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CHAPTER I
INTRODUCTION

Copulas, defined as joint distribution functions whose one-dimensional marginals
are uniformly distributed on [0, 1], have been successful in modeling dependence
between random variables. They have been used widely in many branches, for
instance, risk management, quantitative finance, geology, hydrology, including
many applications involving modeling and analyzing of data. Apart from the
perspective of probability theory, we can view any copula as a measure, called
doubly stochastic measure, because for any given copula C, the corresponding
doubly stochastic measure can be defined by the extension of its C-volume. In fact,
the class of copulas and the class of doubly stochastic measures are isomorphic.

With the aspect of copulas in measure theory, they can be decomposed into
an absolutely continuous part and a singular part. Absolutely continuous copulas
are very well-understood and more convenient in modeling real-world data because
they are presentable by joint density functions. On the other hand, copulas with
no absolutely continuous part are called singular copulas, which can be quite
complicated. However, in theoretical studies, singular copulas are very interesting
in its own right and also useful to study because they give some strange but
fascinating results connecting to other branches of mathematics. For example, in
[7], for any given s € (1,2), there exists a singular copula for which the Hausdorff
dimension of its support is exactly s.

In measure theory, the support of a copula can be defined as the smallest closed
set covering the whole mass of copula. The support gives a crude picture of the
copula mass distribution. For instance, if the support has Lebesgue measure zero
then the copula is singular. However, the concept of supports is a global property
which does not give any local character about points in the support. In dimension
theory, pointwise dimension is a local quantity that describes roughly a character
of mass distribution around a point via its value. It is defined in [1] by

o log Ve (R (u,v))
de ) = oy PG

where Ry, (u,v) = [u — h,u + h]x[v — h,v+ h],

if the limit exists. From the definition, larger pointwise dimension means smaller
mass distribution around the point. Moreover, the concept of pointwise dimension

can be used to formulate a sufficient condition to infer some statements about



Hausdorff and Box dimensions, two quantities in dimension theory that measure
complexity of sets, measures, etc. For instance, any absolutely continuous copula
has Hausdorff dimension 2.

One of the most popular classes of copulas is the Archimedean copulas which
is defined in [9] by

C (u,v) = o (p(u) + ¢(v)  for (u,0) €T,

where ¢: [0,1] — [0, 00], called Archimedean generator, is a continuous, strictly
decreasing and convex function such that ¢(1) = 0 and ¢!~ ! is the pseudo-inverse
of ¢. The class of Archimedean copulas is popular due to many desirable properties.

For example,

1. they are constructed by a simple formula which makes their properties much
easier to derive. In other words, many quantities and formulas obtaining from
Archimedean copulas can be expressed explicitly in terms of Archimedean

generators;
2. many Archimedean copulas form a dependence monotonic parametric family.

In [13], we computed the pointwise dimension of a few families of copulas:
Clayton copulas, Marshall-Olkin copulas and copulas with fractal support defined
in [[7] (at some points). Especially for Clayton copulas, which are absolutely

continuous Archimedean copulas defined by
C (u,v) = (max{u?+v7? —1,0}) * for § € (—1,00) \{0},
we obtain the pointwise dimension in the case 6 € (—1,0) that

oo ifu?+vf>1;
de(u,v) =<2 ifuf+0v?<1;

;oifu?+o0 =1

This shows that the behavior of pointwise dimension of absolutely continuous
copulas may not be the same throughout its support.

In this thesis, we are interested in extending the result in [13] for Archimedean
copulas case. That is, we find the pointwise dimension of general Archimedean
copulas. Furthermore, we shall also investigate general behaviors of pointwise

dimension of copulas constructed by various methods.



CHAPTER 11
PRELIMINARIES

We organize the content in this chapter as follows. Section 1 lays out some back-
ground on copulas, especially Archimedean copulas and methods of constructing
copulas. Section 2 lists some results on convex functions, an essential property of
Archimedean generators, and conditions that are similar to differentiation. Section
3 contains some basic knowledge of regular variation, functions whose behavior is
similar to polynomial in some sense, while Section 4 introduces pointwise

dimension, another main concept we study in this thesis.

