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CHAPTER I

INTRODUCTION

1.1 Overview

Interstellar travelling has been received a great attention and has a long history.
Possibility of its existence is still an open question in gravitational physics research
field. The idea of a pathway connecting the distant spacetimes had always been
imaginary until general relativity (GR) was discovered in 1915. GR explains the
relation between the spacetime geometry and matter constituting the Universe.
In 1916, Karl Schwarzschild found a static and spherically symmetric black hole
which is one of the well-known analytic solutions of the Einstein equations [L].
A black hole is the massive object that anything including light cannot escape
when crossing its event horizon. In the same year of the Schwarzschild discovery,
Ludwig Flamm discovered another solution of the Einstein’s equation called white
hole [2]. In contrary to a black hole, a white hole is supposed to eject matter and
light from its event horizon. According to these two solutions, one can imagine
that the spacetime in our Universe maybe connect by a conduit. In 1935, Einstein

and Rosen successfully proposed the existence of the conduit named a bridge [3].



The term wormhole was first introduced by Misner and Wheeler [4]. The original
version of the wormhole had been popular in the field before it was ruled out since

the throat of wormbhole is not stabilized and not possible to travel.

Nevertheless, in order to halt the wormhole’s throat to shut, one could add
a scalar field to couple to gravity for holding the throat long enough to send
matter or light from one place to another. This concept initiated a new type
of wormhole firstly proposed by Ellis [5] and independently by Bronnikov [6].
Unfortunately, it has a price to pay since the stable wormhole’s requirement is
the exotic matter which violates the energy conditions. Moreover, the exotic
matter has never been discovered in our Universe. Some conditions to build the
traversable wormholes were introduced by Morris and Throne in 1988, according
to Ref.[7]. These solutions are obtained by considering an unusual type of exotic
matter which can maintain the structure of the wormhole. Additionally, this exotic
matter with negative energy density satisfies the flare-out condition but violates

weak energy condition [7, §].

The alternative theories of gravity play a major role in constructing traversable
wormholes. In Ref. [9], the traversable wormholes in f(R) gravity were investi-
gated. Moreover, the factors responsible for the violation of energy conditions
are discussed in the literature. The scalar tensor theory and f(R) theory are ap-
plied to study the traversable wormholes in Ref. [L0]. The influence of the shape
and red shift functions on null and weak energy conditions has been conducted
in Ref. [11]. Among various models of the modified gravity of theories, massive

gravity theory is one of candidates to explain the accelerated expansion of the



Universe. In 1939, Fierz and Pauli proposed the linear theory of massive gravity
as a mass of graviton [12]. Later in 1970, the theory was shown to suffer the van
Dam, Veltman and Zakharov (vDVZ) discontinuity that the massless limit of FP
thoery does not converge to the standard GR [13, 14]. The nonlinear theory of
massive gravity was first proposed by Vainshtein in Ref.[15] to solve the vDVZ
discontinuity. The emergence of nonlinear massive gravity leads to a new problem
called the Boulware-Deser (BD) ghost [[16] which is eliminated by a new non-linear
version of massive gravity proposed by de Rham, Gabadadze, and Tolley (dRGT)
in 2010 [17).

In this thesis, we will provide a broad picture of the development in massive
gravity from FP theory to dRGT massive gravity in section II. We introduce
two types of wormholes; traversable and thin-shell wormholes in section III. Both
wormholes in dRGT massive gravity will be explained in section IV. Our results

are discussed and summarized in section V.

1.2 The brief history of the wormhole develop-
ment

As it is well acepted, GR is an elegant theory describing the relation between the
spacetime curvature and matter. Frankly speaking, this means that the space-
time can be curved by the mass and energy of the matter. GR has succeeded to
predict the numerous events in nature, e.g., gravitational time dilation [18, 19],

the precession of Mercury’s orbit [20], and gravitational waves [21]. The detec-



tion of the gravitational waves, after 100 years of the GR predicted by Einstein,
was first announced in 2016 by LIGO (Laser Interferometer Gravitational-Wave

Observatory) [21].

According to GR, the Einstein field equations are given by the second order

non-linear partial differential equations,
Gag = 87TGTa5, (1.1)

where G,z is the Einstein tensor containing the information of the spacetime’s
curvature, Tpg is the energy momentum tensor which has the energy density,
momentum density, pressure and shear of matter, and G is the Newton’s constant.

The Einstein tensor G,z is defined as

1
Gap = Rap — 5905 R, (1.2)

where R is the Ricci scalar, which is the nontrivial contraction of a metric tensor

and Ricci tensor defined as
R=g.,sR*, (1.3)
Jap is the metric tensor of the line element
ds? = gapdr®da’, (1.4)

x is the spacetime coordinates, R,z is the Ricci tensor written in terms of

Christoffel connection Fgﬁ as follows:

Rag = 0,10 5 — 01, + rgArgﬁ — rgArA (1.5)

pa



We recall the Bianchi identity, i.e.,
1
V*Rop = §V5R. (1.6)

This leads to V®Gys = 0. In this thesis, we consider only the four-dimensional

spacetime in spherical coordinates z* = (¢,r,0, ¢).

The metric g,, plays the major role of the dynamical variable of the theory.
The Einstein-Hilbert action providing the Einstein field equation by the variational

principle is given by
Sgn = /d4x\/—_gR. (1.7)
Applying the principle of variation, we obtain
0SEH = /d4x\/—_gRag5g°‘ﬂ + /d4xR5\/—_g + /d4x\/—_gga55Raﬁ. (1.8)
In order to obtain the equations of motion, we apply the identity
In(det M) =Tr(In M), (1.9)

where M is a square matrix with nonvanishing determinant. By varying Eq. ([L.9),

we obtain

1 _ -1
W5 (det M) =Tr (M~'6M) . (1.10)

Taking M = g, we get
69 =9 (9°709ap) = —9 (9as09™") . (1.11)

Then the second term of Eq. () becomes

1
/d4xR6\/—g: —/d4:v§Rgaﬁég°‘5. (1.12)



It is straightforward to show that the variation of the Riemann tensor can

be written in the following form
OB = Va (0T55) = Vi (6T%,) (1.13)

With the variation of Riemann tensor in Eq. ([L.13), metric compatibility (V”g.s)

and the expansion of (5Fgﬁ in terms of §¢®%, the last term in Eq. () yields

/ d* /= ggapd R’ = / d'2/=gV, (905 V7’ (69°°) — V5 (06”)] . (1.14)
Using the Strokes’s theorm, these terms are the boundary contribution at infinity.
Normally we could set them to zero by vanishing the variation at infinity. However,
the boundary term does not only consist of the metric variation, but also the
variation of the first derivative of ¢** which is not conventionally zero. One
might intentionally neglect the boundary terms when considering what happens
in the bulk of the spacetime (inside the spacetime volume) not on the boundary.
Nevertheless, the boundary term is crucial to our work since it plays the important
role in testing the stability of a wormhole which will be presented in thin-shell

method.

For now, we consider some solutions of the Einstein equation in Eq. ()
Firstly, the Schwarzschild solution from the reference [[] is the unique spherically
symmetric vacuum solution (7%, = 0), according to Birkhoff’s theorem, in which

the Schwarzschild metric is given by

2GM dr? .
1= - (1 N W) W (1-281) + r2d0* + r? sin® 0d¢?, (1.15)

where M is the black hole’s mass. The event horizon is at 75 = 2G M /c* which is

the coordinate singularity. While the real singularity is at the center of the black



hole r = 0.

Another interesting solution to the Einstein equation is a wormhole. The
Schwarzschild metric can describe a wormhole; however, the Schwarzschild worm-
hole’s horizon does not allow the two-way travel. Moreover, the throat of the
Schwarzschild wormhole collapse so fast that one-way travel is not even possible.
A well-known wormhole that allows space adventures to travel from two directions
are called a traversable wormhole. It was firstly proposed by Morris and Throne
[ where its metric tensor is given by

2

b(r)

T

dr

ds? = —e**dt? + : + r?df” + r* sin® 6d¢?, (1.16)

where ®(r) is the red shift function and b(r) is the shape function of the worm-
hole. Unlike the Schwarzschild black hole solution, the wormhole solution is not a
vacuum solution because it needs material (7%, # 0) to distort the spacetime for

forming the stable shortcut between two distance points in the Universe.

However, there are some open questions that GR still cannot explain. For
instance, the acceleration of the Universe expansion in the extragalactic scale

[22, 23] and the asymptotically flat rotation curves of the galaxies [24].

There still remains a question that how much similarity of the solutions
between GR and the modified one? A black hole in the massive gravity has been
studied widely [25, 26, 27]. However, there are few work on the solution of the
wormholes in massive gravity theory [28]. Thus, in this thesis, the two methods for
the wormhole construction; the Lorentzian traversable wormhole and the thin-shell

wormbholes, are studied in the modified GR approach.



1.3 Energy conditions

We need some tools in GR to analyze whether the wormhole solutions can be
constructed or not. Due to the principle of GR, it does not compel the type of
matter in the solutions which leads to many possibilities in GR solutions, including
exotic phenomena. The energy conditions are the criteria describing the physical
behavior of matter and rule out the nonphysical one. To generate the energy
conditions, the energy-momentum tensor 7,, must contract to the four-vectors.
Each type of the four-vectors, for instance, null vector I* or timelike vector t#,
provide different energy conditions. The energy-momentum tensor of the isotropic

fluid is given by
T = (p+ P)u,u, + P g, (1.17)

where p is the energy density, P is the pressure, and u,, is a four velocity (u,u* =
—1). In this thesis, we consider the three types of energy conditions to study

wormholes [29)].
o Null energy condition (NEC) determines the non-negative value of energy
momentum tensor contracting with null vector [, where [#{, = 0.
0<T,MHM" = ((p+ P)uyu, + P gu)Hl”
= (p+ P)(u,d")? + PI,I*
= (p+ P)(uul")?. (1.18)
Then the NEC for isotropic fluid reads

p+P>0. (1.19)



Null energy condition can be interpreted as the energy of particles traveling
along a null geodesic, such as photon and massless particles, which must
be non-negative. The energy density or pressure can be negative as long as

their summation is still equal or greater than zero.

o Weak energy condition (WEC) determines the non-negative value of energy

momentum tensor contracting with timelike vector ¢, where ¢, < 0

0<T,t"t" = ((p+ P)uyu, + P g )t't”

= (p+ P)(u,t")* + Pt t". (1.20)

Assume t, =|| t || v,, where || ¢ ||= /=, > 0 and v = —1 and apply
Cauchy-Schwartz inequality, |z,4"| <|| , ||| y. | where z and y are null or

timelike vector into the WEC, then we find

P 156

(o) = | e [ 0

=P<p+P <<= p>0. (1.21)
Then WEC is decomposed into two conditions as follows
p+ P >0andp>0. (1.22)

This condition is stronger than NEC since the energy density must be non-

negative and so does the summation of the energy density and pressure.
 Strong energy condition (SEC) reads

T 't > TP, (1.23)

1
2 «



10

where ¢, is a timelike vector.

1
(TW—§T9W> e > 0

1
((p + P)uyu, + Py, — 3 (—p+3P) g,w> tht” > 0
1
(p+ P) (wt") + 5 (p = P)tut" > 0
1 p— P
p+P = S(p—P)=

2 2 [F e [l 0 |
p+3P > 0 (1.24)

Then SEC is decomposed into the following conditions

p+P >0and p+3P > 0. (1.25)

SEC covers NEC and avoids excessively large negative pressure. However,
SEC still allows the negative value of energy density such that SEC does not

imply WEC.

Unfortunately, the traversable wormholes in some particular models [[7] need
the exotic matter which violates the energy conditions. Even though a wormhole
is a solution to the Einstein’s equation, it exists only in a theoretical concept. In
this thesis, we will use NEC, WEC and SEC to examine the possibility of the

wormbhole solutions in the massive gravity theory.



CHAPTER 11

Massive Gravity

Massive gravity has gained a monumental interest among gravitational and cos-
mological communities during the past decade due to recent progress which has
overcome its traditional problems, yielding an avenue for addressing some impor-

tant open questions such as the dark energy problem.

Theories with massive graviton have been studied on and off for more than
70 years. During this long development, it has been shown that massive grav-
ity suffers from some crucial inconsistencies such as the van Dam-Veltman- Za-
kharov (vDVZ) discontinuity and the Boulware-Deser ghost. In this chapter, we
re-examine these problems in a pedagogical manner. We first discuss the linearized
General relativity and derive the equation of motion for a spin-2 “massless” gravi-
ton. Then we move on to the linear Fierz-Pauli (FP) theory and explain the mass
term to the graviton along with the general solutions of the spin-5 massive gravi-
ton. The discrepancy between GR and massless limit in FP theory is known as
vDVZ discontinuity. We apply the Stiikelberg formalism to reveal the origin of
this discontinuity from the modern effective field theory viewpoint. The linear

FP theory can be generalized to the nonlinear massive gravity (NLMG). How-
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ever, NLMG also experiences the ghost problem causing the instability of massive
graviton. Here, we review the de Rham, Gabadadze and Tolley (dRGT) massive
gravity which offer the mechanism to eliminate all the problems we mentioned

above.

2.1 Linearized general relativity

Before revisiting the FP theory, we firstly study the linearized action of GR. For
convenience, we use the unit ¢ = 1. We start with the Einstein-Hilbert action in

4D spacetime described by the following equation

R
SEH-i-matter — /d4ilfv -9 (m + Lmatter) ) (21)

where Later 1S the Lagrangian density of matter on the curved spacetime. The
term “matter” refers to any matter in the Universe except the massive graviton.
At this point, we are still in Einstein’s theory of GR. Applying the Euler-Lagrange

method provides the equations of motion,

1
G =Ry — QQWR = 8rGT,,, (2.2)
where T, = — \/2_75(‘/_75;;3“““) is the energy-momentum tensor of the matter. To

linearize GR, we expand the metric g,, around the flat space as

Guv = Muw + h,uzz; (23)
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where h,,, is called the metric perturbation which transforms as a tensor under

Lorentz transformations. The lowest order of the linearized GR action becomes
4 1 LY N% | NTON v 1 A
SEH+rnatter ~ dx| — 58)\}1/“,8 h* + auhmﬁ hH — auhu 8l,h + 58)\}“9 h
+87rGhWT‘“’), (2.4)
where T"(x) is a fixed external symmetric source. Using the integration by part

technique, the linearized Einstein-Hilbert action can be written in term of a prop-

agator

1
SEH—i—matter = /d42§' (§h’ﬂvzuyyaﬂh’aﬁ + 87rGhMVTMV> y (25)
where the kinetic operator is defined as follows:

s = (77(“77;) — 77/“/7704B> O — 277((58”)85) + 10" 0" + 0" 0,0, (2.6)

where [ = 0%0,,. The diffeomorphism invariance of GR implies a gauge symmetry

for the metric perturbation as follow
B = P + 0,60 + 084! (2.7)

Varying the action in Eq. (@) with respect to the metric perturbation h,,, we

obtain the equation of motion of the linearized GR

1 1 1 1
ézgfhaﬁ = 0 hys — 50 = 50u00h = Sl (0°0°hyy — Oh) = 87GT,, (2.8)
To solve h,,,, we choose the Lorentz gauge,

Ohy =0, (2.9)

where h,,, = hy, — %nw,h. The linearized GR equation, Eq. (@), reduces to

§ 1
Oy = Ohyy = 51000 = —87 G4, (2.10)
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Its trace reads

Oh = 87GT. (2.11)

We substitute the trace in Eq. () into Eq. () to yield
by = =87G (T, — 22T). (2.12)

We note here that we have 10 components of the four-dimensional symmetric
tensor of h,,. There are four constraints from the diffeomorphism invariance in
Eq. (@), and four more constraints from the Lorentz gauge in Eq. (@) The

total degrees of freedom of hy,, is 10 — 4 —4 = 2.

According to Green’s function method, the solution of A, is

o =87 22, () - 2T () (2.13)
uv m (27T) p p y2z p 2 p Y N

where T),,(p) = [ d*ze=?"*sT,,(z) is the function by Fourier transform of the
source T}, and p’ws = —pit+p,x+p,y+p.z is the scalar product of 4-dimensional

vectors (p and x). We consider the conserved source as the point mass,

T,uu(x) S M9u09u053($)>
Tuu(p) = 27?M9y09u05(p0>- (214)

Then the components of h;; vanish. Now we consider

d4 ezp3x5 _
hoo = 87TG/ p TOO(p) - %T< ))
d4 zp3x5
e / P Ma()

d3p e’p”"M
= 4 2.1
0 [ G (219)
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where T(p) = l‘j = g“”fw = 27 M6l gu0d(p°) = =27 Mé(p°) and pT = p.x +
pyy + p.z = prcos(f) is the scalar product of 3-dimensional vectors (p and ).
According to the complex analysis, we move the pole of the complex integral by

adding an infinitesimal value e:

hoo = 4nGM
o " / 5 p? +e2

2 ipr cos 6
in GM/ dp sin 9d9d¢ e‘ ‘
(p + i€)(p — i€)

00 zp'r _ ,—ipr
— 4rGM / dp p )
Zir(p+ie)(p — ie)

B dp pe””" 1 1
N 47TGM/ i <2(p—|— i€) + 2(p— ze))

_ 47TGM( (2;) [2m lim (p — i) 5 (pelirie)b - Giw . (2.16)

In the last line, we have chosen the upper contour integral that covers k = ie and

applied the residue theorem. Next, we consider h;; such that
b 3 G/ d4p e’ < WT( ))
J (2m)4 p? o+ \P
d4 ipT
= 87TG/ p © 7TM5(p0)7],;j

d3p e'P

3p2

where 7;; = d;;. With the same technique for calculating hgo, we finally get

hij - —dLJ (218)

In conclusion, the non-trivial solutions of the perturbation tensor h,, in GR

in four dimensions take the form:

GM
htt - hm« = heg - h¢¢ - T (219)
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2.2 Fierz-Pauli (FP) action

Now we consider the FP linear theory where its action is the linearized GR with

the massive terms of metric perturbation (up to second order) [12, 16],

1 1
SEPimatter = / d'z (§h#,,2“"’a5haﬁ - 5m2 (Rt — h?) + 87rGhWT‘“’> :

(2.20)

where m is the mass of graviton, and T" is an external symmetric source. The
mass term, %mQ (huwh* — h?), is the modification by massive gravity. The equa-

tion of motion of the FP theory in Eq. () is given by [16]

1

5235]1045 8% m2 (h,uu W n,uuh> = 87TGT,uu (221)

To find the solution of the massive graviton in FP action, we first take 0"

to the Eq. () to obtain

&G
Oty = Bh =~ Ty = 0, (2.22)

where we have applied a conserved source, 0"T),, = 0. Substituting Eq. ()

into Eq. () and taking trace, we have

8rG (T 2 8rGT
h=———|———70,0'T | =— . 2.23
3 (m2 mi " ) 3m? (223)
Plugging Eq. () into Eq. (), we obtain
8rG
8#]7/#,/ - —w&,T (224)

We use Eq. (|2.2]J, b.2i§|, l224l) to obtain [[16]

W

(O—m?)h,, = —87G (TW -

(mw - %) T>. (2.25)
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In FP theory, there is no gauge symmetry like in GR. However, there are 4 con-

straints from Eq. () and one more constraint from Eq. () The total degrees

of freedom of h,, for FP theory is just 10 —4 — 1 = 5.

