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CHAPTER I

INTRODUCTION

1.1 Motivation and Literature Surveys

An integro-differential equation (IDE) is an equation that involves both integrals

and derivatives of an unknown function. It can be distinguished into two types, namely,

Volterra IDE (VIDE) and Fredholm IDE (FIDE) which each type is different depending on

the limits of integration, that we will detail them in the next section. Moreover, they have

many applications that can be found in various branches of science, engineering, physics,

biology and etc., see [1–6] for details of each application. Actually, many problems of the

IDE are often constructed to be a system. Anyway, the system of IDEs can be found

in the fields of science and engineering. It has a lot of applications such as modeling of

the competition between the tumor cell and the immune system [7], wind ripples in the

desert [8], dropwise condensation [9], glass-forming process [10], examining the noise term

phenomenon [11], nano-hydrodynamics [12] and so on.

The IDEs are usually difficult to solve analytically. Therefore, numerical meth-

ods are required to obtain a decent approximate solution. Several numerical methods

for approximating either VIDEs or FIDEs are well-known. Zhao and Corless [13] used

compact finite difference method (FDM) for IDEs. Brunner [14] applied a collocation-

type method to Volterra-Hammerstein integral equation as well as IDEs. Sepehrian and

Razzaghi [15] have been proposed a single term Walsh series method (STWS) for solving

VIDEs. Pour-Mahmoud et al. [16] considered Ortiz and Samara’s operational approach

to the Tau method for the numerical solution of the system of FIDEs. Şuayip et al. [17]

have been proposed the collocation method with Bessel polynomials for solving a system

of FIDEs. Farshid and Seyede [18] also applied the collocation method to solve systems

of linear FIDEs in terms of Fibonacci polynomials.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

A few years ago, the finite integration method (FIM) was firstly introduced in 2013

by Wen et al. [19] which has been developed to solve the linear boundary value problems

of differential equations. They use the linear approximation and radial basis functions

to build the first order integration matrix for representing a single-layer integration and

obtain directly the higher order integration matrix for a multi-layer integration. Their

FIM can just solve the one-dimensional linear differential equations. After that in 2015,

Li et al. [20] have been extended the FIM in order to solve multi-dimensional problems.

Then, Li et al. [21] have been improved the FIM by consuming the numerical quadrature

such as Simpson’s rule, Newton Cotes and Lagrange interpolation instead of trapezoidal

rule to handle the linear differential equations. Moreover, they demonstrate that their

improved FIM give highly accurate solutions compared with the FDM and the traditional

FIM. Recently, Boonklurb et al. [22] have been proposed the modified FIM using Cheby-

shev polynomial expansion (FIM-CPE) for solving the one- and two-dimensional linear

differential equations. The modified FIM-CPE also provides a much higher accuracy than

the FDM and those original FIMs with low computational nodes.

In this thesis, we apply the idea of FIM-CPE given by [22], but slightly modify it by

using the shifted Chebyshev polynomials which is called the FIM-SCP. Henceforth, our

idea will be referred to as FIM-SCP and use it to devise the efficiently numerical algorithms

for solving the system of linear ordinary differential equations (ODEs), especially, the stiff

system, the system of linear VIDEs, and the system of linear FIDEs. We assume that

under some given boundary conditions, the three types of our considered systems of linear

ODEs, VIDEs and FIDEs have a unique solution. Then, we express our approximate

solution in form of the linear combination of shifted Chebyshev polynomials. We use the

zeros of shifted Chebyshev polynomial of a certain degree to be the computational nodes

and construct the shifted Chebyshev integration matrices which are the main ingredient

for this devised algorithm. Finally, we implement our proposed algorithms with several

numerical examples in order to demonstrate our accurate results when compared with the

results obtained by other methods from literature or their analytical solutions.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

1.2 Systems of Linear Differential Equations

In this section, we give the details of our three considered systems of linear differ-

ential equations in order to be the information for creating the numerical algorithms in

this thesis. They consist of the system of linear ODEs, the system of linear VIDEs and

the system of linear FIDEs. In addition, the facts and assumptions associated with each

considered system are provided as follows.

▶ System of Linear ODEs

A system of linear ODEs is a system of linear differential equations in one-dimension

which are equations containing a function of one independent variable and its derivatives.

Our considered system of m linear ODEs is in the form of

m∑
j=1

Li,jvj(x) = fi(x), x ∈ (a, b) (1.1)

for all i ∈ {1, 2, 3, . . . ,m} and a, b ∈ R be such that a < b. The linear differential operator

Li,j of order li,j is defined as

Li,j := p
li,j
i,j (x)D

li,j + p
li,j−1
i,j (x)Dli,j−1+ p

li,j−2
i,j (x)Dli,j−2+ · · ·+ p1i,j(x)D+ p0i,j(x), (1.2)

where Dk = dk

dxk is the kth order derivative with respect to x for k ∈ {1, 2, 3, . . . , li,j},

pki,j(x) for each k ∈ {0, 1, 2, . . . , li,j} are continuously differentiable functions up to the

highest order of derivative contained in (1.1), fi(x) are given continuous functions and

vj(x) are unknown functions to be solved. In this thesis, we assume that under some

given boundary conditions, then the system (1.1) has a unique solution.

In this study, we are interested in a stiff system of ODEs which is a system of ODEs

with a significant difference between the coefficients. There is no universally accepted

definition for stiffness. However, the numerical methods for solving the stiff system of

ODEs are numerically unstable. The numerical methods have to take small steps for

solving this problem to obtain satisfactory results comparing with the analytical solutions.
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The system of linear IDEs appears in many types of situation and depends mainly on

the limits of integration appear therein. In this thesis, we study the system of linear IDEs

in both types of Volterra and Fredholm. Next, we mention some details for our studied

system of linear VIDEs and system of linear FIDEs that we study them as follows.

▶ System of Linear VIDEs

Next, we consider the system of linear VIDEs which contains both differential part

and integration part. For the system of linear VIDEs, at least one of the limits of inte-

gration is a variable. The system of m linear VIDEs, that we study, is given by

m∑
j=1

Li,jvj(x) = fi(x) +

m∑
j=1

λi,j

∫ x

a
Ki,j(x, t)vj(t)dt, x ∈ (a, b) (1.3)

for all i ∈ {1, 2, 3, . . . ,m}, where a < b are arbitrary real constants. The linear differential

operator Li,j of order li,j is defined as same as (1.2), λi,j are real constant coefficients,

Ki,j(x, t) are continuously integrable kernel functions, fi(x) are continuous functions and

vj(x) are unknown functions to be solved. In this thesis, we assume that under some

given boundary conditions, the system (1.3) has a unique solution.

▶ System of Linear FIDEs

Finally, we consider the system of linear FIDEs which contains both differential

part and integration part. For the system of linear FIDEs, the limits of integration are

fixed numbers. The system of m linear FIDEs, that we study, can be written as follows

m∑
j=1

Li,jvj(x) = fi(x) +

m∑
j=1

λi,j

∫ b

a
Ki,j(x, t)vj(t)dt, x ∈ (a, b) (1.4)

for all i ∈ {1, 2, 3, . . . ,m}, where a < b are any real constants. The linear differential

operator Li,j of order li,j is defined as well as (1.2), λi,j are real constant coefficients of the

integration parts, Ki,j(x, t) are continuously integrable kernel functions, fi(x) are contin-

uous functions and vj(x) are unknown functions to be solved. In this thesis, we assume

that under some given boundary conditions, the system (1.4) has a unique solution.
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1.3 Research Objectives

The goal of the research is to obtain numerical procedures based on the FIM-SCP

for finding approximate solutions of the system of linear ODEs, the system of linear VIDEs

and also the system of linear FIDEs.

1.4 Thesis Overview

We divide this thesis into five chapters. Chapter 1 is an introduction of this work

including the motivation and literature surveys, the details of our considered systems

of linear differential equations, the research objectives and the thesis overview. Next,

the background knowledge concerning the shifted Chebyshev polynomial, including its

definition and some important properties are presented in Chapter 2 in order to construct

the shifted Chebyshev integration matrices. Chapter 3 presents the procedure for solving

the stiff system of linear ODEs and numerical examples. Then, we propose the numerical

procedures for solving the systems of linear IDEs which consist of VIDEs and FIDEs

and numerical examples in Chapter 4. Finally, conclusions and some future works are

presented in Chapter 5.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

MODIFIED FIM-SCP

In this chapter, we provide the background knowledge on the definition and some

basic properties of the shifted Chebyshev polynomials which are important in the part of

the construction of our numerical algorithms. After that, we use these facts to construct

the shifted Chebyshev integration matrices. We first introduce the shifted Chebyshev

polynomials and some useful facts about them.

2.1 Shifted Chebyshev Polynomial

In some applications, the interval [0, 1] is more convenient to use than [−1, 1]. Thus,

we transform the independent variable of Chebyshev polynomial Tn(x) for n ≥ 0 from the

interval [−1, 1] into [0, 1] by using the transformation s = 2x−1 or x = 1
2(s+1). Then, the

polynomial obtained after transforming is called a shifted Chebyshev polynomial T ∗
n(x)

for x ∈ [0, 1]. Their definitions are provided as follows.

Definition 2.1. ( [23]) The Chebyshev polynomial of degree n ≥ 0 is defined by

Tn(x) = cos(n arccosx) for x ∈ [−1, 1].

However, the shifted Chebyshev polynomial T ∗
n(x) of degree n ≥ 0 can be defined by

T ∗
n(x) = Tn(2x− 1) for x ∈ [0, 1]. (2.1)

Moreover, the properties of shifted Chebyshev polynomial are given in Lemma 2.1

which will be used to construct the first and higher orders of the shifted Chebyshev

integration matrices in the next section.
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Lemma 2.1. ( [23]) The followings are properties of shifted Chebyshev polynomials.

(i) The zeros of shifted Chebyshev polynomial T ∗
n(x) for x ∈ [0, 1] are

xk =
1

2

(
cos

(
2k − 1

2n
π

)
+ 1

)
, k ∈ {1, 2, 3, . . . , n}. (2.2)

(ii) The pth order derivatives of T ∗
n(x) at x = 0 and x = 1 for p ∈ N are

dp

dxp
T ∗
n(x)

∣∣∣
x=0

=

p−1∏
k=0

(n2 − k2)(−1)p+n

2k + 1
, (2.3)

dp

dxp
T ∗
n(x)

∣∣∣
x=1

=

p−1∏
k=0

n2 − k2

2k + 1
. (2.4)

(iii) The single integrations of shifted Chebyshev polynomial T ∗
n(x) for x ∈ [0, 1] are

T
∗
0(x) =

∫ x

0
T ∗
0 (ξ) dξ = x, (2.5)

T
∗
1(x) =

∫ x

0
T ∗
1 (ξ) dξ = x2 − x, (2.6)

T
∗
n(x) =

∫ x

0
T ∗
n(ξ) dξ =

1

4

(
T ∗
n+1(x)

n+ 1
−

T ∗
n−1(x)

n− 1

)
− (−1)n

2(n2 − 1)
, n ≥ 2. (2.7)

Moreover, the single integration of T ∗
n(x) at the upper bound can be written as

T
∗
n(1) =

∫ 1

0
T ∗
n(ξ) dξ =


1

1−n2 if n ≡ 0 (mod 2),

0 if n ≡ 1 (mod 2).
(2.8)

(iv) The discrete orthogonality relation of shifted Chebyshev polynomials T ∗
i and T ∗

j is

n∑
k=1

T ∗
i (xk)T

∗
j (xk) =


0 if i ̸= j,

n if i = j = 0,

n
2 if i = j ̸= 0,

where xk for k ∈ {1, 2, 3, . . . , n} is defined by (2.2) and 0 ≤ i, j ≤ n.
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(v) The shifted Chebyshev matrix T∗ at each node {xk}nk=1 defined by (2.2) is

T∗ =



T ∗
0 (x1) T ∗

1 (x1) · · · T ∗
n−1(x1)

T ∗
0 (x2) T ∗

1 (x2) · · · T ∗
n−1(x2)

...
... . . . ...

T ∗
0 (xn) T ∗

1 (xn) · · · T ∗
n−1(xn)


. (2.9)

Then, it has the multiplicative inverse

(T∗)−1 =
1

n
diag(1, 2, 2, . . . , 2)(T∗)⊤. (2.10)

(vi) The recurrence relation of shifted Chebyshev polynomials T ∗
n−1, T ∗

n , and T ∗
n+1 is

T ∗
n+1(x) = 2(2x− 1)T ∗

n(x)− T ∗
n−1(x)

with the starting values T ∗
0 (x) = 1 and T ∗

1 (x) = 2x− 1.

Proof. The proofs of this lemma can similarly prove corresponding to the proofs of the

properties of Chebyshev polynomial Tn(x) which can be found in [23].

Next, we apply the idea of FIM-CPE which is described in [22] to construct the first

order integration matrix based on the shifted Chebyshev polynomials. Then, the higher

order shifted Chebyshev integration matrix can be obtained easily by using the same idea

as the first order integration matrix.

2.2 Shifted Chebyshev Integration Matrices

First, we let uj(x) to be an approximate solution of the unknown function vj(x)

in (1.1), (1.3), and (1.4). Next, to construct the shifted Chebyshev integration matrices,

let M be a positive integer, uj(x) be a linear combination of the shifted Chebyshev

polynomials T ∗
0 (x), T

∗
1 (x), T

∗
2 (x), . . . , T

∗
M−1(x) and xk be grid points generated by the
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zeros of shifted Chebyshev polynomial T ∗
M as defined in (2.2) for all k ∈ {1, 2, 3, . . . ,M},

where 0 < x1 < x2 < x3 < · · · < xM < 1. Then, we approximate uj at node xk by

uj(xk) =

M−1∑
n=0

cnj
T ∗
n(xk), (2.11)

where cnj
is unknown coefficients to be considered. For k ∈ {1, 2, 3, . . . ,M}, it can be

express in the matrix form



uj(x1)

uj(x2)

...

uj(xM )


=



T ∗
0 (x1) T ∗

1 (x1) · · · T ∗
M−1(x1)

T ∗
0 (x2) T ∗

1 (x2) · · · T ∗
M−1(x2)

...
... . . . ...

T ∗
0 (xM ) T ∗

1 (xM ) · · · T ∗
M−1(xM )





c0j

c1j

...

cM−1j


,

which is denoted by uj = T∗cj . Since T∗ is invertible by Lemma 2.1(v), cj = (T∗)−1uj ,

where T∗ and (T∗)−1 are defined in (2.9) and (2.10) for all j ∈ {1, 2, 3, . . . ,m}.

Now, for k ∈ {1, 2, 3, . . . ,M}, we consider the single-layer integration of uj from 0

to the zero xk denoted by U
(1)
j (xk), we obtain

U
(1)
j (xk) =

∫ xk

0
uj(ξ) dξ =

M−1∑
n=0

cnj

∫ xk

0
T ∗
n(ξ) dξ =

M−1∑
n=0

cnj
T
∗
n(xk) (2.12)

where T
∗
n is the single-layer integration of shifted Chebyshev polynomial that can explic-

itly find by (2.5), (2.6), and (2.7) depending on its degree n. After substituting each node

xk into U
(1)
j (xk), it can be written in the matrix equation



U
(1)
j (x1)

U
(1)
j (x2)

...

U
(1)
j (xM )


=



T
∗
0(x1) T

∗
1(x1) · · · T

∗
M−1(x1)

T
∗
0(x2) T

∗
1(x2) · · · T

∗
M−1(x2)

...
... . . . ...

T
∗
0(xM ) T

∗
1(xM ) · · · T

∗
M−1(xM )





c0j

c1j

...

cM−1j


, (2.13)

which is denoted by U(1)
j = T∗cj = T∗

(T∗)−1uj := Auj , where A = T∗
(T∗)−1 is called
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the first order shifted Chebyshev integration matrix for the FIM-SCP. If we defined the

matrix A := [aki]M×M , then (2.12) can be written another form

U
(1)
j (xk) =

∫ xk

0
uj(ξ) dξ =

M∑
i=1

akiuj(xi)

for k ∈ {1, 2, 3, . . . ,M} or in the matrix form



U
(1)
j (x1)

U
(1)
j (x2)

...

U
(1)
j (xM )


=



a11 a12 · · · a1M

a21 a22 · · · a2M
...

... . . . ...

aM1 aM2 · · · aMM





uj(x1)

uj(x2)

...

uj(xM )


.

Next, we consider the double-layer integration of uj from 0 to xk, k ∈ {1, 2, 3, . . . ,M}.

It is denoted by U
(2)
j (xk). Then, we have

U
(2)
j (xk) =

∫ xk

0

∫ ξ2

0
uj(ξ1) dξ1dξ2

=

∫ xk

0
U

(1)
j (ξ2) dξ2

=

M∑
i=1

aki U
(1)
j (xi)

=

M∑
l=1

M∑
i=1

akiail uj(xl)

for k ∈ {1, 2, 3, . . . ,M} or in the matrix form



U
(2)
j (x1)

U
(2)
j (x2)

...

