TETRABROMOMETHANE-MEDIATED DESULFURIZATION FOR SYNTHESIS OF ISOTHIOCYANATES FROM AMINES

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemistry Department of Chemistry FACULTY OF SCIENCE Chulalongkorn University Academic Year 2020 Copyright of Chulalongkorn University

การใช้สารเตตระโบรโมมีเทนเปนตัวกลางในการกาจัดซัลเฟอรสาหรับการสังเคราะหไอโซไทโอไซยา เนตจากเอมีน

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2563 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	TETRABROMOMETHANE-MEDIATED DESULFURIZATION
	FOR SYNTHESIS OF ISOTHIOCYANATES FROM AMINES
Ву	Mr. Saharat Techapanalai
Field of Study	Chemistry
Thesis Advisor	Professor SUMRIT WACHARASINDHU, Ph.D.
Thesis Co Advisor	Professor MONGKOL SUKWATTANASINITT, Ph.D.

Accepted by the FACULTY OF SCIENCE, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master of Science

Dean of the FACULTY OF SCIENCE

(Professor POLKIT SANGVANICH, Ph.D.)

THESIS COMMITTEE

..... Chairman

(Professor VUDHICHAI PARASUK, Ph.D.)

(Professor SUMRIT WACHARASINDHU, Ph.D.)

(Professor MONGKOL SUKWATTANASINITT, Ph.D.)

(Professor PREECHA PHUWAPRAISIRISAN, Ph.D.)

External Examiner

(Khomson Suttisintong, Ph.D.)

สหรัฐ เตชะพนาลัย : การใช้สารเตตระโบรโมมีเทนเปนตัวกลางในการกาจัดซัลเฟอรสาหรับการ สังเคราะหไอโซไทโอไซยาเนตจากเอมีน. (TETRABROMOMETHANE-MEDIATED DESULFURIZATION FOR SYNTHESIS OF ISOTHIOCYANATES FROM AMINES) อ.ที่ปรึกษา หลัก : ศ. ดร.สัมฤทธิ์ วัชรสินธุ์, อ.ที่ปรึกษาร่วม : ศ. ดร.มงคล สุขวัฒนาสินิทธิ์

ไอโซไทโอไซยาเนตถือเป็นส่วนประกอบสำคัญสำหรับอุตสาหกรรมยา โดยวิธีดั้งเดิมในการเตรียมไอโซ ไทโอไซยาเนตเกี่ยวข้องกับการกำจัดซัลเฟอร์ของเกลือไดไทโอคาร์บาเมตจากเอมีนโดยใช้ตัวออกซิไดซ์ ถึงแม้ว่า ้วิธีการเหล่านั้นจะมีประสิทธิภาพ แต่อย่างไรก็ตามทุกวิธีจำเป็นต้องใช้รีเอเจนต์ที่เป็นพิษ ตัวออกซิไดซ์ที่แรง การ ้สังเคราะห์หลายขั้นตอน สภาวะที่รุนแรง และโลหะเป็นตัวเร่งปฏิกิริยาในปริมาณที่มาก ดังนั้นในงานวิจัยนี้เราจึง พัฒนา 2 วิธีการสังเคราะห์ที่ไม่รุนแรงสำหรับไอโซไทโอไซยาเนตจากเอมีนโดยใช้รีเอเจนต์ที่เป็นพิษต่ำ สำหรับ กระบวนการแรก เราสามารถแสดงการใช้ซาฟารินโอ เป็นตัวเร่งปฏิกิริยาเชิงแสงเพื่อเปลี่ยนเกลือไดไทโอคาร์ บาเมตของ 4-โบรโมอนิลีนเป็น 4-โบรโมฟีนิลไอโซไทโอไซยาเนต โดยได้ผลผลิต 48% ในหม้อเดียวภายใต้การ ฉายแสงสีขาว สำหรับกระบวนการที่สอง คาร์บอนเตตระโบรไมด์ที่เป็นสารในเชิงพาณิชย์และเป็นพิษต่ำถูกใช้ใน กระบวนการกำจัดซัลเฟอร์ จากการตรวจสอบการเพิ่มประสิทธิภาพพบว่าการใช้สมมูล 1.5 ของคาร์บอนเตตระ โบรไมด์ในการมีอยู่ 3.0 ที่สมมูลของ 1,8-ไดเอโซไบไซโคล อันเดค-7-อีน เป็นเบสในตัวทำละลายอะซิโตไนไทรล์ ให้สภาวะที่เหมาะสมที่สุด โดยภายใต้สภาวะนี้ เราสามารถสังเคราะห์ไอโซไทโอไซยาเนตได้ 32 ตัวอย่างโดยให้ ผลผลิตปานกลางถึงดีเยี่ยม นอกจากนี้เราสามรรถขยายวิธีการนี้เพื่อเตรียมไทโอยูเรียที่ไม่สมมาตรผ่านการ ้สังเคราะห์ไอโซไทโอไซยาเนตในแหล่งกำเนิดในหม้อเดียว การสังเคราะห์ไอโซไทโอไซยาเนตและไทโอยูเรียที่ไม่ สมมาตรที่พัฒนาขึ้นนั้นสามารถปรับขนาดเป็นหนึ่งกรัมให้ผลผลิตดี จากการศึกษากลไกพบว่าโบรโมฟอร์ และซัลเฟอร์ที่ตรวจพบโดย นิวเคลียส แม็กเนติก เรโซแนน (NMR) และ สแกนนึ่ง อิเลกตรอน ไมโครสโคป/ เอ็กซเรย์ สเปกโทรสโกปี (SEM/EDX) หลักฐานนี้ให้กลไกที่เสนอแนะว่า คาร์บอนเตตระโบรไมด์ทำหน้าที่เป็นอิ เล็กโตรไฟล์เพื่อกระตุ้นการกำจัดซัลเฟอร์ ประโยชน์ของปฏิกิริยานี้ประกอบด้วย การสังเคราะห์แบบหม้อเดียว ใช้ สภาพปฏิกิริยาแบบอากาศเปิด และสารกำจัดซัลเฟอร์ที่เป็นพิษต่ำ

Chulalongkorn University

สาขาวิชา เคมี ปีการศึกษา 2563

ลายมือชื่อ	นิสิต
ลายมือชื่อ	อ.ที่ปรึกษาหลัก
ลายมือชื่อ	อ.ที่ปรึกษาร่วม

6172189623 : MAJOR CHEMISTRY

KEYWORD:

Isothiocyanate Unsymmetric thiourea Desulfurization Photocatalyst Carbon tetrabromide

Saharat Techapanalai : TETRABROMOMETHANE-MEDIATED DESULFURIZATION FOR SYNTHESIS OF ISOTHIOCYANATES FROM AMINES. Advisor: Prof. SUMRIT WACHARASINDHU, Ph.D. Co-advisor: Prof. MONGKOL SUKWATTANASINITT, Ph.D.

Isothiocyanate considered as an important building block for pharmaceutical industry. Traditional methods for preparation of isothiocyanate involved the desulfurization of dithiocarbamate salt from amine using oxidizing agent. Although those methods are efficient, however, all of them require the use of toxic reagent, strong oxidizing agent, multiple step synthesis, harsh condition and large amount of metal catalyst. Therefore, in this research, we develop two mild methods to synthesize isothiocyanates from amines using low toxic reagent. For the first process, we were able to demonstrate the use of photocatalyst, safranin O to convert dithiocarbamate salt of 4-bromoaniline into 4-brophenyl isothiocyanate in 48% yield in one-pot under white LED irradiation. For the second process, commercially and low toxic CBr₄ was used for desulfurization process. Based on our optimize investigation, we found that the use of CBr_4 1.5 equivalences in the presence of 3.0 equivalences of DBU as base in acetonitrile give the optimized condition. Under this condition, we were able to synthesize 32 examples of isothiocyanates in moderate to excellent yields. Moreover, we were able to extend this methodology to prepare unsymmetrical thioureas via the in situ generation of isothiocyanate in one-pot. The synthesis of isothiocyanates and unsymmetrical thioureas were able to prepare a one-gram scale in good yields. The mechanistic study revealed that CHBr₃ and sulfur were detected by NMR and SEM/EDX. This evidence suggests that CBr₄ act as an electrophile to induce the desulfurization process. The benefit of this reaction includes one-pot synthesis, open air condition and low toxic desulfurizing agent.

Field of Study:ChemistryAcademic Year:2020

Student's Signature Advisor's Signature Co-advisor's Signature

ACKNOWLEDGEMENTS

First of all, I would like to express my deep gratitude to my advisor, Professor Dr. Sumrit Wacharasindhu and my co-advisor, Professor Dr. Mongkol Sukwattanasinitt, for their generous advice, invaluable guidance and encouragement throughout the course of this research.

I would like to gratefully acknowledge the committee, Professor Dr. Vudhichai Parasuk, Professor Dr. Preecha Phuwapraisirisan and Dr. khomson suttisintong, for their comments, guidance, and extending cooperation over my presentation.

Especially, I would like to thank my financial support from Center of excellence on Petrochemical and Materials Technology (PETROMAT), National Nanotechnology Center (NANOTEC) and Nation Research Council of Thailand (NRCT).

Saharat Techapanalai

TABLE OF CONTENTS

	Page
	iii
ABSTRACT (THAI)	iii
	iv
ABSTRACT (ENGLISH)	iv
ACKNOWLEDGEMENTS	V
TABLE OF CONTENTS	vi
LIST OF SCHEMES	1
LIST OF TABLES	3
LIST OF FIGURES	4
LIST OF PICTURES	10
LIST OF ABBREVIATIONS	11
1.1 Overview	13
1.2 Introduction to isothiocyanate	13
1.3 Reviews on synthesis of isothiocyanates	14
1.3.1 Synthesis of isothiocyanates from amine	18
1.3.1.1 Reviews on thiocarbonylation transfer reagents	18
1.3.1.2 Reviews on oxidative desulfurization	19
1.3.1.2.1 Reviews on non-metal oxidative desulfurization (Table 1.1)	19
1.3.1.2.2 Review on metal catalyst as an oxidizing agent (Table 1.2)	23
1.4 Introduction to Carbon tetrabromide	24
1.4.1 Reviews for carbon tetrabromide with organosulfur	24

1.4.2 Reviews for carbon tetrabromide with Vilsmeier-Haack reagent	26
1.5 Objective of this research	28
CHAPTER II EXPRIMENTAL	30
2.1 Chemical reagents, equipment and instrument for synthesis and	30
Characterization	30
2.2 General procedure for synthesis of isothiocyanate via light mediated Vilsme Haack reagent	eier- 30
2.2.1 General procedure for synthesis of isothiocyanate from amines (1a) un visible light source	nder 30
2.2.2 General procedure for synthesis of isothiocyanate from amines (1a) un ultraviolet light source	nder 31
2.3 General procedure for synthesis of isothiocyanate using photocatalysts	32
2.4 General procedure for synthesis of isothiocyanates and unsymmetric thiour using carbon tetrabromide	eas 32
2.4.1 Reaction optimization	32
2.5 The substrate scopes of isothiocyanates and unsymmetric thioureas	33
2.5.2 General experiment procedure B: unsymmetric thioureas 3a – 3i	33
2.5.3 Synthesis of isothiocyanate derivatives	33
2.5.4 Synthesis derivatives of unsymmetric thiourea	46
2.5.5 Gram-scale synthesis	51
2.5.5.1 Gram-scale synthesis of isothiocyanate	51
2.5.5.1 Gram-scale synthesis of unsymmetric thiourea	51
CHAPTER III RESULT & DISCCUSION	52
3.1 Synthesis of isothiocyanate via light mediated Vilsmeier-Haack reagent	52

3.1.1 Effect of light sources for desulfurization via Vilsmeier-Haack reagent	. 53
3.2 Synthesis of isthiocyanate using photocatalysts	. 57
3.2.1 Photocatalyst and light sources screening	. 58
3.3 Synthesis of isthiocyanate by using carbon tetrabromide	. 60
3.2.1 Optimized condition	. 60
3.2.1.1 Solvent screening ^a	. 61
3.2.1.2 Base Screening ^a	. 62
3.2.1.3 Amount of CS_2 and CBr_4^a	. 63
3.2.2 Substrate scope of amines	. 64
3.2.2.1 Aromatic amines carrying halogen groups ^a	. 64
3.2.2.2 Aromatic amines carrying electron donating groups ^a	. 65
3.2.2.3 Aromatic amine carrying electron withdrawing groups ^a	. 66
3.2.2.4 Benzylamines scope ^a	. 67
3.2.2.5 Aliphatic amines scope ^a	. 67
3.2.2.6 Hetero and homocyclic amines scope ^a	68
3.2.2.7 Amino phenols and its derivatives scope ^a	69
3.2.3 Substrate scopes for unsymmetric thiourea	70
3.2.4 Gram-scale synthesis of isothiocyanate and unsymmetric thiourea	71
3.2.5 By-product detection by SEM/EDX	72
3.2.6 Proposed mechanism	73
CHAPTER IV CONCLUSION	75
REFERENCES	77
APPENDIX	84
VITA	149

LIST OF SCHEMES

Scheme 1.1 Synthesis of isothiocyanate using carbontetrabromide	13
Scheme 1.2 A various substrate for synthesis of isothiocyanates	. 15
Scheme 1.3 Synthesis of isothiocyanate from isocyanide	. 15
Scheme 1.4 Synthesis of isothiocyanate from amide	. 15
Scheme 1.5 Synthesis of isothiocyanate from aldoxime	. 16
Scheme 1.6 Synthesis of isothiocyanate from iminophosphorane	. 16
Scheme 1.7 Synthesis of isothiocyanate from phosphoramidate	. 17
Scheme 1.8 Synthesis of isothiocyanate from isocyanate	. 17
Scheme 1.9 Synthesis of isothiocyanate from formamide	. 17
Scheme 1.10 Two strategies for the synthesis of isothiocyanates from amine	. 18
Scheme 1.11 The thiocarbonylation of amine with various thiocarbonyl transfer	
reagent	. 19
Scheme 1.12 Desulfurization of dithiocarbamate salt with desulfurizing agent	. 19
Scheme 1.13 Acetylation using CBr4 as a catalyst	. 24
Scheme 1.14 Synthesis of dithiocarbamates (3') using CBr ₄	. 25
Scheme 1.15 Synthesis of 2-aminobenzothiazole using CBr ₄	. 25
Scheme 1.16 Synthesis of symmetric thioureas and thiuram disulfides using CBr_4	. 26
Scheme 1.17 The comparison of a) traditional and b)new Vilsmeier-Haack reagent	. 27
Scheme 1.18 Light-mediated Vilsmeier-Haack reagent for synthesis of organic	
compounds	. 28
Scheme 1.19 Synthesis plan of isothiocyanate from amines in our research	. 29
Scheme 3.1 Synthesis of isothiocyanate via desulfurization process	52
Scheme 3.2 The study for synthesis of isothiocyanate from 4-bromoaniline	. 53
	ГO

Scheme 3.4 Synthesis of isothiocyanate using photocatalyst	58
Scheme 3.5 Synthesis of isothiocyanate using CBr ₄	60
Scheme 3.6 The optimized condition with various parameters	60
Scheme 3.7 Aromatic amines carrying halogen groups	65
Scheme 3.8 Aromatic amines carrying electron donating groups. Error! Bookmark defined.	not
Scheme 3.9 Aromatic amine carrying electron withdrawing groups Error! Bookn	nark

Scheme 3.9 Aromatic amine carrying electron withdrawing groups Error! Bookmark not defined.

Scheme 3.10 Benzylamines scope	67
Scheme 3.11 Aliphatic amines scope	Error! Bookmark not defined.
Scheme 3.12 Hetero and homocyclic amines scope	Error! Bookmark not defined.
Scheme 3.13 Amino phenols and its derivatives scope	Error! Bookmark not defined.
Scheme 3.14 Unsymmetric thioureas scope	Error! Bookmark not defined.
Scheme 3.15 Gram-scale synthesis	Error! Bookmark not defined.
Scheme 3.16 By-product detection	Error! Bookmark not defined.
Scheme 3.17 Proposed mechanism	
Scheme 4.1 Synthesis of isothiocyanate using 1) photo	ocatalyst 2) CBr ₄ mediator76

LIST OF TABLES

Table 1.1 Review on non-metal oxidative desulfurization	21
Table 1.2 Review on metal catalyst as an oxidizing agent	23
Table 3.1 light source screening	. 54
Table 3.2 Effect of light and DMF	. 56
Table 3.3 Photocatalysts and light sources screening	59
Table 3.4 Effect of solvent type	. 61
Table 3.5 Effect of Base	62
Table 3.6 The amount of CS ₂ and CBr ₄	. 64

CHULALONGKORN UNIVERSITY

LIST OF FIGURES

Figure 1.1 Natural and bioactive compounds of isothiocyanates	14
Figure 1.2 The example of sulfur-containing heterocyclic compounds from	
isothiocyanates	14
Figure 3.1 Comparison ¹ HNMR spectrum from irradiation of isothiocyanate using L	JV
254 nm and UV 365 nm light source	55
Figure A1 ¹ H-NMR spectrum of 2a (CDCl ₃ , 500 MHz)	85
Figure A2 ¹³ C-NMR spectrum of 2a (CDCl ₃ , 125 MHz)	85
Figure A3 ¹ H-NMR spectrum of 2b (CDCl ₃ , 500 MHz)	86
Figure A4 ¹³ C-NMR spectrum of 2b (CDCl ₃ , 125 MHz)	86
Figure A5 ¹⁹ F-NMR spectrum of 2b (CDCl ₃ , 470 MHz)	87
Figure A6 ¹ H-NMR spectrum of 2c (CDCl ₃ , 500 MHz)	88
Figure A7 ¹³ C-NMR spectrum of 2c (CDCl ₃ , 125 MHz)	88
Figure A8 ¹ H-NMR spectrum of 2d (CDCl ₃ , 500 MHz)	89
Figure A9 ¹³ C-NMR spectrum of 2d (CDCl ₃ , 125 MHz)	89
Figure A10 ¹ H-NMR spectrum of 2e (CDCl ₃ , 500 MHz)	90
Figure A11 ¹³ C-NMR spectrum of 2e (CDCl ₃ , 125 MHz)	90
Figure A12 ¹ H-NMR spectrum of 2f (CDCl ₃ , 500 MHz)	91
Figure A13 ¹³ C-NMR spectrum of 2f (CDCl ₃ , 125 MHz)	91
Figure A14 ¹ H-NMR spectrum of 2g (CDCl ₃ , 500 MHz)	92
Figure A15 ¹³ C-NMR spectrum of 2g (CDCl ₃ , 125 MHz)	92
Figure A16 ¹ H-NMR spectrum of 2h (CDCl ₃ , 500 MHz)	93
Figure A17 ¹³ C-NMR spectrum of 2h (CDCl ₃ , 125 MHz)	93
Figure A18 ¹ H-NMR spectrum of 2i (CDCl ₃ , 500 MHz)	94
Figure A19 ¹³ C-NMR spectrum of 2i (CDCl ₃ , 125 MHz)	94