2.1 Background on copulas

First, we let T:= [0, 1] and define a copula [9] to be a function C': 1> — I with

the following properties:

1. For every u,v €I,
C(u,0)=0=C(0,v) C(u,1)=wuand C(1,v)=wv.
2. For every uy,us,v1,v9 € I such that u; < us and vy < s,
Ve ([, ug] X [vg,v9]) := C (ug,ve) — C (ug,v2) — C (ug,v1) + C (ug,v1) >0

where Vi ([ug, ug] X [v1,v9]) is called C-volume of the set [u, us] X [v1,vs] .

o The condition 2 is called “2-increasing property” and implies that any copula
Cis
— increasing in each variable: for any u,uy, us, v, v, v9 € I with uy < us
and v; < vy, C(u,v) < C(u,vy) and C(uy,v) < C(ug,v), and
— Lipschitz continuous: for any (uy,v;), (ug, ve) € 1%,

|C'(ug, v9) — C(ug, v1)| < Jug — ug| + |vg — v1].

These two properties give rise to Fréchet-Hoeffding bound for copulas, i.e.,
for any copula C' and (u,v) € I?, max{u +v — 1,0} < C(u,v) < min{u,v},



where the Fréchet-Hoeffding lower bound W (u,v) := max{u + v — 1,0} is
a copula, called countermonotonic copula and the Fréchet-Hoeffding upper

bound M (u,v) := min{u, v} is also a copula, called comonotonic copula.

e Ve can be extended to a doubly stochastic measure pco, a Borel probability
measure on (%) satisfying pc (B xI) = A(B) = puc (Ix B) for all B €
A(1) where A is Lebesgue measure on I. Conversely, for any doubly stochastic
measure u, we define C, (u,v) := ([0, u| x [0,v]), which can be easily shown
to be a copula. Hence, there is a 1-1 correspondence between copulas and

doubly stochastic measures.

e By the 2-increasing property above, we can show that for any (u,v) €
1%, Vo ({(u,v)}) = 0. Moreover, for any u,uy, us, v,v1,v2 € I with u; < uy
and v; < vy, Vo ({u} x [v1,1v3]) =0 = Vi ([ur, ug] x {v}). Hence C-volume
is invariant under replacing a closed rectangle with the open rectangle with

the same vertices, and vice versa.

o The support of a copula C' is the smallest closed set containing the whole

mass distribution of copula which is defined as follows:

supp(C) = ﬂ {RCT: Ris closed and puc(R) =1} .

Example 2.1. We consider examples of basic copulas, their doubly stochastic

measures, as well as their supports.

1. TI(u,v) := uv. This copula is called the independence copula. Since for any
rectangle R = [a,b] X [c,d] C I?, Vii(R) = (b —a) (d — ¢), we have for any
E € B(%), un(E) is equal to the area of E which implies that supp(II) = I?.

2. M(u,v) = min{u,v}. For any rectangle R = [a, b] X [c, d], we consider 3 cases
as shown in Figure R.1.
Hence Vi(R) = A([a,b] N[c,d]) which implies that for any E € Z(I?),
v (E) = X(m(E) Ny (E)) where m1(E) and my( E) are projections of E into

x-axis and y-axis, respectively. Furthermore, supp(M) = {(z,x) : x € T}.

3. W(u,v) = max{u+v —1,0}. For any rectangle R = [a, b] X [¢, d], we denote
c*=1—c,d =1—d and consider 3 cases as shown in Figure R.2.
Hence Vi (R) = A([a,b] N [d*, c¢*]) which implies that for any F € Z(I?),
pp(E) = X(m(E)N (1 —m(F))) where 1 — A= {1 —a:a € A} for any set
A. Furthermore, supp(W) = {(z,1 —x) : x € [}



Figure 2.1: M-volume of rectangles in different positions where ' = max{a, c}
and z” = min{b, d}

a pdt c*
Vw(R) =0

Figure 2.2: W-volume of rectangles in different positions where 3y’ = max{a,d*}
and y” = min{b, c*}

Next, we classify types of copulas by the Lebesgue decomposition theorem with

respect to Lebesgue measure as follows.

Theorem 2.2 ([B]) Let C be a copula and Ny be 2-dimensional Lebesgue measure.
Then we can write C' = Ag + Sc where Ac < Ay and Sc L Xy in the sense that
Ac and Sc induce measures pia and pg on B(1%) with pa < Ao and ps L As.

Moreover,

u v 2
Ac(u,v) :/0 i gx%(x,y)dydx and  Sc(u,v) = C(u,v) — Ac(u,v)

for all (u,v) € T2. We call Ac and Sc the absolutely continuous part and the
singular part of C, respectively. In particular, if C = Ac, we call C' an absolutely
continuous copula and if C = S¢, it is a singular copula.