U
(2)
j (xM )


=



∑M
i=1 a1iai1

∑M
i=1 a1iai2 · · ·

∑M
i=1 a1iaiM∑M

i=1 a2iai1
∑M

i=1 a2iai2 · · ·
∑M

i=1 a2iaiM
...

... . . . ...∑M
i=1 aMiai1

∑M
i=1 aMiai2 · · ·

∑M
i=1 aMiaiM





uj(x1)

uj(x2)

...

uj(xM )


,

which can be written in the matrix form as U(2)
j = A2uj . The matrix A2 is called the

second order shifted Chebyshev integration matrix for the FIM-SCP.
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Similarly, we can construct the m-layer integration of uj from 0 to xk, by using the

same process of the double-layer integration, that is denoted by U
(m)
j (xk), we have

U
(m)
j (xk) =

∫ xk

0

∫ ξm

0
. . .

∫ ξ2

0
uj(ξ1) dξ1 . . . ξm−1ξm

=

∫ xk

0
U

(m−1)
j (ξm) dξm

=

M∑
i=1

aki U
(m−1)
j (xi)

=

M∑
l=1

M∑
i=1

aki
[
Am−1

]
il
uj(xl)

for k ∈ {1, 2, 3, . . . ,M}, whose equation can be composed as U(m)
j = Amuj . The matrix

Am is called the mth order shifted Chebyshev integration matrix for the FIM-SCP.

Next, we can further construct the shifted Chebyshev integration matrix at the

upper boundary x = 1 in order to benefit for devising a numerical algorithm to solve the

system of m linear FIDEs. Let us first consider the single-layer integration of uj from 0

to 1 denoted by U
(1)
j (1). Then, we have

U
(1)
j (1) =

∫ 1

0
uj(ξ) d(ξ)

=

M−1∑
n=0

cnj

∫ 1

0
T ∗
n(ξ) dξ

=

M−1∑
n=0

cnj
T
∗
n(1)

:= bcj

= b(T∗)−1uj , (2.14)

where b =
[
T
∗
0(1), T

∗
1(1), T

∗
2(1), . . . , T

∗
M−1(1)

]
for its elements can be computed by (2.8),

(T∗)−1 is defined by (2.10) and uj = [uj(x1), uj(x2), uj(x3), . . . , uj(xM−1)]
⊤.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

SYSTEM OF LINEAR ODES

We note that if the considered system of linear IDEs contains no integral terms,

then the system becomes the system of linear ODEs. In this chapter, the numerical algo-

rithm of solving the stiff system of m linear ODEs with the given boundary conditions is

constructed. Finally, we implement our numerical algorithm with several numerical ex-

amples to demonstrate the accuracy compare with the differential transformation method

(DTM) [24] and the Runge–Kutta fourth-order (RK-4) method [1].

3.1 Algorithm for Solving System of Linear ODEs

In this section, we can devise a numerical algorithm for solving the system of m

linear ODEs (1.1) with boundary conditions by hiring our proposed FIM-SCP. Let uj be

the approximate solution of vj in (2.11), then (1.1) becomes

m∑
j=1

Li,juj(x) = fi(x), x ∈ (a, b) (3.1)

for all i ∈ {1, 2, 3, . . . ,m}. Then, we apply the idea of FIM-SCP in Chapter 2 to formulate

the numerical procedure for solving (3.1) as the following steps:

Step 1. We use the linear mapping x̄ = x−a
b−a to transform x ∈ [a, b] into x̄ ∈ [0, 1]. Let

k̂ = 1
b−a . Then, (3.1) for x ∈ (a, b) becomes

m∑
j=1

L̄i,j ūj(x̄) = f̄i(x̄), x̄ ∈ (0, 1) (3.2)

where L̄i,j := k̂li,j p̄
li,j
i,j (x̄)D̄

li,j+k̂li,j−1p̄
li,j−1
i,j (x̄)D̄li,j−1+· · ·+k̂p̄1i,j(x̄)D̄

1+p̄0i,j(x̄) for D̄k :=

dk

dx̄k , p̄kli,j (x̄) := pkli,j ((b−a)x̄+a), ūj(x̄) := uj((b−a)x̄+a)) and f̄i(x̄) := fi((b−a)x̄+a).
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Step 2. We discretize our domain [0, 1] into M nodes which are the grid points x1, x2,

x3, . . . , xM generated by the zeros of the shifted Chebyshev polynomial T ∗
M (x) defined

in (2.2), where 0 < x1 < x2 < x3 < · · · < xM < 1.

Step 3. Let hi = max
1≤j≤m

li,j for all i ∈ {1, 2, 3, . . . ,m}, where li,j is the highest order

derivative of ūj for ith equation of (3.2). We eliminate all derivatives from (3.2) by

taking hi-layer integral from 0 to x̄ on both sides of each ith equation in (3.2) for all

i ∈ {1, 2, 3, . . . ,m}. Thus, the ith equation of (3.2) becomes

∫ x̄

0
. . .

∫ ξ2

0

m∑
j=1

L̄i,j ūj(ξ1) dξ1 . . . dξhi
=

∫ x̄

0
. . .

∫ ξ2

0
f̄i(ξ1) dξ1 . . . dξhi

. (3.3)

We substitute x̄ in (3.3) by each zero xk of the shifted Chebyshev polynomial T ∗
M

for k ∈ {1, 2, 3, . . . ,M} and use the technique of integration by parts for each term in

(3.3). Then, for li,j = hi, the left-hand side (LHS) of ith equation in (3.3) becomes

k̂hi

[ hi∑
β=0

(−1)β
(
hi
β

)∫ xk

0
. . .

∫ η2

0
(p̄hi

i,j)
(β)ūj dη1 . . . dηβ

]

+ k̂hi−1

∫ xk

0

[ hi−1∑
β=0

(−1)β
(
hi − 1

β

)∫ ξhi

0
. . .

∫ η2

0
(p̄hi−1

i,j )(β)ūj dη1 . . . dηβ

]
dξhi

+ k̂hi−2

∫ xk

0

∫ ξhi

0

[ hi−2∑
β=0

(−1)β
(
hi − 2

β

)∫ ξhi−1

0
. . .

∫ η2

0
(p̄hi−2

i,j )(β)ūj dη1 . . . dηβ

]
dξhi−1dξhi

...

+

∫ xk

0
. . .

∫ ξ2

0
p̄0i,j ūj dξ1 . . . dξhi

+
dji,1x

hi−1
k

(hi − 1)!
+

dji,2x
hi−2
k

(hi − 2)!
+

dji,3x
hi−3
k

(hi − 3)!
+ · · ·+ dji,hi

, (3.4)
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and for li,j < hi, we have

k̂li,j
∫ xk

0

. . .

∫ ξli,j+2

0

[ li,j∑
β=0

(−1)β
(
li,j
β

)∫ ξli,j−1

0

. . .

∫ η2

0

(p̄
li,j
i,j )

(β)ūj dη1 . . . dηβ

]
dξli,j−1 . . . dξhi

+ k̂li,j−1

∫ xk

0

. . .

∫ ξli,j+1

0

[ li,j−1∑
β=0

(−1)β
(
li,j − 1

β

)∫ ξli,j−2

0

. . .

∫ η2

0

(p̄
li,j−1
i,j )(β)ūj dη1 . . . dηβ

]
dξli,j−2 . . . dξhi

+ k̂li,j−2

∫ xk

0

. . .

∫ ξli,j

0

[ li,j−2∑
β=0

(−1)β
(
li,j − 2

β

)∫ ξli,j−3

0

. . .

∫ η2

0

(p̄
li,j−2
i,j )(β)ūj dη1 . . . dηβ

]
dξli,j−3 . . . dξhi

...

+

∫ xk

0

. . .

∫ ξ2

0

p̄0i,j ūj dξ1 . . . dξhi +
dji,1x

hi−1
k

(hi − 1)!
+

dji,2x
hi−2
k

(hi − 2)!
+

dji,3x
hi−3
k

(hi − 3)!
+ · · ·+ dji,hi

, (3.5)

where dji,1 = dji,2 = dji,3 = · · · = dji,hi−li,j
= 0 for li,j < hi. Here, dji,1, d

j
i,2, d

j
i,3, . . . , d

j
i,hi

are

any constants emerged in the process of integration of ith equation in (3.2) and (p̄ri,j)
(β)

is an βth order derivative of the coefficient function p̄ri,j(x), where 0 ≤ r ≤ hi, for all

i, j ∈ {1, 2, 3, . . . ,m}.

Step 4. We can transform the equations (3.4) and (3.5) in Step 3 into a matrix form by

using the idea described in Chapter 2. Thus, for hi = li,j , (3.4) can be written in the

matrix form as

k̂hi

[ hi∑
β=0

(−1)β
(
hi
β

)
Aβ(Phi

i,j)
(β)uj

]

+ k̂hi−1A1

[ hi−1∑
β=0

(−1)β
(
hi − 1

β

)
Aβ(Phi−1

i,j )(β)uj

]

+ k̂hi−2A2

[ hi−2∑
β=0

(−1)β
(
hi − 2

β

)
Aβ(Phi−2

i,j )(β)uj

]
...

+AhiP0
i,juj + dji,1xhi−1 + dji,2xhi−2 + dji,3xhi−3 + · · ·+ dji,hi

x0, (3.6)
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and for li,j < hi, (3.5) can be written in the matrix form as

k̂li,jAhi−li,j

[ li,j∑
β=0

(−1)β
(
li,j
β

)
Aβ(Pli,j

i,j )
(β)uj

]

+ k̂li,j−1Ahi−li,j+1

[ li,j−1∑
β=0

(−1)β
(
li,j − 1

β

)
Aβ(Pli,j−1

i,j )(β)uj

]

+ k̂li,j−2Ahi−li,j+2

[ li,j−2∑
β=0

(−1)β
(
li,j − 2

β

)
Aβ(Pli,j−2

i,j )(β)uj

]
...

+AhiP0
i,juj + dji,1xhi−1 + dji,2xhi−2 + dji,3xhi−3 + · · ·+ dji,hi

x0, (3.7)

where

dji,1 = dji,2 = dji,3 = · · · = dji,hi−li,j
= 0 for li,j < hi,

(Pk
li,j

)(β) = diag
(
(p̄ki,j)

(β)(x1), (p̄
k
i,j)

(β)(x2), (p̄
k
i,j)

(β)(x3), . . . , (p̄
k
i,j)

(β)(xM )
)
,

xhi−l =
1

(hi−l)!

[
xhi−l
1 , xhi−l

2 , xhi−l
3 , . . . , xhi−l

M

]⊤
for l ∈ {1, 2, 3, . . . , hi},

A = T∗
(T∗)−1 as defined in Chapter 2,

f̄i =
[
f̄i(x1), f̄i(x2), f̄i(x3), . . . , f̄i(xM )

]⊤
,

uj = [ūj(x1), ūj(x2), ūj(x3), . . . , ūj(xM )]⊤ .

Simplified the above matrix equations, for hi = li,j , (3.6) becomes

k̂hi

[ hi∑
β=0

(−1)β
(
hi
β

)
Aβ(Phi

i,j)
(β)uj

]

+ k̂hi−1

[ hi−1∑
β=0

(−1)β
(
hi − 1

β

)
Aβ+1(Phi−1

i,j )(β)uj

]

+ k̂hi−2

[ hi−2∑
β=0

(−1)β
(
hi − 2

β

)
Aβ+2(Phi−2

i,j )(β)uj

]
...

+ AhiP0
i,juj + dji,1xhi−1 + dji,2xhi−2 + dji,3xhi−3 + · · ·+ dji,hi

x0, (3.8)
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and for li,j < hi, (3.7) becomes

k̂li,j
[ li,j∑
β=0

(−1)β
(
li,j
β

)
Aβ+(hi−li,j)(Pli,j

i,j )
(β)uj

]

+ k̂li,j−1

[ li,j−1∑
β=0

(−1)β
(
li,j − 1

β

)
Aβ+(hi−li,j+1)(Pli,j−1

i,j )(β)uj

]

+ k̂li,j−2

[ li,j−2∑
β=0

(−1)β
(
li,j − 2

β

)
Aβ+(hi−li,j+2)(Pli,j−2

i,j )(β)uj

]
...

+ AhiP0
i,juj + dji,1xhi−1 + dji,2xhi−2 + dji,3xhi−3 + · · ·+ dji,hi

x0. (3.9)

Next, the right-hand side (RHS) of ith equation in (3.3) can written in the matrix form

Ahi f̄i

Now, we let

Kij =

li,j∑
β=0

k̂li,j−β

li,j−β∑
k=0

(−1)k
(
li,j
β

)
Ak+hi−li,j+β

(
Pli,j−β

i,j

)(k)

 , (3.10)

for all j ∈ {1, 2, 3, . . . ,m}. Hence, we can simplify (3.2) in a matrix form

m∑
j=1

Kijuj +

hi∑
k=1

Di,kxhi−k = AhI f̄i, (3.11)

where Di,k =
∑m

j=1 d
j
i,k for all k ∈ {1, 2, 3, .., hi} and i ∈ {1, 2, 3, ..,m}.

Step 5. We write the given boundary conditions which have the number m of conditions

at the endpoints x = 0 and x = 1 into the vector forms by using linear combination (2.11)

and Lemma 2.1 (ii). Let p ∈ N ∪ {0} and i ∈ {1, 2, 3, . . . ,m}. Then, we obtain
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ūj(0) =

M−1∑
n=0

cnj
T ∗
n(0) =

M−1∑
n=0

cnj
(−1)n = t0,lcj = t0,l(T∗)−1uj ,

ūj(1) =

M−1∑
n=0

cnj
T ∗
n(1) =

M−1∑
n=0

cnj
(1)n = t0,rcj = t0,r(T∗)−1uj ,

where t0,l =
[
1,−1, 1, . . . , (−1)M−1

]
and t0,r =

[
1, 1, 1, . . . , (1)M−1

]
, and

ū
(p)
j (0) =

M−1∑
n=0

cnj
(T ∗)(p)n (0) =

M−1∑
n=0

cnj
(−1)p+n

p−1∏
i=0

n2 − k2

2k + 1
= tp,lcj = tp,l(T∗)−1uj ,

ū
(p)
j (1) =

M−1∑
n=0

cnj
(T ∗)(p)n (1) =

M−1∑
n=0

cnj
(1)p+n

p−1∏
i=0

n2 − k2

2k + 1
= tp,rcj = tp,r(T∗)−1uj ,

where

tp,l =



(−1)p+0
∏p−1

k=0
02−k2

2k+1

(−1)p+1
∏p−1

k=0
12−k2

2k+1

(−1)p+2
∏p−1

k=0
22−k2

2k+1

...

(−1)p+M−1
∏p−1

k=0
(M−1)2−k2

2k+1



⊤

and tp,r =



∏p−1
k=0

02−k2

2k+1∏p−1
k=0

12−k2

2k+1∏p−1
k=0

22−k2

2k+1

...∏p−1
k=0

(M−1)2−k2

2k+1



⊤

.

Note that, for left and right boundary conditions are defined by ū
(k)
j (0) = tk,l(T∗)−1uj =

bkj
and ū

(k)
j (1) = tk,r(T∗)−1uj = bkj

, where tk,l and tk,r are the row vector tk for

k ∈ {0, 1, 2, . . . , hi − 1} that their elements are substituted by 0 and 1, respectively.

Let i, j ∈ {1, 2, 3, . . . ,m}. We consider the given boundary conditions in terms of

ū
(p)
j (x) = bkj

, x ∈ {0, 1} for p, k ∈ {0, 1, 2, . . . , hi − 1}, where bkj
∈ R. Thus, we have

t0(T∗)−1uj = b0j
,

t1(T∗)−1uj = b1j
,

t2(T∗)−1uj = b2j
,

...

thi−1(T∗)−1uj = bhi−1j
.
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For i, j ∈ {1, 2, 3, . . . ,m}, we can write the above all equations in the matrix form as

Ti(T∗)−1uj = bij , (3.12)

where Ti = [t0, t1, t2, . . . , thi−1]
⊤ and bij =

[
b0j

, b1j
, b2j

, . . . , bhi−1j

]⊤.

Note that, actually, we need exactly
∑m

i=0 hi boundary conditions. In practice, all

missing conditions will be replaced by zero.

Step 6. We construct a linear system by using the matrix equation (3.11) together with

the boundary conditions (3.12). Then, we obtain the linear system in a block matrix form

 Ko Q

R 0

 u

D

 =

 W

b

 , (3.13)

where 0 is the square zero matrix with size z :=
∑m

i=1 hi,

Ko =



K11 K12 · · · K1m

K21 K22 · · · K2m

...
... . . . ...

Km1 Km2 · · · Kmm


mM×mM

,

Q =



xh1−1 · · · x0 0 · · · · · · · · · · · · · · · 0

0 · · · 0 xh2−1 · · · x0 0 · · · · · · 0
... . . . · · · · · · · · · 0 . . . 0 · · ·

...

