])} \circ X$ are $\sigma(X)$-measurable, we have

$$
\begin{aligned}
\mathbb{E}\left[\left(\mathbb{1}_{(0, y]} \circ X\right) \mathbb{1}_{A_{1}} \mid X\right] & =\left(\mathbb{1}_{(0, y]} \circ X\right) \mathbb{E}\left[\mathbb{1}_{A_{1}} \mid X\right], \\
\mathbb{E}\left[\left(\mathbb{1}_{\Lambda_{\theta}^{12}((0, y])} \circ X\right) \mathbb{1}_{A_{2}} \mid X\right] & =\left(\mathbb{1}_{\Lambda_{\theta}^{12}((0, y])} \circ X\right) \mathbb{E}\left[\mathbb{1}_{A_{2}} \mid X\right], \\
\mathbb{E}\left[\left(\mathbb{1}_{\Lambda_{\theta}^{21}((0, y])} \circ X\right) \mathbb{1}_{A_{3}} \mid X\right] & =\left(\mathbb{1}_{\Lambda_{\theta}^{21}((0, y])} \circ X\right) \mathbb{E}\left[\mathbb{1}_{A_{3}} \mid X\right],
\end{aligned}
$$

and

$$
\mathbb{E}\left[\left(\mathbb{1}_{(0, y]} \circ X\right) \mathbb{1}_{A_{4}} \mid X\right]=\left(\mathbb{1}_{(0, y]} \circ X\right) \mathbb{E}\left[\mathbb{1}_{A_{4}} \mid X\right] .
$$

We can show that

$$
\begin{aligned}
& \mathbb{E}\left[\mathbb{1}_{A_{1}} \mid X\right]=\mathbb{E}\left[\mathbb{1}_{\{X \leq \theta, Y \leq \theta\}} \mid X\right]=\mathbb{1}_{\{X \leq \theta\}} \mathbb{E}\left[\mathbb{1}_{\{Y \leq \theta\}} \mid X\right], \\
& \mathbb{E}\left[\mathbb{1}_{A_{2}} \mid X\right]=\mathbb{E}\left[\mathbb{1}_{\{X \leq \theta, Y>\theta\}} \mid X\right]=\mathbb{1}_{\{X \leq \theta\}} \mathbb{E}\left[\mathbb{1}_{\{Y>\theta\}} \mid X\right], \\
& \mathbb{E}\left[\mathbb{1}_{A_{3}} \mid X\right]=\mathbb{E}\left[\mathbb{1}_{\{X>\theta, Y \leq \theta\}} \mid X\right]=\mathbb{1}_{\{X>\theta\}} \mathbb{E}\left[\mathbb{1}_{\{Y \leq \theta\}} \mid X\right],
\end{aligned}
$$

and

$$
\mathbb{E}\left[\mathbb{1}_{A_{4}} \mid X\right]=\mathbb{E}\left[\mathbb{1}_{\{X>\theta, Y>\theta\}} \mid X\right]=\mathbb{1}_{\{X>\theta\}} \mathbb{E}\left[\mathbb{1}_{\{Y>\theta\}} \mid X\right] .
$$

Hence,

$$
\begin{aligned}
K_{C}(s,[0, y])= & \mathbb{E}\left[\mathbb{1}_{[0, y]} \circ Y \mid X=s\right] \\
= & \omega_{1}(s) \mathbb{1}_{[0, y] \cap[0, \theta]}(s)+\omega_{2}(s) \mathbb{1}_{\Lambda_{\theta}^{12}([0, y]) \cap[0, \theta]}(s) \\
& +\omega_{1}(s) \mathbb{1}_{\Lambda_{\theta}^{21}}([0, y]) \cap(\theta, 1](s)+\omega_{2}(s) \mathbb{1}_{[0, y] \cap(\theta, 1]}(s) .
\end{aligned}
$$

Lemma 3.5. Let random variables X, Y be uniformly distributed on $[0,1]$ with copula C such that $\Lambda_{\theta}(X)=\Lambda_{\theta}(Y)$ a.s. Then $K_{C}(s,[0, s])=K_{C}(s,[0, y])$ for all $s \leq \theta$ satisfying $\Lambda_{\theta}(s) \leq \Lambda_{\theta}(y)$ where $y \in[0,1]$.
Proof. Since $A_{j}:=\left(s-\frac{1}{j}, s\right]$ shrinks nicely to s as $j \rightarrow \infty$ and the sets $\Lambda_{\theta}((s, y]) \subseteq$ $\left(\Lambda_{\theta}(s), 1\right]$ and $\Lambda_{\theta}\left(\left(s-\frac{1}{j}, s\right]\right)=\left(\Lambda_{\theta}\left(s-\frac{1}{j}\right), \Lambda_{\theta}(s)\right]$, we have
$\mathbb{P}\left(Y \in(s, y], X \in A_{j}(s)\right) \leq \mathbb{P}\left(\Lambda_{\theta}(Y) \in \Lambda_{\theta}((s, y]), \Lambda_{\theta}(X) \in \Lambda_{\theta}\left(\left(s-\frac{1}{j}, s\right]\right)\right)=0$ for j large enough. Therefore, $\mathbb{P}(s<Y \leq y \mid X=s)=0$.

Next, we will show that simple implicit dependence copulas can be written as generalized products of complete dependence copulas.

Theorem 3.6. Let random variables $X, Y \sim \mathcal{U}(0,1)$ be such that $\Lambda_{\theta}(X)=\Lambda_{\theta}(Y)$ a.s. Then there exists $\mathcal{A}=\left\{A_{t}\right\}_{t \in[0,1]}$ such that $C_{X, Y}=C_{e, \Lambda_{\theta}} *_{\mathcal{A}} C_{\Lambda_{\theta}, e}$.

Proof. For each $s \in[0, \theta]$, let $A_{\Lambda_{\theta}(s)}$ be the subcopula on $\{0, \theta, 1\}^{2}$ defined by

$$
A_{\Lambda_{\theta}(s)}(\theta, \theta)=\theta \cdot K_{C}(s,[0, s]) .
$$

We can extend subcopula $A_{\Lambda_{\theta}(s)}$ to copula by Sklar's theorem. Since $s \leq \theta, \Lambda_{\theta}(s) \leq$ $1=\Lambda_{\theta}(\theta)$ and $K_{C}(s,[0, \theta])$ is measurable in s, by Lemma 3.5, we have $K_{C}(s,[0, s])=$ $K_{C}(s,[0, \theta])$ is measurable in s. Thus, $A_{t}(\theta, \theta)$ is measurable in t where $t=\Lambda_{\theta}(s)$. By Lemma 3.1, $A_{t}\left(\partial_{2} C_{e, \Lambda_{\theta}}(x, t), \partial_{2} C_{e, \Lambda_{\theta}}(y, t)\right)$ is measurable in t.

The generalized product of $C_{e \Lambda_{\theta}}$ and $C_{\Lambda_{\theta} e}$ with respect to $\mathcal{A}=\left\{A_{t}\right\}_{t \in[0,1]}$ is

$$
\begin{align*}
& C_{e, \Lambda_{\theta}} * \mathcal{A} \tag{3.4}\\
& C_{\Lambda_{\theta}, e}(x, y)=\int_{0}^{1} A_{t}\left(\partial_{2} C_{e, \Lambda_{\theta}}(x, t), \partial_{2} C_{e, \Lambda_{\theta}}(y, t)\right) d t \tag{3.5}\\
&=\int_{0}^{\theta} \frac{1}{\theta} A_{\Lambda_{\theta}(s)}\left(\partial_{2} C_{e, \Lambda_{\theta}}\left(x, \Lambda_{\theta}(s)\right), \partial_{2} C_{e, \Lambda_{\theta}}\left(y, \Lambda_{\theta}(s)\right)\right) d s
\end{align*}
$$

The last equality uses the change of variable $t=\Lambda_{\theta}(s)=\frac{s}{\theta}$ for $s \in[0, \theta]$.
The proof of this theorem will be divided into four cases. Using the equation (3.5), the values of $\partial_{2} C_{e, \Lambda_{\theta}}\left(x, \Lambda_{\theta}(s)\right)$ in equation (3.2) and Lemma 3.5, at the end of each subcase, Theorem 2.50 gives $\int_{0}^{x} K_{C}(s,[0, y]) d s=C_{X, Y}(x, y)$ which completes the proof.

Case 1: $x, y \leq \theta$.

1. If $x<y$, then $C_{e, \Lambda_{\theta}} *_{\mathcal{A}} C_{\Lambda_{\theta}, e}(x, y)$ is

$$
\begin{aligned}
& =\int_{0}^{x} \frac{1}{\theta} A_{\Lambda_{\theta}(s)}(\theta, \theta) d s+\int_{x}^{y} \frac{1}{\theta} A_{\Lambda_{\theta}(s)}(0, \theta) d s+\int_{y}^{\theta} \frac{1}{\theta} A_{\Lambda_{\theta}(s)}(0,0) d s \\
& =\int_{0}^{x} K_{C}(s,[0, s]) d s \\
& =\int_{0}^{x} K_{C}(s,[0, y]) d s .
\end{aligned}
$$

The first equality uses the equations (3.2) and (3.5) and the last equality uses Lemma 3.5.
2. If $y \leq x$, then by Table 3.1 and Lemma 3.4, we have $\int_{y}^{x} K_{C}(s,[0, y]) d s=$ 0 and $C_{e, \Lambda_{\theta}} *_{\mathcal{A}} C_{\Lambda_{\theta}, e}(x, y)$ is

$$
\begin{aligned}
& =\int_{0}^{y} \frac{1}{\theta} A_{\Lambda_{\theta}(s)}(\theta, \theta) d s+\int_{y}^{x} \frac{1}{\theta} A_{\Lambda_{\theta}(s)}(\theta, 0) d s+\int_{x}^{\theta} \frac{1}{\theta} A_{\Lambda_{\theta}(s)}(0,0) d s \\
& =\int_{0}^{y} K_{C}(s,[0, s]) d s \\
& =\int_{0}^{y} K_{C}(s,[0, y]) d s+\int_{y}^{x} K_{C}(s,[0, y]) d s \\
& =\int_{0}^{x} K_{C}(s,[0, y]) d s .
\end{aligned}
$$

The first equality uses the equations (3.2) and (3.5) and the third equality uses Lemma 3.5.

B	$s \in(y, x]$
$[0, y] \cap[0, \theta]$	0
$\Lambda_{\theta}^{12}([0, y]) \cap[0, \theta]$	0
$\Lambda_{\theta}^{21}([0, y]) \cap(\theta, 1]$	0
$[0, y] \cap(\theta, 1]$	0

Table 3.1: The values of $\mathbb{1}_{B}(s)$ for given sets B at s in the interval in subcase 1.2.