Figure A20 ¹ H-NMR spectrum of 2j (CDCl ₃ , 500 MHz)	
Figure A21 ¹³ C-NMR spectrum of 2j (CDCl ₃ , 125 MHz)	
Figure A22 ¹ H-NMR spectrum of 2k (CDCl ₃ , 500 MHz)	
Figure A23 ¹³ C-NMR spectrum of 2k (CDCl ₃ , 125 MHz)	
Figure A24 ¹⁹ F-NMR spectrum of 2k (CDCl ₃ , 470 MHz)	
Figure A25 ¹ H-NMR spectrum of 2l (CDCl ₃ , 500 MHz)	
Figure A26 ¹³ C-NMR spectrum of 2l (CDCl ₃ , 125 MHz)	
Figure A27 ¹ H-NMR spectrum of 2m (CDCl ₃ , 500 MHz)	
Figure A28 ¹³ C-NMR spectrum of 2m (CDCl ₃ , 125 MHz)	
Figure A29 ¹ H-NMR spectrum of 2n (CDCl ₃ , 500 MHz)	
Figure A30 ¹³ C-NMR spectrum of 2n (CDCl ₃ , 125 MHz)	
Figure A31 ¹ H-NMR spectrum of 20 (CDCl ₃ , 500 MHz)	
Figure A32 ¹³ C-NMR spectrum of 20 (CDCl ₃ , 125 MHz)	
Figure A33 ¹ H-NMR spectrum of 2p (CDCl ₃ , 500 MHz)	
Figure A34 ¹³ C-NMR spectrum of 2p (CDCl ₃ , 125 MHz)	
Figure A35 ¹ H-NMR spectrum of 2q (CDCl ₃ , 500 MHz)	
Figure A36 ¹³ C-NMR spectrum of 2q (CDCl ₃ , 125 MHz)	
Figure A37 ¹ H-NMR spectrum of 2r (CDCl ₃ , 500 MHz)	
Figure A38 ¹³ C-NMR spectrum of 2r (CDCl ₃ , 125 MHz)	
Figure A39 ¹ H-NMR spectrum of 2s (CDCl ₃ , 500 MHz)	
Figure A40 ¹³ C-NMR spectrum of 2s (CDCl ₃ , 125 MHz)	
Figure A41 ¹ H-NMR spectrum of 2t (CDCl ₃ , 500 MHz)	
Figure A42 ¹³ C-NMR spectrum of 2t (CDCl ₃ , 125 MHz)	
Figure A43 ¹ H-NMR spectrum of 2u (CDCl ₃ , 500 MHz)	

Figure A44 ¹³ C-NMR spectrum of 2u (CDCl ₃ , 125 MHz)	107
Figure A45 ¹ H-NMR spectrum of 2v (CDCl ₃ , 500 MHz)	108
Figure A46 13 C-NMR spectrum of $2v$ (CDCl ₃ , 125 MHz)	108
Figure A47 ¹ H-NMR spectrum of 2w (DMSO-d6, 500 MHz)	109
Figure A48 ¹ H-NMR spectrum of 2w (DMSO-d6, 500 MHz)	109
Figure A49 ¹ H-NMR spectrum of 2x (CDCl ₃ 500 MHz)	110
Figure A50 ¹³ C-NMR spectrum of 2x (CDCl ₃ , 125 MHz)	110
Figure A51 ¹ H-NMR spectrum of 2y (CDCl ₃ , 500 MHz)	111
Figure A52 ¹³ C-NMR spectrum of 2y (CDCl ₃ , 125 MHz)	111
Figure A53 ¹ H-NMR spectrum of 2z (CDCl ₃ , 500 MHz)	112
Figure A54 ¹³ C-NMR spectrum of 2z (CDCl ₃ , 125 MHz)	112
Figure A55 ¹ H-NMR spectrum of 2aa (CDCl ₃ 500 MHz)	113
Figure A56 ¹³ C-NMR spectrum of 2aa (CDCl ₃ , 125 MHz)	113
Figure A57 ¹ H-NMR spectrum of 2bb (DMSO-d6 500 MHz)	114
Figure A58 ¹³ C-NMR spectrum of 2bb (DMSO, 125 MHz)	114
Figure A 59 ¹ H-NMR spectrum of 2cc (DMSO-d6 500 MHz)	115
Figure A60 ¹³ C-NMR spectrum of 2cc (DMSO, 125 MHz)	115
Figure A61 ¹ H-NMR spectrum of 2dd (DMSO-d6 500 MHz)	116
Figure A62 ¹³ C-NMR spectrum of 2dd (DMSO, 125 MHz)	116
Figure A63 ¹ H-NMR spectrum of 2ee (CDCl ₃ , 500 MHz)	117
Figure A64 ¹³ C-NMR spectrum of 2ee (CDCl ₃ , 125 MHz)	117
Figure A65 ¹ H-NMR spectrum of 2ff (CDCl ₃ , 500 MHz)	118
Figure A66 ¹³ C-NMR spectrum of 2ff (CDCl ₃ , 125 MHz)	118
Figure A67 ¹ H-NMR spectrum of 3a (CDCl ₃ , 500 MHz)	119

Figure A68 ¹³ C-NMR spectrum of 3a (CDCl ₃ , 125 MHz)	119
Figure A69 ¹ H-NMR spectrum of 3b (DMSO-d6 500 MHz)	120
Figure A70 ¹³ C-NMR spectrum of 3b (DMSO-d6, 125 MHz)	120
Figure A71 ¹ H-NMR spectrum of 3c (DMSO-d6 500 MHz)	121
Figure A72 ¹³ C-NMR spectrum of 3c (DMSO-d6, 125 MHz)	121
Figure A73 ¹ H-NMR spectrum of 3d (DMSO-d6 500 MHz)	122
Figure A74 ¹³ C-NMR spectrum of 3d (DMSO-d6, 125 MHz)	122
Figure A75 ¹ H-NMR spectrum of 3e (CDCl ₃ , 500 MHz)	123
Figure A76 ¹³ C-NMR spectrum of 3e (CDCl ₃ , 125 MHz)	123
Figure A77 ¹ H-NMR spectrum of 3g (CDCl ₃ , 500 MHz)	125
Figure A78 ¹³ C-NMR spectrum of 3g (CDCl ₃ , 500 MHz)	125
Figure A79 ¹ H-NMR spectrum of 3h (CDCl ₃ , 500 MHz)	126
Figure A80 ¹³ C-NMR spectrum of 3h (CDCl ₃ , 500 MHz)	126
Figure A81 ¹ H-NMR spectrum of 3i (CDCl ₃ , 500 MHz)	127
Figure A82 ¹³ C-NMR spectrum of 3i (CDCl ₃ , 500 MHz)	127
Figure A83 GC/MS spectrum of 2a	128
Figure A84 GC/MS spectrum of 2b	128
Figure A85 GC/MS spectrum of 2c	128
Figure A86 GC/MS spectrum of 2d	129
Figure A 87 GC/MS spectrum of 2e	129
Figure A88 GC/MS spectrum of 2f	129
Figure A89 GC/MS spectrum of 2h	130
Figure A 90 GC/MS spectrum of 2i	130
Figure A91 GC/MS spectrum of 2j	130

Figure A92 GC/MS spectrum of 2k	131
Figure A93 GC/MS spectrum of 21	131
Figure A94 GC/MS spectrum of 2m	131
Figure A95 GC/MS spectrum of 2n	132
Figure A96 GC/MS spectrum of 20	132
Figure A97 GC/MS spectrum of 2p	132
Figure A98 GC/MS spectrum of 2q	133
Figure A99 GC/MS spectrum of 2r.	133
Figure A100 GC/MS spectrum of 2s	133
Figure A101 GC/MS spectrum of 2u	134
Figure A102 GC/MS spectrum of 2w	134
Figure A103 GC/MS spectrum of 2x	135
Figure A104 GC/MS spectrum of 2y	135
Figure A105 GC/MS spectrum of 2z	135
Figure A106 GC/MS spectrum of 2aa	136
Figure A107 GC/MS spectrum of 2bb	136
Figure A108 GC/MS spectrum of 2cc	136
Figure A109 HRMS spectrum of 2dd	137
Figure A110 GC/MS spectrum of 2ee	138
Figure A111 HRMS spectrum of 2ff	139
Figure A112 HRMS spectrum of 3a	140
Figure A113 HRMS spectrum of 3b	141
Figure A114 HRMS spectrum of 3c	142
Figure A115 HRMS spectrum of 3d	143

Figure A116 HRMS spectrum of 3e	144
Figure A117 HRMS spectrum of 3f	145
Figure A118 HRMS spectrum of 3g	146
Figure A119 HRMS spectrum of 3h	147
Figure A120 HRMS spectrum of 3i	148

Chulalongkorn University

LIST OF PICTURES

Picture 3.1 Our photoreactor in this study A,B) Visible light. C,D) Ultraviolet light .	53
Picture 3.2 SEM-EDX results from by-product detection	73

LIST OF ABBREVIATIONS

¹ H-NMR	proton nuclear magnetic resonance
13C-NMR	carbon nuclear magnetic resonance
19F-NMR	fluorine nuclear magnetic resonance
CDCl ₃	deuterated chloroform solvent
DMSO-d6	deuterated dimethyl sulfoxide solvent
CH ₃ CN	acetonitrile
EtOAc	ethyl acetate
EtOH	ethanol
<i>i</i> -PrOH	isopropanol
DMSO	dimethyl sulfoxide
CH ₂ Cl ₂	dichloromethane
DMF	N, N-dimethyl formamide
THF	tetrahydrofuran
DMAP	dimethyl aminopyridine
DBU	1,8-dizabicyclo undec-7-ene
Et ₃ N	triethylamine
DABCO	1,4-diazabicyclo octane
DIPEA	diisopropyl ethylamine
K ₂ CO ₃	potassium carbonate
Cs ₂ CO ₃	cesium carbonate
NaOAc	sodium acetate
NaHCO ₃	sodium carbonate
КОН	potassium hydroxide
Ru(bpy) ₂ Cl ₂	cis-dichlorobis(bipyridine)ruthenium (II)
Eosin Y	disodium 2- (2,4,5,7-tetrabromo-3-oxido-6-oxoxanthen-
	9- yl)benzoate
Roes Bengal	4,5,6,7-Tetrachloro-3´,6´-dihydroxy-2´,4´,5´,7´-tetraiodo-3
	H -spiro [[2]benzofuran-1,9´-xanthen]-3-one

Safranin O	3,7-diamino-5-phenylphenazin-5-ium
	Pyrene benzo(d,e,f)phenanthrene
mmol	millimole
mL	milliliter
nm	nanometer
GC-MS	gas chromatography mass spectrometer
HRMS	high resolution mass spectroscopy
ppm	part per million
cm	centimeter (s)
S	singlet (NMR)
d	doublet (NMR)
dd	doublet of doublet (NMR)
Hz	hertz
h	hour (s)
min	minute
j	coupling constant
m	miltiplet (NMR)
mg	milligram
m/s	mass per charge
TLC 🤉	thin layer chromatography
% yield CHUL	percentage yield
ee	enantiomeric excess
°C	degree Celsius
LED	light emitting diode
UV	ultraviolet

CHAPTER I

INTRODUCTION

1.1 Overview

Isothiocyanates are important building block for construction sulfur-containing heterocyclic compounds. They are found in various applications such as pharmaceuticals, natural products and organic materials. Traditionally, isothiocyanates were prepared from direct thiocarbonylation between amine with various thiocarbonyl transfer reagents. However, the reaction required anhydrous solvent, strong exothermic and required the use of toxic reagent. In recent years, the oxidative desulfurization between amine and carbon disulfide to deliver isothiocyanate has been tremendously studied due to their benefit such as high atom economy and ease of practical operation. However, such method involves the use of heavy metals and strong oxidizing agents. Therefore, the safe and efficient method for preparation of isothiocyanate is still challenged. In this work, we replace the toxic oxidizing agent into carbon tetrabromide which is a commercially available, cheap and less hazardous reagent to prepare isothiocyanate from amines as shown in scheme 1.1.

Scheme 1.1 Synthesis of isothiocyanate using carbon tetrabromide.

1.2 Introduction to isothiocyanate

Isothiocyanates have been known as important class of organic compounds and they are common subunits in various natural products and bioactive compounds. For example, sulforaphane (1) was isolated from Japanese wasabi spice^{1, 2} which shown antioxidant and anti-cancer activity. Moreover, moringa isothiocyanate^{3, 4} (2) processed high inflammatory bioactivity. In addition, the simple isothiocyanate such as phenyl (3), benzyl (4), phenylethyl (5) and allyl isothiocyanates (6) was found in the brassicale vegetables showing antibiotic⁵, anticancer⁶⁻⁹ and antitumor^{10, 11} activities (Figure 1.1).

Figure 1.1 Natural and bioactive compounds of isothiocyanates.

Moreover, isothiocyanate was used fluorescence biomarkers for biomolecule in medical and biological diagnostics¹²⁻¹⁴. In addition, in organic synthesis, isothiocyanates are useful building block for construction of sulfur-containing heterocyclic compounds to prepare various therapeutic drugs, natural products and bioactive compounds¹⁵⁻¹⁸ as shown in **Figure 1.2**.

Quinoline derivatives

Figure 1. 2 The example of sulfur-containing heterocyclic compounds from isothiocyanates

1.3 Reviews on synthesis of isothiocyanates

In general, isothiocyanates can be prepared from 8 different staring material such as 1) isocyanide (8) 2) amide (9) 3) aldoxime (10) 4) Iminophosphorane (11) 5)

phosphoramidate (12) 6) isocyanate (13) 7) N-formamide (14) and 8) amine (7) as summarize in **Scheme 1.1**. We will discuss each substrate in the following section.

Scheme 1.2 A various substrate for synthesis of isothiocyanates

1. Isocyanide (8)

In 1991, Fujiwara and coworker¹⁹ reported the use corresponding isocyanide (8) with element sulfur in the presence element as a catalytic amount. Triethylamine was used as a base in THF. Aliphatic and aromatic isothiocyanates were isolated in good to excellent yield as shown in **Scheme 1.3**.

Scheme 1. 3 Synthesis of isothiocyanate from isocyanide

2. Amide (9)

In 1991, Penso and coworker²⁰ reported the use of amide derivatives (**9**) as starting material to react with carbon disulfide in presence of the mixture between potassium carbonate and sodium hydroxide. Aliphatic and aromatic isothiocyanates were generated in low to excellent yields as shown in **scheme 1.4**.

Scheme 1. 4 Synthesis of isothiocyanate from amide

3. Aldoxime (10)

In 1997, Kim and coworker²¹ reported the two methods for synthesis of isothiocyanates from the reaction between aldoxime (**10**) with ether *N*-chlorosuccinimide (**Method I**) or mixture of HCl, DMF, Oxone (**Method II**) to generate chloro-oxime (**10**') intermediate. The treatment of thioureas with intermediate gave isothiocyanates in good to excellent yields as shown in **Scheme 1.5**.

Scheme 1.5 Synthesis of isothiocyanate from aldoxime

4. Iminophosphorane (11)

In 1982, Molina and coworker²² reported the use of Iminophosphorane (**11**) as starting material which were generated from amines with triphenylphosphine dibromide. Then intermediate **11** can reacted with either CO_2 or CS_2 to provide isocyanate (**13**) and isothiocyanate in good to excellent yields as shown in **scheme**

Scheme 1.6 Synthesis of isothiocyanate from iminophosphorane

5. Phosphoramidate (12)

In 1989, Zwierzak and coworker²³ reported the preparation of aliphatic and aromatic isocyanates from phosphoramidate (**12**) derivatives. It reacted with NaH to undergo deprotonation and reacting further with CS_2 to generate isothiocyanate in good to excellent yields under reflux condition as shown in **scheme 1.7**.

Scheme 1.7 Synthesis of isothiocyanate from phosphoramidate

6. Isocyanate (13)

In 2005, Populian and coworker²⁴ reported the utilization of isocyanate (**13**) as staring material. It reacted with Lawesson's reagent under solvent-free condition mediating by microwave irradiation to provide aliphatic and aromatic isothiocyanates in moderate to excellent yield as shown in **Scheme 1.8**.

Scheme 1.8 Synthesis of isothiocyanate from isocyanate

7. Formamide (14)

In 2004, Liang and coworker²⁵ reported the preparation of isothiocyanate from formamide derivatives (14) and sulfur powder in presence of bis(trichloromethy) carbonate (BTC) and selenium powder. They obtained isothiocyanate in good to excellent yield as shown in **scheme 1.9**.

Chulalongkorn University

Scheme 1.9 Synthesis of isothiocyanate from formamide

Even though above reports demonstrated highly efficient synthesis of isothiocyanates, most of processes required multiple steps synthesis of starting materials. Unlike above starting materials, amine was considered as one of the most highly available starting material. However, many methods for the preparation of isothiocyanate has been extensively studied until now and we will discuss the details in next section. 1.3.1 Synthesis of isothiocyanates from amine

The typical synthesis of isothiocyanates from amine involve two strategies (Scheme 1.10). The first method (Scheme 1.10, Top) is the direct thiocarbonylation of amine with thiocarbonyl transfer reagent to deliver isothiocyanates in one step. The Second method (Scheme 1.10, Bottom) is the treatment of amine with carbon disulfide in presence of base following of desulfurization to give isothiocyanate.

Scheme 1.10 Two strategies for the synthesis of isothiocyanates from amine

1.3.1.1 Reviews on thiocarbonylation transfer reagents

The direct synthesis of isothiocyanate via thiocarbonyl transfer reagents in one pot method was summarized in **Scheme 1.11**. In 1932, Johnson and Dyer²⁶ first reported the use of thiophosgene (**15**) as a thiocarbonyl reagent to provide corresponding isothiocyanate in good yield. The first step is attacking of amine to the thiophosgene along with the leaving of chloride ion. Then the elimination takes place to generate isothiocyanate. With the same concept, there are various thiocarbonyl transfer reagents were reported such as *N*,*N*-thiocarbonyl-di-imidazole (**16**)²⁷, thiocarbonyl-2,2'-pyridine (**17**)²⁸, (Thiocarbonyldioxy)dibenzotriazole (**18**), chlorothionoformate (**19**)²⁹ and (Me₄N)SCF (**20**)³⁰.

Although, various thiocarbonyl transfer reagents gave high yields of isothiocyanates in one pot fashion. Due to the high reactive property of those thiocarbonyl transfer reagents. However, most of them therefore generate high temperature from strong exothermic property, toxic reagent and required anhydrous condition.