According to the Green’s function method, we use the frequency domain to

investigate the solution of A, from Eq. ()

i) =37 [ &2 (D)~} (o B2Y 7)) 226

PDa +m2

where T, (p) = [ d*z e~ "%T,,(r). We apply the point mass as the conserved

source as Eq. (), and consider the general solutions for Eq. () Here we

have
167TGM
hy = 5
3p24+m
167TGM dp ipr 1 1
= - @F — + ;
ir J_oo 2w 2(p+im)  2(p—im)
_AGM
- 3r
hy = hy=0.
2GM _,.. (14+mr
hyp = e — .
3r m2r?
" 2GM _, 1+ mr+m*r?
= e
0o 3r m2r?
2G' M sin® 0 1 4+ mr + m2r?
h = — ¢ " . 2.27
44 3r ¢ < m2r? ) ( )

With the massless limit (r < 1/m), the non-zero terms of the general solutions
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reduce to

A4GM
hy = )
" 3r
4
hoo— GM ‘
3m?2r3
B 2G M
0 7 3mes
2G'M sin’ 0
h = — 2.28
60 123 (2.28)

2.3 vDVZ discontinuity

The prediction in FP theory should reduce to GR when taking limit m — 0.
However, the solutions of FP theory in Eq. () do not converge to those in
linearized GR in Eq. () as the graviton mass converge to zero. In this section,
the limitation of the FP massive gravity theory will be discussed via the gravita-
tional lensing. We follow the procedure and analyze of the light bending in the

weak field limit in Ref. [29]. The components of metric tensor read

gu(r - o00) = —(14+ (1)),

grr(T - OO) = (1 - \Ij(r)) ) (2‘29)

where ®(r) and V(r) are the arbitrary functions of r. For the case that ®(r) is pro-
portional to W(r), we consider W(r) = y®(r) where ~ is called the Parameterized-

Post-Newtonian (PPN) parameter. The light is bent with the angle given by

~ 2GM(1+7)
==,

(07

(2.30)

where b is the impact parameter from a massive source.
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We first consider the solution in the linearized GR from Eq. (@) and their

solutions from Egs. () The arbitrary functions for massless case are given by

Ban(r) = Uan(r) = — M. (2.31)

r

In this case, the PPN parameter v = 1 and the light bending angle is

4GM
- ==

a (2.32)

Then we consider the solution in the FP theory in Eqs. () The arbitrary

functions for massless limit of FP theory are given by

AGM
Prr(r) = = 3r
2GM
\I/FP(T’) A=A 3r (233)
The PPN parameter v = %, then the light bending angle is
GM
po ol (2.34)

There is 25 percent difference of light bending angle of FP theory, comparing
to GR. Even if the limit of the graviton mass is zero, this discrepancy does not
disappear. This is called van Dam-Veltman-Zakharov (vDVZ) discontinuity [13,

14).

2.4 The Origin of vDVZ discontinuity: The Stueck-

elberg Trick

We presented in the section (@) that the FP massive gravity in the massless limit

cannot reduce to GR, according to vDVZ discontinuity. In this section, we will
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apply the Stueckelberg trick to show the origin of the vDVZ discontinuity.

Let consider the FP massive gravity from Eq. ()
1 1
SEPtmatter = / d*z (ihwE“”’o‘ﬁh&B — §m2 (Rl — 1) + 87rGh,wT“”) :

where %hu,,Z“l”o‘BhaB is the massless term of the linear theory. We introduce a

Stueckelberg vector field A, such that
hyw = hyw + 0, A, + 0, A,. (2.35)
Let consider the change of each term via the transformation in Eq. (),

1 1
éhWZ"”’aﬁhQB — §hWEW’O‘Bha5 (invariant), (2.36)
huh™ —h* —  h k" — h? 4 4(h,, 0" AY — ho"A,) + F, F*, (2.37)
h, T —  h,,T" —2A,0,T", (2.38)
where F,, = 0,4, — 0,A, and the last term is integrated by part to yield
T"9,A, = 0,(A,T") — A,0,T". The total derivative is negligible. Then the

FP action becomes

1 1
SEp fmatter — / d'z (§hWE“”’O‘BhW =m0 (bt = 0?) + 87 Ghy, T

,
—%FWFW — 2m? (h,, 0" AY — ho"A,) — 167rGAV8MT“”).
(2.39)
The gauge symmetry is given by
5h,uu - ,ugu + aug,m 5A,u - _é,u' (240)

So at this point, the massless limit is still not smooth, since we lose one of the

original 5 degrees of freedom [16].
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In the next step, we introduce a scalar gauge symmetry by another Stueck-

elberg field ¢. So that
Ay — A+ 0,0. (2.41)
Any term with A, changes under the transformation in Eq. () as follows

F,,F* — F,,F" (invariant), (2.42)
hu, Ot A” —hotA, —  h,otA” —hot A, + hy,, 0" ¢ — hd, 0" ¢, (2.43)

A0,T" = A0, — $0,0,TH, (2.44)

where we have applied the integration by parts for the last line. The FP action
reads

4 1 nv,af 1 2 nv 2 1%
Sepimatter = [ d'z( Shw X hag — om (R b — h?) + 87Ghy, T

2

—%FWFW — Om2 (0" A — ho"A,) — 2m? (h,, 0"0" ¢ — hd, ")

—167G (A,0,T™ — $0,0,T™) ) (2.45)

To investigate the linear massive gravity, we take m — 0 limit to the ac-
tion. However, the degrees of freedom will be lost. To avoid so, we rescale the

Stueckelberg fields using
= é— —. (2.46)
m m

The FP action becomes

1 1
Sepmatter = / d'z <§hw,2/»wv@ﬁhaﬁ =m0 (bl = 0?) + 87 Gh, T

1
— S Fw " = 2m (0" A” — hO*A,) = 2 (1, 09"6 — hd,0"9)

m2

167G (%@TW _ ¢ @ﬁ,,T””) ) (2.47)
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Gauge transformations of functions are given by

6h,uu = 6u§u + 6V§/J? 5Au = _mfu’
5A, = O, 5 = —mA. (2.48)

To consider the massless limit, we have to assume the conserved source (9,7"" = 0)

to prevent the divergence from the coupled terms %QLTW and %GM(C)VTW.

The rescaled FP action reads

1 1
SFP+matter = /d4l’ (ﬁhuvguuaﬁh(xﬁ + SWGhMVTMV - §FMVFMV

—2 (hy 00" ¢ — h0,0") ) . (2.49)

To see the reason behind the vDVZ discontinuity, we will decouple the tensor A,

from the scalar field ¢ by considering [[16]
R (2.50)

It is straightforward to show that
1 1
P T P hag = Sl D R
+2 (8M¢8“h' — 0,00, h™ + g@uq%)“qﬁ) (2.51)
87Gh,T" = 8xG (), T" + ¢T) (2.52)
—2(h,,0"0"$ — h0,0"p) = —2h,0"0" ¢+ 20'0,0"b + 6¢0,0"¢p.  (2.53)
Using the integration by parts for Eq. () and neglecting the total derivative

terms, so the massless limit FP action eventually becomes

1
SFP+matter = /d4(L’ (ﬁhﬁlyxﬂmaﬁh/a‘ﬁ + 87TGhin'uy + 87TG¢T

—%FWFW - 3au¢aﬂ¢> . (2.54)



23

In the massless limit, the total degrees of freedom is still 5; one from the scalar

field ¢, two from massless photon A,, and another two from massless graviton

s
h,.. Note that there is the coupling term between the scalar field ¢ and the trace
of the energy momentum tensor 7' as 8mG¢T, thanks to the Stueckelberg trick.
Moreover the term also has the same strength as the massless tensor h,, couples
to the energy momentum tensor T*”. So it causes the vDVZ discontinuity in

massless limit FP theory since there is no such term in GR. It shows that the FP

theory does not recover GR in the massless limit.

2.5 Nonlinear massive gravity

According to the study of the FP theory, the mechanism of the vDVZ discontinuity
is revealed by the Stueckelberg trick. The linear theory of massive gravity is the
first step for the full nonlinear theory in massive theory. There was a study
showing that the length of nonlinearity dominates over the linear theory when
the distance is smaller than a length scale called Vainshtein radius, ry = (%—]\f)l/ °
[15]. The proof of the Vainshtein radius is shown in the Appendix A (see Eq. (@
@)) The result from the FP theory works well with the large distance r > ry.
However, the nonlinear massive gravity theory dominates in the range r < ry.
With a limit of m — 0, the Vainshtein radius increases to infinity. In this section,
we will begin to construct the simplest case of nonlinear massive gravity. The
action consists of the kinetic terms from Ricci scalar like GR, Lignetic = % and

the FP mass term L. = —%m2 (huh*” — h?). Unfortunately, it leads to the
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BD ghost in the system [B4]. The BD ghost does not only cause the negative
energy when interacting with matter but also causes the unphysical extra degree
of freedom (dof). Then there are 6 degrees of freedom in this case. To eliminate
the extra scalar mode from BD ghost, one could apply the same technique in
the Galileon theory that provides non-extra scalar mode. The nonlinear massive
gravity without ghost was successfully discovered by de Rham, Gabadadze and
Tolley (dARGT). The dRGT action and the static solution is presented in this

section.

2.5.1 The extra degree of freedom in nonlinear Fierz-Pauli

theory

Before continuing the study about the full nonlinear massive gravity, we investigate
another problem emerging from the nonlinear extension. The first sign of the ghost
is the extra degree of freedom appearing in the nonlinear massive gravity. The
metric tensor g, can be split into two terms; the reference metric (or fiducial

metric) f,, and the metric perturbation h,,,

Guv = f,uy + h,uy' (255)

The reference metric describes the propagation of the linear massive graviton which
can be seen further in the appendix A. We use the nonlinearity from Einstein-

Hilbert action and consider the nonlinear GR with the flat reference metric f* =
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n,
S = —1 d* L s ho hHv — K2
= oo | T|V9R = gm (huh = 1)
= L el /= _1 2, pou vf .
B IGWG/dx{ 9B = 5mn"n” (hwhap — hyahus) |, (2:56)

where the Ricci scalar is the kinetic term of the field g, and also responsible for

nonlinearity. While the massive terms are borrowed from FP theory.

The ADM formalism is applied to study the ghost in nonlinear massive
gravity [30, B1]. We begin with describing the four-dimensional spacetime by
the series of spacelike hypersurfaces >; where ¢ is time on the hypersurface. We
introduce the normal vector n; on the hypersurfaces where n;n’ = —1 is a time-like

condition. A spatial three-dimensional metric ®)g;; is defined as follows [32]:

(3)g¢j = Gij -+ n;n;, (257)

where g;; is the spatial component of g,,. Since ®)g;; is a tangent on hypersurface

>, then (3)g¢j is perpendicular to the normal vector n;, i.e. (3)gijn" = 0.

' +dz’

\ Yitde
' — N'dt

;\'dl‘

Figure 2.1: The proper length ds is calculated from the Pythagorean theorem in

terms of ®g,;, N and N°. This figure is referenced from [32]
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To define the proper length ds between two arbitrary points on hypersur-
faces, we demonstrate the geometry in the figure El! We consider the path that
start from the point 2% on the hypersurface 3, and terminates at the point is
2! + dz* on the hypersurface ;. 4. It takes two steps to move from z° on X, to
2t 4+ dx' on ¥, 4. The first step is to follow the proper time distance from ¥,
to Xiyqt along the normal vector n and it is equal to Ndt where N is called the
lapse function. In the second step, the point is shifted on hypersurface >, 4 from

2t — Nidt to 2 + dz* where N is the shift vector on the hypersurface.

We rewrite the metric components in terms of the spatial metric g;;, the

shift N; and the lapse N,

ds* = —(proper time)* + (coordinate distance)?

= —(Ndt)* + gij(dz" + N'dt)(dz’ + N7dt), (2.58)

where g% is the inverse of the spatial metric g;;. Using ADM formalism, the total
degrees of freedom are still 10; 6 from the symmetric spatial three-metric g;;, 3
from the shift vector N and 1 from the lapse function N. The four-dimensional

metric components g, can be written in terms of the ADM variables as follows:

doo 9oy
G =

gio  Gij

— N2+ ®giN;N; N
= : (2.59)
N; (3)gij
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Now we consider the massless case or GR. The action becomes [33]

_ 1 4
SEH = 167TG/de gR

1 g
= d*z\/®gN [R® — K* + KYK,; 2.60
where ®) ¢ is the determinant of spatial metric Gij R®) is the Ricci scalar in spatial

metric g;; and Kj; is the extrinsic curvature of the spatial hypersurfaces ¥; which is
a quantity that measures the rate of change of unit normal vector on hypersurface

and is given by
Kij = gy VFn;, (2.61)

where Kj;; is symmetric and tangent to hypersurface ¥;. Vyn; collects the infor-
mation of the curvature on the hypersurface where 3 ¢;* projects the information
on the three-dimensional hypersurface. In addition, the extrinsic curvature can

be written in terms of the ADM variables as shown below

1. -
Ki = on (oot i—N  N;) (2.62)

The Ricci scalar is also written in terms of ADM variables as
R=®R4+ K,;K7 - K*, (2.63)

where ® R is the Ricci scalar of the spatial metric ) Gij-

Before investigating the ghost in massive gravity, we will study the ADM
formalism in GR. Then we start from the Einstein-Hilbert action written in terms

of ADM variables given by Eq. () The canonical momenta is given by

@p - = s~ V' (K7 = K®gY). (2.64)
ij
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The Einstein-Hilbert action can be written in terms of Hamiltonian H:

_ _ 1 S i ] —
SEH_/dtL_l&rG/dt(/Etdx[p Gij] H). (2.65)

In this case, Hamiltonian H is given by [33]

H= [ &z (NC+NC"), (2.66)

¢

where there are 12 phase space metric components; 6 from g;; and another 6 from

Dijs
C = VOg(PR-K*+ KVK,;), (2.67)
Ct = OGOV, (K7 -BgiK) (2.68)
NZ gy (2.69)
N = (goo— gijQOiQOj)l/Q (2.70)
We apply the Hamiltonian H from Eq. () into Eq. () to obtain
Sen = 163TG /d4x [(3)]9”(3)9“ —NC — NZC"} . (2.71)

The shift N; and the lapse N become the Lagrange multipliers for Eq. ()
and Eq. () then we have 4 constraints; C' = 0 and C* = 0. There are 4 more
constraints from the gauge symmetry in GR from Eq. (@) The total phase space
degrees of freedom is 12 —4 — 4 = 4 which are 2 polarizations of massless graviton
and another 2 polarizations of massless graviton’s conjugate momenta. It can be

interpreted that there are only 2 real degrees of freedom for GR case.

We turn to massive gravity where the kinetic part is exactly the same as the

GR case, so we consider the mass term from FP theory only. The mass term in
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FP theory can be writtein in terms of ADM variables given by
77”&77”5 (huuha,é’ - huahuﬁ) = 77ik77jl (hz‘jhkl - hz‘khjl) + 277ijhij
—2N?h; + 2N; (Bg7 — ) N, (2.72)

The total action of FP theory in Eq. () in terms of ADM variables is given by

1 y .
= / dz [(3)]7”(3) gij — NC — N;,C"

167G
m? ij 2 2 ij
-5 (hijh” — h* +2(1 — N*)h + 2h N;N;) |. (2.73)

In this case, the lapse and the shift functions cannot be the Lagrange multipliers
due to their quadratic terms (N2 and N;N;) as shown in Eq. () Both function
are still auxiliary fields which are analytically solved by the variational principle

as follows

SR & N ci (2.74)
m2niihi; m?(®gis — ')

By substituting the shift and lapse functions into the FP action in Eq. (), we

obtain the action with no constraints or gauge symmetries at all,

1 (3.
ULALGHEX / d*z (Pp 7@ g, — H), (2.75)

where the Hamiltonian H takes the form

2 Val
H = /d?’x L C + ! C.C —
2m2 771] hz’j 2m2 (3)gz] _ nz]

1 o .
+Zm2 (707" (hijhug — haghg + 207 hyj) | ) : (2.76)

We totally have 12 phase space degrees of freedom or 6 real degrees of freedom

in the FP massive gravity which is different from GR that has 2 real degrees
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of freedom left since it has constraints and gauge symmetries. The linearized
massive gravity has 5 real degrees of freedom while the nonlinear massive gravity
with FP mass term in Eq. () has 6 real degrees of freedom. The extra degree
of freedom from the nonlinear massive gravity is called the Boulware-Deser (BD)

ghost [34, B5].