0 · · · · · · · · · · · · · · · 0 xhm−1 · · · x0


mM×z

,

u = [u1,u2,u3, . . . ,um]⊤ ,

W =
[
Ah1 f̄1,Ah2 f̄2,Ah3 f̄3, . . . ,Ahm f̄m

]⊤
,

R =
[
T1(T∗)−1,T2(T∗)−1, . . . ,TM (T∗)−1

]⊤
z×mM

,

b = [b01
, b11

, . . . , bh1−11
, b02

, b12
, . . . , bh2−12

, . . . , b0m
, b1m

, . . . , bhm−1m
]⊤ ,

D = [D1,1, D1,2, . . . , D1,h1
, D2,1, D2,2, . . . , D2,h2

, Dm,1, Dm,2, . . . , Dm,hm
]⊤ .
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Hence, we can solve the linear system (3.13) to find the approximate solution ūj(x̄)

of the system of m linear ODEs (1.1) for all j ∈ {1, 2, 3, . . . ,m}. We assume the Ko and

RK−1
o Q are nonsingular matrices. Thus,

u = K−1
o

[
W − Q

(
RK−1

o Q
)−1 (RK−1

o W − b
)]

. (3.14)

Finally, we can obtain the approximate solution uj(x) for x ∈ [a, b] by using the linear

mapping x̄ = x−a
b−a .



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

3.2 Numerical Examples of System of Linear ODEs

In this section, we implement numerical examples with MatLab program to find

the approximate solutions of some system of m linear ODEs that have been interested in

several literature by using our numerical algorithm. For an error of the solutions, we use

the absolute error E = |u∗j (x) − uj(x)| for all j ∈ {1, 2, 3, . . . ,m}, where u∗j and uj are

respectively the analytical and numerical solutions at each x in the domain. For the first

example, we start with a system of linear first order ODEs with constant coefficients.

Example 3.1. Consider the following system of linear first order ODEs over x ∈ (0, 1)

u′1(x) = −u1(x) + 2u2(x), (3.15)

u′2(x) = 2u1(x)− u2(x), (3.16)

with the initial conditions u1(0) = 3 and u2(0) = 1. The analytical solutions are u∗1(x) =

2ex + e−3x and u∗2(x) = 2ex − e−3x.

From this problem, we have f1(x) = 0 and f2(x) = 0. By using our numerical

procedure described in Section 3.1, we take single-layer integration both sides of (3.15)

and (3.16). Then, it can be transformed into a matrix form as

u1 + Au1 − 2Au2 +D1,1x0 = Af̄1,

u2 − 2Au1 + Au2 +D2,1x0 = Af̄2.

By using the initial conditions, we have u1(0) = t0,l(T∗)−1u1 = 3 and u2(0) =

t0,l(T∗)−1u2 = 1, where t0,l =
[
1,−1, 1, . . . , (−1)M−1

]⊤
. Thus, we can construct the

linear system in a matrix form as



I + A −2A x0 0

−2A I + A 0 x0

t0,l(T∗)−1 0 0 0

0 t0,l(T∗)−1 0 0





u1

u2

D1,1

D2,1


=



Af̄1

Af̄2

3

1


. (3.17)
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We solve (3.17) to obtain the approximate solutions u1 and u2 of (3.15) and (3.16)

by taking M = 15. By substituting the solutions u1 and u2 into (3.14), we can get

the approximate solution u1(x) and u2(x) for each arbitrary x ∈ [0, 1]. We compare

the absolute errors of our approximate solutions u1(x) and u2(x) with those obtained

by the DTM [24] with M = 15 at x ∈ {0.6, 0.7, 0.8, 0.9, 1.0} as shown in Table 3.1.

Note that, the absolute errors of our approximate solutions and the solutions from [24] at

x ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, that computed by MatLab software, provide all zeros for both

u1(x) and u2(x). Figure 3.1 shows the graphical solutions of our approximate solutions

and the exact solutions with M = 40. The average run-time is 0.0546 seconds.

Table 3.1: A comparison of absolute errors of u1(x) for Example 3.1

xi DTM [24] FIM-SCP DTM [24] FIM-SCP

0.6 5.0000× 10−9 3.0300× 10−10 5.0000× 10−9 3.0300× 10−10

0.7 5.2000× 10−8 5.6200× 10−10 5.2000× 10−8 5.6200× 10−10

0.8 3.8600× 10−7 7.8000× 10−10 3.8600× 10−7 7.8000× 10−10

0.9 2.2590× 10−6 7.3500× 10−10 2.2590× 10−6 7.3500× 10−10

1.0 1.0973× 10−5 7.9900× 10−10 6.3656× 10−10 1.0973× 10−10

(a) A graphical solution for u1(x) (b) A graphical solution for u2(x)

Figure 3.1: The graph of the approximate and exact solutions in Example 3.1
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The second example is about the stiff system of linear ODEs in which our proposed

algorithm also give high accurate results.

Example 3.2. Consider the following stiff system of differential equations over x ∈ (0, 1)

u′1(x) = −20u1(x)− 0.25u2(x)− 19.75u3(x), (3.18)

u′2(x) = 20u1(x)− 20.25u2(x) + 0.25u3(x), (3.19)

u′3(x) = 20u1(x)− 19.75u2(x)− 0.25u3(x), (3.20)

with initial conditions u1(0) = 1, u2(0) = 0 and u3(0) = −1. The analytical solutions are

u∗1(x) =
1

2

(
e−

1

2
x + e−20x(cos(20x) + sin(20x))

)
,

u∗2(x) =
1

2

(
e−

1

2
x − e−20x(cos(20x)− sin(20x))

)
,

u∗3(x) =
1

2

(
e−

1

2
x + e−20x(cos(20x)− sin(20x))

)
.

From the problem, we have f1(x) = 0, f2(x) = 0 and f3(x) = 0. By using our

numerical procedure described in Section 3.1, we take single-layer integration both sides

of (3.18), (3.19), and (3.20) and transform it into a matrix form

u1 + 20Au1 + 0.25Au2 + 19.75Au3 +D1,1x0 = Af̄1,

−20Au1 + u2 + 20.25Au2 − 0.25Au3 +D2,1x0 = Af̄2,

−20Au1 + 19.75Au2 + u3 + 0.25Au3 +D3,1x0 = Af̄3.

Next, from the given initial conditions can be written as

u1(0) = t0,l(T∗)−1u1 = 1,

u2(0) = t0,l(T∗)−1u2 = 0,

u3(0) = t0,l(T∗)−1u3 = −1,

where t0,l =
[
1,−1, 1, . . . , (−1)M−1

]⊤. Therefore, we can construct the linear system
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into the matrix form as



I + 20A 0.25A 19.75A x0 0 0

−20A I + 20.25A −0.25A 0 x0 0

−20A 19.75A I + 0.25A 0 0 x0

t0,l(T∗)−1 0 0 0 0 0

0 t0,l(T∗)−1 0 0 0 0

0 0 t0,l(T∗)−1 0 0 0





u1

u2

u3

D1,1

D2,1

D3,1


=



Af̄1

Af̄2

Af̄3

1

0

−1


. (3.21)

We solve (3.21) to obtain the approximate solutions u1, u2, and u3 of (3.18), (3.19),

and (3.20). Therefore, we can get the approximate solutions u1(x), u2(x), and u3(x) for

each arbitrary x ∈ [0, 1] by substituting the solutions u1, u2, and u3 into (3.14). We com-

pare the absolute errors of our approximate solutions with the absolute errors obtained

from RK-4 method [25] and DTM [24] by taking M = 16 as shown in Tables 3.2, 3.3,

and 3.4 corresponding to u1(x), u2(x), and u3(x), respectively. Note that, for M = 16 of

our FIM-SCP, it corresponds to N = 16 in [25] and [24]. Figure 3.2 plots the graphical

solutions between our approximate solutions and the analytical solutions with M = 40.

The average run-time is 0.0562 seconds.

Table 3.2: A comparison of absolute errors of u1(x) for Example 3.2

xi RK-4 [25] DTM [24] FIM-SCP

0.002 1.48800× 10−11 2.60000× 10−13 6.10622× 10−15

0.004 2.96886× 10−11 3.32882× 10−11 3.55271× 10−15

0.006 4.43044× 10−11 5.68759× 10−10 4.55191× 10−15

0.008 5.86098× 10−11 4.26088× 10−9 1.66534× 10−15

0.010 7.25029× 10−11 2.03175× 10−8 5.5511× 10−16
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Table 3.3: A comparison of absolute errors of u2(x) for Example 3.2

xi RK-4 [25] DTM [24] FIM-SCP

0.002 1.487737× 10−11 3.00000× 10−17 3.88578× 10−16

0.004 2.96886× 10−11 5.00000× 10−17 1.11022× 10−16

0.006 4.43044× 10−11 < 10−17 7.21645× 10−16

0.008 5.86098× 10−11 < 10−17 5.55111× 10−17

0.010 7.25029× 10−11 1.00000× 10−16 3.05311× 10−16

Table 3.4: A comparison of absolute errors of u3(x) for Example 3.2

xi RK-4 [25] DTM [24] FIM-SCP

0.002 1.487737× 10−11 < 10−17 4.55191× 10−15

0.004 2.96886× 10−11 2.00000× 10−16 3.88578× 10−15

0.006 4.43044× 10−11 < 10−17 4.32987× 10−15

0.008 5.86098× 10−11 < 10−17 5.55111× 10−16

0.010 7.25029× 10−11 2.00000× 10−16 3.33067× 10−16

(a) A graph of u1(x) (b) A graph of u2(x) (c) A graph of u3(x)

Figure 3.2: The graph of the approximate and exact solutions in Example 3.2

The third example is the stiff system of linear ODEs, given by [26], which demon-

strates that our devised method also provides the high accurate results.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25

Example 3.3. Consider the following stiff system of differential equations

u′1(x) = 998u1(x) + 1998u2(x), (3.22)

u′2(x) = −999u1(x)− 1999u2(x), (3.23)

for x ∈ (0, 0.001) with initial conditions u1(0) = 1 and u2(0) = 1. The analytical solutions

are u∗1(x) = 4e−x − 3e−1000x and u∗2(x) = −2e−x + 3e−1000x.

From the example, we have f1(x) = 0 and f2(x) = 0. By using our numerical

procedure described in Section 3.1, we take single-layer integration both sides of (3.22)

and (3.23). Then, we transform it into a matrix form as

u1 − 998Au1 − 1998Au2 +D1,1x0 = Af̄1,

999Au1 + u2 + 1999Au2 +D2,1x0 = Af̄2.

By the given initial conditions, we have ū1(0) = t0,l(T∗)−1u1 = 1 and ū2(0) =

t0,l(T∗)−1u2 = 1, where t0,l is defined as same as Example 3.2. Thus, we can construct

the linear system in a matrix form as



I − 998A −1998A x0 0

999A I + 1999A 0 x0

t0,l(T∗)−1 0 0 0

0 t0,l(T∗)−1 0 0





u1

u2

D1,1

D2,1


=



Af̄1

Af̄2

1

1


. (3.24)

To obtain the approximate solution u1 and u2 of (3.22) and (3.23), we solve (3.24).

Hence, we can get the approximate solutions u1(x) and u2(x) for each arbitrary x ∈ [0, 1]

by substituting the solutions u1 and u2 into (3.14). We compare the absolute error of

u1(x) and u2(x) with their analytical solutions for M = 10 as shown in Tables 3.5. Figure

3.3 shows the graphs of our approximate solutions with M = 40. The average run-time

is 0.0451 seconds.
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Table 3.5: Numerical comparisons of u1(x) and u2(x) for Example 3.3

xi u1(x) u2(x)

0.0001 7.8000× 10−14 6.9000× 10−14

0.0002 1.7420× 10−12 1.7390× 10−12

0.0003 1.3000× 10−13 1.3300× 10−13

0.0004 2.6500× 10−13 2.6900× 10−13

0.0005 1.5340× 10−12 1.5390× 10−12

0.0006 6.0000× 10−14 7.2000× 10−14

0.0007 4.8000× 10−14 2.8000× 10−14

0.0008 1.3660× 10−12 1.3800× 10−12

0.0009 5.8400× 10−13 5.6800× 10−13

0.0010 6.0800× 10−13 6.1100× 10−13

(a) A graphical solution for u1(x) (b) A graphical solution for u2(x)

Figure 3.3: The graph of the approximate and exact solutions in Example 3.3

The last example for this section is a system of linear second order ODEs with

variable coefficients.
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Example 3.4. Consider the following system of second order ODEs over x ∈ (0, 1)

u′′1(x)− u′2(x) + u′3(x)− e−xu1(x) + exu3(x) = ex − 2e−x + xe−x, (3.25)

u′′2(x) + u′1(x)− u′3(x)− u1(x) = xe−x − e−x, (3.26)

u′′3(x)− u′1(x) + u′2(x) + exu2(x) + u3(x) = 2e−x − xe−x + x, (3.27)

with boundary conditions u1(0) = 1, u1(1) = 2.718282, u2(0) = 0, u2(1) = 0.367879,

u3(0) = 1, and u3(1) = 0.367879. The analytical solutions are u∗1(x) = ex, u∗2(x) = xe−x,

and u∗3(x) = e−x.

From the example, we have f1(x) = ex − 2e−x + xe−x, f2(x) = xe−x − e−x,

f3(x) = 2e−x − xe−x + x, p01,1(x) = −e−x, p01,3(x) = ex and p03,2(x) = ex. By using our

numerical procedure described in Section 3.1, we take double-layer integration both sides

of (3.25), (3.26), and (3.27). Then, we transform it into a matrix form as

K11u1 + K12u2 + K13u3 +D1,1x1 +D1,2x0 = A2f̄1,

K21u1 + K22u2 + K23u3 +D2,1x1 +D2,2x0 = A2f̄2,

K31u1 + K32u2 + K33u3 +D3,1x1 +D3,2x0 = A2f̄3,

where

K11 = I + A2
(
P0

1,1

)(0)
, K21 = A − A2, K31 = −A + A2,

K12 = −A, K22 = I, K32 = A + A2
(
P0

3,2

)(0)
,

K13 = A + A2
(
P0

1,3

)(0)
, K23 = −A, K33 = I.

Next, from the given boundary conditions can be written as

u1(0) = t0,l(T∗)−1u1 = 1, u1(1) = t0,r(T∗)−1u1 = 2.718282,

u2(0) = t0,l(T∗)−1u2 = 0, u2(1) = t0,r(T∗)−1u2 = 0.367879,

u3(0) = t0,l(T∗)−1u3 = 1, u3(1) = t0,r(T∗)−1u3 = 0.367879,
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where t0,r =
[
1, 1, 1, . . . , (1)M−1

]⊤ and t0,l is defined as same as Example 3.2.

Thus, we can construct the linear system in a matrix form as



K11 K12 K13 x1 x0 0 0 0 0

K21 K22 K23 0 0 x1 x0 0 0

K31 K32 K33 0 0 0 0 x1 x0

t0(T∗)−1 0 0 0 0 0 0 0 0

t1(T∗)−1 0 0 0 0 0 0 0 0

0 t0(T∗)−1 0 0 0 0 0 0 0

0 t1(T∗)−1 0 0 0 0 0 0 0

0 0 t0(T∗)−1 0 0 0 0 0 0

0 0 t1(T∗)−1 0 0 0 0 0 0





u1

u2

u3

D1,1

D1,2

D2,1

D2,2

D3,1

D3,2



=



A2f̄1

A2f̄2

A2f̄3

1

0

1

2.718282

0.367879

0.367879



.

To obtain the approximate solution u1, u2, and and u3 of (3.25), (3.26), and (3.27),

we solve the above equation. Hence, we can get the approximate solutions u1(x), u2(x),

and u3(x) for each arbitrary x ∈ [0, 1] by substituting the solutions u1, u2, and u3 into

(3.14). We compare the absolute error of u1(x), u2(x), and u3(x) with their analyti-

cal solutions for M = 12 as shown in Tables 3.6. Figure 3.4 shows the graphs of our

approximate solutions with M = 40. The average run-time is 0.0598 seconds.