Scheme 1.11 The thiocarbonylation of amine with various thiocarbonyl transfer reagent

1.3.1.2 Reviews on oxidative desulfurization

The alternative method is treatment of amine with carbon disulfide in presence of base to form dithiocarbamate salt (X) following by desulfurization to give isothiocyanate in two pot fashion (Scheme 1.12). Although, it required two steps synthesis. However, the carbon and sulfur atom in final product came from CS_2 which is cheap and highly available. Therefore, this method is more atom economy and has been studied extensively. The desulfurization can be divided into two processes including the use of 1) non-metal oxidizing agents and 2) metal oxidizing agents.

Desulfurizing agents : 1) non-metal oxidizing agent 2) metal oxidizing agent

Scheme 1.12 Desulfurization of dithiocarbamate salt with desulfurizing agent

1.3.1.2.1 Reviews on non-metal oxidative desulfurization (Table 1.1) In 1997, Li and coworker³¹ reported the use of hydrogen peroxide (21) as an oxidizing agent for desulfurization of dithiocarbamate salt (X) in stoichiometric amount to produce corresponding aromatic isothiocyanate in good to excellent yields as shown cosorker³² used 2005, Su and in Table 1.1, entry 1. Later, in bis(trichloromethyl)carbonate (BTC) (22) and trichloromethyl chloroformate (TCF) (23)

as activator to provide isothiocyanate product in low to excellent yield as shown in Table 1.1, entry 2. In 2007, Wong and Dolman³³ utilize tosyl chloride (TsCl) (24) for oxidative desulfurization of dithiocarbamate salt (X) as seen in Table 1.1, entry 3. Under this condition, intermediate dithiocarbamate salt (X) reacted with tosyl chloride to provide isothiocyanate in moderate to excellent yields. In 2008, Much and coworker³⁴ reported the use of tertiary butyl dicarbamate (Boc₂O) (**25**) as reagent for desulfurizing agent in one-pot fashion to provide isothiocyanate product in moderate to quantitative yields as shown in Table 1.1, entry 4. In 2007, Lai and coworker³⁵ demonstrated the desulfurization using chlorosilane derivatives (26) as decomposition reagent of dithiocarbamate salt (X) via one-pot and two-pots methods as shown in Table 1.1, entry 5. In 2008, Patel and coworker³⁶ reported the use of (diacetoxyiodo)benzene (DIB) (27) for oxidative desulfurization of dithiocarbamate salt (X) as seen in Table 1.1, entry 6. This process provided the desired isothiocyanates in moderate to excellent yields. Later, same group³⁷ reported similar method but used iodine (28) as an activator to produce corresponding isothiocyanate in good to excellent yields as shown in Table 1.1, entry 7. Moreover, the same group³⁸ also reported the utilization of 1,10-(ethane-1,2-diyl) dipyridinium bistribromide (EDPBT) (29) for oxidative desulfurization of dithiocarbamate salt (X) as shown in Table 1.1, entry 8. Under this condition, 1,10-(ethane-1,2-diyl) dipyridinium bistribromide (EDPBT) (29) can generate bromine (Br₂) in situ then reacted with dithiocarbamate salt (\mathbf{X}) following by desulfurization to provide isothiocyanates in good to excellent yields. Similarly, Jamir and coworker³⁸ reported the use of ethyl triphenyl phosphonium tribromide (ETPPTB) (30) as activator to produce corresponding isothiocyanate in good to excellent yields as shown in Table 1.1, entry 9. Recently, in 2017, Kuotsu and coworker³⁹ demonstrated the similarly method using tetrapropylammonium tribromide (TPATB) (31) as activator to provide isothiocyanates in good to excellent yields as shown in Table 1.1, entry 10. In addition, the reactions on water for desulfurization were developed by Patel⁴⁰ and Fu^{41} using methyl arylate (32) and $Na_2S_2O_8$ (33), respectively to provide isothiocyanates in good to excellent yields as seen in Table 1.1, entries 11 and 12. Moreover, the desulfurization in the absent of desulfurizing agents were

demonstrated using ball milling⁴² under solvent-free condition (**Table 1.1 , entry 13**) and microwave irradiation⁴³ in dichloromethane at 90 ° C (**Table 1.1, entry 14**). In contrast, ball milling method limited to only aromatic isothiocyanate substrates while microwave irradiation method provided low to excellent yields of isothiocyanate substrates.

Table 1.1 Review on non-metal oxidative desulfurization

Entry	Desulfurizing agent	Condition	Process	Yield
1	H ₂ O ₂	21 (1-6 eq.), THF, 0-40 °C,	one-pot	84-95%
	21 (Hydrogen peroxide)	2h		
2	CI3C~~~CCI3	22 or 23 (0.3 eq.), CH ₂ Cl ₂ ,	one-pot	25-86%
	22 (<i>bis-</i> (trichloromethyl)	4-6 h., 0°C-rt		or
	carbonate)	V (I acception)		65-95%
	or	A AND		
		A State		
	23 (Trichloromethyl			
	chloroformates)	างกรณมหาวทยาลย		
3	CI-S	24 (1.1 eq.), THF, 1h, rt	one-pot	34-99%
	24 (Tosyl chloride)			
4		25 (1.0 eq.), DMAP (1-3%	one-pot	63-quant.
	25 (di-tert-butyl	mol), EtOH, 20 min, rt		
	carbamate)			
5	R ² ₄₋nSiCl _n	26 (2.0 eq.), DABCO or	one-pot	31-92%
	26 (Chlorosilane	Et₃N (2.0 eq.), 4-20 h,	and	
	derivatives)	0°C-rt	two-pots	
6	OAc OAc	27 (1.0 eq.), THF, 1h, rt	two-pots	34-99%

	27 ((Diacetoxyiodo)			
	benzene)			
7	l ₂	28 (1.0 eq.), H ₂ O/EtOAc,	two-pots	77-92%
	28 (lodine)	NaHCO ₃ , 15-30 min, rt		
8	Br ₃	29 (0.5 eq.), Et ₃ N (2.0 eq.),	two-pots	70-96%
		CH₃CN, 10 min, 0°C		
	Br ₃			
	29 (dipyridinium			
9		30 (10 eq.) EtaN (15 eq.)	two-nots	65-87%
	Br <u>)</u>			05 01 /0
	F → Br	CH_3CN, UC		
	Br			
	30 (ethyltriphenyl			
	phosphonium tribromide)			
10	$ $ \wedge Br_3 \wedge N^+	31 (1.0 eq.), NaHCO ₃ (2.0	two-pots	77-92%
	\sim	eq.), EtOAc/H ₂ O, 10-15		
	31	min, 0°C		
	(tetrapropylammonium			
1 1		22(1(ar)) + 0.15 + rt	ture reate	(7.010/
11		32 (1.6 eq.), H ₂ O, 1.5 h, h	two-pots	07-91%
	32 (Methyl acrylate)	งกรณ์แหาวิทยาลัย		
12	$Na_2S_2O_8$	33 (1.0 eq.), K ₂ CO ₃	one-pot	20-99%
	33 (Sodium persulfate)	(1.0 eq.), H ₂ O, 1h, rt	and	
			two- pots	
13	-	Ball milling, KOH (1.0 eq.),	one-pot	52-97%
		vibrated around 1,800		
		round per minute, rt.		
14	-	Microwave irradiation, 20	two-pots	25-98%
		min., 90°C		

From literature review, although there are many reports on the synthesis of isothiocyanate using various reagents in desulfurization process in one-pot or two pots fashion, most of them required the stepwise reaction or stochiometric amount of strong oxidizing agents or harsh condition.

1.3.1.2.2 Review on metal catalyst as an oxidizing agent (Table 1.2)

Besides, the use of organic activators, there are report on metal catalyst as an oxidizing agent for desulfurization of dithiocarbamate salt (X). The dithiocarbamate salts (X) were prepared *in situ* from reaction of amine and CS₂ in presence of base following by the addition of metal catalysts such as cobalt (II) chloride⁴⁴ (CoCl₂) (34) (Table 1.2, entry 1), copper (II) sulfate⁴⁵ (CuSO₄) (35) (Table 1.2, entry 2), iron (III) sulfate⁴⁶ (Fe₂(SO₄)₃) (36) (Table 1.2, entry 3) and iron(III) chloride⁴⁷ (FeCl₃) (37) (Table 1.2, entry 4). Although, all reactions proceed at room temperature to provide corresponding isothiocyanates in moderate to excellent yields. However, those reactions required large amount of metal catalyst at 50% mol.

Table 1.2 Review on metal catalyst as an oxidizing agent.

Entry	Condition	
	CHULALONGKORN UNIVERSITY	
1	1. CS ₂ (10 eq.), NaHCO ₃ (2.0 eq.), 1h., rt.	50-95%
	2. CoCl ₂ (50 mol%), EtOAc, 3h., rt.	
2	1. CS ₂ (10 eq.), Et ₃ N (1.0 eq.), EtOAc/H ₂ O 1h., rt.	34-99%
	2. CuSO ₄ (50 mol%), Et ₃ N (1.0 eq.), 2 h., rt.	
3	1. CS ₂ (10 eq.), NaOAc (1.0 eq.), DMSO, 1h., rt.	60-97%
	2. Fe₂(SO₄) ₃ (50 mol%), NaOAc (1.0 eq.) H ₂ O, 2h., rt.	
4	1. CS ₂ (10 eq.), NaOAc (1.0 eq.), Acetone, 2h., rt.	65-98%
	2. FeCl ₃ (50 mol%), NaOAc (1.0 eq.), 2h., rt.	
1		

1.4 Introduction to Carbon tetrabromide

Carbon tetrabromide (CBr₄), also known as tetra bromomethane, is a commercially available white solid which is stable at room temperature, easy to handle and low toxic reagent. In addition, carbon tetrabromide has been reported as a brominating agent, catalyst or mediator to prepare various chemicals. For example, in combination of carbon tetrabromide with tertiary phosphine, it has been used for the bromination of various functional groups such as alcohol (Appel reaction)⁴⁸⁻⁵¹, *N*-heterocycle⁵² and ether⁵³. Moreover, carbon tetrabromide was reported as a catalyst in many organic transformation reactions including, acetalization and tetrahydropyranylation⁵⁴.

1.4.1 Reviews for carbon tetrabromide with organosulfur

From above benefits, carbon tetrabromide also has been utilized to functionalize various organosulfur. In 2007, Wu and coworker⁵⁵ reported the use of carbon tetrabromide in catalytic amount to promote the acetylation of phenol, alcohol and thiol derivatives with acid anhydride in low to excellent yields as shown in **Scheme 1.13**.

Scheme 1.13 Acetylation using CBr₄ as a catalyst

In 2008, Yuan and coworker⁵⁶ reported the multi-component reaction between secondary amine (1'), CS_2 and active methylenes (2') using carbon tetrabromide as a mediator to provide dithiocarbamates (3') in good to excellent yields as seen in **Scheme 1.14**. The key step reaction is the treatment of amine with CS_2 to generate dithiocarbamate salt (X) following by nucleophilic attack of sulfur on CBr_4 to form sulfenyl bromide (4') electrophilic species.

Scheme 1.14 Synthesis of dithiocarbamates (3') using CBr₄.

In 2015, Yadav and coworker⁵⁷ reported the use of carbon tetrabromide as a mediator for preparation of 2-aminobenzothiazole (7') from the reaction of ketones (5') and thioureas (6') in moderate to excellent yields as shown in Scheme 1.15. From proposed mechanism, it is important to note that CBr_4 can promote the formation of sulfenyl bromide (4') which is the key step in the present of heterocyclization reaction to provide target products.

Scheme 1.15 Synthesis of 2-aminobenzothiazole using CBr₄

In addition, carbon tetrabromide also has been reported in desulfurization reaction. In 2008, liu and coworker⁵⁸ reported the preparation of symmetrical thioureas (8') and thiuram disulfide (9') from amine (Scheme 1.16). In this work, CBr_4 was used as mediator to prepare sulfenyl bromide (4'). The addition of primary amine led to target thioureas in good to excellent yields (Scheme 1.16, eq. 1) while the addition of secondary amines led to thiuram disulfides in moderate to excellent yields (Scheme 1.16, equation 2).

Scheme 1.16 Synthesis of symmetric thioureas and thiuram disulfides using CBr₄

1.4.2 Reviews for carbon tetrabromide with Vilsmeier-Haack reagent

Besides, the use of carbon tetrabromide as a mediator, there are reported the use of carbon tetrabromide under photochemical method to prepare carboxylic acid^{59, 60} and dibromo acetophenone⁶¹ under aerobic condition. Later, carbon tetrabromide has been used to replace conventional Vilsmeier-Haack reaction. Typically, Vilsmeier-Haack reaction^{62, 63} is a chemical reaction of a substituted amide with phosphorus oxychloride to generate Vilsmeier-Haack reagent (Y) *in situ* and reacted with an electron-rich aromatic hydrocarbon to produce an aryl aldehyde or ketone as shown in **Scheme 1.17a**. However, generating of the Vilsmeier-Haack reagent (Y) required toxic phosphorus oxychloride and high temperature condition. For the past decade, the new Vilsmeier-Haack reagents (Y) were modified by the reduction of CX₄ to form the intermediate such as carbene, radical reacting with amide derivatives to generate Vilsmeier-Haack reagent (Y) as demonstrate in **Scheme 1.17b**.

Scheme 1.17 The comparison of a) traditional and b)new Vilsmeier-Haack reagent

In 2011, Stephenson and Coworker⁶⁴ first reported a visible-light-mediated conversion of alcohols into halides with Vilsmeier-Haack type reagent (Y) from the reaction between CBr₄ and DMF in good to excellent yield as shown in Scheme 1.18, Route A. Later, in 2012, the same research group⁶⁵ reported a visible light mediated for preparation of acid anhydride derivatives with Vilsmeier-Haack reagent (Y) from cross-coupling of carboxylic acid derivatives as shown in Scheme 1.18, Route B. Similarly, in 2014, Yadav and coworkers⁶⁶ provided the new preparation of amide derivatives from the activation of keto oximes by using eosin Y as photocatalyst via Beckmann rearrangement as shown in Scheme 1.18, Route C. In 2015, Mccallum and Barriault⁶⁷ reported the preparation of amides from corresponding carboxylic acids with amines via Vilsmeier-Haack reagent using only UVA light (365 nm. LED) without any photocatalyst in moderate to excellent yields as shown in Scheme 1.18 (route D)

Based on above review on oxidative desulfurization to prepare isothiocyanate derivatives from amines, most of them require stepwise synthesis, large amount of strong oxidizing agents and harsh condition. To avoid the use of strong oxidizing agent and harsh condition, we intended to replace the process with carbon tetrabromide under 1) photo-organic synthesis mediating by Vilsmeier-Haack reagent or 2) mediating agent due to their low toxic reagent and easy to handle which has never been reported before.

หาลงกรณ์มหาวิทยาลัย

1.5 Objective of this research KORN UNIVERSITY

In this research, we aim to develop one-pot synthesis of isothiocyanates from amines via the oxidative desulfurization of dithiocarbamate salt (X). We plan to use two oxidative desulfurization process including 1) photo reaction with Vilsmeier-Haack reagent (**Method I**) and 2) carbon tetrabromide mediator (**Method II**) as shown in **Scheme 1.19**.

Scheme 1.19 Synthesis plan of isothiocyanate from amines in our research

For Method I, various parameters such as light source and amount of DMF will be investigated. For Method II, the reaction parameters including solvent, base, amount of carbon disulfide, amount of carbon tetrabromide, temperature and reaction time will be studied to determine the optimized condition. Then, the substrate scope of amines including aryl amines, benzylamines, aliphatic amines, chiral amine, phenolic amines and NH-protected or OH-protected amines will be tested to grade reaction generality. Finally, the mechanistic studies will be conducted to propose the mechanism process of oxidative desulfurization process using nuclear magnetic resonance spectroscopy (NMR) and scanning electron microscope (SEM) equipped with x-ray spectroscopy (EDX).

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

CHAPTER II

EXPRIMENTAL

2.1 Chemical reagents, equipment and instrument for synthesis and Characterization

All chemicals and solvents were obtained from commercially available suppliers such as Sigma-Aldrich and TCI (Japan) and were used without further purification, unless otherwise stated. Analytical thin layer chromatography (TLC) was performed with precoated Merck silica gel 60 F254 plates(0.25 mm for thick layer) and visualized at 254 nm using an ultraviolet lamp. Column chromatography was performed with Silicycle silica gel 60-200 µm. (70-230 mesh). ¹HNMR, ¹³C-NMR and ¹⁹F spectra were obtained with JEOL JNM-ECZ500R/S1 NMR spectrometers operating at 500 MHz for ¹H or 125 MHz for ¹³C or 470 MHz for ¹⁹F nuclei. High-resolution mass spectra (HRMS) were recorded using electron spray ionization (ESI) with a MicroTOF Bruker mass spectrometer and electron spray ionization (ESI) with Gas chromatography mass spectrometer. White LED (Philip LED 19W Durable Brightness Daylight E27) and green LED (SMD 5050 LED, 12W) were used as the visible light source.

2.2 General procedure for synthesis of isothiocyanate via light mediated Vilsmeier-Haack reagent

2.2.1 General procedure for synthesis of isothiocyanate from amines (**1a**) under visible light source

NCS

1-Bromo-4-isothiocyanatobenzene (**2a**) A mixture of 4-bromoaniline **1a** (1.0 eq, 0.58 mmol), carbon disulfide (3.0 eq., 1.74 mmol) and DBU (3.0 eq., 1.74 mmol) were dissolved by acetonitrile (20 mL.) in Pyrex glass tube. The mixture was stirred at room temperature for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) and *N*, *N*-dimethyl formamide (2.0 eq., 1.16 mmol) were added and stirred at room

temperature under white or green LED irradiation for 16 hours. After reaction complete, the reaction mixture was washed with water (1x4 mL) and the organic portion was extracted with EtOAc (3x5 mL). The organic layer was eliminated water by Na₂SO₄. After filtration and removal of the solvent under reduced pressure, the crude product was purified by silica gel column chromatography to afford **2a** the results were summarized in Table **3.1**. ¹H-NMR (500 MHz, CDCl₃): δ (ppm) 7.55 – 7.37 (m, 2H), 7.19 – 6.99 (m, 2H). ¹³C-NMR (125 MHz, CDCl₃): δ 137.0, 132.8, 130.6, 127.3, 120.9. GC-MS: m/z: 215.0 (calced for C₇H₄BrNS: 214.9).