2.5.2 The appearance of BD ghost: Stueckelberg trick

By the ADM formalism, we now see the extra degree of freedom from the nonlin-
ear massive gravity but it is not enough to quantify the ghost terms. To reveal
the ghost terms in the nonlinear massive gravity action, we apply the Stueck-
elberg trick to formally restore the diffeomorphism invariance by including four

Stueckelberg field ¢* and the reference metric transforms as follows: [36]

ful/ — fuu — 8u¢aal/¢bfabv (277)

where fw, transforms as a tensor under coordinate transformations with the four
Stueckelberg fields ¢* transforming as scalars. In the unitary gauge, where the
Stueckelberg fields are ¢* = x*, we recover fm, = fuw- It is convenient to define

the following tensor quantity,

XU = gt f,, = 0 — It

v

(2.78)
where its transformation is given by

Xt XE = g'f,,

= gup8p¢aau¢bfab

= 0"¢"0,0" far = 8% — HY. (2.79)
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For simplicity, we can choose f,, = 14 and split the Stueckelberg fields as
o = 2% — x* where x* can be decomposed into traversable vector field A% and the
longitudinal mode 7 as x* = %A“ + #nabaﬂ. The flat reference metric f,, = 7,

transforms as

f,LLI/ = Ny — f,uzl = 8u¢aau¢bfab
= 77#1/ - (aqu/ + aVXM) + 8uXaaqu77ab

2

1

1 o 2 e 1 o
—I—W(‘?MA a,/Aa + $6MA Hlxa + ﬁHNHO‘V’
where 11, = 0,0, 7.

The fluctuations h,, about the flat spacetime are promoted to the tensor

h/u/ = 9w — f,ul/ — H,uu = Guv — f,ul/
=" hu 00X + 0 X — Guxa(%xbnab

1 2
= By — (0 A+ 0,A,) + 511, (2.81)

1 (0% 2 (0% 1 (0%
~ A0, A = 0, A — — DL,

Then the tensor X,‘j becomes

XU =0t — HY = 8 — Rt — "X, — Ox" + "X D0 X Nt

v

1 2
= XU —(9"A, +0,A4") — I (2.82)

Y m

1 2 1
+ 5O AD, Ay + — 0P AL+ — 17T,
m m m

Since we have shown in the previous subsection that the extra scalar mode

takes responsibility on the BD ghost. We will focus only on the helicity-0 mode, 7,
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and omit the part of tensor and vector modes in the mass term of the FP theory.
The mass term, which is borrowed from the FP theory in Eq. (), transforms

as follow [16]

Lns = =5 (Hu " = 1)
= —m* ([~ %7 - - %P)
= () - )+ (] g (1))
by (] = 7). (2:83)

where the bracket is the trace of the tensor. With the integration by parts, the

quadratic terms of the scalar mode in Eq. () is the total derivative as follow

(] = [I* = {9, (9"70"9um) — " (70,07 0,m) + 70,00, 0" 7}
—{0, (0’r0"0,n) — 0° (70,0"0, ) + 10,0°0,0" 1}

= 0, (0"10°0,m) — ), (0°7 "D, ). (2.84)

However, the cubic and quartic interactions in Eq. () cannot be solely written
in terms of total derivative. At this point, we see that these higher order derivatives
terms, i.e. ([IT*] — (1] [IT)*) and ([H4] - [H2]2) lead to the extra degree of freedom
from the BD ghost [36]. As shown in the appendix B, the higher order derivatives
of the scalar field are the major problem in nonlinear massive gravity because there
is a negative the kinetic term of the scalar field leading to unbounded Hamiltonian
[B4, B5]. When the wrong sign kinetic term of scalar field couples with ordinary
matter, it cause the instability to the system. This is the reason why the nonlinear

massive gravity with FP mass terms is ruled out by the appearance of BD ghost.
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2.5.3 Elimination of the extra scalar mode by the Galileon

theory

As mentioned using the Stueckelberg trick, the scalar field in nonlinear massive
gravity plays a major role for the appearance of the ghost. Even though the scalar
field of FP theory causes the extra degree of freedom from the BD ghost, we find
that the ghost term does not come from the quadratic terms since they all can
be written in terms of total derivatives. Upon this fact, we are able to choose
the contractions of II,, in higher order that reduces to total derivatives. In this
subsection, we will consider solely the form of scalar field that eliminates the BD
ghost before combining the vector and tensor mode for the full nonlinear massive

gravity.

In Refs. [35, B7, BY], there is the unique combination of I1 ,, from the Galileon

theory leading to the total derivative as follows:

L = =[], (2.85)
L3P = [P -3 [m?] + 2 [Ir*], (2.86)
L = [ -6 2] 1) + 8 [I°] (1] + 3 [112]* — 6 [11],  (2.87)

where LIP is the same as FP term. One could apply the integration by parts on
LI to obtain the total derivatives for all n. The term L'P vanishes identically
when n > 4 since we consider the 4D spacetime. To avoid the BD ghost, the

scalar mode in the mass terms must be written in the combination of Eq. ()7
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Eq. () and Eq. () as follow:

L™ = ([0 - [112]) + as (07 — 3 [10] [11)* + 2 [11%])

o (T = 6 [102] [0 + 8 [I1°] 1] + 3 [112]° — 6 [11'] ), (2.88)

where a3 and a4 are constants.

With this Lagrangian of the scalar field in Eq. (), the quadratic, cubic,
and quartic interactions can be written in terms of total derivatives, so there is
no higher derivatives. For this case, the scalar field is not dynamical (the total

degree of freedom is zero), so ghost is eliminated from the system.

2.5.4 The ghost-free nonlinear massive gravity

In the nonlinear massive gravity, there are three modes; tensor h,,, vector A, and
scalar @ modes. One can make use of the ghost-free Lagrangian of scalar mode in
Eq. () to have all three modes and there is still no the BD ghost. To do so,

we first recall the tensor X’V‘ and split into two main terms as follow

A

Xt = Y47 (2.89)

where Y consists of the pure scalar terms and Z% is the combination of tensor,

vector and interaction between vector and scalar as follows

. 2 1
o — I — 1ML, (2.90)
m

v v m2 Y

M
=
Il

7' = —ht— 1 (0" A, + 0,A") + ia“AO‘a,,Aa + i(’JV”AO‘I'L,OZ. (2.91)
m m? m3
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Then we factorize the scalar terms to obtain

N 2 1
Vo= o - ST e,
m m
W 1 “ p 1 0 TERATP
== 6p - ﬁa 8p7r 6y — ﬁf) 6V7T = MpMV‘ (292)

The relation between the tensor ij and II# is given by

v

1 = 940,m = m? (8 — W2 = m? (5 — V¥, (2.93)

To generalize the ghost-free Lagrangian in Eq. (), we replace 1I# with a

new tensor defined as follow

Rl = m? (8 \/5_{) = m? <55 . \/Eu> . (2.94)

The ghost-free nonlinear massive gravity Lagrangian is given by

e = ([K] - [®]) +aa([&]' - 3[&] [1] 42 [R]) o9
A J L] +os |

Presence of the ghost in the model is a major problem for the massive gravity
until de Rham, Gabadadze and Tolley (dRGT) handled this problem and intro-
duced the Lagrangian in Eq. (R.96) as the ghost-free nonlinear massive gravity
theory [17, B9]. Here the authors generalized the model at the complete level.

The further reading for the ghost-free nonlinear massive gravity and its applica-

tions are in Refs. [40, 41, #2]. We set M3 = 1/87G for the rest of this section.

The action of the dRGT model is given by

M2
Suncr = - [ doy=g (R mi(g. o). (296)
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where my, is the graviton mass and the potential U is defined by
U = Uy + azUs + agUy, (2.97)
where Uy, Us and U, are given by

Uy = [K]* —[X7,
Us = [K]° = 3[K][K] +2[K7,

Uy = [K]* = 6[K)°[K] + 8[K][K?] + 3[K?)* — 6K, (2.98)

where K = K/ m2, Kb = 68 — \/g" fay0,9°0,¢>. Here a bracket [ ] represents
the trace of the tensor, [K] = Kk, [K?] = KiK', [K°] = K KK and
(K] = Kk, X3! o K2 Note here that parameters o and ay of the dRGT theory
are related to the graviton mass. Performing variation of the gravitational action
in Eq() with respect to the metric, g,,, yields the equation of motion of the

dRGT massive gravity given by
G + M3 X =0, (2.99)

where X, is defined by

where the parameters a and 3 are related to a4 from the action in Eq() via

a=1+3a3, B = as + 4day. (2.101)
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They are simply defined as the unitary gauge ¢* = x#4;. The homogeneity
and isotropy on the spatial sphere is needed to preserve. Then the choice for f,,

is the SU(2)-invariant as follows [25, 43, 44, 45, 46]:
far = diag(0, 0, k%, k?sin 0), (2.102)

where k is a constant. Assume the ansatz as the static and spherically symmetric
as follows:

d 2
ds® = g datdr” = —n(r)dt* + ﬁi) + r2dQ?, (2.103)

where n(r) and f(r) are arbitrary functions of r, dQ2% = df? + sin?0d¢? and the
metric in Eq. () is the vacuum solution of massive gravity theory without
any other kind of matter. With the metric tensor in Eq. (), the components

of Einstein tensor G, in Eq. () become

I e
G = AN (2.104)
. frn'+n) 1

Gy=Gi = f (% + iT) +'f (n” i (n/)2> : (2.106)

on | 2nr  4n?

The components of tensor X/ are

— 2k —k)(r—=k — k)?
X! = —m? <3r = a(3r T2)('r’ ), 35(TT2 ) >7 (2.107)
— 2k —k)(r—k — k)?
mQX: — _mg (ST - + 05(370 r2)<,r ) + Bﬁ(TTQ ) ) , (2108)
_ _9 _
mAX0S = —m? (37‘T k N oz(3rr k) N 36(1; k)) ‘ (2.100)

To find the solution of function f(r), we use (tt) and (rr) components of Eq. ()
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with Eq. (2.104), Eq. (.103), Eq. (2.107) and Eq. (.108) [25]

oo 3r—2k  aBr—k)(r—k) 38(r—k)
T ﬁ_ﬁ:m?’<rr +a(r r2)(r )+ (Trz ))’
(2.110)
and
, B _ _ 2
f(r:;;— n) _T_l2 - (37’ - 2k N a(3r fz)(r k) N SB(TTZ k) ) |
(2.111)

The right hand sides of Eq. () and Eq. () are exactly the same. We

match the terms only on their left hand sides

R . (2.112)

This implies that f(r) = n(r). According to Ref. [@], the ansatz of f(r) becomes

2GM  Ar?
AR AT N g (2.113)

ORA s S

where M is the mass parameter, A is the effective cosmological constant, and v and
¢ are new parameters. By substituting the ansatz of function f(r) into Eq. (),

we obtain the parameters in the dRGT massive gravity via the following relations,
A=-=3ml(l+a+p), v=-mk(l+20+383), (=mik*(a+303)(2.114)

The parameter k, o, and  are rewritten in terms of A,~, and ( by

v+\/72+(m§+/\)<

b= m2 + A ’
72+ (2m2 + A)C — 7\/72 + (m2 + A)
a = — P :
g = 22, Ve 7\/72 + A)C. (2.115)

2 2
3m; ma¢
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For convenience in the test of this thesis, we set ( = 0 and obtain

2y 3 A

_ — 3= —2o_ 2 2.11
k S a=—3f (2.116)

The energy density and pressure can be defined by the components of tensor X,

from Eq. (), Eq. () and Eq. () as follows:

m?2 2y — Ar
wir) = gt - (2R 2.117)
2
O = M xr e (A 2.118
m? — Ar
pé9,¢)(r) — _87%)(3:;5:]\4]% (7 . ) (2.119)

For the black hole solution in dRGT model, the cosmological constant A is
written in terms of graviton mass mgy. Thus, the massive graviton is responsible
for the accelerated expansion of the Universe. According to the first detection of
gravitational waves in 2017 [47], a lower bound on the graviton Compton wave
length A, is 1.6 x 10'® km which is equivalent to the upper bound on the graviton
mass 7.7 X 1072 eV/c?. In 2019, a new constraint for graviton mass with the
planetary ephemeris INPOP is A, > 1.83 x 10" km or m, < 6.76 x 1072 eV /¢?

g,



CHAPTER III

Wormbholes in GGeneral Relativity

In this thesis, we theoretically construct wormholes by using two standard methods
for theoretical wormhole construction; the traversable wormhole and the thin-shell
wormhole. The detail of construction, the stability condition and the parameters

for the energy conditions will be discussed in this chapter.

3.1 The Lorentzian traversable wormhole

This type of wormhole is a two-way bridge that connects two points in spacetime
of the Universe or two points from different Universes. To begin the study, we
would like to introduce the properties of the Lorentzian traversable wormhole in
the fundamental setup. Then, we provide detailed construction of the traversable

wormbholes.

3.1.1 Fundamental setup of traversable wormholes

To construct traversable wormholes, we consider the spherical coordinate which

is suitable to describe the line element of wormholes. It was proposed by Morris
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and Thorne in 1988 given by

-1
ds? = —e**Mat? 4 (1 - @) dr?® + r*(d6* + sin® 0d¢?), (3.1)

where 7,0, and ¢ are the spherical coordinates, ®(r) and b(r) are arbitrary func-
tions of r, ®(r) is called the redshift function since it is related to the gravita-
tional redshift, and b(r) is called the shape funtion because the function deter-
mines the shape of traversable wormholes via embedding diagram. To construct
traversable wormholes, the coordinate singularity or horizon must be eliminated.
Thus €2®) £ 0, then ®(r) must be finite everywhere. Even though (1 — b(r)/r)~"
diverges at the throat of the womrhole b(rg) = g, it is just the coordinate singu-

larity where can be eliminated by considering the proper radial distance

o [ 1220 o

The proper radial distance is required to be finite everywhere. The metric tensor

in Eq. (@) can be rewritten as [[7]
ds? = —e2®Oat? 4+ dI? + r2(1)(d6? + sin® 0d¢?), (3.3)

where [ = 0 is at the throat of the wormhole, and [ > 0(l < 0) is on the upper

(lower) side of the throat.

3.1.2 Embedding diagram for traversable wormholes

To visualize the wormhole spacetime, we consider the slice of the line element

given in Eq. (El]) at t = constant and § = 7/2. The two-dimensional surface is
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embedded into three-dimensional Euclidean space (cylindrical coordinate) [49, 50]
2 b(r)\ " 2,272 2,272 2
ds* = (1——=| dr*+r°d¢* = dr® +r*d¢p° + dz". (3.4)
r
We obtain the relation

% =+ (b(r—r) - 1>_1/2, (3.5)

where dz/dr diverges at the throat b(a) = a. To avoid the imaginary vaule of z,

we apply the first properties of a traversable wormhole shape function:
b(r) < r forr > a, (3.6)
and
b(a) = a. (3.7)

Notice that the traditional background metric tensor of traversable wormhole sat-
isfies the asymptotic flatness condition. In general, the background metric tensor
might be de-Sitter or anti de-Sitter spacetimes which satisfy the asymptotic de-

Sitter condition or the asymptotic anti de-Sitter condition, respectively.

3.1.3 The flaring-out condition for traversable wormhole

The throat of wormhole must be the narrowest part. Generally, we can apply the

criteria by considering the second derivative (%) around the wormhole throat
as
d? b(r) —rb’
- M>Oforr>a. (3.8)

d=? 202(r)
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At the throat, the relation of Eq. (@) reduces to
Va) < 1. (3.9)

These relations are called the flaring-out condition and hold near and at the worm-

hole throat.

3.1.4 No-horizon conditions

To make the wormhole possible for transportation, we must set no-horizon condi-
tion in spacetime. According to the line element of wormhole, the characteristic of
the shape function b(r) is determined by the embedding diagram and the flaring-
out condition. In this thesis, we use the static and spherically symmetric metric.
Thus, a horizon might appear on the term gy and g,.. On gy, it is easy to handle
since as long as the red shift function ®(r) is finite from throat a to infinity, there
is no horizon. To avoid the horizon on g,,, we are able to choose the shape function

b(r) that has no root between the throat and infinity.

3.1.5 The construction of the Lorentzian traversable worm-

hole

The line element follows the Morris Throne wormhole in Eq. (El!) Generally, the
shape function b(r) and the redshift function ®(r) are arbitrary as long as they
follow the properties in section (El]) The action of the Lorentzian traversable

wormhole in four-dimensional spacetime consists of the geometry of the Universe
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R/167wG and the matter L ager 1S given by

R
Stotal = /d4$\/ —g (m + Lmatter) . (310)

Performing the variation of the action with respect to g"”, it is not surprising that
the equation of motion for the Lorentzian traversable wormhole is governed by the

Einstein equation

1
Ry — 59w R = 87GT,, (3.11)

where the energy-momentum tensor of matter source of the wormhole is 7}, =

_ 2 8(\/ _ngatter)
e aghv

which is written in term of anisotropic perfect fluid as
T, = (p ¥ Pt>uuul, + P g+ (PT - B) XuXo (3.12)

where u, is a four-velocity, x, is the spacelike unit vector orthogonal to the u,
with the normalization condition u,u* = —1, x,x* = 1, p is the energy density,

P, and P, are the radial and tangential pressure, respectively.

