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CHAPTER I

INTRODUCTION

1.1 Overview

Interstellar travelling has been received a great attention and has a long history.

Possibility of its existence is still an open question in gravitational physics research

field. The idea of a pathway connecting the distant spacetimes had always been

imaginary until general relativity (GR) was discovered in 1915. GR explains the

relation between the spacetime geometry and matter constituting the Universe.

In 1916, Karl Schwarzschild found a static and spherically symmetric black hole

which is one of the well-known analytic solutions of the Einstein equations [1].

A black hole is the massive object that anything including light cannot escape

when crossing its event horizon. In the same year of the Schwarzschild discovery,

Ludwig Flamm discovered another solution of the Einstein’s equation called white

hole [2]. In contrary to a black hole, a white hole is supposed to eject matter and

light from its event horizon. According to these two solutions, one can imagine

that the spacetime in our Universe maybe connect by a conduit. In 1935, Einstein

and Rosen successfully proposed the existence of the conduit named a bridge [3].



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

The term wormhole was first introduced by Misner and Wheeler [4]. The original

version of the wormhole had been popular in the field before it was ruled out since

the throat of wormhole is not stabilized and not possible to travel.

Nevertheless, in order to halt the wormhole’s throat to shut, one could add

a scalar field to couple to gravity for holding the throat long enough to send

matter or light from one place to another. This concept initiated a new type

of wormhole firstly proposed by Ellis [5] and independently by Bronnikov [6].

Unfortunately, it has a price to pay since the stable wormhole’s requirement is

the exotic matter which violates the energy conditions. Moreover, the exotic

matter has never been discovered in our Universe. Some conditions to build the

traversable wormholes were introduced by Morris and Throne in 1988, according

to Ref.[7]. These solutions are obtained by considering an unusual type of exotic

matter which can maintain the structure of the wormhole. Additionally, this exotic

matter with negative energy density satisfies the flare-out condition but violates

weak energy condition [7, 8].

The alternative theories of gravity play a major role in constructing traversable

wormholes. In Ref. [9], the traversable wormholes in f(R) gravity were investi-

gated. Moreover, the factors responsible for the violation of energy conditions

are discussed in the literature. The scalar tensor theory and f(R) theory are ap-

plied to study the traversable wormholes in Ref. [10]. The influence of the shape

and red shift functions on null and weak energy conditions has been conducted

in Ref. [11]. Among various models of the modified gravity of theories, massive

gravity theory is one of candidates to explain the accelerated expansion of the
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Universe. In 1939, Fierz and Pauli proposed the linear theory of massive gravity

as a mass of graviton [12]. Later in 1970, the theory was shown to suffer the van

Dam, Veltman and Zakharov (vDVZ) discontinuity that the massless limit of FP

thoery does not converge to the standard GR [13, 14]. The nonlinear theory of

massive gravity was first proposed by Vainshtein in Ref.[15] to solve the vDVZ

discontinuity. The emergence of nonlinear massive gravity leads to a new problem

called the Boulware-Deser (BD) ghost [16] which is eliminated by a new non-linear

version of massive gravity proposed by de Rham, Gabadadze, and Tolley (dRGT)

in 2010 [17].

In this thesis, we will provide a broad picture of the development in massive

gravity from FP theory to dRGT massive gravity in section II. We introduce

two types of wormholes; traversable and thin-shell wormholes in section III. Both

wormholes in dRGT massive gravity will be explained in section IV. Our results

are discussed and summarized in section V.

1.2 The brief history of the wormhole develop-

ment

As it is well acepted, GR is an elegant theory describing the relation between the

spacetime curvature and matter. Frankly speaking, this means that the space-

time can be curved by the mass and energy of the matter. GR has succeeded to

predict the numerous events in nature, e.g., gravitational time dilation [18, 19],

the precession of Mercury’s orbit [20], and gravitational waves [21]. The detec-
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tion of the gravitational waves, after 100 years of the GR predicted by Einstein,

was first announced in 2016 by LIGO (Laser Interferometer Gravitational-Wave

Observatory) [21].

According to GR, the Einstein field equations are given by the second order

non-linear partial differential equations,

Gαβ = 8πGTαβ, (1.1)

where Gαβ is the Einstein tensor containing the information of the spacetime’s

curvature, Tαβ is the energy momentum tensor which has the energy density,

momentum density, pressure and shear of matter, and G is the Newton’s constant.

The Einstein tensor Gαβ is defined as

Gαβ ≡ Rαβ −
1

2
gαβR, (1.2)

where R is the Ricci scalar, which is the nontrivial contraction of a metric tensor

and Ricci tensor defined as

R = gαβR
αβ, (1.3)

gαβ is the metric tensor of the line element

ds2 = gαβdx
αdxβ, (1.4)

xα is the spacetime coordinates, Rαβ is the Ricci tensor written in terms of

Christoffel connection Γρ
αβ as follows:

Rαβ = ∂ρΓ
ρ
αβ − ∂βΓ

ρ
ρα + Γρ

ρλΓ
λ
αβ − Γρ

βλΓ
λ
ρα, (1.5)
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We recall the Bianchi identity, i.e.,

∇αRαβ =
1

2
∇βR. (1.6)

This leads to ∇αGαβ = 0. In this thesis, we consider only the four-dimensional

spacetime in spherical coordinates xα = (t, r, θ, ϕ).

The metric gµν plays the major role of the dynamical variable of the theory.

The Einstein-Hilbert action providing the Einstein field equation by the variational

principle is given by

SEH =

∫
d4x

√
−gR. (1.7)

Applying the principle of variation, we obtain

δSEH =

∫
d4x

√
−gRαβδg

αβ +

∫
d4xRδ

√
−g +

∫
d4x

√
−ggαβδR

αβ. (1.8)

In order to obtain the equations of motion, we apply the identity

ln (detM) = Tr (lnM) , (1.9)

where M is a square matrix with nonvanishing determinant. By varying Eq. (1.9),

we obtain

1

detMδ (detM) = Tr
(
M−1δM

)
. (1.10)

Taking M = g, we get

δg = g
(
gαβδgαβ

)
= −g

(
gαβδg

αβ
)
. (1.11)

Then the second term of Eq. (1.8) becomes∫
d4xRδ

√
−g = −

∫
d4x

1

2
Rgαβδg

αβ. (1.12)
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It is straightforward to show that the variation of the Riemann tensor can

be written in the following form

δRρ
αλβ = ∇λ

(
δΓρ

αβ

)
−∇β (δΓ

ρ
λα) . (1.13)

With the variation of Riemann tensor in Eq. (1.13), metric compatibility (∇ρgαβ)

and the expansion of δΓρ
αβ in terms of δgαβ, the last term in Eq. (1.8) yields∫

d4x
√
−ggαβδR

αβ =

∫
d4x

√
−g∇ρ

[
gαβ∇ρ

(
δgαβ

)
−∇λ

(
δgρλ

)]
. (1.14)

Using the Strokes’s theorm, these terms are the boundary contribution at infinity.

Normally we could set them to zero by vanishing the variation at infinity. However,

the boundary term does not only consist of the metric variation, but also the

variation of the first derivative of gαβ which is not conventionally zero. One

might intentionally neglect the boundary terms when considering what happens

in the bulk of the spacetime (inside the spacetime volume) not on the boundary.

Nevertheless, the boundary term is crucial to our work since it plays the important

role in testing the stability of a wormhole which will be presented in thin-shell

method.

For now, we consider some solutions of the Einstein equation in Eq. (1.1).

Firstly, the Schwarzschild solution from the reference [1] is the unique spherically

symmetric vacuum solution (T µ
ν = 0), according to Birkhoff’s theorem, in which

the Schwarzschild metric is given by

ds2 = −
(
1− 2GM

c2r

)
dt2 +

dr2(
1− 2GM

c2r

) + r2dθ2 + r2 sin2 θdϕ2, (1.15)

where M is the black hole’s mass. The event horizon is at rS = 2GM/c2 which is

the coordinate singularity. While the real singularity is at the center of the black
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hole r = 0.

Another interesting solution to the Einstein equation is a wormhole. The

Schwarzschild metric can describe a wormhole; however, the Schwarzschild worm-

hole’s horizon does not allow the two-way travel. Moreover, the throat of the

Schwarzschild wormhole collapse so fast that one-way travel is not even possible.

A well-known wormhole that allows space adventures to travel from two directions

are called a traversable wormhole. It was firstly proposed by Morris and Throne

[7] where its metric tensor is given by

ds2 = −e2Φ(r)dt2 +
dr2

1− b(r)
r

+ r2dθ2 + r2 sin2 θdϕ2, (1.16)

where Φ(r) is the red shift function and b(r) is the shape function of the worm-

hole. Unlike the Schwarzschild black hole solution, the wormhole solution is not a

vacuum solution because it needs material (T µ
ν ̸= 0) to distort the spacetime for

forming the stable shortcut between two distance points in the Universe.

However, there are some open questions that GR still cannot explain. For

instance, the acceleration of the Universe expansion in the extragalactic scale

[22, 23] and the asymptotically flat rotation curves of the galaxies [24].

There still remains a question that how much similarity of the solutions

between GR and the modified one? A black hole in the massive gravity has been

studied widely [25, 26, 27]. However, there are few work on the solution of the

wormholes in massive gravity theory [28]. Thus, in this thesis, the two methods for

the wormhole construction; the Lorentzian traversable wormhole and the thin-shell

wormholes, are studied in the modified GR approach.
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1.3 Energy conditions

We need some tools in GR to analyze whether the wormhole solutions can be

constructed or not. Due to the principle of GR, it does not compel the type of

matter in the solutions which leads to many possibilities in GR solutions, including

exotic phenomena. The energy conditions are the criteria describing the physical

behavior of matter and rule out the nonphysical one. To generate the energy

conditions, the energy-momentum tensor Tµν must contract to the four-vectors.

Each type of the four-vectors, for instance, null vector lµ or timelike vector tµ,

provide different energy conditions. The energy-momentum tensor of the isotropic

fluid is given by

Tµν = (ρ+ P )uµuν + P gµν , (1.17)

where ρ is the energy density, P is the pressure, and uµ is a four velocity (uµu
µ =

−1). In this thesis, we consider the three types of energy conditions to study

wormholes [29].

• Null energy condition (NEC) determines the non-negative value of energy

momentum tensor contracting with null vector lµ where lµlµ = 0.

0 ≤ Tµνl
µlν = ((ρ+ P )uµuν + P gµν)l

µlν

= (ρ+ P )(uµl
µ)2 + Plµl

µ

= (ρ+ P )(uµl
µ)2. (1.18)

Then the NEC for isotropic fluid reads

ρ+ P ≥ 0. (1.19)
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Null energy condition can be interpreted as the energy of particles traveling

along a null geodesic, such as photon and massless particles, which must

be non-negative. The energy density or pressure can be negative as long as

their summation is still equal or greater than zero.

• Weak energy condition (WEC) determines the non-negative value of energy

momentum tensor contracting with timelike vector tµ where tµt
µ < 0

0 ≤ Tµνt
µtν = ((ρ+ P )uµuν + P gµν)t

µtν

= (ρ+ P )(uµt
µ)2 + Ptµt

µ. (1.20)

Assume tµ =∥ t ∥ vµ, where ∥ t ∥= √−tµtµ ≥ 0 and v2 = −1 and apply

Cauchy-Schwartz inequality, |xµy
µ| ≤∥ xµ ∥∥ yµ ∥ where x and y are null or

timelike vector into the WEC, then we find

P

(uµvµ)2
≤ P

∥ uµ ∥∥ vµ ∥
= P ≤ ρ+ P ⇐⇒ ρ ≥ 0. (1.21)

Then WEC is decomposed into two conditions as follows

ρ+ P ≥ 0 and ρ ≥ 0. (1.22)

This condition is stronger than NEC since the energy density must be non-

negative and so does the summation of the energy density and pressure.

• Strong energy condition (SEC) reads

Tµνt
µtν ≥ 1

2
Tα
α t

βtβ, (1.23)
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where tµ is a timelike vector.

(
Tµν −

1

2
Tgµν

)
tµtν ≥ 0(

(ρ+ P )uµuν + Pgµν −
1

2
(−ρ+ 3P ) gµν

)
tµtν ≥ 0

(ρ+ P ) (uµt
µ)2 +

1

2
(ρ− P ) tµt

µ ≥ 0

ρ+ P ≥ 1

2
(ρ− P ) ≥ ρ− P

2 ∥ uµ ∥∥ vµ ∥

ρ+ 3P ≥ 0. (1.24)

Then SEC is decomposed into the following conditions

ρ+ P ≥ 0 and ρ+ 3P ≥ 0. (1.25)

SEC covers NEC and avoids excessively large negative pressure. However,

SEC still allows the negative value of energy density such that SEC does not

imply WEC.

Unfortunately, the traversable wormholes in some particular models [7] need

the exotic matter which violates the energy conditions. Even though a wormhole

is a solution to the Einstein’s equation, it exists only in a theoretical concept. In

this thesis, we will use NEC, WEC and SEC to examine the possibility of the

wormhole solutions in the massive gravity theory.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

Massive Gravity

Massive gravity has gained a monumental interest among gravitational and cos-

mological communities during the past decade due to recent progress which has

overcome its traditional problems, yielding an avenue for addressing some impor-

tant open questions such as the dark energy problem.

Theories with massive graviton have been studied on and off for more than

70 years. During this long development, it has been shown that massive grav-

ity suffers from some crucial inconsistencies such as the van Dam-Veltman- Za-

kharov (vDVZ) discontinuity and the Boulware-Deser ghost. In this chapter, we

re-examine these problems in a pedagogical manner. We first discuss the linearized

General relativity and derive the equation of motion for a spin-2 “massless” gravi-

ton. Then we move on to the linear Fierz-Pauli (FP) theory and explain the mass

term to the graviton along with the general solutions of the spin-5 massive gravi-

ton. The discrepancy between GR and massless limit in FP theory is known as

vDVZ discontinuity. We apply the Stükelberg formalism to reveal the origin of

this discontinuity from the modern effective field theory viewpoint. The linear

FP theory can be generalized to the nonlinear massive gravity (NLMG). How-
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ever, NLMG also experiences the ghost problem causing the instability of massive

graviton. Here, we review the de Rham, Gabadadze and Tolley (dRGT) massive

gravity which offer the mechanism to eliminate all the problems we mentioned

above.

2.1 Linearized general relativity

Before revisiting the FP theory, we firstly study the linearized action of GR. For

convenience, we use the unit c = 1. We start with the Einstein-Hilbert action in

4D spacetime described by the following equation

SEH+matter =

∫
d4x

√
−g

(
R

16π G
+ Lmatter

)
, (2.1)

where Lmatter is the Lagrangian density of matter on the curved spacetime. The

term “matter” refers to any matter in the Universe except the massive graviton.

At this point, we are still in Einstein’s theory of GR. Applying the Euler-Lagrange

method provides the equations of motion,

Gµν = Rµν −
1

2
gµνR = 8πGTµν , (2.2)

where Tµν = − 2√
−g

δ(
√
−gLmatter)
δgµν is the energy-momentum tensor of the matter. To

linearize GR, we expand the metric gµν around the flat space as

gµν = ηµν + hµν , (2.3)
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where hµν is called the metric perturbation which transforms as a tensor under

Lorentz transformations. The lowest order of the linearized GR action becomes

SEH+matter ≈
∫

d4x

(
− 1

2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ − ∂µh

µν∂νh+
1

2
∂λh∂

λh

+8πGhµνT
µν

)
, (2.4)

where T µν(x) is a fixed external symmetric source. Using the integration by part

technique, the linearized Einstein-Hilbert action can be written in term of a prop-

agator

SEH+matter =

∫
d4x

(
1

2
hµνΣ

µν,αβhαβ + 8πGhµνT
µν

)
, (2.5)

where the kinetic operator is defined as follows:

Σµν
αβ ≡

(
η(µα η

ν)
β − ηµνηαβ

)
□− 2η

(µ
(α∂

ν)∂β) + ηαβ∂
µ∂ν + ηµν∂α∂β, (2.6)

where □ = ∂α∂α. The diffeomorphism invariance of GR implies a gauge symmetry

for the metric perturbation as follow

hµν → hµν + ∂µξν + ∂νξµ. (2.7)

Varying the action in Eq. (2.5) with respect to the metric perturbation hµν , we

obtain the equation of motion of the linearized GR

1

2
Σαβ

µνhαβ = ∂λ∂(µhν)λ −
1

2
□hµν −

1

2
∂µ∂νh− 1

2
ηµν (∂

ρ∂σhρσ −□h) = 8πGTµν .(2.8)

To solve hµν , we choose the Lorentz gauge,

∂µh̄µν = 0, (2.9)

where h̄µν = hµν − 1
2
ηµνh. The linearized GR equation, Eq. (2.8), reduces to

□h̄µν = □hµν −
1

2
ηµν□h = −8πGTµν . (2.10)
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Its trace reads

□h = 8πGT. (2.11)

We substitute the trace in Eq. (2.11) into Eq. (2.10) to yield

□hµν = −8πG
(
Tµν −

ηµν
2

T
)
. (2.12)

We note here that we have 10 components of the four-dimensional symmetric

tensor of hµν . There are four constraints from the diffeomorphism invariance in

Eq. (2.7), and four more constraints from the Lorentz gauge in Eq. (2.9). The

total degrees of freedom of hµν is 10− 4− 4 = 2.

According to Green’s function method, the solution of hµν is

hµν = 8πG

∫
d4p

(2π)4
eip

βxβ

pαpα

(
T̃µν(p)−

ηµν
2

T̃ (p)
)
, (2.13)

where T̃µν(p) =
∫
d4xe−ipβxβTµν(x) is the function by Fourier transform of the

source Tµν and pβxβ = −ptt+pxx+pyy+pzz is the scalar product of 4-dimensional

vectors (p and x). We consider the conserved source as the point mass,

Tµν(x) = Mgµ0gν0δ
3(x),

T̃µν(p) = 2πMgµ0gν0δ(p
0). (2.14)

Then the components of hij vanish. Now we consider

h00 = 8πG

∫
d4p

(2π)4
eip

βxβ

pαpα

(
T̃00(p)−

η00
2
T̃ (p)

)
= 8πG

∫
d4p

(2π)4
eip

βxβ

pαpα
πMδ(p0)

= 4πG

∫
d3p

(2π)3
eip⃗x⃗M

p⃗ 2
, (2.15)
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where T̃ (p) = T̃ µ
µ = gµνT̃µν = 2πMδµ0 gµ0δ(p

0) = −2πMδ(p0) and p⃗x⃗ = pxx +

pyy + pzz = pr cos(θ) is the scalar product of 3-dimensional vectors (p⃗ and x⃗).

According to the complex analysis, we move the pole of the complex integral by

adding an infinitesimal value ϵ:

h00 = 4πGM

∫
d3p

(2π)3
eip⃗x⃗

p2 + ϵ2

= 4πGM

∫
p2dp sin θdθdϕ

(2π)3
eipr cos θ

(p+ iϵ)(p− iϵ)

= 4πGM

∫ ∞

0

dp

(2π)2
p (eipr − e−ipr)

ir(p+ iϵ)(p− iϵ)

= 4πGM

∫ ∞

−∞

dp

(2π)2
peipr

ir

(
1

2(p+ iϵ)
+

1

2(p− iϵ)

)
= 4πGM

(
1

(2π)2ir

[
2πi lim

p→iϵ
(p− iϵ)

eipr

2(p− iϵ)

])
=

GM

r
. (2.16)

In the last line, we have chosen the upper contour integral that covers k = iϵ and

applied the residue theorem. Next, we consider hij such that

hij = 8πG

∫
d4p

(2π)4
eipx

p2

(
−ηij

2
T̃ (p)

)
= 8πG

∫
d4p

(2π)4
eipx

p2
πMδ(p0)ηij

= 4πG

∫
d3p

(2π)3
eip⃗x⃗

p2
Mδij, (2.17)

where ηij = δij. With the same technique for calculating h00, we finally get

hij =
GM

r
δij. (2.18)

In conclusion, the non-trivial solutions of the perturbation tensor hµν in GR

in four dimensions take the form:

htt = hrr = hθθ = hϕϕ =
GM

r
. (2.19)
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2.2 Fierz-Pauli (FP) action

Now we consider the FP linear theory where its action is the linearized GR with

the massive terms of metric perturbation (up to second order) [12, 16],

SFP+matter =

∫
d4x

(
1

2
hµνΣ

µν,αβhαβ −
1

2
m2
(
hµνh

µν − h2
)
+ 8πGhµνT

µν

)
,

(2.20)

where m is the mass of graviton, and T µν is an external symmetric source. The

mass term, 1
2
m2 (hµνh

µν − h2), is the modification by massive gravity. The equa-

tion of motion of the FP theory in Eq. (2.20) is given by [16]

1

2
Σαβ

µνhαβ +m2 (hµν − ηµνh) = 8πGTµν (2.21)

To find the solution of the massive graviton in FP action, we first take ∂µ

to the Eq. (2.21) to obtain

∂µhµν − ∂νh =
8πG

m2
∂µTµν = 0, (2.22)

where we have applied a conserved source, ∂µTµν = 0. Substituting Eq. (2.22)

into Eq. (2.21) and taking trace, we have

h = −8πG

3

(
T

m2
− 2

m4
∂µ∂

µT

)
= −8πGT

3m2
. (2.23)

Plugging Eq. (2.23) into Eq. (2.21), we obtain

∂µhµν = −8πG

3m2
∂νT. (2.24)

We use Eq. (2.21, 2.23, 2.24) to obtain [16]

(□−m2)hµν = −8πG

(
Tµν −

1

3

(
ηµν −

∂µ∂ν
m2

)
T

)
. (2.25)
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In FP theory, there is no gauge symmetry like in GR. However, there are 4 con-

straints from Eq. (2.24) and one more constraint from Eq. (2.23). The total degrees

of freedom of hµν for FP theory is just 10− 4− 1 = 5.