Figure 3.6: The value of $\partial_{2} C_{e, \Lambda_{\theta}}\left(x, \Lambda_{\theta}(s)\right)$ in subcase 1.1 (left) and 1.2 (right).

Case 2: $x \leq \theta, y>\theta$. Consider $b:=\Lambda_{\theta}^{12}(y)=\frac{\theta}{1-\theta}(1-y) \in[0, \theta]$ and use the fact that $\Lambda_{\theta}(b)=\Lambda_{\theta}(y)$.

1. If $x<b$, then $C_{e, \Lambda_{\theta}} *{ }_{\mathcal{A}} C_{\Lambda_{\theta}, e}(x, y)$ is

$$
\begin{aligned}
& =\int_{0}^{x} \frac{1}{\theta} A_{\Lambda_{\theta}(s)}(\theta, \theta) d s+\int_{x}^{b} \frac{1}{\theta} A_{\Lambda_{\theta}(s)}(0, \theta) d s+\int_{b}^{\theta} \frac{1}{\theta} A_{\Lambda_{\theta}(s)}(0,1) d s \\
& =\int_{0}^{x} K_{C}(s,[0, s]) d s \\
& =\int_{0}^{x} K_{C}(s,[0, y]) d s
\end{aligned}
$$

The first equality uses the equations (3.2) and (3.5) and the last equality uses Lemma 3.5.
2. If $b<x$, then by Table 3.2 and Lemma 3.4, we have

$$
\int_{b}^{x} K_{C}(s,[0, y]) d s=\int_{b}^{x} \omega_{1}(s)+\omega_{2}(s) d s=x-b
$$

and $C_{e, \Lambda_{\theta}} *_{\mathcal{A}} C_{\Lambda_{\theta}, e}(x, y)$ is

$$
=\int_{0}^{b} \frac{1}{\theta} A_{\Lambda_{\theta}(s)}(\theta, \theta) d s+\int_{b}^{x} \frac{1}{\theta} A_{\Lambda_{\theta}(s)}(\theta, 1) d s+\int_{x}^{\theta} \frac{1}{\theta} A_{\Lambda_{\theta}(s)}(0,1) d s
$$

$$
\begin{aligned}
& =\int_{0}^{b} K_{C}(s,[0, s]) d s+(x-b) \\
& =\int_{0}^{b} K_{C}(s,[0, y]) d s+\int_{b}^{x} K_{C}(s,[0, y]) d s \\
& =\int_{0}^{x} K_{C}(s,[0, y]) d s .
\end{aligned}
$$

The first equality uses the equations (3.2) and (3.5) and the third equality uses Lemma 3.5.

Figure 3.7: The value of $\partial_{2} C_{e, \Lambda_{\theta}}\left(x, \Lambda_{\theta}(s)\right)$ in subcase 2.1 (left) and 2.2 (right).

B	$s \in(b, x]$
$[0, y] \cap[0, \theta]$	1
$\Lambda_{\theta}^{12}([0, y]) \cap[0, \theta]$	1
$\Lambda_{\theta}^{21}([0, y]) \cap(\theta, 1]$	ทย ล ย
$[0, y] \cap(\theta, 1]$	0

Table 3.2: The values of $\mathbb{1}_{B}(s)$ for given sets B at s in the interval in subcase 2.2.

Case 3: $x>\theta, y \leq \theta$. Consider $a:=\Lambda_{\theta}^{12}(x)=\frac{\theta}{1-\theta}(1-x), y \in[0, \theta]$ and use the fact that $\Lambda_{\theta}(a)=\Lambda_{\theta}(x)$.

1. If $y<a$, then by Table 3.3 and Lemma 3.4, we have $\int_{y}^{x} K_{C}(s,[0, y]) d s=$ 0 and $C_{e, \Lambda_{\theta}} *_{\mathcal{A}} C_{\Lambda_{\theta}, e}(x, y)$ is

$$
\begin{aligned}
& =\int_{0}^{y} \frac{1}{\theta} A_{\Lambda_{\theta}(s)}(\theta, \theta) d s+\int_{y}^{a} \frac{1}{\theta} A_{\Lambda_{\theta}(s)}(\theta, 0) d s+\int_{a}^{\theta} \frac{1}{\theta} A_{\Lambda_{\theta}(s)}(1,0) d s \\
& =\int_{0}^{y} K_{C}(s,[0, s]) d s
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{y} K_{C}(s,[0, y]) d s+\int_{y}^{x} K_{C}(s,[0, y]) d s \\
& =\int_{0}^{x} K_{C}(s,[0, y]) d s .
\end{aligned}
$$

The first equality uses the equations (3.2) and (3.5) and the third equality uses Lemma 3.5.
2. If $a<y$, then by Table 3.3 and Lemma 3.4, we have

$$
\begin{aligned}
& \int_{y}^{1-\frac{1-\theta}{\theta} y} K_{C}(s,[0, y]) d s=0, \\
& \int_{a}^{y} K_{C}(s,[\theta, y]) d s+\int_{1-\frac{1-\theta}{\theta} y}^{x} K_{C}(t,[0, y]) d t \\
& =\int_{a}^{y} \omega_{1}(s) d s+\int_{1-\frac{1-\theta}{\theta} y}^{x} \omega_{1}(t) d t \\
& =\int_{a}^{y} \omega_{1}(s)+\frac{1-\theta}{\theta} \omega_{1}\left(1-\frac{1-\theta}{\theta} s\right) d s \\
& =y-a,
\end{aligned}
$$

where we have made a change of variable $t=1-\frac{1-\theta}{\theta} s$ and

$$
\begin{aligned}
C_{e, \Lambda_{\theta}} *{ }_{\mathcal{A}} C_{\Lambda_{\theta}, e}(x, y)= & \int_{0}^{a} \frac{1}{\theta} A_{\Lambda_{\theta}(s)}(\theta, \theta) d s+\int_{a}^{y} \frac{1}{\theta} A_{\Lambda_{\theta}(s)}(1, \theta) d s \\
& +\int_{y}^{\theta} \frac{1}{\theta} A_{\Lambda_{\theta}(s)}(1,0) d s \\
\text { CHULALE } & \int_{0}^{a} K_{C}(s,[0, s]) d s+(y-a)+0 \\
= & \int_{0}^{a} K_{C}(s,[0, y]) d s+\int_{y}^{1-\frac{1-\theta}{\theta} y} K_{C}(s,[0, y]) d s \\
& +\left(\int_{a}^{y} K_{C}(s,[0, y]) d s+\int_{1-\frac{1-\theta}{\theta} y}^{x} K_{C}(s,[0, y]) d s\right) \\
= & \int_{0}^{x} K_{C}(s,[0, y]) d s .
\end{aligned}
$$

The first equality uses the equations (3.2) and (3.5) and the third equality uses Lemma 3.5.

Figure 3.8: The value of $\partial_{2} C_{e, \Lambda_{\theta}}\left(x, \Lambda_{\theta}(s)\right)$ in subcase 3.1 (left) and 3.2 (right).

B	$s \in(y, x]$
$[0, y] \cap[0, \theta]$	0
$\Lambda_{\theta}^{12}([0, y]) \cap[0, \theta]$	0
$\Lambda_{\theta}^{21}([0, y]) \cap(\theta, 1]$	0
$[0, y] \cap(\theta, 1]$	0

$s \in(a, y]$	$s \in\left(y, \Lambda_{\theta}^{21}(y)\right]$	$s \in\left(\Lambda_{\theta}^{21}(y), x\right]$
1	0	0
0	0	0
0	0	1
0	0	0

Table 3.3: The values of $\mathbb{1}_{B}(s)$ for given sets B in subcases 3.1 (left) and 3.2 (right).

Case 4: $x, y>\theta$. Consider $a, b \in[0, \theta]$ and use the fact that $\Lambda_{\theta}(a)=\Lambda_{\theta}(x)$ and $\Lambda_{\theta}(b)=\Lambda_{\theta}(y)$. Notice that $x-a=\frac{x-\theta}{1-\theta}$ and $y-b=\frac{y-\theta}{1-\theta}$.

1. If $x<y$, then by Table 3.4 and Lemma 3.4, we have

$$
\begin{aligned}
& \qquad \int_{b}^{a} K_{C}(s,[0, y]) d s=\int_{b}^{a}\left(\omega_{1}(s)+\omega_{2}(s)\right) d s=a-b, \\
& \int_{a}^{x} K_{C}(s,[0, y]) d s=\int_{a}^{\theta}\left(\omega_{1}(s)+\omega_{2}(s)\right) d s+\int_{\theta}^{x}\left(\omega_{1}(s)+\omega_{2}(s)\right) d s=x-a \\
& \text { and } C_{e, \Lambda_{\theta}} *_{\mathcal{A}} C_{\Lambda_{\theta}, e}(x, y) \text { is }
\end{aligned}
$$

$$
=\int_{0}^{b} \frac{1}{\theta} A_{\Lambda_{\theta}(s)}(\theta, \theta) d s+\int_{b}^{a} \frac{1}{\theta} A_{\Lambda_{\theta}(s)}(\theta, 1) d s+\int_{a}^{\theta} \frac{1}{\theta} A_{\Lambda_{\theta}(s)}(1,1) d s
$$

$$
=\int_{0}^{b} K_{C}(s,[0, s]) d s+(a-b)+\left(\frac{x-\theta}{1-\theta}\right)
$$

$$
=\int_{0}^{b} K_{C}(s,[0, y]) d s+\int_{b}^{a} K_{C}(s,[0, y]) d s+\int_{a}^{x} K_{C}(s,[0, y]) d s
$$

$$
=\int_{0}^{x} K_{C}(s,[0, y]) d s
$$

The first equality uses the equations (3.2) and (3.5) and the third equality uses Lemma 3.5.
2. If $y<x$, then by Table 3.4 and Lemma 3.4, we have

$$
\begin{aligned}
\int_{a}^{x} K_{C}(s,[0, y]) d s= & \int_{a}^{b} \omega_{1}(s) d s+\int_{b}^{\theta}\left(\omega_{1}(s)+\omega_{2}(s)\right) d s \\
& +\int_{\theta}^{y}\left(\omega_{1}(s)+\omega_{2}(s)\right) d s+\int_{y}^{x} \omega_{1}(s) d s \\
= & \int_{a}^{b} \omega_{1}(s) d s+\int_{y}^{x} \omega_{1}(t) d t+(y-b) \\
& =\int_{a}^{b} \omega_{1}(s)+\frac{1-\theta}{\theta} \omega_{1}\left(1-\frac{1-\theta}{\theta} s\right) d s+\left(\frac{y-\theta}{1-\theta}\right) \\
& =(b-a)+\left(\frac{y-\theta}{1-\theta}\right),
\end{aligned}
$$

where we have made a change of variable $t=1-\frac{1-\theta}{\theta} s$ and

$$
\begin{aligned}
C_{e, \Lambda_{\theta}} *_{\mathcal{A}} C_{\Lambda_{\theta}, e}(x, y)= & \int_{0}^{a} \frac{1}{\theta} A_{\Lambda_{\theta}(s)}(\theta, \theta) d s+\int_{a}^{b} \frac{1}{\theta} A_{\Lambda_{\theta}(s)}(1, \theta) d s \\
& +\int_{b}^{\theta} \frac{1}{\theta} A_{\Lambda_{\theta}(s)}(1,1) d s \\
& =\int_{0}^{a} K_{C}(s,[0, s]) d s+(b-a)+\left(\frac{y-\theta}{1-\theta}\right) \\
& =\int_{0}^{a} K_{C}(s,[0, y]) d s+\int_{a}^{x} K_{C}(s,[0, y]) d s \\
& =\int_{0}^{x} K_{C}(s,[0, y]) d s .
\end{aligned}
$$

The first equality uses the equations (3.2) and (3.5) and the third equality uses Lemma 3.5.