The energy conditions for the anisotropic fluid are given by [51]

o Null energy condition
p+P.>0,and p+ P, > 0. (3.13)
o Weak energy condition

p+P.>0,p+ P >0, and p>0. (3.14)

» Strong energy condition

p+P.->0,p+ P >0, and p+ P, +2P, > 0. (3.15)
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Substituting the Morris and Thorne line element in Eq. (El!) into Eq. (),

we obtain the equations of state of the source matter for Lorentzian traversable

wormhole
b= _166757(27~3 + 873G (1 - @) q)/y) (3.17)
Poo= 5 ()~ () + (% (1 - bTT)) (1 b’(fr))) ¥(r)
+ <1 - @) D (r) + (1 — @) " (r). (3.18)

In this thesis, these three variables will be applied into all three energy conditions
(NEC, WEC, and SEC) for quantifying the violation the Lorentzian traversable

wormhole.

3.2 Thin-shell wormhole

The concept of thin-shell wormhole was first proposed by M. Visser [52]. This
class of wormhole can be obtained by a cut-and-paste procedure and structures
are called thin-shell wormholes where they distort the two different spacetimes
and connect them at wormhole throat which is called the thin shell. This method
is called the Darmonis-Isarael formalism or the thin-shell formalism [19, 53]. M.
Visser proposed the analysis of the thin-shell wormhole’s stability and found the
stable configurations from the equation-of-state of an exotic matter residing on
the throat. Unlike the traversable wormhole technique, the thin-shell spacetimes

have no differentiability for its metric at the throat. Then the spacetime at the
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throat or thin shell is not smooth.

In this section, we will review a thin-shell wormhole method through the
procedure of the thin-shell wormhole construction and the method to measure its

stability.

3.2.1 The fundamental setup for thin-shell wormhole

In order to study the thin-shell wormhole and its stability, we have to use the
appropriate mathematical tools to construct the two manifolds and the surface.
We follow the standard approach in Refs. [49, 54, 55]. The two different space-
times (upper and lower spacetimes) are described by two manifolds (M, and M_,
respectively) where M, (M_) is described by the metric g, (g,,) with the coordi-
nate 2% (z%). The plus and minus signs denote the upper and lower spacetimes,
respectively. A total manifold M = M, U M_ results from gluing M, and M,
at their boundaries OM, and OM_ respectively. The boundary oM, (OM_) is
described by the induced metric h}, (h,,) with the coordinate y; (y, ). The hyper-
surface ¥ separates M into M, and M_ such that > = M, NM_ and is described
by the metric g, = gi,(r = a) where a is the throat of the thin-shell wormhole.
Both manifold surfaces (OM, and OM_) are linked by the (co-moving) thin-shell

or hypersurface X.

We impose the static and spherically symmetric spacetimes. Then, the line

elements of both manifolds read

dr?

ds’ = gt da'da” = — fo(r)dt* +
+ = O f(r) f=(r)

+ r?df? + r* sin® 0dp?, (3.19)
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where r is the radial coordinate in both manifolds covering the range between
the throat of thin-shell wormhole to infinity (r € (a,00)), f+(r) is the vacuum
solution on manifolds (M), for instance, f+(r) = 1 for flat spacetime, and fi(r) =

1 —2M /r for the Schwarzschild case.

The line element on the thin-shell is given by

dy* ayb

= —d7r? +d*(1)dQ?,  dQ? = db* + sin® 0d¢?, (3.20)

a B
dS% = ga[gdq:adxﬂ ’T:a: [ (89& dya> <8x dyb) = habdyadyb

where 7 is the proper time on the hypersurface ¥. y® = y*(z*) is a coordinate on
the hypersurface ¥, hy, = gaﬁegef , €2 = 0z®/0y® is a tangent vector on curves on

a hypersurface, and 7 is a local time on the thin-shell.

We consider the dynamics at the throat by comparing the line elements on

the thin-shell from Eq. () and on the manifolds from Eq. () with limit

r—a,
2
—fi(a)dﬁ—l—fizn) +a%dQ? = —dr? + a*dQ0?
. a2
jiklONeKaRY UnIve
o dt (fala) + @)
i= = OB (3.21)

where dots denote the derivative with respect to 7. The induced metric hg, is
a tangent component of g,z on the hypersurface . Then, the normal vector

component on gffﬂ is defined as follow [49, 50, p4]

F(r,a(7)) o

= S a() s F (o) P

(3.22)
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where F(r,a(r)) = r —a(7) = 0 is the hypersurface function and the normal
vector n, is perpendicular to a tangent vector e i.e. ein, = 0. The Greek

@ 2P ...) represent the coordinates on Manifold M where as the Latin

indices (x
indices (y¢,4°, ...) represent the coordinates on hypersuface ¥. The metric tensor

of the manifold at the hypersurface can be written in terms of tangent and normal

vectors [19, 50, 54]
Gab = hap + €ngny, (3.23)

where € represents the types of thin-shell with e = —1,0, +1 being the spacelike,

nulllike and timelike, respectively.

Now we calculate the elements of n, by considering

Fi(ﬂ CL(T))WBF:‘:(T, CL(T))76 = gttatF:l:atF:t + grrarF:tarF:t
fe(a)?

= T (3.24)
We substitute Eq. () into Eq. ()
L _da(7) fi(a) + a2
CI G ) b 7
_ [ _alr) fila) +a?
_ (-a(T),—f;i‘zL;L a2,o,o>, (3.25)

where we also make use of ¢ from Eq. () for the last line. This is the elements

of the normal vector on the hypersurface of manifolds (M* and M™).
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3.2.2 The embedding diagram for thin-shell wormhole

To visualize the thin-shell wormhole spacetime, we consider the slice of the line
element given in Eq. () at t = constant and § = w/2. The two-dimensional
surface is embedded into three dimensional Euclidean space (cylindrical coordi-

nate)

d
a5 = o E;‘) +r2d¢? = dr® + r2d? + d=2. (3.26)

Then, we obtain the relation

i e (3.27)

dar N )
where a choice of function fi(r) must satisfies 0 < fi(r) < 1 because z must be

a real number.

3.2.3 The flaring-out condition for thin-shell wormhole

Furthermore, we apply the following criteria to determine the condition for the
narrowest radius of the thin-shell wormhole. We consider the second order deriva-

tive as follow

d’r _ fi(r)

R AT o

where this relation holds at or near the throat of the thin-shell wormhole to guar-

antee that the wormhole throat is the narrowest part.
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3.2.4 Junction condition

The thin-shell on the hypersurface 3 plays the major role to link two manifolds via
the boundaries of two manifolds OM,. We study the dynamics of the thin shell
by solving the junction condition from an action containing the bulks (manifolds),

boundaries and the hypersurface as follow [b5, b6]

R 1
Stotal = / d*x vV =gt (m + £$atter) +— d3yv —htK™
M. T

R 1
+/ d*r/—g~ (@ +Lmatter) T dyv/—h~- K~

+ /E By R e (3.20)

where v/—h is the volume element on the 3-dimensional hypersurface, the bound-
ary terms are called Gibbons-Hawkings terms and K is the trace of the extrinsic
curvature K, on the thin-shell with K = K¢ = hang. Latter 18 the Lagrangian
density on the thin shell of the material for wormhole construction. Inside the
bulk, the line element is described by the metric tensor gffy while, on the thin-shell
hypersurface, the line element is determined by the induced metric h,,. However,
the form of Lagrangian density in bulks is exactly the same as on the hypersurface.

With the variational principle to the total action in Eq. (), the equation of
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motion reads

G+
0S = / d*z\/—g+ —|—T (5g
My 167G

\/_
K+ h+ K+ 5hab
+ 8M+ 87TG ( ab ab ) +

¢,
+/ d4\/?<16G+T( )590‘5

o 5
OM_ 87TG

— / Py vV —htg,0h?, (3.30)
b

Kab habK )5h(1b

where the energy momentum tensor of the matter in bulks is

+
T(f)i e 2 9 (\/ _g’C‘matter)
af \/__g 5915

and the energy momentum tensor of the matter on the thin-shell can be written

, (3.31)

in terms of perfect fluid as follow

t (= 2 5 ( V. Lmatter)
ab /—_h 5h‘j:b

= (p+p)u'uy + phy. (3.32)

In order to solve for the junction condition, we consider the variation of the action
on the hypersurface > and boundaries OM, with respect to the induced metric
hab

6
- 5hab

5hcd
5hab

5hcd
5hab

— / By v/ —htae. (3.33)

1
= By —ht—— (K5, — h KT
/8M+ Y 8’/TG( cd cd )
1
By —h—— (K-, — h, K~
T (0 1K )

The normal vector n® of the hypersurface points from M_ to M. Then we can

a

choose n® =n = —ng in which the extrinsic curvature on each side is related to
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each other via [55, b6]
Ky (n}) = =K (n), (3.34)
and
K (n%) = K_(n"). (3.35)
Moreover, the induced metric h,, are the same on both sides of the boundaries,
i.e., hfy =ha=h,. Eq. () becomes

5Stotal
5hab

1
- / Py —h—— (habAK CAK, — 87rGtab> —0, (3.36)
b 87TG

where the notation AA = A, —A_ represents the difference of A in both manifolds.

Eventually the junction condition on the thin-shell is given by
W AK — AK}) = 8nGty, (3.37)

where the matrix form of energy momentum tensor of matter reads

=g - ()
t=1 o P 0 |, (3.38)
0 0 P

where p is the energy density of wormhole material on the thin shell and P, is the
pressure in the tangential directions of wormhole material on the thin shell. Thus,
junction condition will provide the detail of the matter that holds the thin-shell

wormhole sustainably.

Now we consider the left hand side of the junction condition in Eq. ()
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The extrinsic curvature can be calculated via the following equation:

K eg‘ebﬁvgna

= €] V5 (nae2) — naey Vg (e2)

= 00— navbeg
dz®
- e (dy“)
d?z dx? dx?
_ N a — 1, 3.39
{d “dyb By dyo dyb] ( )

where the normal vector n, from Eq. () with the spherical symmetric metric

tensor from Eq. () is given by

ey (-a(r), % 0, 0) . (3.40)

Therefore all non-zero components of the extrinsic curvature are

KT+ = iﬁ(a—l—%) (3.41)

1
K= = K& =+=(Vfz+). (3.42)

The continuity condition of the metric tensor on thin-shell implies that the metric
tensor of both manifolds are continuous at the throat of the wormhole implying
19, b0]

v = v (3.43)
This leads to fy(a) = f_(a) = f(a). The (77) component of the junction condition

of the thin-shell wormhole in Eq() reads

g(m) — _8xGp. (3.44)
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Moreover, the (00) and (¢¢) components of the junction condition are given by

(2d + ') = 87GP;. (3.45)

1
VI+a?
In addition, the continuity of the perfect fluid matter gives a relation between the
energy density in Eq. () and pressure in Eq. () on the thin-shell as

(ap) + Pt@ =0. (3.46)

a4
dr dr

It is also written in terms of the first order derivative of p with respect to a as

d_P__<P+Pt>_ (3.47)

da a
The second order derivative of p with respect to a yields

p p+p dP,
/] L2 AN S 4
da? a? < N dp )’ (348)

where P, = P,(p). Above equations are useful for analysing the stability of the

wormhole with several types of the perfect fluid matters.

3.2.5 Stability of the thin-shell wormhole

We use the junction conditions of the thin-shell wormhole to investigate its the
stability. The (77) component of the junction condition in Eq. () can be

written in term of kinetic and potential terms of throat a

1
§a2 +V(a) =0, (3.49)

where the effective potential V' (a) is given by

V(a) = %f(a) — 87 G2 p*a’. (3.50)
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The dynamics of the wormhole throat is determined by Eq. () To investigate
the stability of the wormhole, we consider the small perturbation on the thin shell
while it is at the equilibrium point a = ag. The effective potential V' (a) describes
the type of equilibrium point ay whether it is a stable equilibrium or unstable
equilibrium. To do so, the effective potential is expanded by Taylor series around

the static throat ag
V(a) = V(ag) + V'(ag)(a — ag) + %V"(ao)(a —ag)* 4+ 0((a —ap)®).  (3.51)

It is straightforward to show that V(ap) = 0 and V'(ap) = 0 by considering
Eq. () and its first derivative with @ at the static throat ay. The non-zero

leading term from the perturbation of effective potential becomes

V(a) = %V”(ao)(a — )2 + O((a — ao)?). (3.52)

Therefore, the equation of motion for the wormhole throat approximately takes
the form

a° + V (ag)la — ag)zead 0. (3.53)
The perturbed thin-shell wormhole is stable if and only if V" (ag) > 0 with the
frequency of the oscillation w = \/m . Otherwise, the dynamics of wormhole
throat a will be exponentially grow or collapse. Note that V'(ag) has the minimum
at ag. We finally obtain the stability condition of the thin-shell wormhole throat
by using the definition of the effective potential in Eq. () and substituting the
first and second order derivatives of energy density with a from Eq. () and

Eq. (B.48)

1 dP,
0< V//(CL()) = §f"(a0) + d_pt < - 16G27T2p(Pt + p>> — 16G2Pt271'2. (354)
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The last puzzle to investigate the stability of wormhole is the equation of state of
the matter which explains the relation between the energy density p and pressure

P, of the matter. We apply interesting types of fluid model in the following section.



CHAPTER IV

Wormbholes in Massive Gravity

In this chapter, we present two methods to construct wormholes in the dRGT
massive gravity and investigate their stability. The first method is the Lorentzian
traversable wormhole where the characteristic of wormhole is determined by the
shape function and the red-shift function. The second method is the thin-shell
wormhole which connects hypersurfaces of two different Universes. To check the
requirement of the exotic matter for wormhole construction, we apply the en-
ergy conditions to study the properties of matter content in the wormhole throat

whether it is physical or not.

The following sets of parameters in this work might violate the Vainshtein
mechanism since the models here are designed to investigate the effects on exotic
matter by variation of parameters in the modified gravity and dRGT massive
gravity [b7, b8]. In the other words, we study a toy model of the wormholes in
f(R) and dRGT massive gravity. However, we realize the major caveat and will

apply all parameters to satisfy the Vainshtein mechanism in the future research.

According to section @, the nonlinear Fierz-Pauli theory faces the BD ghost

instability causing the extra degree of freedom. From the dRGT massive gravity,
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the higher order potential terms in Eq. () can get rid of the BD ghost problem
at least in the decoupling limit [16, [17]. In the decoupling limit, the coupling cutoff
is set to eliminate the scalar self-interactions in any order. The cutoff would be
raised to Az = (M ng)l/S. Thus, the dRGT massive gravity is still functional
without the quantum effects until the distance is smaller than rg ~ 1/A3. In

2/3

addition, we note that the factor my’® = A3 carries [mass]' dimension since we

have set Mp = 1 for the present analysis.

We are using the dRGT massive gravity theory with a UV cutoff As, there-
fore we should not worry about the BD instabilities until the mass of the BD ghost

is below Aj. This happens at the quantum length scale [[16]

1 1 1/3
TQ = Tghost ™ A_ i ( ) . (41)
3

Y
My
For a source mass M for building the traversable wormhole, the non-linearities of

the dRGT massive gravity becomes important at the radius [[16]

ML/3 M 1/3
=2 <m) (4.2)

Generally the Vainshtein radius ry is larger than the quantum length scale rg,
therefore we could use the dRGT theory at the distance r > ry, without concerning

the quantum correction to the wormhole’s solutions.
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4.1 Lorentzian Traversable Wormbhole in dRGT

massive gravity theory

Modified gravity theories have been a major role for study wormholes. f(R)
theory, which generalizes the Einstein general relativity to the higher orders, has
been used to study the traversable wormhole [9, 10]. The investigation of NEC
and WEC for wormholes in f(R) gravity with various the shape functions b(r)
and the red-shift functions ®(r) are found in Refs. [11, 59]. The study of the effect
of cosmological constant on the Morris-Thorne wormholes was explored in Ref.
[60]. There are numerous types of wormholes with modified gravity, for instance,
Einstein-Gauss-Bonnet gravity [61], f(R, ¢) gravity [62], both f(R) and f(R,T)
theories [63, 64], Born-Infeld gravity [65], Eddington-inspired Born-Infeld gravity

[66], and even in non-commutative geometry [67, 6§].