According to the Green’s function method, we use the frequency domain to

investigate the solution of hµν from Eq. (2.25)

hµν(x) = 8πG

∫
d4p

(2π)4
eip

βxβ

pαpα +m2

(
T̃µν(p)−

1

3

(
ηµν +

pµpν
m2

)
T̃ (p)

)
, (2.26)

where T̃µν(p) =
∫
d4x e−ipαxαTµν(x). We apply the point mass as the conserved

source as Eq. (2.14), and consider the general solutions for Eq. (2.26). Here we

have

htt =
16πGM

3

∫
d3p

(2π)3
eip⃗x⃗

p⃗ 2 +m2

=
16πGM

3ir

∫ ∞

−∞

dp

2π
eipr

(
1

2(p+ im)
+

1

2(p− im)

)
=

4GM

3r
e−mr.

hti = hit = 0.

hrr =
2GM

3r
e−mr

(
1 +mr

m2r2

)
.

hθθ =
2GM

3r
e−mr

(
1 +mr +m2r2

m2r2

)
hϕϕ =

2GM sin2 θ

3r
e−mr

(
1 +mr +m2r2

m2r2

)
. (2.27)

With the massless limit (r ≪ 1/m), the non-zero terms of the general solutions
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reduce to

htt =
4GM

3r
.

hrr =
4GM

3m2r3
.

hθθ =
2GM

3m2r3

hϕϕ =
2GM sin2 θ

3m2r3
. (2.28)

2.3 vDVZ discontinuity

The prediction in FP theory should reduce to GR when taking limit m → 0.

However, the solutions of FP theory in Eq. (2.28) do not converge to those in

linearized GR in Eq. (2.19) as the graviton mass converge to zero. In this section,

the limitation of the FP massive gravity theory will be discussed via the gravita-

tional lensing. We follow the procedure and analyze of the light bending in the

weak field limit in Ref. [29]. The components of metric tensor read

gtt(r → ∞) = − (1 + Φ(r)) ,

grr(r → ∞) = (1−Ψ(r)) , (2.29)

where Φ(r) and Ψ(r) are the arbitrary functions of r. For the case that Φ(r) is pro-

portional to Ψ(r), we consider Ψ(r) = γΦ(r) where γ is called the Parameterized-

Post-Newtonian (PPN) parameter. The light is bent with the angle given by

α =
2GM(1 + γ)

b
, (2.30)

where b is the impact parameter from a massive source.
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We first consider the solution in the linearized GR from Eq. (2.3) and their

solutions from Eqs. (2.13). The arbitrary functions for massless case are given by

ΦGR(r) = ΨGR(r) = −GM

r
. (2.31)

In this case, the PPN parameter γ = 1 and the light bending angle is

α =
4GM

b
. (2.32)

Then we consider the solution in the FP theory in Eqs. (2.26). The arbitrary

functions for massless limit of FP theory are given by

ΦFP(r) = −4GM

3r

ΨFP(r) = −2GM

3r
(2.33)

The PPN parameter γ = 1
2
, then the light bending angle is

α =
3GM

b
. (2.34)

There is 25 percent difference of light bending angle of FP theory, comparing

to GR. Even if the limit of the graviton mass is zero, this discrepancy does not

disappear. This is called van Dam-Veltman-Zakharov (vDVZ) discontinuity [13,

14].

2.4 The Origin of vDVZ discontinuity: The Stueck-

elberg Trick

We presented in the section (2.3) that the FP massive gravity in the massless limit

cannot reduce to GR, according to vDVZ discontinuity. In this section, we will
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apply the Stueckelberg trick to show the origin of the vDVZ discontinuity.

Let consider the FP massive gravity from Eq. (2.20)

SFP+matter =

∫
d4x

(
1

2
hµνΣ

µν,αβhαβ −
1

2
m2
(
hµνh

µν − h2
)
+ 8πGhµνT

µν

)
,

where 1
2
hµνΣ

µν,αβhαβ is the massless term of the linear theory. We introduce a

Stueckelberg vector field Aµ such that

hµν → hµν + ∂µAν + ∂νAµ. (2.35)

Let consider the change of each term via the transformation in Eq. (2.35),

1

2
hµνΣ

µν,αβhαβ → 1

2
hµνΣ

µν,αβhαβ (invariant), (2.36)

hµνh
µν − h2 → hµνh

µν − h2 + 4(hµν∂
µAν − h∂µAµ) + FµνF

µν , (2.37)

hµνT
µν → hµνT

µν − 2Aν∂µT
µν , (2.38)

where Fµν ≡ ∂µAν − ∂νAµ and the last term is integrated by part to yield

T µν∂µAν = ∂µ(AνT
µν) − Aν∂µT

µν . The total derivative is negligible. Then the

FP action becomes

SFP+matter →
∫

d4x

(
1

2
hµνΣ

µν,αβhαβ −
1

2
m2
(
hµνh

µν − h2
)
+ 8πGhµνT

µν

−m2

2
FµνF

µν − 2m2 (hµν∂
µAν − h∂µAµ)− 16πGAν∂µT

µν

)
.

(2.39)

The gauge symmetry is given by

δhµν = ∂µξν + ∂νξµ, δAµ = −ξµ. (2.40)

So at this point, the massless limit is still not smooth, since we lose one of the

original 5 degrees of freedom [16].
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In the next step, we introduce a scalar gauge symmetry by another Stueck-

elberg field ϕ. So that

Aµ → Aµ + ∂µϕ. (2.41)

Any term with Aµ changes under the transformation in Eq. (2.41) as follows

FµνF
µν → FµνF

µν(invariant), (2.42)

hµν∂
µAν − h∂µAµ → hµν∂

µAν − h∂µAµ + hµν∂
µ∂νϕ− h∂µ∂

µϕ, (2.43)

Aµ∂νT
µν → Aµ∂νT

µν − ϕ∂µ∂νT
µν , (2.44)

where we have applied the integration by parts for the last line. The FP action

reads

SFP+matter →
∫

d4x

(
1

2
hµνΣ

µν,αβhαβ −
1

2
m2
(
hµνh

µν − h2
)
+ 8πGhµνT

µν

−m2

2
FµνF

µν − 2m2 (hµν∂
µAν − h∂µAµ)− 2m2 (hµν∂

µ∂νϕ− h∂µ∂
µϕ)

−16πG (Aν∂µT
µν − ϕ∂µ∂νT

µν)

)
. (2.45)

To investigate the linear massive gravity, we take m → 0 limit to the ac-

tion. However, the degrees of freedom will be lost. To avoid so, we rescale the

Stueckelberg fields using

Aµ → Aµ

m
, ϕ → ϕ

m2
. (2.46)

The FP action becomes

SFP+matter =

∫
d4x

(
1

2
hµνΣ

µν,αβhαβ −
1

2
m2
(
hµνh

µν − h2
)
+ 8πGhµνT

µν

−1

2
FµνF

µν − 2m (hµν∂
µAν − h∂µAµ)− 2 (hµν∂

µ∂νϕ− h∂µ∂
µϕ)

−16πG

(
Aν

m
∂µT

µν − ϕ

m2
∂µ∂νT

µν

))
. (2.47)
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Gauge transformations of functions are given by

δhµν = ∂µξν + ∂νξµ, δAµ = −mξµ,

δAµ = ∂µΛ, δϕ = −mΛ. (2.48)

To consider the massless limit, we have to assume the conserved source (∂µT µν = 0)

to prevent the divergence from the coupled terms Aν

m
∂µT

µν and ϕ
m2∂µ∂νT

µν .

The rescaled FP action reads

SFP+matter =

∫
d4x

(
1

2
hµνΣ

µν,αβhαβ + 8πGhµνT
µν − 1

2
FµνF

µν

−2 (hµν∂
µ∂νϕ− h∂µ∂

µϕ)

)
. (2.49)

To see the reason behind the vDVZ discontinuity, we will decouple the tensor hµν

from the scalar field ϕ by considering [16]

hµν = h′
µν + ϕηµν . (2.50)

It is straightforward to show that

1

2
hµνΣ

µν,αβhαβ =
1

2
h′
µνΣ

µν,αβh′
αβ

+2

(
∂µϕ∂

µh′ − ∂µϕ∂νh
′µν +

3

2
∂µϕ∂

µϕ

)
(2.51)

8πGhµνT
µν = 8πG

(
h′
µνT

µν + ϕT
)

(2.52)

−2(hµν∂
µ∂νϕ− h∂µ∂

µϕ) = −2h′
µν∂

µ∂νϕ+ 2h′∂µ∂
µϕ+ 6ϕ∂µ∂

µϕ. (2.53)

Using the integration by parts for Eq. (2.53) and neglecting the total derivative

terms, so the massless limit FP action eventually becomes

SFP+matter =

∫
d4x

(
1

2
h′
µνΣ

µν,αβh′
αβ + 8πGh′

µνT
µν + 8πGϕT

−1

2
FµνF

µν − 3∂µϕ∂
µϕ

)
. (2.54)
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In the massless limit, the total degrees of freedom is still 5; one from the scalar

field ϕ, two from massless photon Aµ, and another two from massless graviton

hµν . Note that there is the coupling term between the scalar field ϕ and the trace

of the energy momentum tensor T as 8πGϕT , thanks to the Stueckelberg trick.

Moreover the term also has the same strength as the massless tensor hµν couples

to the energy momentum tensor T µν . So it causes the vDVZ discontinuity in

massless limit FP theory since there is no such term in GR. It shows that the FP

theory does not recover GR in the massless limit.

2.5 Nonlinear massive gravity

According to the study of the FP theory, the mechanism of the vDVZ discontinuity

is revealed by the Stueckelberg trick. The linear theory of massive gravity is the

first step for the full nonlinear theory in massive theory. There was a study

showing that the length of nonlinearity dominates over the linear theory when

the distance is smaller than a length scale called Vainshtein radius, rV =
(
GM
m4

)1/5
[15]. The proof of the Vainshtein radius is shown in the Appendix A (see Eq. (A.

13)). The result from the FP theory works well with the large distance r > rV .

However, the nonlinear massive gravity theory dominates in the range r < rV .

With a limit of m → 0, the Vainshtein radius increases to infinity. In this section,

we will begin to construct the simplest case of nonlinear massive gravity. The

action consists of the kinetic terms from Ricci scalar like GR, Lkinetic =
R

16πG
and

the FP mass term Lmass = −1
2
m2 (hµνh

µν − h2). Unfortunately, it leads to the



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24

BD ghost in the system [34]. The BD ghost does not only cause the negative

energy when interacting with matter but also causes the unphysical extra degree

of freedom (dof). Then there are 6 degrees of freedom in this case. To eliminate

the extra scalar mode from BD ghost, one could apply the same technique in

the Galileon theory that provides non-extra scalar mode. The nonlinear massive

gravity without ghost was successfully discovered by de Rham, Gabadadze and

Tolley (dRGT). The dRGT action and the static solution is presented in this

section.

2.5.1 The extra degree of freedom in nonlinear Fierz-Pauli

theory

Before continuing the study about the full nonlinear massive gravity, we investigate

another problem emerging from the nonlinear extension. The first sign of the ghost

is the extra degree of freedom appearing in the nonlinear massive gravity. The

metric tensor gµν can be split into two terms; the reference metric (or fiducial

metric) fµν and the metric perturbation hµν ,

gµν = fµν + hµν . (2.55)

The reference metric describes the propagation of the linear massive graviton which

can be seen further in the appendix A. We use the nonlinearity from Einstein-

Hilbert action and consider the nonlinear GR with the flat reference metric fµν =
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ηµν ,

S =
1

16πG

∫
d4x

[√
−gR− 1

2
m2
(
hµνh

µν − h2
) ]

=
1

16πG

∫
d4x

[√
−gR− 1

2
m2ηµαηνβ (hµνhαβ − hµαhνβ)

]
, (2.56)

where the Ricci scalar is the kinetic term of the field gµν and also responsible for

nonlinearity. While the massive terms are borrowed from FP theory.

The ADM formalism is applied to study the ghost in nonlinear massive

gravity [30, 31]. We begin with describing the four-dimensional spacetime by

the series of spacelike hypersurfaces Σt where t is time on the hypersurface. We

introduce the normal vector ni on the hypersurfaces where nin
i = −1 is a time-like

condition. A spatial three-dimensional metric (3)gij is defined as follows [32]:

(3)gij = gij + ninj, (2.57)

where gij is the spatial component of gµν . Since (3)gij is a tangent on hypersurface

Σt, then (3)gij is perpendicular to the normal vector ni, i.e. (3)gijn
i = 0.

Figure 2.1: The proper length ds is calculated from the Pythagorean theorem in

terms of (3)gij, N and N i. This figure is referenced from [32]
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To define the proper length ds between two arbitrary points on hypersur-

faces, we demonstrate the geometry in the figure 2.1. We consider the path that

start from the point xi on the hypersurface Σt and terminates at the point is

xi + dxi on the hypersurface Σt+dt. It takes two steps to move from xi on Σt to

xi + dxi on Σt+dt. The first step is to follow the proper time distance from Σt

to Σt+dt along the normal vector n and it is equal to Ndt where N is called the

lapse function. In the second step, the point is shifted on hypersurface Σt+dt from

xi −N idt to xi + dxi where N i is the shift vector on the hypersurface.

We rewrite the metric components in terms of the spatial metric gij, the

shift Ni and the lapse N ,

ds2 = −(proper time)2 + (coordinate distance)2

= −(Ndt)2 + gij(dx
i +N idt)(dxj +N jdt), (2.58)

where gij is the inverse of the spatial metric gij. Using ADM formalism, the total

degrees of freedom are still 10; 6 from the symmetric spatial three-metric gij, 3

from the shift vector N i and 1 from the lapse function N . The four-dimensional

metric components gµν can be written in terms of the ADM variables as follows:

gµν =

g00 g0j

gi0 gij



=

−N2 + (3)gijNiNj Nj

Ni
(3)gij

 . (2.59)
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Now we consider the massless case or GR. The action becomes [33]

SEH =
1

16πG

∫
d4x

√
−gR

=
1

16πG

∫
d4x
√

(3)gN
[
R(3) −K2 +KijKij

]
, (2.60)

where (3)g is the determinant of spatial metric gij, R(3) is the Ricci scalar in spatial

metric gij and Kij is the extrinsic curvature of the spatial hypersurfaces Σt which is

a quantity that measures the rate of change of unit normal vector on hypersurface

and is given by

Kij =
(3)gik∇knj, (2.61)

where Kij is symmetric and tangent to hypersurface Σt. ∇knj collects the infor-

mation of the curvature on the hypersurface where (3)gi
k projects the information

on the three-dimensional hypersurface. In addition, the extrinsic curvature can

be written in terms of the ADM variables as shown below

Kij =
1

2N

(
(3)ġij − (3)∇iNj − (3)∇jNi

)
, (2.62)

The Ricci scalar is also written in terms of ADM variables as

R = (3)R +KijK
ij −K2, (2.63)

where (3)R is the Ricci scalar of the spatial metric (3)gij.

Before investigating the ghost in massive gravity, we will study the ADM

formalism in GR. Then we start from the Einstein-Hilbert action written in terms

of ADM variables given by Eq. (2.60). The canonical momenta is given by

(3)pij =
δL

δ(3)ġij
=
√

(3)g
(
Kij −K(3)gij

)
. (2.64)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

28

The Einstein-Hilbert action can be written in terms of Hamiltonian H:

SEH =

∫
dtL =

1

16πG

∫
dt

(∫
Σt

d3x
[
pij ġij

]
−H

)
. (2.65)

In this case, Hamiltonian H is given by [33]

H =

∫
Σt

d3x
(
NC +NiC

i
)
, (2.66)

where there are 12 phase space metric components; 6 from gij and another 6 from

pij,

C =
√

(3)g
(
(3)R−K2 +KijKij

)
, (2.67)

Ci =
√

(3)g(3)∇j

(
Kij − (3)gijK

)
, (2.68)

Nj = g0j, (2.69)

N =
(
g00 − gijg0ig0j

)1/2
. (2.70)

We apply the Hamiltonian H from Eq. (2.66) into Eq. (2.65) to obtain

SEH =
1

16πG

∫
d4x

[
(3)pij(3)ġij −NC −NiC

i
]
. (2.71)

The shift Ni and the lapse N become the Lagrange multipliers for Eq. (2.66)

and Eq. (2.71) then we have 4 constraints; C = 0 and Ci = 0. There are 4 more

constraints from the gauge symmetry in GR from Eq. (2.7). The total phase space

degrees of freedom is 12− 4− 4 = 4 which are 2 polarizations of massless graviton

and another 2 polarizations of massless graviton’s conjugate momenta. It can be

interpreted that there are only 2 real degrees of freedom for GR case.

We turn to massive gravity where the kinetic part is exactly the same as the

GR case, so we consider the mass term from FP theory only. The mass term in
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FP theory can be writtein in terms of ADM variables given by

ηµαηνβ (hµνhαβ − hµαhνβ) = ηikηjl (hijhkl − hikhjl) + 2ηijhij

−2N2ηijhij + 2Ni

(
(3)gij − ηij

)
Nj. (2.72)

The total action of FP theory in Eq. (2.56) in terms of ADM variables is given by

S =
1

16πG

∫
d4x

[
(3)pij(3)ġij −NC −NiC

i

−m2

2

(
hijh

ij − h2 + 2(1−N2)h+ 2hijNiNj

) ]
. (2.73)

In this case, the lapse and the shift functions cannot be the Lagrange multipliers

due to their quadratic terms (N2 and NiNj) as shown in Eq. (2.73). Both function

are still auxiliary fields which are analytically solved by the variational principle

as follows

N =
C

m2ηijhij

, Ni =
Ci

m2((3)gij − ηij)
. (2.74)

By substituting the shift and lapse functions into the FP action in Eq. (2.73), we

obtain the action with no constraints or gauge symmetries at all,

S =
1

16πG

∫
d4x

(
(3)pij(3)ġij −H

)
, (2.75)

where the Hamiltonian H takes the form

H =

∫
d3x

(
1

2m2

C2

ηijhij

+
1

2m2

CiCj

(3)gij − ηij

+
1

4
m2
[
ηijηjl

(
hijhkl − hikhjl + 2ηijhij

)])
, (2.76)

We totally have 12 phase space degrees of freedom or 6 real degrees of freedom

in the FP massive gravity which is different from GR that has 2 real degrees
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of freedom left since it has constraints and gauge symmetries. The linearized

massive gravity has 5 real degrees of freedom while the nonlinear massive gravity

with FP mass term in Eq. (2.56) has 6 real degrees of freedom. The extra degree

of freedom from the nonlinear massive gravity is called the Boulware-Deser (BD)

ghost [34, 35].

2.5.2 The appearance of BD ghost: Stueckelberg trick

By the ADM formalism, we now see the extra degree of freedom from the nonlin-

ear massive gravity but it is not enough to quantify the ghost terms. To reveal

the ghost terms in the nonlinear massive gravity action, we apply the Stueck-

elberg trick to formally restore the diffeomorphism invariance by including four

Stueckelberg field ϕa and the reference metric transforms as follows: [36]

fµν → f̂µν = ∂µϕ
a∂νϕ

bfab, (2.77)

where f̂µν transforms as a tensor under coordinate transformations with the four

Stueckelberg fields ϕa transforming as scalars. In the unitary gauge, where the

Stueckelberg fields are ϕa = xa, we recover f̂µν = fµν . It is convenient to define

the following tensor quantity,

Xµ
ν ≡ gµρfρν = δµν − hµ

ν , (2.78)

where its transformation is given by

Xµ
ν → X̂µ

ν = gµρf̂ρν

= gµρ∂ρϕ
a∂νϕ

bfab

= ∂µϕa∂νϕ
bfab ≡ δµν −Hµ

ν . (2.79)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31

For simplicity, we can choose fab = ηab and split the Stueckelberg fields as

ϕa = xa−χa where χa can be decomposed into traversable vector field Aa and the

longitudinal mode π as χa = 1
m
Aa+ 1

m2η
ab∂bπ. The flat reference metric fµν = ηµν

transforms as

fµν = ηµν → f̂µν = ∂µϕ
a∂νϕ

bfab

= ηµν − (∂µχν + ∂νχµ) + ∂µχ
a∂νχ

bηab

= ηµν −
1

m
(∂µAν + ∂νAµ)−

2

m2
Πµν (2.80)

+
1

m2
∂µA

α∂νAα +
2

m3
∂µA

αΠνα +
1

m4
Πα

µΠαν ,

where Πµν ≡ ∂µ∂νπ.