Figure 3.9: The value of $\partial_{2} C_{e, \Lambda_{\theta}}\left(x, \Lambda_{\theta}(s)\right)$ in subcase 4.1 (left) and 4.2 (right).

B	$s \in(b, a]$	$s \in(a, x]$	$s \in(a, b]$	$s \in(b, x]$
$[0, y] \cap[0, \theta]$	1	$\mathbb{1}_{\left(\frac{\theta}{1-\theta}(1-x), \theta\right]}$	1	$\mathbb{1}_{\left(\frac{\theta}{1-\theta}(1-y), \theta\right]}$
$\Lambda_{\theta}^{12}([0, y]) \cap[0, \theta]$	1	$\mathbb{1}_{\left(\frac{\theta}{1-\theta}(1-x), \theta\right]}$	0	$\mathbb{1}_{\left(\frac{\theta}{1-\theta}(1-y), \theta\right]}$
$\Lambda_{\theta}^{21}([0, y]) \cap(\theta, 1]$	0	$\mathbb{1}_{(\theta, x]}$	0	$\mathbb{1}_{(\theta, x]}$
$[0, y] \cap(\theta, 1]$	0	$\mathbb{1}_{(\theta, x]}$	0	$\mathbb{1}_{(\theta, y]}$

Table 3.4: The values of $\mathbb{1}_{B}(s)$ for given sets B in subcases 4.1 (left) and 4.2 (right).

CHAPTER IV Symmetric Implicit Dependence Copulas Via Simple Functions

In this chapter, we will generalize the result in section 3.2 by giving a sufficient condition on the measure-preserving transformation α, replacing Λ_{θ}, under which the implicit dependence copulas $C_{X, Y}$, where $\alpha(X)=\alpha(Y)$, are generalized factorizable.

Let α be a measure-preserving (Borel) transformation on $[0,1]$ for which there is a partition $P:=\left\{0=a_{0}, a_{1}, a_{2}, \ldots, a_{n}=1\right\}$ such that, for $i=1, \ldots, n, \alpha_{i}:=\left.\alpha\right|_{I_{i}}$ is one-to-one where $I_{i}:=\left(a_{i-1}, a_{i}\right.$. By 11], α_{i}^{-1} is also Borel measurable and hence each $\alpha_{i j}:=\alpha_{i}^{-1} \circ \alpha_{j}$ is an injective Borel functions from I_{j} into I_{i}. Note that $\alpha_{i i}$ is the identity on $I_{i} ; \alpha_{i j}$ is onto I_{i} provided that $\alpha_{j}\left(I_{j}\right)=\alpha_{i}\left(I_{i}\right)$; and $\alpha_{i j}$ is an empty map if $\alpha_{i}\left(I_{i}\right) \cap \alpha_{j}\left(I_{j}\right)=\varnothing$. Clearly, $\alpha=\sum_{i=1}^{n} \alpha_{i} \mathbb{1}_{I_{i}}$ on (0,1$]$. In this chapter, we assume further that each α_{i} is strictly increasing and maps I_{i} onto $(0,1]$. Under these additional assumptions, every $\alpha_{i j}$ is a bijection (in fact, a strictly increasing function) from I_{j} to I_{i}. Hence, all α_{i}^{\prime} 's and $\alpha_{i j}$'s are differentiable a.e. on their domains. Such a measure-preserving function α satisfying all above assumptions will be called simple.

Figure 4.1: An example of simple functions α.

Remark 4.1. For $s \in(0,1]$ and $i=1,2, \ldots, n$, let $s_{(i)}$ denote the unique number in I_{i} such that $\alpha\left(s_{(i)}\right)=\alpha(s)$. Obviously, $s_{(1)}<s_{(2)}<\cdots<s_{(n)}$; and that $s=s_{(i)}$ if and only if $s \in I_{i}$. Consequently, if $s \in I_{j}$, then $s_{(i)}=\alpha_{i j}(s)$. Since every α_{i} is strictly increasing, it holds that $s_{(i)}<t_{(i)}$ if and only if $s_{(j)}<t_{(j)}$. It is also the case that $\alpha^{-1}((0, \alpha(s)])=\bigcup_{i=1}^{n}\left(a_{i}, \alpha_{i}^{-1}(\alpha(s))\right]=\bigcup_{i=1}^{n}\left(a_{i}, s_{(i)}\right]$.

Let random variables $X, Y \sim \mathcal{U}(0,1)$ be such that $\alpha(X)=\alpha(Y)$ a.s. for some simple measure-preserving transformation α on $[0,1]$. For each $i=1, \ldots, n$ and $j=1, \ldots, n$, denote $A_{i j}:=\left\{X \in I_{i}, Y \in I_{j}\right\}$ on which $\alpha_{i}(X)=\alpha_{j}(Y)$ a.s. Hence $Y=\alpha_{j i}(X)$ a.s. on $A_{i j}$ and

$$
\begin{equation*}
Y=\sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_{j i}(X) \mathbb{1}_{A_{i j}} \text { a.s. } \tag{4.1}
\end{equation*}
$$

For convenience, we denote $\omega_{i}(s):=K_{C X, Y}\left(s, I_{i}\right)$ which is equal to $\mathbb{E}\left[\mathbb{1}_{\left\{Y \in I_{i}\right\}} \mid X=s\right]$ for almost every $s \in[0,1]$. Since $K_{C_{X, Y}}(s, \cdot)$ is a probability measure for all s and $\bigcup_{i=1}^{n} I_{i}=(0,1]$, we always have $\sum_{i=1}^{n} \omega_{i}(s)=1$.

Next, we introduce Lemma 4.2-4.4 which are counterparts of Lemma $3.3-3.5$ in section 3.2

Lemma 4.2. Let random variables X and Y be uniformly distributed on $[0,1]$ such that $\alpha(X)=\alpha(Y)$ a.s. for some simple measure-preserving transformation α on $[0,1]$. Then, for $k=1,2, \ldots, n$ and a.e. $s \in I_{1}$,

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{\alpha^{\prime}\left(s_{(i)}\right)} \mathbb{P}\left(Y \in I_{k} \mid X=s_{(i)}\right)=\frac{1}{\alpha^{\prime}\left(s_{(k)}\right)} \tag{4.2}
\end{equation*}
$$

Proof. Let $t=\alpha(s)$ and $A_{j}(t)=\left(t-\frac{1}{j}, t+\frac{1}{j}\right)$ shrinks to t nicely. By Theorem 2.54, we have

$$
\mathbb{P}\left(Y \in I_{k} \mid \alpha(X)=t\right)=\lim _{j \rightarrow \infty} \mathbb{P}\left(Y \in I_{k} \mid \alpha(X) \in A_{j}(t)\right) \text { a.e. t. }
$$

Let the event $B_{j}:=\left\{\alpha(X) \in A_{j}(t)\right\}=\dot{\bigcup}_{i}\left\{X \in \alpha_{i}^{-1}\left(A_{j}(t)\right)\right\}$. Notation \dot{U} mean disjoint union. Thus, by conditional probability, for a.e. t

$$
\begin{aligned}
\mathbb{P}\left(Y \in I_{k} \mid \alpha(X)=t\right) & =\lim _{j \rightarrow \infty} \mathbb{P}\left(Y \in I_{k} \mid B_{j}\right) \\
& =\lim _{j \rightarrow \infty}\left[\sum_{i=1}^{n} \frac{\mathbb{P}\left(Y \in I_{k}, X \in \alpha_{i}^{-1}\left(A_{j}(t)\right)\right.}{\mathbb{P}\left(B_{j}\right)}\right] \\
& =\lim _{j \rightarrow \infty}\left[\sum_{i=1}^{n} \frac{\mathbb{P}\left(Y \in I_{k}, X \in \alpha_{i}^{-1}\left(A_{j}(t)\right)\right.}{\mathbb{P}\left(X \in \alpha_{i}^{-1}\left(A_{j}(t)\right)\right.} \cdot \frac{\mathbb{P}\left(X \in \alpha_{i}^{-1}\left(A_{j}(t)\right)\right.}{\mathbb{P}\left(B_{j}\right)}\right]
\end{aligned}
$$

$$
=\lim _{j \rightarrow \infty}\left[\sum_{i=1}^{n} \mathbb{P}\left(Y \in I_{k} \mid X \in \alpha_{i}^{-1}\left(A_{j}(t)\right)\right) \cdot \frac{\mathbb{P}\left(X \in \alpha_{i}^{-1}\left(A_{j}(t)\right)\right)}{\mathbb{P}\left(B_{j}\right)}\right] .
$$

Since $X \sim \mathcal{U}(0,1)$ and α is measure-preserving, $\mathbb{P}\left(X \in \alpha_{i}^{-1}\left(A_{j}(t)\right)\right)=\lambda\left(\alpha_{i}^{-1}\left(A_{j}(t)\right)\right)$ and $\mathbb{P}\left(B_{j}(t)\right)=\lambda\left(\alpha^{-1}\left(A_{j}(t)\right)\right)=\lambda\left(A_{j}(t)\right)$. Therefore, by Theorem 2.53, for a.e. t,

$$
\lim _{j \rightarrow \infty} \frac{\mathbb{P}\left(X \in \alpha_{i}^{-1}\left(A_{j}(t)\right)\right)}{\mathbb{P}\left(B_{j}(t)\right)}=\left(\alpha_{i}^{-1}\right)^{\prime}(t)=\frac{1}{\alpha_{i}^{\prime}(t)}=: \beta_{i} .
$$