2.2.2 General procedure for synthesis of isothiocyanate from amines (1a) under ultraviolet light source

Br

1-Bromo-4-isothiocyanatobenzene (2a). A mixture of 4-bromoaniline **1a** (1.0 eq, 0.58 mmol), carbon disulfide (3.0 eq., 1.74 mmol) and DBU (3.0 eq., 1.74 mmol) were dissolved by acetonitrile (20 mL.) in Pyrex glass tube. The mixture was stirred at room temperature for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) and *N*, *N*-dimethyl formamide (2.0 eq., 1.16 mmol) were added and stirred at room temperature under 254 nm or 365 nm. UV LED irradiation for 2-6 hours. After reaction complete, the reaction mixture was washed with water (1x4 mL) and the organic portion was extracted with EtOAc (3x5 mL). The organic layer was eliminated water by Na₂SO₄. After filtration and removal of the solvent under reduced pressure, the crude product was purified by silica gel column chromatography to afford **2a** and the results were summarized in Table **3.1**. ¹H-NMR (500 MHz, CDCl₃): δ (ppm) 7.55 – 7.37 (m, 2H), 7.19 – 6.99 (m, 2H). ¹³C-NMR (125 MHz, CDCl₃): δ 137.0, 132.8, 130.6, 127.3, 120.9. GC-MS: m/z: 215.0 (calced for C₇H₄BrNS: 214.9).

2.3 General procedure for synthesis of isothiocyanate using photocatalysts

1-bromo-4-isothiocyanatobenzene (**2a**) A mixture of 4-bromoaniline **1a** (1.0 eq, 0.58 mmol), carbon disulfide (3.0 eq., 1.74 mmol) and DBU (3.0 eq., 1.74 mmol) was dissolved by acetonitrile (20 mL.) in Pyrex glass tube. The mixture was stirred at room temperature for 20 hours. Then, photocatalysts (0.05 eq., 0.029 mmol) was added and at room temperature under green or white LEDs for 16 hours. After reaction complete, the reaction mixture was washed with water (1x4 mL) and the organic portion was extracted with EtOAc (3x5 mL). The organic layer was eliminated water by Na₂SO₄. After filtration and removal of the solvent under reduced pressure, the crude product was purified by silica gel column chromatography to afford **2a** and the results were summarized in Table **3.2**. ¹H-NMR (500 MHz, CDCl₃): δ (ppm) 7.55 – 7.37 (m, 2H), 7.19 – 6.99 (m, 2H). ¹³C-NMR (125 MHz, CDCl₃): δ 137.0, 132.8, 130.6, 127.3, 120.9. GC-MS: m/z: 213.0 : 215.0 (1:1) (calced for C₇H₄BrNS: 212.9 : 214.9 (1:1)).

2.4 General procedure for synthesis of isothiocyanates and unsymmetric thioureas using carbon tetrabromide

2.4.1 Reaction optimization

We studied optimized condition by working reaction on different parameter which were listed below

Solvent: Ethyl acetate, Ethanol, *i*-propanol, Acetone, *N*, *N*-dimethyl sulfoxide, acetonitrile

Base: DBU, TEA, DIPEA, K₂CO₃, Cs₂CO₃, NaOAc

Amount of carbon disulfide: 1.5-3 equivalent

Amount of carbon tetrabromide: 0-2 equivalent

2.5 The substrate scopes of isothiocyanates and unsymmetric thioureas

2.5.1 General experiment procedure A: isothiocyanates 2a – 2ff

A mixture of amine (1) (1.0 eq, 0.58 mmol), carbon disulfide (3.0 eq., 1.74 mmol) and DBU (3.0 eq., 1.74 mmol) were dissolved by acetonitrile (2 mL) in Pyrex glass tube. The mixture was stirred at room temperature for 4 hours. Then, carbon tetrabromide (1.5 eq., 0.87 mmol) was added and stirred at room temperature for 1 hour. After reaction complete, the reaction mixture was washed with water (1x4 mL) and the organic portion was extracted with EtOAc (3x5 mL). The organic layer was dried over anhydrous Na_2SO_4 . After filtration and removal of the solvent under reduced pressure, the crude product was purified by silica gel column chromatography to afford isothiocyanates 2a - 2ff

2.5.2 General experiment procedure B: unsymmetric thioureas 3a – 3i

A mixture of *p*-toluidine (**1f**) (1.0 eq, 0.58 mmol), carbon disulfide (3.0 eq., 1.74 mmol) and DBU (3.0 eq., 1.74 mmol) were dissolved by acetonitrile (2 mL) in Pyrex glass tube. The mixture was stirred at room temperature for 4 hours. Then, carbon tetrabromide (1.5 eq., 0.87 mmol) was added and stirred at room temperature for 1 hour. Next, secondary amine (1.5 eq., 0.87 mmol) was added in the mixture and stirred for 3 hours. After reaction complete, the reaction mixture was washed with water (1x6 mL) and the organic portion was extracted with EtOAc (3x10 mL). The organic layer was dried over anhydrous Na₂SO₄. After filtration and removal of the solvent under reduced pressure, the crude product was purified by silica gel column chromatography to afford unsymmetric thioureas 3a - 3i

2.5.3 Synthesis of isothiocyanate derivatives

Br

1-bromo-4-isothiocyanatobenzene (**2a**). According to the general experiment procedure A, the reaction was performed by using 4-bromoaniline (**1a**, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and

stirred at room temperature for 1 hour afford 2a in 105.4 mg, 85% yield as a white solid: ¹H-NMR (500 MHz, CDCl₃): δ (ppm) 7.55 – 7.37 (m, 2H), 7.19 – 6.99 (m, 2H). ¹³C-NMR (125 MHz, CDCl₃): δ 137.0, 132.8, 130.6, 127.3, 120.9. GC-MS: m/z: 213.0 : 215.0 (1:1) (calced for C₇H₄BrNS: 212.9 : 214.9 (1:1)).

F

1-fluoro-4-isothiocyanatobenzene (2b). According to the general experiment procedure A, the reaction was performed by using 4-fluoroaniline (1b, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford 2b in 79.8 mg, 90% yield as a colorless oil: ¹HNMR (500 MHz, CDCl₃): δ 7.23 – 7.12 (m, 2H), 7.08 – 6.96 (m, 2H). ¹³C-NMR (125 MHz, CDCl₃): δ 162.1, 160.2, 136.0, 127.4, 116.7. ¹⁹F-NMR (470 MHz, CDCl₃): δ -110.19. GC-MS: m/z: 153.0 (calced for C₇H₄ClNS: 153.1).

1-chloro-4-isothiocyanatobenzene (2c). According to the general experiment procedure A, the reaction was performed by using 4-chloroaniline (**1c**, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford **2c** in 73.5 mg, 75% yield as a white solid: ¹HNMR (500 MHz, CDCl₃): δ ¹HNMR (500 MHz, CDCl₃): δ 7.23 – 7.12 (m), 7.08 – 6.96 (m). ¹³C-NMR (125 MHz, CDCl₃): δ 136.9, 133.0,130.0, 123.0, 127.0. GC-MS: m/z: 169.1 : 171.1 (3:1) (calced for C₇H₄FNS: 169.0 : 171.0 (3:1)).

I NCS

1-iodo-4-isothiocyanatobenzene (2d). According to the general experiment procedure A, the reaction was performed by using 4-iodoaniline (1d, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford 2d in 142 mg, 94% yield as a white solid: ¹HNMR (500 MHz, CDCl₃): δ 7.23 – 7.12 (m), 7.08 – 6.96 (m). ¹³C-NMR (125 MHz, CDCl₃): δ 138.8, 137.1, 131.3, 127.5, 92.0. GC-MS: m/z: 261.0 (calced for C₇H₄INS: 260.9).

NCS I

1-iodo-2-isothiocyanatobenzene (2e). According to the general experiment procedure A, the reaction was performed by using 4-iodoaniline (1d, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford 2d in 113.5 mg, 75% yield as yellow oil: ¹HNMR (500 MHz, CDCl₃): δ 7.92 – 7.65 (m, 1H), 7.32 (td, 1H, *J* = 7.9, 1.3 Hz), 7.28 – 7.21 (m, 1H), 6.96 (td, 1H, *J* = 7.6, 1.5 Hz). ¹³C-NMR (125 MHz, CDCl₃): δ 162.2, 160.2, 136.0, 127.4, 116.7. GC-MS: m/z: 261.0 (calced for C₇H₄INS: 260.9).

isothiocyanatobenzene (2f). According to the general experiment procedure A, the reaction was performed by using aniline (1f, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford 2f in 75 mg, 84% yield as colorless oil: ¹HNMR (500 MHz, CDCl₃): δ 7.37 – 7.31 (m, 2H), 7.31 – 7.23 (m, 1H), 7.23 – 7.18 (m, 2H). ¹³C-NMR

(125 MHz, CDCl₃): δ 135.4, 131.3, 129.6, 127.4, 125.8. GC-MS: m/z: 135.1 (calced for C₇H₅NS: 135.0).

NCS

1-isothiocyanato-4-methylbenzene (2g). According to the general experiment procedure A, the reaction was performed by using p-toluidine (1g, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford 2g in 82.1 mg, 95% yield as colorless oil: ¹HNMR (500 MHz, CDCl₃): δ 7.11 (m, 4H, *J* = 6.2, 5.2 Hz), 2.34 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃): δ 137.6, 134.5, 130.2, 128.4, 125.6, 21.3. GC-MS: m/z: 149.1 (calced for C₇H₄NS: 149.2).

NCS

2-isothiocyanato-1,3-dimethylbenzene (2h). According to the general experiment procedure A, the reaction was performed by using 2,6-dimethylaniline (1h, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford 2h in 89.7 mg, 95% yield as colorless oil: ¹HNMR (500 MHz, CDCl₃): δ 7.16 – 6.94 (m, 3H), 2.37 (s, 6H). ¹³C-NMR (125 MHz, CDCl₃): δ 136.6, 135.1, 129.6, 128.0, 127.0, 18.8. GC-MS: m/z: 163.1 (calced for C₉H₉NS: 163.2).

1-isothiocyanato-4-methoxybenzene (2i). According to the general experiment procedure A, the reaction was performed by using p-anisidine (**1i**, 1.0 eq., 0.58)

mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford **2i** in 84.3 mg, 88% yield as yellow oil: ¹HNMR (500 MHz, CDCl₃): δ 7.18 – 7.05 (m, 2H), 6.87 – 6.69 (m, 2H), 3.79 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃): δ 158.6, 134.0, 127.0, 123.6, 114.9, 55.6. GC-MS: m/z: 165.1 (calced for C₈H₇NOS: 165.0).

1-isothiocyanato-2-methoxybenzene (2j). According to the general experiment procedure A, the reaction was performed by using *o*-anisidine (1j, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford 2j in 89.1 mg, 93% yield as colorless oil: ¹HNMR (500 MHz, CDCl₃): δ 7.24 – 7.18 (m, 2H), 7.09 (dd, 1H, *J* = 7.8, 1.6 Hz), 6.93 – 6.78 (m, 1H), 3.89 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃): δ 156.0, 139.8, 128.3, 125.5, 120.7, 111.5, 56.0. GC-MS: m/z: 165.1 (calced for C₈H₇NOS: 165.0).

1-isothiocyanato-4-(trifluoromethyl) benzene (2k). According to the general experiment procedure A, the reaction was performed by using 4-(trifluoromethyl)-aniline (1j, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford 2j in 89.1 mg, 93% yield as white solid: ¹HNMR (500 MHz, CDCl₃): δ 7.61 (d, 2H, J = 8.8 Hz), 7.37 – 7.27 (m, 2H). ¹³C-NMR (125 MHz, CDCl₃): δ 138.3, 135.0, 129.5, 129.2, 129.0, 128.8, 126.9, 126.1, 124.7, 122.5, 120.4. ¹⁹F-NMR (470 MHz, CDCl₃): δ -62.5, GC-MS: m/z: 203.1 (calced for C₈H₄F₃NS: 203.0).

1-isothiocyanato-3-nitrobenzene (2l). According to the general experiment procedure A, the reaction was performed by using 3-nitroaniine (**1l**, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford **2l** in 65.8 mg, 63% yield as yellow solid: ¹HNMR (500 MHz, CDCl₃): **δ** 8.14 – 8.09 (m, 1H), 8.06 (d, 1H, J = 1.9 Hz), 7.68 – 7.41 (m, 2H). ¹³C-NMR (125 MHz, CDCl₃): **δ** 148.8, 139.7, 133.3, 131.6, 130.6, 121.9, 120.8. GC-MS: m/z: 180.1 (calced for C₇H₄N₂O₂S: 180.0).

ethyl 4-isothiocyanatobenzoate (2m). According to the general experiment procedure A, the reaction was performed by using 4-ethylamino benzoate (1m, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford 2m in 90.0 mg, 75% yield as colorless solid: ¹HNMR (500 MHz, CDCl₃): δ 8.02 (dd, 2H, *J* = 8.7, 2.1 Hz), 7.36 – 7.07 (m, 2H), 4.36 (q, 2H), 1.37 (t, 3H). ¹³C-NMR (125 MHz, CDCl₃): δ 165.5, 137.8, 135.6, 131.1, 129.1, 125.7, 61.4, 14.3. GC-MS: m/z: 207.1 (calced for C₁₀H₉NO₂S: 207.0).

4-isothiocyanatobenzonitrile (2n). According to the general experiment procedure A, the reaction was performed by using 4-aminobenzonitrile (**1n**, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at

room temperature for 1 hour to afford **2n** in 37.2 mg, 40% yield as white solid: ¹HNMR (500 MHz, CDCl₃): δ 7.67 – 7.60 (m, 2H), 7.31 – 7.27 (m, 2H). ¹³C-NMR (125 MHz, CDCl₃): δ 139.8, 136.2, 133.7, 126.6, 118.0, 110.7. GC-MS: m/z: 160.0 (calced for C₈H₄N₂S: 160.0).

3-isothiocyanatobenzonitrile (2o). According to the general experiment procedure A, the reaction was performed by using 3-aminobenzonitrile (1o, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford 2o in 58.4 mg, 63% yield as white solid: ¹HNMR (500 MHz, CDCl₃): δ 7.56 – 7.51 (m, 1H), 7.49 – 7.45 (m, 2H), 7.45 – 7.41 (m, 1H). ¹³C-NMR (125 MHz, CDCl₃): δ 139.4, 133.1, 130.8, 130.5, 130.1, 128.9, 117.3, 114.0. GC-MS: m/z: 160.1 (calced for C₈H₄N₂S: 160.0).

(isothiocyanatomethyl)benzene (2p). According to the general experiment procedure A, the reaction was performed by using benzylamine (1p, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford 2p in 63 mg, 73% yield as white solid: ¹HNMR (500 MHz, CDCl₃): δ 7.41 – 7.37 (m, 2H), 7.34 (dd, 1H, *J* = 6.2, 3.9 Hz), 7.31 (dt, 2H, *J* = 7.3, 1.5 Hz), 4.70 (s). ¹³C-NMR (125 MHz, CDCl₃): δ 134.3, 131.6, 129.0, 128.4, 126.9, 48.7. GC-MS: m/z: 149.1 (calced for C₈H₇NS: 149.0).

1-(isothiocyanatomethyl)-4-methoxybenzene (2q). According to the general experiment procedure A, the reaction was performed by using 4-methoxy benzylamine (1q, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford 2q in 67.5 mg, 65% yield as yellow oil: ¹HNMR (500 MHz, CDCl₃): δ 7.24 – 7.21 (m, 2H), 6.98 – 6.80 (m, 2H), 4.62 (s, 2H), 3.80 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃): δ 134.3, 131.6, 129.1, 128.5, 126.9, 48.7. GC-MS: m/z: 179.1 (M), 121.1 (M-NCS) (calced for C₉H₉NOS: 179.0).

(isothiocyanatomethylene) dibenzene (2r). According to the general experiment procedure A, the reaction was performed by using diphenylmethanamine (1r, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford 2r in 92.3 mg, 71% yield as yellow oil: HNMR (500 MHz, CDCl₃): δ 7.40 – 7.34 (m, 4H), 7.34 – 7.29 (m, 6H), 5.99 (s, 1H). ¹³C-NMR (125 MHz, CDCl₃): δ 139.3, 134.6, 132.0, 130.2, 129.0, 128.4, 126.7, 64.7. GC-MS: m/z: 224.1 (M-1), 167.1 (M-NCS) (calced for C₁₄H₁₁NS: 225.1).

(1-isothiocyanatoethyl) benzene (2s). According to the general experiment procedure A, the reaction was performed by using 1-phenylethan-1-amine (1s, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in

acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford **2s** in 79.4 mg, 84% yield as colorless oil: ¹HNMR (500 MHz, CDCl₃): δ 7.41 – 7.35 (m, 2H), 7.33 (dd, 3H), 4.91 (q, 1H), 1.67 (d, 3H). ¹³C-NMR (125 MHz, CDCl₃): δ 140.3, 132.4, 129.0, 128.3, 125.5, 57.1, 25.1. GC-MS: m/z: 163.1 (M), 105.1 (M-NCS) (calced for C₉H₉NS: 163.0).

NCS

isothiocyanatocyclohexane (2t). According to the general experiment procedure A, the reaction was performed by using cyclohexylamine (1t, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford 2t in 65.4 mg, 80% yield as colorless oil: ¹HNMR (500 MHz, CDCl₃): δ 3.74 – 3.58 (m, 1H), 1.96 – 1.81 (m, 2H), 1.79 – 1.57 (m, 4H), 1.52 – 1.42 (m, 1H), 1.43 – 1.30 (m, 3H).¹³C-NMR (125 MHz, CDCl₃): δ 127.2, 55.5, 33.3, 29.8, 25.1, 23.3. GC-MS: m/z: 141.1 (calced for C₇H₁₁NS: 141.1).

NCS

1-isothiocyanatohexane (2u). According to the general experiment procedure A, the reaction was performed by using hexylamine (**1u**, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford **2u** in 78.8 mg, 95% yield as colorless oil: ¹HNMR (500 MHz, CDCl₃): δ 3.48 (t, 2H), 1.71 – 1.61 (m, 2H), 1.43 – 1.35 (m, 2H), 1.35 – 1.21 (m, 4H), 0.91 – 0.84 (m, 3H).¹³C-NMR (125 MHz, CDCl₃): δ 129.5, 45.1, 31.0, 30.0, 26.3, 22.5, 14.0. GC-MS: m/z: 115.1 (M-C₂H₄) (calced for C₇H₁₃NS: 143.1).

Methyl (S)-2-isothiocyanato-3-phenylpropanoate (2v). According to the general experiment procedure A, the reaction was performed by using L-phenylalanine methyl ester hydrochloride (1v, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford 2v in 43.6 mg, 34% yield as orange oil: ¹HNMR (500 MHz, CDCl₃): δ 7.38 – 7.28 (3H, m), 7.24 – 7.21 (2H, m), 4.48 (1H, dd, J = 8.4, 4.8 Hz), 3.80 (3H, s), 3.25 (1H, dd, J = 13.8, 4.7 Hz), 3.13 (1H, dd, J = 13.8, 8.4 Hz). ¹³C-NMR (125 MHz, CDCl₃): δ 168.5, 138.0, 135.1, 129.4, 128.8, 127.7, 60.9, 53.2, 39.8.