(a) A graph of u1(x) (b) A graph of u2(x) (c) A graph of u3(x)

Figure 3.4: The graph of the approximate and exact solutions in Example 3.4
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Table 3.6: Numerical comparisons of u1(x), u2(x), and u3(x) for Example 3.4

xi u1(x) u2(x) u3(x)

0.0043 3.9968× 10−15 2.3999× 10−15 1.1102× 10−15

0.0381 1.5543× 10−15 3.2335× 10−15 7.7716× 10−16

0.1033 1.3323× 10−15 1.7625× 10−15 5.5511× 10−16

0.1956 2.6645× 10−15 3.8858× 10−15 9.9920× 10−16

0.3087 3.3307× 10−15 3.3584× 10−15 7.7716× 10−16

0.4347 8.4377× 10−15 3.1086× 10−15 3.3307× 10−16

0.5653 6.4393× 10−15 3.2196× 10−15 5.5511× 10−16

0.6913 1.1102× 10−14 5.1625× 10−15 1.5543× 10−15

0.8044 1.7319× 10−14 2.7200× 10−15 4.9960× 10−16

0.8967 1.8652× 10−14 2.7756× 10−15 5.5511× 10−16

0.9619 2.0872× 10−14 1.1657× 10−15 1.6653× 10−16

0.9957 1.7764× 10−14 2.6090× 10−15 2.1094× 10−15



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

SYSTEMS OF LINEAR IDES

In this chapter, we construct numerical algorithms for solving the system of m linear

IDEs which consist of the system of m linear VIDEs (1.3) and the system of m linear

FIDEs (1.4) with the given boundary conditions by hiring our proposed FIM-SCP. Finally,

we implement our numerical procedures on several numerical examples to demonstrate the

efficiency and the accuracy of our method. For (1.3), we compare the absolute errors with

Genocchi polynomials method (GPM) [27], single term Walsh series technique (STWS)

[28] and bi-orthogonal system (BOS) [29]. For (1.4), we compare absolute error with Tau

method (TAU) [16], the collocation method with Bessel polynomials (CM-BP) [17] and

the collocation method with Fibonacci polynomials (CM-FP) [18].

4.1 Algorithm for Solving System of linear VIDEs

We first introduce the system of linear m VIDEs with the given boundary conditions

which is the problem to be solved by letting uj(x) be the approximate solution of vj(x)

defined in (2.11), then (1.3) becomes

m∑
j=1

Li,juj(x) = fi(x) +

m∑
j=1

λi,j

∫ x

a
Ki,j(x, t)uj(t)dt, x ∈ (a, b) (4.1)

with the given boundary conditions u
(p)
j (xbd) = bi for i, j ∈ {1, 2, 3, . . . ,m}, where xbd

can be the boundary of the interval (a, b), bi ∈ R, p ∈ N ∪ {0} and p ≤ m. We apply the

idea of our proposed FIM-SCP described in Chapter 2 to deal with the integration term

in (4.1). Then, the numerical procedure for solving (4.1) is formulated. First of all, let

us consider each of the integration term in ith equation of (4.1) for i ∈ {1, 2, 3, . . . ,m}
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which is denoted by

Ji,j(x) :=

∫ x

a
Ki,j(x, t)uj(t) dt, x ∈ (a, b) (4.2)

for j ∈ {1, 2, 3, . . . ,m}. Thus, (4.1) becomes

m∑
j=1

Li,juj(x) = fi(x) +

m∑
j=1

λi,jJi,j(x), x ∈ (a, b). (4.3)

Next, the numerical algorithm for solving systems of linear m VIDEs is devised in

the following steps:

Step 1. We use the linear mapping x̄ = x−a
b−a to transform x ∈ [a, b] into x̄ ∈ [0, 1]. Let

k̂ = 1
b−a . Then, (4.1) for x ∈ (a, b) becomes

m∑
j=1

L̄i,j ūj(x̄) = f̄i(x̄) +
1

k̂

m∑
j=1

λi,j J̄i,j(x̄), x̄ ∈ (0, 1) (4.4)

where L̄i,j , D̄k, p̄kli,j (x̄), ūj(x̄), and f̄i(x̄) are defined the same parameters in Step 1 of

Section 3.1, J̄i,j(x̄) =
∫ x̄
0 K̄i,j(x̄, t̄)ūj(t̄) dt̄ and K̄i,j(x̄, t̄) = Ki,j((b− a)x̄+ a, (b− a)t̄+ a).

Henceforth, the problem is considered over [0, 1].

Step 2. We discretize our domain [0, 1] into M nodes, which are the zeros xk of shifted

Chebyshev polynomial T ∗
M (x) defined in (2.2), as described in Step 2 of Section 3.1.

Step 3. We eliminate all derivatives of (4.4) by taking hi-layer integration from 0 to xk

on both sides of each ith equation in (4.4) and using the technique of integration by parts

for all i ∈ {1, 2, 3, . . . ,m}, where hi is defined in Step 3 of Section 3.1 and xk is defined

in (2.2). Thus, for the LHS of ith equation of (4.4), we obtain the integral term similar

to the LHS of (3.4) for li,j = hi and similar to the LHS of (3.5) for li,j < hi. Next, the

RHS of ith equation in (4.4) becomes

∫ xk

0
. . .

∫ ξ2

0
f̄i(ξ1) dξ1 . . . dξhi

+
1

k̂

∫ xk

0
. . .

∫ ξ2

0

m∑
j=1

λi,j J̄i,j(ξ1)dξ1 . . . dξhi
.
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Step 4. We apply the idea of our proposed FIM-SCP to transform J̄i,j(xk) for all k ∈

{1, 2, 3, . . . ,M} into the matrix form. By using the idea of the single-layer integration of

uj from 0 to xk presented in Chapter 2, we have

J̄i,j(xk) =

∫ xk

0
K̄i,j(xk, t̄)ūj(t̄)dt̄

=

M∑
β=1

akβK̄i,j(xk, xβ)ūj(xβ)

= ak
�̄Ki,j(xk) �uj ,

where K̄i,j(xk) = diag
(
K̄i,j(xk, x1), K̄i,j(xk, x2), K̄i,j(xk, x3), . . . , K̄i,j(xk, xM )

)
and ak =

[ak1, ak2, ak3, . . . , akM ]. Therefore, we obtain the matrix equation

Ji,j = A′K̄′
i,juj , (4.5)

where Ji,j =
[
J̄i,j(x1), J̄i,j(x2), J̄i,j(x3), . . . , J̄i,j(xM )

]⊤. A′ and K̄′
i,j are M × M2 and

M2 ×M matrices, respectively, which can be written by the block matrices as follows:

A′ =



a1 0 · · · 0

0 a2
. . . ...

... . . . . . . 0

0 · · · 0 aM


and K̄′

i,j =



K̄i,j(x1)

K̄i,j(x2)

...

K̄i,j(xM )


.

Note that A := [aki]M×M is the first order shifted Chebyshev integration matrix which

is defined in Chapter 2.

Step 5. We transform the LHS of (4.4) presented in Step 3 together with the RHS of

(4.4) presented in Steps 3 and 4. Then, it can be simplified into a matrix form. Thus,

we obtain the matrix form of the LHS of the ith equation in (4.4) similar to the LHS of

(3.8) for li,j = hi and the matrix form of the LHS of the ith equation in (4.4) similar to

the LHS of (3.9) for li,j < hi. Next, we change the RHS of ith equation in (4.4) into a
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matrix form by using (4.5). Then it can be written as

Ahi f̄i +
1

k̂
Ahi

m∑
j=1

λi,jJi,j ,

where f̄i =
[
f̄i(x1), f̄i(x2), f̄i(x3), . . . , f̄i(xM )

]⊤. Hence, we can simplify (4.4) into the

following matrix equation

m∑
j=1

Kijuj +

hi∑
k=1

Di,kxhi−k = Ahi f̄i +
1

k̂
Ahi

m∑
j=1

λi,jJi,j , (4.6)

where Kij and Di,k for all k ∈ {1, 2, 3, . . . ,m} and i ∈ {1, 2, 3, . . . ,m} are defined the

same parameters in Step 4 of Section 3.1. Let us define Hij :=
1
k̂
λi,jAhiA′K̄′

i,j . Then, for

all i ∈ {1, 2, 3, . . . ,m}, (4.6) can be simplified in the form as

m∑
j=1

(Kij − Hij)uj +

hi∑
k=1

Di,kxhi−k = Ahi f̄i, (4.7)

Step 6. We can obtain the boundary conditions as same as (3.12) described in Step 5

of Section 3.1. After that, we use it and (4.7) to construct the linear system. Then, we

obtain the linear system in a block matrix form

 Kv Q

R 0

 u

D

 =

 W

b

 , (4.8)

where W, Q, R, D, 0, u and b are defined the same in Step 6 of Section 3.1 and

Kv =



K11 − H11 K12 − H12 · · · K1m − H1m

K21 − H21 K22 − H22 · · · K2m − H2m

...
... . . . ...

Km1 − Hm1 Km2 − Hm2 · · · Kmm − Hmm


mM×mM

.
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Hence, we can solve the linear system (4.8) to find the approximate solution ūj(x̄)

of the system (1.3). We assume that Kv and RK−1
v Q are nonsingular matrices. Thus,

u = K−1
v

[
W − Q

(
RK−1

v Q
)−1 (RK−1

v W − b
)]

. (4.9)

Finally, we can obtain uj(x) for x ∈ [a, b] by using the linear mapping x̄ = x−a
b−a .
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4.2 Numerical Examples of System of Linear VIDEs

In this section, we apply our proposed numerical algorithm to find the approximate

solutions of some system of m linear VIDEs. We implement numerical examples with

MatLab program base on our numerical algorithm to show the efficiency and effectiveness

of our numerical algorithm. For an error of the solutions, we use the absolute error E

which defined by E = |u∗j (x) − uj(x)| for all j ∈ {1, 2, 3, . . . ,m}, where u∗j and uj are

respectively the analytical solution and the numerical solution at each x in the domain.

We start with the first example which is a system of linear first order VIDEs with constant

coefficients, constant kernel functions and polynomial forcing terms.

Example 4.1. Consider the following system of linear first order VIDEs over x ∈ (0, 1)

u′1(x) + u2(x) = 1 + x+ x2 −
∫ x

0
(u1(t) + u2(t)) dt, (4.10)

u′2(x)− u2(x) = −1− x−
∫ x

0
(u1(t)− u2(t)) dt (4.11)

subject to the initial conditions u1(0) = 1 and u2(0) = −1. The analytical solutions are

u∗1(x) = x+ ex and u∗2(x) = x− ex.

In the example, we have f1(x) = 1+x+x2, f2(x) = −1−x, K1,1(x, t) = K1,2(x, t) =

K2,1(x, t) = K2,2(x, t) = 1, λ1,1 = λ1,2 = λ2,1 = −1 and λ2,2 = 1. By using our numerical

procedure described in Section 4.1, we take one-layer integration both sides of (4.10) and

(4.11). Then, we can transform it into the matrix forms:

Iu1 + Au2 +D1,1x0 = Af̄1 + A2A′K̄′
1,1u1 + A2A′K̄′

1,2u2,

−Au1 + Iu2 +D2,1x0 = Af̄2 + A2A′K̄′
2,1u1 − A2A′K̄′

2,2u2

or its simplified form:

(K11 − H11)u1 + (K12 − H12)u2 +D1,1x0 = Af̄1,

(K21 − H21)u1 + (K22 − H22)u2 +D2,1x0 = Af̄2,
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where

K11 = I, H11 = A2A′K̄′
1,1, K12 = A, H12 = A2A′K̄′

1,2,

K21 = −A, H21 = A2A′K̄′
2,1, K2,2 = I, H22 = −A2A′K̄′

2,2.

The given initial conditions can be written in the matrix forms: u1(0) = t0,l(T∗)−1u1 = 1

and u2(0) = t0,l(T∗)−1u2 = −1, where t0,l =
[
1,−1, 1, . . . , (−1)M−1

]
. Thus, we can

construct the linear system in the matrix form:



K11 − H11 K12 − H12 x0 0

K21 − H21 K22 − H22 0 x0

t0,l(T∗)−1 0 0 0

0 t0,l(T∗)−1 0 0





u1

u2

D1,1

D2,1


=



Af̄1

Af̄2

1

−1


. (4.12)

We obtain the approximate solutions u1 and u2 of (4.10) and (4.11). After that,

by substituting the solutions u1 and u2 into (4.9), we can get the approximate solutions

u1(x) and u2(x) for each arbitrary x ∈ [0, 1]. A comparison of the absolute error between

the numerical solutions u1(x) and u2(x) obtained by our proposed method and the other

methods such as the GPM [27] and the BOS [29], with their exact solutions by using

M = 8 as shown in Tables 4.1 and 4.2. With M = 8, our method corresponds to N = 8

in [27] and h = 4, j = 33 in [29]. Figure 4.1 shows the graphs of the approximate and

exact solutions with M = 40. The average run-time is 0.0437 seconds.

Table 4.1: A comparison of absolute errors of u1(x) for Example 4.1

xi GPM [27] BOS [29] FIM-SCP

0.2 1.19266× 10−8 4.94774× 10−8 9.05715× 10−10

0.4 1.31366× 10−8 2.72109× 10−7 1.79678× 10−9

0.6 1.21589× 10−8 8.98239× 10−7 1.75629× 10−9

0.8 1.57033× 10−8 3.11105× 10−7 1.38063× 10−9

1.0 2.57296× 10−8 1.50285× 10−5 6.36561× 10−10
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Table 4.2: A comparison of absolute errors of u2(x) for Example 4.1

xi GPM [27] BOS [29] FIM-SCP

0.2 7.56814× 10−9 3.47816× 10−6 4.55619× 10−10

0.4 6.17369× 10−9 1.51051× 10−5 1.01455× 10−9

0.6 3.71515× 10−9 3.71146× 10−5 7.71357× 10−10

0.8 2.14741× 10−8 7.24787× 10−5 3.26418× 10−10

1.0 1.95063× 10−8 1.24516× 10−4 3.58086× 10−10

(a) A Graphical solution for u1(x) (b) A Graphical solution for u2(x)

Figure 4.1: The graph of the approximate and exact solutions in Example 4.1

The second example is a system of linear second order VIDEs with variable coeffi-

cients, polynomial forcing terms and kernel functions are in term of functions depending

on variables x and t.

Example 4.2. Consider the following system of linear second order VIDEs over x ∈ (0, 1)

u′′1(x) + (−3x2 − 6x+ 7)u1(x)− 2x2(x+ 1)u2(x) = x4 − x3 − 2x2 − 6

+

∫ x

0
(t3 − x3)u1(t) dt+

∫ x

0
x2(t2 − x2)u2(t) dt, (4.13)

u′′2(x) + 2(x− 1)u1(x) + (2x4 + 2x3 + 2x2 − 1)u2(x) = x4 + 3x3 − 2

+

∫ x

0
(x2 − t2)u1(t) dt−

∫ x

0
x2(t2 + x2)u2(t)) dt (4.14)
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subject to the initial conditions u1(0) = 1, u2(0) = 1, u′1(0) = 1 and u′2(0) = −1. The

analytical solutions are u∗1(x) = ex and u∗2(x) = e−x.

From the problem, we have m = 2, f1(x) = x4−x3−2x2−6, f2(x) = x4+3x3−2,

p01,1 = −3x2 − 6x + 7, p01,2 = −2x2(x + 1), p02,1 = 2(x − 1), p02,2 = 2x4 + 2x3 + 2x2 − 1,

K1,1(x, t) = t3−x3, K1,2(x, t) = x2(t2−x2), K2,1(x, t) = x2−t2, K2,2(x, t) = −x2(t2+x2)

and λ1,1 = λ1,2 = λ2,1 = λ2,2 = 1.

By using our numerical procedure described in Section 4.1, we take double-layer

integration both sides of (4.13) and (4.14), respectively. Then, we can transform them

into the matrix forms to obtain

(
I + A2(P0

1,1)
(0)

)
u1 + A2(P0

1,2)
(0)u2 +D1,1x1 +D1,2x0

= A2f̄1 + A2A′K̄′
1,1u1 + A2A′K̄′

1,2u2,

A2(P0
2,1)

(0)u1 +
(

I + A2(P0
2,2)

(0)
)

u2 +D2,1x1 +D2,2x0

= A2f̄1 + A2A′K̄′
2,1u1 − A2A′K̄′

2,2u2.

We rearranged the above equations into the simplified matrix forms:

(K11 − H11)u1 + (K12 − H12)u2 +D1,1x1 +D1,2x0 = Af̄1,

(K21 − H21)u1 + (K22 − H22)u2 +D2,1x1 +D2,2x0 = Af̄2,

where
K11 = I + A2(P0

1,1)
(0), H11 = A2A′K̄′

1,1,

K12 = A2(P0
1,2)

(0), H12 = A2A′K̄′
1,2,

K21 = A2(P0
2,1)

(0), H21 = A2A′K̄′
2,1,

K22 = I + A2(P0
2,2)

(0), H22 = −A2A′K̄′
2,2.

The given initial conditions, we get u1(0) = t0,l(T∗)−1u1 = 1, u2(0) = t0,l(T∗)−1u2 = 1,

u′1(0) = t1,l(T∗)−1u1 = 1 and u′2(0) = t1,l(T∗)−1u2 = −1, where t0,l are defined in

Example 4.1 and t1,l =
[
0, 1,−4, . . . , (−1)M (M − 1)2

]
. Hence, we can construct the
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linear system in the matrix form:



K11 − H11 K12 − H12 x1 x0 0 0

K21 − H21 K22 − H22 0 0 x1 x0

t0,l(T∗)−1 0 0 0 0 0

t1,l(T∗)−1 0 0 0 0 0

0 t0,l(T∗)−1 0 0 0 0

0 t1,l(T∗)−1 0 0 0 0





u1

u2

D1,1

D1,2

D2,1

D2,2


=



A2f̄1

A2f̄2

1

1

1

−1


. (4.15)

Hence, we solve (4.15) to obtain the approximate solutions u1 and u2 with M = 8.