In this section, we apply the modified f(R) gravity and dRGT massive
gravity to find the solution of traversable wormhole. We consider the Starobinsky
inflation model [69] which is used to understand the inflation in the early Universe
and the acceleration of the Universe in the late-time acceleration. The modified

gravity function is f(R) = R 4+ a3 R™ where a; and n are arbitrary constants.
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4.1.1 Equation of motion for Lorentzian traversable worm-

hole

The action of f(R) gravity with the dRGT massive gravity theory is given by [b7]

/ d%\/_(m G[ (R)+m§u(9>¢a)]) + / d*2/=gLmaster,  (4.3)

where f(R) = R + oy R™ is the modified gravity by Starobinsky and U(g, ¢%) is
the ghost-free effective potential from dRGT massive gravity theory in Eq. ()
According to the variational principle, we vary the action with respect to g"” to

obtain the equation of motion
1
F(R)R,, — 3 F(R) g = VuVuF + g OF = —m2X,, + 87GT, (4.4)

where the energy-momentum tensor of the matter field is

T(m) — — 5(V_g£’matter)
v T R e

= diag (—p, P., P, P,), (4.5)

F =F(R) =df(R)/dR and OF = ¢"*V,V,F. The energy momentum tensor for
the matter constructing the traversable wormhole is written in terms of anisotropic
perfect fluid as Eq. () X, is the dRGT massive gravity tensor defined in

Eq. () Each non-zero components of X, serves the energy density and

pressure of the massive graviton from Eq. (), Eq. () and Eq. ()

The field equation in Eq. (Q) can be written in the following form [57]

1
Gy = Ry = 5 Ry = =X, + 87TG< TU®R) 4 T<m>>, (4.6)

uv
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where

1
87TGT;E£(R)) = §guu(f(R) - R) + VMVVF - g/WDF + (1 - F)R/w- (47)

To study the traversable wormhole, we use the line element of the Morris-and-

Thorne traversable wormhole from Eq. (@)

b(r)

ds? = —e22 g2 4 (1 —
r

-1
) dr® + r*(d6? + sin? 0dp?),

Considering the field equation in Eq. (@) with the Morris-and-Thorne line ele-
ment, one obtains the energy density, pressure in radial and tangential directions

as follows [57],

ro dF;lS"R> (rb,(r)lzjg(g L 8716‘ (1 N b(r—r)) ‘1)’(7“)) ¢ S5

LA F(R) <(r (=/(r)) —3b(r) + 4r) @'(r)

rGr? 167 Gr?

e (49 ) - 2 (-0 £

P B0 (g (w0 1 (-°0)) - £
P

Ar? — 2vyr 1 , r®'(r)
t—- e F(R) <87TGT3 (rt'(r) — b(r)) (1 + )
_% (1 _ b<77" ((I)”(T) 1 CI>/2(7“)) )’ (4.9)

P, = F(R) (% (1 - @ @'(r) + 167T1G7“3 (b(r) + rb’(?‘))) 167G

—l——d};(rR) (# (1 — br_r)) ' (r) + —167rlG7’3 (4r% = 3rb(r) — 2V (r)) )
b

+A7’2 — 2vr n 1 |
rGr? G

(4.10)
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4.1.2 Analyze the energy conditions for Lorentzian traversable

wormbholes

To analyze the energy conditions of the matter constructing the traversable worm-
hole, we have to choose the shape function and red-shift function that satisfy the

wormhole properties in section [E] In our study, we choose the shape function as

br) = exp (a(r —rg))’ (1)

where 7y is the radius of the wormhole throat, « is the arbitrary constant. It
is straightforward to show that the shape function in Eq. () satisfies the
wormhole properties in embedding diagram, flaring-out condition and no-horizon
condition. According to Refs.[63, 70], the choice of « is unity to construct the
traversable wormhole. The embedding diagram of the metric Eq. (@) is illus-
trated in Fig. @ which is the function of z(r) (by integration of Eq. (@)) for
the slices t = constant, § = 7/2. The chosen shape function of the traversable

satisfies the embedding diagram and the flaring-out condition demonstrated in
Fig. (L) [57).

In this thesis, we select these three types of the red-shift function ®(r) =
constant = p, ®(r) = L, and ®(r) = log (1 + 22) where v, and 7, are arbitrary
real constants. We apply three cases of the red-shift functions with the shape
function to calculate null energy condition (NEC), weak energy condition (WEC)

and strong energy condition (SEC) introduced in subsection ()

There are four sets of the dRGT parameters which are (A = —1.0 and

v =0.5), (A =—-05and v = 0.5), (A = —1.0 and v = 0.1), and (A = —0.5
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Figure 4.1: Plots show embedding diagrams of the metric (@) for slices
t = const,f = w/2. The left panel shows the 2-dimensional diagram of the
traversable wormhole using ro = 1.0, and @« = 1.0 (a black dot-dashed line),
ro = 1.0, and a = 3.0 (a red dot line) and ry = 1.0, and a = 5.0 and (a blue solid
line). The right panel displays 3-dimensional diagram of the traversable wormholes

using the same three sets of parameters.

and v = 0.1), then their Vainshtein radiuses are 0.794, 0.874, 0.941 and 1.126,
respectively. Because we set G =1 and M = 1, the Vainshtein radiuses equal the
quantum length scales. Additionally, we set the throat of the traversable wormhole
at 7o = 1, then the first three cases have no problem with all range except for the
last case where the distance from the throat (ro = 1) to its Vainshtein radius

(ry = 1.126) cannot be trusted due to the involvement of the quantum correction.
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Figure 4.2: We verify the properties of the shape function introduced in Eq.
() The plots show behaviors of the proposed shape function against the
requirements given by the embedding diagram and the flaring-out condition for
traversable wormhole in Egs. (@ - @) using various values of o = 1.0, 3.0, 5.0
and ro = 1. We find that the shape function of the wormhole is completely satisfied
the requirements.

The first case: ®(r) = constant = p

With the shape function from Eq. () and the constant red shift function, we

find [p7]

: b'(r) 3b(r) 1 b(r) 1 "
po= 0 (167rGr T TonGr2 47rGr) * (SﬂGr - 87TG) )
fRE) A L o
167G 87G  4ArnGr’
b'(r) b(r) 1 b(r) \ f(R(r))
b= F() <87TG’I“2 - 87rGr3> * (47TG’I“ a 47TGT2) Fir) - 167G
A gl
+% CAnGr’

(4.12)

(4.13)
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L v(r) 3b(r) 1 b'(r) b(r)
Po= F(r) <_ 167Gr  167Gr2 + 47 Gr +F(r) 167w Gr? + 167Gr3

1 b(r) \ f(R(r)) | A v
* (% N M) F0) =66 Y sra e (4.14)

The combinations of Egs. ( - ) yield the following relations among

p, P, and P

p+ P = F(r) (1?;27" B 162527“2) ) (8?;(622 B 82%13)

4 ( ;T(QT - #) F), (4.15)
bt P = F(r)v(r) er(T)F(T)Jr ¥ (4.16)

16w Gr? 16mGr3  87Gr’

B I A f(R(r) b(r) _ b(r)
p=Ibl = ‘ 4G7T7‘+8G7T 16Gm +E@ 8Gnr?  8Gmr3
U W) N | B0 300)
- <4G7Tr 4G7r7"2) £ (7’)’ TEr) (167TGT * 167Gr?
R b)Y L JRE) A
47TGT>+<87TGT %)F(TH 16nG 871G
g
4.1
+47TG7” (4.17)
_ b(r) — 3b(r) 1 f(R(r)) A
p-Ibl = F(r>(167rGr+167rGr2_47rGr T 6rG  8aC

3b(r) 1 b'(r) b(r)
C167Gr2 + 47TG7"> +F(r) (167TG7‘2 + 167 Gr?

1 b(r) \ f(R(r) A v
+<@ B 87TGT>F () - 167G + 87G  StGr

. (4.18)
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R v(r) 3b(r) 1
pt2h = Fr) <_ 167Gr  167Gr? * 4rGr

r (280 20+ (Lo 22 i

f(R(r) A
167G 85GY (4.19)

p+ P 42P = F(r) <_ v (r) 7b(r) N 1 >+ F(r)b'(r)

167Gr  167Gr?2 ' 2xGr 4 Gr?

L b0\ e SR Ay
+<%_M>F(T>_ s7G TG wmar )

p(r)
P(r)+P(r)

P(r)+P4r)
P(r)+P(r)+2P¢(r)

Figure 4.3: Figures demonstrate the variation of p, p+ P, p+ P, p+ P, + 2P,
as a function of r with ®(r) = p = 1, @y = £0.1 and n = 2. We have used

a=5.0,7g =1,G =1 and various values of v and A.

We consider the red-shift function of the wormhole metric as ®(r) = 1. We
split results by the strength of Starobinsky model into two figures shown in Fig.@
(v =40.1) and Fig.@ (v = £0.01). In each panel in figures, there are three main

cases of traversable wormholes; general relativity, positive oy and negative ;.
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Figure 4.4: Figures demonstrate the variation of p, p+ P, p+ P;, p+ P, + 2P, as
a function of r with ®(r) = 1, a; = £0.01 and n = 2. We have used a = 5.0,y =

1,G =1 and various values of v and A.

Let consider Fig.@ (®(r) =1 and a; = £0.1). The first case in this figure
is the traversable wormhole in GR represented by the black solid lines of p, p+ P,
p+ P, and p+ P, 4 2P, as functions of r. It violates WEC, NEC and SEC for all

range from its throat to the cosmological horizon.

The second case in Fig.@ is the modified gravity with dRGT and Starobin-
sky models with a; = 0.1 represented in color solid lines. The positive value of
a1 limits the negative zones of p and p + P, around the throat of the wormhole.
The zone of negative energy density reduces when the value of v increases and the
value of A decreases. While both parameters do not effect the negative zone of

p+ P.. p+ P, is positive at the throat and becomes a decrease function near the



Table 4.1: Table shows a summary of energy/pressure conditions for ®(r) = p

1.0,n=2, a=50,rg=1,G=1,7v=0.5, and A = —1.0.
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No. Terms a; =0.1 a; = —0.1
1 p >0, forr € [1.1,00) | >0, for r € [1.0,1.1] U [1.55, 00)
<0, forr € [1.0,1.1) | <0, for r € [1.1,1.55)
2 p+ P, >0, forr € [1.1,00) | >0, for r € [1.0,1.05] U [2.5, c0)
<0, forr € [1.0,1.1) | <0, for r € (1.05,2.5)
3 p+ P >0, for r € [1.0,00) | >0, for r € [1.3,00)
< 0, for r € [1.0,1.3)
4 | p+ P +2P | >0, for r € [1.0,1.15] | <0, for Vr
<0, for r € (1.15, 00)
5 p—|P >0, forr € [1.1,00) | >0, for r € [1.0,1.05] U [2.5, 00)
<0, for r € [1.0,1.1)
6 p—|P| < 0, for Vr < 0, for Vr

throat where its value goes below zero for low value of v while A does not effect

much. p+ P, + 2P,, which is one for analysing SEC, is above zero only near the

throat and becomes negative for the rest of the the spacetime. The effects from

dRGT and Starobinsky on p+ P, + 2P, seem to be contradict to the energy density

since p + P, 4+ 2P, is more negative for more positive v and more negative A.

For the last case in Fig.@, the modified gravity with dRGT and Starobinsky

models with ay; = —0.1 is represented in color dashed lines. All results are mostly

opposite to the positive a; case. The energy density is positive around the throat
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and becomes negative for the rest of the spacetime. The zone of negative energy
density reduces when the value of v increases and the value of A decreases like
the previous case. The trend of p + P, is similar to its energy density; however,
it is invariant under the change of v and A. If the value of 7 is not high enough,
p—+ P, remains negative when the distance from the throat increases. For analysing
p+ P, + 2P, it is negative around the throat and increasing to converge to some
constants as the distance increases. The violation zone will be limited if the value

of v decreases and A increases.

Now consider Fig.@ (cvy = +0.01). The only significant difference from this
one to Fig.@ is the values of p, p+ P,, p+ F;, and p+ P, + 2P, near the throat of
wormbhole. It is evident that the less magnitude of «; is, the more violation zone
near the throat becomes. The characteristic of energy density for a; = 0.01 is still
similar to the previous case but energy density is negative for all range from throat
to the cosmological constant. The values of p + P, for a; = £0.01, are mostly
negative except some small region of positiveness for ay; = 0.01. The values of
p + P, for all cases are negative near the throat. However, the characteristic of

p+ P, + 2P, is still the same but small magnitude near the throat.
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The second case: ®(r) =1

With the shape function from Eq. () and ®(r) = 1, we find 7]

167Gr  87Gr3  16mGr?2  8nGr?2  4nxGr
Y T I T T B B

FI(T)( b/(T‘> . Vlb(r) + 3b(T) + ! 1 >

167Gr3  8mGrd5  16mGrt  8wGrt

o(r) L N\ oy, JBO)) A Y
N (87TG7’ 87TG) Fir) + 167G &G N 4Gr’

(4.21)

167Gr3  8nGr?  8mGr5  167Grt  8xGr3

2
N m / Nb(r)  b(r)  m 1
STGrt 47TGT‘3> + Fi(r) (87TG’I“3 A7Gr?  8mGr? + ArGr
J(R(r)) A Y

167G + 87G AnGr’ (4.22)

: b(r) | mb(r)  3b(r) " 1
P, = F — 1 —
! (r) ( 167Gr Y 8rGr3  16nGr?  8nGr? * 4rGr

V'(r) ~ mb(r)  b(r) m
F 4
+E(r) (167rGr2 87Gri  16nGr® | 8nGr

1 b(r) \ f(R(r)) | A v
* (% N 87TG7") F) =~H6a Yaa  war

P = F(r)(— b () V(r)  ~ib(r)  5yb(r) b(r)

(4.23)
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The combinations of Eqs. ( - ) yield the following relations among p, P,, and P;:

: b'(r) b(r) L\
P, = F — F"(
Pt (r)(lﬁﬂGT 6rGr2 ) © 87rGr 87G
b'(r) | mob(r)
F
+E(r) (87TG7“2 ArGr? 87TG7‘3 47rG7“3

p+ P :.m@(”W“> W(r)  A3b(r)  3nb(r)

(4.24)

167Gr3  167Gr?2  8nGrd5  167Gr

b(r) ’Y% M Y
4.25
167Gr3 + StGrt * 8tGr3 + 8StGr’ ( )

g A f(R(r) b(r)vi o
_|P| = —|— _ F _
p—IE| ‘ G Tsar ~ 16en T EON G T SGm
LS Wm ) b0)
16Gnrt  16Gmr3  4Grrd  8Gmr3  8Grr?
’Vlb(r) — b(?“) = S 1 /
N <8G7r7"3 4Grr? - 8Gmr? * AGmr Fi(r)
: bi(r) _ mb(r) . 3b(r) gl 1
F i _
HE(r) (1677(}'7‘ 8rGr3 N 167Gr? i 8nGr2  4AnGr
n(r)  apb(r) b)) ot
F 2 L
+E(r) (167TG7'3 8tGr5  16nGrt | 8nGre
b(r) TRAA, fR(r)) A gl
N (87TG7“ 87TG) = ¥ 167G 871G N 4rGr’ (4.26)
g A f(R(r)) mb(r) b(r)
Pl = —|— = F _
p—IH ‘ sGrr T8Gr — 166r T\ T 5Gm T T6Gm

"N n b'(r) i ’Ylb(r)_ 3b(r) .
8Gmr3  16Gwr?

8Gmr3  16Gnr?  8Gmr?
e )0 ()
() <1Z75'27“ B ;71:22” + 12:((2“2 + 87?51”2 B 47r1Gr)
rio) (0 - 0 ) )
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Figure 4.5: Figures illustrate the variation of p, p+ P,, p+ P, p+ P. 4+ 2F; as a
function of r with ®(r) =~ /r. Here we have used a; = £0.1, n =2 = 5.0,79 =

1,G =1,v; = 1.0 and various values of v and A.
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Figure 4.6: Figures illustrate the variation of p, p+ P, p+ P, p+ P. + 2P, as
a function of r with ®(r) = 7;/r. Here we have used a; = £0.01, n = 2, a =

5.0,79 =1,G = 1,7 = 1.0 and various values of 7 and A.
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Table 4.2: Table shows a summary of energy/pressure conditions for ®(r) =

m/r,n=2, a=501r=1G=1,v =1.0,v=0.5, and A = —1.0.

No. Terms a; =0.1 a; = —0.1
1 p >0, for r € [1.2,00) >0, for r € [1.02,1.25] U [1.45, 00)
<0, for r € [1.0,1.2) <0, for r € [1.0,1.02) U (1.25, 1.45)
2 p+ P, >0, for r € [1.25,00) < 0, for Vr
<0, for r € [1.0,1.25)
3 p+ P >0, for r € [1.15, 00) >0, for r € [1.3,00)
<0, for r € [1.0, 1.15) <0, for r € [1.0,1.3)
4 | p+P.+2P | >0, for r € [1.02,1.12] < 0, for Vr
<0, for r € [1.0,1.02) U (1.12, 00)
5 p— P >0, for r € [1.22,1.9] < 0, for Vr
<0, forr € [1.0,1.22) U (1.9, 00)
6 p—|P <0, for Vr <0, for Vr

For the red-shift function of the wormhole metric as ®(r) = 1/r, there are

still three main cases of traversable wormholes categorized by the strength of

Starobinsky model; GR (a = 0), positive «, and negative «.

Let consider Fig.@ (®(r) = 1/r and ay = £0.1). The first case is the

traversable wormhole in GR with ®(r) = 1/r which are demonstrated in the black

solid lines. It violates WEC, NEC and SEC for all range from its throat to the

cosmological horizon.

The second case in Fig.@ is the modified gravity with dRGT and Starobin-

sky models with a; = 40.1 represented in color solid lines. Since the red-shift

function is inversely proportional to r, the amount of negative energy density and
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negative p + P, reduce significantly near the throat compared to the constant
red-shift function. Additionally the negative region of energy density is reduced
by the increasing value of v and the decreasing value of A. However, those pa-
rameters do not effect on the negative zone of p + P.. p + P; is negative at the
throat but increases as distance increases until reaching the top before reducing
and converging to positive constant. A does not effect the region but ~ plays a
major role to reduce the negative region. While p+ P.+ 2P, has an opposite effect
of dRGT and Starobinsky from the energy density because p + P, + 2P, has more

negative region for more positive v and more negative A.

For the last case in Fig.@, the modified gravity with dRGT and Starobinsky
models with a; = —0.1 is represented in color dashed lines. All results for this case
look like upside down when compared to a; = 0.1. The energy density has two
negative regions; around the throat and the further region. The region reduces
when the value of v increases and the value of A decreases. Note that if v is
high or A is low enough, there would be only one negative energy density region
which is the one with the throat. p + P, is negative for all region of spacetime
regardless of dRGT parameters. p+ P; is negative from the throat and increases as
the distance increases which converges to positive constant. The negative region
reduces as the value of v increases. At the throat, the value of p+ P, for a; = —0.1
is more negative than the value of p+ P, for a; = 0.1. p+ P, + 2P, is negative near
the throat and increases as distance increases. When v decreases and A increases

enough, the negative region of p 4+ P, + 2P, will be limited around the throat.