5-Isothiocyanato-1H-benzo[d]imidazole (2w). According to the general experiment procedure A, the reaction was performed by using 5-aminobenzimidazole (1w, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford 2w in 72 mg, 71% yield as yellow oil: ¹HNMR (500 MHz, DMSO-d6): 8.34 (s, 1H), 7.68 (d, 1H), 7.60 (d, 1H), 7.24 (dd, 1H, J = 8.5, 1.3 Hz). ¹³C-NMR (125 MHz, DMSO-d6): δ 144.7, 138.2, 137.0, 132.5, 124.6, 121.3, 116.7, 113.6. GC-MS: m/z: 175.1 (calced for C₈H₅N₃S: 175.0).

5-isothiocyanato-1H-indole (2x). According to the general experiment procedure A, the reaction was performed by using 5-aminoindole (**1w**, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4

hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford **2w** in 81.7 mg, 81% yield as yellow solid: ¹HNMR (500 MHz, CDCl₃): δ 8.28 (s, 1H), 7.51 (t, 1H), 7.33 (d, 1H), 7.28 – 7.25 (m, 1H), 7.07 (dt, 1H, J = 8.6, 4.4 Hz), 6.53 (t, 1H).¹³C-NMR (125 MHz, CDCl₃): δ 134.4, 128.1, 126.2, 123.1, 120.2, 118.1, 112.0, 103.1. GC-MS: m/z: 174.1 (calced for C₉H₆N₂S: 174.0).

1 -isothiocyanatonaphthalene (2y). According to the general experiment procedure A, the reaction was performed by using napthelene-1amine (1y, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford 2y in 82.6 mg, 77% yield as white solid: ¹HNMR (500 MHz, CDCl₃): δ 8.09 (dd, 1H, *J* = 8.4, 0.5 Hz), 7.86 (dd, 1H, *J* = 8.1, 0.6 Hz), 7.76 (p, 1H, *J* = 3.5 Hz), 7.62 – 7.51 (m, 2H), 7.42 – 7.36 (m, 2H). ¹³C-NMR (125 MHz, CDCl₃): δ 136.1, 134.1, 129.3, 128.5, 127.8, 127.5, 127.2, 125.5, 123.5, 122.8. GC-MS: m/z: 185.1 (calced for C₉H₉NS: 185.0).

NCS จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

4-isothiocyanatophenol (2z). According to the general experiment procedure A, the reaction was performed by using 4-aminophenol (1z, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford 2z in 68.3 mg, 78% yield as yellow oil: ¹HNMR (500 MHz, CDCl₃): δ 7.18 – 7.00 (m, 2H), 6.87 – 6.65 (m, 2H).¹³C-NMR (125 MHz, CDCl₃): δ 154.8, 134.0, 127.3, 123.8, 116.4. GC-MS: m/z: 151.1 (calced for C₇H₅NOS: 151.0).

3-isothiocyanatophenol (2aa). According to the general experiment procedure A, the reaction was performed by using 3-aminophenol (1aa, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford 2aa in 73.5 mg, 84% yield as yellow oil: ¹HNMR (500 MHz, CDCl₃): δ 6.81 – 6.77 (m, 1H), 6.77 – 6.72 (m, 2H), 6.68 (t, 1H).¹³C-NMR (125 MHz, CDCl₃): δ 156.4, 135.5, 132.2, 130.6, 118.5, 114.9, 112.8. GC-MS: m/z: 151.1 (calced for C₇H₅NOS: 151.0).

benzo[d]oxazole-2(3H)-thione (2bb). According to the general experiment procedure A, the reaction was performed by using 3-aminophenol (**1aa**, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford **2aa** in 71.0 mg, 84% yield as yellow solid: ¹HNMR (500 MHz, DMSO-d6): **δ** 11.26 (s, 1H), 7.36 (d, 1H), 7.27 (dd, 2H, J = 10.6, 4.4 Hz), 7.24 (t, 1H).¹³C-NMR (125 MHz, DMSO-d6): **δ** 180.6, 148.7, 131.8, 125.7, 124.3, 111.0, 110.5. GC-MS: m/z: 151.1 (calced for C₇H₅NOS: 151.0).

6-methylbenzo[d]oxazole-2(3H)-thione (2cc). According to the general experiment procedure A, the reaction was performed by using 3-aminophenol (**1aa**, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and

stirred at room temperature for 1 hour to afford **2aa** in 77.5 mg, 81% yield as yellow solid: ¹HNMR (500 MHz, DMSO-d6): δ 7.33 (d, 1H, J = 8.8 Hz), 7.02 (d, 2H, J = 7.1 Hz), 2.32 (s, 3H).¹³C-NMR (125 MHz, DMSO-d6): δ 180.7, 146.9, 135.4, 131.7, 124.9, 111.1, 110.0, 21.3. GC-MS: m/z: 165.1 (calced for C₈H₇NOS: 165.0).

NCS NHTs

N-(2-isothiocyanatophenyl)-4-methylbenzenesulfonamide (2dd). According to the general experiment procedure A, the reaction was performed by using *N*-(2-aminophenyl)-4-methylbenzenesulfonamide (1dd, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford 2dd in 95.2 mg, 54% yield as white solid: ¹HNMR (500 MHz, DMSO): δ 7.98 – 7.94 (m, 1H), 7.92 (d, 2H), 7.41 (d, 2H), 7.31 – 7.24 (m, 2H), 7.16 – 7.11 (m, 1H), 2.40 – 2.27 (s, 3H).¹³C-NMR (125 MHz, CDCl₃): 169.1, 146.8, 134.1, 131.5, 131.2, 130.3, 128.8, 126.0, 124.1, 114.0, 110.7, 21.7. HRMS: [M+2H+Na] 329.1654 (calced for C₁₄H₁₂N₂O₂S₂: 304.0340).

จุหาลงกรณ์มหาวิทยาลัย

iulalongkorn University

tert-butyl(4-isothiocyanatophenoxy) dimethylsilane (2ee). According to the general experiment procedure A, the reaction was performed by using 4-((*tert*-butyldimethylsilyl)oxy)aniline (1ee, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford 2ee in 133.7 mg, 87% yield as dark-brown oil: ¹HNMR (500 MHz, CDCl₃): δ 7.16 – 6.98 (m, 2H), 6.85 – 6.65 (m, 2H), 0.96 (m, 9H), 0.18 (m, 6H).¹³C-NMR (125 MHz, CDCl₃): δ 155.0, 134.0, 127.0, 124.2, 121.1, 25.7, -4.38. GC-MS: m/z: 265.2 (calced for C₁₃H₁₉NOSSi: 265.1).

4-isothiocyanatophenyl 4-methylbenzenesulfonate (2ff). According to the general experiment procedure A, the reaction was performed by using 4-((*tert*-butyldimethylsilyl)oxy)aniline (1ff, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1 hour to afford 2ee in 122.1 mg, 69% yield as yellow solid: ¹HNMR (500 MHz, CDCl₃): **δ** 7.67 (d, 2H, *J* = 8.3 Hz), 7.32 – 7.29 (m, 2H), 7.18 – 7.04 (m, 2H), 7.02 – 6.85 (m, 2H), 2.44 (s, 3H).¹³C-NMR (125 MHz, CDCl₃): **δ** 147.9, 145.9, 137.1, 132.0, 130.4, 130.0, 128.6, 127.0, 123.9, 21.8. HRMS: [M+Na] 328.0084 (calced for C₁₄H₁₁NNaO₃S₂: 328.0078).

2.5.4 Synthesis derivatives of unsymmetric thiourea

1-(4-methoxyphenyl)-3-(p-tolyl) thiourea (3a). According to the general experiment procedure B. A mixture of *p*-toluidine (1.0 eq, 0.58 mmol), carbon disulfide (3.0 eq., 1.74 mmol) and DBU (3.0 eq., 1.74 mmol) were dissolved by acetonitrile (2 mL) in Pyrex glass tube. The mixture was stirred at room temperature for 4 hours. Then, carbon tetrabromide (1.5 eq., 0.87 mmol) was added and stirred at room temperature for 1 hour. Next, *p*-anisidine (1.5 eq., 0.87 mmol) was added in the mixture and stirred for 3 h to afford **3a** in 138.8 mg, 88% yield as yellow solid: ¹HNMR (500 MHz, DMSO): **\delta** 7.80 (s, 1H), 7.27 – 7.21 (m, 4H), 7.17 (d, 2H, *J* = 8.2 Hz), 6.98 – 6.80 (m, 2H), 3.79 (s, 3H), 2.33 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃): 180.1, 158.7, 137.7, 134.7, 130.2, 127.7, 125.6, 114.8, 55.6, 21.1. HRMS: [M+Na] 295.0866 (calced for C₁₅H₁₆N₂NaOS: 295.0881).

1-phenyl-3-(p-tolyl) thiourea (3b). According to the general experiment procedure B. A mixture of *p*-toluidine (1.0 eq, 0.58 mmol), carbon disulfide (3.0 eq., 1.74 mmol) and DBU (3.0 eq., 1.74 mmol) were dissolved by acetonitrile (2 mL.) in Pyrex glass tube. The mixture was stirred at room temperature for 4 hours. Then, carbon tetrabromide (1.5 eq., 0.87 mmol) was added and stirred at room temperature for 1 hour Next, aniline (1.5 eq., 0.87 mmol) was added in the mixture and stirred for 3 h to afford **3b** in 92.6 mg, 66% yield as white solid: ¹HNMR (500 MHz, DMSO-d6): **\delta** 9.64 (s, 2H), 7.44 (d, 2H, *J* = 7.9 Hz), 7.34 – 7.21 (m, 4H), 7.16 – 7.01 (m, 3H), 2.24 (s, 3H). ¹³C-NMR (125 MHz, DMSO-d6): 180.1, 140.6, 137.4, 133.6, 129.4, 128.9, 124.8, 124.4, 124.1, 21.0. HRMS: [M+Na] 265.0769 (calced for C₁₄H₁₄N₂NaS: 265.0775).

1-(4-chlorophenyl)-3-(p-tolyl) thiourea (3c). According to the general experiment procedure B. A mixture of *p*-toluidine (1.0 eq, 0.58 mmol), carbon disulfide (3.0 eq., 1.74 mmol) and DBU (3.0 eq., 1.74 mmol) were dissolved by acetonitrile (2 mL.) in Pyrex glass tube. The mixture was stirred at room temperature for 4 hours. Then, carbon tetrabromide (1.5 eq., 0.87 mmol) was added and stirred at room temperature for 1 hour. Next, 4-chloroaniline (1.5 eq., 0.87 mmol) was added in the mixture and stirred for 3 hours to afford **3c** in 112 mg, 70% yield as white solid: ¹HNMR (500 MHz, DMSO-d6): **\delta** 9.74 (s, 1H), 9.71 (s, 1H), 7.52 – 7.42 (m, 2H), 7.33 (dd, 2H, *J* = 9.3, 2.4 Hz), 7.28 (d, 2H, *J* = 8.3 Hz), 7.09 (d, 2H, *J* = 8.2 Hz), 2.24 (s, 3H). ¹³C-NMR (125 MHz, DMSO-d6): 180.1, 148.2, 139.0, 137.1, 134.4, 129.5, 129.0, 128.8, 128.6, 125.8, 125.8, 124.4, 119.1 115.6, 20.8. HRMS: [M+Na] 299.0375 (calced for C₁₄H₁₃ClN₂-NaS: 299.0386).

1-(4-bromophenyl)-3-(p-tolyl) thiourea (3d). According to the general experiment procedure B. A mixture of *p*-toluidine (1.0 eq, 0.58 mmol), carbon disulfide (3.0 eq., 1.74 mmol) and DBU (3.0 eq., 1.74 mmol) were dissolved by acetonitrile (2 mL) in Pyrex glass tube. The mixture was stirred at room temperature for 4 hours. Then, carbon tetrabromide (1.5 eq., 0.87 mmol) was added and stirred at room temperature for 1 hour. Next, 4-bromoaniline (1.5 eq., 0.87 mmol) was added in the mixture and stirred for 3 hours to afford **3d** in 112 mg, 70% yield as white solid: ¹HNMR (500 MHz, DMSO-d6): **δ** 7 9.74 (s, 1H), 9.71 (s, 1H), 7.52 – 7.42 (m, 2H), 7.33 (dd, 2H, J = 9.3, 2.4 Hz), 7.28 (d, 2H, J = 8.3 Hz), 7.09 (t, 2H, J = 8.3 Hz), 2.24 (s, 3H). ¹³C-NMR (125 MHz, DMSO-d6): 180.2, 139.5, 137.1, 134.4, 129.5, 128.8, 125.8, 124.6, 21.0. HRMS: [M-H] 319.0578 (calced for C₁₄H₁₂BrN₂NaS: 318.9905).

1-benzyl-3-(p-tolyl) thiourea (3e). According to the general experiment procedure B. A mixture of *p*-toluidine (1.0 eq, 0.58 mmol), carbon disulfide (3.0 eq., 1.74 mmol) and DBU (3.0 eq., 1.74 mmol) were dissolved by acetonitrile (2 mL) in Pyrex glass tube. The mixture was stirred at room temperature for 4 hours. Then, carbon tetrabromide (1.5 eq., 0.87 mmol) was added and stirred at room temperature for 1 hour. Next, benzylamine (1.5 eq., 0.87 mmol) was added in the mixture and stirred for 3 hours to afford **3e** in 111.4 mg, 70% yield as white solid: ¹HNMR (500 MHz, CDCl₃): **§** 7.91 (s, 1H), 7.34 – 7.28 (m,2H), 7.26 (dd, 3H, J = 9.4, 4.5 Hz), 7.18 (d, 2H, J =8.2 Hz), 7.10 – 7.05 (m, 2H), 6.28 (s, 1H), 4.84 (s, 2H), 2.32 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃): 181.0, 137.9, 137.3, 133.0, 130.9, 128.9, 127.8, 127.7, 125.7, 49.5, 21.1. HRMS: [M+K-2H] 293.1091 (calced for C₁₅H₁₄KN₂S: 293.0515).

1-(1-phenylethyl)-3-(p-tolyl) thiourea (3f). According to the general experiment procedure B. A mixture of *p*-toluidine (1.0 eq, 0.58 mmol), carbon disulfide (3.0 eq., 1.74 mmol) and DBU (3.0 eq., 1.74 mmol) were dissolved by acetonitrile (2 mL) in Pyrex glass tube. The mixture was stirred at room temperature for 4 hours. Then, carbon tetrabromide (1.5 eq., 0.87 mmol) was added and stirred at room temperature for 1 hour. Next, 1-phenylethylamine (1.5 eq., 0.87 mmol) was added in the mixture and stirred for 3 hours to afford **3f** in 90.8 mg, 58% yield as yellow oil: ¹HNMR (500 MHz, CDCl₃): **δ** 7.77 (s,1H), 7.34 – 7.30 (m, 2H), 7.29 – 7.22 (m, 3H), 7.18 (d, 2H, J = 8.1 Hz), 7.05 (d, 2H, J = 8.2 Hz), 6.27 (s, 1H), 5.64 (s, 1H), 2.33 (s, 3H), 1.51 (d, 3H, J = 6.9 Hz). ¹³C-NMR (125 MHz, CDCl₃): 179.5, 142.3, 137.6, 133.3, 130.8, 130.4, 129.2, 128.2, 129.1, 127.6, 126.1, 126.0, 125.6, 125.5, 54.4, 21.4. HRMS: [M+Na] 293.1091 (calced for C₁₆H₁₈N₂NaS: 293.1088).

1-benzhydryl-3-(p-tolyl) thiourea (3g). According to the general experiment procedure B. A mixture of *p*-toluidine (1.0 eq, 0.58 mmol), carbon disulfide (3.0 eq., 1.74 mmol) and DBU (3.0 eq., 1.74 mmol) were dissolved by acetonitrile (2 mL) in Pyrex glass tube. The mixture was stirred at room temperature for 4 hours. Then, carbon tetrabromide (1.5 eq., 0.87 mmol) was added and stirred at room temperature for 1 hour. Next, diphenylmethanamine (3.0 eq., 1.74 mmol) was added in the mixture and stirred for 3 hours to afford **3g** in 80.8 mg, 42% yield as white solid: ¹HNMR (500 MHz, CDCl₃): **§** 7.74 (s, 1H), 7.31 (t, 4H, , J = 7.3 Hz), 7.29 – 7.22 (m, 3H), 7.18 (dd, 5H, J = 7.3, 5.3 Hz), 7.07 (d, 2H, J = 8.3 Hz), 6.83 (s, 1H), 6.56 (s, 1H), 2.33

(s, 3H). ¹³C-NMR (125 MHz, CDCl₃): 180.4, 140.8, 137.7, 133.2, 130.9, 129.0, 128.8, 128.7, 127.7, 127.5, 127.4, 127.3, 127.2, 125.5, 62.5, 21.2. HRMS: [M-H] 331.1264 (calced for $C_{21}H_{20}N_2S$: 332.1347).

1-cyclohexyl-3-(p-tolyl) thiourea (3h). According to the general experiment procedure B. A mixture of *p*-toluidine (1.0 eq, 0.58 mmol), carbon disulfide (3.0 eq., 1.74 mmol) and DBU (3.0 eq., 1.74 mmol) were dissolved by acetonitrile (2 mL) in Pyrex glass tube. The mixture was stirred at room temperature for 4 hours. Then, carbon tetrabromide (1.5 eq., 0.87 mmol) was added and stirred at room temperature for 1 hour. Next, cyclohexylamine (3.0 eq., 1.74 mmol) was added in the mixture and stirred for 3 hours to afford **3h** in 103.5 mg, 72% yield as yellow solid: ¹HNMR (500 MHz, CDCl₃): **Š** 7.63 (s, 1H), 7.21 (d, 2H, J = 8.1 Hz), 7.05 (d, 2H, J = 8.2 Hz), 5.83 (s, 1H), 4.24 (s, 1H), 2.35 (s, 3H), 2.00 (m, 2H), 1.68 – 1.54 (m, 3H), 1.48 – 1.30 (m, 2H), 1.15 – 1.04 (m, 3H). ¹³C-NMR (125 MHz, CDCl₃): 178.9, 137.5, 133.3, 130.9, 125.4, 54.1, 32.8, 32.6, 25.5, 24.7, 21.1. HRMS: [M+Na] 271.1237 (calced for $C_{14}H_{20}N_2NaS$: 271.1245).

1-butyl-3-(p-tolyl) thiourea (3i). According to the general experiment procedure B. A mixture of *p*-toluidine (1.0 eq, 0.58 mmol), carbon disulfide (3.0 eq., 1.74 mmol) and DBU (3.0 eq., 1.74 mmol) were dissolved by acetonitrile (2 mL) in Pyrex glass tube. The mixture was stirred at room temperature for 4 hours. Then, carbon tetrabromide (1.5 eq., 0.87 mmol) was added and stirred at room temperature for 1 hour. Next, butylamine (3.0 eq., 1.74 mmol) was added in the mixture and stirred for 3 hours to afford **3i** in 109.4 mg, 85% yield as yellow solid: ¹HNMR (500 MHz, CDCl₃): **\delta** 8.01 (s), 7.25 - 7.16 (m, 4H), 7.06 (d, 2H, J = 8.2 Hz), 5.95 (s, 1H), 3.58 (t, 2H, J = 7.2 Hz), 1.55 – 1.44 (m, 2H), 1.34 – 1.24 (m, 2H), 0.88 (t, 3H, J = 7.4 Hz). ¹³C-NMR (125 MHz, CDCl₃): 180.3, 137.6, 133.3, 130.8, 125.6, 45.3, 31.1, 21.1, 20.1, 13.7. HRMS: [M+H] 223.1224 (calced for C₁₂H₁₈N₂S: 222.1191).