The fluctuations hµν about the flat spacetime are promoted to the tensor

Hµν :

hµν = gµν − fµν → Hµν = gµν − f̂µν

= hµν + ∂µχν + ∂νχµ − ∂µχ
a∂νχ

bηab

= hµν +
1

m
(∂µAν + ∂νAµ) +

2

m2
Πµν (2.81)

− 1

m2
∂µA

α∂νAα − 2

m3
∂µA

αΠνα − 1

m4
Πα

µΠαν .

Then the tensor X̂µ
ν becomes

X̂µ
ν = δµν −Hµ

ν = δµν − hµ
ν − ∂µχν − ∂νχ

µ + ∂µχa∂νχ
bηab

= Xµ
ν −

1

m
(∂µAν + ∂νA

µ)− 2

m2
Πµ

ν (2.82)

+
1

m2
∂µAα∂νAα +

2

m3
∂µAαΠνα +

1

m4
ΠµαΠαν .

Since we have shown in the previous subsection that the extra scalar mode

takes responsibility on the BD ghost. We will focus only on the helicity-0 mode, π,
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and omit the part of tensor and vector modes in the mass term of the FP theory.

The mass term, which is borrowed from the FP theory in Eq. (2.56), transforms

as follow [16]

Lmass → −1

2
m2
(
HµνH

µν −H2
)

= −1

2
m2
(
[(I− X̂)2]− [I− X̂]2

)
= − 2

m2

([
Π2
]
− [Π]2

)
+

2

m4

([
Π3
]
− [Π]

[
Π2
])

+
1

2m6

([
Π4
]
−
[
Π2
]2)

+ . . . , (2.83)

where the bracket is the trace of the tensor. With the integration by parts, the

quadratic terms of the scalar mode in Eq. (2.83) is the total derivative as follow

[
Π2
]
− [Π]2 = {∂ρ (∂µπ∂ρ∂µπ)− ∂µ (π∂ρ∂

ρ∂µπ) + π∂ρ∂
ρ∂µ∂

µπ}

−{∂ρ (∂ρπ∂µ∂µπ)− ∂ρ (π∂ρ∂
µ∂µπ) + π∂ρ∂

ρ∂µ∂
µπ}

= ∂ρ (∂
µπ∂ρ∂µπ)− ∂ρ (∂

ρπ∂µ∂µπ) . (2.84)

However, the cubic and quartic interactions in Eq. (2.83) cannot be solely written

in terms of total derivative. At this point, we see that these higher order derivatives

terms, i.e.
(
[Π3]− [Π] [Π]2

)
and

(
[Π4]− [Π2]

2
)

lead to the extra degree of freedom

from the BD ghost [36]. As shown in the appendix B, the higher order derivatives

of the scalar field are the major problem in nonlinear massive gravity because there

is a negative the kinetic term of the scalar field leading to unbounded Hamiltonian

[34, 35]. When the wrong sign kinetic term of scalar field couples with ordinary

matter, it cause the instability to the system. This is the reason why the nonlinear

massive gravity with FP mass terms is ruled out by the appearance of BD ghost.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33

2.5.3 Elimination of the extra scalar mode by the Galileon

theory

As mentioned using the Stueckelberg trick, the scalar field in nonlinear massive

gravity plays a major role for the appearance of the ghost. Even though the scalar

field of FP theory causes the extra degree of freedom from the BD ghost, we find

that the ghost term does not come from the quadratic terms since they all can

be written in terms of total derivatives. Upon this fact, we are able to choose

the contractions of Πµν in higher order that reduces to total derivatives. In this

subsection, we will consider solely the form of scalar field that eliminates the BD

ghost before combining the vector and tensor mode for the full nonlinear massive

gravity.

In Refs. [35, 37, 38], there is the unique combination of Πµν from the Galileon

theory leading to the total derivative as follows:

LTD
2 = [Π]2 −

[
Π2
]
, (2.85)

LTD
3 = [Π]3 − 3 [Π]

[
Π2
]
+ 2

[
Π3
]
, (2.86)

LTD
4 = [Π]4 − 6

[
Π2
]
[Π]2 + 8

[
Π3
]
[Π] + 3

[
Π2
]2 − 6

[
Π4
]
, (2.87)

...

where LTD
2 is the same as FP term. One could apply the integration by parts on

LTD
n to obtain the total derivatives for all n. The term LTD

n vanishes identically

when n > 4 since we consider the 4D spacetime. To avoid the BD ghost, the

scalar mode in the mass terms must be written in the combination of Eq. (2.85),
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Eq. (2.86) and Eq. (2.87) as follow:

LTD =
(
[Π]2 −

[
Π2
])

+ α3

(
[Π]3 − 3 [Π] [Π]2 + 2

[
Π3
])

+α4

(
[Π]4 − 6

[
Π2
]
[Π]2 + 8

[
Π3
]
[Π] + 3

[
Π2
]2 − 6

[
Π4
])

, (2.88)

where α3 and α4 are constants.

With this Lagrangian of the scalar field in Eq. (2.88), the quadratic, cubic,

and quartic interactions can be written in terms of total derivatives, so there is

no higher derivatives. For this case, the scalar field is not dynamical (the total

degree of freedom is zero), so ghost is eliminated from the system.

2.5.4 The ghost-free nonlinear massive gravity

In the nonlinear massive gravity, there are three modes; tensor hµν , vector Aµ and

scalar ϕ modes. One can make use of the ghost-free Lagrangian of scalar mode in

Eq. (2.88) to have all three modes and there is still no the BD ghost. To do so,

we first recall the tensor X̂µ
ν and split into two main terms as follow

X̂µ
ν = Ŷµ

ν + Ẑµ
ν , (2.89)

where Ŷµ
ν consists of the pure scalar terms and Ẑµ

ν is the combination of tensor,

vector and interaction between vector and scalar as follows

Ŷµ
ν ≡ δµν − 2

m2
Πµ

ν +
1

m4
ΠµαΠαν (2.90)

Ẑµ
ν ≡ −hµ

ν −
1

m
(∂µAν + ∂νA

µ) +
1

m2
∂µAα∂νAα +

2

m3
∂µAαΠνα. (2.91)
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Then we factorize the scalar terms to obtain

Ŷµ
ν = δµν − 2

m2
Πµ

ν +
1

m4
ΠµαΠαν

=

(
δµρ − 1

m2
∂µ∂ρπ

)(
δρν −

1

m2
∂ρ∂νπ

)
= M̂µ

ρM̂ρ
ν . (2.92)

The relation between the tensor M̂µ
ν and Πµ

ν is given by

Πµ
ν = ∂µ∂νπ = m2

(
δµν − M̂µ

ρ

)
= m2

(
δµν −

√
Ŷ

µ

ν

)
. (2.93)

To generalize the ghost-free Lagrangian in Eq. (2.88), we replace Πµ
ν with a

new tensor defined as follow

K̂µ
ν ≡ m2

(
δµν −

√
X̂

µ

ν

)
= m2

(
δµν −

√
g−1f̂

µ

ν

)
. (2.94)

The ghost-free nonlinear massive gravity Lagrangian is given by

LTD
NLMG =

([
K̂
]2

−
[
K̂2
])

+ α3

([
K̂
]3

− 3
[
K̂
] [

K̂
]2

+ 2
[
K̂3
])

(2.95)

+α4

([
K̂
]4

− 6
[
K̂2
] [

K̂
]2

+ 8
[
K̂3
] [

K̂
]
+ 3

[
K̂2
]2

− 6
[
K̂4
])

.

Presence of the ghost in the model is a major problem for the massive gravity

until de Rham, Gabadadze and Tolley (dRGT) handled this problem and intro-

duced the Lagrangian in Eq. (2.96) as the ghost-free nonlinear massive gravity

theory [17, 39]. Here the authors generalized the model at the complete level.

The further reading for the ghost-free nonlinear massive gravity and its applica-

tions are in Refs. [40, 41, 42]. We set M2
P = 1/8πG for the rest of this section.

The action of the dRGT model is given by

SdRGT =
M2

p

2

∫
d4x

√
−g
(
R +m2

gU(g, ϕ
a)
)
, (2.96)
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where mg is the graviton mass and the potential U is defined by

U = U2 + α3U3 + α4U4, (2.97)

where U2, U3 and U4 are given by

U2 = [K]2 − [K2],

U3 = [K]3 − 3[K][K2] + 2[K3],

U4 = [K]4 − 6[K]2[K2] + 8[K][K3] + 3[K2]2 − 6[K4], (2.98)

where K = K̂/m2
g, Kµ

ν = δµν −
√
gµσfab∂σϕa∂νϕb. Here a bracket [ ] represents

the trace of the tensor, [K] ≡ Kµ
µ, [K2] ≡ Kµ

α1
Kα1

µ , [K3] ≡ Kµ
α1
Kα1

β1
Kβ1

µ and

[K4] ≡ Kµ
α1
Kα1

β1
Kβ1

α2
Kα2

µ . Note here that parameters α3 and α4 of the dRGT theory

are related to the graviton mass. Performing variation of the gravitational action

in Eq.(2.96) with respect to the metric, gµν , yields the equation of motion of the

dRGT massive gravity given by

Gµν +m2
gXµν = 0, (2.99)

where Xµν is defined by

Xµν =
1√
−g

δ
√
−gU

δgµν

= Kµν − α

[(
K2
)
µν

− [K]Kµν +
1

2
gµν
(
[K]2 − [K2]

)]
(2.100)

+3β

[(
K3
)
µν

− [K]
(
K2
)
µν

+
1

2
Kµν

(
[K]2 − [K2]

)
− 1

6
gµν
(
[K]3 − 3[K][K2] + 2[K3]

)]
,

where the parameters α and β are related to α3,4 from the action in Eq.(2.96) via

α = 1 + 3α3 , β = α3 + 4α4. (2.101)
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They are simply defined as the unitary gauge ϕa = xµδaµ. The homogeneity

and isotropy on the spatial sphere is needed to preserve. Then the choice for fab

is the SU(2)-invariant as follows [25, 43, 44, 45, 46]:

fab = diag(0, 0, k2, k2 sin2 θ), (2.102)

where k is a constant. Assume the ansatz as the static and spherically symmetric

as follows:

ds2 = gµνdx
µdxν = −n(r)dt2 +

dr2

f(r)
+ r2dΩ2, (2.103)

where n(r) and f(r) are arbitrary functions of r, dΩ2 = dθ2 + sin2θdϕ2 and the

metric in Eq. (2.103) is the vacuum solution of massive gravity theory without

any other kind of matter. With the metric tensor in Eq. (2.103), the components

of Einstein tensor Gµν in Eq. (2.99) become

Gt
t =

f ′

r
+

f

r2
− 1

r2
, (2.104)

Gr
r =

f(rn′ + n)

nr2
− 1

r2
, (2.105)

Gθ
θ = Gϕ

ϕ = f ′
(
n′

4n
+

1

2r

)
+ f

(
n′′

2n
+

n′

2nr
− (n′)2

4n2

)
. (2.106)

The components of tensor Xµ
ν are

m2X t
t = −m2

g

(
3r − 2k

r
+

α(3r − k)(r − k)

r2
+

3β(r − k)2

r2

)
, (2.107)

m2Xr
r = −m2

g

(
3r − 2k

r
+

α(3r − k)(r − k)

r2
+

3β(r − k)2

r2

)
, (2.108)

m2Xθ,ϕ
θ,ϕ = −m2

g

(
3r − k

r
+

α(3r − 2k)

r
+

3β(r − k)

r

)
. (2.109)

To find the solution of function f(r), we use (tt) and (rr) components of Eq. (2.99)
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with Eq. (2.104), Eq. (2.105), Eq. (2.107) and Eq. (2.108) [25]

f ′

r
+

f

r2
− 1

r2
= m2

g

(
3r − 2k

r
+

α(3r − k)(r − k)

r2
+

3β(r − k)2

r2

)
,

(2.110)

and

f(rn′ + n)

nr2
− 1

r2
= m2

g

(
3r − 2k

r
+

α(3r − k)(r − k)

r2
+

3β(r − k)2

r2

)
.

(2.111)

The right hand sides of Eq. (2.110) and Eq. (2.111) are exactly the same. We

match the terms only on their left hand sides

f ′(r)n(r)

r
=

f(r)n′(r)

r
. (2.112)

This implies that f(r) = n(r). According to Ref. [25], the ansatz of f(r) becomes

f(r) = 1− 2GM

r
− Λr2

3
+ γr + ζ, (2.113)

where M is the mass parameter, Λ is the effective cosmological constant, and γ and

ζ are new parameters. By substituting the ansatz of function f(r) into Eq. (2.110),

we obtain the parameters in the dRGT massive gravity via the following relations,

Λ ≡ −3m2
g(1 + α + β), γ ≡ −m2

gk(1 + 2α + 3β), ζ ≡ m2
gk

2(α + 3β).(2.114)

The parameter k, α, and β are rewritten in terms of Λ, γ, and ζ by

k =
γ +

√
γ2 + (m2

g + Λ)ζ

m2
g + Λ

,

α = −
γ2 + (2m2

g + Λ)ζ − γ
√
γ2 + (m2

g + Λ)ζ

m2
gζ

,

β =
2Λ

3m2
g

+
γ2 +m2

gζ − γ
√

γ2 + (m2
g + Λ)ζ

m2
gζ

. (2.115)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

39

For convenience in the test of this thesis, we set ζ = 0 and obtain

k =
2γ

m2
g + Λ

, α = −3β = −3

2
− Λ

2m2
g

. (2.116)

The energy density and pressure can be defined by the components of tensor Xµν

from Eq. (2.107), Eq. (2.108) and Eq. (2.109) as follows:

ρg(r) ≡
m2

g

8πG
X t

t = −M2
P

(
2γ − Λr

r

)
(2.117)

p(r)g (r) ≡ −
m2

g

8πG
Xr

r = M2
P

(
2γ − Λr

r

)
(2.118)

p(θ,ϕ)g (r) ≡ −
m2

g

8πG
Xθ,ϕ

θ,ϕ = M2
P

(
γ − Λr

r

)
(2.119)

For the black hole solution in dRGT model, the cosmological constant Λ is

written in terms of graviton mass mg. Thus, the massive graviton is responsible

for the accelerated expansion of the Universe. According to the first detection of

gravitational waves in 2017 [47], a lower bound on the graviton Compton wave

length λg is 1.6× 1013 km which is equivalent to the upper bound on the graviton

mass 7.7 × 10−23 eV/c2. In 2019, a new constraint for graviton mass with the

planetary ephemeris INPOP is λg > 1.83 × 1013 km or mg < 6.76 × 10−23 eV/c2

[48].



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

Wormholes in General Relativity

In this thesis, we theoretically construct wormholes by using two standard methods

for theoretical wormhole construction; the traversable wormhole and the thin-shell

wormhole. The detail of construction, the stability condition and the parameters

for the energy conditions will be discussed in this chapter.

3.1 The Lorentzian traversable wormhole

This type of wormhole is a two-way bridge that connects two points in spacetime

of the Universe or two points from different Universes. To begin the study, we

would like to introduce the properties of the Lorentzian traversable wormhole in

the fundamental setup. Then, we provide detailed construction of the traversable

wormholes.

3.1.1 Fundamental setup of traversable wormholes

To construct traversable wormholes, we consider the spherical coordinate which

is suitable to describe the line element of wormholes. It was proposed by Morris
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and Thorne in 1988 given by

ds2 = −e2Φ(r)dt2 +

(
1− b(r)

r

)−1

dr2 + r2(dθ2 + sin2 θdϕ2), (3.1)

where r, θ, and ϕ are the spherical coordinates, Φ(r) and b(r) are arbitrary func-

tions of r, Φ(r) is called the redshift function since it is related to the gravita-

tional redshift, and b(r) is called the shape funtion because the function deter-

mines the shape of traversable wormholes via embedding diagram. To construct

traversable wormholes, the coordinate singularity or horizon must be eliminated.

Thus e2Φ(r) ̸= 0, then Φ(r) must be finite everywhere. Even though (1− b(r)/r)−1

diverges at the throat of the womrhole b(r0) = r0, it is just the coordinate singu-

larity where can be eliminated by considering the proper radial distance

l(r) = ±
∫ r

r0

(
1− b(r)

r

)−1/2

dr. (3.2)

The proper radial distance is required to be finite everywhere. The metric tensor

in Eq. (3.1) can be rewritten as [7]

ds2 = −e2Φ(l)dt2 + dl2 + r2(l)(dθ2 + sin2 θdϕ2), (3.3)

where l = 0 is at the throat of the wormhole, and l > 0 (l < 0) is on the upper

(lower) side of the throat.

3.1.2 Embedding diagram for traversable wormholes

To visualize the wormhole spacetime, we consider the slice of the line element

given in Eq. (3.1) at t = constant and θ = π/2. The two-dimensional surface is



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

42

embedded into three-dimensional Euclidean space (cylindrical coordinate) [49, 50]

ds2 =

(
1− b(r)

r

)−1

dr2 + r2dϕ2 = dr2 + r2dϕ2 + dz2. (3.4)

We obtain the relation

dz

dr
= ±

(
r

b(r)
− 1

)−1/2

, (3.5)

where dz/dr diverges at the throat b(a) = a. To avoid the imaginary vaule of z,

we apply the first properties of a traversable wormhole shape function:

b(r) < r for r > a, (3.6)

and

b(a) = a. (3.7)

Notice that the traditional background metric tensor of traversable wormhole sat-

isfies the asymptotic flatness condition. In general, the background metric tensor

might be de-Sitter or anti de-Sitter spacetimes which satisfy the asymptotic de-

Sitter condition or the asymptotic anti de-Sitter condition, respectively.

3.1.3 The flaring-out condition for traversable wormhole

The throat of wormhole must be the narrowest part. Generally, we can apply the

criteria by considering the second derivative
(

d2r
dz2

)
around the wormhole throat

as

d2r

dz2
=

b(r)− rb′(r)

2b2(r)
> 0 for r > a. (3.8)
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At the throat, the relation of Eq. (3.8) reduces to

b′(a) < 1. (3.9)

These relations are called the flaring-out condition and hold near and at the worm-

hole throat.

3.1.4 No-horizon conditions

To make the wormhole possible for transportation, we must set no-horizon condi-

tion in spacetime. According to the line element of wormhole, the characteristic of

the shape function b(r) is determined by the embedding diagram and the flaring-

out condition. In this thesis, we use the static and spherically symmetric metric.

Thus, a horizon might appear on the term gtt and grr. On gtt, it is easy to handle

since as long as the red shift function Φ(r) is finite from throat a to infinity, there

is no horizon. To avoid the horizon on grr, we are able to choose the shape function

b(r) that has no root between the throat and infinity.

3.1.5 The construction of the Lorentzian traversable worm-

hole

The line element follows the Morris Throne wormhole in Eq. (3.1). Generally, the

shape function b(r) and the redshift function Φ(r) are arbitrary as long as they

follow the properties in section (3.1). The action of the Lorentzian traversable

wormhole in four-dimensional spacetime consists of the geometry of the Universe
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R/16πG and the matter Lmatter is given by

Stotal =

∫
d4x

√
−g

(
R

16πG
+ Lmatter

)
. (3.10)

Performing the variation of the action with respect to gµν , it is not surprising that

the equation of motion for the Lorentzian traversable wormhole is governed by the

Einstein equation

Rµν −
1

2
gµνR = 8πGTµν , (3.11)

where the energy-momentum tensor of matter source of the wormhole is Tµν =

− 2√
−g

∂(
√
−gLmatter)
∂gµν which is written in term of anisotropic perfect fluid as

Tµν =
(
ρ+ Pt

)
uµuν + Pt gµν +

(
Pr − Pt

)
χµχν , (3.12)

where uµ is a four-velocity, χµ is the spacelike unit vector orthogonal to the uµ

with the normalization condition uµu
µ = −1, χµχ

µ = 1, ρ is the energy density,

Pr and Pt are the radial and tangential pressure, respectively.

The energy conditions for the anisotropic fluid are given by [51]

• Null energy condition

ρ+ Pr ≥ 0, and ρ+ Pt ≥ 0. (3.13)

• Weak energy condition

ρ+ Pr ≥ 0, ρ+ Pt ≥ 0, and ρ ≥ 0. (3.14)

• Strong energy condition

ρ+ Pr ≥ 0, ρ+ Pt ≥ 0, and ρ+ Pr + 2Pt ≥ 0. (3.15)
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Substituting the Morris and Thorne line element in Eq. (3.1) into Eq. (3.10),

we obtain the equations of state of the source matter for Lorentzian traversable

wormhole

ρ =
b′(r)

16πGr2
(3.16)

Pr = − b(r)

16πGr3
+

1

8πG

(
1− b(r)

r

)
Φ′(r)

r
(3.17)

Pt =
1

2r3
(b(r)− rb′(r)) +

(
1

2r

(
1− b(r)

r

)
+

1

2r
(1− b′(r))

)
Φ′(r)

+

(
1− b(r)

r

)
Φ′2(r) +

(
1− b(r)

r

)
Φ′′(r). (3.18)

In this thesis, these three variables will be applied into all three energy conditions

(NEC, WEC, and SEC) for quantifying the violation the Lorentzian traversable

wormhole.