After that by substituting the solutions u1 and u2 into (4.9), we can get the approximate

solutions u1(x) and u2(x) for each arbitrary x ∈ [0, 1]. We compare the absolute errors

which are given by our numerical algorithm with the STWS [28] by using M = 8 as shown

in Table 4.3 together with the graphs between our approximate solutions and the exact

solutions with M = 40 depicted in Figure 4.2. With M = 8, our FIM-SCP corresponds

to m = 200 by [28]. The average run-time is 0.0880 seconds.

Table 4.3: A comparison of absolute errors of u1(x) and u2(x) for Example 4.2

xi
u1(xi) u2(xi)

STWS [28] FIM-SCP STWS [28] FIM-SCP

0.1 3.25× 10−7 5.11× 10−10 1.64× 10−7 2.23× 10−10

0.2 8.59× 10−7 1.49× 10−10 2.25× 10−7 2.66× 10−10

0.3 1.58× 10−6 1.68× 10−9 1.59× 10−7 9.29× 10−10

0.4 2.46× 10−6 4.52× 10−10 5.95× 10−8 4.79× 10−10

0.5 3.50× 10−6 8.52× 10−10 4.60× 10−7 2.64× 10−11

0.6 4.70× 10−6 5.03× 10−10 1.06× 10−6 5.35× 10−10

0.7 6.06× 10−6 1.82× 10−9 1.87× 10−6 9.62× 10−10

0.8 7.57× 10−6 1.31× 10−10 2.85× 10−6 3.15× 10−10

0.9 9.26× 10−6 2.74× 10−10 3.87× 10−6 3.37× 10−10

1.0 1.11× 10−5 4.44× 10−15 4.69× 10−6 2.39× 10−15
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(a) A graphical solution for u1(x) (b) A graphical solution for u2(x)

Figure 4.2: The graph of the approximate and exact solutions in Example 4.2

The next example is a system of linear second order VIDEs with variable coefficients,

constant kernel functions and the forcing terms of trigonometry and exponential functions.

Example 4.3. Consider the following system of linear second order VIDEs over x ∈ (0, 1)

u′′1(x) + 2xu′1(x)− u1(x) = 2 + x− ex + 2xex − cos(x) +
∫ x

0
(u1(t)− u2(t)) dt, (4.16)

u′′2(x) + u′2(x)− 2xu2(x) = −3x− ex − (1 + 2x) sin(x) + 2 cos(x) +
∫ x

0
(u1(t) + u2(t)) dt

(4.17)

with initial conditions u1(0) = u2(0) = u′1(0) = u′2(0) = 1. The analytical solutions are

u∗1(x) = ex and u∗2(x) = 1 + sin(x).

From the example, we know that m = 2, p11,1 = 2x, p02,2 = −2x, f1(x) = 2+x−ex+

2xex−cos(x), f2(x) = −3x−ex−(1+2x) sin(x)+2 cos(x), λ1,1 = λ1,2 = λ2,1 = λ2,2 = 1.

By using our numerical procedure described in Section 4.1, we take double-layer

integration both sides of (4.16) and (4.17), respectively. The problem can be transformed

and simplified into the matrix forms as

(K11 − H11)u1 + (−H12)u2 +D1,1x1 +D1,2x0 = A2f̄1,

(−H21)u1 + (K22 − H22)u2 +D2,1x1 +D2,2x0 = A2f̄2,
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where

K11 = I + A(P1
1,1)

(0) − A2(P1
1,1)

(1) + A2(P0
1,1)

(0), K22 = I + A + A2(P0
2,2)

(0),

H11 = A2A′K̄′
1,1, H12 = −A2A′K̄′

1,2, H21 = A2A′K̄′
2,1 and H22 = A2A′K̄′

2,2.

The given initial conditions can be written in a matrix form as u1(0) = t0,l(T∗)−1u1 = 1,

u2(0) = t0,l(T∗)−1u2 = 1, u′1(0) = t1,l(T∗)−1u1 = 1 and u′2(0) = t1,l(T∗)−1u2 = 1,

where t0,l and t1,l is defined in Examples 4.1 and 4.2, respectively. Hence, we can construct

the linear system in a matrix form as follows



K11 − H11 −H12 x1 x0 0 0

−H21 K22 − H22 0 0 x1 x0

t0(T∗)−1 0 0 0 0 0

t1(T∗)−1 0 0 0 0 0

0 t0(T∗)−1 0 0 0 0

0 t1(T∗)−1 0 0 0 0





u1

u2

D1,1

D1,2

D2,1

D2,2


=



A2f̄1

A2f̄2

1

1

1

1


. (4.18)

Hence, we solve (4.18) with M = 8 to get u1 and u2 of (4.16) and (4.17). To find

the approximate solutions u1(x) and u2(x) for each arbitrary x ∈ [0, 1], we substitute u1

and u2 into (4.9). Then, we compare our absolute errors with those given by [27] and [28]

by taking M = 8 as shown in Tables 4.4 and 4.5. Finally, the approximate and exact

solutions with M = 40 is shown in Figure 4.3. The average run-time is 0.0503 seconds.

(a) A graphical solution for u1(x) (b) A graphical solution for u2(x)

Figure 4.3: The graph of the approximate and exact solutions in Example 4.3
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Table 4.4: A comparison of absolute errors of u1(x) for Example 4.3

xi GPM [27] STWS [28] FIM-SCP

0.1 9.10139× 10−10 2.28× 10−10 8.13771× 10−10

0.2 1.85461× 10−9 4.89× 10−7 5.67609× 10−10

0.3 3.29800× 10−9 7.74× 10−7 2.35358× 10−9

0.4 1.07693× 10−8 1.08× 10−6 1.29180× 10−9

0.5 2.40393× 10−8 1.38× 10−6 6.50428× 10−11

0.6 3.27914× 10−8 1.69× 10−6 1.12844× 10−9

0.7 2.40101× 10−8 2.00× 10−6 2.36337× 10−9

0.8 5.52469× 10−9 2.29× 10−6 6.91728× 10−10

0.9 4.26837× 10−8 2.56× 10−6 7.30513× 10−10

1.0 6.83253× 10−8 2.81× 10−6 8.88178× 10−16

Table 4.5: A comparison of absolute errors of u2(x) for Example 4.3

xi GPM [27] STWS [28] FIM-SCP

0.1 2.22861× 10−10 1.79× 10−7 1.92190× 10−10

0.2 4.35240× 10−10 3.09× 10−7 1.04064× 10−10

0.3 8.04688× 10−10 3.99× 10−7 6.12261× 10−10

0.4 2.97754× 10−9 4.58× 10−7 2.95272× 10−10

0.5 7.13762× 10−9 4.91× 10−7 1.30359× 10−10

0.6 1.02531× 10−8 5.03× 10−7 2.05141× 10−10

0.7 7.59375× 10−9 4.96× 10−7 6.03731× 10−10

0.8 3.32624× 10−9 4.72× 10−7 1.45898× 10−10

0.9 1.93192× 10−8 4.31× 10−7 1.29673× 10−10

1.0 3.35382× 10−8 3.70× 10−7 4.44089× 10−16

The last example for this section is a system of linear first order VIDEs with constant

coefficients, variable kernel functions and the forcing terms of polynomials.
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Example 4.4. Consider the following system of linear first order VIDEs over x ∈ (0, 1)

u′1(x) = 1 + x− 1

3
x3 +

∫ x

0
(x− t)u1(t)dt+

∫ x

0
(x− t)u2(t)dt, (4.19)

u′2(x) = 1− x− 1

12
x4 +

∫ x

0
(x− t)u1(t)dt−

∫ x

0
(x− t)u2(t)dt, (4.20)

with boundary conditions u1(0) = 1 and u1(1) = 1.5 The analytical solutions are u∗1(x) =

x+ 1
2x

2 and u∗2(x) = x− 1
2x

2.

From the example, we know that m = 2, f1(x) = 1+x− 1
3x

3, f2(x) = 1−x− 1
12x

4,

K1,1(x, t) = K1,2(x, t) = K2,1(x, t) = x − t, K2,2(x, t) = −(x − t), and λ1,1 = λ1,2 =

λ2,1 = λ2,2 = 1.

By using our numerical procedure described in Section 4.1, we take single-layer

integration both sides of (4.19) and (4.20), respectively. The problem can be transformed

and simplified into the matrix forms

(K11 − H11)u1 + (−H12)u2 +D1,1x0 = Af̄1,

(−H21)u1 + (K22 − H22)u2 +D2,1x0 = Af̄2,

where

K11 = I, K22 = I, H11 = AA′K̄′
1,1, H12 = AA′K̄′

1,2, H21 = AA′K̄′
2,1, H22 = −AA′K̄′

2,2.

The given boundary conditions can be written in the matrix forms as follow u1(0) =

t0,l(T∗)−1u1 = 1, and u1(1) = t0,r(T∗)−1u1 = 1.5, where t0,l and t0,r is defined in

Examples 4.1 and 4.2, respectively. Hence, we can construct the linear system in a matrix

form as follows



K11 − H11 −H12 x0 0

−H21 K22 − H22 0 x0

t0(T∗)−1 0 0 0

0 t0(T∗)−1 0 0





u1

u2

D1,1

D2,1


=



Af̄1

Af̄2

1

1.5


. (4.21)
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Hence, we compute (4.21) with M = 10 to get u1 and u2 of (4.19) and (4.20). To

find the approximate solutions u1(x) and u2(x) for each arbitrary x ∈ [0, 1], we substitute

u1 and u2 into (4.9).

(a) A graphical solution for u1(x) (b) A graphical solution for u2(x)

Figure 4.4: The graph of the approximate and exact solutions in Example 4.4

Then, we compare our absolute errors with the analytical solutions by taking M =

10 as shown in Tables 4.6. Finally, the approximate and exact solutions with M = 40 is

shown in Figure 4.4. The average run-time is 0.0889 seconds.

Table 4.6: Numerical comparisons of u1(x) and u2(x) for Example 4.4

xi u1(x) u2(x)

0.0062 5.3949× 10−16 2.0144× 10−14

0.0545 6.5919× 10−16 2.1233× 10−14

0.1464 5.2736× 10−16 1.9651× 10−14

0.2730 6.1062× 10−16 1.8874× 10−14

0.4218 2.2204× 10−16 2.0872× 10−14

0.5782 1.1102× 10−16 1.9040× 10−14

0.7269 8.8818× 10−16 1.7097× 10−14

0.8536 8.8818× 10−16 1.7652× 10−14

0.9455 2.4425× 10−15 1.9706× 10−14

0.9938 2.2204× 10−15 1.8541× 10−14
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4.3 Algorithm for Solving System of linear FIDEs

In this section, we can devise a numerical algorithm for solving a system of linear

m FIDEs with the given boundary conditions which is the problem to solved by letting

uj to be the approximate solution of vj as defined in (2.11), then (1.4) becomes

m∑
j=1

Li,juj(x) = fi(x) +

m∑
j=1

λi,j

∫ b

a
Ki,j(x, t)uj(t) dt, x ∈ (a, b) (4.22)

with the given boundary conditions u
(p)
j (xbd) = bi for i ∈ {1, 2, 3, . . . ,m}, where xbd can

be the boundary of the interval (a, b), bi ∈ R, p ∈ N∪{0} and p ≤ m. Then, we apply the

idea of Chapter 2 to formulate the procedure for solving (4.22). Similarly to the system

of m linear VIDEs, let us consider each of the integration term in ith equation of (4.22)

for i ∈ {1, 2, 3, . . . ,m} which is denoted by

Gi,j(x) :=

∫ b

a
Ki,j(x, t)uj(t) dt, (4.23)

for j ∈ {1, 2, 3, . . . ,m}. Thus, for all i ∈ {1, 2, 3, . . . ,m}, (4.22) becomes

m∑
j=1

Li,juj(x) = fi(x) +

m∑
j=1

λi,jGi,j(x), x ∈ (a, b). (4.24)

We construct the numerical procedure for finding approximate solutions of the

system of m linear FIDEs. Steps 1 to 3 of the procedure for solving the system of linear

VIDEs as described in Section 4.1 can be used to construct an algorithm for solving the

system of m linear FIDEs. The numerical algorithm is devised by the following steps:

Step 1. We use the linear mapping x̄ = x−a
b−a to transform x ∈ [a, b] into x̄ ∈ [0, 1]. Let

k̂ = 1
b−a . Then, (4.24) for x ∈ (a, b) becomes

m∑
j=1

L̄i,j ūj(x̄) = f̄i(x̄) +
1

k̂

m∑
j=1

λi,jḠi,j(x̄), x̄ ∈ (0, 1) (4.25)

where L̄i,j , ūj(x̄) and f̄i(x̄) are defined in Step 1 of Section 3.1, Ḡi,j(x̄) =
∫ 1
0 K̄i,j(x̄, t̄)ūj(t̄) dt̄
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and K̄i,j(x̄, t̄) = Ki,j((b− a)x̄+ a, (b− a)t̄+ a).

Step 2. We mesh our domain [0, 1] into M nodes as described in Step 2 of Section 3.1.

Step 3. We eliminate all derivatives from (4.25) by taking hi-layer integration from 0 to

xk on both sides of each ith equation in (4.25) and using the technique of integration by

parts for all i ∈ {1, 2, 3, . . . ,m}, where hi is defined in Step 3 of Section 3.1 and xk is the

zeros of the shifted Chebyshev polynomials described in (2.2). Thus, for the LHS of ith

equation of (4.25), we obtain the integral term similar to the LHS of (3.4) for li,j = hi and

similar to the LHS of (3.5) for li,j < hi. Next, the RHS of ith equation in (4.25) becomes

∫ xk

0
. . .

∫ ξ2

0
f̄i(ξ1) dξ1 . . . dξhi

+
1

k̂

∫ xk

0
. . .

∫ ξ2

0

m∑
j=1

λi,jḠi,j(ξ1)dξ1 . . . dξhi
.

Step 4. We apply the idea of the single-layer integration of uj from 0 to 1 described by

(2.14) in Section 2.2 to transform Ḡi,j(xk) for all k ∈ {1, 2, 3, . . . ,m} into the matrix

form. Thus, we can get

Ḡi,j(xk) =

∫ 1

0
K̄i,j(xk, t̄)ūj(t̄)dt̄ = b(T∗)−1K̄i,j(xk)uj := BK̄i,j(xk)uj ,

where B = b(T∗)−1, b =
[
T
∗
0(1), T

∗
1(1), T

∗
2(1), . . . , T

∗
M−1(1)

]
for each entry can be

found in (2.8), K̄i,j(xk) = diag(K̄i,j(xk, x1), K̄i,j(xk, x2), K̄i,j(xk, x3), . . . , K̄i,j(xk, xM ))

and uj = [ūj(x1), ūj(x2), ūj(x3), . . . , ūj(xM )]⊤.

Next, we vary each xk for k ∈ {1, 2, 3, . . . ,M} to transform Ḡi,j(xk) into the

following matrix equation as



Ḡi,j(x1)

Ḡi,j(x2)

...

Ḡi,j(xM )


1×M

=



B 0 · · · 0

0 B . . . ...
... . . . . . . 0

0 · · · 0 B


M×M2



K̄i,j(x1)

K̄i,j(x2)

...

K̄i,j(xM )


M2×M



uj(x1)

uj(x2)

...

uj(xM )


M×1

,
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that is denoted to the simplified form:

Ḡi,j = B′K̄′
i,juj . (4.26)

Step 5. We transform the LHS of (4.25) presented in Step 3 together with the RHS of

(4.25) presented in Steps 3 and 4 and simplify it into a matrix form by using the idea of

FIM-SCP described in Chapter 2. Thus, we obtain the matrix form of the LHS of the

ith equation in (4.25) similar to the LHS of (3.8) for li,j = hi and the matrix form of the

LHS of the ith equation in (4.25) similar to the LHS of (3.9) for li,j < hi.

Next, we change the RHS of ith equation in (4.25) into the matrix form by applying

(4.26) similar to the idea described in Step 5 of Section 4.1. Then, it can be written as

Ahi f̄i +
1

k̂
Ahi

m∑
j=1

λi,jḠi,j = Ahi f̄i +
1

k̂
Ahiλi,j

m∑
j=1

B′K̄′
i,juj ,

where f̄i =
[
f̄i(x1), f̄i(x2), f̄i(x3), . . . , f̄i(xM )

]⊤. Hence, we can simplify (4.25) in the

following matrix equation

m∑
j=1

Kijuj +

hi∑
k=1

Di,kxhi−k = Ahi f̄i +
1

k̂
Ahiλi,j

m∑
j=1

B′K̄′
i,juj , (4.27)

where Kij and Di,k for all k ∈ {1, 2, 3, . . . ,m} and i ∈ {1, 2, 3, . . . ,m} are defined in

Step 4 of Section 3.1. Let us define H′
ij :=

1
k̂
λi,jAhiB′K̄′

i,j . Consequently, (4.27) can be

simplified in the form as

m∑
j=1

(Kij − H′
ij)uj +

hi∑
k=1

Di,kxhi−k = Ahi f̄i, (4.28)

for all i ∈ {1, 2, 3, . . . ,m}.