2.5.5 Gram-scale synthesis

2.5.5.1 Gram-scale synthesis of isothiocyanate

General procedure A was followed, the reaction was performed by 4bromoaniline (**1a**, 1.0 eq., 5.8 mmol), DBU (3.0 eq., 17.4 mmol), carbon disulfide (3.0 eq., 17.4 mmol) in acetonitrile 20 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 5.8 mmol) was added and stirred at room temperature for 1 hour afford **2a** in 980 mg, 79% yield as a white solid: ¹H-NMR (500 MHz, CDCl₃): δ (ppm) 7.55 – 7.37 (m, 2H), 7.19 – 6.99 (m, 2H). ¹³C-NMR (125 MHz, CDCl₃): δ 136.9, 132.8, 130.5, 127.2, 120.8. GC-MS: m/z: 213.0 : 215.0 (1:1) (calced for C₇H₄BrNS: 212.9 : 214.9 (1:1)).

2.5.5.1 Gram-scale synthesis of unsymmetric thiourea

General procedure B was followed, A mixture of *p*-toluidine (**1f**) (1.0 eq, 9.33 mmol), carbon disulfide (3.0 eq., 28.0 mmol) and DBU (3.0 eq., 28.0 mmol) were dissolved by acetonitrile (20 mL) in Pyrex glass tube. The mixture was stirred at room temperature for 4 hours. Then, carbon tetrabromide (1.5 eq., 14 mmol) was added and stirred at room temperature for 1 hour. Next, *p*-anisidine (**1i**) (1.5 eq., 14 mmol) was added and stirred at room temperature for 3 h to afford **3a** in 1.75 g, 69% yield as yellow solid: ¹HNMR (500 MHz, DMSO): **§** 9.64 (s, 2H), 7.44 (d, 2H, *J* = 8.2 Hz), 7.34 – 7.21 (m, 4H), 7.16 – 7.01 (m, 3H), 2.24 (s, 3H). ¹³C-NMR (125 MHz, DMSO): 180.1, 140.6, 137.4, 133.6, 129.4, 128.9, 124.8, 124.4, 124.1, 21.0. HRMS: [M+Na] 265.0769 (calced for $C_{14}H_{14}N_2NaS$: 265.0775).

CHAPTER III

RESULT & DISCCUSION

In this work, we developed the synthesis of isothiocyanate from amines in one pot fashion. The first step involves the formation of dithiocarbamate salt (X) via the treatment of CS₂. The second step is the desulfurization of dithiocarbamate salt (X) into the target isothiocyanate. Our work will focus on developing the method for desulfurization process using various desulfurizing agents.

Scheme 3.1 Synthesis of isothiocyanate via desulfurization process.

3.1 Synthesis of isothiocyanate via light mediated Vilsmeier-Haack reagent

The first desulfurization method that we plan to use was photochemical reaction via Vilsmeier-Haack reagent. Therefore, we first built our photoreactors equipped by either 1) Visible light or 2) Ultraviolet (UV) bulb. There are two light sources for visible photo reactor including 19W white LED (**Picture 3.1, A**) and SMD 5050 LED, 12W green LED (**Picture 3.1, B**). The reaction vessel that used for visible light photo reaction was made from simple borosilicate glass. On the other hand, the UV photo reactor were equipped with either 254 nm UV lamp (**Picture 3.1, C**) or 365 nm UV lamp (**Picture 3.1, D**). Importantly, the quartz was used as reaction vessel due to it excels at transmitting UV light.

Picture 3.1 Our photoreactor in this study A,B) Visible light. C,D) Ultraviolet light.

3.1.1 Effect of light sources for desulfurization via Vilsmeier-Haack reagent 4-Bromoaniline (**1a**) was used as a model substrate for optimized study for preparation of isothiocyanate (**Scheme 3.2**). The first step was the formation of dithiocarbamate salt (**X**) from the reaction between 4-bromoaniline **1a** and CS_2 in presence of DBU as base. The second step was desulfurization via Vilsmeier-Haack light- mediated by using carbon tetrabromide and *N*,*N*-dimethyl formamide (DMF) to provide isothiocyanate **2a**. The parameter that we focus on this study was the light source.

Scheme 3.2 The study for synthesis of isothiocyanate from 4-bromoaniline

First, we tested the light source irradiation including white LED, green LED, 254 nm. UV. and 365 nm. UV. The treatment of CS_2 in the presence of DBU to **1a**

leaded to the complete consume of starting material (1a) within 20 hours. Under visible light irradiation for 16 hours by white LED (Table 3.1, entry 1) and green LED (Table 3.1, entry 2) with the addition of 2.0 equivalences of CBr_4 and 2.0 equivalence of DMF in acetonitrile, the isothiocyanate 2a was isolated in 61% and 51% yields, respectively. The low yield of product 2a was probably due to the decomposition of product under the long irradiation time. Switching the visible light sources to ultraviolet light sources, after the reaction provided product 2a in 65-80% yields in case of 254 nm UV irradiation (Table 3.1, entry 2-4). While using 365 nm UV irradiation, the product 2a was received in slightly better yields (70-77%, Table3.1, entry 6-8) under the same irradiation time. To test the stability of product 2a under UV irradiation, we irradiated isothiocyanate 2a under both ultraviolet light sources for 4 hours. Both reactions were monitored by ¹HNMR spectroscopy to check the decomposition of isothiocyanate product (Figure 3.1). From NMR result, we found newly unidentified peak at aromatic region (7.4-7.5 ppm) and down field peak at 9.97 ppm indicating the composition from 254 nm. UV irradiation case (Figure 3.1, TOP). while UV 365 nm. gave clean NMR spectrum of isothiocyanate 2a (Figure 3.1, Bottom). Therefore, UV 365 nm. LED light is suitable light source for further study.

Table 3.1 light source screening^a

$Br \xrightarrow{H_2} CS_2 (3.0 \text{ eq.}), DBU (3.0 \text{ eq.}), CH_3CN, 20 \text{ h, rt} \xrightarrow{H_3CN} CH_3CN, 20 \text{ h, rt} \xrightarrow{H_3CN} CH_3CN, 20 \text{ h, rt} \xrightarrow{H_3CN} CH_3CN, C$
--

Entry	Light source	Time	%Yieldª
1	White LED	16	61
2	Green LED	16	51
3	UV 254 nm	2	68
4	UV 254 nm	4	80
5	UV 254 nm	6	65
6	UV 365 nm	2	70

7	UV 365 nm	4	77	
8	UV 365 nm	6	76	
^a Reaction condition: 4-bromoamiline (1.0 eq., 0.58 mmol), CS ₂ (3.0 eq., 1.74 mmol),				
DBU (1.74 mmol), CBr ₄ (2.0 eq., 1.16 mmol), DMF (2.0 eq., 1.16 mmol), MeCN (2				
mL), Isolated yield.				

Next, we tested the necessity of the light source and CBr_4/DMF . We therefore ran the control experiment when the reaction test tube was covered by aluminum foil and carried in parallel with the reaction irradiated by 365 nm UV LED (**Table 3.2**, **entry 1-2**). Moderate yield of isothiocyanate **2a** was obtained. This result suggested that light had little effect on the reaction. When we carried in the absence of CBr_4 and DMF under irradiation by 254 nm and 365 nm UV LED, isothiocyanate **2a** was isolated in 16% and 26% yields respectively (**Table 3.2**, **entries 3**, **4**). This finding that suggested that CBr_4 and DMF is crucial factor in our reaction. Next, we ran the reaction under daylight condition and reduced the equivalence of CBr_4 from 2.0 equivalence to 1.0 equivalence. Isothiocyanate **2a** was isolated in good yield (**Table 3.2, entry 5**). This information indicated that light source has no effect and 1.0 equivalent of CBr₄ is sufficient. Moreover, we reduced the time of dithiocarbamate salt (**X**) formation from 20 hours to 4 hours. The target isothiocyanate **2a** was isolated in 78% yield (**Table 3.2, entry 6**). Finally, we carried the reaction without the addition of DMF at the second step. As expected, isothiocyanate **2a** was isolated in 76% yield (**Table 3.2, entry 7**).

Entry	Light Source	CBr ₄ (eq.)	DMF (eq.)	%Yieldª
1	UV 365 nm.	2.0	2.0	77
2	Covered with	2.0	2.0	52
	Aluminium foil			
3	UV 254 nm		2.0	16
4	UV 365 nm		2.0	26
5	Daylight 🗸 👘	1.0	2.0	76
6 ^b	Daylight	1.0	2.0	78
7	Daylight	1.0	-	76
^a Reaction condition: 4-bromoamiline (1.0 eq., 0.58 mmol), CS ₂ (3.0 eq., 1.74 mmol),				
DBU (1.74 mmol), CBr ₄ (2.0 eq., 1.16 mmol), DMF (2.0 eq., 1.16 mmol), CH ₃ CN (2 mL),				
isolated yield. ^b 1 h. in first step NGKORN UNIVERSITY				

Table 3.2	Effect of	light and	DMF ^a	3.0
				A 100 March 1

This observation suggested two knowledges. The first one is the use of CBr_4 under visible light is not required. Therefore, in **section 3.2** we studied the possibility to use other photocatalysts in the absence of CBr_4 . On the other hand, such result suggested that CBr_4 can use for desulfurization directly. We therefore turned our attention to use CBr_4 as only reagent without the need of light and DMF (Vilsmeier-Haack) and the result will be discussed further in **Section 3.3**.

3.2 Synthesis of isthiocyanate using photocatalysts

In this section, we planed to study the synthesis of isothiocyanate via photochemical using dye as photocatalyst. In recently years, our group reported the funtionalization of organosulfur using photocatalysts to perform oxidative cross coupling thiol to disulfide compounds⁶⁸ and oxidative desulfurization to convert thiol to 2-aminobenzoxazole⁶⁹ and guadinine⁷⁰ derivatives (**Scheme 3.3**). For disulfide synthesis, the singlet oxygen as act as an oxidizing agent to generate the corresponding thiol radical (**A**) which can undergo homocoupling to provide disulfide products (**Scheme 3.3**, **eq. 1**). Interestingly, in oxidative desulfurization reaction, the transformation of thiol in to thiol radical (**A**) via singlet electron transfer which can undergo coupling with superoxide to produce peroxysulfur (**B**) intermediate. The elimination of organosulfur took place by substitution by amines to obtaine target 2-aminobenzoxazole or guadinine derivatives (**Scheme 3.3**, **eq. 2 and 3**).

Previous methods from our group

Scheme 3.3 Reviews on organosulfur of previous where method from our group

Based on above idea, we planned to investigate the synthesis of isothiocyanate using photocatalyst. We hypothesized that under photochemical and photocatalytic system, the dithiocarbamate radical **A** was formed via by singlet electron transfer (SET) under photochemical reaction and generating superoxide. Then, the coupling reaction of superoxide and dithiocarbamate radical **A** produces peroxysulfur (**B**) intermediate followed by desulfurization to obtain target isothiocyanate (**Scheme 3.4**).

Scheme 3.4 Synthesis of isothiocyanate using photocatalyst

3.2.1 Photocatalyst and light sources screening

4-Bromoaniline (1a) and carbon disulfide were used as a model substrate for optimized study for preparation of isothiocyanate under visible light irradiation in presence of photocatalysts. We tried the reaction using Ru(bpy)₃Cl₂ as catalyst with white LED. After the formation of dithiocarbamate salt (X), we added 5 mol% of Ru(bpy)₃Cl₂ and irradiated by white LED for 16 hours. The product **2a** was formed in 38% (**Table 3.3, entry 2**) along with recovered staring material **1a** 31% yield. With this promising result, other photocatalyst including Eosin Y, Rose Bengal, Safranin O and pyrene (**Table 3.3**) were screened under similar condition. We found that Safranin O gave the best result providing compound **2a** in 48% yield (**Table 3.3**, **entry 5**). We would like to note that the recovering starting material **1a** was received

in 30-40% even though the formation of dithiocarbamate salt (X) was completely occurred (observing from TLC). We therefore suspected that the dithiocarbamate salt (X) was decomposed to starting material during the desulfurization. Moreover, we ran the control experiment which Ru(bpy)₃Cl₂ was used as catalyst and carried the photoreaction by covering with aluminium foil (**Table 3.3, entry 1**). Isothiocyanate **2a** was isolated in 6% yield along with recovered starting material **1a** 61%. Finally, the control experiment in without photocatalyst was irradiated by white LED. Isothiocyanate **2a** was obtained in 9% yield along with recovered starting material **1a** in 52% (**Table 3.3, Entry 3**)

Table 3.3 Photocatalysts and light sources screening^a

Entry	Photocatalyst	Light source	%Yieldª (2a)	Starting material
	(5 mol%)			1a (% recovery)
1	Ru(bpy) ₂ Cl ₂	Covered with aluminium foil	6	61
2	Ru(bpy) ₂ Cl ₂	White LED	38	31
3	-	White LED	9	52
4	EosinY	Green LED	29	35
5	Roes Bengal	White LED	22	32
6	Safranin O	White LED	48	mixture
				compounds
7	Pyrene	White LED	24	38
8 ^b	Ru(bpy) ₂ Cl ₂	White LED	35	42
^a Reaction condition: 4-bromoamiline (1.0 eq., 0.58 mmol), CS ₂ (3.0 eq., 1.74 mmol), DBU				
(1.74 mmol), Photocatalyst (0.05 eq., 0.029 mmol), MeCN (2 mL), Isolated yield. $^{ m b}$ 1% of				
Ru(bpy) ₂ Cl ₂				

Although the moderate yields were received, this is the first example to prepare isothiocyanate in catalytic version which we plan to further investigate in the near future.

3.3 Synthesis of isthiocyanate by using carbon tetrabromide

Based on results from section **3.1**, the use of CBr_4 alone was possible as seen in **Table 3.1**, entry **7**. We hypothesized that the desulfurization of dithiocarbamate salt (X) for prepration the corresponding isothiocyanate (2) can proceed through **Scheme 3.5**. Therefore, we began to investigate this reaction as presented in the following section.

Scheme 3.5 Synthesis of isothiocyanate using CBr₄

3.2.1 Optimized condition

The optimization of isothiocyanate was studied using 4-bromoaniline (1a) as a model starting material for desulfurization operated with carbon tetrabromide as desulfurizing agent. We planned to investigate various parameters including type of solvents, amount of carbon disulfide, base, reaction times and amount of carbon tetrabromide to provide 4-bromophenyl isothiocyanate (2a) as shown in Scheme 3.6. The yield of this reaction was obtained from the purification by column chromatography and confirmed by mass spectroscopy which those data were shown in next subtopic.

Scheme 3.6 The optimized condition with various parameters

3.2.1.1 Solvent screening^a

Various solvents such as CH₃CN, EtOAc, EtOH, *i*-propanol, acetone and DMSO were tested and the yields of isothiocyanate were presented in **Table 3.4**. Initially, the formation of dithiocarbamate (X) were carried under various solvents in the presence of CS_2 and DBU 3.0 equivalences followed by the treatment of CBr_4 1.0 equivalence for 2 hours. We found that CH_3CN gave the best result and provide isothiocyanate in 74% (**Table 3.4, entry 6**). In other solvent systems, the starting material (**1a**) was remained due to the poor solubility in such solvent. Therefore, acetonitrile was used for further study.

Table 3.4 Effect of solvent type^a

	Entry	Solvent	%Yield ^b	
	1	EtOAc	52	
	2	EtOH	10	
4	าพ3ลงก	<i>i</i> -Propanol	ยาล 18	
2	4	Acetone	22 vers ²²	
	5	DMSO	46	
	6	CH ₃ CN	74	
	^a Reaction condition: 4-bromoaniline			
	(1.0 eq., 0.58 mmol), CS ₂ (3.0 eq., 1.74			
	mmol), CBr4 (1.0 eq., 0.58 mmol) DBU			
	(3.0 eq., 1.74 mmol), Solvent (2.0 mL).			
	^b Isolated yield			

3.2.1.2 Base Screening^a

Next, organic and inorganic bases were investigated and summarized in **Table 3.4**. We performed the reaction in acetonitrile using carbon disulfide 3.0 equivalences and CBr_4 1.0 equivalence. Among organic bases, DBU gave the high yield of isothiocyanate (**2a**) in 74% (**Table 3.5, entry 1-3**). On the other hand, when we switched to inorganic base such as K_2CO_3 , Cs_2CO_3 and NaOAc, the isothiocyanates were obtained in lower yields, respectively (43-0%, **Table 3.5, entry 4-6**). We found that it is probably due to the poor formation of dithiocarbamate salt (**X**) in the first step causing poor solubility of those bases. Based on these results, we selected DBU (**Table 3.5, entry 1**) as base for further study.

Table 3.5 Effect of Base^a

3.2.1.3 Amount of CS₂ and CBr₄^a

In this section, we would like to investigate the amount of CS₂ which used for the formation of dithiocarbamate salt (X) and the amount of CBr_4 which used for desulfurization during the second step (Table 3.6). We carried the reaction using 3.0 equivalences of DBU in acetonitrile. When only 1.5 equivalences of carbon disulfide were used, we observed the remaining starting material 1a and only 53% of isothiocyanate was produced (Table 3.6, entry 1). To ensure the complete conversion of 1a into the corresponding thiocarbamate salt (X), 3.0 equivalences of carbon disulfide was added (Table 3.6, entry 2). The product 2a was isolated in 74% yield without the remaining starting material. On the other hand, increasing the amount of CS₂ to 5.0 equivalences gave no significant improvement (Table 3.6, entry 3). Therefore, the use of 3.0 equivalence of CS_2 was sufficient to convert amine 1a to dithiocarbamate salt (X) and was used for further study. Then, we studied the amount of CBr₄ for desulfurization step using 3.0 equivalences of CS₂ (Table 3.6, entry 4-6). When the reaction was performed without CBr₄, only 12% of isothiocyanate was isolated (Table 3.6, entry 4). Using 1.5 equivalence of CBr₄, the isothiocyanate were produced in 85% after 2 hours (Table 3.6, entry 6). During the addition of CBr₄ we observed the increase of temperature which could result in the decomposition of the intermediate or product. Therefore, we carried the desulfurization step at 0°C. However, the isothiocyanates was isolated in slightly lower yield (78%) (Table 3.6, entry 7). We hypothesized that there were remaining unreacted dithiocarbamate salt (X). Then, when we reduced the desulfurization time from 2 to 1 hour, we received the similar yield of isothiocyanate 2a (Table 3.6, entry 8). Therefore, this condition was used as our optimize condition for further study.