Before introducing Archimedean copulas, we show the following proposition

that gives a relationship between C-volume of a rectangle in I? and its area.

Proposition 2.3 ([Q]) Let R = [uy, us] X [v1, vo] be a rectangle in T*. If Vo(R) = 6
1+6\°
for some copula C, then A(R), the area of R, satisfies 6* < A(R) < (%) )



Proof. Recall that 0 = Vo (R) = C (ug,v2) — C (u1,v9) — C (ug,v1) + C (ug, v1).
To show that A(R) > 62, since Vi ([ug, us] X [0,v1]) and Vg ([ug, ug] X [v9,1]) are
nonnegative, we have C' (ug, v1)—C (u1,v1) > 0 and ug—u; —C' (ug, v2)+C (ug, v) >
0. So ug —uy > C (ug,v3) — C (ug,v9) = 0+ C (uz,v1) — C (uq,v1) > 6. Similarly,
ve — vy > 0 by considering Ve ([0, u1] X [v1,v9]) and Vi ([ug, 1] X [v1,v9]). Hence
A(R) = (uz — w1) (v —v1) > 0%,

1 2
To show that A(R) < (%) , since Vi ([0, ug] x [0,01]), Ve ([0, uq] X [vg,1]),

Ve ([ug, 1] x [0,v1]) and Vi (Jug, 1] X [vg, 1]) are nonnegative, we have

C(uy,v1) > 0; u—C (ur,v2) > 0; v1—C(ug,v1) > 0; 1—us—vo+C (ug,v2) > 0,

and so by AM-GM inequality, 1460 > (us — uy)+(vy — vy) > 2\/(u2 —uy) (v — v1).
1 2
Hence (%0) > A(R) as desired. O]

2.1.1 Archimedean copulas

Let ¢ : I — [0, 00] be a continuous and strictly decreasing function such that

¢(1) = 0 and define =Y to be a function from [0, o0] to I such that

~Ht) ift € [0,9(0)];
AU = inf {z € [0.1] [ p@) <83 =47 D) 0, (0)]
0 if t > ¢(0).
It can be easily shown [9] that the pseudo-inverse 90[’1] satisfies the following.

1. ol is continuous, decreasing on [0, co] and strictly decreasing on [0, (0)].

2. ol (p(t)) = t for any t € I and ¢ (¢!1(t)) = min{t, p(0)} for any ¢ €
[0, 00].

Now, we define C,, (u,v) := =1 (p(u) + ¢(v)) for any (u,v) € I2.
By the definition above, we see that C, satisfies condition 1 in the definition of

copula because for any u,v € I,
1. C, (u,0) < =1 (p(0)) = 0 and similarly, C,, (0,v) = 0,
2. C, (u,1) = ¢ (p(u)) = u and similarly, C,, (1,v) = v.

By [9], we obtain a necessary and sufficient condition on ¢ in order for C,, to be a

copula.



Theorem 2.4. Let ¢ : I — [0, 00] be a continuous and strictly decreasing function

such that ¢(1) = 0. Let C, be a function given by
Cy (u,v) = 7 (p(u) + p(v))  for all u,v € I. (2.1)
Then Cy, is a copula if and only if ¢ is convex.

Definition 2.5. A copula C'is called an Archimedean copula if C' = C,, for some
function ¢ satisfying the condition in Theorem @ The function ¢ is called a

generator for C.

Many examples of Archimedean copulas are given in [9].
Note:

o If ¢ is an Archimedean generator and ¢ > 0 is a constant, then ¢ := cyp is
also an Archimedean generator and Cy = C, because for any = € [0, o0],
o U(z) = U (E>, which implies that for any (u,v) € I?,

c

Cd’(u’ U) = ¢[_1] (¢(U) A gb(v)) = gp[_” <M)

= o7 ((u) + @(v)) = Cy(u, v).

« From (@), if (u,v) € I? is such that ¢'(u), ¢'(v) and ¢"(Cy(u,v)) exist, then

PCp oy — P (Co(w,0) ' (W) (v)
5udv ") o Cow o) 22)
)

In particular, if ¢ is twice differentiable, then (@ holds.

o If p(t) = 1—t, then p[=1(¢) = max{1—¢,0} and C,(u, v)= max{u+v—1,0} =
W(u,v).

o If (t) = —log(t), then »[U(t) = e7* and Cy(u,v) = uv = H(u, v).