Since the sequence $\alpha_{i}^{-1}\left(A_{j}(t)\right)=\left(\alpha_{i}^{-1}\left(t-\frac{1}{j}\right), \alpha_{i}^{-1}\left(t+\frac{1}{j}\right)\right)$ shrinks nicely to $s_{(i)}$ as $j \rightarrow \infty$, we have by Theorem 2.54 that

$$
\mathbb{P}\left(Y \in I_{k} \mid X \in \alpha_{i}^{-1}\left(A_{j}(t)\right)\right) \rightarrow \mathbb{P}\left(Y \in I_{k} \mid X=s_{(i)}\right) .
$$

Hence, $\mathbb{P}\left(Y \in I_{k} \mid \alpha(X)=t\right)=\sum_{i=1}^{n} \beta_{i} \mathbb{P}\left(Y \in I_{k} \mid X=s_{(i)}\right)$.
Since $\alpha(X)=\alpha(Y)$ a.s., we have $\mathbb{P}\left(Y \in I_{k} \mid \alpha(X)=t\right)=\mathbb{P}\left(Y \in I_{k} \mid \alpha(Y)=t\right)$ which, by the same arguments as above, is equal to $\sum_{i=1}^{n} \beta_{i} \mathbb{P}\left(Y \in I_{k} \mid Y=s_{(i)}\right)$. Finally, as it is clear that $\mathbb{P}\left(Y \in I_{k} \mid Y=s_{(i)}\right)=1$ if $i=1$ and 0 if $i \neq 1$, we obtain that

$$
\sum_{i=1}^{n} \beta_{i} \mathbb{P}\left(Y \in I_{k} \mid X=s_{(i)}\right)=\beta_{i}
$$

Lemma 4.3. Let α be a simple measure-preserving transformation on $[0,1]$ and random variables $X, Y \sim \mathcal{U}(0,1)$ with copula $C=C_{X, Y}$ and such that $\alpha(X)=\alpha(Y)$ a.s. Then, for $y \in I_{k}, k \in\{1, \ldots, n\}$ and a.e. $s \in[0,1]$,

$$
K_{C}(s,[0, y])= \begin{cases}\sum_{j=1}^{k} \omega_{j}(s) & \text { if } s \in\left(a_{i-1}, y_{(i)}\right] \text { for some } i, \tag{4.3}\\ \sum_{j=1}^{k-1} \omega_{j}(s) & \text { if } s \in\left(y_{(i)}, a_{i}\right] \text { and } k \geq 2 \text { for some } i, \\ 0 & \text { if } s \in\left(y_{(i)}, a_{i}\right] \text { and } k=1 \text { for some } i .\end{cases}
$$

Proof. Recall from (4.1) that $Y=\sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_{j i}(X) \mathbb{1}_{A_{i j}}$ a.s.
Since $0 \leq \int_{A} \mathbb{1}_{\{Y=0\}}(\omega) d \mathbb{P}(\omega) \leq \int_{\Omega} \mathbb{1}_{\{Y=0\}}(\omega) d \mathbb{P}(\omega)=\mathbb{P}(Y=0)=0$ for all $A \in \sigma(X)$, we have $\mathbb{E}\left[\mathbb{1}_{\{Y=0\}} \mid X\right]=0$ a.s. To prove the lemma, it is sufficient to consider $\mathbb{1}_{(0, y]} \circ Y$. Observe that for any $J \subseteq(0,1]$ and a random variable Z taking values in $[0,1], \mathbb{1}_{J} \circ\left(Z \mathbb{1}_{A_{i j}}\right)=\left(\mathbb{1}_{J} \circ Z\right) \mathbb{1}_{A_{i j}}$ for every i, j. Thus, for every i, j,

$$
\mathbb{1}_{(0, y]} \circ\left(\alpha_{j i}(X) \mathbb{1}_{A_{i j}}\right)=\left(\mathbb{1}_{(0, y]} \circ \alpha_{j i}(X)\right) \mathbb{1}_{A_{i j}} \text { a.s. }
$$

Then

$$
\mathbb{1}_{(0, y]} \circ Y=\sum_{j=1}^{n} \sum_{i=1}^{n}\left(\mathbb{1}_{(0, y]} \circ \alpha_{j i}(X)\right) \mathbb{1}_{A_{i j}} \text { a.s. }
$$

Since α_{i} is bijective on I_{i} for each i, we have that $\alpha_{j i}(X) \in(0, y]$ if and only if $X \in \alpha_{i j}((0, y])$. Thus, $\mathbb{1}_{(0, y]} \circ Y=\sum_{j=1}^{n} \sum_{i=1}^{n}\left(\mathbb{1}_{\alpha_{i j}((0, y])}(X)\right) \mathbb{1}_{A_{i j}}$ a.s. Since $\mathbb{1}_{\left.\alpha_{i j}((0, y])\right)} \circ X$ and $\mathbb{1}_{I_{i}} \circ X$ are $\sigma(X)$-measurable, we have

$$
\begin{aligned}
\mathbb{E}\left[\left(\mathbb{1}_{\alpha_{i j}((0, y])} \circ X\right) \mathbb{1}_{A_{i j}} \mid X\right] & =\mathbb{E}\left[\left(\mathbb{1}_{\alpha_{i j}((0, y])} \circ X\right) \mathbb{1}_{T_{i}}(X) \mathbb{1}_{I_{j}}(Y) \mid X\right] \\
& =\left(\mathbb{1}_{\alpha_{i j}((0, y]) \cap I_{i}} \circ X\right) \mathbb{E}\left[\mathbb{1}_{Y \in I_{j}} \mid X\right] \\
& =\omega_{j}(X)\left(\mathbb{1}_{\alpha_{i j}((0, y]) \cap I_{i}} \circ X\right) \text { a.s. }
\end{aligned}
$$

Hence,

$$
\begin{aligned}
K_{C}(s,[0, y]) & =\mathbb{E}[\mathbb{1}[0, y] \circ Y \mid X=s] \\
& =\sum_{j=1}^{n} \sum_{i=1}^{n} \omega_{j}(s) \mathbb{1}_{\alpha_{i j}((0, y]) \cap I_{i}}(s) \text { a.s. }
\end{aligned}
$$

Next, we will consider $s \in I_{i}$, so $K_{C}(s,[0, y])=\sum_{j=1}^{n} \omega_{j}(s) \mathbb{1}_{\alpha_{i j}((0, y))}(s)$. If $j<k$, then $\alpha_{i j}((0, y])=\alpha_{i}^{-1}([0,1])=I_{i}$, so $\mathbb{1}_{\alpha_{i j}((0, y))}(s)=1$. For $j>k$, since α_{j} define on I_{j}, so $\alpha_{j}((0, y])=\varnothing$, then $\alpha_{i j}((0, y])=\alpha_{i}^{-1}(\varnothing)=\varnothing$, i.e., $\mathbb{1}_{\alpha_{i j}((0, y])}(s)=0$. If $j=k$, then $\alpha_{i j}((0, y])=\alpha_{i}^{-1}([0, \alpha(y)])=\left(a_{i-1}, y_{(i)}\right]$, i.e. $\mathbb{1}_{\left.\alpha_{i j}(0, y)\right)}(s)=\mathbb{1}_{\left(a_{i-1}, y_{(i)}\right]}(s)$. This completes the proof of equation (4.3)

Lemma 4.4. Let α be a simple measure-preserving transformation on $[0,1]$ and random variables X, Y uniformly distributed on $[0,1]$ with copula $C=C_{X, Y}$ such that $\alpha(X)=\alpha(Y)$ a.s. Then, for $i, k=1, \ldots, n, y \in I_{k}$, and a.e. $s \in[0,1]$,

1. $K_{C}\left(s_{(i)},\left[0, s_{(k)}\right]\right)=K_{C}\left(s_{(i)},[0, y]\right)$ if $s_{(k)} \leq y$; and
2. $K_{C}\left(s_{(i)},\left[0, s_{(k-1)}\right]\right)=K_{C}\left(s_{(i)},[0, y]\right)$ if $s_{(k)}>y$.

Proof. Equivalently, it suffices to show that $\mathbb{P}\left(s_{(k)}<Y \leq y \mid X=s\right)=0$. Since $A_{j}:=\left(s-\frac{1}{j}, s\right]$ shrinks nicely to s as $j \rightarrow \infty$ and the sets

$$
\alpha\left(\left(s_{(k)}, y\right]\right) \subseteq[0, \alpha(y)) \cup\left(\alpha\left(s_{(k)}\right), 1\right]
$$

and

$$
\alpha\left(\left(s-\frac{1}{j}, s\right]\right) \subseteq\left(\alpha\left(s-\frac{1}{j}\right), \alpha(s)\right]=\left(\alpha\left(s-\frac{1}{j}\right), \alpha\left(s_{(k)}\right)\right]
$$

are eventually disjoint. Note the use of the assumption that α can be partitioned into finitely many α_{i} 's. Hence,

$$
\begin{aligned}
\mathbb{P}\left(Y \in\left(s_{(k)}, y\right], X \in A_{j}(s)\right) & \leq \mathbb{P}\left(\alpha(Y) \in \alpha\left(\left(s_{(k)}, y\right]\right), \alpha(X) \in \alpha\left(\left(s-\frac{1}{j}, s\right]\right)\right) \\
& =0,
\end{aligned}
$$

for j large enough. Therefore, $\mathbb{P}\left(s_{(k)}<Y \leq y \mid X=s\right)=0$ which proves the claim.