Table 3.6 The amount of CS_2 and CBr_4^a

Br NH ₂ CS ₂ (eq.) DBU (3.0 eq.) CH ₃ CN, 4h, rt		CBr ₄ (eq.) 2h, rt	Br 2a
---	--	----------------------------------	-------

Entry	CS ₂ (eq.)	CBr4 (eq.)	%Yieldª	
1	1.5	1.0	53	
2	3.0	1.0	74	
3	5.0	1.0	75	
4	3.0		12	
5	3.0	0.5	53	
6	3.0	1.5	85	
7 ^c	3.0	1.5	78	
8 ^d	3.0	1.5	85	
^a Reaction condition: 4-bromoaniline (1.0 eq., 0.58				
mmol), CS ₂ (1.5-5.0 eq., 0.87-0.29 mmol), CBr ₄ (0-1.5				
eq., 0-0.87 mmol) DBU (3.0 eq., 1.74 mmol), CH₃CN				
(2.0 mL). ^b Isolated yield. ^C The reaction was perform				
under 0-5 °C. ^d the desulfurization time for 1 h.				

3.2.2 Substrate scope of amines

With the optimized condition in our hands as presented in **Table 3.6**, entry 8, we next expanded the scope of our reaction. Various amines such as aryl amines, benzyl amines, bicyclic amines, aliphatic amines and amino phenols were tested under our optimized condition to prepare the corresponding isothiocyanates.

3.2.2.1 Aromatic amines carrying halogen groups^a.

Aryl amines containing halogen atoms such as 4-bromo (**1a**), 4-fluoro (**1b**), 4chloro (**1c**), 4-iodo (**1d**) and 2-iodo (**1e**) were subjected to optimize condition and isothiocyanates (**2a-2e**) were isolated in good to excellent yields (**Scheme 3.7**).

^aReaction condition: amine (1.0 eq., 0.58 mmol), CS_2 (3.0 eq., 1.74 mmol), CBr_4 (1.5 eq., 0.87 mmol), DBU (3.0 eq., 1.74 mmol), CH_3CN (2.0 mL), isolated yield. Scheme 3.7 Aromatic amines carrying halogen groups^a.

3.2.2.2 Aromatic amines carrying electron donating groups^a

First, aniline (1f) was first tested, and we were able to isolate isothiocyanate (2f) in 84% yield (Scheme 3.8). Then, various aryl amines carrying electron donating groups such methyl (1g), 2,6-dimethyl (1h), 4-methoxy (1i) and 2-methoxy (1j) were studied. The isothiocyanate derivatives (2g-2j) were isolated in 88-95% yields. Interestingly, aromatic amine carrying NH-Ts (1dd) group tolerated under our condition and provided the target isothiocyanate (2dd) in 54% yield (Scheme 3.8).

^aReaction condition: amine (1.0 eq., 0.58 mmol), CS_2 (3.0 eq., 1.74 mmol), CBr_4 (1.5 eq., 0.87 mmol), DBU (3.0 eq., 1.74 mmol), CH_3CN (2.0 mL), isolated yield. Scheme 3.8 Aromatic amines carrying electron donating groups^a

3.2.2.3 Aromatic amine carrying electron withdrawing groups^a

Aromatic amines containing with electron withdrawing groups such as 4trifluoromethyl (1k), nitro (1l), ethyl benzoate (1m) and 4-cyano (1n) and 3-cyano (1o) groups had strong effect on the reaction efficiency providing low to moderate yields of isothiocyanates (2k-2o) as shown in Scheme 3.9. We observed the remaining starting materials in all cases indicating that the formation of dithiocarbamate salt (X) is poor in our reaction. So, we increased the amount of CS_2 from 3.0 equivalences to 5.0 equivalences. Fortunately, the yield of target isothiocyanates (2k-2o) were dramatically increased (Scheme 3.9). Therefore, we hypothesized that the first step which is the formation of dithiocarbamate salt (X) is the rate determining step in our process.

^aReaction condition: amine (1.0 eq., 0.58 mmol), CS_2 (3.0 eq., 1.74 mmol), CBr_4 (1.5 eq., 0.87 mmol), DBU (3.0 eq., 1.74 mmol), CH_3CN (2.0 mL), isolated yield. ^b5.0 eq. of CS_2

Scheme 3.9 Aromatic amine carrying electron withdrawing groups^a

3.2.2.4 Benzylamines scope^a

Next, we expanded amine substrates into benzylamine derivatives as shown in **Scheme 3.10**. Under optimized condition, benzylamine (**1p**) can be converted into isothiocyanate (**2p**) in 73% yield as shown in **Scheme 3.10**. Similarly, 4-methoxy benzylamine (**1q**), benzhydryl amine (**1r**) and 1-phenylethylamine (**1s**) were subjected to the thiocarbamate formation following by desulfurization to provide corresponding isothiocyanates (**2q-2s**) in 65-84% yields as shown in **Scheme 3.10**.

^aReaction condition: Amine (1.0 eq., 0.58 mmol), CS_2 (3.0 eq., 1.74 mmol), CBr_4 (1.5 eq., 0.87 mmol), DBU (3.0 eq., 1.74 mmol), CH_3CN (2.0 mL), isolated yield. Scheme 3.10 Benzylamines scope^a

3.2.2.5 Aliphatic amines scope^a

Then, we extended our methodology to prepare isothiocyanates from aliphatic amines. Primary aliphatic amines such as cyclohexylamine (**1t**) and hexylamine (**1u**) were converted into corresponding isothiocyanate in excellent yields under optimized condition as shown in **Scheme 3.11**. Then, the chiral amino acid L-phenylalanine methyl ester hydrochloride was carried under the optimal condition and provided target isothiocyanate **2v** in 34% as seen in **Scheme 3.11**. Although, the yield of this transformation was moderate due to the poor solubility of L-phenylalanine methyl ester hydrochloride in acetonitrile.

^aReaction condition: amine (1.0 eq., 0.58 mmol), CS_2 (3.0 eq., 1.74 mmol), CBr_4 (1.5 eq., 0.87 mmol), DBU (3.0 eq., 1.74 mmol), CH_3CN (2.0 mL), isolated yield.

Scheme 3.11 Aliphatic amines scope^a

3.2.2.6 Hetero and homocyclic amines scope^a

Next, we expanded amine substrates into bicyclic amine derivatives such as 5-aminobenzimidazole (1w), 5-aminoindole (1x) and 1-napthylamine (1y) as shown in Scheme 3.12. The corresponding isothiocyanates (2w-2y) were isolated in 71-81% yields as shown in Scheme 3.12. We would like to note that the nitrogen containing heterocycle in substrate 1w and 1x were easy to undergo oxidation.

^aReaction condition: Amine (1.0 eq., 0.58 mmol), CS_2 (3.0 eq., 1.74 mmol), CBr_4 (1.5 eq., 0.87 mmol), DBU (3.0 eq., 1.74 mmol), CH_3CN (2.0 mL), isolated yield.

Scheme 3.12 Hetero and Homocyclic amines scope^a

3.2.2.7 Amino phenols and its derivatives scope^a

Next, we extended our scope into aryl amine bearing hydroxy group in various positions such as 4-aminophenol (1z), 3-aminophenol (1aa), 2-aminophenol (1bb) and 2-amino-5-methylphenol (1bb) as shown in Scheme 3.13. For 4aminophenol (1z) and 3-aminophenol (1aa) were reacted with CS_2/CBr_4 providing the corresponding isothiocyanates 2z and 2aa in good to excellent yields (Scheme 3.13). This observation suggested that the phenolic group can tolerate to our reaction condition. Interestingly, when 2-hydroxyaniline derivatives such as 1bb and 1cc were subjected to our reaction condition, we did not observe expected isothiocyanates 2bbx and 2ccx. Mercaptobenzoxales 2bb and 2cc were isolated in excellent yields (Scheme 3.13). We believe that the intermediate of isothiocyanates 2bbx and 2ccx were rapidly underwent intramolecular cyclization with adjacent phenolic groups. Although, the phenol group can be survived in the reaction, we would like to test our condition to other common alcohol protecting groups. Therefore, 4aminophenols with tert-butyl silyl (1ee) and tosyl groups protecting (1ff) were subjected to our reaction condition providing the expected isothiocyanates 2ee and 2ff in good to excellent yields. Importantly, we did not observed the free phenol isothiocyanate (2z) indicating that such protecting groups are tolerated in our reaction condition (Scheme 3.13).

> จุฬาลงกรณีมหาวิทยาลัย Chulalongkorn University

^aReaction condition: 4-bromoaniline (1.0 eq., 0.58 mmol), CS_2 (3.0 eq., 1.74 mmol), CBr_4 (1.5 eq., 0.87 mmol), DBU (3.0 eq., 1.74 mmol), CH_3CN (2.0 mL), isolated yield. Scheme 3.13 Amino phenols and its derivatives scope^a

3.2.3 Substrate scopes for unsymmetric thiourea

With the successful in desulfurization of dithiocarbamate salt (X) to synthesize isothiocyanates, we would like to extend our method to prepare unsymmetrical thiourea in one-pot fashion from amines. The reason is because thiourea derivatives are important for bioactive compounds and important building block in medicinal chemistry. Following by our developed methodology, we plan to add amines into *in situ* generated isothiocyanate to provide unsymmetric thioureas (Scheme 3.14). *p*-toluidine (1f) was chosen as a model to convert into *p*-tolyl isothiocyanate (2f) *in situ* which was future reacted with 1.5 equivalence of amines. Aromatic amines such as *p*-anisidine (1i), aniline (1f), 4-choloroaniline (1c), 4-bromoaniline (1a), benzylamine (1p), 1-phenylethylamine (1s) and benzhydryl amine (1r) and aliphatic amines such as cyclohexyl amine (1t) and butylamine (1u) were reacted smoothly providing the unsymmetrical thioureas (3a-3i) in 34-88% yields (Scheme 3.14). However, bulky amines such as benzhydryl amine and cyclohexylamine and poor nucleophile such as butylamine gave low yields of target thioureas. Therefore, the amount of amines

was increased to 3.0 equivalences. Fortunately, we were able to prepare unsymmetrical thioureas **3g-3i** in much better yields (42-85%) (**Scheme 3.14**)

^aReaction condition: *p*-toluidine **1f** (1.0 eq., 0.58 mmol), CS₂ (3.0 eq., 1.74 mmol), CBr₄ (1.5 eq., 0.87 mmol), DBU (3.0 eq., 1.74 mmol), CH₃CN (2.0 mL), secondary amine (1.5 eq., 0.87 mmol), Isolated yield. ^b1.74 mmol of second amine was perform. **Scheme 3.14** Unsymmetric thioureas scope^a

งหาลงกรณ์มหาวิทยาลัย

3.2.4 Gram-scale synthesis of isothiocyanate and unsymmetric thiourea

After the successful preparation of isothiocyanates and unsymmetrical thioureas in laboratory scale, the gram-scale preparation isothiocyanate was considered (Scheme 3.15, eq. 1). 1.0 gram of 4-bromoaniline 1a was subjected to our optimized condition providing isothiocyanate in 79% yield. Moreover, 1.0 gram of *p*-toluidine was converted into thiourea (X) in one-pot fashion via 1) formation of dithiocarbamate with CS_2 2) desulfurization with CBr_4 and 3) addition with p-anisidine to provide thiourea in 69% yield (Scheme 3.15, eq. 2).

3.2.5 By-product detection by SEM/EDX

We hypothesized that the by-product of our reaction must contain sulfur which came from desulfurization reaction under the optimized condition as shown in **Scheme 3.16**. Therefore, we set the reaction and filtrate the solid precipitate. After filtration, it washed with acetonitrile and dried over high vacuum. The solid was exposed to characterize with scanning electron microscope (SEM) equipped with x-ray spectroscopy (EDX). The SEM/EDX results indicated that the particles contain with sulfur, carbon and bromine as a main element distributing in surface on particle (**Picture 3.2**). Importantly, the element distribution revealed that carbon and bromide elements bind together as they both are located in the same area while the sulfur atom displayed independently in another surface area. The result suggests that the formation of S₈ atom as the most stable form⁷¹ as shown in **Picture 3.2**.

By-product particle

SEM image

EDX image

Picture 3.2 SEM-EDX results from by-product detection

3.2.6 Proposed mechanism

Based on the results from mechanistic study and reviews⁵⁶⁻⁵⁸. We proposed the reaction mechanism of our reaction as shown in Scheme 3.17. Initially, the amine reacted with carbon disulfide in presence of DBU to generate dithiocarbamate salt (X) intermediate which undergo nucleophilic attack to bromine atom of carbon tetrabromide leading to the formation of intermediate of sulfenyl bromide (4'). Then, sulfur atom that attached to bromine was eliminated to give isothiocyanate (Scheme 3.17). The by-product of this reaction is bromoform (CHBr₃) which was identified by NMR spectroscopy (singlet at $\pmb{\delta}$ = 6.82 ppm.) along with S_8 and DBU-Br salt were detected in SEM/EDX experiment.

73

Scheme 3.17 Proposed mechanism

CHAPTER IV

CONCLUSION

In conclusion, we developed 2 methods including photocatalytic and stoichiometry desulfurization process of dithiocarbamate salt (X). For photocatalysis, we could prepare 4-bromophenyl isothiocyanate in 48% yield from 4-bromoaniline in the present of safranin O as photocatalyst as shown in Scheme 4.1. However, generality of this method was limited. Therefore, we decided to investigate this photocatalytic method in the near future. For stoichiometry desulfurization process, we successfully synthesize isothiocyanate derivatives by using CBr_4 as a mediator. Under optimize condition, a various amine carrying halogen atom, electron donating, electron withdrawing group, heterocyclic, aliphatic, phenolic and protecting group are able to tolerate under our optimize condition. In addition, isothiocyanate derivatives were obtained in moderate to excellent yield for 32 examples. Moreover, we also prepare unsymmetrical thiourea from the generating of isothiocyanate in situ which are able to react with aliphatic and aromatic amine in moderate to excellent yield for 9 examples as shown in Scheme 4.1. Gram-scale synthesis of isothiocyanates and unsymmetric thioureas are accomplished under optimize condition in good yield. Based on mechanistic study including NMR monitoring and SEM/EDX, we proposed the mechanism involving 1) the nucleophilic attack dithiocarbamate salt (X) to bromine atom of carbon tetrabromide 2) the formation of intermediate of sulfenyl bromide intermediate 3) desulfurization process. Importantly, our condition offers several advantages such as the use of low toxic reagent, easy procedure in open-air condition, one-pot fashion and gram scalability.

Scheme 4.1 Synthesis of isothiocyanate using 1) photocatalyst 2) CBr₄ mediator

REFERENCES

1. Hou, D.-X.; Fukuda, M.; Fujii, M.; Fuke, Y., Transcriptional regulation of nicotinamide adenine dinucleotide phosphate: quinone oxidoreductase in murine hepatoma cells by 6-(methylsufinyl)hexyl isothiocyanate, an active principle of wasabi (Eutrema wasabi Maxim). *Cancer Letters*, **2000**, 161, 195-200.

2. Yao, A.; Shen, Y.; Wang, A.; Chen, S.; Zhang, H.; Chen, F.; Chen, Z.; Wei, H.; Zou, Z.; Shan, Y.; Zhang, X., Sulforaphane induces apoptosis in adipocytes via Akt/p70s6k1/Bad inhibition and ERK activation. *Biochemical and Biophysical Research Communications*, **2015**, 465, 696-701.

3. Waterman, C.; Cheng, D. M.; Rojas-Silva, P.; Poulev, A.; Dreifus, J.; Lila, M. A.; Raskin, I., Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro. *Phytochemistry*, **2014**, 103, 114-122.

4. Tumer, T. B.; Rojas-Silva, P.; Poulev, A.; Raskin, I.; Waterman, C., Direct and Indirect Antioxidant Activity of Polyphenol- and Isothiocyanate-Enriched Fractions from Moringa oleifera. *Journal of Agricultural and Food Chemistry*, **2015**, 63, 1505-1513.

5. Li, D.; Shu, Y.; Li, P.; Zhang, W.; Ni, H.; Cao, Y., Synthesis and structure–activity relationships of aliphatic isothiocyanate analogs as antibiotic agents. *Medicinal Chemistry Research*, **2013**, 22, 3119-3125.

6. Hwang, E. S.; Jeffery, E. H., Evaluation of urinary N-acetyl cysteinyl allyl isothiocyanate as a biomarker for intake and bioactivity of Brussels sprouts. *Food and Chemical Toxicology*, **2003**, 41, 1817-1825.

7. Zhang, Y.; Tang L Fau - Gonzalez, V.; Gonzalez, V., Selected isothiocyanates rapidly induce growth inhibition of cancer cells., *Model Cancer Therapeutics*, **2003**, 10, 1045-1052.

Lawson, A. P.; Long, M. J. C.; Coffey, R. T.; Qian, Y.; Weerapana, E.; El Oualid,
F.; Hedstrom, L., Naturally Occurring Isothiocyanates Exert Anticancer Effects by
Inhibiting Deubiquitinating Enzymes. *Cancer Research*, 2015, 75, 5130.

9. Xiao, D.; Vogel, V.; Singh, S. V., Benzyl isothiocyanate–induced apoptosis in human breast cancer cells is initiated by reactive oxygen species and regulated by Bax

and Bak. Molecular Cancer Therapeutics, 2006, 5, 2931.

10. Park, J. E.; Sun, Y.; Lim, S. K.; Tam, J. P.; Dekker, M.; Chen, H.; Sze, S. K., Dietary phytochemical PEITC restricts tumor development via modulation of epigenetic writers and erasers. *Scitific Reports*, **2017**, *7*, 40569-40582.

11. Kasukabe, T.; Honma, Y.; Okabe-Kado, J.; Higuchi, Y.; Kato, N.; Kumakura, S., Combined treatment with cotylenin A and phenethyl isothiocyanate induces strong antitumor activity mainly through the induction of ferroptotic cell death in human pancreatic cancer cells. *Oncol Rep*, **2016**, 36, 968-976.

Barbarella, G., Oligothiophene Isothiocyanates as Fluorescent Markers. *Chemistry* – A European Journal, 2002, 8, 5072-5077.

13. Ortiz Mellet, C.; García Fernández, J. M., Carbohydrate Microarrays. *ChemBioChem*, **2002**, 3, 819-822.

Dong, S.; Roman, M., Fluorescently Labeled Cellulose Nanocrystals for
Bioimaging Applications. *Journal of the American Chemical Society*, 2007, 129, 13810 13811.

Khan, S.; Volla, C. M. R., Cu-catalyzed Cascade Cyclization of Isothiocyanates,
Alkynes, and Diaryliodonium Salts: Access to Diversely Functionalized Quinolines.
Chemistry – A European Journal, 2017, 23, 12462-12466.