Step 6. We can obtain the boundary conditions as same as (3.12) presented in Step 5 of

Section 3.1. After that, we use it and (4.28) to construct the linear system. Then, we
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obtain the linear system in a block matrix form

 Kf Q

R 0

 u

D

 =

 W

b

 , (4.29)

where W, Q, R, D, 0, u and b are defined the same in Step 6 of Section 3.1 and

Kf =



K11 − H′
11 K12 − H′

12 · · · K1m − H′
1m

K21 − H′
21 K22 − H′

22 · · · K2m − H′
2m

...
... . . . ...

Km1 − H′
m1 Km2 − H′

m2 · · · Kmm − H′
mm


mM×mM

.

Hence, we can solve the linear system (4.29) to find the approximate solutions ūj(x̄)

of the system of linear m FIDEs (1.4) for all j ∈ {1, 2, 3, . . . ,m}. We assume that Kf

and RK−1
f Q are nonsingular matrices. Thus,

u = K−1
f

[
W − Q

(
RK−1

f Q
)−1 (

RK−1
f W − b

)]
. (4.30)

Finally, we can obtain the approximate solutions uj(x) for x ∈ [a, b] by using the linear

mapping x̄ = x−a
b−a .
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4.4 Numerical Examples of System of Linear FIDEs

In the section, we implement numerical examples to find the approximate solutions

of some system of m linear FIDEs by using our proposed method with Matlab program.

We compare our results with the analytical solution to show the efficiency of our numerical

algorithm. For an error of the solutions, we use the absolute error E which defined by

E = |u∗j (x) − uj(x)| for all j ∈ {1, 2, 3, . . . ,m}, where u∗j and uj are respectively the

analytical and numerical solution at each x in the domain.

We start with the first example which is a system of linear second order FIDEs with

constant coefficients, kernel functions and the forcing terms are in terms of trigonometry

and exponential functions.

Example 4.5. Consider the following system of linear second order FIDEs for x ∈ (0, π)

u′′1(x) + u′2(x) = 2(ex − sin(x))−
∫ π

0
ex(u1(t)− u2(t)) dt, (4.31)

2u′1(x) + u′′2(x) = (1 +
π

2
) cos(x)− π

2
sin(x)−

∫ π

0
cos(x+ t)(u1(t) + u2(t)) dt (4.32)

with the boundary conditions u1(0) + u′1(0) = 1, u1(π) + u′1(π) = −1, u2(0) + u′2(0) = 1

and u2(π) + u′2(π) = −1. The exact solutions are u∗1(x) = sin(x) and u∗2(x) = cos(x).

From the problem, we have f1(x) = 2(ex−sin(x)), f2(x) = (1+ π
2 ) cos(x)− π

2 sin(x),

K1,1(x, t) = −ex, K1,2(x, t) = −ex, K2,1(x, t) = − cos(x + t), K2,2(x, t) = − cos(x + t)

and λ1,1 = λ1,2 = λ2,1 = λ2,2 = 1. First, we transform x ∈ [0, π] into x̄ ∈ [0, 1] by using

x̄ = x
π . Let k̂ = 1

π . Then, we obtain

1

π2
u′′1(x̄) +

1

π
u′2(x̄) = f̄1(x̄) + π

∫ 1

0
K̄1,1(x̄, t̄)u1(t̄) + π

∫ 1

0
K̄1,2(x̄, t̄)u2(t̄) dt,

2

π
u′1(x̄) +

1

π2
u′′2(x̄) = f̄2(x̄) + π

∫ 1

0
K̄2,1(x̄, t̄)u1(t̄) + π

∫ 1

0
K̄2,2(x̄, t̄)u2(t̄) dt,

where f̄1(x̄) = 2(eπx̄ − sin(πx̄)), f̄2(x̄) = (1 + π
2 ) cos(πx̄)− π

2 sin(πx̄), K̄1,1(x̄, t̄) = −eπx̄,

K̄1,2(x̄, t̄) = −eπx̄, K̄2,1(x̄, t̄) = − cos(πx̄+πt̄) and K̄2,2(x̄, t̄) = − cos(πx̄+πt̄). The exact
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solutions become u∗1(x̄) = sin(πx̄) and u∗2(x̄) = cos(πx̄).

Next, we take double-layer integration both sides of (4.31) and (4.32) and transform

its into the matrix form by using our numerical procedure described in Section 4.3. Then,

we rearrange its into a simplified matrix form

(K11 − H′
11)u1 + (K12 − H′

12)u2 +D1,1x1 +D1,2x0 = A2f̄1

(K21 − H′
21)u1 + (K22 − H′

22)u2 +D2,1x1 +D2,2x0 = A2f̄2,

where

K11 =
1
π2 I, H′

11 = πA2B′K̄′
1,1, K12 =

1
π2 A, H′

12 = πA2B′K̄′
2,1,

K21 =
2
πA, H′

21 = πA2B′K̄′
2,1, K22 =

1
π2 I, H′

22 = πA2B′K̄′
2,2.

The given boundary conditions can be written to the matrix forms:

u1(0) + u′1(0) = (t0,l(T∗)−1 + t1,l(T∗)−1)u1 = 1,

u1(π) + u′1(π) = (t0,r(T∗)−1 + t1,r(T∗)−1)u1 = −1,

u2(0) + u′2(0) = (t0,l(T∗)−1 + t1,l(T∗)−1)u2 = 1,

u2(π) + u′2(π) = (t0,r(T∗)−1 + t1,r(T∗)−1)u2 = −1,

where

t0,l =
[
1,−1, 1, . . . , (−1)M−1

]
, t1,l =

[
0, 1,−4, . . . , (−1)M (M − 1)2

]
,

t0,r =
[
1, 1, 1, . . . , 1M−1

]
and t1,r =

[
0, 1, 4, . . . , (M − 1)2

]
.
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Therefore, we construct a linear system in a matrix form as follows



K11 − H′
11 K12 − H′

12 x1 x0 0 0

K21 − H′
21 K22 − H′

22 0 0 x1 x0

(t0,l + t1,l)(T∗)−1 0 0 0 0 0

(t0,r + t1,r)(T∗)−1 0 0 0 0 0

0 (t0,l + t1,l)(T∗)−1 0 0 0 0

0 (t0,l + t1,l)(T∗)−1 0 0 0 0





u1

u2

D1,1

D1,2

D2,1

D2,2


=



A2f̄1

A2f̄2

1

−1

1

−1


.

After solving the above matrix equation, we can obtain the approximate solutions u1

and u2 of (4.31) and (4.32) and take these equations to (4.30), then we get the approximate

solutions u1(x) and u2(x) for each arbitrary x ∈ [0, 1]. A comparison of the absolute errors

of our proposed method with the TAU [16] by using M = 5, M = 10 and M = 15 as

shown in Tables 4.7 - 4.12. Figure 4.5 shows the graphical solutions of our approximate

solutions with the exact solutions. The average run-time is 0.0572 seconds.

Table 4.7: A comparison of absolute errors of u1(x) for Example 4.5 (M = 5)

xi TAU [16] FIM-SCP

0 4.106683× 10−3 8.326673× 10−17

(1/5)π 3.394788× 10−3 1.647847× 10−3

(2/5)π 1.828708× 10−4 3.441410× 10−4

(3/5)π 3.080457× 10−3 3.786036× 10−4

(4/5)π 1.122245× 10−2 3.093337× 10−3

π 9.431156× 10−3 2.473648× 10−16
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Table 4.8: A comparison of absolute errors of u2(x) for Example 4.5 (M = 5)

xi TAU [16] FIM-SCP

0 1.885015× 10−2 4.440892× 10−16

(1/5)π 7.915380× 10−3 5.529300× 10−3

(2/5)π 3.003007× 10−3 7.344982× 10−4

(3/5)π 3.215101× 10−3 3.313541× 10−3

(4/5)π 1.402093× 10−3 4.408611× 10−3

π 1.051111× 10−3 1.554312× 10−15

Table 4.9: A comparison of absolute errors of u1(x) for Example 4.5 (M = 10)

xi TAU [16] FIM-SCP

0 4.420342× 10−8 9.992010× 10−16

(1/5)π 1.247323× 10−8 5.209195× 10−8

(2/5)π 2.136281× 10−8 1.458277× 10−8

(3/5)π 5.186232× 10−8 1.848885× 10−8

(4/5)π 6.725784× 10−8 1.426471× 10−8

π 5.403331× 10−8 3.147822× 10−15

Table 4.10: A comparison of absolute errors of u2(x) for Example 4.5 (M = 10)

xi TAU [16] FIM-SCP

0 4.701099× 10−8 1.110220× 10−16

(1/5)π 2.261104× 10−8 3.243422× 10−8

(2/5)π 3.873452× 10−8 2.639139× 10−8

(3/5)π 4.240854× 10−9 5.453175× 10−9

(4/5)π 3.007024× 10−8 1.499293× 10−8

π 2.175167× 10−8 9.992007× 10−16
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Table 4.11: A comparison of absolute errors of u1(x) for Example 4.5 (M = 15)

xi TAU [16] FIM-SCP

0 1.304721× 10−9 2.775558× 10−16

(1/5)π 5.264506× 10−9 2.788880× 10−13

(2/5)π 4.701600× 10−9 2.966516× 10−13

(3/5)π 1.430526× 10−9 3.603784× 10−13

(4/5)π 1.865835× 10−8 4.463097× 10−13

π 1.405449× 10−5 1.931448× 10−15

Table 4.12: A comparison of absolute errors of u2(x) for Example 4.5 (M = 15)

xi TAU [16] FIM-SCP

0 6.028561× 10−9 4.440892× 10−16

(1/5)π 3.606308× 10−9 8.104628× 10−13

(2/5)π 5.473832× 10−9 6.925571× 10−13

(3/5)π 7.694197× 10−9 1.331713× 10−13

(4/5)π 8.618511× 10−9 3.380629× 10−13

π 6.447411× 10−9 8.88178× 10−16

(a) A graphical solution for u1(x) (b) A graphical solution for u2(x)

Figure 4.5: The graph of the approximate and exact solutions in Example 4.5
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The second example is a system of linear second order FIDEs with constant coeffi-

cients, polynomial forcing terms and kernel functions are in terms of functions depending

on variables x and t.

Example 4.6. Consider the following system of linear second order FIDEs over x ∈ (0, 1)

u′′1(x) + u2
′(x) = 3x2 +

3

10
x+ 8−

∫ 1

0
(2xt)u1(t) dt+

∫ 1

0
(6xt)u2(t) dt, (4.33)

u′1(x) + u′′2(x) = 21x+
4

5
−
∫ 1

0
3(2x+ t2)u1(t) dt+

∫ 1

0
6(2x+ t2)u2(t) dt (4.34)

with the boundary conditions u1(0)+u′1(0) = 1, u1(1)+u′1(1) = 10, u2(0)+u′2(0) = 1 and

u2(1)+ u′2(1) = 7. The analytical solutions are u∗1(x) = 3x2 +1 and u∗2(x) = x3 +2x− 1.

In this example, we have f1(x) = 3x2+ 3
10x+8, f2(x) = 21x+ 4

5 , K1,1(x, t) = −2xt,

K1,2(x, t) = 6xt, K2,1(x, t) = −3(2x+t2), K2,2(x, t) = 6(2x+t2) and λ1,1 = λ1,2 = λ2,1 =

λ2,2 = 1.

By using our numerical procedure described in Section 4.3, we take double-layer

integration both sides of (4.33) and (4.34). The problem can be transformed and simplified

into the matrix form as

(K11 − H′
11)u1 + (K12 − H′

12)u2 +D1,1x1 +D1,2x0 = A2f̄1,

(K21 − H′
21)u1 + (K22 − H′

22)u2 +D2,1x1 +D2,2x0 = A2f̄2,

where
K11 = I, H′

11 = A2B′K̄′
1,1, K12 = A, H′

12 = A2B′K̄′
2,1,

K21 = A, H′
21 = A2B′K̄′

2,1, K22 = I, H′
22 = A2B′K̄′

2,2.
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The given boundary conditions can written in a matrix form as

u1(0) + u′1(0) = (t0,l(T∗)−1 + t1,l(T∗)−1)u1 = 1,

u1(π) + u′1(π) = (t0,r(T∗)−1 + t1,r(T∗)−1)u1 = 10,

u2(0) + u′2(0) = (t0,l(T∗)−1 + t1,l(T∗)−1)u2 = 1,

u2(π) + u′2(π) = (t0,r(T∗)−1 + t1,r(T∗)−1)u2 = 7,

where t0,l, t0,r, t1,l and t1,r are defined in Example 4.5. Thus, we can construct the linear

system in a matrix form



K11 − H′
11 K12 − H′

12 x1 x0 0 0

K21 − H′
21 K22 − H′

22 0 0 x1 x0

(t0,l + t1,l)(T∗)−1 0 0 0 0 0

(t0,r + t1,r)(T∗)−1 0 0 0 0 0

0 (t0,l + t1,l)(T∗)−1 0 0 0 0

0 (t0,l + t1,l)(T∗)−1 0 0 0 0





u1

u2

D1,1

D1,2

D2,1

D2,2


=



A2f̄1

A2f̄2

1

10

1

7


.

We solve the above matrix equation to obtain the approximate solutions u1 and u2

of (4.33) and (4.34) and take these equations to (4.30) in order to obtain the approximate

solutions u1(x) and u2(x) for each arbitrary x ∈ [0, 1]. We compare the absolute errors of

our approximate results u1(x) and u2(x) with the analytical solutions by using M = 10

as demonstrated in Tables 4.13. The graphs of our approximate solutions with M = 40

are shown in Figure 4.6. The average run-time is 0.0554 seconds.
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Table 4.13: A comparison of absolute errors of u1(x) and u2(x) for Example 4.6

xi u1(x) u2(x)

0.006156 8.881785× 10−15 2.775557× 10−15

0.054497 3.330669× 10−15 9.547918× 10−15

0.146447 3.108624× 10−15 9.769963× 10−15

0.273005 4.662937× 10−15 5.995204× 10−15

0.421783 1.554312× 10−15 4.996004× 10−15

0.578217 4.440892× 10−16 9.103829× 10−16

0.726995 1.332268× 10−15 5.107026× 10−15

0.853553 3.996803× 10−15 5.773160× 10−15

0.945503 2.664535× 10−15 5.107026× 10−15

0.993844 5.773160× 10−15 1.998401× 10−15

(a) A graphical solution for u1(x) (b) A graphical solution for u2(x)

Figure 4.6: The graph of the approximate and exact solutions in Example 4.6

The last example is a system of linear second order FIDEs with variable coefficients,

the forcing terms and kernel functions are in terms of trigonometry.
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Example 4.7. Consider the following system of linear second order FIDEs on x ∈ (0, 1)

u′′1(x)− xu′2(x)− u1(x) = (x− 2) sin(x) +
∫ 1

0
(x cos(t)u1(t)− x sin(t)u2(t)) dt, (4.35)

u′′2(x)− 2xu′1(x) + u2(x) = −2x cos(x) + sin(x) cos(t)
∫ 1

0
(u1(t)− u2(t)) dt (4.36)

with the initial conditions u1(0) = 0, u′1(0) = 1, u2(0) = 1 and u′2(0) = 1. The exact

solutions are u∗1(x) = sin(x) and u∗2(x) = cos(x).

From this example, we have p11,2(x) = −x, p12,1(x) = −2x, f1(x) = (x − 2) sin(x),

f2(x) = −2x cos(x),K1,1(x, t) = x cos(t), K1,2(x, t) = −x sin(t), K2,1(x, t) = sin(x) cos(t),

K2,2(x, t) = − sin(x) cos(t) and λ1,1 = λ1,2 = λ2,1 = λ2,2 = 1.

Taking double-layer integration both sides of (4.35) and (4.36) by using our nu-

merical procedure described in Section 4.3. Then, the problem can be transformed and

simplified into the matrix forms

(K11 − H′
11)u1 + (K12 − H′

12)u2 +D1,1x1 +D1,2x0 = A2f̄1,

(K21 − H′
21)u1 + (K22 − H′

22)u2 +D2,1x1 +D2,2x0 = A2f̄2,

where

K11 = I − A2, H′
11 = A2B′K̄′

1,1,

K12 = A
(
P1

1,2

)(0) − A2
(
P1

1,2

)(1)
, H′

12 = A2B′K̄′
2,1,

K21 = A
(
P1

2,1

)(0) − A2
(
P1

2,1

)(1)
, H′

21 = A2B′K̄′
2,1,

K22 = I + A2, H′
22 = A2B′K̄′

2,2.