Hence W and II are Archimedean copulas.

For copula C, we define the diagonal section of C' to be dc(z) = C(z,x)
for any # € 1. Note that for any copula C, §c(0) = 0, 0c(1) = 1 and by the
Fréchet-Hoeffding upper bound, dc(z) < z for all x € (0,1). By the definition of

Archimedean copula, it is easy to show the following statement.

Proposition 2.6 ([9]). Let C' be an Archimedean copula. Then for any u € (0,1),
5()(u) <Uu



Since dpr(u) = u, it is clear from Proposition @ that M is not an Archimedean
copula.

The reason that copulas in this class are called “Archimedean” is that they have
a property which is similar to the Archimedean property : for any real number a, b
with a > 0, there is a positive integer n such that na > 0. The property is stated

as follows.

Proposition 2.7 ([9]). Let C' be an Archimedean copula. For any x € (0,1),

define x5, = x and 25" = C(z,2%) for any n € N. Then for any u,v € (0,1),

there is n € N such that ug < v.

2.1.2 Constructing methods of copulas

1. Convex sum [9]

Definition 2.8. Let {C }* be a collection of copulas and {o; }, be real numbers
in (0, 1) such that Z a; =1. We call C := ZOQC a convex sum of {C;}1

=1

It is easy to see that the function C' above is a copula because

o for any u € I, C(u,0) Zal ,0) = Zai -0 = 0 and, similarly,
i=1
C(0,v) =0 for any v € L.
o for any v € I, C(u,1) Zal Uy 1)y uZaz = wu and, similarly,
i=1

C(1,v) = v for any v € I

o forany uy, us, v1,ve € I'such that u; < ugand vy < vg, Vi ([ug, ug] X [v1,v9]) =
n

ZaiVCi ([, us] X [v1,12]) > 0.

An example of a convex sum is shown in Figure @
Note: it is clear that supp(C) = U supp(C

2. Ordinal sum [8]
First, we say that two distinct intervals I and J are non-overlapping if I N J is

empty or a singleton set.

Definition 2.9. Let {J;}icn, where J; = [a;,b;] with a; < b; for all : € A C N,

be a family of closed, non-overlapping, non-degenerate sub-intervals on I and let



M

Figure 2.3: The support of a convex sum of W and M

{C;}ien be a collection of copulas with the same index as J;. Then the ordinal sum

of {C;} with respect to {J;} is a copula C' given by

Uu—a; vVv—a;

a; + (b; — a;) C; ( ) if (u,v) € J%

min{u, v} otherwise.

C (u,v) = bi — a;’ bi — a (2.3)

An example of an ordinal sum is shown in Figure @

Figure 2.4: The support of an ordinal sum of {W,II, M} with respect to {J; =
0,0.3], Jo = [0.4,0.7], Jy = [0.7, 1]}

The following theorem gives a characterization of ordinal sums.

Theorem 2.10 ([9]). Let C be a copula. Then C is an ordinal sum if and only if
there exists t € (0,1) such that C (t,t) = t.

In [§], the authors define Z¢, the idempotent of C, as I := {z € I : C(z,x) = z}.
By the continuity of C', Z¢ is closed. Moreover, they derive a property on the

support of ordinal sums in the following statement.

Theorem 2.11 ([§]). Let C be the ordinal sum of {C;}ien with respect to {J;}ien
defined in Definition @ LetT% := {(z,x) : * € Zc}. Thensupp(C) C I%UU J?Z.
i€A

3. Patched copulas
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Definition 2.12 ([7]). Let 7' € M,,«x»(I) be a matrix of the form

tlm t2m s tnm
T —

t12 t22 « .. tn2

tir tor ... tm

Then T is called a transformation matrixz if T satisfies the following properties:

e No row or column of T contains only zero entries; and

n m

33 S

i=1 j=1
With the transformation matrix 7', we can define a partition on the x-axis P :=
(po =0,p1,...,p, = 1) and a partition on the y-axis Q = (qo = 0,q1,-..,Gm = 1)
by

k. m

L n
kaZZtij for k=1,...,n and qg:ZZtij for{=1,...,m.

i=1 j=1 7=1 =1

Note that P and @ subdivide I? into a collection of non-overlapping rectangles

{Rij == [pi—1,pi] X [¢j-1,q] :i=1,...,mn, j=1,...,m}.