3.2 Thin-shell wormhole

The concept of thin-shell wormhole was first proposed by M. Visser [52]. This

class of wormhole can be obtained by a cut-and-paste procedure and structures

are called thin-shell wormholes where they distort the two different spacetimes

and connect them at wormhole throat which is called the thin shell. This method

is called the Darmonis-Isarael formalism or the thin-shell formalism [49, 53]. M.

Visser proposed the analysis of the thin-shell wormhole’s stability and found the

stable configurations from the equation-of-state of an exotic matter residing on

the throat. Unlike the traversable wormhole technique, the thin-shell spacetimes

have no differentiability for its metric at the throat. Then the spacetime at the
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throat or thin shell is not smooth.

In this section, we will review a thin-shell wormhole method through the

procedure of the thin-shell wormhole construction and the method to measure its

stability.

3.2.1 The fundamental setup for thin-shell wormhole

In order to study the thin-shell wormhole and its stability, we have to use the

appropriate mathematical tools to construct the two manifolds and the surface.

We follow the standard approach in Refs. [49, 54, 55]. The two different space-

times (upper and lower spacetimes) are described by two manifolds (M+ and M−,

respectively) where M+(M−) is described by the metric g+µν(g
−
µν) with the coordi-

nate xµ
+(x

µ
−). The plus and minus signs denote the upper and lower spacetimes,

respectively. A total manifold M = M+ ∪ M− results from gluing M+ and M+

at their boundaries ∂M+ and ∂M− respectively. The boundary ∂M+(∂M−) is

described by the induced metric h+
ab(h

−
ab) with the coordinate y+a (y

−
a ). The hyper-

surface Σ separates M into M+ and M− such that Σ = M+∩M− and is described

by the metric gµν = g±µν(r = a) where a is the throat of the thin-shell wormhole.

Both manifold surfaces (∂M+ and ∂M−) are linked by the (co-moving) thin-shell

or hypersurface Σ.

We impose the static and spherically symmetric spacetimes. Then, the line

elements of both manifolds read

ds2± = g±µνdx
µdxν = −f±(r)dt

2 +
dr2

f±(r)
+ r2dθ2 + r2 sin2 θdϕ2, (3.19)
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where r is the radial coordinate in both manifolds covering the range between

the throat of thin-shell wormhole to infinity (r ∈ (a,∞)), f±(r) is the vacuum

solution on manifolds (M±), for instance, f±(r) = 1 for flat spacetime, and f±(r) =

1− 2M/r for the Schwarzschild case.

The line element on the thin-shell is given by

ds2Σ = gαβdx
αdxβ |r=a= gαβ

(
∂xα

∂ya
dya
)(

∂xβ

∂yb
dyb
)

= habdy
adyb

= −dτ 2 + a2(τ)dΩ2, dΩ2 = dθ2 + sin2 θdϕ2, (3.20)

where τ is the proper time on the hypersurface Σ. ya = ya(xµ) is a coordinate on

the hypersurface Σ, hab ≡ gαβe
α
ae

β
b , eαa ≡ ∂xα/∂ya is a tangent vector on curves on

a hypersurface, and τ is a local time on the thin-shell.

We consider the dynamics at the throat by comparing the line elements on

the thin-shell from Eq. (3.20) and on the manifolds from Eq. (3.19) with limit

r → a,

−f±(a)dt
2 +

dr2

f±(r)
+ a2dΩ2 = −dτ 2 + a2dΩ2

−f±(a)ṫ
2 +

ȧ2

f±(a)
= −1

ṫ ≡ dt

dτ
=

(f±(a) + ȧ2)
1/2

f(a)
, (3.21)

where dots denote the derivative with respect to τ . The induced metric hab is

a tangent component of gαβ on the hypersurface Σ. Then, the normal vector

component on g±αβ is defined as follow [49, 50, 54]

n±
α ≡ ± F (r, a(τ)),α

|F (r, a(τ)),βF (r, a(τ)),β|1/2
, (3.22)
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where F (r, a(τ)) ≡ r − a(τ) = 0 is the hypersurface function and the normal

vector nα is perpendicular to a tangent vector eαa i.e. eαanα = 0. The Greek

indices (xα, xβ, . . . ) represent the coordinates on Manifold M where as the Latin

indices (ya, yb, . . . ) represent the coordinates on hypersuface Σ. The metric tensor

of the manifold at the hypersurface can be written in terms of tangent and normal

vectors [49, 50, 54]

gab = hab + ϵnanb, (3.23)

where ϵ represents the types of thin-shell with ϵ = −1, 0,+1 being the spacelike,

nulllike and timelike, respectively.

Now we calculate the elements of nα by considering

F±(r, a(τ)),βF±(r, a(τ))
,β = gtt∂tF±∂tF± + grr∂rF±∂rF±

=
f±(a)

2

f±(a) + ȧ2
. (3.24)

We substitute Eq. (3.24) into Eq. (3.22)

n±
α =

(
−da(τ)

dt
, 1, 0, 0

) √
f±(a) + ȧ2

f±(a)

=

(
− ȧ(τ)

ṫ
, 1, 0, 0

) √
f±(a) + ȧ2

f±(a)

=

(
−ȧ(τ),

√
f±(a) + ȧ2

f±(a)
, 0, 0

)
, (3.25)

where we also make use of ṫ from Eq. (3.21) for the last line. This is the elements

of the normal vector on the hypersurface of manifolds (M+ and M−).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

49

3.2.2 The embedding diagram for thin-shell wormhole

To visualize the thin-shell wormhole spacetime, we consider the slice of the line

element given in Eq. (3.19) at t = constant and θ = π/2. The two-dimensional

surface is embedded into three dimensional Euclidean space (cylindrical coordi-

nate)

ds2 =
dr

f±(r)
+ r2dϕ2 = dr2 + r2dϕ2 + dz2. (3.26)

Then, we obtain the relation

dz

dr
=

√
1− f±(r)

f±(r)
, (3.27)

where a choice of function f±(r) must satisfies 0 < f±(r) < 1 because z must be

a real number.

3.2.3 The flaring-out condition for thin-shell wormhole

Furthermore, we apply the following criteria to determine the condition for the

narrowest radius of the thin-shell wormhole. We consider the second order deriva-

tive as follow

d2r

dz2
=

f ′
±(r)

2(1− f±(r))2
> 0, (3.28)

where this relation holds at or near the throat of the thin-shell wormhole to guar-

antee that the wormhole throat is the narrowest part.
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3.2.4 Junction condition

The thin-shell on the hypersurface Σ plays the major role to link two manifolds via

the boundaries of two manifolds ∂M±. We study the dynamics of the thin shell

by solving the junction condition from an action containing the bulks (manifolds),

boundaries and the hypersurface as follow [55, 56]

Stotal =

∫
M+

d4x
√

−g+
(

R

16πG
+ L+

matter

)
+

1

8πG

∫
∂M+

d3y
√
−h+K+

+

∫
M−

d4x
√
−g−

(
R

16πG
+ L−

matter

)
+

1

8πG

∫
∂M−

d3y
√
−h−K−

+

∫
Σ

d3y
√
−hLΣ

matter , (3.29)

where
√
−h is the volume element on the 3-dimensional hypersurface, the bound-

ary terms are called Gibbons-Hawkings terms and K is the trace of the extrinsic

curvature Kab on the thin-shell with K ≡ Ka
a = habK

b
a. Lmatter is the Lagrangian

density on the thin shell of the material for wormhole construction. Inside the

bulk, the line element is described by the metric tensor g±µν while, on the thin-shell

hypersurface, the line element is determined by the induced metric hab. However,

the form of Lagrangian density in bulks is exactly the same as on the hypersurface.

With the variational principle to the total action in Eq. (3.29), the equation of
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motion reads

δS =

∫
M+

d4x
√

−g+

(
G+

αβ

16πG
+ T

(f) ,+
αβ

)
δgαβ+

+

∫
∂M+

d3y

√
−h+

8πG

(
K+

ab − h+
abK

+
)
δhab

+

+

∫
M−

d4x
√
−g−

(
G−

αβ

16πG
+ T

(f) ,−
αβ

)
δgαβ−

+

∫
∂M−

d3y

√
−h−

8πG

(
K−

ab − h−
abK

−)δhab
−

−
∫
Σ

d3y
√
−h tabδh

ab , (3.30)

where the energy momentum tensor of the matter in bulks is

T
(f) ,±
αβ = − 2√

−g

δ
(√

−gL±
matter

)
δgαβ±

, (3.31)

and the energy momentum tensor of the matter on the thin-shell can be written

in terms of perfect fluid as follow

tab = − 2√
−h

δ
(√

−hLΣ
matter

)
δhab

±

= (ρ+ p)uaub + pha
b . (3.32)

In order to solve for the junction condition, we consider the variation of the action

on the hypersurface Σ and boundaries ∂M± with respect to the induced metric

hab

0 =
δS

δhab
=

∫
∂M+

d3y
√
−h+

1

8πG

(
K+

cd − h+
cdK

+
)δhcd

+

δhab

+

∫
∂M−

d3y
√
−h− 1

8πG

(
K−

cd − h−
cdK

−)δhcd
−

δhab

−
∫
Σ

d3y
√
−h tab. (3.33)

The normal vector na of the hypersurface points from M− to M+. Then we can

choose na
− = na = −na

+ in which the extrinsic curvature on each side is related to
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each other via [55, 56]

K+
ab(n

a
+) = −K+

ab(n
a), (3.34)

and

K−
ab(n

a
−) = K−

ab(n
a). (3.35)

Moreover, the induced metric hab are the same on both sides of the boundaries,

i.e., h+
ab = hab = h−

ab. Eq. (3.33) becomes

δStotal

δhab
=

∫
Σ

d3y
√
−h

1

8πG

(
hab∆K −∆Kab − 8πGtab

)
= 0, (3.36)

where the notation ∆A ≡ A+−A− represents the difference of A in both manifolds.

Eventually the junction condition on the thin-shell is given by

δab∆K −∆Ka
b = 8πGtab , (3.37)

where the matrix form of energy momentum tensor of matter reads

tab =


−ρ 0 0

0 Pt 0

0 0 Pt

 , (3.38)

where ρ is the energy density of wormhole material on the thin shell and Pt is the

pressure in the tangential directions of wormhole material on the thin shell. Thus,

junction condition will provide the detail of the matter that holds the thin-shell

wormhole sustainably. �

Now we consider the left hand side of the junction condition in Eq. (3.37).
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The extrinsic curvature can be calculated via the following equation:

Kab ≡ eαae
β
b∇βnα

= eβb∇β (nαe
α
a )− nαe

β
b∇β (e

α
a )

= 0− nα∇be
α
a

= −nα∇b

(
dxα

dya

)
= −nα

[
d2xα

dyadyb
+ Γα

βγ

dxβ

dya
dxγ

dyb

]
, (3.39)

where the normal vector nα from Eq. (3.22) with the spherical symmetric metric

tensor from Eq. (3.19) is given by

nα± = ±

(
−ȧ(τ),

√
f(a) + ȧ2

f(a)
, 0, 0

)
. (3.40)

Therefore all non-zero components of the extrinsic curvature are

Kτ±
τ = ± 1√

f± + ȧ2

(
ä+

f ′
±

2

)
, (3.41)

Kθ±
θ = Kϕ±

ϕ = ±1

a

(√
f± + ȧ2

)
. (3.42)

The continuity condition of the metric tensor on thin-shell implies that the metric

tensor of both manifolds are continuous at the throat of the wormhole implying

[49, 50]

g+µν = g−µν . (3.43)

This leads to f+(a) = f−(a) = f(a). The (ττ) component of the junction condition

of the thin-shell wormhole in Eq.(3.37) reads

2

a

(√
f + ȧ2

)
= −8πGρ. (3.44)
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Moreover, the (θθ) and (ϕϕ) components of the junction condition are given by

1√
f + ȧ2

(
2ä+ f ′) = 8πGPt. (3.45)

In addition, the continuity of the perfect fluid matter gives a relation between the

energy density in Eq. (3.44) and pressure in Eq. (3.45) on the thin-shell as

d

dτ

(
aρ
)
+ Pt

da

dτ
= 0. (3.46)

It is also written in terms of the first order derivative of ρ with respect to a as

dρ

da
= −

(
ρ+ Pt

a

)
. (3.47)

The second order derivative of ρ with respect to a yields

d2ρ

da2
=

ρ+ p

a2

(
2 +

dPt

dρ

)
, (3.48)

where Pt = Pt(ρ). Above equations are useful for analysing the stability of the

wormhole with several types of the perfect fluid matters.

3.2.5 Stability of the thin-shell wormhole

We use the junction conditions of the thin-shell wormhole to investigate its the

stability. The (ττ) component of the junction condition in Eq. (3.44) can be

written in term of kinetic and potential terms of throat a

1

2
ȧ2 + V (a) = 0, (3.49)

where the effective potential V (a) is given by

V (a) =
1

2
f(a)− 8π2G2ρ2a2. (3.50)
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The dynamics of the wormhole throat is determined by Eq. (3.49). To investigate

the stability of the wormhole, we consider the small perturbation on the thin shell

while it is at the equilibrium point a = a0. The effective potential V (a) describes

the type of equilibrium point a0 whether it is a stable equilibrium or unstable

equilibrium. To do so, the effective potential is expanded by Taylor series around

the static throat a0

V (a) = V (a0) + V ′(a0)(a− a0) +
1

2
V ′′(a0)(a− a0)

2 + O((a− a0)
3). (3.51)

It is straightforward to show that V (a0) = 0 and V ′(a0) = 0 by considering

Eq. (3.49) and its first derivative with a at the static throat a0. The non-zero

leading term from the perturbation of effective potential becomes

V (a) =
1

2
V ′′(a0)(a− a0)

2 + O((a− a0)
3). (3.52)

Therefore, the equation of motion for the wormhole throat approximately takes

the form

ȧ2 + V ′′(a0)(a− a0)
2 = 0. (3.53)

The perturbed thin-shell wormhole is stable if and only if V ′′(a0) > 0 with the

frequency of the oscillation ω =
√
V ′′(a0). Otherwise, the dynamics of wormhole

throat a will be exponentially grow or collapse. Note that V (a0) has the minimum

at a0. We finally obtain the stability condition of the thin-shell wormhole throat

by using the definition of the effective potential in Eq. (3.50) and substituting the

first and second order derivatives of energy density with a from Eq. (3.47) and

Eq. (3.48)

0 < V ′′(a0) =
1

2
f ′′(a0) +

dPt

dρ

(
− 16G2π2ρ(Pt + ρ)

)
− 16G2P 2

t π
2. (3.54)
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The last puzzle to investigate the stability of wormhole is the equation of state of

the matter which explains the relation between the energy density ρ and pressure

Pt of the matter. We apply interesting types of fluid model in the following section.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

Wormholes in Massive Gravity

In this chapter, we present two methods to construct wormholes in the dRGT

massive gravity and investigate their stability. The first method is the Lorentzian

traversable wormhole where the characteristic of wormhole is determined by the

shape function and the red-shift function. The second method is the thin-shell

wormhole which connects hypersurfaces of two different Universes. To check the

requirement of the exotic matter for wormhole construction, we apply the en-

ergy conditions to study the properties of matter content in the wormhole throat

whether it is physical or not.

The following sets of parameters in this work might violate the Vainshtein

mechanism since the models here are designed to investigate the effects on exotic

matter by variation of parameters in the modified gravity and dRGT massive

gravity [57, 58]. In the other words, we study a toy model of the wormholes in

f(R) and dRGT massive gravity. However, we realize the major caveat and will

apply all parameters to satisfy the Vainshtein mechanism in the future research.

According to section 2.5, the nonlinear Fierz-Pauli theory faces the BD ghost

instability causing the extra degree of freedom. From the dRGT massive gravity,
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the higher order potential terms in Eq. (2.97) can get rid of the BD ghost problem

at least in the decoupling limit [16, 17]. In the decoupling limit, the coupling cutoff

is set to eliminate the scalar self-interactions in any order. The cutoff would be

raised to Λ3 =
(
MPm

2
g

)1/3. Thus, the dRGT massive gravity is still functional

without the quantum effects until the distance is smaller than rQ ∼ 1/Λ3. In

addition, we note that the factor m
2/3
g = Λ3 carries [mass]1 dimension since we

have set MP = 1 for the present analysis.

We are using the dRGT massive gravity theory with a UV cutoff Λ3, there-

fore we should not worry about the BD instabilities until the mass of the BD ghost

is below Λ3. This happens at the quantum length scale [16]

rQ = rghost ∼
1

Λ3

=

(
1

m2
g

)1/3

. (4.1)

For a source mass M for building the traversable wormhole, the non-linearities of

the dRGT massive gravity becomes important at the radius [16]

rV =
M1/3

Λ3

=

(
M

m2
g

)1/3

. (4.2)

Generally the Vainshtein radius rV is larger than the quantum length scale rQ,

therefore we could use the dRGT theory at the distance r > rV without concerning

the quantum correction to the wormhole’s solutions.
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4.1 Lorentzian Traversable Wormhole in dRGT

massive gravity theory

Modified gravity theories have been a major role for study wormholes. f(R)

theory, which generalizes the Einstein general relativity to the higher orders, has

been used to study the traversable wormhole [9, 10]. The investigation of NEC

and WEC for wormholes in f(R) gravity with various the shape functions b(r)

and the red-shift functions Φ(r) are found in Refs. [11, 59]. The study of the effect

of cosmological constant on the Morris-Thorne wormholes was explored in Ref.

[60]. There are numerous types of wormholes with modified gravity, for instance,

Einstein-Gauss-Bonnet gravity [61], f(R, ϕ) gravity [62], both f(R) and f(R, T )

theories [63, 64], Born-Infeld gravity [65], Eddington-inspired Born-Infeld gravity

[66], and even in non-commutative geometry [67, 68].

In this section, we apply the modified f(R) gravity and dRGT massive

gravity to find the solution of traversable wormhole. We consider the Starobinsky

inflation model [69] which is used to understand the inflation in the early Universe

and the acceleration of the Universe in the late-time acceleration. The modified

gravity function is f(R) = R + α1R
n where α1 and n are arbitrary constants.
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4.1.1 Equation of motion for Lorentzian traversable worm-

hole

The action of f(R) gravity with the dRGT massive gravity theory is given by [57]

S =

∫
d4x

√
−g

(
1

16πG

[
f(R) +m2

gU(g, ϕ
a)
])

+

∫
d4x

√
−gLmatter, (4.3)

where f(R) = R + α1R
n is the modified gravity by Starobinsky and U(g, ϕa) is

the ghost-free effective potential from dRGT massive gravity theory in Eq. (2.97).

According to the variational principle, we vary the action with respect to gµν to

obtain the equation of motion

F (R)Rµν −
1

2
f(R)gµν −∇µ∇νF + gµν□F = −m2

gXµν + 8πGT (m)
µν , (4.4)

where the energy-momentum tensor of the matter field is

T (m)
µν =

−2√
−g

δ(
√
−gLmatter)

δgµν

= diag (−ρ, Pr, Pt, Pt), (4.5)

F = F (R) ≡ df(R)/dR and □F = gµν∇µ∇νF . The energy momentum tensor for

the matter constructing the traversable wormhole is written in terms of anisotropic

perfect fluid as Eq. (3.12). Xµν is the dRGT massive gravity tensor defined in

Eq. (2.100). Each non-zero components of Xµν serves the energy density and

pressure of the massive graviton from Eq. (2.117), Eq. (2.118) and Eq. (2.119).