Lemma 4.5. Let α be a simple measure-preserving transformation on $[0,1]$. For $x \in I_{j}$ and a.e. $s \in I_{1}$,

$$
\partial_{2} C_{e, \alpha}(x, \alpha(s))= \begin{cases}\sum_{i=1}^{j-1} \frac{1}{\alpha^{\prime}(s \overline{(i)})}=\beta_{j-1} & \text { if } x \leq s_{(j)} \tag{4.4}\\ \sum_{i=1}^{j} \frac{1}{\alpha^{\prime}\left(s_{(i)}\right)}=\beta_{j} & \text { if } x>s_{(j)}\end{cases}
$$

Proof. By definition, $C_{e, \alpha}(x, y)=\lambda\left(\bigcup_{i=1}^{n}[0, x] \cap\left(a_{i-1}, \alpha_{i}^{-1}(y)\right]\right)$. Let $x \in I_{j}$. Then, the intersection is empty for $i>j$ and

$$
C_{e, \alpha}(x, y)= \begin{cases}\sum_{i=1}^{j-1}\left(\alpha_{i}^{-1}(y)-a_{i-1}\right)+\left(x-a_{j-1}\right) & \text { if } x \leq s_{(j)} \\ \sum_{i=1}^{j}\left(\alpha_{i}^{-1}(y)-a_{i-1}\right) & \text { if } x>s_{(j)}\end{cases}
$$

Let $s \in I_{1}$. For $x \leq s_{(j)}$, a.e. s

$$
\begin{aligned}
\partial_{2} C_{e, \alpha}(x, \alpha(s)) & =\lim _{h \rightarrow 0} \frac{C_{e, \alpha}(x, \alpha(s)+h)-C_{e, \alpha}(x, \alpha(s))}{h} \\
& =\sum_{i=1}^{j-1} \lim _{h \rightarrow 0} \frac{\alpha_{i}^{-1}(\alpha(s)+h)-\alpha_{i}^{-1}(\alpha(s))}{h} \\
& =\sum_{i=1}^{j-1}\left(\alpha_{i}^{-1}\right)^{\prime}(\alpha(s)) \\
& =\sum_{i=1}^{j-1} \frac{1}{\alpha_{i}^{\prime}\left(s_{(i)}\right)} .
\end{aligned}
$$

Also for $x>s_{(j)}$, a.e. s

$$
\partial_{2} C_{e, \alpha}(x, \alpha(s))=\lim _{h \rightarrow 0} \frac{C_{e, \alpha}(x, \alpha(s)+h)-C_{e, \alpha}(x, \alpha(s))}{h}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{j} \lim _{h \rightarrow 0} \frac{\alpha_{i}^{-1}(\alpha(s)+h)-\alpha_{i}^{-1}(\alpha(s))}{h} \\
& =\sum_{i=1}^{j}\left(\alpha_{i}^{-1}\right)^{\prime}(\alpha(s)) \\
& =\sum_{i=1}^{j} \frac{1}{\alpha_{i}^{\prime}\left(s_{(i)}\right)} .
\end{aligned}
$$

Computing $\partial_{2} C_{e, \alpha}(1, \alpha(s))$ in two different ways, i.e., by using (4.4) and by the boundary condition of copulas, gives $\beta_{n}=\sum_{i=1}^{n} \frac{1}{\alpha^{\prime}(s(i))}=1$.

For less cumbersome notation, we denote $\beta_{k}:=\sum_{i=1}^{k} \frac{1}{\alpha^{\prime}\left(s_{(i)}\right)}$ for $k=1, \ldots, n$ and $B:=\left\{0=\beta_{0}, \beta_{1}, \ldots, \beta_{n-1}, \beta_{n}=1\right\}$. For $s \in\left(0, a_{1}\right)$, let $A_{\alpha(s)}$ be defined on $B \times B$ by

$$
\begin{equation*}
A_{\alpha(s)}\left(\beta_{k}, \beta_{\ell}\right):=\frac{1}{\alpha^{\prime}(s)} \sum_{i=1}^{k} \alpha_{i 1}^{\prime}(s) K_{C}\left(s_{(i)},\left[0, s_{(\ell)}\right]\right) \quad \text { for } k, \ell \in\{1, \ldots, n-1\} \tag{4.5}
\end{equation*}
$$

and $A_{\alpha(s)}\left(\beta_{k}, 1\right)=A_{\alpha(s)}\left(1, \beta_{k}\right)=\beta_{k}$ for $k=0,1, \ldots, n$.

Figure 4.2: The value of $\partial_{2} C_{e, \alpha}(x, \alpha(s))$.

Lemma 4.6. For every $s \in\left(0, a_{1}\right), A_{\alpha(s)}$ is a subcopula on $B \times B$.

Proof. It is only left to show that $A_{\alpha(s)}$ has 2-increasing property. Let $\beta_{p} \leq \beta_{q}$ and $\beta_{k} \leq \beta_{\ell}$. For $j=k, \ell$,

$$
A_{\alpha(s)}\left(\beta_{q}, \beta_{j}\right)-A_{\alpha(s)}\left(\beta_{p}, \beta_{j}\right)=\frac{1}{\alpha^{\prime}(s)} \sum_{i=p+1}^{q} \alpha_{i 1}^{\prime}(s) K_{C}\left(s_{(i)},\left[0, s_{(j)}\right]\right) .
$$

So $V_{A_{\alpha(s)}}\left(\left[\beta_{p}, \beta_{q}\right] \times\left[\beta_{k}, \beta_{\ell}\right]\right)=\frac{1}{\alpha^{\prime}(s)} \sum_{i=p+1}^{q} \alpha_{i 1}^{\prime}(s) K_{C}\left(s_{(i)},\left(s_{k}, s_{(\ell)}\right]\right) \geq 0$.
Lemma 4.7. $A_{t}\left(\partial_{2} C_{e, \alpha}(x, t), \partial_{2} C_{e, \alpha}(y, t)\right)$ is measurable in $t \in[0,1]$.
Proof. Let $s \in I_{1}$. For each $k, \ell \in\{1, \ldots, n-1\}$, consider

$$
A_{\alpha(s)}\left(\beta_{k}, \beta_{\ell}\right)=\frac{1}{\alpha^{\prime}(s)} \sum_{i=1}^{k} \alpha_{i 1}^{\prime}(s) K_{C}\left(s_{(i)},\left[0, s_{(\ell)}\right]\right)
$$

Since $s_{(\ell)} \leq a_{\ell}$ and $s_{(i)}$ is a linear function of s, by Lemma 4.4, $K_{C}\left(s_{(i)},\left[0, s_{(\ell)}\right]\right)=$ $K_{C}\left(s_{(i)},\left[0, a_{(\ell)}\right]\right)$ is measurable in s. Hence, $A_{\alpha(s)}\left(\beta_{k}, \beta_{\ell}\right)$ is measurable in s. Next, it is similar to Lemma 3.1 to show that $A_{\alpha(s)}\left(\partial_{2} C_{e, \alpha}\left(x, \alpha(s), \partial_{2} C_{e, \alpha}(y, \alpha(s))\right.\right.$ is measurable in s. Using a change of variable $t=\alpha_{1}(s)$, the proof is complete.

Theorem 4.8. Let random variables $X, Y \sim \mathcal{U}(0,1)$ be such that $\alpha(X)=\alpha(Y)$ a.s. for some simple measure-preserving transformation α on $[0,1]$. Then, there exists $\mathcal{A}=\left\{A_{t}\right\}_{t \in[0,1]} \subseteq \mathscr{C}$ such that $C_{X, Y}=C_{e, \alpha} *_{\mathcal{A}} C_{\alpha, e}$.

Proof. For each $s \in\left(0, a_{1}\right)$, we extend the subcopula $A_{\alpha(s)}$ defined above to a copula, still denoted by $A_{\alpha(s)} . A_{0}$ and A_{1} can be taken to be any copulas as they do not affect the \mathcal{A}-product. By Lemma 4.7, $A_{t}\left(\partial_{2} C_{e, \alpha}(x, t), \partial_{2} C_{e, \alpha}(y, t)\right)$ is measurable in $t \in[0,1]$. Putting $\mathcal{A}:=\left\{A_{t}\right\}_{t \in[0,1]}$, we have

$$
\begin{align*}
C_{e, \alpha} *_{\mathcal{A}} C_{\alpha, e}(x, y) & =\int_{0}^{1} A_{t}\left(\partial_{2} C_{e, \alpha}(x, t), \partial_{2} C_{e, \alpha}(y, t)\right) d t \\
& =\int_{0}^{a_{1}} \alpha^{\prime}(s) A_{\alpha(s)}\left(\partial_{2} C_{e, \alpha}(x, \alpha(s)), \partial_{2} C_{e, \alpha}(y, \alpha(s))\right) d s \tag{4.6}
\end{align*}
$$

where the last equality uses the change of variable $t=\alpha(s)$. Denote $C:=C_{X, Y}$ and let K_{C} be its Markov kernel. The rest of the proof is devoted to deriving that (4.6) equals $\int_{0}^{x} K_{C}(s,[0, y]) d s$ which, by Theorem 2.50, is equal to $C(x, y)$. The proof is divided into four cases according to where (x, y) is. By Lemma 4.5, if $(x, y) \in I_{p} \times I_{q}$ then $\partial_{2} C_{e, \alpha}(x, \alpha(s))=\beta_{p} \mathbb{1}_{\left(0, x_{(1)}\right)}(s)+\beta_{p-1} \mathbb{1}_{\left[x_{(1)}, a_{1}\right]}(s)$ and $\partial_{2} C_{e, \alpha}(y, \alpha(s))=\beta_{q} \mathbb{1}_{\left(0, y_{(1)}\right)}(s)+\beta_{q-1} \mathbb{1}_{\left[y_{(1)}, a_{1}\right]}(s)$ for a.e. $s \in\left(0, a_{1}\right]$.

Case 1: $x \in I_{1}, y \in I_{q}$ where $q=1, \ldots, n$.
1.1. If $x \leq y_{(1)}$, then $C_{e, \alpha} *_{\mathcal{A}} C_{\alpha, e}(x, y)$ is

$$
\begin{aligned}
= & \int_{0}^{x} \alpha^{\prime}(s) A_{\alpha(s)}\left(\beta_{1}, \beta_{q}\right) d s+\int_{x}^{y_{(1)}} \alpha^{\prime}(s) A_{\alpha(s)}\left(0, \beta_{q}\right) d s \\
& +\int_{y_{(1)}}^{a_{1}} \alpha^{\prime}(s) A_{\alpha(s)}\left(0, \beta_{q-1}\right) d s \\
= & \begin{cases}\int_{0}^{x} K_{C}\left(s,\left[0, s_{(q)}\right]\right) d s & \text { if } q<n, \\
\int_{0}^{x} \alpha^{\prime}(s) \beta_{1} d s=\int_{0}^{x} 1 d s & \text { if } q=n .\end{cases}
\end{aligned}
$$