Next, we define patched copulas using transformation matrices which is a

special case of the same terminology in [4].

Definition 2.13. Let 7' = [t;;] € M,«,(I) be a transformation matrix with

partitions on the z-axis P and the y-axis @, respectively, and let {C;;} be a

collection of copulas with the same indices as entries in 7. For any (u,v) € I?,

define o

Clu,v) =D Y ;G5 (Fi(u), G(v)), (2.4)
i=1 j=1

U — Pi-1

where Fj(u) = min{
Di — Pi—1

,1} L(p,_1,00)(w) is a uniform distribution function

U —gj—1

q; — qj-1
function on [gj_1,¢;]. Then C is called the patched copula with respect to the

on [p;—1,pi] and G;(v) = min{ : 1} L(g,_1.00)(v) is a uniform distribution

transformation matriz T and the collection of copulas {C;;} or patched copula for

short if the transformation matrix and the collection of copulas are known.
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Figure 2.5: The support of the patched copula with respect to 7" and {C;;}

An example of a patched copula is shown in Figure @ where
- [0.15 0.2 0.15 WM

02 0 0.3 M W 11
Note that

] and {Cj;} =

o if (u,v) € Ry, then (@) can be written as

C(u,v) = Z Lk Z i+ Ve Z tie + treCre (up, ve) (2.5)

i<k,j<t j<t i<k
— Pk—1 U= dqr
where v, = —— and v, = —; and
Pr — Pk—1 Qe — qr—1

« an ordinal sum of a finite collection of copulas (with respect to finite sub-

intervals on I) is a patched copula as stated in the following proposition.

Proposition 2.14. Let {J;}Y.,, where J; = [a;, b;] with a; < b; foralli=1,... N,
be a family of closed, mon-overlapping, non-degenerate sub-intervals on 1 and
{CYN., a collection of copulas. If C' is an ordinal sum of {C;} with respect to
{J:}, then C is a patched copula.

Proof. By reordering if necessary, we assume without loss of generality that b; <
ajpq foralle=1,...,N — 1.

[0, a] if 1 = 0;
We define {J/}IXo by J! =< [bs, aiq] ifi=1,...,N —1;

[bn, 1] ifi = N.
Let S = {J,} U{J;, JI}Y, and define a relation < on S by I} < I, if and only if
min /; < min 5. It is easy to see that < is a total ordering on S. Next, we define

a collection of closed, non-overlapping, non-degenerate sub-intervals { K;} on I by

-1
K, = m<in{[ € S: A1) >0} and for any £ > 1, K, = m<in{I e S\ U Ky A1) >
< ~ k=1

0} where m<in is the minimum under the relation <. Note that

~

. UKg = I, that is, max K, = min K, for all ¢; and
¢
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Jo={0}  J5={b2} = {as}

| |

o o—e - - o0—o———0- -0—0- 0] > 0 *—e—0 |

Ji Jo J3 Ja Jio Jp Jy J3 Jg s Jflv

Oe

—o— ]
K, Ky Kz Ky KsKgKy

Figure 2.6: Example of defining {K,}/_, from {J;}}_; in Proposition

o foreachi=1,..., N, there is ¢ such that J; = K,.

Now, let n := [{K,}| and define a transformation matrix 7" € M, (I) by

0 0 ... MK
AN

7/ NN

X)) 2204\ N 0

Also, we define a collection of copulas {Cy}y ,—; by

C; ifk=/¢and Ky = J; forsome:=1,..., N,
Cre =

M  otherwise.

Claim. A patched copula D with respect toT" and {Cye}}; .=, is the ordinal sum C.

To see this, let (u,v) € T>. We consider 3 cases.
Case 1: (u,v) € J? = [ag,b))> = Ry for some £ =1,...,N and k = 1,...,n.
Then by (.3),

D(u,v) = Z tij + uk Z tkj + Uk Z tik + terCrr (uk, vg)
1,j<k i<k i<k

=ar+ur-0+uv, -0+ A(Kk)cz(uk, Ukz)

=ar+ (by — ap) Cy (u—ag U_W) = C(u,v).

b[—a[’b[—a[

Case 2: (u,v) € J? = [by, aps1]” = Ry, for some £ =0,1,...,Nand k=1,...,n

(for convenience, by = 0 and ay,; = 1). Then as in the previous case,

D(u,v) = Z tij + up Z ki + v th’k + tixCrr (U, Vi)

i,j<k i<k i<k
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= bg—i‘uk 'O—|—7J]C . 0+>\(Kk)M(Uk,Uk)