By using the boundary conditions, u1(0) = t0,l(T∗)−1u1 = 0, u′1(0) = t1,l(T∗)−1u1 = 1,

u2(0) = t0,l(T∗)−1u2 = 1 and u′2(0) = t1,l(T∗)−1u2 = 1, where t0,l and t1,l are defined
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in Example 4.5. Thus, we can construct a linear system in a matrix form



K11 − H′
11 K12 − H′

12 x1 x0 0 0

K21 − H′
21 K22 − H′

22 0 0 x1 x0

t0,l(T∗)−1 0 0 0 0 0

t1,r(T∗)−1 0 0 0 0 0

0 t0,l(T∗)−1 0 0 0 0

0 t1,l(T∗)−1 0 0 0 0





u1

u2

D1,1

D1,2

D2,1

D2,2


=



A2f̄1

A2f̄2

0

1

1

1


. (4.37)

We compute (4.37) to obtain the approximate solutions u1 and u2 of (4.33) and

(4.34) and take these equation (4.30) to get the approximate solutions u1(x) and u2(x)

for each arbitrary x ∈ [0, 1]. The comparison of the average absolute errors of our ap-

proximate solutions u1(x) and u2(x) with [17] and [18] by using M ∈ {3, 7, 9, 10, 11, 12}

as demonstrated in Tables 4.14 and 4.15, respectively. Figure 4.7 show the graphs of our

approximate solutions with M = 40. The average run-time is 0.0574 seconds.

Table 4.14: A comparison of average absolute errors of u1(x) for Example 4.7

M CM-BP [17] CM-FP [18] FIM-SCP

3 5.0207× 10−3 5.0207× 10−3 2.8326× 10−3

7 5.0207× 10−7 5.0207× 10−7 1.3485× 10−10

9 3.9722× 10−9 3.9722× 10−9 1.1567× 10−11

10 2.6596× 10−10 2.6596× 10−10 2.3278× 10−13

11 2.4875× 10−11 2.4875× 10−11 7.3000× 10−15

12 1.2126× 10−12 1.2126× 10−12 2.0921× 10−15
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Table 4.15: A comparison of average absolute errors of u2(x) for Example 4.7

M CM-BP [17] CM-FP [18] FIM-SCP

3 1.3565× 10−2 1.3565× 10−2 1.4316× 10−3

7 6.3006× 10−7 6.3006× 10−7 9.0883× 10−9

9 4.2348× 10−9 4.2348× 10−9 7.8634× 10−13

10 2.9397× 10−10 2.9397× 10−10 4.7902× 10−13

11 2.5629× 10−11 2.5629× 10−11 3.0279× 10−15

12 1.5526× 10−12 1.5526× 10−12 2.0262× 10−15

(a) A graphical solution for u1(x) (b) A graphical solution for u2(x)

Figure 4.7: The graph of the approximate and exact solutions in Example 4.7



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this thesis, we devise the numerical algorithms based on the idea of [22] with

slightly modify by using the shifted Chebyshev polynomials for finding the approximate

solutions to the systems of linear ODEs, VIDEs and FIDEs problems. We utilize the

zeros of shifted Chebyshev polynomials of a certain degree to be the computational nodes

and construct the shifted Chebyshev integration matrices for these devised algorithms.

Several numerical examples illustrate the performance of our numerical algorithms

and the accuracy of our approximate solutions comparing with some other numerical

methods in literatures. In Section 3.2, for Example 3.1, our method provides a better

accuracy than other methods in terms of the absolute errors at the same number of nodal

points and under the same conditions which can be seen in Table 3.1. For Example 3.2

which is the stiff system of linear ODEs, our method gives a good result compare to other

methods for every computational grid point in terms of the absolute errors at the same

number of nodal points and under the same conditions which can be seen in Tables 3.2 -

3.4. For Example 3.3 which is the stiff system of linear ODEs and Example 3.4 which is

the system of linear ODEs with the boundary conditions, our method also gives the high

accuracy compare to the analytical solutions in terms of the average absolute errors as

shown in Tables 3.5 and Table 3.6, respectively. We also plot the graphical solutions at

the number of nodes M = 40 as shown in Figures 3.1 - 3.4.

In Section 4.2, our method provides a higher accuracy than other methods in terms

of the absolute errors at the same number of nodal points and under the same conditions

for every computational grid point which can be seen in Tables 4.1 - 4.5. For Example 4.4
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which is the system of linear VIDEs with the boundary conditions, our method also gives

the high accuracy compare to the analytical solutions in terms of the average absolute

errors as shown in Tables 4.6. We further show the graphical solutions at M = 40 as

shown in Figures 4.1 - 4.4.

In Section 4.4, for Example 4.5 and 4.7, our method provides a higher accuracy

than other methods in terms of the absolute errors at the same number of nodal points

and under the same conditions for every computational grid point which can be seen in

Tables 4.7 - 4.12 and Tables 4.14 - 4.15. For Example 4.6, our method provides the high

accuracy compare to the analytical solutions in terms of the average absolute errors as

shown in Tables 4.13. We finally show the graphical solutions at M = 40 as shown in

Figures 4.5 - 4.7.

For M ∈ {3, 5, 7, 9, 11, 13, 15}, Tables 5.1 - 5.11 demonstrate the average absolute

errors of u1(x) and u2(x) for Example 3.1 - 3.4 and Example 4.1 - 4.7, respectively.

Table 5.1: Average absolute errors of u1(x) and u2(x) for Example 3.1

M u1(x) u2(x)

3 1.707608 1.979499

5 9.453146× 10−2 9.628591× 10−2

7 3.914707× 10−3 3.926651× 10−3

9 1.027767× 10−4 1.028068× 10−4

11 1.818047× 10−6 1.818131× 10−6

13 2.441199× 10−8 2.441209× 10−8

15 2.418820× 10−10 2.419012× 10−10
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Table 5.2: Average absolute errors of u1(x) and u2(x) for Example 3.2

M u1(x) u2(x) u3(x)

3 6.597985× 10−5 1.361354× 10−5 1.361418× 10−5

5 3.338292× 10−9 1.665486× 10−8 1.665485× 10−8

7 1.986126× 10−12 3.975261× 10−13 3.956041× 10−13

9 2.146431× 10−15 3.335367× 10−15 1.048544× 10−15

11 9.780056× 10−15 1.275455× 10−15 9.911264× 10−15

13 1.298107× 10−15 2.101167× 10−15 1.639714× 10−15

15 7.786364× 10−15 8.681857× 10−16 6.550316× 10−15

Table 5.3: Average absolute errors of u1(x) and u2(x) for Example 3.3

M u1(x) u2(x)

3 6.071904× 10−3 6.071904× 10−3

5 1.902571× 10−5 1.902571× 10−3

7 2.843494× 10−8 2.843493× 10−8

9 2.471849× 10−11 2.471813× 10−11

11 2.860338× 10−14 1.602254× 10−14

13 1.848094× 10−14 5.642922× 10−15

15 2.016165× 10−14 4.637031× 10−15

Table 5.4: Average absolute errors of u1(x) and u2(x) for Example 3.4

M u1(x) u2(x) u3(x)

3 6.653674× 10−3 6.826086× 10−3 1.956917× 10−3

5 1.866672× 10−5 2.959495× 10−5 7.409434× 10−6

7 2.879149× 10−8 6.521237× 10−8 1.373126× 10−8

9 2.708902× 10−11 7.116367× 10−11 1.465876× 10−11

11 1.735985× 10−14 4.902896× 10−14 1.024938× 10−14

13 1.540648× 10−14 5.073666× 10−15 3.322129× 10−15

15 9.947598× 10−15 2.643949× 10−15 4.718448× 10−15
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Table 5.5: Average absolute errors of u1(x) and u2(x) for Example 4.1

M u1(x) u2(x)

3 1.260764× 10−2 7.729789× 10−3

5 3.648782× 10−5 2.139675× 10−5

7 5.317952× 10−8 3.083810× 10−8

9 4.577092× 10−11 2.642817× 10−11

11 2.488918× 10−14 1.388788× 10−14

13 7.105427× 10−15 2.100884× 10−15

15 5.536312× 10−15 2.827368× 10−15

Table 5.6: Average absolute errors of u1(x) and u2(x) for Example 4.2

M u1(x) u2(x)

3 5.233532× 10−3 2.580935× 10−3

5 1.667650× 10−5 6.588292× 10−6

7 2.533888× 10−8 1.035765× 10−8

9 2.198742× 10−11 8.618883× 10−12

11 7.145799× 10−15 6.651245× 10−15

13 1.187085× 10−15 2.895120× 10−15

15 8.822572× 10−15 3.204844× 10−15

Table 5.7: Average absolute errors of u1(x) and u2(x) for Example 4.3

M u1(x) u2(x)

3 5.099841× 10−3 3.017017× 10−3

5 2.075038× 10−5 8.926379× 10−6

7 2.756037× 10−8 1.355109× 10−8

9 2.408834× 10−11 1.160289× 10−11

11 8.599182× 10−15 9.891078× 10−15

13 1.463786× 10−14 1.144384× 10−14

15 9.118632× 10−15 8.319271× 10−15
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Table 5.8: Average absolute errors of u1(x) and u2(x) for Example 4.4

M u1(x) u2(x)

3 1.208510× 10−5 1.850717× 10−3

5 3.393119× 10−16 3.749084× 10−15

7 1.485419× 10−15 8.242662× 10−15

9 1.367733× 10−15 2.314179× 10−14

11 2.573778× 10−15 2.956821× 10−14

13 5.623039× 10−15 5.832751× 10−14

15 2.703104× 10−15 3.857025× 10−14

Table 5.9: Average absolute errors of u1(x) and u2(x) for Example 4.5

M u1(x) u2(x)

3 2.832573× 10−3 1.431580× 10−3

5 8.881220× 10−6 7.167711× 10−6

7 1.348496× 10−8 9.088295× 10−9

9 1.156664× 10−11 7.863352× 10−12

11 7.299953× 10−15 3.027881× 10−15

13 4.423745× 10−15 2.997602× 10−15

15 2.332162× 10−15 2.301862× 10−15

Table 5.10: Average absolute errors of u1(x) and u2(x) for Example 4.6

M u1(x) u2(x)

3 2.627196× 10−3 1.897008× 10−2

5 3.330669× 10−15 2.525757× 10−15

7 5.551115× 10−15 8.556647× 10−15

9 5.625129× 10−15 3.938208× 10−15

11 8.619368× 10−15 6.762268× 10−15

13 2.252899× 10−14 1.173634× 10−14

15 1.178317× 10−14 7.329322× 10−15
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Table 5.11: Average absolute errors of u1(x) and u2(x) for Example 4.7

M u1(x) u2(x)

3 2.832573× 10−3 1.431580× 10−3

5 8.881220× 10−6 7.167711× 10−6

7 1.348496× 10−8 9.088295× 10−9

9 1.156664× 10−11 7.863352× 10−12

11 7.299953× 10−15 3.027881× 10−15

13 4.423745× 10−15 2.997602× 10−15

15 2.332162× 10−15 2.301862× 10−15

5.2 Future work

The plan of our future works for improving our results and extend the scope of

the research for our proposed method based on shifted Chebyshev polynomials are the

followings

1. To extend our proposed algorithm for solving the system of linear FIDEs with

Neumann and mixed boundary conditions.

2. To improve our devised method for the system of nonlinear IDEs.

3. To extend the scope of our domains for solving the system of linear IDEs in the

other domains such as circle and polygons by using our presented method.

4. To find the theoretical accuracy of our presented method.
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In this thesis, we implement our propose numerical algorithms with MatLab soft-

ware to calculate the approximate solutions of each example in this research. In this

appendix, we would like to present some examples of the code which the linear systems

are solved by the Gaussian elimination method.

APPENDIX A : Example of MatLab code for solving the stiff system of ODEs.

Example A. We consider Example 3.2

u′1(x) = −20u1(x)− 0.25u2(x)− 19.75u3(x),

u′2(x) = 20u1(x)− 20.25u2(x) + 0.25u3(x),

u′3(x) = 20u1(x)− 19.75u2(x)− 0.25u3(x),

with initial conditions u1(0) = 1, u2(0) = 0 and u3(0) = −1. The analytical solutions are

u1(x) =
1

2

(
e−

1

2
x + e−20x(cos(20x) + sin(20x))

)
,

u2(x) =
1

2

(
e−

1

2
x − e−20x(cos(20x)− sin(20x))

)
,

u3(x) =
1

2

(
e−

1

2
x + e−20x(cos(20x)− sin(20x))

)
.

Thus, we can construct the linear system in a matrix form as follows



I + 20A 0.25A 19.75A x0 0 0

−20A I + 20.25A −0.25A 0 x0 0

−20A 19.75A I + 0.25A 0 0 x0

t0(T∗)−1 0 0 0 0 0

0 t0(T∗)−1 0 0 0 0

0 0 t0(T∗)−1 0 0 0





u1

u2

u3

D1,1

D2,1

D3,1


=



Af1
Af2
Af3
1

0

−1


.

1 %% Input parameters-----------------------------------------------

2 m = 1; % The higher order derivative

3 M = 16; % The number of nodal points
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4 a = 0; % The left boundary

5 b = 0.01; % The right boundary

6 fx1 = 0; % The forcing term f_1(x)

7 fx2 = 0; % The forcing term f_2(x)

8 %% Analytical solutions-------------------------------------------

9 ex1 = @(x) (1/2)*(exp(-x./2)+exp(-20*x).*(cos(20*x)+sin(20*x)));

10 ex2 = @(x) (1/2)*(exp(-x./2)-exp(-20*x).*(cos(20*x)-sin(20*x)));

11 ex3 = @(x) -(1/2)*(exp(-x./2)+exp(-20*x).*(cos(20*x)-sin(20*x)));

12 %% Compute xbar in [0,1]------------------------------------------

13 xbar = flip(((0.01)*cos((2*(1:M)'-1)/(2*M)*pi)+0.01)/2);

14 %% Integration matrix A-------------------------------------------

15 %----- Construct matrix T* -----

16 T(:,1) = ones(M,1);

17 T(:,2) = (2*xbar-0.01)/(0.01);

18 for n = 2:M

19 T(:,n+1) = 2*(2*xbar-0.01)/(0.01).*T(:,n)-T(:,n-1);

20 end

21 %----- Construct matrix (T*)bar -----

22 Tbar(:,1) = xbar;

23 Tbar(:,2) = (xbar).*(xbar-0.01)/(0.01);

24 for n = 2:M-1

25 Tbar(:,n+1) = (0.01)/4*(T(:,n+2)/(n+1)-T(:,n)/(n-1)-2*(-1)^n/(

n^2-1));

26 end

27 Tinv = 1/M*diag([1 2*ones(1,M-1)])*T(:,1:M)';

28 A = Tbar*Tinv;

29 %% Boundary conditions--------------------------------------------

30 t0l = (-1).^(0:M-1);

31 r1 = [t0l*Tinv zeros(1,M) zeros(1,M)];

32 r2 = [zeros(1,M) t0l*Tinv zeros(1,M)];
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33 r3 = [zeros(1,M) zeros(1,M) t0l*Tinv];

34 %% Construct linear system----------------------------------------

35 %----- Construct matrix K_ij -----

36 K_11 = eye(M)+20*A;

37 K_12 = 0.25*A;

38 K_13 = 19.75*A;

39 K_21 = -20*A;

40 K_22 = eye(M)+20.25*A;

41 K_23 = -0.25*A;

42 K_31 = -20*A;

43 K_32 = 19.75*A;

44 K_33 = eye(M)+0.25*A;

45 %----- Constuct matrix equation -----

46 K_o=[K_11 K_12 K_13; K_21 K_22 K_23; K_31 K_32 K_33]; % Matrix K_o

47 Q = [ ones(M,1) zeros(M,2); zeros(M,1) ones(M,1) zeros(M,1);

48 zeros(M,2) ones(M,1)]; % Matrix Q

49 R = [r1; r2; r3]; % Matrix R

50 M0 = [0 0 0; 0 0 0; 0 0 0]; % Matrix 0

51 W = [zeros(M,1);zeros(M,1); zeros(M,1)]; % Matrix W

52 b = [ex1(0); ex2(0); ex3(0)]; % Matrix b

53 Z = [K_o Q; R M0]; % The LHS 0f linear system

54 B = [W; b]; % The RHS 0f linear system

55 %% Solve u--------------------------------------------------------

56 u = pinv(Z)*B; % Numerical Solutions

57 e1 = ex1(xbar); % Analytical solution u1

58 e2 = ex2(xbar); % Analytical solution u2

59 e3 = ex3(xbar); % Analytical solution u3

60 E1 = mean(abs(u(1:M)-e1)) % Average absolute error of u1

61 E2 = mean(abs(u(M+1:2*M)-e2)) % Average absolute error of u2

62 E3 = mean(abs(u(2*M+1:3*M)-e3)) % Average absolute error of u3
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63 [xbar u(1:M) e1 abs(u(1:M)-e1)];

64 [xbar u(1:M) e2 abs(u(M+1:2*M)-e2)];

65 [xbar u(1:M) e3 abs(u(2*M+1:3*M)-e3)];

66 %% Compute u for arbitary x---------------------------------------

67 x1 = [0.000 0.002 0.004 0.006 0.008 0.010]';

68 T1 = @(n,x1) cos(n*acos((2*x1-0.01)/0.01));

69 for j=1: length(x1)

70 for i=0:M-1

71 T1x(1,i+1)= T1(i,x1(j));

72 end

73 ur1(j) = T1x*Tinv*u(1:M); % u1 for arbitary x

74 ur2(j) = T1x*Tinv*u(M+1:2*M); % u2 for arbitary x

75 ur3(j) = T1x*Tinv*u(2*M+1:3*M); % u3 for arbitary x

76 er1(j) = abs(ur1(j)-ex1(x1(j))); % Absolute error of u1

77 er2(j) = abs(ur2(j)-ex2(x1(j))); % Absolute error of u2

78 er3(j) = abs(ur3(j)-ex3(x1(j))); % Absolute error of u3

79 end

80 [x1 er1' er2' er3'];

81 %% Plot our numerical & analytical solutions----------------------

82 p1 = plot(xbar,e1,'red');

83 hold on

84 p2 = plot(xbar,u(1:M),'bo');

85 figure

86 p3 = plot(xbar,e2,'red')

87 hold on

88 p4 = plot(xbar,u(M+1:2*M),'bo');

89 figure

90 p5 = plot(xbar,e3,'red')

91 hold on

92 p6 = plot(xbar,u(2*M+1:3*M),'bo');
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APPENDIX B : Example of MatLab code for solving the system of linear VIDEs.