Now consider Fig.@ (ay = £0.01). It is obvious that the less magnitude
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of a is, the less fluctuations in p, p+ P., p+ P, and p + P, + 2P, are. The
energy density is an increasing function which is negative at the throat. The
negative region decreases as the value of v increases or the value of A decreases.
While p + P, is negative for all spacetime region where the dRGT paramters do
not effect the characteristic at all. The value of p + P, is negative at the throat
and increases to be positive as the distance increases. The violation region reduces
with the increase of v and the decrease of A. However, the dRGT and Starobinsky
models provide the opposite results on p+ P, +2F; where it is more negative with

the increase of v and the decrease of A.

The third case: ®(r) = log (1 a7, %)

With the shape function from Eq. () and ®(r) = log (1 4+ 22), we find [57)]
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The combinations of Egs. ( - ) yield the following relations among p, P, and F;:
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In this case, the red-shift function in the wormhole metric is ®(r) = log(1 +
12). There are still three main cases of traversable wormholes categorized by the

strength of Starobinsky model; GR (a = 0), positive a, and negative a.

Let consider Fig.@ (®(r) = log(1 + ) and a; = £0.1). The first case is
the traversable wormhole in GR which are illustrated in the black solid lines of p,

p+ P., p+ P, and p+ P, + 2P;. Tt violates WEC, NEC and SEC for all range
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Figure 4.7: Figures illustrate the variation of p, p+ P, p+ P;, p+ P. + 2F; as a

function of r with ®(r) = log(1 4 2). Here we have used a; = +0.1,n =2, a =

5.0,79 = 1,G =1 and =, = 1.0 and various values of v and A.

from its throat to the cosmological horizon.

The second case in Fig.@ is the modified gravity with dRGT and Starobin-
sky models with a; = 0.1 represented in color solid lines. The negative regions
of p and p + P, are limited only near the throat where this region is reduced by
increasing v and decreasing A. Note that the dRGT parameters do not effect the
negative region of p+ P.. p+ P, is positive at the throat and decreases as moving
further from the throat before increasing and converging to positive constants.
The negative region is depleted with more positive v and more negative A enough.
p+ P. 4+ 2P, is a decrease function with positive value at the throat. It converges

to a negative value as distance increases. The trend of p + P, 4+ 2P, is contradict
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Figure 4.8: Figures illustrate the variation of p, p+ P., p+ P, p+ P. + 2P, as a
function of  with ®(r) = log(1 4 22). Here we have used a; = £0.01, n = 2, =

50,7 =1,G =1, and v, = 1.0.

to the energy density since it has longer negative region with more positive v and

more negative A.

For the last case in Fig.@, a; = —0.1 case is represented in color dashed
lines. The characteristics of p, p + P, p+ P, and p + P, + 2P, are upside down
compared to a; = 0.1. The energy density and p+ P, have negative regions further
from the throat and converges to positive value as distance increases. The negative
region of energy density is reduced with more positive v and more negative A while
p + P, is not effected by the variation of dRGT parameters. p + P, is negative at
the throat and increases over zero as distance increases before converging to some

positive constant. The negative region is reduced with more positive v where A
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Table 4.3: Table shows a summary of energy/pressure conditions for ®(r) =

log(1+v/r),n=2,a=50,1=1,G=1,v% =1.0,7=0.5, and A = —1.0.

No. Terms a; =0.1 a; = —0.1

1 p >0, for r € [1.07, 00) > 0, for r € [1.0,1.05] U [1.50, c0)
<0, for r € [1.0,1.07) <0, for r € (1.05,1.5)

2 p+ P, >0, for r € [1.07, 0] > 0, for r € [1.0,1.02]
<0, for r € [1.0,1.07) <0, for r € (1.02,0)

3 p+ B >0, for r € [1.0,1.07] U [1.2,00) | > 0, for r € [1.3,00)
<0, for r € (1.07,1.2) <0, for r € [1.0,1.3)

4 | p+P.+2P | >0, forre[1.0,1.1] < 0, for Vr
<0, for r € (1.1,00)

5 p—|P >0, for r € [1.07, <] > 0, for r € [1.0,1.02]
<0, for r € [1.0,1.07) <0, for r € (1.02,0)

6 p— | P >0, for r € [1.2,00) >0, for r € [1.5,00)
<0, for r € [1.0,1.20) <0, for r € [1.0,1.5)

does not effect much. However, the parameter sets that reduce the negative region

for energy density support the negative region for p + P, 4+ 2F,.

Now consider Fig.@ (cvy £0.01). Overall, the less magnitude of a; makes p,

p+ P, p+ P, and p+ P, + 2P, negative near the throat. For example, the energy

density is negative for all choices of ARGT parameters. Even if it increases over

zero for further distance and converges to positive constant. The negative region

decreases as the more positive 7 or the more negative A. While p + P, is below

zero for all range and has no effect on dRGT parameters. p + P, is negative at
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the throat for all cases and increases over zero as moving further from the throat
which finally converges to some positive constant. The more positive v reduces
the negative region for p + P, while A does not involve. p + P, + 2P, is negative
for all range and has the opposite effect of dRGT parameters contrasting to the

energy density.

4.2 The thin-shell Wormhole in dRGT massive

gravity theory

In this section, we find the solution of the thin-shell wormhole in the dRGT space-
time [b8]. As we discussed in section (@), thin-shell wormhole solution can be
constructed by gluing together two boundaries of spacetimes. Here we apply the
same trick to the case of massive gravity in which the ghost-free massive grav-
ity terms in Eq. (.96) is added in to the total action. Consider two spacetime
manifolds denoted by M4 with boundary OM... Suppose the two boundaries are

connected (or glued) by the hypersurface 3. The total action can be written as

[i&]

1
Stotal = / d4$ V _g+ (W (R+ + mgQJu(g+7 ¢a>) + L—in_latter)
My T
1
Py —IF K

+87TG oM

1 _ _ _
—|—/ d4$\/ —qg- (m (R + m?]U(g 7¢ )) +Lmatter)

1
+— dPyv/—h"K~
81G OM_

+ /E VR L (4.39)
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where £ = L?%—LQE contains two types of fluids (perfect fluid, L? and massive

matter —

gravity fluid, L?) which are localized on the hypersurface. The line element is still
the same form as Eq. () in GR, however, f(r) is the vacuum solution of dRGT
massive gravity in Eq. ()

2GM  Ar?
- — +tr+d

fr)=1- = -

In the next step, we apply the variational principle to obtain the equation

of motion

1
o 4 2 (f)a+ aﬁ
5Stotal = /jv[+ d T/ _g+ (16 G(G;—ﬁ +m thﬁ) +To</3 ) 5g+
+/ d*yv —h+—(Kc}Z = hy K¥)ohe!
oM+

4
+/_d$\/ (16 e

3 7 Nige K> —h K~ ab
+/8M d Y h 87TG( ab hab )(5h—

(G + mf]Xa_ﬁ) + TOEJ/;)’_) 5g%°

— / d*y V=h (tay + Yap)6h™ (4.40)
X

where t, is the energy momentum tensor of the wormhole source defined in

Eq. () and Y,* is the massive gravity fluid tensor

a 2 a a
- V) =,

where p, and p_g“

are the energy density and pressure in tangential directions of
the massive gravity fluid. To analyze the thin-shell wormhole, we consider the

equation of motion on the hypersurface > and boundaries 9M_. Varying the total
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action with respect to the induced metric h% provides [5§]

5St0tal
5hab

Shed
5hab
dhed

1
EyvV—-h——— (K, —h_ K™ )—
+ /63\/[_ Y 87TG( cd cd )5hab

— /ﬁyﬁ%@@+nﬁ (4.42)

1
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With the help of the choice of normal vectors (in both spacetime and on thin-shell),
the extrinsic curvature tensor from Eq. () and Eq. () and the continuity
of h;tb on the boundaries, we finally obtain the junction condition of the thin-shell

wormhole in the dRGT theory
WAK — AK} = 8rGSy, (4.43)

where the new effective energy momentum tensor Sj on the thin-shell is defined

by (58]
Se LBy (4.44)

Furthermore, it is very convenient to represent the Si tensor in the matrix form

—pet. 00 eI 0 0
Sy = 0Pg 0 |= 0 P+piP 0 , (4.45)
0 0 Pg 0 0 P+pi”

where the explicit forms of the p, and pé“ = pff’w are given in Eq. () and
Eq. () We will see in the latter that the equation of motion of the dRGT
massive gravity wormholes takes very simple form like the standard GR case with

two types of fluids. The components of the effective momentum tensor Sy in
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Eq. () are given by

1 2y

Sy = Sj: = Per. = B +ng)(a)

— P+ # <% - A) , (4.47)

where we use the definitions of the energy density, radial and tangent pressure
from Eq. (), Eq. (), and Eq. (), respectively.

The non-trivial components of the extrinsic curvature tensor, Kj', are the

same form in Eq. () and Eq. () with f(a) from Eq. () in dRGT

massive gravity theory. The (77) component of the junction condition of the

thin-shell wormhole in Eq() reads

gwqiﬁy:@mh+(§—A). (1.48)

On the other hand, the angular component of Eq.(4.43) is given by

(2i+ f) = 87GP+ (1 - A). (4.49)

1
Vit
The relation between the energy density and pressure from Eq. () and Eq. ()

as follows:

d da Ya
— P— = 0. 4.50
dr (pa) + Ydr * 8rGa (4.50)

It is also written in terms of the first order derivative of p with respect to a as

(4.51)
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The second order derivative of p with respect to a becomes
d*p p+ P dP, 3y dp, Y
— = 24+ — —t — (—) . 4.52
da? ( a? - dp * 8rGa? - dp \8rGa? (4.52)

At the static throat ag, the solutions of the energy density p(ag) and pressure

of the tangential direction P;(ag) are determined by Eq. () and Eq. ()

flag) 1 (2
= — — —A 4.
Po 47TGCLO + 81G agp ( 53)

Py = 87;1G ( f’;?;:) _ <Cllo - A)) . (4.54)

To investigate the stability of the dRGT thin-shell wormhole, we apply the

technique in the subsection . Assuming the static throat of the thin-shell

wormbhole is located a = ayg, the following relation must be satisfied,

1 dP
0<V"(ag) = éf”(ao) & d_pt( —2G(P, + p)nA — 16G*7*p(P; + p)
4 1
+w> — 16G*P?n* + 4GP\ — ZA2. (4.55)
0

To analyse the function f(r) in Eq. () from the dRGT massive gravity,
we consider the horizons of the metric tensor as the roots of function f(r) which

is the cubic polynomial problem. For convenience, we define

f(r) rf(r)

= Ar* 4+ Br*+Cr+ D, (4.56)

where A = —%, B=+,C=(14+¢) and D = —2GM. The function f has three

distinct, real roots if and only if

—27A*D* + 18ABCD — 4AC® —4B*D + B*C* > 0 (4.57)
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2 3 4A 2 272
7P+ 8GMA? + =+ 12GMAA — 12GPMPA” > 0. (4.58)

For de-Sitter (A > 0) or closed spacetime, the function f still has 3 distinct and
real roots since the negative term is small (A? < 1). For anti de-Sitter (A < 0)
or open spacetime, only the first two terms are positive and compensate the other
negative terms, then the function f holds the properties with high value of v and

low value of A.

Now we consider the analytic solutions of roots in (r) by introducing a new

variable

B
t=r+ —— 4.
£ 3A° (4.59)

A

where the cubic equation in Eq. (4.56) can be rewritten as a depressed cubic

equation that has no term in ¢2,
F&y =2+ pt+4q, (4.60)

where

_ BAC =B 032+ A)

b= Ty T A
2B% — 9ABC +2TA2D 243 4 3yA — 6GMA2
27 A3 T A3 '

(4.61)

(4.62)

The real and distinct expressions of solutions to Eq. () can be obtained by

using the cosines and arccosines as shown

t, = 2 —Ecos 1arc(:os ﬁ _—3 —%
A 3 2V p 3

(4.63)

2 3/2
# cos (% cos ! (é (3 (72 :_ A) (273 + 37A — 6A2GM) — 47rk>>) )
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where k = 1,2,3. While the three distinct and real horizons are

Y
=1 —. 4.64
Tk k+A (4.64)

According to the line element in Eq. () and embedding diagram in

Eq. (), f(r) must hold the following relation,
0< f(r) <1 (4.65)

The following parameters are tuned to satisfy the embedding diagram of the thin-

shell wormholes. For thin-shell wormhole, we use the parameters given below:
G =1,A=0.0001,7=0.001, M =1, and ( = 0. (4.66)

With these parameters, f(r) satisfies the relation() and reaches zero at the
event horizon rgg = 2.00 and the cosmological horizon rcyg = 187.93. Moreover,
according to the flaring-out condition f’(r) > 0, the throat radius has an upper
limit which is called the the upper limit of flaring-out condition is rpo = 36.96.
Due to the UV cutoff from the dRGT massive gravity, the Vainshtein radius for

Y3 _ 8.07. The

the set of the thin-shell parameter in Eq. (1.66) is v, = (M /m2)
range that is below the Vainshtein radius ry cannot be trusted without the UV

completion. Therefore, the range of the static throat of thin-shell wormhole for

this study case is
regg = 8.07 < ag < rpo = 36.96, (467)

where the range of the possible value of the static throat is in red shaded area of

Fig. (L.9).



89

0.5 F
0.0

0 50 100 150 200

Figure 4.9: This figure represents the characteristic of function f(r) with pa-
rameters G = 1, A = 0.0001,y = 0.001,M = 1, and ( = 0. The red
area represents the possible value of the static throat of thin-shell wormhole,

rpn = 8.07 < ap < rpo = 36.96.

We analyze the energy conditions (NEC, WEC and SEC) of the linear model
in the thin-shell wormhole in dRGT massive gravity. The energy conditions are

expressed in terms of the effective energy density (pegr) and the effective pressure

(Pegr.), defined in Eq. () and Eq. () respectively.

[. Null energy condition is expressed in terms of energy density and pressure
as follows:

pett. + Pett. > 0, (4.68)
which yields [5§]

1 2 1
pett. + Pett. = P——(%—A)+ﬂ+—<z—/\>

1
- p+P—-—2L>0. (4.69)
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IT. Weak energy condition is given by

pett. > 0, pefr. + Per. > 0, (4.70)

which gives the following result for the thin-shell wormholes in the dRGT

massive gravity [5§]

1 2y
i =p——— L —A) >0, 4.71
e ( a ) - (471)
II1. Strong energy condition is governed by
pett. + 3Fett. > 0, pei. + FPest. > 0, (4.72)

which gives the following result for the thin-shell wormholes in the dRGT

massive gravity [b§]

y 1 2y 3 /v
pett. + 35 = Jp 8t ( a A) +3h+ 8rG (a A)
L v
= P+—(——=2A) > 4.
p+3t+87rG(a >_O (4.73)

Next we assume the four fluid models for studying the stability of the dRGT
wormhole: (1) a linear model, (2) a Chaplygin gas model, (3) a generalized Chap-

lygin gas model and (4) a logarithm model.

4.2.1 Linear model

We start analyzing the stability of the thin-shell wormhole in dRGT [49):

Pp) = eop, (4.74)
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where ¢, is dimensionless parameter. It is easy to show that

C;—JZ . (4.75)
Notice that the change in the pressure on the energy density is a constant. More-
over, the throat of the wormhole basically locates between the event and the
cosmological horizons. After substituting the above results into the stability con-
dition ({4.59), we find [5§]
0<V"'(ag) = %f”(ag) — i(/\2 + 87(eo — 1)egAp + 64m2eo(1 + 260)p2>

n Amyeo(eg + 1)

4.76
i (476)

where f"(ag) = —% — 2% The thin-shell wormhole for the linear model will be
stable if the relation () holds. For the linear model, the more positive value of
7 increases the value of V" (ay), while more magnitude of A (|A| > 1) decrease the
value of V" (ag). In order to visualize the stability region of the model, we plot the
stability contour in terms of ¢y and ag. Our result is illustrated in Fig. for the
linear model. We notice that in order to satisfy the stability condition ({.55) the
constant €y has negative values in the throat radius ag between 22.00 < ag < 36.96.

Unfortunately, all range of the stable throat has negative values of ¢y which is not

the behavior of an ordinary matter.

Substituting the relations of energy density and pressure in Eq. () and
Eq. () into the relations in NEC, WEC and SEC, we find

f(a)

Peit. = T o (4.77)

Pett. + Pogr. = (1 + 2e0)y — all +860>A) — 201+ &) f(a), (4.78)
mGa

e apy = M2 —al @) 20+ @VT@ o

mGa
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Figure 4.10: The plot shows the stable region of the linear model P;(p) = €yp
with G = 1. The contour shows that the constant ¢, has negative values in the
throat. The black shaded area is not possible for the thin-shell throat since this
zone violates the flaring-out condition shown in cond. () The red dashed line

represents V" (ag) = 0.

In the linear model, the effective energy density, pes., is non-positive for all cases
but the value will increase as further distance from throat to the cosmological
horizon for de-Sitter spacetime. For both pegr. + Pogr. and pegr. + 3 Pegt,, the de-Sitter
spacetime would reduce the both values leading to the violation in NEC, WEC
and SEC while the anti de-Sitter spacetime and the positive v tend increase the

both values which make less violation on the energy conditions.