The field equation in Eq. (4.4) can be written in the following form [57]

Gµν = Rµν −
1

2
Rgµν = −m2

gXµν + 8πG
(
T (f(R))
µν + T (m)

µν

)
, (4.6)
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where

8πGT (f(R))
µν =

1

2
gµν(f(R)−R) +∇µ∇νF − gµν□F + (1− F )Rµν . (4.7)

To study the traversable wormhole, we use the line element of the Morris-and-

Thorne traversable wormhole from Eq. (3.1)

ds2 = −e2Φ(r)dt2 +

(
1− b(r)

r

)−1

dr2 + r2(dθ2 + sin2 θdϕ2),

Considering the field equation in Eq. (4.6) with the Morris-and-Thorne line ele-

ment, one obtains the energy density, pressure in radial and tangential directions

as follows [57],

ρ =
dF (R)

dr

(
rb′(r) + 3b(r)− 4r

16πGr2
− 1

8πG

(
1− b(r)

r

)
Φ′(r)

)
+

f(R)

16πG

+
2γr − Λr2

8πGr2
+ F (R)

(
(r (−b′(r))− 3b(r) + 4r) Φ′(r)

16πGr2
(4.8)

+
1

8πG

(
1− b(r)

r

)(
Φ′′(r) + Φ′2(r)

))
− 1

8πG

(
1− b(r)

r

)
d2F (R)

dr2
,

Pr =
dF (R)

dr

(
1

8πG

(
1− b(r)

r

)
Φ′(r) +

1

4πGr

(
1− b(r)

r

))
− f(R)

16πG

+
Λr2 − 2γr

8πGr2
+ F (R)

(
1

8πGr3
(rb′(r)− b(r))

(
1 +

rΦ′(r)

2

)
− 1

8πG

(
1− b(r)

r

)(
Φ′′(r) + Φ′2(r)

))
, (4.9)

Pt = F (R)

(
1

8πG

(
1− b(r)

r

)
Φ′(r) +

1

16πGr3
(b(r) + rb′(r))

)
− f(R)

16πG

+
dF (R)

dr

(
1

8πG

(
1− b(r)

r

)
Φ′(r) +

1

16πGr3
(
4r2 − 3rb(r)− r2b′(r)

))

+
Λr2 − 2γr

8πGr2
+

1

8πG

(
1− b(r)

r

)
d2F (R)

dr2
. (4.10)
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4.1.2 Analyze the energy conditions for Lorentzian traversable

wormholes

To analyze the energy conditions of the matter constructing the traversable worm-

hole, we have to choose the shape function and red-shift function that satisfy the

wormhole properties in section [3]. In our study, we choose the shape function as

b(r) =
r

exp (α(r − r0))
, (4.11)

where r0 is the radius of the wormhole throat, α is the arbitrary constant. It

is straightforward to show that the shape function in Eq. (4.11) satisfies the

wormhole properties in embedding diagram, flaring-out condition and no-horizon

condition. According to Refs.[63, 70], the choice of α is unity to construct the

traversable wormhole. The embedding diagram of the metric Eq. (3.4) is illus-

trated in Fig. 4.1 which is the function of z(r) (by integration of Eq. (3.5)) for

the slices t = constant, θ = π/2. The chosen shape function of the traversable

satisfies the embedding diagram and the flaring-out condition demonstrated in

Fig. (4.2) [57].

In this thesis, we select these three types of the red-shift function Φ(r) =

constant = p,Φ(r) = γ1
r
, and Φ(r) = log

(
1 + γ2

r

)
where γ1 and γ2 are arbitrary

real constants. We apply three cases of the red-shift functions with the shape

function to calculate null energy condition (NEC), weak energy condition (WEC)

and strong energy condition (SEC) introduced in subsection (1.3).

There are four sets of the dRGT parameters which are (Λ = −1.0 and

γ = 0.5), (Λ = −0.5 and γ = 0.5), (Λ = −1.0 and γ = 0.1), and (Λ = −0.5
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Figure 4.1: Plots show embedding diagrams of the metric (3.4) for slices

t = const, θ = π/2. The left panel shows the 2-dimensional diagram of the

traversable wormhole using r0 = 1.0, and α = 1.0 (a black dot-dashed line),

r0 = 1.0, and α = 3.0 (a red dot line) and r0 = 1.0, and α = 5.0 and (a blue solid

line). The right panel displays 3-dimensional diagram of the traversable wormholes

using the same three sets of parameters.

and γ = 0.1), then their Vainshtein radiuses are 0.794, 0.874, 0.941 and 1.126,

respectively. Because we set G = 1 and M = 1, the Vainshtein radiuses equal the

quantum length scales. Additionally, we set the throat of the traversable wormhole

at r0 = 1, then the first three cases have no problem with all range except for the

last case where the distance from the throat (r0 = 1) to its Vainshtein radius

(rV = 1.126) cannot be trusted due to the involvement of the quantum correction.
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Figure 4.2: We verify the properties of the shape function introduced in Eq.

(4.11). The plots show behaviors of the proposed shape function against the

requirements given by the embedding diagram and the flaring-out condition for

traversable wormhole in Eqs. (3.6 - 3.9) using various values of α = 1.0, 3.0, 5.0

and r0 = 1. We find that the shape function of the wormhole is completely satisfied

the requirements.

The first case: Φ(r) = constant = p

With the shape function from Eq. (4.11) and the constant red shift function, we

find [57]

ρ = F ′(r)

(
b′(r)

16πGr
+

3b(r)

16πGr2
− 1

4πGr

)
+

(
b(r)

8πGr
− 1

8πG

)
F ′′(r)

+
f(R(r))

16πG
− Λ

8πG
+

γ

4πGr
, (4.12)

Pr = F (r)

(
b′(r)

8πGr2
− b(r)

8πGr3

)
+

(
1

4πGr
− b(r)

4πGr2

)
F ′(r)− f(R(r))

16πG

+
Λ

8πG
− γ

4πGr
, (4.13)
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Pt = F ′(r)

(
− b′(r)

16πGr
− 3b(r)

16πGr2
+

1

4πGr

)
+ F (r)

(
b′(r)

16πGr2
+

b(r)

16πGr3

)
+

(
1

8πG
− b(r)

8πGr

)
F ′′(r)− f(R(r))

16πG
+

Λ

8πG
− γ

8πGr
. (4.14)

The combinations of Eqs. (4.12 - 4.14) yield the following relations among

ρ, Pr, and Pt:

ρ+ Pr = F ′(r)

(
b′(r)

16πGr
− b(r)

16πGr2

)
+ F (r)

(
b′(r)

8πGr2
− b(r)

8πGr3

)
+

(
b(r)

8πGr
− 1

8πG

)
F ′′(r) , (4.15)

ρ+ Pt =
F (r)b′(r)

16πGr2
+

b(r)F (r)

16πGr3
+

γ

8πGr
, (4.16)

ρ− |Pr| = −
∣∣∣∣− γ

4Gπr
+

Λ

8Gπ
− f(R(r))

16Gπ
+ F (r)

(
b′(r)

8Gπr2
− b(r)

8Gπr3

)
+

(
1

4Gπr
− b(r)

4Gπr2

)
F ′(r)

∣∣∣∣+ F ′(r)

(
b′(r)

16πGr
+

3b(r)

16πGr2

− 1

4πGr

)
+

(
b(r)

8πGr
− 1

8πG

)
F ′′(r) +

f(R(r))

16πG
− Λ

8πG

+
γ

4πGr
, (4.17)

ρ− |Pt| = F ′(r)

(
b′(r)

16πGr
+

3b(r)

16πGr2
− 1

4πGr

)
+

f(R(r))

16πG
− Λ

8πG

+

(
b(r)

8πGr
− 1

8πG

)
F ′′(r) +

γ

4πGr
−
∣∣∣∣F ′(r)

(
− b′(r)

16πGr

− 3b(r)

16πGr2
+

1

4πGr

)
+ F (r)

(
b′(r)

16πGr2
+

b(r)

16πGr3

)

+

(
1

8πG
− b(r)

8πGr

)
F ′′(r)− f(R(r))

16πG
+

Λ

8πG
− γ

8πGr

∣∣∣∣ , (4.18)
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ρ+ 2Pt = F ′(r)

(
− b′(r)

16πGr
− 3b(r)

16πGr2
+

1

4πGr

)
+F (r)

(
b′(r)

8πGr2
+

b(r)

8πGr3

)
+

(
1

8πG
− b(r)

8πGr

)
F ′′(r)

−f(R(r))

16πG
+

Λ

8πG
, (4.19)

ρ+ Pr + 2Pt = F ′(r)

(
− b′(r)

16πGr
− 7b(r)

16πGr2
+

1

2πGr

)
+

F (r)b′(r)

4πGr2

+

(
1

8πG
− b(r)

8πGr

)
F ′′(r)− f(R(r))

8πG
+

Λ

4πG
− γ

4πGr
.(4.20)

Figure 4.3: Figures demonstrate the variation of ρ, ρ + Pr, ρ + Pt, ρ + Pr + 2Pt

as a function of r with Φ(r) = p = 1, α1 = ±0.1 and n = 2. We have used

α = 5.0, r0 = 1, G = 1 and various values of γ and Λ.

We consider the red-shift function of the wormhole metric as Φ(r) = 1. We

split results by the strength of Starobinsky model into two figures shown in Fig.4.3

(α = ±0.1) and Fig.4.4 (α = ±0.01). In each panel in figures, there are three main

cases of traversable wormholes; general relativity, positive α1 and negative α1.
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Figure 4.4: Figures demonstrate the variation of ρ, ρ+Pr, ρ+Pt, ρ+Pr +2Pt as

a function of r with Φ(r) = 1, α1 = ±0.01 and n = 2. We have used α = 5.0, r0 =

1, G = 1 and various values of γ and Λ.

Let consider Fig.4.3 (Φ(r) = 1 and α1 = ±0.1). The first case in this figure

is the traversable wormhole in GR represented by the black solid lines of ρ, ρ+Pr,

ρ+Pt, and ρ+Pr +2Pt as functions of r. It violates WEC, NEC and SEC for all

range from its throat to the cosmological horizon.

The second case in Fig.4.3 is the modified gravity with dRGT and Starobin-

sky models with α1 = 0.1 represented in color solid lines. The positive value of

α1 limits the negative zones of ρ and ρ + Pr around the throat of the wormhole.

The zone of negative energy density reduces when the value of γ increases and the

value of Λ decreases. While both parameters do not effect the negative zone of

ρ+ Pr. ρ+ Pt is positive at the throat and becomes a decrease function near the
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Table 4.1: Table shows a summary of energy/pressure conditions for Φ(r) = p =

1.0, n = 2, α = 5.0, r0 = 1, G = 1, γ = 0.5, and Λ = −1.0.

No. Terms α1 = 0.1 α1 = −0.1

1 ρ ≥ 0, for r ∈ [1.1,∞) ≥ 0, for r ∈ [1.0, 1.1] ∪ [1.55,∞)

< 0, for r ∈ [1.0, 1.1) < 0, for r ∈ [1.1, 1.55)

2 ρ+ Pr ≥ 0, for r ∈ [1.1,∞) ≥ 0, for r ∈ [1.0, 1.05] ∪ [2.5,∞)

< 0, for r ∈ [1.0, 1.1) < 0, for r ∈ (1.05, 2.5)

3 ρ+ Pt ≥ 0, for r ∈ [1.0,∞) ≥ 0, for r ∈ [1.3,∞)

< 0, for r ∈ [1.0, 1.3)

4 ρ+ Pr + 2Pt ≥ 0, for r ∈ [1.0, 1.15] < 0, for ∀r

< 0, for r ∈ (1.15,∞)

5 ρ− |Pr| ≥ 0, for r ∈ [1.1,∞) ≥ 0, for r ∈ [1.0, 1.05] ∪ [2.5,∞)

< 0, for r ∈ [1.0, 1.1)

6 ρ− |Pt| < 0, for ∀r < 0, for ∀r

throat where its value goes below zero for low value of γ while Λ does not effect

much. ρ + Pr + 2Pt, which is one for analysing SEC, is above zero only near the

throat and becomes negative for the rest of the the spacetime. The effects from

dRGT and Starobinsky on ρ+Pr+2Pt seem to be contradict to the energy density

since ρ+ Pr + 2Pt is more negative for more positive γ and more negative Λ.

For the last case in Fig.4.3, the modified gravity with dRGT and Starobinsky

models with α1 = −0.1 is represented in color dashed lines. All results are mostly

opposite to the positive α1 case. The energy density is positive around the throat
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and becomes negative for the rest of the spacetime. The zone of negative energy

density reduces when the value of γ increases and the value of Λ decreases like

the previous case. The trend of ρ + Pr is similar to its energy density; however,

it is invariant under the change of γ and Λ. If the value of γ is not high enough,

ρ+Pt remains negative when the distance from the throat increases. For analysing

ρ+ Pr + 2Pt, it is negative around the throat and increasing to converge to some

constants as the distance increases. The violation zone will be limited if the value

of γ decreases and Λ increases.

Now consider Fig.4.4 (α1 = ±0.01). The only significant difference from this

one to Fig.4.3 is the values of ρ, ρ+Pr, ρ+Pt, and ρ+Pr +2Pt near the throat of

wormhole. It is evident that the less magnitude of α1 is, the more violation zone

near the throat becomes. The characteristic of energy density for α1 = 0.01 is still

similar to the previous case but energy density is negative for all range from throat

to the cosmological constant. The values of ρ + Pr for α1 = ±0.01, are mostly

negative except some small region of positiveness for α1 = 0.01. The values of

ρ + Pt for all cases are negative near the throat. However, the characteristic of

ρ+ Pr + 2Pt is still the same but small magnitude near the throat.
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The second case: Φ(r) = γ1
r

With the shape function from Eq. (4.11) and Φ(r) = γ1
r

, we find [57]

ρ = F ′(r)

(
b′(r)

16πGr
− γ1b(r)

8πGr3
+

3b(r)

16πGr2
+

γ1
8πGr2

− 1

4πGr

)
+F (r)

(
γ1b

′(r)

16πGr3
− γ2

1b(r)

8πGr5
− γ1b(r)

16πGr4
+

γ2
1

8πGr4

)
+

(
b(r)

8πGr
− 1

8πG

)
F ′′(r) +

f(R(r))

16πG
− Λ

8πG
+

γ

4πGr
, (4.21)

Pr = F (r)

(
− γ1b

′(r)

16πGr3
+

b′(r)

8πGr2
+

γ2
1b(r)

8πGr5
+

5γ1b(r)

16πGr4
− b(r)

8πGr3

− γ2
1

8πGr4
− γ1

4πGr3

)
+ F ′(r)

(
γ1b(r)

8πGr3
− b(r)

4πGr2
− γ1

8πGr2
+

1

4πGr

)

−f(R(r))

16πG
+

Λ

8πG
− γ

4πGr
, (4.22)

Pt = F ′(r)

(
− b′(r)

16πGr
+

γ1b(r)

8πGr3
− 3b(r)

16πGr2
− γ1

8πGr2
+

1

4πGr

)
+F (r)

(
b′(r)

16πGr2
− γ1b(r)

8πGr4
+

b(r)

16πGr3
+

γ1
8πGr3

)
+

(
1

8πG
− b(r)

8πGr

)
F ′′(r)− f(R(r))

16πG
+

Λ

8πG
− γ

8πGr
. (4.23)
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The combinations of Eqs. (4.21 - 4.23) yield the following relations among ρ, Pr, and Pt:

ρ+ Pr = F ′(r)

(
b′(r)

16πGr
− b(r)

16πGr2

)
+

(
b(r)

8πGr
− 1

8πG

)
F ′′(r)

+F (r)

(
b′(r)

8πGr2
+

γ1b(r)

4πGr4
− b(r)

8πGr3
− γ1

4πGr3

)
, (4.24)

ρ+ Pt = F (r)

(
γ1b

′(r)

16πGr3
+

b′(r)

16πGr2
− γ2

1b(r)

8πGr5
− 3γ1b(r)

16πGr4

+
b(r)

16πGr3
+

γ2
1

8πGr4
+

γ1
8πGr3

)
+

γ

8πGr
, (4.25)

ρ− |Pr| = −
∣∣∣∣− γ

4Gπr
+

Λ

8Gπ
− f(R(r))

16Gπ
+ F (r)

(
b(r)γ2

1

8Gπr5
− γ2

1

8Gπr4

+
5b(r)γ1
16Gπr4

− b′(r)γ1
16Gπr3

− γ1
4Gπr3

− b(r)

8Gπr3
+

b′(r)

8Gπr2

)
+

(
γ1b(r)

8Gπr3
− b(r)

4Gπr2
− γ1

8Gπr2
+

1

4Gπr

)
F ′(r)

∣∣∣∣
+F ′(r)

(
b′(r)

16πGr
− γ1b(r)

8πGr3
+

3b(r)

16πGr2
+

γ1
8πGr2

− 1

4πGr

)

+F (r)

(
γ1b

′(r)

16πGr3
− γ2

1b(r)

8πGr5
− γ1b(r)

16πGr4
+

γ2
1

8πGr4

)
+

(
b(r)

8πGr
− 1

8πG

)
F ′′(r) +

f(R(r))

16πG
− Λ

8πG
+

γ

4πGr
, (4.26)

ρ− |Pt| = −
∣∣∣∣− γ

8Gπr
+

Λ

8Gπ
− f(R(r))

16Gπ
+ F (r)

(
− γ1b(r)

8Gπr4
+

b(r)

16Gπr3

+
γ1

8Gπr3
+

b′(r)

16Gπr2

)
+

(
γ1b(r)

8Gπr3
− 3b(r)

16Gπr2
− γ1

8Gπr2

− b′(r)

16Gπr
+

1

4Gπr

)
F ′(r) +

(
1

8Gπ
− b(r)

8Gπr

)
F ′′(r)

∣∣∣∣
+F ′(r)

(
b′(r)

16πGr
− γ1b(r)

8πGr3
+

3b(r)

16πGr2
+

γ1
8πGr2

− 1

4πGr

)
+F (r)

(
γ1b

′(r)

16πGr3
− γ2

1b(r)

8πGr5
− γ1b(r)

16πGr4
+

γ2
1

8πGr4

)
+

(
b(r)

8πGr
− 1

8πG

)
F ′′(r) +

f(R(r))

16πG
− Λ

8πG
+

γ

4πGr
, (4.27)
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Figure 4.5: Figures illustrate the variation of ρ, ρ+ Pr, ρ+ Pt, ρ+ Pr + 2Pt as a

function of r with Φ(r) = γ1/r. Here we have used α1 = ±0.1, n = 2α = 5.0, r0 =

1, G = 1, γ1 = 1.0 and various values of γ and Λ.

ρ+ 2Pt = F ′(r)

(
− b′(r)

16πGr
+

γ1b(r)

8πGr3
− 3b(r)

16πGr2
− γ1

8πGr2
+

1

4πGr

)
+F (r)

(
γ1b

′(r)

16πGr3
+

b′(r)

8πGr2
− γ2

1b(r)

8πGr5
− 5γ1b(r)

16πGr4
+

b(r)

8πGr3

+
γ2
1

8πGr4
+

γ1
4πGr3

)
+

(
1

8πG
− b(r)

8πGr

)
F ′′(r)

−f(R(r))

16πG
+

Λ

8πG
, (4.28)

ρ+ Pr + 2Pt = F ′(r)

(
− b′(r)

16πGr
+

γ1b(r)

4πGr3
− 7b(r)

16πGr2
− γ1

4πGr2
+

1

2πGr

)
+
F (r)b′(r)

4πGr2
+

(
1

8πG
− b(r)

8πGr

)
F ′′(r)− f(R(r))

8πG
+

Λ

4πG

− γ

4πGr
. (4.29)
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Figure 4.6: Figures illustrate the variation of ρ, ρ + Pr, ρ + Pt, ρ + Pr + 2Pt as

a function of r with Φ(r) = γ1/r. Here we have used α1 = ±0.01, n = 2, α =

5.0, r0 = 1, G = 1, γ1 = 1.0 and various values of γ and Λ.
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Table 4.2: Table shows a summary of energy/pressure conditions for Φ(r) =

γ1/r,n = 2, α = 5.0, r0 = 1, G = 1, γ1 = 1.0, γ = 0.5, and Λ = −1.0.

No. Terms α1 = 0.1 α1 = −0.1

1 ρ ≥ 0, for r ∈ [1.2,∞) ≥ 0, for r ∈ [1.02, 1.25] ∪ [1.45,∞)

< 0, for r ∈ [1.0, 1.2) < 0, for r ∈ [1.0, 1.02) ∪ (1.25, 1.45)

2 ρ+ Pr ≥ 0, for r ∈ [1.25,∞) < 0, for ∀r

< 0, for r ∈ [1.0, 1.25)

3 ρ+ Pt ≥ 0, for r ∈ [1.15,∞) ≥ 0, for r ∈ [1.3,∞)

< 0, for r ∈ [1.0, 1.15) < 0, for r ∈ [1.0, 1.3)

4 ρ+ Pr + 2Pt ≥ 0, for r ∈ [1.02, 1.12] < 0, for ∀r

< 0, for r ∈ [1.0, 1.02) ∪ (1.12,∞)

5 ρ− |Pr| ≥ 0, for r ∈ [1.22, 1.9] < 0, for ∀r

< 0, for r ∈ [1.0, 1.22) ∪ (1.9,∞)

6 ρ− |Pt| < 0, for ∀r < 0, for ∀r

For the red-shift function of the wormhole metric as Φ(r) = 1/r, there are

still three main cases of traversable wormholes categorized by the strength of

Starobinsky model; GR (α = 0), positive α, and negative α.

Let consider Fig.4.5 (Φ(r) = 1/r and α1 = ±0.1). The first case is the

traversable wormhole in GR with Φ(r) = 1/r which are demonstrated in the black

solid lines. It violates WEC, NEC and SEC for all range from its throat to the

cosmological horizon.

The second case in Fig.4.5 is the modified gravity with dRGT and Starobin-

sky models with α1 = ±0.1 represented in color solid lines. Since the red-shift

function is inversely proportional to r, the amount of negative energy density and
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negative ρ + Pr reduce significantly near the throat compared to the constant

red-shift function. Additionally the negative region of energy density is reduced

by the increasing value of γ and the decreasing value of Λ. However, those pa-

rameters do not effect on the negative zone of ρ + Pr. ρ + Pt is negative at the

throat but increases as distance increases until reaching the top before reducing

and converging to positive constant. Λ does not effect the region but γ plays a

major role to reduce the negative region. While ρ+Pr+2Pt has an opposite effect

of dRGT and Starobinsky from the energy density because ρ+Pr +2Pt has more

negative region for more positive γ and more negative Λ.