The case $q=n$ is done by noting from (4.3) that $K_{C}(s,[0, y])=\sum_{1}^{n} \omega_{j}(s)=$ 1. Consider $q<n$. For $s \leq x \leq y_{(1)}$, it follows from Remark 4.1 that $s_{(q)} \leq y_{(q)}$. So, we have $K_{C}\left(s,\left[0, s_{(q)}\right)\right)=K_{C}(s,[0, y])$ by Lemma 4.4.
1.2. If $x>y_{(1)}$, then $C_{e, \alpha} *_{\mathcal{A}} C_{\alpha, e}(x, y)$ is

$$
\begin{align*}
= & \int_{0}^{y_{(1)}} \alpha^{\prime}(s) A_{\alpha(s)}\left(\beta_{1}, \beta_{q}\right) d s+\int_{y_{(1)}}^{x} \alpha^{\prime}(s) A_{\alpha(s)}\left(\beta_{1}, \beta_{q-1}\right) d s \tag{4.7}\\
& +\int_{x}^{a_{1}} \alpha^{\prime}(s) A_{\alpha(s)}\left(0, \beta_{q-1}\right) d s \\
= & \begin{cases}\int_{0}^{y_{(1)}} K_{C}(s,[0, s]) d s & \text { if } q=1, \\
\int_{0}^{y_{(1)}} K_{C}\left(s,\left[0, s_{(q)}\right]\right) d s+\int_{y_{(1)}}^{x} K_{C}\left(s,\left[0, s_{(q-1)}\right]\right) d s & \text { if } 1<q<n, \\
\int_{0}^{y_{(1)}} 1 d s+\int_{y_{(1)}}^{x} K_{C}\left(s,\left[0, s_{(q-1)}\right]\right) d s & \text { if } q=n .\end{cases} \tag{4.8}
\end{align*}
$$

For $1<q<n$, it follows from Remark 4.1 and Lemma 4.4 that $K_{C}\left(s,\left[0, s_{(q)}\right]\right)=$ $K_{C}(s,[0, y])$ if $s \leq y_{(1)}$, and $K_{C}\left(s,\left[0, s_{(q-1)}\right]\right)=K_{C}(s,[0, y])$ if $y_{(1)}<s \leq x$. Hence, (4.8) is equal to $\int_{0}^{x} K_{C}(s,[0, y]) d s$.
For $q=1$, we obtain by using Lemma 4.4 that $K_{C}(s,[0, s])=K_{C}(s,[0, y])$ if $s \leq y_{(1)}=y$. For $y_{(1)}<s \leq x$, we have $K_{C}(s,[0, y])=0$ by Lemma 4.3. For $q=n$, we note from Lemma 4.3 that $K_{C}(s,[0, y])=\sum_{j=1}^{n} \omega_{j}(s)=1$ if $s \leq y_{(1)}$, and $K_{C}\left(s,\left[0, s_{(q-1)}\right]\right)=K_{C}(s,[0, y])$ if $y_{(1)}<s \leq x$.

Case 2: $x \in I_{p}, y \in I_{q}$ where $1<p<n$ and $1 \leq q<n$.
2.1. If $x_{(1)} \leq y_{(1)}$, then $C_{e, \alpha} *_{\mathcal{A}} C_{\alpha, e}(x, y)$, for $q>1$, is

$$
\begin{aligned}
= & \int_{0}^{x_{(1)}} \alpha^{\prime}(s) A_{\alpha(s)}\left(\beta_{p}, \beta_{q}\right) d s+\int_{x_{(1)}}^{y_{(1)}} \alpha^{\prime}(s) A_{\alpha(s)}\left(\beta_{p-1}, \beta_{q}\right) d s \\
& +\int_{y_{(1)}}^{a_{1}} \alpha^{\prime}(s) A_{\alpha(s)}\left(\beta_{p-1}, \beta_{q-1}\right) d s
\end{aligned}
$$

Figure 4.3: The value of $\partial_{2} C_{e, \alpha}(x, \alpha(s))$ in subcase 1.1 (left) and 1.2 (right).

$$
\begin{aligned}
= & \int_{0}^{x_{(1)}} \sum_{i=1}^{p} \alpha_{i 1}^{\prime}(s) K_{C}\left(s_{(i)},[0, s(q)] d s+\int_{x_{(1)}}^{y_{(1)}} \sum_{i=1}^{p-1} \alpha_{i 1}^{\prime}(s) K_{C}\left(s_{(i)},\left[0, s_{(q)}\right]\right) d s\right. \\
& +\int_{y_{(1)}}^{a_{1}} \sum_{i=1}^{p-1} \alpha_{i 1}^{\prime}(s) K_{C}\left(s_{(i)},\left[0, s_{(q-1)}\right]\right) d s \\
= & \int_{0}^{x_{(1)}} \sum_{i=1}^{p} \alpha_{i 1}^{\prime}(s) K_{C}\left(s_{(i)},[0, y]\right) d s+\int_{x_{(1)}}^{y_{(1)}} \sum_{i=1}^{p-1} \alpha_{i 1}^{\prime}(s) K_{C}\left(s_{(i)},[0, y]\right) d s \\
& +\int_{y_{(1)}}^{a_{1}} \sum_{i=1}^{p-1} \alpha_{i 1}^{\prime}(s) K_{C}\left(s_{(i)},[0, y]\right) d s \\
= & \sum_{i=1}^{p} \int_{a_{i-1}}^{x_{(i)}} K_{C}(s,[0, y]) d s+\sum_{i=1}^{p-1} \int_{x_{(i)}}^{y_{(i)}} K_{C}(s,[0, y]) d s+\sum_{i=1}^{p-1} \int_{y_{(i)}}^{a_{i}} K_{C}(s,[0, y]) d s .
\end{aligned}
$$

The third equality holds because, by Remark 4.1 and Lemma 4.4, $K_{C}\left(s,\left[0, s_{(q)}\right]\right)=$ $K_{C}(s,[0, y])$ for $s \in\left[0, y_{(1)}\right]$ and $K_{C}\left(s,\left[0, s_{(q-1)}\right]\right)=K_{C}(s,[0, y])$ for $s \in$ $\left(y_{(1)}, a_{1}\right]$, and the last equality uses the change of variable $s_{(1)}=\alpha_{i 1}\left(s_{(1)}\right)$ $\left[=s_{(i)}\right]$.

Case $q=1$ is similar to case $q>1$ except for that $A_{\alpha(s)}\left(\beta_{p-1}, \beta_{q-1}\right)=0$. This case is proved because $\sum_{i=1}^{p-1} \int_{y_{(i)}}^{a_{i}} K_{C}(s,[0, y]) d s=0$ by equation (4.3).
2.2. If $x_{(1)}>y_{(1)}$, then $C_{e, \alpha} *_{\mathcal{A}} C_{\alpha, e}(x, y)$, for $q>1$, is

$$
=\int_{0}^{y_{(1)}} \alpha^{\prime}(s) A_{\alpha(s)}\left(\beta_{p}, \beta_{q}\right) d s+\int_{y_{(1)}}^{x_{(1)}} \alpha^{\prime}(s) A_{\alpha(s)}\left(\beta_{p}, \beta_{q-1}\right) d s
$$

$$
\begin{aligned}
& +\int_{x_{(1)}}^{a_{1}} \alpha^{\prime}(s) A_{\alpha(s)}\left(\beta_{p-1}, \beta_{q-1}\right) d s \\
= & \int_{0}^{y_{(1)}} \sum_{i=1}^{p} \alpha_{i 1}^{\prime}(s) K_{C}\left(s_{(i)},\left[0, s_{(q)}\right]\right) d s+\int_{y_{(1)}}^{x_{(1)}} \sum_{i=1}^{p} \alpha_{i 1}^{\prime}(s) K_{C}\left(s_{(i)},\left[0, s_{(q-1)}\right]\right) d s \\
& +\int_{x_{(1)}}^{a_{1}} \sum_{i=1}^{p-1} \alpha_{i 1}^{\prime}(s) K_{C}\left(s_{(i)},\left[0, s_{(q-1)}\right]\right) d s \\
= & \int_{0}^{y_{(1)}} \sum_{i=1}^{p} \alpha_{i 1}^{\prime}(s) K_{C}\left(s_{(i)},[0, y]\right) d s+\int_{y_{(1)}}^{x_{(1)}} \sum_{i=1}^{p} \alpha_{i 1}^{\prime}(s) K_{C}\left(s_{(i)},[0, y]\right) d s \\
& +\int_{x_{(1)}}^{a_{1}} \sum_{i=1}^{p-1} \alpha_{i 1}^{\prime}(s) K_{C}\left(s_{(i)},[0, y]\right) d s \\
= & \sum_{i=1}^{p} \int_{a_{i-1}}^{y_{(i)}} K_{C}(s,[0, y]) d s+\sum_{i=1}^{p} \int_{y_{(i)}}^{x_{(i)}} K_{C}(s,[0, y]) d s+\sum_{i=1}^{p-1} \int_{x_{(i)}}^{a_{i}} K_{C}(s,[0, y]) d s .
\end{aligned}
$$

The third equality holds because, by Remark 4.1 and Lemma 4.4, $K_{C}\left(s,\left[0, s_{(q)}\right]\right)=$ $K_{C}(s,[0, y])$ for $s \in\left[0, y_{(1)}\right]$ and $K_{C}\left(s,\left[0, s_{(q-1)}\right]\right)=K_{C}(s,[0, y])$ for $s \in$ ($\left.y_{(1)}, a_{1}\right]$, and the last equality uses the change of variable $s_{(1)}=\alpha_{i 1}\left(s_{(1)}\right)$ $\left[=s_{(i)}\right]$.
Case $q=1$ is similar to case $q>1$ except for that $A_{\alpha(s)}\left(\beta_{p}, \beta_{0}\right)=0=$ $A_{\alpha(s)}\left(\beta_{p-1}, \beta_{0}\right)$. Using equation (4.3), we have $\sum_{i=1}^{p} \int_{y_{(i)}}^{x_{(i)}} K_{C}(s,[0, y]) d s=$ $0=\sum_{i=1}^{p-1} \int_{x_{(i)}}^{a_{i}} K_{C}(s,[0, y]) d s$ to complete this case.