In order to analyse the energy conditions, we choose the values of ¢g = —0.25
which is in the stable regions as shown in Fig. and then verify the energy
conditions. Fig. shows the variation of pegr, petr. + Petr. and pegr. + 3Psgr. as a
function of @ in the linear model P;(p) = €yp. We observe that all energy conditions

are violated in this model.
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Figure 4.11: The plots show the variation of pegr. + Pett., petr. and pegr. + 3 Petr. as a

function of a of the linear model with P;(p) = epp with G = 1.

4.2.2 Chaplygin gas model

One of the greatest mysteries in high energy physics is the nature of the dark
matter and dark energy. Dark matter is proposed to describe the missing mass of
galaxies inferred from the viral theorem [72] and to explain the flat rotation curves
(73, 74]. Dark energy is applied to explain the acceleration of the expansion of
the Universe (75, 76, [77]. Our Universe have been expanding with acceleration,
according to the recent year observations of the luminosity of type Ia distant
supernovae [22, 23, [78]. The energy density and pressure of the universe violate
the strong energy condition. The matter responsible for the acceleration of the
universe is referred to as the dark energy [79, 80, 81]. In the standard cold dark

matter (ACDM) model, the dark matter is represented by a pressureless fluid and
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the cosmological constant A represents the dark energy.

The pressureless dark matter assumption works well in the weakly interact-
ing massive particles (WIMPs) with a mass range in the order of GeV to TeV.
The theory suggests that these particles froze out from the thermal equilibrium
in the early era of the Universe. By the result of this decoupling, it cooled off
rapidly as the Universe expands. In some models, the dark matter is made of
fermions [82, 83] or bosons [84, 85]. These models explain the physics in the scale

of galaxies very well but not in the Universe scale.

At the cosmological scale, the ACDM model has a problem with cosmological
value [86, 87]. The energy density of the cosmological constant A is py = A/87G
and the equation of state is Py = —p, which is a negative pressure. Accord-
ing to the observational results, the value of energy density of dark energy is
pa = 6.72 x 10724 g m~3. On the other hand, the prediction from the theoretical
framework provides that the vacuum energy density should be of the order of the
Planck density pp = 5.16 x 10°? ¢ m~3. These quantities are different by 123
orders of magnitude. To solve this problem, some theoretical physicists explain
the acceleration of the Universe in terms of a dark energy with time-varying den-
sity. In this work [88], they proposed the unification of the dark matter and dark
energy in terms of an exotic matter with an equation of state P = —A/p called

the Chaplygin gas.

The Chaplygin gas model was first proposed by Sergey Chaplygin [89]. It
was a mathematical model approximation for calculating the lifting force on a

wing of an airplane in aerodynamics. The model was rediscovered later in Refs.
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(90, 91]. In the reference [92], they proposed a model of Universe filled with the
Chaplygin gas, which is a perfect fluid given by the following equation of state,

[92, 93, 94, o5
A
Pi(p) = —=, (4.80)

where A > 0. The negative pressure from the Chaplygin gas equation of statecan
be used to describe certain effects in deformable solids, of strip states in the context
of quantum Hall effect and of other phenomena. The equation of state parameter
for the Chaplygin gas model is w = P,/p, interpolating from w = 0 at early times
of the Universe when the energy density is very high p — oo and w = —1 at late
times (accelerated expansion) of the Universe when its energy density reaches the

minimum value p = A. In our case, the pressure is already given in Ref.[19]:

1 1

P, =—¢|-—— )+ Py, 4.81
t(P) l(p p0> £(0) ( )

where ¢; is a constant with the dimension of pressure? in the natural unit, the pa-
rameters pg and P ) are boundary conditions of the energy density and tangential
pressure at the throat, respectively and they are determined by using Eq. (4.48)

and Eq. () with @ = ag. It is worth to mention a property of the Chaplygin

gas which is the positive and bounded squared sound velocity,

dP,
t €1 UQ

(4.82)

dp

S

where p3 > € and v, is the sound velocity of the Chaplygin model. By the

definition of the sound velocity in Eq. (), the value of €; must be positive.

After substituting the above results into the stability condition (), we
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Figure 4.12: The plot shows the stable region of the Chaplygin gas model p(o) =
et — pio) + Pyoy with G = 1 from the Vainshtein radius ry = 8.07 to the upper
limit of the flaring-out condition rpg = 36.96. The red dashed line represents

V”(a/(]> — O
find in this case []

f(a)  27G (poer(2y — al) + alPyo) (—e1 + 203) + 27 Pyoy€1)
+ D
2 apy
167°G> <Pt2(0)Po + (Pioy + P0)61> A2
Po 4

0 <

(4.83)

Here we plot the stability contour in terms of ¢; and ag for this model. The stable

region for this case is represented in Fig..

We notice that, in order to satisfy the stability condition (4.57), the Vain-
shtein radius ry and the flaring-out condition (), the possible stable throat
in this case must be the negative region of ¢; and its radius is in the range
8.07 < ag < 36.96. However, the negative region of €; violates the squared sound
velocity condition in Eq. () Therefore, the Chaplygin gas model cannot be

an appropriate candidate for the thins-shell wormhole in dRGT massive gravity.
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Figure 4.13: The plots show the variation of peg. + Petr., petr. and pegr. + 3 Pegr. as a

function of a of the Chaplygin gas model with P,(p) = € (%} /)10

— —> + Pt(O) with

G=1

By the relations of the pressure and energy density of the exotic matter in

Eq. () and Eq. (), we find

ot + P 1 ((fy—a/\) 8e1((—27 + al) + 8aGmpy + 24/ f(a))
eff. eff. — 3 57!
8\ 7Ga po((2y —al) —2y/f(a))
),
__Vf@) >0, (4.84)
aGm
f(a)
= — > 4.
Peft. ArGa = 07 ( 85)
oot + 3P 1(3(7—aA) 24€1 (=27 + al) + 8aGmpy + 24/ f(a))
eff. eff. — 3 -
s\ nGa po((2y — ah) — 21/ f(a))
2
__Vf@) >0 (4.86)
aGm
To quantify the energy conditions, we will choose the values of ¢, = —1 in the

stable regions shown in Fig. and then examine the energy conditions. Fig.
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shows the variation of pegr. + Pest., petr. and pegr. + 3FPotr. as a function of a in the

linear model P,(p) = ¢ (l — pio) + Py). We observe that all energy conditions

S

are violated for all range in this model.

4.2.3 Generalized Chaplygin gas model

In addition, the Chaplygin gas model given in the previous subsection can be

generalized where the relation between P;(p) and p takes the form [49]

€2
Pi(p) = Fyo) (%) ; (4.87)
and
dP, o3
d—pt = —Pt(0)€2p€p20+1 = ’U?, (488)

where €5 is the dimensionless parameter and v, is the sound velocity for the gen-

eralized Chaplygin model.
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Figure 4.14: This plot illustrates the function of P, against r with the set of
parameters as G = 1,A = 0.0001,7 = 0.001,M = 1, and ( = 0. The value
of Py is positive for all range of r that satisfies the flaring-out condition (r €

[2.00, 36.96)).
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Figure 4.15: The plot shows the stable region of the generalized Chaplygin gas
model FPy)(p) = Fio)(2)? with G' =1 from the Vainshtein radius ry = 8.07
to the upper limit of the flaring-out condition rpo = 36.96. The red dashed line

represents V" (ag) = 0.

After substituting the above results into the stability condition (4.55), we

find in this case []

f"(a) N 211G Pyoy (Puoyez (Al = 29) + alpo (€2 + 2) — 2ypoes)

2 apo
AQ
+167T2G2Pt(0) (Pt(O) (62 — 1) =t p0€2) o Z (489)

0 <

In this case, we have an additional condition from the squared sound velocity

in Eq. () as follow
Pyoye2 < 0. (4.90)

Here P is the tangential pressure at the throat and it can be determined by
using Eq. () with a = ag. We illustrate the plot of P, in the range that
satisfies the Vainshtein radius and the flaring-out condition (ay € [8.07,36.96])

as shown Fig.() with the set of parameters (A = 0.0001,v = 0.001, M =
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Figure 4.16: The plots show the variation of pegr. + Peotr, petr. and pegr. + 3 Pogr. as
a function of a of the generalized Chaplygin gas model with P;(p) = Py (p—o) i

p

with G = 1.

1, and ¢ = 0). The value of Py is positive then this shows no sign of dark
energy requirement for the thin-shell wormhole construction in the generalized
Chaplygin gas model. Moreover, the allowed value of €5 is only for negative which

means that the exponent of the energy density in Eq. () is positive.

To find the stability region of the thin-shell wormhole throat, we solve the
stability condition () The squared sound velocity in Eq. (4.88) excludes the
region of the wormhole throat that es > 0. Moreover, the flaring-out condition
and the Vainshtein radius () limit the possible value of throat radius to ag €
[8.07,36.96]. Here we display the stability contour in terms of €5 and ag illustrated

in Fig. . Unlike the Chaplygin gas, the possible region for the stable thin-shell
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wormhole throat in dRGT theory satisfies the sound velocity, .

By the relations of the pressure and energy density of the exotic matter in

Eq. () and Eq. (), we find

pet. + Pegr. = 87T1Ga ((7 —al) -2/ f(a)

—Ga(8m)ite | — Gapo ”
T S I
fla)
Peit. = T > 0, (4.92)
Pett. + 3Pt = 87T1GCL (3(7 —3al) — 24/ f(a)
_ al8n l+e2 [ Gapo ”
3Ga(8n) ( S QW) ) > 0. (4.93)

We here quantify the energy conditions by choosing the values of €, in the stable
regions shown in Fig. and then examine the energy conditions. Fig. shows
the variation of peg. + Pegr., petr. and pegr. + 3 Pegr. as a function of a in the generalized
Chaplygin gas model. We observe that all energy conditions are violated for

negative values of €.

4.2.4 Logarithm model

According to the theoretical problems about the dark matter and the dark energy
mentioned in the previous model, some works proposed the logotropic equation of

state where the pressure P;(p) and the rest-mass density p are related via [49, 96]

Pi(p) = e3log (ﬁ> + Py, (4.94)

Po

where €3 is a constant with the dimension of pressure and

dP,
LS

e 2 4.95
0 (4.95)
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where the energy density p must not be greater than e3 and v is the sound velocity

for the logotropic model.

The logotropic equation of state was used to study the giant molecular clouds
(GMCs) and dense cores in astrophysics where the logotropic model describes
the turbulent pressure very well in given by Ref. [97]. Moreover, the dynamics
of the logotropic gas was studied in the static and dynamical properties of a
generalized Smoluchowski equation where it can be interpreted as a limiting form
of the polytropic equation of state or the generalized Chaplygin model of the form
P = Kp" (where P is the isotropic pressure and p is the energy density of gas) with
v — 0, K — oo and B = K is finite [98]. Another application of the logotropic
equation of state is in a scalar field theory which is a candidate for the dark fluid
in Bose-Einstein condensates. The dynamics of the dark fluid is described in the

non-relativistic regime of the Gross-Pitaevskii equation [99)].

Now we demonstrate the unification of the dark energy and dark matter
for the logotropic gas model by considering the Friedmann equations for a flat

Universe without the cosmological constant

dE a
— —-(E+F) = 4.96
A3 (B+P) =0, (196

where F(t) is the total energy density, P;(t) is the pressure and a(t) is the scale

factor. The first law of thermodynamics in the adiabatic process reduces to

_ P +FE
P

dE

dp, (4.97)

where p is the energy density of the rest mass. Then we have the continuity



103

equation as follows:

dp a
— +3-p=0 4.98

where the solution of the continuity equation is p = py/a® and p, is the present

value of the energy density of the rest mass. The following ansatz satisfies Eq. ()

AV
E=p+p/ t;,g)dp’:wru(/)), (4.99)
where u(p) is the internal energy density. Then the total energy density E is the

sum of the energy density of the rest mass p and the internal energy u(p). By the

choice of the logotropic model in Eq. (), the total energy density becomes

E =p—eslog (pﬁ> — Py — €3 = p+ul(p). (4.100)
0
The total energy density is the sum of 2 terms; the energy density of the rest

mass p o< a”° representing the dark matter and the internal energy term u(p) =

—e3log (p%) — Py0) — €3 representing the dark energy.

In the early Universe where the dark matter dominates over other kinds of

matter (a — 0, p — +00), the total energy density is approximated by

E~p, P~ eslog (ﬁ) . (4.101)
Po

In the late time Universe (a — 400, p — 0), the dark energy or, in this case, the

internal energy dominates

E ~ —e3log (ﬁ> , P~ —E. (4.102)
Po

We also note that the asymptotic behavior of the pressure of the late time Uni-
verse recovers P, ~ —p from the logotropic model because it is the exotic matter

equation of state.
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We apply the logotropic equation of state in Eq. () into the stability
condition () as shown []

f//(a) . 221G (p0€3(2”)/ - CLA) — CLAPt(()) (63 — 2,0()) + 27Pt(0)63)

0 <
2 apo
A2
—167°G? ((Pyo) + o) € + PE(O)) - (4.103)

Here we display the stability contour in terms of €3 and ag illustrated in Fig..
The stable region for this case is represented in Fig. for the logarithm model

model. We observe that in order to satisfy the stability condition (1.55) €5 is

V(@)
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Figure 4.17: The plot shows the stable region of the linear model P(p) =
€3 log(p%) + Pyo) with G = 1. The result shows that e can have both nega-
tive values and positive ones in the throat with radius ag. The red dashed line

represents V" (ag) = 0.

positive and the possible throat of the wormhole in dRGT massive gravity is in

the range r € [8.07, 36.96].

By the relations of the pressure and energy density of the exotic matter in
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Eq. () and Eq. (), we find

Pett. + Pogr. = 87T1GCL ((’Y —al) =2/ f(a)

—|—H(O)—|—63log <2’7_CLA+2\/ f(a)> > 207 (4104)

8rGapg

V@
4rGa

1
Pett. + 3Peir. = S Ca (3(’7 —al) —2+/f(a)

2y — ah + 2,/
+3Pt(0)+36310g< noalt2y) <a)>> > 0. (4.106)

Peft. = > 0, (4.105)

8rGapg

0.002
0.000

-0.002 -0.005

-0.004

plal+P[al
plal

~0.006 1 -0.010

-0.008

-0.015

-0.010
0.01 0

50 100 150 0 50 100 150
0.001 -

0.000

-0.001"

-0.002"

pla]+3P[a]

-0.003"
-0.004

-0.005

-0.006

Figure 4.18: The plots show the variation of pegr. + Peotr, petr. and pegr. + 3 FPogr. as
a function of a of the generalized Chaplygin gas model with P;(p) = Py ( %0 )eg
with G = 1.

We here quantify the energy conditions by choosing the values of €3 in the

stable regions shown in Fig. and then examine the energy conditions. Fig.

shows the variation of pegr. + Pest., petr. and pegr. + 3FPotr. as a function of a in the
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ogarithm model Pi(0) = eslog(£). We observe that all energy conditions are

violated for all range.



CHAPTER V

Discussions and conclusions

In this thesis, we have reviewed the massive gravity theory from the linear theory
or FP theory. The discrepancy between the FP theory at the massless limit
and GR is revealed by the Stueckelberg trick. Even in the massless limit, the
additional scalar field does not disappear in FP theory. This leads to the new
way to construct the massive theory via non-linearity with help of the Vanstein
mechanism. The effect of non-linear theory overwhelms the effect of linear inside
the Vainstein radius which is approximately infinity when graviton mass m, — 0.
However, the major caveat for the non-linear massive gravity is the appearance of
ghost or the wrong sign of kinetic terms in action. However, de Rham, Gabadadze
and Tolley have succeeded to find the ghost-free nonlinear massive gravity theory
called dRGT theory. With the great effort to search the signal of gravitation wave
by LIGO, the results show that the graviton is not completely massless and the
upper bound of the graviton mass is below 10724 eV/c%. The mass of graviton
is very small from the constraint of the gravitational waves observations. This

implies that the dRGT is not a trivial theory and it is worth for further study.

There still remain numerous questions about the dRGT theory. One of them
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is the black hole characteristic in dRGT theory which has been widely studied in
the following references; the class and the thermodynamics properties of black
holes in dRGT [25], the prediction of the black hole perturbation in quasinormal
modes [100, 101, 102, 103], and the Greybody factor technique of the black hole in
dRGT massive gravity [104]. The study of this topic will reveal an interesting and
advantage of the dRGT massive gravity. While, in this thesis, we have investigated
the possibilities of the existences of the wormholes from the spherical symmetric
solutions in the dRGT theory. This study will also extensively explore more salient
features and properties of the dRGT massive gravity. Moreover, there are two
types of wormholes investigated in this thesis; the Lorentzian traversable wormhole

and the thin-shell wormhole.

The Lorenzian traversable wormhole is the shortcut that links two points in
spacetime where its characteristic depends on the shape function b(r) and the red-
shift function ®(r). We have chosen the form of b(r) as b(r) = rexp(—a(r—ry))
and three types of the red-shift functions; constant, linear and logarithm. We
apply the f(R) gravity and dRGT to find the traversable wormhole solutions. To
analyze the material for the traversable wormhole construction, we consider the
energy conditions; NEC (p+ P. > 0and p+ P, > 0), WEC (p >0, p+ F. >0
and p+ P, > 0), and SEC (p+ P, +2P, > 0, p+ P, > 0and p+ P, > 0).
According to the results of three red-shift functions; ®(r) = 1, ®(r) = 1/r, and
®(r) = log(1 + 1/r), the regions, which violate the energy conditions, vary on the
strength of the Starobinsky model (a;) and the dRGT parameters (v and A). Let

consider the effect of a; on energy conditions. For low magnitudes of o = £0.01,
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NEC, WEC and SEC are violated near the throat regions except for a; = 0.01 that
SEC is satisfied near the throat but violated in the rest of the spacetime region.
For « = —0.1, NEC and WEC are not violated at the throat but some finite region
further away from it while SEC is, on the other hand, violated almost all spacetime
region except some finite region. For v = 0.1, The only violated region of NEC
and WEC is only the finite region around the throat but SEC is violated almost
all of the spacetime region. Now we conclude the effect of dRGT parameters (y
and A). Overall results point that the violated regions of NEC and WEC reduce
by the more positive v and more negative A which affect totally opposite on SEC
violation region. In the future work, one might obtain numerous solutions of the
wormhole by considering other choices of p, P. and P;, for instance, varying the

shape function b(r), the red-shift function ®(r) and the f(R) theory.