For the last case in Fig.4.5, the modified gravity with dRGT and Starobinsky

models with α1 = −0.1 is represented in color dashed lines. All results for this case

look like upside down when compared to α1 = 0.1. The energy density has two

negative regions; around the throat and the further region. The region reduces

when the value of γ increases and the value of Λ decreases. Note that if γ is

high or Λ is low enough, there would be only one negative energy density region

which is the one with the throat. ρ + Pr is negative for all region of spacetime

regardless of dRGT parameters. ρ+Pt is negative from the throat and increases as

the distance increases which converges to positive constant. The negative region

reduces as the value of γ increases. At the throat, the value of ρ+Pt for α1 = −0.1

is more negative than the value of ρ+Pt for α1 = 0.1. ρ+Pr+2Pt is negative near

the throat and increases as distance increases. When γ decreases and Λ increases

enough, the negative region of ρ+ Pr + 2Pt will be limited around the throat.

Now consider Fig.4.6 (α1 = ±0.01). It is obvious that the less magnitude
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of α is, the less fluctuations in ρ, ρ + Pr, ρ + Pt and ρ + Pr + 2Pt are. The

energy density is an increasing function which is negative at the throat. The

negative region decreases as the value of γ increases or the value of Λ decreases.

While ρ + Pr is negative for all spacetime region where the dRGT paramters do

not effect the characteristic at all. The value of ρ + Pt is negative at the throat

and increases to be positive as the distance increases. The violation region reduces

with the increase of γ and the decrease of Λ. However, the dRGT and Starobinsky

models provide the opposite results on ρ+Pr+2Pt where it is more negative with

the increase of γ and the decrease of Λ.

The third case: Φ(r) = log
(
1 + γ2

r

)
With the shape function from Eq. (4.11) and Φ(r) = log

(
1 + γ2

r

)
, we find [57]

ρ = F ′(r)

(
b′(r)

16πGr
− γ2b(r)

8πGr3
(
γ2
r
+ 1
) + 3b(r)

16πGr2
+

γ2

8πGr2
(
γ2
r
+ 1
) − 1

4πGr

)

+F (r)

(
γ2b

′(r)

16πGr3
(
γ2
r
+ 1
) − γ2b(r)

16πGr4
(
γ2
r
+ 1
))+

(
b(r)

8πGr
− 1

8πG

)
F ′′(r)

+
f(R(r))

16πG
− Λ

8πG
+

γ

4πGr
, (4.30)

Pr = F (r)

(
− γ2(b

′(r) + 4)

16πGr3
(
γ2
r
+ 1
) + b′(r)

8πGr2
+

5γ2b(r)

16πGr4
(
γ2
r
+ 1
) − b(r)

8πGr3

)

+F ′(r)

(
γ2b(r)

8πGr3
(
γ2
r
+ 1
) − b(r)

4πGr2
− γ2

8πGr2
(
γ2
r
+ 1
) + 1

4πGr

)

−f(R(r))

16πG
+

Λ

8πG
− γ

4πGr
, (4.31)
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Pt = F ′(r)

(
− b′(r)

16πGr
+

γ2b(r)

8πGr3
(
γ2
r
+ 1
) − 3b(r)

16πGr2
− γ2

8πGr2
(
γ2
r
+ 1
) + 1

4πGr

)

+F (r)

(
b′(r)

16πGr2
− γ2b(r)

8πGr4
(
γ2
r
+ 1
) + b(r)

16πGr3
+

γ2

8πGr3
(
γ2
r
+ 1
))

+

(
1

8πG
− b(r)

8πGr

)
F ′′(r)− f(R(r))

16πG
+

Λ

8πG
− γ

8πGr
. (4.32)

The combinations of Eqs. (4.30 - 4.32) yield the following relations among ρ, Pr, and Pt:

ρ+ Pr = F ′(r)

(
b′(r)

16πGr
− b(r)

16πGr2

)
+ F (r)

(
b′(r)

8πGr2
+

γ2b(r)

4πGr4
(
γ2
r
+ 1
) − b(r)

8πGr3

− γ2
4πGr3(γ2

r
+ 1)

)
+

(
b(r)

8πGr
− 1

8πG

)
F ′′(r) , (4.33)

ρ+ Pt = F (r)

(
γ2b

′(r)

16πGr3
(
γ2
r
+ 1
) + b′(r)

16πGr2
− 3γ2b(r)

16πGr4
(
γ2
r
+ 1
) + b(r)

16πGr3

+
γ2

8πGr3
(
γ2
r
+ 1
))+

γ

8πGr
, (4.34)

ρ− |Pr| = −
∣∣∣∣− γ

4Gπr
+

Λ

8Gπ
− f(R(r))

16Gπ
+ F (r)

(
5γ2b(r)

16Gπr4
(
γ2
r
+ 1
) − b(r)

8Gπr3

− γ2b
′(r)

16Gπr3
(
γ2
r
+ 1
) + b′(r)

8Gπr2
− γ2

4Gπr3
(
γ2
r
+ 1
))+

(
γ2b(r)

8Gπr3
(
γ2
r
+ 1
)

− b(r)

4Gπr2
+

1

4Gπr
− γ2

8Gπr2
(
γ2
r
+ 1
))F ′(r)

∣∣∣∣+ F ′(r)

(
b′(r)

16πGr

− γ2b(r)

8πGr3
(
γ2
r
+ 1
) + 3b(r)

16πGr2
+

γ2

8πGr2
(
γ2
r
+ 1
) − 1

4πGr

)
+F (r)

(
γ2b

′(r)

16πGr3
(
γ2
r
+ 1
) − γ2b(r)

16πGr4
(
γ2
r
+ 1
))

+

(
b(r)

8πGr
− 1

8πG

)
F ′′(r) +

f(R(r))

16πG
− Λ

8πG
+

γ

4πGr
, (4.35)
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ρ− |Pt| = −
∣∣∣∣− γ

8Gπr
+

Λ

8Gπ
− f(R(r))

16Gπ
+ F (r)

(
− γ2(b(r) + r)

8Gπr4
(
γ2
r
+ 1
)

+
b(r)

16Gπr3
+

b′(r)

16Gπr2

)
+ F ′(r)

(
γ2(b(r) + r)

8Gπr3
(
γ2
r
+ 1
) − 3b(r)

16Gπr2

− b′(r)

16Gπr
+

1

4Gπr

)
F ′(r) +

(
1

8Gπ
− b(r)

8Gπr

)
F ′′(r)

∣∣∣∣
+F ′(r)

(
b′(r)

16πGr
− γ2(b(r)− r)

8πGr3
(
γ2
r
+ 1
) + 3b(r)

16πGr2
− 1

4πGr

)
+F (r)

(
γ2b

′(r)

16πGr3
(
γ2
r
+ 1
) − γ2b(r)

16πGr4
(
γ2
r
+ 1
))

+

(
b(r)

8πGr
− 1

8πG

)
F ′′(r) +

f(R(r))

16πG
− Λ

8πG
+

γ

4πGr
, (4.36)

ρ+ 2Pt = F ′(r)

(
− b′(r)

16πGr
+

γ2(b(r) + r)

8πGr3
(
γ2
r
+ 1
) − 3b(r)

16πGr2
+

1

4πGr

)

+F (r)

(
γ2b

′(r)

16πGr3
(
γ2
r
+ 1
) + b′(r)

8πGr2
− 5γ2b(r)

16πGr4
(
γ2
r
+ 1
)

+
b(r)

8πGr3
+

γ2

4πGr3
(
γ2
r
+ 1
))+

(
1

8πG
− b(r)

8πGr

)
F ′′(r)

−f(R(r))

16πG
+

Λ

8πG
, (4.37)

ρ+ Pr + 2Pt = F ′(r)

(
− b′(r)

16πGr
+

γ2(b(r)− r)

4πGr3
(
γ2
r
+ 1
) − 7b(r)

16πGr2
+

1

2πGr

)

+
F (r)b′(r)

4πGr2
+

(
1

8πG
− b(r)

8πGr

)
F ′′(r)− f(R(r))

8πG

+
Λ

4πG
− γ

4πGr
. (4.38)

In this case, the red-shift function in the wormhole metric is Φ(r) = log(1+

γ2
r
). There are still three main cases of traversable wormholes categorized by the

strength of Starobinsky model; GR (α = 0), positive α, and negative α.

Let consider Fig.4.7 (Φ(r) = log(1 + γ2
r
) and α1 = ±0.1). The first case is

the traversable wormhole in GR which are illustrated in the black solid lines of ρ,

ρ + Pr, ρ + Pt, and ρ + Pr + 2Pt. It violates WEC, NEC and SEC for all range
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Figure 4.7: Figures illustrate the variation of ρ, ρ+ Pr, ρ+ Pt, ρ+ Pr + 2Pt as a

function of r with Φ(r) = log(1 + γ2
r
). Here we have used α1 = ±0.1, n = 2, α =

5.0, r0 = 1, G = 1 and γ2 = 1.0 and various values of γ and Λ.

from its throat to the cosmological horizon.

The second case in Fig.4.7 is the modified gravity with dRGT and Starobin-

sky models with α1 = 0.1 represented in color solid lines. The negative regions

of ρ and ρ + Pr are limited only near the throat where this region is reduced by

increasing γ and decreasing Λ. Note that the dRGT parameters do not effect the

negative region of ρ+Pr. ρ+Pt is positive at the throat and decreases as moving

further from the throat before increasing and converging to positive constants.

The negative region is depleted with more positive γ and more negative Λ enough.

ρ+ Pr + 2Pt is a decrease function with positive value at the throat. It converges

to a negative value as distance increases. The trend of ρ+ Pr + 2Pt is contradict
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Figure 4.8: Figures illustrate the variation of ρ, ρ+ Pr, ρ+ Pt, ρ+ Pr + 2Pt as a

function of r with Φ(r) = log(1 + γ2
r
). Here we have used α1 = ±0.01, n = 2, α =

5.0, r0 = 1, G = 1, and γ2 = 1.0.

to the energy density since it has longer negative region with more positive γ and

more negative Λ.

For the last case in Fig.4.7, α1 = −0.1 case is represented in color dashed

lines. The characteristics of ρ, ρ + Pr, ρ + Pt and ρ + Pr + 2Pt are upside down

compared to α1 = 0.1. The energy density and ρ+Pr have negative regions further

from the throat and converges to positive value as distance increases. The negative

region of energy density is reduced with more positive γ and more negative Λ while

ρ+ Pr is not effected by the variation of dRGT parameters. ρ+ Pt is negative at

the throat and increases over zero as distance increases before converging to some

positive constant. The negative region is reduced with more positive γ where Λ
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Table 4.3: Table shows a summary of energy/pressure conditions for Φ(r) =

log(1 + γ2/r),n = 2, α = 5.0, r0 = 1, G = 1, γ2 = 1.0, γ = 0.5, and Λ = −1.0.

No. Terms α1 = 0.1 α1 = −0.1

1 ρ ≥ 0, for r ∈ [1.07,∞) ≥ 0, for r ∈ [1.0, 1.05] ∪ [1.50,∞)

< 0, for r ∈ [1.0, 1.07) < 0, for r ∈ (1.05, 1.5)

2 ρ+ Pr ≥ 0, for r ∈ [1.07,∞] ≥ 0, for r ∈ [1.0, 1.02]

< 0, for r ∈ [1.0, 1.07) < 0, for r ∈ (1.02,∞)

3 ρ+ Pt ≥ 0, for r ∈ [1.0, 1.07] ∪ [1.2,∞) ≥ 0, for r ∈ [1.3,∞)

< 0, for r ∈ (1.07, 1.2) < 0, for r ∈ [1.0, 1.3)

4 ρ+ Pr + 2Pt ≥ 0, for r ∈ [1.0, 1.1] < 0, for ∀r

< 0, for r ∈ (1.1,∞)

5 ρ− |Pr| ≥ 0, for r ∈ [1.07,∞] ≥ 0, for r ∈ [1.0, 1.02]

< 0, for r ∈ [1.0, 1.07) < 0, for r ∈ (1.02,∞)

6 ρ− |Pt| ≥ 0, for r ∈ [1.2,∞) ≥ 0, for r ∈ [1.5,∞)

< 0, for r ∈ [1.0, 1.20) < 0, for r ∈ [1.0, 1.5)

does not effect much. However, the parameter sets that reduce the negative region

for energy density support the negative region for ρ+ Pr + 2Pt.

Now consider Fig.4.8 (α1±0.01). Overall, the less magnitude of α1 makes ρ,

ρ+Pr, ρ+Pt and ρ+Pr +2Pt negative near the throat. For example, the energy

density is negative for all choices of dRGT parameters. Even if it increases over

zero for further distance and converges to positive constant. The negative region

decreases as the more positive γ or the more negative Λ. While ρ + Pr is below

zero for all range and has no effect on dRGT parameters. ρ + Pt is negative at
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the throat for all cases and increases over zero as moving further from the throat

which finally converges to some positive constant. The more positive γ reduces

the negative region for ρ + Pt while Λ does not involve. ρ + Pr + 2Pt is negative

for all range and has the opposite effect of dRGT parameters contrasting to the

energy density.

4.2 The thin-shell Wormhole in dRGT massive

gravity theory

In this section, we find the solution of the thin-shell wormhole in the dRGT space-

time [58]. As we discussed in section (3.2), thin-shell wormhole solution can be

constructed by gluing together two boundaries of spacetimes. Here we apply the

same trick to the case of massive gravity in which the ghost-free massive grav-

ity terms in Eq. (2.96) is added in to the total action. Consider two spacetime

manifolds denoted by M± with boundary ∂M±. Suppose the two boundaries are

connected (or glued) by the hypersurface Σ. The total action can be written as

[58]

Stotal =

∫
M+

d4x
√

−g+
(

1

16πG

(
R+ +m2

gU(g
+, ϕa)

)
+ L+

matter

)
+

1

8πG

∫
∂M+

d3y
√
−h+K+

+

∫
M−

d4x
√
−g−

(
1

16πG

(
R− +m2

gU(g
−, ϕa)

)
+ L−

matter

)
+

1

8πG

∫
∂M−

d3y
√
−h−K−

+

∫
Σ

d3y
√
−hLΣ

matter , (4.39)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

83

where LΣ
matter = LΣ

f +LΣ
g contains two types of fluids (perfect fluid, LΣ

f and massive

gravity fluid, LΣ
f ) which are localized on the hypersurface. The line element is still

the same form as Eq. (3.19) in GR, however, f(r) is the vacuum solution of dRGT

massive gravity in Eq. (2.113)

f(r) = 1− 2GM

r
− Λr2

3
+ γr + ζ.

In the next step, we apply the variational principle to obtain the equation

of motion

δStotal =

∫
M+

d4x
√
−g+

(
1

16πG

(
G+

αβ +m2
gX

+
αβ

)
+ T

(f) ,+
αβ

)
δgαβ+

+

∫
∂M+

d3y
√
−h+

1

8πG

(
K+

ab − h+
abK

+
)
δhab

+

+

∫
M−

d4x
√
−g

(
1

16πG

(
G−

αβ +m2
gX

−
αβ

)
+ T

(f) ,−
αβ

)
δgαβ−

+

∫
∂M−

d3y
√
−h− 1

8πG

(
K−

ab − h−
abK

−)δhab
−

−
∫
Σ

d3y
√
−h
(
tab + Yab

)
δhab , (4.40)

where tab is the energy momentum tensor of the wormhole source defined in

Eq. (3.32) and Y a
b is the massive gravity fluid tensor

Y a
b = − 2√

−h

δ

δhb
a

(√
−hLΣ

g

)
≡ (ρg + p(⊥)

g )uaub + p(⊥)
g ha

b , (4.41)

where ρg and p
(⊥)
g are the energy density and pressure in tangential directions of

the massive gravity fluid. To analyze the thin-shell wormhole, we consider the

equation of motion on the hypersurface Σ and boundaries ∂M±. Varying the total
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action with respect to the induced metric hab provides [58]

δStotal

δhab
=

∫
∂M+

d3y
√
−h+

1

8πG

(
K+

cd − h+
cdK

+
)δhcd

+

δhab

+

∫
∂M−

d3y
√
−h− 1

8πG

(
K−

cd − h−
cdK

−)δhcd
−

δhab

−
∫
Σ

d3y
√
−h
(
tab + Yab

)
. (4.42)

With the help of the choice of normal vectors (in both spacetime and on thin-shell),

the extrinsic curvature tensor from Eq. (3.34) and Eq. (3.35) and the continuity

of h±
ab on the boundaries, we finally obtain the junction condition of the thin-shell

wormhole in the dRGT theory

δab∆K −∆Ka
b = 8πGSa

b , (4.43)

where the new effective energy momentum tensor Sa
b on the thin-shell is defined

by [58]

Sa
b ≡ tab + Y a

b . (4.44)

Furthermore, it is very convenient to represent the Sa
b tensor in the matrix form

Sa
b ≡


−ρeff. 0 0

0 Peff. 0

0 0 Peff.

 =


−ρ− ρg 0 0

0 Pt + p
(⊥)
g 0

0 0 Pt + p
(⊥)
g

 , (4.45)

where the explicit forms of the ρg and p
(⊥)
g = p

(θ,ϕ)
g are given in Eq. (2.117) and

Eq. (2.119). We will see in the latter that the equation of motion of the dRGT

massive gravity wormholes takes very simple form like the standard GR case with

two types of fluids. The components of the effective momentum tensor Sa
b in
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Eq. (4.44) are given by

Sτ
τ = −ρeff. = −ρ− ρg(a)

= −ρ+
1

8πG

(
2γ

a
− Λ

)
, (4.46)

Sθ
θ = Sϕ

ϕ = Peff. = Pt + p(⊥)
g (a)

= Pt +
1

8πG

(γ
a
− Λ

)
, (4.47)

where we use the definitions of the energy density, radial and tangent pressure

from Eq. (2.117), Eq. (2.118), and Eq. (2.119), respectively.

The non-trivial components of the extrinsic curvature tensor, Ka
b , are the

same form in Eq. (3.41) and Eq. (3.42) with f(a) from Eq. (2.113) in dRGT

massive gravity theory. The (ττ) component of the junction condition of the

thin-shell wormhole in Eq.(4.43) reads

2

a

(√
f + ȧ2

)
= −8πGρ+

(
2γ

a
− Λ

)
. (4.48)

On the other hand, the angular component of Eq.(4.43) is given by

1√
f + ȧ2

(
2ä+ f ′) = 8πGPt +

(γ
a
− Λ

)
. (4.49)

The relation between the energy density and pressure from Eq. (4.48) and Eq. (4.49)

as follows:

d

dτ
(ρa) + Pt

da

dτ
+

γȧ

8πGa
= 0. (4.50)

It is also written in terms of the first order derivative of ρ with respect to a as

dρ

da
= −1

a
(ρ+ Pt)−

γ

8πGa2
. (4.51)
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The second order derivative of ρ with respect to a becomes

d2ρ

da2
=

(
ρ+ Pt

a2

)(
2 +

dPt

dρ

)
+

3γ

8πGa3
+

dPt

dρ

( γ

8πGa3

)
. (4.52)

At the static throat a0, the solutions of the energy density ρ(a0) and pressure

of the tangential direction Pt(a0) are determined by Eq. (4.48) and Eq. (4.49)

ρ0 = −
√
f(a0)

4πGa0
+

1

8πG

(
2γ

a0
− Λ

)
(4.53)

Pt(0) =
1

8πG

(
f ′(a0)√
f(a0)

−
(

γ

a0
− Λ

))
. (4.54)

To investigate the stability of the dRGT thin-shell wormhole, we apply the

technique in the subsection 3.2.5. Assuming the static throat of the thin-shell

wormhole is located a = a0, the following relation must be satisfied,

0 < V ′′(a0) =
1

2
f ′′(a0) +

dPt

dρ

(
− 2G(Pt + ρ)πΛ− 16G2π2ρ(Pt + ρ)

+
4Gπγ(Pt + ρ)

a0

)
− 16G2P 2

t π
2 + 4GPtπΛ− 1

4
Λ2. (4.55)

To analyse the function f(r) in Eq. (2.113) from the dRGT massive gravity,

we consider the horizons of the metric tensor as the roots of function f(r) which

is the cubic polynomial problem. For convenience, we define

f̃(r) ≡ rf(r)

= Ar3 +Br2 + Cr +D, (4.56)

where A = −Λ
3
, B = γ, C = (1 + ζ) and D = −2GM . The function f̃ has three

distinct, real roots if and only if

−27A2D2 + 18ABCD − 4AC3 − 4B3D +B2C2 > 0 (4.57)
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or

γ2 + 8GMγ3 +
4Λ

3
+ 12GMγΛ− 12G2M2Λ2 > 0. (4.58)

For de-Sitter (Λ > 0) or closed spacetime, the function f̃ still has 3 distinct and

real roots since the negative term is small (Λ2 ≪ 1). For anti de-Sitter (Λ < 0)

or open spacetime, only the first two terms are positive and compensate the other

negative terms, then the function f̃ holds the properties with high value of γ and

low value of Λ.