Figure 4.4: The value of $\partial_{2} C_{e, \alpha}(x, \alpha(s))$ in subcase 2.1 (left) and 2.2 (right).
Case 3: $x \in I_{p}, y \in I_{n}$ where $1<p \leq n$.
3.1. If $x_{(1)} \leq y_{(1)}$, then $C_{e, \alpha} *_{\mathcal{A}} C_{\alpha, e}(x, y)$ is

$$
\begin{aligned}
= & \int_{0}^{x_{(1)}} \alpha^{\prime}(s) A_{\alpha(s)}\left(\beta_{p}, \beta_{n}\right) d s+\int_{x_{(1)}}^{y_{(1)}} \alpha^{\prime}(s) A_{\alpha(s)}\left(\beta_{p-1}, \beta_{n}\right) d s \\
& +\int_{y_{(1)}}^{a_{1}} \alpha^{\prime}(s) A_{\alpha(s)}\left(\beta_{p-1}, \beta_{n-1}\right) d s \\
= & \int_{0}^{x_{(1)}} \alpha^{\prime}(s) \sum_{i=1}^{p} \frac{1}{\alpha^{\prime}\left(s_{(i)}\right)} d s+\int_{x_{(1)}}^{y_{(1)}} \alpha^{\prime}(s) \sum_{i=1}^{p-1} \frac{1}{\alpha^{\prime}\left(s_{(i)}\right)} d s \\
& +\int_{y_{(1)}}^{a_{1}} \sum_{i=1}^{p-1} \alpha_{i 1}^{\prime}(s) K_{C}\left(s_{(i)},\left[0, s_{(n-1)}\right]\right) d s \\
= & \sum_{i=1}^{p} \int_{0}^{x_{(1)}} \frac{\alpha^{\prime}(s)}{\alpha^{\prime}(s(i))} d s+\sum_{i=1}^{p-1} \int_{x_{(1)}}^{y_{(1)}} \frac{\alpha^{\prime}(s)}{\alpha^{\prime}\left(s_{(i)}\right)} d s+\int_{y_{(1)}}^{a_{1}} \sum_{i=1}^{p-1} \alpha_{i 1}^{\prime}(s) K_{C}\left(s_{(i)},[0, y]\right) d s \\
= & \sum_{i=1}^{p} \int_{a_{i-1}}^{x_{(i)}} 1 d s+\sum_{i=1}^{p-1} \int_{x_{(i)}}^{y_{(i)}} 1 d s+\sum_{i=1}^{y_{i}-1} \int_{y_{(i)}}^{a_{i}} K_{C}\left(s,\left[0, s_{(n-1)}\right]\right) d s .
\end{aligned}
$$

The third equality holds because, by Remark 4.1 and Lemma 4.4, $K_{C}\left(s,\left[0, s_{(n-1)}\right]\right)=$ $K_{C}(s,[0, y])$ for $s \in\left(y_{(1)}, a_{1}\right]$, and the last equality uses the change of variable $s_{(1)}=\alpha_{i 1}\left(s_{(1)}\right)\left[=s_{(i)}\right]$. Note that $d \alpha_{i 1}\left(s_{(1)}\right)=\frac{\alpha^{\prime}(s)}{\alpha^{\prime}\left(s_{(i)}\right)} d s_{(1)}$.
3.2. If $x_{(1)}>y_{(1)}$, then $C_{e, \alpha} *_{\mathcal{A}} C_{\alpha, e}(x, y)$ is

$$
\begin{aligned}
= & \int_{0}^{y_{(1)}} \alpha^{\prime}(s) A_{\alpha(s)}\left(\beta_{p}, \beta_{n}\right) d s+\int_{y_{(1)}}^{x_{(1)}} \alpha^{\prime}(s) A_{\alpha(s)}\left(\beta_{p}, \beta_{n-1}\right) d s \\
& +\int_{x_{(1)}}^{a_{1}} \alpha^{\prime}(s) A_{\alpha(s)}\left(\beta_{p-1}, \beta_{n-1}\right) d s \\
= & \int_{0}^{y_{(1)}} \alpha^{\prime}(s) \sum_{i=1}^{p} \frac{1}{\alpha^{\prime}\left(s_{(i)}\right)} d s+\int_{y_{(1)}}^{x_{(1)}} \sum_{i=1}^{p} \alpha_{i 1}^{\prime}(s) K_{C}\left(s_{(i)},\left[0, s_{(n-1)}\right]\right) d s \\
& +\int_{x_{(1)}}^{a_{1}} \sum_{i=1}^{p-1} \alpha_{i 1}^{\prime}(s) K_{C}\left(s_{(i)},\left[0, s_{(n-1)}\right]\right) d s \\
= & \sum_{i=1}^{p} \int_{0}^{y_{(1)}} \frac{\alpha^{\prime}(s)}{\alpha^{\prime}\left(s_{(i)}\right)} d s+\int_{y_{(1)}}^{x_{(1)}} \sum_{i=1}^{p} \alpha_{i 1}^{\prime}(s) K_{C}\left(s_{(i)},[0, y]\right) d s \\
& +\int_{x_{(1)}}^{a_{1}} \sum_{i=1}^{p-1} \alpha_{i 1}^{\prime}(s) K_{C}\left(s_{(i)},[0, y]\right) d s \\
= & \sum_{i=1}^{p} \int_{a_{i-1}}^{y_{(i)}} 1 d s+\sum_{i=1}^{p} \int_{y_{(i)}}^{x_{(i)}} K_{C}(s,[0, y]) d s+\sum_{i=1}^{p-1} \int_{x_{(i)}}^{a_{i}} K_{C}(s,[0, y]) d s .
\end{aligned}
$$

The third equality holds because, by Remark 4.1 and Lemma 4.4, $K_{C}\left(s,\left[0, s_{(n-1)}\right]\right)=$ $K_{C}(s,[0, y])$ for $s \in\left(y_{(1)}, a_{1}\right]$, and the last equality uses the change of variable

$$
s_{(1)}=\alpha_{i 1}\left(s_{(1)}\right)\left[=s_{(i)}\right] \text {. Note that } d \alpha_{i 1}\left(s_{(1)}\right)=\frac{\alpha^{\prime}(s)}{\alpha^{\prime}\left(s_{(i)}\right)} d s_{(1)} .
$$

Figure 4.5: The value of $\partial_{2} C_{e, \alpha}(x, \alpha(s))$ in subcase 3.1 (left) and 3.2 (right).
Case 4: $x \in I_{n}, y \in I_{q}$ where $1 \leq q<n$.
4.1. If $x_{(1)} \leq y_{(1)}$, then $C_{e, \alpha} *_{\mathcal{A}} C_{\alpha, e}(x, y)$, for $q>1$, is

$$
\begin{aligned}
= & \int_{0}^{x_{(1)}} \alpha^{\prime}(s) A_{\alpha(s)}\left(\beta_{n}, \beta_{q}\right) d s+\int_{x_{(1)}}^{y_{(1)}} \alpha^{\prime}(s) A_{\alpha(s)}\left(\beta_{n-1}, \beta_{q}\right) d s \\
& +\int_{y_{(1)}}^{a_{1}} \alpha^{\prime}(s) A_{\alpha(s)}\left(\beta_{n-1}, \beta_{q-1}\right) d s \\
= & \int_{0}^{x_{(1)}} \alpha^{\prime}(s) \sum_{i=1}^{q} \frac{1}{\alpha^{\prime}\left(s_{(i)}\right)} d s+\int_{x_{(1)}}^{y_{(1)}} \sum_{i=1}^{n-1} \alpha_{i 1}^{\prime}(s) K_{C}\left(s_{(i)},\left[0, s_{(q)}\right]\right) d s \\
& +\int_{y_{(1)}}^{a_{1}} \sum_{i=1}^{n-1} \alpha_{i 1}^{\prime}(s) K_{C}\left(s_{(i)},\left[0, s_{(q-1)}\right]\right) d s \\
= & \int_{0}^{x_{(1)}} \alpha^{\prime}(s) \sum_{i=1}^{q} \frac{1}{\alpha^{\prime}\left(s_{(i)}\right)} d s+\int_{x_{(1)}}^{y_{(1)}} \sum_{i=1}^{n-1} \alpha_{i 1}^{\prime}(s) K_{C}\left(s_{(i)},[0, y]\right) d s \\
& +\int_{y_{(1)}}^{a_{1}} \sum_{i=1}^{n-1} \alpha_{i 1}^{\prime}(s) K_{C}\left(s_{(i)},[0, y]\right) d s \\
= & \int_{0}^{x_{(1)}} \alpha^{\prime}(s) \sum_{i=1}^{q} \frac{1}{\alpha^{\prime}\left(s_{(i)}\right)} d s+\sum_{i=1}^{n-1} \int_{x_{(i)}}^{y_{(i)}} K_{C}(s,[0, y]) d s+\sum_{i=1}^{n-1} \int_{y_{(i)}}^{a_{i}} K_{C}(s,[0, y]) d s .
\end{aligned}
$$

The third equality holds because, by Remark 4.1 and Lemma 4.4, $K_{C}\left(s,\left[0, s_{(q)}\right]\right)=$ $K_{C}(s,[0, y])$ for $s \in\left(x_{(1)}, y_{(1)}\right]$, and $K_{C}\left(s,\left[0, s_{(q-1)}\right]\right)=K_{C}(s,[0, y])$ for $s \in$ $\left(y_{(1)}, a_{1}\right]$ and the last equality uses the change of variable $s_{(1)}=\alpha_{i 1}\left(s_{(1)}\right)$ $\left[=s_{(i)}\right]$.

The first term in the last equality, by Lemma 4.2, becomes

$$
\int_{0}^{x_{(1)}} \alpha^{\prime}(s) \sum_{i=1}^{q} \frac{1}{\alpha^{\prime}\left(s_{(i)}\right)} d s=\int_{0}^{x_{(1)}} \alpha^{\prime}(s) \sum_{i=1}^{q}\left(\sum_{j=1}^{n} \frac{1}{\alpha^{\prime}\left(s_{(j)}\right)} \omega_{i}\left(s_{(j)}\right)\right) d s
$$

Using the change of variable $s_{(1)}=\alpha_{j 1}\left(s_{(1)}\right)\left[=s_{(j)}\right]$, we have

$$
\int_{0}^{x_{(1)}} \alpha^{\prime}(s) \sum_{i=1}^{q} \sum_{j=1}^{n} \frac{1}{\alpha^{\prime}\left(s_{(j)}\right)} \omega_{i}\left(s_{(j)}\right) d s=\sum_{j=1}^{n} \int_{a_{j-1}}^{x_{(j)}} \sum_{i=1}^{q} \omega_{i}(s) d s
$$

By equation (4.3),

$$
\sum_{j=1}^{n} \int_{a_{j-1}}^{x_{(j)}} \sum_{i=1}^{q} \omega_{i}(s) d s=\sum_{j=1}^{n} \int_{a_{j-1}}^{x_{(j)}} K_{C}(s,[0, y]) d s
$$