Pujol, A.; Lafage, M.; Rekhroukh, F.; Saffon-Merceron, N.; Amgoune, A.;
Bourissou, D.; Nebra, N.; Fustier-Boutignon, M.; Mézailles, N., A Nucleophilic Gold(III)
Carbene Complex. *Angewandte Chemie International Edition*, **2017**, 56, 12264-12267.
Chan, M.; Kakitsubata, Y.; Hayashi, T.; Ahmadi, A.; Yao, S.; Shukla, N. M.;
Oyama, S.-y.; Baba, A.; Nguyen, B.; Corr, M.; Suda, Y.; Carson, D. A.; Cottam, H. B.;
Wakao, M., Structure–Activity Relationship Studies of Pyrimido[5,4-b]indoles as Selective
Toll-Like Receptor 4 Ligands. *Journal of Medicinal Chemistry*, **2017**, 60, 9142-9161.

18. Feng, M.; Yang, P.; Yang, G.; Chen, W.; Chai, Z., FeCl3-Promoted [3 + 2]Annulations of γ -Butyrolactone Fused Cyclopropanes with Heterocumulenes. *The Journal of Organic Chemistry*, **2018**, 83, 174-184.

19. Fujiwara, S.-i.; Shin-Ike, T.; Sonoda, N.; Aoki, M.; Okada, K.; Miyoshi, N.; Kambe, N., Novel selenium catalyzed synthesis of isothiocyanates from isocyanides and

elemental sulfur. Tetrahedron Letters, 1991, 32, 3503-3506.

20. Albanese, D.; Penso, M., Synthesis of Isothiocyanates by Reaction of Amides with Carbon Disulfide in the Presence of Solid Potassium Carbonate/Sodium Hydroxide Mixture. *Synthesis*, **1991**, 11, 1001-1002.

21. Kim, J. N.; Jung, K. S.; Lee, H. J.; Son, J. S., A facile one-pot preparation of isothiocyanates from aldoximes. *Tetrahedron Letters*, **1997**, 38, 1597-1598.

22. Molina, P.; Alajarin, M.; Arques, A., Convenient Improved Syntheses of Isocyanates or Isothiocyanates from Amines. *Synthesis*, **1982**, 07, 596-597.

23. Olejniczak, B.; Zwierzak, A., The Improved Phosphoramidate Route to Isothiocyanates. *Synthesis*, **1989**, 4, 300-301.

24. Valette, L.; Poulain, S.; Fernandez, X.; Lizzani-Cuvelier, L., Efficient and solventfree microwave-accelerated synthesis of isothiocyanates using Lawesson's reagent. *Journal of Sulfur Chemistry*, **2005**, 26, 155-161.

25. Shan, W. G.; Bian, G. F.; Su, W. K.; Liang, X. R., A FACILE ONE-POT PREPARATION OF ISOTHIOCYANATES FROM N-FORMAMIDES AND SULFUR POWDER WITH bis(TRICHLOROMETHYL) CARBONATE. *Organic Preparations and Procedures International*, **2004**, 36, 283-286.

26. Dyer, E.; Johnson, T. B., NITRO AND AMINO TRIPHENYLGUANIDINES1. *Journal of the American Chemical Society*, **1932**, 54, 777-787.

27. Larsen, C.; Steliou, K.; Harpp, D. N., Organic sulfur chemistry. 25. Thiocarbonyl transfer reagents. *The Journal of Organic Chemistry*, **1978**, 43, 337-339.

28. Kim, S.; Yi, K. Y., 1,1'-Thiocarbonyldi-2,2'-pyridone. A new useful reagent for functional group conversions under essentially neutral conditions. *The Journal of Organic Chemistry*, **1986**, 51, 2613-2615.

29. Li, Z.-Y.; Ma, H.-Z.; Han, C.; Xi, H.-T.; Meng, Q.; Chen, X.; Sun, X.-Q., Synthesis of Isothiocyanates by Reaction of Amines with Phenyl Chlorothionoformate via One-Pot or Two-Step Process. *Synthesis*, **2013**, 45, 1667-1674.

30. Scattolin, T.; Klein, A.; Schoenebeck, F., Synthesis of Isothiocyanates and Unsymmetrical Thioureas with the Bench-Stable Solid Reagent (Me₄N)SCF₃. *Organic Letters*, **2017**, 19, 1831-1833.

31. Li, G.; Tajima, H.; Ohtani, T., An Improved Procedure for the Preparation of

Isothiocyanates from Primary Amines by Using Hydrogen Peroxide as the

Dehydrosulfurization Reagent. The Journal of Organic Chemistry, 1997, 62, 4539-4540.

32. Bian, G.; Shan, W.; Su, W., A One-pot Preparation of Isothiocyanates from Amines Using Two Phosgene Substitutes: Bis-(trichloromethyl) Carbonate and Trichloromethyl Chloroformates. *Journal of Chemical Research*, **2005**, 9, 585-586.

33. Wong, R.; Dolman, S. J., Isothiocyanates from Tosyl Chloride Mediated Decomposition of in Situ Generated Dithiocarbamic Acid Salts. *The Journal of Organic Chemistry*, **2007**, 72, 3969-3971.

34. Munch, H.; Hansen, J. S.; Pittelkow, M.; Christensen, J. B.; Boas, U., A new efficient synthesis of isothiocyanates from amines using di-tert-butyl dicarbonate. *Tetrahedron Letters*, **2008**, 49, 3117-3119.

35. Bian, G.; Qiu, H.; Jiang, J.; Wu, J.; Lai, G., A New Method for the Synthesis of Isothiocyanates from Dithiocarbamates or Alkyl Amines Using Chlorosilanes as Decomposition Reagents. *Phosphorus, Sulfur, and Silicon and the Related Elements,* **2007**, 182, 503-508.

36. Ghosh, H.; Yella, R.; Nath, J.; Patel, B. K., Desulfurization Mediated by Hypervalent Iodine(III): A Novel Strategy for the Construction of Heterocycles. *European Journal of Organic Chemistry*, **2008**, 36, 6189-6196.

37. Nath, J.; Ghosh, H.; Yella, R.; Patel, B. K., Molecular Iodine Mediated Preparation of Isothiocyanates from Dithiocarbamic Acid Salts. *European Journal of Organic Chemistry*, **2009**, 12, 1849-1851.

38. Jamir, L.; Alimenla, B.; Kumar, A.; Sinha, D.; Sinha, U. B., Synthesis and Reactivity Studies of a New Reagent, Ethyltriphenylphosphonium Tribromide. *Synthetic Communications*, **2010**, 41, 147-155.

39. Kuotsu Nb Fau - Jamir, L.; Jamir L Fau - Phucho, T.; Phucho T Fau - Sinha, U. B.; Sinha, U. B., A Novel One-pot Synthesis of Isothiocyanates and Cyanamides from Dithiocarbamate Salts Using Environmentally Benign Reagent Tetrapropylammonium Tribromide. *Acta Chimica Slovenica*, **2017**, 64, 832-841.

40. Jamir, L.; Ali, A. R.; Ghosh, H.; Chipem, F. A. S.; Patel, B. K., The thiocarbonyl 'S' is softer than thiolate 'S': A catalyst-free one-pot synthesis of isothiocyanates in water. *Organic & Biomolecular Chemistry*, **2010**, 8, 1674-1678. Fu, Z.; Yuan, W.; Chen, N.; Yang, Z.; Xu, J., Na₂S₂O₈-mediated efficient synthesis of isothiocyanates from primary amines in water. *Green Chemistry*, **2018**, 20, 4484-4491.
Zhang, Z.; Wu, H.-H.; Tan, Y.-J., A simple and straightforward synthesis of phenyl isothiocyanates, symmetrical and unsymmetrical thioureas under ball milling. *RSC Advances*, **2013**, 3, 16940-16944.

43. Janczewski, Ł.; Gajda, A.; Gajda, T., Direct, Microwave-Assisted Synthesis of Isothiocyanates. *European Journal of Organic Chemistry*, **2019**, 14, 2528-2532.

44. Seelam, M.; Shaik, B.; Kammela, P. R., Cobalt mediated by desulfurization toward the synthesis of isothiocyanates. *Synthetic Communications*, **2016**, 46, 1759-1765.

45. Mandapati, U.; Pinapati, S.; Rudraraju, R., Copper promoted desulfurization towards the synthesis of isothiocyanates. *Tetrahedron Letters*, **2017**, 58, 125-128.

46. Pinapati, S.; Mandapati, U.; Rudraraju, R. R., Iron-Mediated Desulphurization Towards the Synthesis of 2-Halo Aromatic Isothiocyanates. *ChemistrySelect*, **2017**, 2, 295-299.

47. Pendem, V. B.; Nannapaneni, M., Iron-promoted one-pot approach: Synthesis of isothiocyanates. *Phosphorus, Sulfur, and Silicon and the Related Elements,* **2020**, 195, 485-490.

48. Appel, R., Tertiary Phosphane/Tetrachloromethane, a Versatile Reagent for Chlorination, Dehydration, and P-N Linkage. *Angewandte Chemie International Edition in English*, **1975**, 14, 801-811.

49. Dyson, B. S.; Burton, J. W.; Sohn, T.-i.; Kim, B.; Bae, H.; Kim, D., Total Synthesis and Structure Confirmation of Elatenyne: Success of Computational Methods for NMR Prediction with Highly Flexible Diastereomers. *Journal of the American Chemical Society*, **2012**, 134, 11781-11790.

50. Fu, X.; Huang, P.; Zhou, G.; Hu, Y.; Dong, D., Divergent synthesis of fully substituted isoxazoles and spiro-fused pyrazolin-5-ones from cyclopropyl oximes. *Tetrahedron*, **2011**, 67, 6347-6351.

51. Jiang, H.; Lu, W.; Cai, Y.; Wan, W.; Wu, S.; Zhu, S.; Hao, J., Study on the tandem synthesis of optically active 2-substituted 4 (or 5)-phenyl-1,3-oxazolines. *Tetrahedron*, **2013**, 69, 2150-2156.

52. Kijrungphaiboon, W.; Chantarasriwong, O.; Chavasiri, W., Cl_3CCN/PPh_3 and CBr_4/PPh_3 : Two Efficient Reagent Systems for the Preparation of N-Heteroaromatic Halides. *ChemInform*, **2012**, 43, 674-677.

53. Billing, P.; Brinker, U. H., Mild One-step Synthesis of Dibromo Compounds from Cyclic Ethers. *The Journal of Organic Chemistry*, **2012** 77, 11227-11231.

54. Huo, C.; Chan, T. H., Carbon Tetrabromide/Sodium Triphenylphosphine-msulfonate (TPPMS) as an Efficient and Easily Recoverable Catalyst for Acetalization and Tetrahydropyranylation Reactions. *Advanced Synthesis & Catalysis*, **2009**, 351, 1933-1938.

55. Zhang, L.; Luo, Y.; Fan, R.; Wu, J., Metal- and solvent-free conditions for the acylation reaction catalyzed by carbon tetrabromide (CBr_4). *Green Chemistry*, **2007**, 9, 1022-1025.

56. Tan, J.; Liang, F.; Wang, Y.; Cheng, X.; Liu, Q.; Yuan, H., Carbon Tetrabromide-Mediated Carbon–Sulfur Bond Formation via a Sulfenyl Bromide Intermediate. *Organic Letters*, **2008**, 10, 2485-2488.

57. Keshari, T.; Kapoorr, R.; Yadav, L. D. S., Carbon tetrabromide mediated oxidative cyclocondensation of ketones and thioureas: an easy access to 2-aminothiazoles. *Tetrahedron Letters*, **2015**, 56, 5623-5627.

58. Liang, F.; Tan, J.; Piao, C.; Liu, Q., Carbon Tetrabromide Promoted Reaction of Amines with Carbon Disulfide: Facile and Efficient Synthesis of Thioureas and Thiuram Disulfides. *Synthesis-stuttgart*, **2008**, 2008, 3579-3584.

59. Hirashima, S.-i.; Nobuta, T.; Tada, N.; Itoh, A., Acceleration of Norrish Type I Reaction with Molecular Oxygen and Catalytic CBr₄. *Synlett*, **2009**, 12, 2017-2019.

60. Hirashima, S.-i.; Kudo, Y.; Nobuta, T.; Tada, N.; Itoh, A., Aerobic photo-oxidative cleavage of the C–C double bonds of styrenes. *Tetrahedron Letters*, **2009**, 50, 4328-4330.

61. Tada, N.; Ban, K.; Ishigami, T.; Nobuta, T.; Miura, T.; Itoh, A., Tandem oxidation/bromination of ethyl aromatics to α, α -dibromoacetophenones with molecular oxygen under visible light irradiation. *Tetrahedron Letters*, **2011**, 52, 3821-3824.

62. Vilsmeier, A.; Haack, A., Über die Einwirkung von Halogenphosphor auf Alkylformanilide. Eine neue Methode zur Darstellung sekundärer und tertiärer p-Alkylaminobenzaldehyde. *Berichte der deutschen chemischen Gesellschaft (A and B Series)*, **1927**, 60, 119-122.

63. Meth-Cohn, O.; Stanforth, S. P., 3.5 - The Vilsmeier–Haack Reaction. *Comprehensive Organic Synthesis*, **1991**, 777-794.

64. Dai, C.; Narayanam, J. M. R.; Stephenson, C. R. J., Visible-light-mediated conversion of alcohols to halides. *Nature Chemistry*, **2011**, 3, 140-145.

65. Konieczynska, M. D.; Dai, C.; Stephenson, C. R. J., Synthesis of symmetric anhydrides using visible light-mediated photoredox catalysis. *Organic & Biomolecular Chemistry*, **2012**, 10, 4509-4511.

Srivastava, V. P.; Yadav, A. K.; Yadav, L. D. S., The Beckmann Rearrangement
Executed by Visible-Light-Driven Generation of Vilsmeier–Haack Reagent. *Synlett*,
2014, 25, 665-670.

67. McCallum, T.; Barriault, L., Light-Enabled Synthesis of Anhydrides and Amides. *The Journal of Organic Chemistry*, **2015**, 80, 2874-2878.

68. Tankam, T.; Poochampa, K.; Vilaivan, T.; Sukwattanasinitt, M.; Wacharasindhu, S., Organocatalytic visible light induced S–S bond formation for oxidative coupling of thiols to disulfides. *Tetrahedron*, **2016**, 72, 788-793.

69. Rattanangkool, E.; Sukwattanasinitt, M.; Wacharasindhu, S., Organocatalytic Visible Light Enabled SNAr of Heterocyclic Thiols: A Metal-Free Approach to 2-Aminobenzoxazoles and 4-Aminoquinazolines. *The Journal of Organic Chemistry*, **2017**, 82, 13256-13262.

70. Saetan, T.; Sukwattanasinitt, M.; Wacharasindhu, S., A Mild Photocatalytic Synthesis of Guanidine from Thiourea under Visible Light. *Organic Letters*, **2020**, 22, 7864-7869.

71. Steudel, R., Inorganic Ring Systems. *Homocyclic sulfur molecules*, **1982**, 102, 149-176.

Figure A7 ¹³C-NMR spectrum of 2c (CDCl₃, 125 MHz)

Figure A9 ¹³C-NMR spectrum of 2d (CDCl₃, 125 MHz)

Figure A13 ¹³C-NMR spectrum of 2f (CDCl₃, 125 MHz)

Figure A15 ¹³C-NMR spectrum of 2g (CDCl₃, 125 MHz)

Figure A23 ¹³C-NMR spectrum of 2k (CDCl₃, 125 MHz)

Figure A26 ¹³C-NMR spectrum of 2l (CDCl₃, 125 MHz)

Figure A28 ¹³C-NMR spectrum of 2m (CDCl₃, 125 MHz)

Figure A34 ¹³C-NMR spectrum of 2p (CDCl₃, 125 MHz)

Figure A36 ¹³C-NMR spectrum of 2q (CDCl₃, 125 MHz)

Figure A38 ¹³C-NMR spectrum of 2r (CDCl₃, 125 MHz)

Figure A40 ¹³C-NMR spectrum of 2s (CDCl₃, 125 MHz)

Figure A44 ¹³C-NMR spectrum of 2u (CDCl₃, 125 MHz)

Figure A48 ¹H-NMR spectrum of 2w (DMSO-d6, 500 MHz)

Figure A50 ¹³C-NMR spectrum of 2x (CDCl₃, 125 MHz)

Figure A52 ¹³C-NMR spectrum of 2y (CDCl₃, 125 MHz)

Figure A54 ¹³C-NMR spectrum of 2z (CDCl₃, 125 MHz)

Figure A56 ¹³C-NMR spectrum of 2aa (CDCl₃, 125 MHz)

Figure A58 ¹³C-NMR spectrum of 2bb (DMSO, 125 MHz)

Figure A60 ¹³C-NMR spectrum of 2cc (DMSO, 125 MHz)

Figure A62 ¹³C-NMR spectrum of 2dd (DMSO, 125 MHz)

Figure A64 ¹³C-NMR spectrum of 2ee (CDCl₃, 125 MHz)

Figure A66 ¹³C-NMR spectrum of 2ff (CDCl₃, 125 MHz)

Figure A70 ¹³C-NMR spectrum of 3b (DMSO-d6, 125 MHz)

Figure A72 ¹³C-NMR spectrum of 3c (DMSO-d6, 125 MHz)

Figure A74 ¹³C-NMR spectrum of 3d (DMSO-d6, 125 MHz)

Figure A76 ¹³C-NMR spectrum of 3f (CDCl₃, 125 MHz)

124

Figure A82 ¹³C-NMR spectrum of 3i (CDCl₃, 500 MHz)

Figure A85 GC/MS spectrum of 2c

Figure A88 GC/MS spectrum of 2f

Figure A91 GC/MS spectrum of 2j

Figure A102 GC/MS spectrum of 2w

Figure A109 HRMS spectrum of 2dd

Figure A111 HRMS spectrum of 2ff

Figure A112 HRMS spectrum of 3a

Figure A113 HRMS spectrum of 3b

Figure A114 HRMS spectrum of 3c

Figure A115 HRMS spectrum of 3d

Figure A116 HRMS spectrum of 3e

Figure A117 HRMS spectrum of 3f

Figure A118 HRMS spectrum of 3g

Figure A119 HRMS spectrum of 3h

Figure A120 HRMS spectrum of 3i

VITA

NAME	Saharat Techapanalai
DATE OF BIRTH	6 February 1995
PLACE OF BIRTH	Krabi, Thailand
INSTITUTIONS ATTENDED	Chulalongkorn University
HOME ADDRESS	15/226 Rattanakosin Road, Bang rin, Muang Ranong, Thailand 85000
PUBLICATION	
AWARD RECEIVED	
จุหา	ลงกรณ์มหาวิทยาลัย

CHULALONGKORN UNIVERSITY