Now we consider the analytic solutions of roots in (r) by introducing a new

variable

t = r +
B

3A
, (4.59)

where the cubic equation in Eq. (4.56) can be rewritten as a depressed cubic

equation that has no term in t2,

f̃(t) = t3 + p̃t+ q̃, (4.60)

where

p̃ =
3AC −B2

3A2
= −3(γ2 + Λ)

Λ2
, (4.61)

q̃ =
2B3 − 9ABC + 27A2D

27A3
= −2γ3 + 3γΛ− 6GMΛ2

Λ3
. (4.62)

The real and distinct expressions of solutions to Eq. (4.60) can be obtained by

using the cosines and arccosines as shown

tk = 2

√
− p̃

3
cos
(
1

3
arccos

(
3q

2p

√
−3

p

)
− 2πk

3

)
(4.63)

=
2
√
γ2 + Λ

Λ
cos
(
1

3
cos−1

(
1

6

(
3

(
1

γ2 + Λ

)3/2 (
2γ3 + 3γΛ− 6Λ2GM

)
− 4πk

)))
,



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

88

where k = 1, 2, 3. While the three distinct and real horizons are

rk = tk +
γ

Λ
. (4.64)

According to the line element in Eq. (3.19) and embedding diagram in

Eq. (3.27), f(r) must hold the following relation,

0 < f(r) ≤ 1. (4.65)

The following parameters are tuned to satisfy the embedding diagram of the thin-

shell wormholes. For thin-shell wormhole, we use the parameters given below:

G = 1,Λ = 0.0001, γ = 0.001,M = 1, and ζ = 0. (4.66)

With these parameters, f(r) satisfies the relation(4.65) and reaches zero at the

event horizon rEH = 2.00 and the cosmological horizon rCH = 187.93. Moreover,

according to the flaring-out condition f ′(r) > 0, the throat radius has an upper

limit which is called the the upper limit of flaring-out condition is rFO = 36.96.

Due to the UV cutoff from the dRGT massive gravity, the Vainshtein radius for

the set of the thin-shell parameter in Eq. (4.66) is rV =
(
M/m2

g

)1/3
= 8.07. The

range that is below the Vainshtein radius rV cannot be trusted without the UV

completion. Therefore, the range of the static throat of thin-shell wormhole for

this study case is

rEH = 8.07 < a0 ≤ rFO = 36.96, (4.67)

where the range of the possible value of the static throat is in red shaded area of

Fig. (4.9).
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Figure 4.9: This figure represents the characteristic of function f(r) with pa-

rameters G = 1, Λ = 0.0001, γ = 0.001,M = 1, and ζ = 0. The red

area represents the possible value of the static throat of thin-shell wormhole,

rEH = 8.07 < a0 ≤ rFO = 36.96.

We analyze the energy conditions (NEC, WEC and SEC) of the linear model

in the thin-shell wormhole in dRGT massive gravity. The energy conditions are

expressed in terms of the effective energy density (ρeff.) and the effective pressure

(Peff.), defined in Eq. (4.46) and Eq. (4.47) respectively.

I. Null energy condition is expressed in terms of energy density and pressure

as follows:

ρeff. + Peff. ≥ 0, (4.68)

which yields [58]

ρeff. + Peff. = ρ− 1

8πG

(
2γ

a
− Λ

)
+ Pt +

1

8πG

(γ
a
− Λ

)
= ρ+ Pt −

1

8πG

γ

a
≥ 0. (4.69)
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II. Weak energy condition is given by

ρeff. ≥ 0, ρeff. + Peff. ≥ 0, (4.70)

which gives the following result for the thin-shell wormholes in the dRGT

massive gravity [58]

ρeff. = ρ− 1

8πG

(
2γ

a
− Λ

)
≥ 0, (4.71)

III. Strong energy condition is governed by

ρeff. + 3Peff. ≥ 0, ρeff. + Peff. ≥ 0, (4.72)

which gives the following result for the thin-shell wormholes in the dRGT

massive gravity [58]

ρeff. + 3Peff. = ρ− 1

8πG

(
2γ

a
− Λ

)
+ 3Pt +

3

8πG

(γ
a
− Λ

)
= ρ+ 3Pt +

1

8πG

(γ
a
− 2Λ

)
≥ 0. (4.73)

Next we assume the four fluid models for studying the stability of the dRGT

wormhole: (1) a linear model, (2) a Chaplygin gas model, (3) a generalized Chap-

lygin gas model and (4) a logarithm model.

4.2.1 Linear model

We start analyzing the stability of the thin-shell wormhole in dRGT [49]:

Pt(ρ) = ϵ0ρ, (4.74)
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where ϵ0 is dimensionless parameter. It is easy to show that

dPt

dρ
= ϵ0. (4.75)

Notice that the change in the pressure on the energy density is a constant. More-

over, the throat of the wormhole basically locates between the event and the

cosmological horizons. After substituting the above results into the stability con-

dition (4.55), we find [58]

0 < V ′′(a0) =
1

2
f ′′(a0)−

1

4

(
Λ2 + 8π(ϵ0 − 1)ϵ0Λρ+ 64π2ϵ0(1 + 2ϵ0)ρ

2

)
+
4πγϵ0(ϵ0 + 1)

a0
, (4.76)

where f ′′(a0) = −M
a30

− 2Λ
3

. The thin-shell wormhole for the linear model will be

stable if the relation (4.76) holds. For the linear model, the more positive value of

γ increases the value of V ′′(a0), while more magnitude of Λ (|Λ| ≫ 1) decrease the

value of V ′′(a0). In order to visualize the stability region of the model, we plot the

stability contour in terms of ϵ0 and a0. Our result is illustrated in Fig.4.10 for the

linear model. We notice that in order to satisfy the stability condition (4.55) the

constant ϵ0 has negative values in the throat radius a0 between 22.00 < a0 < 36.96.

Unfortunately, all range of the stable throat has negative values of ϵ0 which is not

the behavior of an ordinary matter.

Substituting the relations of energy density and pressure in Eq. (4.74) and

Eq. (4.75) into the relations in NEC, WEC and SEC, we find

ρeff. = −
√
f(a)

4πGa
, (4.77)

ρeff. + Peff. =
((1 + 2ϵ0)γ − a(1 + ϵ0)Λ)− 2(1 + ϵ0)

√
f(a)

8πGa
, (4.78)

ρeff. + 3Peff. =
3((1 + 2ϵ0)γ − a(1 + ϵ0)Λ)− 2(1 + ϵ0)

√
f(a)

8πGa
. (4.79)
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Figure 4.10: The plot shows the stable region of the linear model Pt(ρ) = ϵ0ρ

with G = 1. The contour shows that the constant ϵ0 has negative values in the

throat. The black shaded area is not possible for the thin-shell throat since this

zone violates the flaring-out condition shown in cond. (4.67). The red dashed line

represents V ′′(a0) = 0.

In the linear model, the effective energy density, ρeff., is non-positive for all cases

but the value will increase as further distance from throat to the cosmological

horizon for de-Sitter spacetime. For both ρeff.+Peff. and ρeff.+3Peff., the de-Sitter

spacetime would reduce the both values leading to the violation in NEC, WEC

and SEC while the anti de-Sitter spacetime and the positive γ tend increase the

both values which make less violation on the energy conditions.

In order to analyse the energy conditions, we choose the values of ϵ0 = −0.25

which is in the stable regions as shown in Fig.4.10 and then verify the energy

conditions. Fig.4.11 shows the variation of ρeff., ρeff. + Peff. and ρeff. + 3Peff. as a

function of a in the linear model Pt(ρ) = ϵ0ρ. We observe that all energy conditions

are violated in this model.
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Figure 4.11: The plots show the variation of ρeff. + Peff., ρeff. and ρeff. + 3Peff. as a

function of a of the linear model with Pt(ρ) = ϵ0ρ with G = 1.

4.2.2 Chaplygin gas model

One of the greatest mysteries in high energy physics is the nature of the dark

matter and dark energy. Dark matter is proposed to describe the missing mass of

galaxies inferred from the viral theorem [72] and to explain the flat rotation curves

[73, 74]. Dark energy is applied to explain the acceleration of the expansion of

the Universe [75, 76, 77]. Our Universe have been expanding with acceleration,

according to the recent year observations of the luminosity of type Ia distant

supernovae [22, 23, 78]. The energy density and pressure of the universe violate

the strong energy condition. The matter responsible for the acceleration of the

universe is referred to as the dark energy [79, 80, 81]. In the standard cold dark

matter (ΛCDM) model, the dark matter is represented by a pressureless fluid and
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the cosmological constant Λ represents the dark energy.

The pressureless dark matter assumption works well in the weakly interact-

ing massive particles (WIMPs) with a mass range in the order of GeV to TeV.

The theory suggests that these particles froze out from the thermal equilibrium

in the early era of the Universe. By the result of this decoupling, it cooled off

rapidly as the Universe expands. In some models, the dark matter is made of

fermions [82, 83] or bosons [84, 85]. These models explain the physics in the scale

of galaxies very well but not in the Universe scale.

At the cosmological scale, the ΛCDM model has a problem with cosmological

value [86, 87]. The energy density of the cosmological constant Λ is ρΛ = Λ/8πG

and the equation of state is PΛ = −ρΛ which is a negative pressure. Accord-

ing to the observational results, the value of energy density of dark energy is

ρΛ = 6.72× 10−24 g m−3. On the other hand, the prediction from the theoretical

framework provides that the vacuum energy density should be of the order of the

Planck density ρP = 5.16 × 1099 g m−3. These quantities are different by 123

orders of magnitude. To solve this problem, some theoretical physicists explain

the acceleration of the Universe in terms of a dark energy with time-varying den-

sity. In this work [88], they proposed the unification of the dark matter and dark

energy in terms of an exotic matter with an equation of state P = −A/ρ called

the Chaplygin gas.

The Chaplygin gas model was first proposed by Sergey Chaplygin [89]. It

was a mathematical model approximation for calculating the lifting force on a

wing of an airplane in aerodynamics. The model was rediscovered later in Refs.
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[90, 91]. In the reference [92], they proposed a model of Universe filled with the

Chaplygin gas, which is a perfect fluid given by the following equation of state,

[92, 93, 94, 95]

Pt(ρ) = −A

ρ
, (4.80)

where A > 0. The negative pressure from the Chaplygin gas equation of statecan

be used to describe certain effects in deformable solids, of strip states in the context

of quantum Hall effect and of other phenomena. The equation of state parameter

for the Chaplygin gas model is w ≡ Pt/ρ, interpolating from w = 0 at early times

of the Universe when the energy density is very high ρ → ∞ and w = −1 at late

times (accelerated expansion) of the Universe when its energy density reaches the

minimum value ρ = A. In our case, the pressure is already given in Ref.[49]:

Pt(ρ) = −ϵ1

(
1

ρ
− 1

ρ0

)
+ Pt(0), (4.81)

where ϵ1 is a constant with the dimension of pressure2 in the natural unit, the pa-

rameters ρ0 and Pt(0) are boundary conditions of the energy density and tangential

pressure at the throat, respectively and they are determined by using Eq. (4.48)

and Eq. (4.49) with a = a0. It is worth to mention a property of the Chaplygin

gas which is the positive and bounded squared sound velocity,

dPt

dρ
=

ϵ1
ρ20

≡ v2s , (4.82)

where ρ20 ≥ ϵ1 and vs is the sound velocity of the Chaplygin model. By the

definition of the sound velocity in Eq. (4.82), the value of ϵ1 must be positive.

After substituting the above results into the stability condition (4.55), we
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Figure 4.12: The plot shows the stable region of the Chaplygin gas model p(σ) =

ϵ1(
1
ρ
− 1

ρ0
) + Pt(0) with G = 1 from the Vainshtein radius rV = 8.07 to the upper

limit of the flaring-out condition rFO = 36.96. The red dashed line represents

V ′′(a0) = 0.

find in this case [58]

0 <
f ′′(a)

2
+

2πG
(
ρ0ϵ1(2γ − aΛ) + aΛPt(0) (−ϵ1 + 2ρ20) + 2γPt(0)ϵ1

)
aρ20

−
16π2G2

(
P 2
t(0)ρ0 + (Pt(0) + ρ0)ϵ1

)
ρ0

− Λ2

4
. (4.83)

Here we plot the stability contour in terms of ϵ1 and a0 for this model. The stable

region for this case is represented in Fig.4.12.

We notice that, in order to satisfy the stability condition (4.55), the Vain-

shtein radius rV and the flaring-out condition (4.67), the possible stable throat

in this case must be the negative region of ϵ1 and its radius is in the range

8.07 < a0 < 36.96. However, the negative region of ϵ1 violates the squared sound

velocity condition in Eq. (4.82). Therefore, the Chaplygin gas model cannot be

an appropriate candidate for the thins-shell wormhole in dRGT massive gravity.
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Figure 4.13: The plots show the variation of ρeff. + Peff., ρeff. and ρeff. + 3Peff. as a

function of a of the Chaplygin gas model with Pt(ρ) = ϵ1

(
1
ρ
− 1

ρ0

)
+ Pt(0) with

G = 1.

By the relations of the pressure and energy density of the exotic matter in

Eq. (4.81) and Eq. (4.82), we find

ρeff. + Peff. =
1

8

(
(γ − aΛ)

πGa
−

8ϵ1((−2γ + aΛ) + 8aGπρ0 + 2
√

f(a))

ρ0((2γ − aΛ)− 2
√

f(a))

−
2
√
f(a)

aGπ

)
≥ 0, (4.84)

ρeff. = −
√

f(a)

4πGa
≥ 0, (4.85)

ρeff. + 3Peff. =
1

8

(
3(γ − aΛ)

πGa
−

24ϵ1((−2γ + aΛ) + 8aGπρ0 + 2
√
f(a))

ρ0((2γ − aΛ)− 2
√

f(a))

−
2
√
f(a)

aGπ

)
≥ 0. (4.86)

To quantify the energy conditions, we will choose the values of ϵ1 = −1 in the

stable regions shown in Fig.4.12 and then examine the energy conditions. Fig.4.13
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shows the variation of ρeff. + Peff., ρeff. and ρeff. + 3Peff. as a function of a in the

linear model Pt(ρ) = ϵ1

(
1
ρ
− 1

ρ0

)
+ Pt(0). We observe that all energy conditions

are violated for all range in this model.

4.2.3 Generalized Chaplygin gas model

In addition, the Chaplygin gas model given in the previous subsection can be

generalized where the relation between Pt(ρ) and ρ takes the form [49]

Pt(ρ) = Pt(0)

(
ρ0
ρ

)ϵ2

, (4.87)

and
dPt

dρ
= −Pt(0)ϵ2

ρϵ20
ρϵ2+1

≡ v2s , (4.88)

where ϵ2 is the dimensionless parameter and vs is the sound velocity for the gen-

eralized Chaplygin model.

Figure 4.14: This plot illustrates the function of Pt(0) against r with the set of

parameters as G = 1,Λ = 0.0001, γ = 0.001,M = 1, and ζ = 0. The value

of Pt(0) is positive for all range of r that satisfies the flaring-out condition (r ∈

[2.00, 36.96]).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

99

Figure 4.15: The plot shows the stable region of the generalized Chaplygin gas

model Pt(0)(ρ) = Pt(0)(
ρ0
ρ
)ϵ2 with G = 1 from the Vainshtein radius rV = 8.07

to the upper limit of the flaring-out condition rFO = 36.96. The red dashed line

represents V ′′(a0) = 0.

After substituting the above results into the stability condition (4.55), we

find in this case [58]

0 <
f ′′(a)

2
+

2πGPt(0)

(
Pt(0)ϵ2 (aΛ− 2γ) + aΛρ0 (ϵ2 + 2)− 2γρ0ϵ2

)
aρ0

+16π2G2Pt(0)

(
Pt(0) (ϵ2 − 1) + ρ0ϵ2

)
− Λ2

4
(4.89)

In this case, we have an additional condition from the squared sound velocity

in Eq. (4.88) as follow

Pt(0)ϵ2 < 0. (4.90)

Here Pt(0) is the tangential pressure at the throat and it can be determined by

using Eq. (4.49) with a = a0. We illustrate the plot of Pt(0) in the range that

satisfies the Vainshtein radius and the flaring-out condition (a0 ∈ [8.07, 36.96])

as shown Fig.(4.14) with the set of parameters (Λ = 0.0001, γ = 0.001,M =
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Figure 4.16: The plots show the variation of ρeff. + Peff., ρeff. and ρeff. + 3Peff. as

a function of a of the generalized Chaplygin gas model with Pt(ρ) = Pt(0)

(
ρ0
ρ

)ϵ2
with G = 1.

1, and ζ = 0). The value of Pt(0) is positive then this shows no sign of dark

energy requirement for the thin-shell wormhole construction in the generalized

Chaplygin gas model. Moreover, the allowed value of ϵ2 is only for negative which

means that the exponent of the energy density in Eq. (4.87) is positive.

To find the stability region of the thin-shell wormhole throat, we solve the

stability condition (4.55). The squared sound velocity in Eq. (4.88) excludes the

region of the wormhole throat that ϵ2 ≥ 0. Moreover, the flaring-out condition

and the Vainshtein radius (4.67) limit the possible value of throat radius to a0 ∈

[8.07, 36.96]. Here we display the stability contour in terms of ϵ2 and a0 illustrated

in Fig. 4.15. Unlike the Chaplygin gas, the possible region for the stable thin-shell
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wormhole throat in dRGT theory satisfies the sound velocity, .

By the relations of the pressure and energy density of the exotic matter in

Eq. (4.87) and Eq. (4.88), we find

ρeff. + Peff. =
1

8πGa

(
(γ − aΛ)− 2

√
f(a)

−Ga(8π)1+ϵ2

(
− Gaρ0

(−2γ + aΛ) + 2
√

f(a)

)ϵ2)
≥ 0, (4.91)

ρeff. = −
√
f(a)

4πGa
≥ 0, (4.92)

ρeff. + 3Peff. =
1

8πGa

(
3(γ − 3aΛ)− 2

√
f(a)

−3Ga(8π)1+ϵ2

(
− Gaρ0

(−2γ + aΛ) + 2
√
f(a)

)ϵ2)
≥ 0. (4.93)

We here quantify the energy conditions by choosing the values of ϵ2 in the stable

regions shown in Fig. 4.15 and then examine the energy conditions. Fig.4.16 shows

the variation of ρeff.+Peff., ρeff. and ρeff.+3Peff. as a function of a in the generalized

Chaplygin gas model. We observe that all energy conditions are violated for

negative values of ϵ2.

4.2.4 Logarithm model

According to the theoretical problems about the dark matter and the dark energy

mentioned in the previous model, some works proposed the logotropic equation of

state where the pressure Pt(ρ) and the rest-mass density ρ are related via [49, 96]

Pt(ρ) = ϵ3 log
(

ρ

ρ0

)
+ Pt(0), (4.94)

where ϵ3 is a constant with the dimension of pressure and

dPt

dρ
=

ϵ3
ρ

≡ v2s , (4.95)
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where the energy density ρ must not be greater than ϵ3 and vs is the sound velocity

for the logotropic model.

The logotropic equation of state was used to study the giant molecular clouds

(GMCs) and dense cores in astrophysics where the logotropic model describes

the turbulent pressure very well in given by Ref. [97]. Moreover, the dynamics

of the logotropic gas was studied in the static and dynamical properties of a

generalized Smoluchowski equation where it can be interpreted as a limiting form

of the polytropic equation of state or the generalized Chaplygin model of the form

P = Kργ (where P is the isotropic pressure and ρ is the energy density of gas) with

γ → 0, K → ∞ and B = γK is finite [98]. Another application of the logotropic

equation of state is in a scalar field theory which is a candidate for the dark fluid

in Bose-Einstein condensates. The dynamics of the dark fluid is described in the

non-relativistic regime of the Gross-Pitaevskii equation [99].

Now we demonstrate the unification of the dark energy and dark matter

for the logotropic gas model by considering the Friedmann equations for a flat

Universe without the cosmological constant

dE

dt
+ 3

ȧ

a
(E + Pt) = 0, (4.96)

where E(t) is the total energy density, Pt(t) is the pressure and a(t) is the scale

factor. The first law of thermodynamics in the adiabatic process reduces to

dE =
Pt + E

ρ
dρ, (4.97)

where ρ is the energy density of the rest mass. Then we have the continuity
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equation as follows:

dρ

dt
+ 3

ȧ

a
ρ = 0, (4.98)

where the solution of the continuity equation is ρ = ρ0/a
3 and ρ0 is the present

value of the energy density of the rest mass. The following ansatz satisfies Eq. (4.97)

E = ρ+ ρ

∫ ρ Pt(ρ
′)

ρ′2
dρ′ = ρ+ u(ρ), (4.99)

where u(ρ) is the internal energy density. Then the total energy density E is the

sum of the energy density of the rest mass ρ and the internal energy u(ρ). By the

choice of the logotropic model in Eq. (4.94), the total energy density becomes

E = ρ− ϵ3 log
(

ρ

ρ0

)
− Pt(0) − ϵ3 = ρ+ u(ρ). (4.100)

The total energy density is the sum of 2 terms; the energy density of the rest

mass ρ ∝ a−3 representing the dark matter and the internal energy term u(ρ) =

−ϵ3 log
(

ρ
ρ0

)
− Pt(0) − ϵ3 representing the dark energy.