Case $q=1$ is similar to case $q>1$ except for that $A_{\alpha(s)}\left(\beta_{n-1}, \beta_{q-1}\right)=0$. Using equation (4.3), we have $\sum_{i=1}^{n-1} \int_{y_{(i)}}^{a_{i}} K_{C}(s,[0, y]) d s=0$. This completes the case.
4.2. If $x_{(1)}>y_{(1)}$, then $C_{e, \alpha} *_{\mathcal{A}} C_{\alpha, e}(x, y)$ is equal to

$$
\begin{aligned}
= & \int_{0}^{y_{(1)}} \alpha^{\prime}(s) A_{\alpha(s)}\left(\beta_{n}, \beta_{q}\right) d s+\int_{y_{(1)}}^{x_{(1)}} \alpha^{\prime}(s) A_{\alpha(s)}\left(\beta_{n}, \beta_{q-1}\right) d s \\
& +\int_{x_{(1)}}^{a_{1}} \alpha^{\prime}(s) A_{\alpha(s)}\left(\beta_{n-1}, \beta_{q-1}\right) d s \\
= & \int_{0}^{y_{(1)}} \alpha^{\prime}(s) \sum_{i=1}^{q} \frac{1}{\alpha^{\prime}\left(s_{(i)}\right.} d s+\int_{y_{(1)}}^{x_{(1)}} \alpha^{\prime}(s) \sum_{i=1}^{q-1} \frac{1}{\alpha^{\prime}\left(s_{(i)}\right)} d s \\
& +\int_{x_{(1)}}^{a_{1}} \sum_{i=1}^{n-1} \alpha_{i 1}^{\prime}(s) K_{C}\left(s_{(i)},\left[0, s_{(q-1)}\right]\right) d s \\
= & \int_{0}^{y_{(1)}} \alpha^{\prime}(s) \sum_{i=1}^{q} \frac{1}{\alpha^{\prime}\left(s_{(i)}\right)} d s+\int_{y_{(1)}}^{x_{(1)}} \alpha^{\prime}(s) \sum_{i=1}^{q-1} \frac{1}{\alpha^{\prime}\left(s_{(i)}\right)} d s \\
& +\int_{x_{(1)}}^{a_{1}} \sum_{i=1}^{n-1} \alpha_{i 1}^{\prime}(s) K_{C}\left(s_{(i)},[0, y]\right) d s \\
= & \int_{0}^{y_{(1)}} \alpha^{\prime}(s) \sum_{i=1}^{q} \frac{1}{\alpha^{\prime}\left(s_{(i)}\right)} d s+\int_{y_{(1)}}^{x_{(1)}} \alpha^{\prime}(s) \sum_{i=1}^{q-1} \frac{1}{\alpha^{\prime}\left(s_{(i)}\right)} d s+\sum_{i=1}^{n-1} \int_{x_{(i)}}^{a_{i}} K_{C}(s,[0, y]) d s .
\end{aligned}
$$

The third equality holds because, by Remark 4.1 and Lemma 4.4, $K_{C}\left(s,\left[0, s_{(q-1)}\right]\right)=$ $K_{C}(s,[0, y])$ for $s \in\left(y_{(1)}, a_{1}\right]$, and the last equality uses the change of variable $s_{(1)}=\alpha_{i 1}\left(s_{(1)}\right)\left[=s_{(i)}\right]$.

The first term in the last equality, by Lemma 4.2, becomes

$$
\int_{0}^{y_{(1)}} \alpha^{\prime}(s) \sum_{i=1}^{q} \frac{1}{\alpha^{\prime}\left(s_{(i)}\right)} d s=\int_{0}^{y_{(1)}} \alpha^{\prime}(s) \sum_{i=1}^{q}\left(\sum_{j=1}^{n} \frac{1}{\alpha^{\prime}\left(s_{(j)}\right)} \omega_{i}\left(s_{(j)}\right)\right) d s
$$

and

$$
\int_{y_{(1)}}^{x_{(1)}} \alpha^{\prime}(s) \sum_{i=1}^{q-1} \frac{1}{\alpha^{\prime}\left(s_{(i)}\right)} d s=\int_{y_{(1)}}^{x_{(1)}} \alpha^{\prime}(s) \sum_{i=1}^{q-1}\left(\sum_{j=1}^{n} \frac{1}{\alpha^{\prime}\left(s_{(j)}\right)} \omega_{i}\left(s_{(j)}\right)\right) d s
$$

Using the change of variable $s_{(1)}=\alpha_{j 1}\left(s_{(1)}\right)\left[=s_{(j)}\right]$, we have

$$
\int_{0}^{y_{(1)}} \alpha^{\prime}(s) \sum_{i=1}^{q} \sum_{j=1}^{n} \frac{1}{\alpha^{\prime}(s(j))} \omega_{i}\left(s_{(j)}\right) d s=\sum_{j=1}^{n} \int_{a_{j-1}}^{y_{(j)}} \sum_{i=1}^{q} \omega_{i}(s) d s
$$

and

$$
\int_{y_{(1)}}^{x_{(1)}} \alpha^{\prime}(s) \sum_{i=1}^{q-1} \sum_{j=1}^{n} \frac{1}{\alpha^{\prime}\left(s_{(j)}\right)} \omega_{i}\left(s_{(j)}\right) d s=\sum_{j=1}^{n} \int_{y_{(j)}}^{x_{(j)}} \sum_{i=1}^{q-1} \omega_{i}(s) d s
$$

By equation (4.3),

$$
\sum_{j=1}^{n} \int_{a_{j-1}}^{y_{(j)}} \sum_{i=1}^{q} \omega_{i}(s) d s=\sum_{j=1}^{n} \int_{a_{j-1}}^{y_{(j)}} K_{C}(s,[0, y]) d s
$$

and

$$
\sum_{j=1}^{n} \int_{y_{(j)}}^{x_{(j)}} \sum_{i=1}^{q-1} \omega_{i}(s) d s=\sum_{j=1}^{n} \int_{y_{(j)} \text { ลั่ }}^{x_{(j)}} K_{C}(s,[0, y]) d s
$$

Case $q=1$ is similar to case $q>1$ except for that $A_{\alpha(s)}\left(\beta_{n}, \beta_{q-1}\right)=0=$ $A_{\alpha(s)}\left(\beta_{n-1}, \beta_{q-1}\right)$. Using equation (4.3), we have $\sum_{i=1}^{n} \int_{y_{(i)}}^{x_{(i)}} K_{C}(s,[0, y]) d s=$ $0=\sum_{i=1}^{n-1} \int_{x_{(i)}}^{a_{i}} K_{C}(s,[0, y]) d s$.

Figure 4.6: The value of $\partial_{2} C_{e, \alpha}(x, \alpha(s))$ in subcase 4.1 (left) and 4.2 (right).

CHAPTER V CONCLUSION

5.1 Our results

We started out trying to characterize implicit dependence copulas and finally found a relationship between implicit dependence copulas and products of complete dependence copula.

In section 3.1, we show that generalized products of complete dependence copulas $C_{e, \Lambda_{\theta}}$ and $C_{\Lambda_{\theta}, \text { e }}$ are implicit dependence copulas of some random variables X and Y uniformly distributed on $[0,1]$ with $\Lambda_{\theta}(X)=\Lambda_{\theta}(Y)$ a.s. Vice versa, we factor some implicit dependence copula into a generalized product of complete dependence copulas, i.e., for every random variables X and Y uniformly distributed on $[0,1]$ with $\Lambda_{\theta}(X)=\Lambda_{\theta}(Y)$ a.s. and with copula $C_{X, Y}$, there exists a class of copulas \mathcal{A} such that $C_{X, Y}=C_{e \Lambda_{\theta}} *_{\mathcal{A}} C_{\Lambda_{\theta} e}$ (section 3.2). Moreover, in chapter IV, we generalize the result in section 3.2 from the function Λ_{θ} to the function α.

5.2 Further studies

Naturally, we conjecture that, for measure-preserving transformations f and g, C is the copula of implicitly dependent $\mathcal{U}(0,1)$-random variables X and Y with $f(X)=g(Y)$ a.s. if and only if $C=C_{e, f} *_{\mathcal{A}} C_{g, e}$ for some class of copulas $\mathcal{A}=\left\{A_{t}\right\}_{t \in[0,1]}$.

REFERENCES

[1] Andreas N. L.: Copulas for Markovian dependence, Bernoulli 16 (2), 331-342, 2010.
[2] Billingsley P.: Probability and Measure, 3rd edition, John Wiley and Sons, 1986.
[3] Darsow W. F., Nguyen B., Olsen E.T.: Copulas and Markov processes, Illinois J. Math. 36, no. 4, 600-642, 1992.
[4] Darsow W. F., Olsen E. T.: A representation for doubly stochastic measures, IIT Research Report, 1993.
[5] Darsow W. F., Olsen E. T.: Norms for copulas, International Journal of Mathematics and Mathematical Sciences 18.3, 417-436, 1995.
[6] de Amo E., Díaz Carrillo M., Fernández-Sánchez J.: Measure-Preserving Functions and the Independence Copula. Mediterr. J. Math. 8, 431-450, 2011.
[7] Dudley R. M.: Real Analysis and Probability, 2nd edition, Cambridge University Press, 2002.
[8] Durante F., Klement E.P., Quesada-Molina J.J.: Bounds for Trivariate Copulas with Given Bivariate Marginals. J Inequal Appl 2008, 161537, 2008.
[9] Durante F., Sempi C.: Principles of Copula Theory, 1st ed., Chapman and Hall/CRC, New York, 2015.
[10] Kallenberg O.: Foundations of modern probability, Springer, New York, 1997.
[11] Kechris A.S.: Classical Descriptive Set Theory, Springer, New York, 1995.
[12] Klenke A.: Probability theory. A comprehensive course., 2nd edition, Springer, Berlin/Heidelberg, 2014.
[13] Nelsen R. B.: An introduction to copulas, 2nd edition, Springer Science+Business Media, New York, 2006.
[14] Nguyen B., Darsow W. F., Olsen E. T.: Copulas and Markov operators, Illinois Institute of Technology 28, 244-259, 1996.
[15] Puccetti G., Scarsini M.: Multivariate comonotonicity, J. Multivariate Anal. 101, 291-304, 2010.
[16] Robert B. Ash, Catherine A. Doléance-Dade: Probability and Measure Theory, 2nd ed., Academic Press, 2000.
[17] Ruankong P., Sumetkijakan S.: On a generalized *-product for copulas, Proceedings of the Annual Pure and Applied Mathematics Conference, Chulalongkorn University, Thailand, 13-21, 2011.
[18] Rudin W.: Principles of Mathematical Analysis. 3rd Edition, McGraw-Hill, New York, 1976.
[19] Shan Q., Wongyang T., Wang T., Tasena S.: A measure of mutual complete dependence in discrete variables through subcopula, International Journal of Approximate Reasoning 65, 11-23, 2015.
[20] Siburg K.F., Stoimenov P.A.: A measure of mutual complete dependence, Metrika 71, 239-251, 2010.
[21] Trutschnig W.: Complete dependence everywhere?. In: Úbeda Flores M., de Amo Artero E., Durante F., Fernández Sánchez J. (eds) Copulas and Dependence Models with Applications. Springer, Cham, 2017.

VITA

Name	$:$ Mister Peerapong Panyasakulwong
Date of Birth	$: 3$ July 1997
Place of Birth	$:$ Bangkok, Thailand
Education	$:$B.Sc. (Mathematics), (First Class Honors), Scholarship
	$:$The His Royal Highness Crown Prince Maha Vajiralongkorn Scholarship