The other type of wormhole is the thin-shell wormhole in the dRGT space-
time. This wormhole acts as the glue between two hypersurfaces of two Universe.
The technique is called cut-and-paste procedure [52]. To study the thin-shell
wormhole in the massive gravity, we have to investigate the junction condition
between two dRGT spacetimes for the stability. The matter to construct the
thin-shell wormhole in dRGT model must satisfy the four following criteria; the no-
horizon condition, the flaring-out condition, the Vainshtein radius and the sound
velocity. Then, we analyze the stable thin-shell wormhole in dRGT spacetime
with energy conditions (NEC, WEC, and SEC). We have considered the variation
of petr. + Pty pefr. and pegr. + 3P, as a function of a in all models: (1) a linear

P PO

model P;(p) = egp, (2) a Chaplygin gas model P;(p) = € (l - i) + Py, (3) a
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generalized Chaplygin gas model P,(p) = Py (%)60 and (4) a logarithm model
Pi(p) = ey log <p%> + Py(o). In the linear model, the exotic matter is necessary for
building the thin-shell wormhole in dRGT model. Even though the Chaplygin gas
model is a candidate for the dark matter, it is not an appropriate candidate for
the thin-shell wormhole material in the dRGT model. While a generalized Chap-
lygin gas model shows that the requirement of the dark matter is not necessary to
construct a thin-shell wormhole in dRGT model. In the last case, the exotic mat-
ter that satisfies the logotropic model can form the thin-shell wormhole in dRGT
model. Choosing the values of ¢, in the stable regions, we have observed that
in general the classical energy conditions are violated by introducing all existing

models of the exotic fluids.

Before closing discussion, we would like to clarify and comment the results
in the published works [67, 58] of this thesis. The sets of parameters in this
work might not be compatible with the Vainshtein mechanism for dRGT massive
gravity and f(R) gravity. Since we focus on the investigations of the effects on
exotic matter in the wormholes by variation of parameters in the models and they
are toy models in the study of the wormholes. However, we realize the major caveat
and we plan to improve all parameters that satisfy the Vainshtein mechanism in

the future research works.
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APPENDIX A

The Vainshtein mechanism

To study the nonlinearity of massive gravity, we start with Einstein-Hilbert action

representing the nonlinear kinetic term of graviton.

4 1 4. /

This action is invariant under the diffeomorphisms of the form

a b
v 1), g = DO gy (A2

According to the linear theory, we apply the linear expansion of the metric g,,
around the flat spacetime 7, with the metric perturbation h,, as Eq. (@) In

general, the metric g,, can be written as
Guv = g,(f,],) + h/JJ/v <A3)

where (O is the absolute metric that the linear massive graviton propagates,
hyw = G — gfg) is the metric perturbation, and the indices on h,, are raised and
lowered by the absolute metric. To construct the linear expansion of nonlinear

theory, we cannot use only the full metric g, since its trace provides a constant,

"oy = Tr(Iyxq) = 4 for four dimensions. The non-dynamical absolute metric
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¢ 9" is needed for the traces and contractions. Thus, the most fundamental mass

term for massive graviton is

1 V=9 o (O
Smass = 167G /d4l’ |: - Tm2g(0)u g(O) g (huuhaﬂ - huahuﬁ>:| ) (A4)
where the mass term breaks the gauge transformation in Eq. (@) and reduces
to the Fierz-Pauli mass term if ¢{0* = " as shown in Eq. () The simplest
nonlinear massive gravity becomes

S = SEH + Smass

1 A /_go o
= = /d4x {\/—gR— L m2gOmagOws (b po o huahyﬁ)}(A,g,)

where this nonlinear action is still not the full nonlinear action since the more
general form of mass term in nonlinear theory will be discussed further. Applying

the Euler-Lagrange method gives the equation of motion

~Om?

: (g(O)uag(O)Vﬁhaﬂ _ g(O)aﬂhaﬁg(OW) =0. (A.6)

V=g (R‘“’ — %Rg’“’) +
Now we will solve the static spherical solution and determine the Vainstein
radius. The ansatz for the absolute metric is the four-dimensional flat spacetime
g0 datda” = —dt* + dr® + r*dQ?, (A7)

and the general form of the full metric solution is given by
Gudatds” = (g(o)w + hyy) datdz” = —B(r)dt* + C(r)dr® + A(r)r*dQ?. (A.8)
The functions A(r), B(r), and C(r) can be expanded for higher orders as follows
Alr) = T4 eAi(r) +EA(r) +. .. (A.9)
B(r) = 14+ eBy(r)+By(r) + ... (A.10)

C(r) = 1+4€Ci(r)+ECo(r) + ... (A.11)
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We apply the expansion of functions A, B, and C' and the ansatz of the full metric

Eq. (@) into the equation of motion Eq. (@)

We find the solutions for mr < 1,

B(r) = 1—EM“<1 Mr_ )

6mr C 96mmArs
eMk TeMk
= 1-—([1—-——+ ... A12
clr) 6mm?2r3 < 8mrmirs * ) ( )
eMk eMk
A = 1 1— .
(r) T e ( s ) ’

where kK = 16mG. We show the results up to the second order of nonlinearity. The

criteria for considering the domination of nonlinearity is the parameter
GM 1/5
“/ (_) , (A.13)

where a novel length scale ry is called Vainshtein radius. It is defined as the upper
limit of the nonlinear effect [[15]. The approximation of the linear GR works well
for the distance » > ry. On the other hand, the linear theory cannot be trusted
at the distance » < ry which the nonlinear massive gravity dominates. Moreover,

the Vainshtein radius increases to infinity as graviton mass m — 0.

Note that we obtain By (r) = —Mk/67r, Ci(r) = —Mk/6mm?*r3, and A;(r) =
Mk /127rm?r® when considering the first order O(e) and mr < 1. These results

agree with the solution from FP massive gravity in Eq. (2.2§).
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APPENDIX B

The higher order derivatives of

the scalar field from BD ghost

Let us consider the degree of freedom in non-linear massive gravity with FP mass

term. Its action is given in Eq. (R.56) as

1 1
~ 167G / B [V —gR = S0 (huwhas = hyahus) |

Since theory has neither constraints nor gauge symmetries, then there are 6 real
degrees of freedom instead of 5. The extra degree of freedom is called Boulware
Deser (BD) ghost. In this chapter, we will show that the higher order derivatives
from BD ghost lead to the wrong sign of the kinetic terms and also cause the

unbounded Hamiltonian.
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B.1 The wrong sign of the kinetic terms from

the scalar field

According to the Stueckelberg trick revealing the BD ghost in subsection , we
obtain the mass term of the nonlinear massive gravity as shown in Eq. () We
omit the tensor (h,, ) and vector (A,) modes since they are not responsible for the

extra degree of freedom. The Lagrangian of the mass term from Eq. () reads

L mass

To show the wrong sign of the kinetic term, we consider the lowest order of

the higher order derivatives of the scalar field

Lz, = [ =9,0,n0"0"n

= nlPn, (B.1)

where 7 is the helicity-0 mode, II,, = 0,0,7 and O = 9,0". The second line of
Eq. (El!) is obtained from the integration by part where the total derivative is
neglected. By this expression, the propagator for Eq. (El!) is (072 which can be

written in the sum of two propagators with opposite signs

1 ) 1 1 1
ﬁ:}rzlierQmQ (D—mQ_D—i-mQ)’ (B2)
where this hints a problem with the wrong sign coupling to the external sources.

One could see the appearance of the BD ghost by introducing a Lagrange multiplier
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7, then the Lagrangian in Eq. (El]) is equivalent to

After integrating our the Lagrange multiplier, we obtain
7 =200m. (B.4)

We introduce new fields ¢; = (7 + 7)/2 and ¢y = (7 — 7)/2. The Lagrangian in

Eq. (@) becomes

2nd

Lmass = ¢1|:|¢1 QU ¢2|:|¢2 P, }l (¢1 - ¢2>2 . (B5)

Finally, the signs of the kinetic terms of the scalar fields (¢; and ¢,) are opposite.
This shows that one of them is BD ghost. Fortunately, the second order derivative

terms can be written in the total derivatives as shown in Eq. (),
(%] — [ = 8,(9*n0°0,m) — 9, (P70 8,r) .

However, one could straightforwardly show that the other higher derivatives of
the scalar fields, i.e. [I1¥] — [II][IT]* and [I14] — [I13)* cannot be written in the
total derivatives at all. They will lead to the wrong signs of kinetic terms and
are responsible for the extra degree of freedom from ghost since there are no

constraints or gauge symmetries in the nonlinear massive gravity.

B.2 The instability from BD ghost

The nonlinear massive gravity with FP mass terms suffers from the extra degree

of freedom or the BD ghost since the higher order derivatives are not eliminated.
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Here in this section, we will demonstrate how the BD ghost make the Hamiltonian

unbounded leading to the instability of the system.

B.2.1 A bounded Hamiltonian

To study the instability from BD ghost, we consider a simple case of non-higher
derivatives. In this case of L = L(x, &) where z is a coordinate, the Euler-Lagrange

equation is

OL 0 (OL

If the Lagrangian is nondegeneracy (22—56% # 0), the solutions must be written as

follow
P LBy Eo) (B.7)

where zg and , are the initial value data of coordinate. Then there must be two
canonical variables of the solutions. Traditionally, the choices are the canonical

coordinate x and its canonical momentum P = g—é.

The canonical Hamiltonian H is obtained by the Legendre transformation

H(z,P) = Pi — L(z, ). (B.8)

The canonical evolution equations are

o
OP’
OH L
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A well-known problem is the linear free scalar field theory whose Lagrangian is
L=—(7)*-V(n), (B.11)

where V(m) is the potential of the scalar field 7. Then the Hamiltonian from
Eq. (@) is given by

H = %(7%)2+V(7r), (B.12)

where, in this case, the Hamiltonian has a lower bound at zero.

B.2.2 An unbounded Hamiltonian from the higher order
derivative

Now we consider the higher order derivative in the Lagrangian L(z,%,%). The

Euler-Lagrange equation for this case is
oL 0 ([ 0L 9% ([ OL
= _ | === — =) =0. B.13
or ot (a@) T o (a(;z)) (B.13)
If the Lagrangian is nondegeneracy (g% # 0), the solution can be written as
x = x(xg, Zo, o, ¥9)- (B.14)

Since the solution depends on four initial value data, there must be four canonical

variables. In this case, the canonical coordinates are

x and &, (B.15)
and their canonical momenta are
oL d oL
Po= 9 dioi (B.16)
oL
P = — (B.17)

0%
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The canonical Hamiltonian by the Legendre transformation reads

H(z, i, Py, Py) = P + Pyit — L(x, i, ). (B.18)

One could show that the time evolution equations are

oOH

T = P, (B.19)
T = g—g (B.20)
P = —aa—]; = g—i (B.21)
P, = —%—ZI = —P + g—g. (B.22)
Let consider the higher order derivative Lagrangian
L= —%# + %:ﬁ S m;2x2, (B.23)

where € is a dimensionless constant. For this problem, the canonical momenta are

P = mi+ Z—?m (B.24)
5 = —i—”;x (B.25)
The Hamiltonian can be expressed in terms of canonical variables
H(z,&, P, P) = Pi+ Pi— L(v, %, %)
= Do - it Tt mgzxz, (B.26)

where there is no lower bound for this case since P; # ma. The energy of the
system that has the higher order derivatives is unbounded from below. When the
unbounded Hamiltonian interacts with external source (which has the lower bound

of energy), it is possible that the unbounded Hamiltonian would lose energy since
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there is no lower bound and the external source would gain the infinite amount of

energy which is called instability.

In the nonlinear massive gravity with FP mass term, the higher order deriva-
tives play a major of the extra degree of freedom. The additional degree of freedom
does not only allow the recovery to GR but also causes the negative kinetic terms

leading to the instability.



132

Vitae

Mr. Takol Tangphati was born on 3 December 1990, graduating Bachelor’s
degree in physics from Prince of Songkhla University in 2012. His research covers

the theoretical non-linear physics and condensed matter.

Publication

1. T. Tangphati, A. Chatrabhuti, D. Samart, and P. Channuie, “Thin-shell
wormbholes in de Rham-Gabadadze-Tolley massive gravity,” Eur. Phys. J. C

80 (2020) no.8, 722 doi:10.1140 /epjc/s10052-020-8294-y, [arXiv: 1912.12208]gr-

qc]].

2. T. Tangphati, A. Chatrabhuti, D. Samart, and P. Channuie, “Traversable
wormholes in f(R)-massive gravity,” Phys. Rev. 102 (2020) no.8, 084026

d0i:10.1103/PhysRevD.102.084026 [arXiv: 2003.01544 [gr-qc]].

Other contributions

1. C. Pongkitivanichkul, D. Samart, T. Tangphati, P. Koomhin, P. Pimton, P.
Dam-O, A. Payaka, and P. Channuie, “Estimating the size of COVID-19
epidemic outbreak,” Phys. Scr. 95 (2020) no. 8, doi: 10.1088/1402-4896/

ab9bdf.

2. A. Banerjee, T. Tangphati, and P. Channuie, “Strange Quark Stars in
4D Einstein-Gauss-Bonnet Gravity,” Astrophys. J. 909 (2021) 1, 14, doi:

10.3847/1538-4357/abd094 [arXiv: 2006.00479[gr-qc]].



133

. A. Banerjee, T. Tangphati, D. Samart and P. Channuie, “Quark Stars in
4D Einstein-Gauss-Bonnet gravity with an Interacting Quark Equation of
State,” Astrophys. J. 906 (2021) 2, 114, doi: 10.3847/1538-4357/abc87f

larXiv: 2007.04121[gr-qc]].

. G. Panotopoulos, T. Tangphati, A. Banerjee and M. K. Jasim, “Anisotropic
quark stars in R? gravity,” Phys. Lett. B 817 136330 (2021), doi: 10.1016/

j.physletb.2021.136330 [arXiv: 2104.00590[gr-qc]].

. G. Panotopoulos, T. Tangphati and A. Banerjee, “Electrically charged com-

pact stars with an interacting quark equation of state,” [arXiv:2105.10638

[gr-qc]].

. T. Tangphati, A. Pradhan, A. Errehymy and A. Banerjee, “Quark stars in
the Einstein-Gauss-Bonnet theory: A new branch of stellar configurations,”

Annals Phys. 430, 168498 (2021), doi:10.1016/j.a0p.2021.168498.

. T. Tangphati, A. Pradhan, A. Errehymy and A. Banerjee, “Anisotropic
quark stars in Einstein-Gauss-Bonnet theory,” Phys. Lett. B 819, 136423

(2021), doi:10.1016/j.physletb.2021.136423.



	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	I INTRODUCTION
	1.1 Overview
	1.2 The brief history of the wormhole development
	1.3 Energy conditions

	II Massive Gravity
	2.1 Linearized general relativity
	2.2 Fierz-Pauli (FP) action 
	2.3 vDVZ discontinuity
	2.4 The Origin of vDVZ discontinuity: The Stueckelberg Trick
	2.5 Nonlinear massive gravity
	2.5.1 The extra degree of freedom in nonlinear Fierz-Pauli theory
	2.5.2 The appearance of BD ghost: Stueckelberg trick
	2.5.3 Elimination of the extra scalar mode by the Galileon theory
	2.5.4 The ghost-free nonlinear massive gravity


	III Wormholes in General Relativity
	3.1 The Lorentzian traversable wormhole
	3.1.1 Fundamental setup of traversable wormholes
	3.1.2 Embedding diagram for traversable wormholes
	3.1.3 The flaring-out condition for traversable wormhole
	3.1.4 No-horizon conditions
	3.1.5 The construction of the Lorentzian traversable wormhole

	3.2 Thin-shell wormhole
	3.2.1 The fundamental setup for thin-shell wormhole
	3.2.2 The embedding diagram for thin-shell wormhole
	3.2.3 The flaring-out condition for thin-shell wormhole
	3.2.4 Junction condition
	3.2.5 Stability of the thin-shell wormhole


	IV Wormholes in Massive Gravity
	4.1 Lorentzian Traversable Wormhole in dRGT massive gravity theory
	4.1.1 Equation of motion for Lorentzian traversable wormhole
	4.1.2 Analyze the energy conditions for Lorentzian traversable wormholes

	4.2 The thin-shell Wormhole in dRGT massive gravity theory
	4.2.1 Linear model
	4.2.2 Chaplygin gas model
	4.2.3 Generalized Chaplygin gas model
	4.2.4 Logarithm model


	V Discussions and conclusions
	References
	References
	Appendices
	 Appendix A The Vainshtein mechanism
	 Appendix B The higher order derivatives of the scalar field from BD ghost
	B.1 The wrong sign of the kinetic terms from the scalar field
	B.2 The instability from BD ghost
	B.2.1 A bounded Hamiltonian
	B.2.2 An unbounded Hamiltonian from the higher order derivative


	Vitae