In the early Universe where the dark matter dominates over other kinds of

matter (a → 0, ρ → +∞), the total energy density is approximated by

E ∼ ρ, Pt ∼ ϵ3 log
(

ρ

ρ0

)
. (4.101)

In the late time Universe (a → +∞, ρ → 0), the dark energy or, in this case, the

internal energy dominates

E ∼ −ϵ3 log
(

ρ

ρ0

)
, Pt ∼ −E. (4.102)

We also note that the asymptotic behavior of the pressure of the late time Uni-

verse recovers Pt ∼ −ρ from the logotropic model because it is the exotic matter

equation of state.
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We apply the logotropic equation of state in Eq. (4.94) into the stability

condition (4.55) as shown [58]

0 <
f ′′(a)

2
+

2πG
(
ρ0ϵ3(2γ − aΛ)− aΛPt(0) (ϵ3 − 2ρ0) + 2γPt(0)ϵ3

)
aρ0

−16π2G2
((
Pt(0) + ρ0

)
ϵ3 + P 2

t(0)

)
− Λ2

4
(4.103)

Here we display the stability contour in terms of ϵ3 and a0 illustrated in Fig.4.17.

The stable region for this case is represented in Fig.4.17 for the logarithm model

model. We observe that in order to satisfy the stability condition (4.55) ϵ3 is

Figure 4.17: The plot shows the stable region of the linear model Pt(ρ) =

ϵ3 log( ρ
ρ0
) + Pt(0) with G = 1. The result shows that ϵ3 can have both nega-

tive values and positive ones in the throat with radius a0. The red dashed line

represents V ′′(a0) = 0.

positive and the possible throat of the wormhole in dRGT massive gravity is in

the range r ∈ [8.07, 36.96].

By the relations of the pressure and energy density of the exotic matter in
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Eq. (4.87) and Eq. (4.88), we find

ρeff. + Peff. =
1

8πGa

(
(γ − aΛ)− 2

√
f(a)

+Pt(0) + ϵ3 log
(
2γ − aΛ + 2

√
f(a)

8πGaρ0

))
≥ 0, (4.104)

ρeff. = −
√
f(a)

4πGa
≥ 0, (4.105)

ρeff. + 3Peff. =
1

8πGa

(
3(γ − aΛ)− 2

√
f(a)

+3Pt(0) + 3ϵ3 log
(
2γ − aΛ + 2

√
f(a)

8πGaρ0

))
≥ 0. (4.106)

Figure 4.18: The plots show the variation of ρeff. + Peff., ρeff. and ρeff. + 3Peff. as

a function of a of the generalized Chaplygin gas model with Pt(ρ) = Pt(0)

(
ρ0
ρ

)ϵ3
with G = 1.

We here quantify the energy conditions by choosing the values of ϵ3 in the

stable regions shown in Fig.4.17 and then examine the energy conditions. Fig.4.18

shows the variation of ρeff. + Peff., ρeff. and ρeff. + 3Peff. as a function of a in the
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ogarithm model Pt(σ) = ϵ3log( ρ
ρ0
). We observe that all energy conditions are

violated for all range.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

Discussions and conclusions

In this thesis, we have reviewed the massive gravity theory from the linear theory

or FP theory. The discrepancy between the FP theory at the massless limit

and GR is revealed by the Stueckelberg trick. Even in the massless limit, the

additional scalar field does not disappear in FP theory. This leads to the new

way to construct the massive theory via non-linearity with help of the Vanstein

mechanism. The effect of non-linear theory overwhelms the effect of linear inside

the Vainstein radius which is approximately infinity when graviton mass mg → 0.

However, the major caveat for the non-linear massive gravity is the appearance of

ghost or the wrong sign of kinetic terms in action. However, de Rham, Gabadadze

and Tolley have succeeded to find the ghost-free nonlinear massive gravity theory

called dRGT theory. With the great effort to search the signal of gravitation wave

by LIGO, the results show that the graviton is not completely massless and the

upper bound of the graviton mass is below 10−24 eV/c2. The mass of graviton

is very small from the constraint of the gravitational waves observations. This

implies that the dRGT is not a trivial theory and it is worth for further study.

There still remain numerous questions about the dRGT theory. One of them
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is the black hole characteristic in dRGT theory which has been widely studied in

the following references; the class and the thermodynamics properties of black

holes in dRGT [25], the prediction of the black hole perturbation in quasinormal

modes [100, 101, 102, 103], and the Greybody factor technique of the black hole in

dRGT massive gravity [104]. The study of this topic will reveal an interesting and

advantage of the dRGT massive gravity. While, in this thesis, we have investigated

the possibilities of the existences of the wormholes from the spherical symmetric

solutions in the dRGT theory. This study will also extensively explore more salient

features and properties of the dRGT massive gravity. Moreover, there are two

types of wormholes investigated in this thesis; the Lorentzian traversable wormhole

and the thin-shell wormhole.

The Lorenzian traversable wormhole is the shortcut that links two points in

spacetime where its characteristic depends on the shape function b(r) and the red-

shift function Φ(r). We have chosen the form of b(r) as b(r) = r exp(−α(r−r0))

and three types of the red-shift functions; constant, linear and logarithm. We

apply the f(R) gravity and dRGT to find the traversable wormhole solutions. To

analyze the material for the traversable wormhole construction, we consider the

energy conditions; NEC (ρ + Pr ≥ 0 and ρ + Pt ≥ 0), WEC (ρ ≥ 0, ρ + Pr ≥ 0

and ρ + Pt ≥ 0), and SEC (ρ + Pr + 2Pt ≥ 0, ρ + Pr ≥ 0 and ρ + Pt ≥ 0).

According to the results of three red-shift functions; Φ(r) = 1, Φ(r) = 1/r, and

Φ(r) = log(1 + 1/r), the regions, which violate the energy conditions, vary on the

strength of the Starobinsky model (α1) and the dRGT parameters (γ and Λ). Let

consider the effect of α1 on energy conditions. For low magnitudes of α = ±0.01,
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NEC, WEC and SEC are violated near the throat regions except for α1 = 0.01 that

SEC is satisfied near the throat but violated in the rest of the spacetime region.

For α = −0.1, NEC and WEC are not violated at the throat but some finite region

further away from it while SEC is, on the other hand, violated almost all spacetime

region except some finite region. For α = 0.1, The only violated region of NEC

and WEC is only the finite region around the throat but SEC is violated almost

all of the spacetime region. Now we conclude the effect of dRGT parameters (γ

and Λ). Overall results point that the violated regions of NEC and WEC reduce

by the more positive γ and more negative Λ which affect totally opposite on SEC

violation region. In the future work, one might obtain numerous solutions of the

wormhole by considering other choices of ρ, Pr and Pt, for instance, varying the

shape function b(r), the red-shift function Φ(r) and the f(R) theory.

The other type of wormhole is the thin-shell wormhole in the dRGT space-

time. This wormhole acts as the glue between two hypersurfaces of two Universe.

The technique is called cut-and-paste procedure [52]. To study the thin-shell

wormhole in the massive gravity, we have to investigate the junction condition

between two dRGT spacetimes for the stability. The matter to construct the

thin-shell wormhole in dRGT model must satisfy the four following criteria; the no-

horizon condition, the flaring-out condition, the Vainshtein radius and the sound

velocity. Then, we analyze the stable thin-shell wormhole in dRGT spacetime

with energy conditions (NEC, WEC, and SEC). We have considered the variation

of ρeff. + Peff., ρeff. and ρeff. + 3Peff. as a function of a in all models: (1) a linear

model Pt(ρ) = ϵ0ρ, (2) a Chaplygin gas model Pt(ρ) = ϵ0

(
1
ρ
− 1

ρ0

)
+ Pt(0), (3) a
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generalized Chaplygin gas model Pt(ρ) = Pt(0)

(
ρ0
ρ

)ϵ0
and (4) a logarithm model

Pt(ρ) = ϵ0 log
(

ρ
ρ0

)
+ Pt(0). In the linear model, the exotic matter is necessary for

building the thin-shell wormhole in dRGT model. Even though the Chaplygin gas

model is a candidate for the dark matter, it is not an appropriate candidate for

the thin-shell wormhole material in the dRGT model. While a generalized Chap-

lygin gas model shows that the requirement of the dark matter is not necessary to

construct a thin-shell wormhole in dRGT model. In the last case, the exotic mat-

ter that satisfies the logotropic model can form the thin-shell wormhole in dRGT

model. Choosing the values of ϵ0 in the stable regions, we have observed that

in general the classical energy conditions are violated by introducing all existing

models of the exotic fluids.

Before closing discussion, we would like to clarify and comment the results

in the published works [57, 58] of this thesis. The sets of parameters in this

work might not be compatible with the Vainshtein mechanism for dRGT massive

gravity and f(R) gravity. Since we focus on the investigations of the effects on

exotic matter in the wormholes by variation of parameters in the models and they

are toy models in the study of the wormholes. However, we realize the major caveat

and we plan to improve all parameters that satisfy the Vainshtein mechanism in

the future research works.
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APPENDIX A

The Vainshtein mechanism

To study the nonlinearity of massive gravity, we start with Einstein-Hilbert action

representing the nonlinear kinetic term of graviton.

SEH =
1

16πG

∫
d4x

√
−gR. (A.1)

This action is invariant under the diffeomorphisms of the form

x → f(x), gµν(x) → ∂fα

∂xµ

∂fβ

∂xν
gµν(f(x)). (A.2)

According to the linear theory, we apply the linear expansion of the metric gµν

around the flat spacetime ηµν with the metric perturbation hµν as Eq. (2.3). In

general, the metric gµν can be written as

gµν = g(0)µν + hµν , (A.3)

where g(0)µν is the absolute metric that the linear massive graviton propagates,

hµν = gµν − g
(0)
µν is the metric perturbation, and the indices on hµν are raised and

lowered by the absolute metric. To construct the linear expansion of nonlinear

theory, we cannot use only the full metric gµν since its trace provides a constant,

gµαgαµ = Tr(I4×4) = 4 for four dimensions. The non-dynamical absolute metric
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g(0)µν is needed for the traces and contractions. Thus, the most fundamental mass

term for massive graviton is

Smass =
1

16πG

∫
d4x

[
−
√

−g0

4
m2g(0)µαg(0)νβ (hµνhαβ − hµαhνβ)

]
, (A.4)

where the mass term breaks the gauge transformation in Eq. (A.2) and reduces

to the Fierz-Pauli mass term if g(0)µν = ηµν as shown in Eq. (2.20). The simplest

nonlinear massive gravity becomes

S = SEH + Smass

=
1

16πG

∫
d4x

[√
−gR−

√
−g0

4
m2g(0)µαg(0)νβ (hµνhαβ − hµαhνβ)

]
,(A.5)

where this nonlinear action is still not the full nonlinear action since the more

general form of mass term in nonlinear theory will be discussed further. Applying

the Euler-Lagrange method gives the equation of motion

√
−g

(
Rµν − 1

2
Rgµν

)
+

√
−g0m2

2

(
g(0)µαg(0)νβhαβ − g(0)αβhαβg

(0)µν
)
= 0. (A.6)

Now we will solve the static spherical solution and determine the Vainstein

radius. The ansatz for the absolute metric is the four-dimensional flat spacetime

g(0)µνdx
µdxν = −dt2 + dr2 + r2dΩ2, (A.7)

and the general form of the full metric solution is given by

gµνdx
µdxν =

(
g(0)µν + hµν

)
dxµdxν = −B(r)dt2 + C(r)dr2 + A(r)r2dΩ2. (A.8)

The functions A(r), B(r), and C(r) can be expanded for higher orders as follows

A(r) = 1 + ϵA1(r) + ϵ2A2(r) + . . . (A.9)

B(r) = 1 + ϵB1(r) + ϵ2B2(r) + . . . (A.10)

C(r) = 1 + ϵC1(r) + ϵ2C2(r) + . . . (A.11)
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We apply the expansion of functions A,B, and C and the ansatz of the full metric

Eq. (A.8) into the equation of motion Eq. (A.6).

We find the solutions for mr ≪ 1,

B(r) = 1− ϵMκ

6πr

(
1− ϵMκ

96πm4r5
+ . . .

)
C(r) = 1− ϵMκ

6πm2r3

(
1− 7ϵMκ

8πm4r5
+ . . .

)
(A.12)

A(r) = 1 +
ϵMκ

12πm2r3

(
1− ϵMκ

4m4r5
+ . . .

)
,

where κ = 16πG. We show the results up to the second order of nonlinearity. The

criteria for considering the domination of nonlinearity is the parameter

rV ≡
(
GM

m4

)1/5

, (A.13)

where a novel length scale rV is called Vainshtein radius. It is defined as the upper

limit of the nonlinear effect [15]. The approximation of the linear GR works well

for the distance r > rV . On the other hand, the linear theory cannot be trusted

at the distance r < rV which the nonlinear massive gravity dominates. Moreover,

the Vainshtein radius increases to infinity as graviton mass m → 0.

Note that we obtain B1(r) = −Mκ/6πr, C1(r) = −Mκ/6πm2r3, and A1(r) =

Mκ/12πm2r3 when considering the first order O(ϵ) and mr ≪ 1. These results

agree with the solution from FP massive gravity in Eq. (2.28).
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APPENDIX B

The higher order derivatives of

the scalar field from BD ghost

Let us consider the degree of freedom in non-linear massive gravity with FP mass

term. Its action is given in Eq. (2.56) as

S =
1

16πG

∫
d4x

[√
−gR− 1

2
m2ηµαηνβ (hµνhαβ − hµαhνβ)

]
.

Since theory has neither constraints nor gauge symmetries, then there are 6 real

degrees of freedom instead of 5. The extra degree of freedom is called Boulware

Deser (BD) ghost. In this chapter, we will show that the higher order derivatives

from BD ghost lead to the wrong sign of the kinetic terms and also cause the

unbounded Hamiltonian.
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B.1 The wrong sign of the kinetic terms from

the scalar field

According to the Stueckelberg trick revealing the BD ghost in subsection 2.5.2, we

obtain the mass term of the nonlinear massive gravity as shown in Eq. (2.83). We

omit the tensor (hµν) and vector (Aµ) modes since they are not responsible for the

extra degree of freedom. The Lagrangian of the mass term from Eq. (2.83) reads

Lmass = − 2

m2

([
Π2
]
− [Π]2

)
+

2

m4

([
Π3
]
− [Π] [Π]2

)
+

1

2m6

([
Π4
]
−
[
Π2
]2)

+ . . . .

To show the wrong sign of the kinetic term, we consider the lowest order of

the higher order derivatives of the scalar field

L2nd

mass =
[
Π2
]
= ∂µ∂νπ∂

µ∂νπ

= π□2π, (B.1)

where π is the helicity-0 mode, Πµν ≡ ∂µ∂νπ and □ ≡ ∂µ∂
µ. The second line of

Eq. (B.1) is obtained from the integration by part where the total derivative is

neglected. By this expression, the propagator for Eq. (B.1) is □−2 which can be

written in the sum of two propagators with opposite signs

1

□2
= lim

m→0

1

2m2

(
1

□−m2
− 1

□+m2

)
, (B.2)

where this hints a problem with the wrong sign coupling to the external sources.

One could see the appearance of the BD ghost by introducing a Lagrange multiplier
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π̃, then the Lagrangian in Eq. (B.1) is equivalent to

L̃2nd

mass = π̃□π − 1

4
π̃2, (B.3)

After integrating our the Lagrange multiplier, we obtain

π̃ = 2□π. (B.4)

We introduce new fields ϕ1 = (π + π̃)/2 and ϕ2 = (π − π̃)/2. The Lagrangian in

Eq. (B.3) becomes

L̃2nd

mass = ϕ1□ϕ1 − ϕ2□ϕ2 −
1

4
(ϕ1 − ϕ2)

2 . (B.5)

Finally, the signs of the kinetic terms of the scalar fields (ϕ1 and ϕ2) are opposite.

This shows that one of them is BD ghost. Fortunately, the second order derivative

terms can be written in the total derivatives as shown in Eq. (2.84),

[
Π2
]
− [Π]2 = ∂ρ (∂

µπ∂ρ∂µπ)− ∂ρ (∂
ρπ∂µ∂µπ) .

However, one could straightforwardly show that the other higher derivatives of

the scalar fields, i.e. [Π3] − [Π] [Π]2 and [Π4] − [Π2]
2 cannot be written in the

total derivatives at all. They will lead to the wrong signs of kinetic terms and

are responsible for the extra degree of freedom from ghost since there are no

constraints or gauge symmetries in the nonlinear massive gravity.

B.2 The instability from BD ghost

The nonlinear massive gravity with FP mass terms suffers from the extra degree

of freedom or the BD ghost since the higher order derivatives are not eliminated.
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Here in this section, we will demonstrate how the BD ghost make the Hamiltonian

unbounded leading to the instability of the system.

B.2.1 A bounded Hamiltonian

To study the instability from BD ghost, we consider a simple case of non-higher

derivatives. In this case of L = L(x, ẋ) where x is a coordinate, the Euler-Lagrange

equation is

∂L

∂x
− ∂

∂t

(
∂L

∂ẋ

)
= 0. (B.6)

If the Lagrangian is nondegeneracy (∂2L
∂ẋ2 ̸= 0), the solutions must be written as

follow

x = x (x0, ẋ0) , (B.7)

where x0 and ẋ0 are the initial value data of coordinate. Then there must be two

canonical variables of the solutions. Traditionally, the choices are the canonical

coordinate x and its canonical momentum P ≡ ∂L
∂ẋ

.

The canonical Hamiltonian H is obtained by the Legendre transformation

on ẋ

H(x, P ) ≡ Pẋ− L(x, ẋ). (B.8)

The canonical evolution equations are

ẋ =
∂H

∂P
, (B.9)

Ṗ = −∂H

∂x
=

∂L

∂x
. (B.10)
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A well-known problem is the linear free scalar field theory whose Lagrangian is

L =
1

2
(π̇)2 − V (π), (B.11)

where V (π) is the potential of the scalar field π. Then the Hamiltonian from

Eq. (B.8) is given by

H =
1

2
(π̇)2 + V (π), (B.12)

where, in this case, the Hamiltonian has a lower bound at zero.

B.2.2 An unbounded Hamiltonian from the higher order

derivative

Now we consider the higher order derivative in the Lagrangian L(x, ẋ, ẍ). The

Euler-Lagrange equation for this case is

∂L

∂x
− ∂

∂t

(
∂L

∂(ẋ)

)
+

∂2

∂t2

(
∂L

∂(ẍ)

)
= 0. (B.13)

If the Lagrangian is nondegeneracy (∂2L
∂ẍ2 ̸= 0), the solution can be written as

x = x(x0, ẋ0, ẍ0,
...
x0). (B.14)

Since the solution depends on four initial value data, there must be four canonical

variables. In this case, the canonical coordinates are

x and ẋ, (B.15)

and their canonical momenta are

P1 ≡ ∂L

∂ẋ
− d

dt

∂L

∂ẍ
, (B.16)

P2 ≡ ∂L

∂ẍ
. (B.17)
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The canonical Hamiltonian by the Legendre transformation reads

H(x, ẋ, P1, P2) = P1ẋ+ P2ẍ− L(x, ẋ, ẍ). (B.18)

One could show that the time evolution equations are

ẋ =
∂H

∂P1

(B.19)

ẍ =
∂H

∂P2

(B.20)

Ṗ1 = −∂H

∂x
=

∂L

∂x
(B.21)

Ṗ2 = −∂H

∂ẋ
= −P1 +

∂L

∂ẋ
. (B.22)

Let consider the higher order derivative Lagrangian

L = − ϵm

2ω2
ẍ2 +

m

2
ẋ2 − mω2

2
x2, (B.23)

where ϵ is a dimensionless constant. For this problem, the canonical momenta are

P1 = mẋ+
ϵm

ω2

...
x , (B.24)

P2 = −ϵm

ω2
ẍ. (B.25)

The Hamiltonian can be expressed in terms of canonical variables

H(x, ẋ, P1, P2) = P1ẋ+ P2ẍ− L(x, ẋ, ẍ)

=
ϵm

ω2
ẋ
...
x − ϵm

2ω2
ẍ2 +

m

2
ẋ2 +

mω2

2
x2, (B.26)

where there is no lower bound for this case since P1 ̸= mẋ. The energy of the

system that has the higher order derivatives is unbounded from below. When the

unbounded Hamiltonian interacts with external source (which has the lower bound

of energy), it is possible that the unbounded Hamiltonian would lose energy since
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there is no lower bound and the external source would gain the infinite amount of

energy which is called instability.

In the nonlinear massive gravity with FP mass term, the higher order deriva-

tives play a major of the extra degree of freedom. The additional degree of freedom

does not only allow the recovery to GR but also causes the negative kinetic terms

leading to the instability.
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