Example B. We consider Example 4.2

u′′1(x) + (−3x2 − 6x+ 7)u1(x)− 2x2(x+ 1)u2(x) = x4 − x3 − 2x2 − 6

+

∫ x

0
(t3 − x3)u1(t) dt+

∫ x

0
x2(t2 − x2)u2(t) dt,

u′′2(x) + 2(x− 1)u1(x) + (2x4 + 2x3 + 2x2 − 1)u2(x) = x4 + 3x3 − 2

+

∫ x

0
(x2 − t2)u1(t) dt−

∫ x

0
x2(t2 + x2)u2(t)) dt

subject to the initial conditions u1(0) = 1, u2(0) = 1, u′1(0) = 1 and u′2(0) = −1. The

analytical solutions arre u1(x) = ex and u2(x) = e−x. We can construct the linear system

in a matrix form as follows



K11 − H11 K12 − H12 x1 x0 0 0

K21 − H21 K22 − H22 0 0 x1 x0

t0(T∗)−1 0 0 0 0 0

t1(T∗)−1 0 0 0 0 0

0 t0(T∗)−1 0 0 0 0

0 t1(T∗)−1 0 0 0 0





u1

u2

D1,1

D1,2

D2,1

D2,2


=



A2f1
A2f2
1

1

1

−1


.

1 %% Input parameters-----------------------------------------------

2 m = 2; % The higher order derivative

3 M = 8; % The number of nodal points

4 a = 0; % The left boundary

5 b = 1; % The right boundary

6 lam = 1; % Value of lamma_{i,j}

7 f1 = @(x) x.^4-x.^3-2*x.^2-6; % The forcing term f_1(x)

8 f2 = @(x) x.^4+3*x.^2-2; % The forcing term f_2(x)

9 Kxt11 =@(x,t) t.^3-x.^3; % The kernel function K_11(x,t)

10 Kxt12 =@(x,t) (x.^2).*(t.^2-x.^2); % The kernel function K_12(x,t)
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11 Kxt21 =@(x,t) x.^2-t.^2; % The kernel function K_21(x,t)

12 Kxt22 =@(x,t) (x.^2).*(t.^2+x.^2); % The kernel function K_22(x,t)

13 %% Analytical solutions-------------------------------------------

14 ex1 = @(x) exp(x); % Analytical solution u1(x)

15 ex2 = @(x) exp(-x); % Analytical solution u2(x)

16 bl1 = ex1(a); % Value of u1(0)

17 br1 = ex1(b); % Value of u1(1)

18 bl2 = ex2(a); % Value of u2(0)

19 br2 = ex2(b); % Value of u2(1)

20 %% Compute xbar & tbar in [0,1]-----------------------------------

21 xbar = flip((cos((2*(1:M)'-1)/(2*M)*pi)+1)/2);

22 tbar = flip((cos((2*(1:M)'-1)/(2*M)*pi)+1)/2);

23 %% Integration matrix A-------------------------------------------

24 %----- Construct matrix T* -----

25 T(:,1) = ones(M,1);

26 T(:,2) = (2*xbar-1);

27 for n = 2:M

28 T(:,n+1) = 2*(2*xbar-1).*T(:,n)-T(:,n-1);

29 end

30 %----- Construct matrix (T*)bar -----

31 Tbar(:,1) = xbar;

32 Tbar(:,2) = (xbar).*(xbar-1);

33 for n = 2:M-1

34 Tbar(:,n+1) = 1/4*(T(:,n+2)/(n+1)-T(:,n)/(n-1)-2*(-1)^n/(n

^2-1));

35 end

36 Tinv = 1/M*diag([1 2*ones(1,M-1)])*T(:,1:M)';

37 A = Tbar*Tinv;

38 %% Construct matrix A'*(Kbar)'_ij---------------------------------

39 for i = 1:M
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40 for j = 1:M

41 K11(i,j) = Kxt11(xbar(i),tbar(j));

42 K12(i,j) = Kxt12(xbar(i),tbar(j));

43 K21(i,j) = Kxt21(xbar(i),tbar(j));

44 K22(i,j) = Kxt22(xbar(i),tbar(j));

45 end

46 end

47 for k = 1:M

48 H11(k,:) = A(k,:)*diag(K11(k,:));

49 H12(k,:) = A(k,:)*diag(K12(k,:));

50 H21(k,:) = A(k,:)*diag(K21(k,:));

51 H22(k,:) = A(k,:)*diag(K22(k,:));

52 end

53 %% Boundary conditions--------------------------------------------

54 tl = (-1).^(0:M-1);

55 tr = (1).^(0:M-1);

56 r1 = [tl*Tinv zeros(1,M)];

57 r2 = [tr*Tinv zeros(1,M)];

58 r3 = [zeros(1,M) tl*Tinv];

59 r4 = [zeros(1,M) tr*Tinv];

60 %% Construct linear system----------------------------------------

61 %----- Construct matrix P_ij -----

62 P_11 = diag(3*xbar.^2-6*xbar+7);

63 P_12 = diag((2*xbar.^2).*(xbar+1));

64 P_21 = diag(2*(xbar-1));

65 P_22 = diag(2*xbar.^4+2*xbar.^3+2*xbar.^2-1);

66 %----- Construct matrix K_ij -----

67 K_11 = eye(M)-A^2*P_11;

68 K_12 = -A^2*P_12;

69 K_21 = A^2*P_21;
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70 K_22 = eye(M)+A^2*P_22;

71 %----- Construct matrix H_ij -----

72 H_11 = lam*A^2*H11;

73 H_12 = lam*A^2*H12;

74 H_21 = lam*A^2*H21;

75 H_22 = -lam*A^2*H22;

76 %----- Constuct matrix equation -----

77 K_v =[K_11-H_11 K_12-H_12; K_21-H_21 K_22-H_22]; % Matrix K_v

78 Q=[xbar ones(M,1) zeros(M,2);zeros(M,2) xbar ones(M,1)];% Matrix Q

79 R = [r1; r2; r3; r4]; % Matrix R

80 M0 = [0 0 0 0; 0 0 0 0; 0 0 0 0; 0 0 0 0]; % Matrix 0

81 W = [A^2*f1(xbar); A^2*f2(xbar)]; % Matrix W

82 b = [bl1; br1; bl2; br2]; % Matrix b

83 Z = [K_v Q; R M0]; % The LHS 0f linear system

84 B = [W; b]; % The RHS 0f linear system

85 %% Solve u--------------------------------------------------------

86 u = pinv(Z)*B; % Numerical Solutions

87 e1 = ex1(xbar); % Analytical solution u1

88 e2 = ex2(xbar); % Analytical solution u2

89 E1 = mean(abs(e1-u(1:M))) % Average absolute error of u1

90 E2 = mean(abs(e2-u(M+1:2*M))) % Average absolute error of u2

91 [xbar ex1(xbar) u(1:M) abs(e1-u(1:M))];

92 [xbar ex2(xbar) u(M+1:2*M) abs(e2-u(M+1:2*M))];

93 %% Compute u for arbitary x---------------------------------------

94 x1 = [0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0]';

95 T1 = @(n,x1) cos(n*acos((2*x1-1.1)/0.9));

96 for j=1: length(x1)

97 for i=0:M-1

98 T1x(1,i+1)= T1(i,x1(j));

99 end
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100 ur1(j) = T1x*Tinv*u(1:M); % u1 for arbitary x

101 ur2(j) = T1x*Tinv*u(M+1:2*M); % u2 for arbitary x

102 er1(j) = abs(ur1(j)-ex1(x1(j))); % Absolute error of u1

103 er2(j) = abs(ur2(j)-ex2(x1(j))); % Absolute error of u2

104 end

105 [x1 er1' er2'];

106 %% Plot our numerical & analytical solutions----------------------

107 p1=plot(xbar,e1,'red'); hold on;

108 p2=plot(xbar,u(1:M),'bo');

109 figure

110 p3=plot(xbar,e2,'red'); hold on;

111 p4=plot(xbar,u(M+1:2*M),'bo');

APPENDIX C : Example of MatLab code for solving the system of linear FIDEs.

Example C. We consider Example 4.7

u′′1(x)− xu′2(x)− u1(x) = (x− 2) sin(x) +
∫ 1

0
(x cos(t)u1(t)− x sin(t)u2(t)) dt,

u′′2(x)− 2xu′1(x) + u2(x) = −2x cos(x) + sin(x) cos(t)
∫ 1

0
(u1(t)− u2(t)) dt,

subject to the initial conditions u1(0) = 0, u′1(0) = 1, u2(0) = 1 and u′2(0) = 1. The

exact solutions are u1(x) = sin(x) and u2(x) = cos(x). Thus, we can construct a linear

system in a matrix form as follows



K11 − H′
11 K12 − H′

12 x1 x0 0 0

K21 − H′
21 K22 − H′

22 0 0 x1 x0

t0,l(T∗)−1 0 0 0 0 0

t1,r(T∗)−1 0 0 0 0 0

0 t0,l(T∗)−1 0 0 0 0

0 t1,l(T∗)−1 0 0 0 0





u1

u2

D1,1

D1,2

D2,1

D2,2


=



A2f1
A2f2
0

1

1

1


.
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1 %% Input parameters-----------------------------------------------

2 m = 2; % The higher order derivative

3 M = 12; % The number of nodal points

4 a = 0; % The left boundary

5 b = 1; % The right boundary

6 lam = 1; % Value of lamma_{i,j}

7 f1 = @(x) (x-2).*sin(x); % The forcing term f_1(x)

8 f2 = @(x) -(2*x).*cos(x); % The forcing term f_2(x)

9 Kxt11 = @(x,t) x.*cos(t); % The kernel function K_11(x,t)

10 Kxt12 = @(x,t) -x.*sin(t); % The kernel function K_12(x,t)

11 Kxt21 = @(x,t) sin(x).*cos(t); % The kernel function K_21(x,t)

12 Kxt22 = @(x,t) -sin(x).*sin(t); % The kernel function K_22(x,t)

13 %% Analytical solutions-------------------------------------------

14 ex1 = @(x) sin(x); % Analytical solution u1(x)

15 ex2 = @(x) cos(x); % Analytical solution u2(x)

16 bl1 = ex1(a); % Value of u1(0)

17 br1 = ex1(b); % Value of u1(1)

18 bl2 = ex2(a); % Value of u2(0)

19 br2 = ex2(b); % Value of u2(1)

20 %% Compute xbar & tbar in [0,1]-----------------------------------

21 xbar = flip((cos((2*(1:M)'-1)/(2*M)*pi)+1)/2);

22 tbar = flip((cos((2*(1:M)'-1)/(2*M)*pi)+1)/2);

23 %% Integration matrix A-------------------------------------------

24 %----- construct matrix T* -----

25 T(:,1) = ones(M,1);

26 T(:,2) = (2*xbar-1);

27 for n = 2:M

28 T(:,n+1) = 2*(2*xbar-1).*T(:,n)-T(:,n-1);

29 end

30 %----- construct matrix (T*)bar -----
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31 Tbar(:,1) = xbar;

32 Tbar(:,2) = (xbar).*(xbar-1);

33 for n = 2:M-1

34 Tbar(:,n+1) = 1/4*(T(:,n+2)/(n+1)-T(:,n)/(n-1)-2*(-1)^n/(n

^2-1));

35 end

36 Tinv = 1/M*diag([1 2*ones(1,M-1)])*T(:,1:M)';

37 A = Tbar*Tinv;

38 %% Construct matrix B'*(Kbar)'_ij---------------------------------

39 %----- Construct matrix B' -----

40 Z(1,1) = 1;

41 Z(1,2) = 0;

42 for j = 2:M-1

43 if mod(j,2)== 0;

44 Z(1,j+1)=(1/(1-j^2));

45 else

46 Z(1,j+1)=0;

47 end

48 end

49 B = Z*Tinv; % Matrix B'

50 %----- Compute B'*(Kbar)'_ij -----

51 for i = 1:M

52 for j = 1:M

53 K11(i,j) = Kxt11(xbar(i),xbar(j));

54 K12(i,j) = Kxt12(xbar(i),xbar(j));

55 K21(i,j) = Kxt21(xbar(i),xbar(j));

56 K22(i,j) = Kxt22(xbar(i),xbar(j));

57 end

58 end

59 for k = 1:M
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60 H11(k,:) = B*diag(K11(k,:));

61 H12(k,:) = B*diag(K12(k,:));

62 H21(k,:) = B*diag(K21(k,:));

63 H22(k,:) = B*diag(K22(k,:));

64 end

65 %% Boundary conditions--------------------------------------------

66 tl = (-1).^(0:M-1);

67 tr = (1).^(0:M-1);

68 r1 = [tl*Tinv zeros(1,M)];

69 r2 = [tr*Tinv zeros(1,M)];

70 r3 = [zeros(1,M) tl*Tinv];

71 r4 = [zeros(1,M) tr*Tinv];

72 %% Construct linear system----------------------------------------

73 %----- Construct matrix P_ij -----

74 P_120 = diag(xbar); % Matrix P_12^(0)

75 P_121 = eye(M); % Matrix P_12^(1)

76 P_210 = diag(2*xbar); % Matrix P_21^(0)

77 P_211 = eye(M); % Matrix P_21^(1)

78 %----- Construct matrix K_ij -----

79 K_11 = eye(M)-A^2;

80 K_12 = -A*P_120+A^2*P_121;

81 K_21 = -A*P_210+2*A^2*P_211;

82 K_22 = eye(M)+A^2;

83 %----- Construct matrix H'_ij -----

84 H_11 = lam*A^2*H11; % Matrix H'_11

85 H_12 = lam*A^2*H12; % Matrix H'_12

86 H_21 = lam*A^2*H21; % Matrix H'_21

87 H_22 = lam*A^2*H22; % Matrix H'_22

88 %----- Constuct matrix equation -----

89 K_f = [K_11-H_11 K_12-H_12; K_21-H_21 K_22-H_22]; % Matrix K_f
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90 Q=[xbar ones(M,1) zeros(M,2);zeros(M,2) xbar ones(M,1)];% Matrix Q

91 R = [r1; r2; r3; r4]; % Matrix R

92 M0 = [0 0 0 0; 0 0 0 0; 0 0 0 0; 0 0 0 0]; % Matrix 0

93 W = [A^2*f1(xbar); A^2*f2(xbar)]; % Matrix W

94 b = [bl1; br1; bl2; br2]; % Matrix b

95 Z = [K_f Q; R M0]; % The LHS 0f linear system

96 B = [W; b]; % The RHS 0f linear system

97 %% Solve u--------------------------------------------------------

98 u = pinv(Z)*B; % Numerical Solutions

99 e1 = ex1(xbar); % Analytical solution u1

100 e2 = ex2(xbar); % Analytical solution u2

101 E1 = mean(abs(e1-u(1:M))) % Average absolute error of u1

102 E2 = mean(abs(e2-u(M+1:2*M))) % Average absolute error of u2

103 [xbar ex1(xbar) u(1:M) abs(e1-u(1:M))];

104 [xbar ex2(xbar) u(M+1:2*M) abs(e2-u(M+1:2*M))];

105 format long

106 %% Plot our numerical & analytical solutions----------------------

107 p1=plot(xbar,ex1(xbar),'red');

108 hold on

109 p2=plot(xbar,u(1:M),'bo');

110 figure

111 p3=plot(xbar,ex2(xbar),'red');

112 hold on

113 p4=plot(xbar,u(M+1:2*M),'bo');
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