—b —b
:b€+(a£+1_b£>M(u ¢ v —by

) = M(u,v) = C(u,v).

b)
g1 — be aprr — by

Case 3: (u,v) € Ry for some k, ¢ = 1,....n with k& # ¢. Without loss of
generality, we assume that & < ¢. Then by (@),

D(u,v) = > tij+ur > tej+ve Y tie + teeCre (i, vp)

i<kj<t j<t i<k
k—1

= )\(KZ) —l—uk)\(Kk)—FUg-O—l-O'M(uk,'Ug)
=1

ANKg) =u=M(u,v) = C(u,v).

Similarly, if & > ¢, then D(u,v) =v = M (u,v) = C(u,v).
Therefore, C' = D, i.e., C' is a patched copula with respect to the transformation

matrix 7" and the collection of copulas {Cre}y o - O

2.2 Some theorems in real analysis

In this section, we collect some basic knowledge about convex functions,
symmetric derivatives and strong differentiability, which will be used in this thesis.
See [2, B, B, [12] for more details.

2.2.1 Convex functions

We first recall some basic properties of convex functions on a subset of R.

Definition 2.15 ([2]). Let I be an interval in R. A function f: I — R is convex

if for any z,y € T and t € [0,1], f (tx + (1 —t)y) < tf(z)+ (1 —1)f(y).

fly) = f) _ f(2) = fy)
y—z T z-y

Proposition 2.16 ([6]). Let I be an interval in R with Int(I) = (a,b) and f: I —

R be a convex function. Then

Equivalently, f is convex if for any r < y < z in [,

and the

(1) for any x € (a,b), the left derivative f'(x7) := lim f(x+h)— f(z)

L h—0~ h
right derivative f'(x") := lim fl@+h) = f(z)

Jim . exist. Moreover, f'(a™) and
—0
f'(b7) exist.

(2) for any x,y € I such that x <y, f'(x*) < f'(y7) < f'(yh).
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(3) D := {x € (a,b): f'(x) exists} has a countable complement. That is, any

convex function on I is differentiable at all but countably many points in I.

(4) By (2), we see that f' is increasing on D. Hence by Lebesque Differentiation
Theorem, Dy := {x € (a,b) : f"(x) exists} has Lebesque measure A\(Ds) = b—a
and for any x € Dy, f"(x) > 0.

Now, if f is a convex differentiable function on (a,b) € R. From Darboux’s
Theorem [2]: the derivative of a differentiable function on an interval has the

intermediate value property, we can show the following statement.

Corollary 2.17. Let f be a convex and differentiable function on (a,b). Then f’

is continuous on (a,b).

Proof. Let € (a,b). Then by Proposition (2), flla™) < fl(x) < f'(b7).
Note that if f'(a*) = f'(b7), then [’ is a constant function on (a,b). That is,
f" is continuous at x. With the same reason, we may assume without loss of
generality that f'(a®) < f'(z) < f'(b7). Now, let ¢,d € (f'(a™), f'(b”)) be such
that ¢ < f/(x) < d. Then by Darboux’s Theorem, there are y € (a,x) and z € (z,b)
such that f'(y) = ¢ and f’(z) = d. This statement implies the continuity of f’ at

x by Proposition (2) O

2.2.2 Symmetric derivative and strong differentiability

Definition 2.18 (Symmetric derivative [12]). Let f be a real-valued function on an
open interval D and x € D. We define the first and second symmetric derivatives

of f by the expressions
flz+1t) = flz —1)

SD f(z) == 1151_1301 57 (2.6)
" SD, f(z) i lim L FD = 2@+ flw = 1) 2.7)

t—0 t2

Next, we give some statements about symmetric derivatives.

Proposition 2.19 ([12]). Let f be a real-valued function on an open interval D
and z € D.

1. If f'(z) exists, then so does SD f(x) and SD f(z) = f'(z).
2. If /(%) and f'(x™) exist, then so does SD f(z) and

D f(a) = LI
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3. If f"(x) exists, then so does SDo f(x) and SDq f(x) = f"(x).
4. If f'(x™), f'(z7) exist and SDs f(z) € R, then f'(z) exists.
5. If f is convex and SDs f(x) exists, then SDs f(x) > 0.

However, if SD f(z) exists, it is not necessary that f’(z) exists. Likewise, the

existence of SDj f(x) does not guarantee the existence of f”(x). For example,

1 if x > 0;
f(x) = |z| and g(z) =sgn(z) = €0  if 2z =0;
-1 ifx<0.

t|—|—t
We see that SD f(0) = %in% % = 0 but f'(0) does not exist because f'(07) =
—
land f(07) = —1.
sgn(t) — 2sgn(0) + sgn(—t)
12
(" ¢ is not continuous at 0). So ¢”(0) does not exist.

Similarly, SDs g(0) = Pn& = 0 but ¢’(0) does not exist
_)

Definition 2.20 (strong differentiability [5]). Let f be a real-valued function on

an open interval D. For a € D, we say that f is strongly differentiable at a if the
o f(2) = f(y)
limit lim ———=—=

(z,y)—(a,a) r—Y
TH£Y
call it the strong derivative of f at a.

exists and is finite. We denote the limit by f*(a) and

The following results from [b] will be used in the proof of Theorem @(D)
Theorem 2.21. Let f be a real-valued function on an open interval D and a € D.
1. If f*(a) exists, then so does f'(a) and f*(a) = f'(a).

2. If " is continuous at a, then f is strongly differentiable at a.

2.2.3 Derivative of measures

Let 1 be a complex Borel measure on R2. We define the symmetric derivative

of u at z to be (Dp)(z) := lim %

theorems about Lebesgue points and symmetric derivatives of singular measures

. In this subsection, we list a few

from [10] that are used to show some statements about association between

pointwise dimensions and types of copulas as follows.

Theorem 2.22 ([10]). If f € L'(R?), then for Ay-almost all x € R?,

. 1 _
B S B o, )~ @A) =0
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where B(x,r) = {y € R* : ||y — z|| < r}. This implies that for any complex
measure ji such that u < Xy with Radon-Nikodym derivative f € L'(R?) and for
Ao-almost all x € R?, (Dp)(x) = f(z).

Theorem 2.23 ([10]). If u is a positive Borel measure on R?* and pn L Ay, then
for Ag-almost all x € R?, (Dp)(x) = 0 and for p-almost all x € R?, (Dp)(x) = oo.

2.3 Regular variation

Regular variation [3] is a subject that studies functions whose behavior at
some interesting points, espectially at infinity, is similar to the behavior of a power
function at those points. In this topic, we start by giving the definition of a

regularly varying function at infinity and at the right of 0.

Definition 2.24 ([3]). A positive measurable function f defined on [M, co) such

A
that there exists a real number p satisfying lim I ( x))
T—00 €
a reqularly varying function of index p; we write f € RV,.

= M\ for any A > 0 is called

In particular, if p = 0, we call f a slowly varying function.

Definition 2.25 ([3]). A positive measurable function f defined on (0, N] such

A
that there exists a real number p satisfying lim f ()
z—01 f (l’)

called a reqularly varying function at the right of 0 of index p; we write f € RVPO.

= XN for any A > 0 is

In particular, if p = 0, we call f a slowly varying function at the right of 0.

Note that f € RVpO if and only if g:  — f(1/x) is in RV_, because for any
A >0,

=0t f(x) e—0t g (1/x)
- glaw)
<= lim =a? (useu=1/zanda=1/\) < g€ RV_,.

Example 2.26.

1. f(x) = arcsin(z) for z € [0,1] is in RV}? because for any A > 0,

lim f(Az) = lim M = lim ;\/1 —x2 =)\

e=0t f(x) w0t arcsin(z) a0t /1 — (\x)?

2. g(z) = —log(x) for x € (0,1] is in RV} because for any A > 0,
log(})

lim g(\x) o —log(\x) o log(\) + log(z) 14 gim 4
e—0t g(x)  amot —log(x) a0t log(x) z—0+ log(x)
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3. hiz) = —— for z € (0,1) is in RV, because for any A > 0,
1
. h(A\x) . xa—(w)? , z(1—x) 1. 1—-z 1
1 ~ 1 = lim =2 _
oot h(@) a0t L, aoot Az(l— AZ) AesorL— Az A

r—x

From the definition, it is easy to see that f € RV, if and only if f(z) = 2*{(x)
for some slowly varying function ¢ and the result holds for f € RVpO in a similar
way. Hence we see that slowly varying functions are important in this subject.
Furthermore, they are related to the most important theorem in this subject,

Uniform Convergence Theorem (UCT), which is stated as follows

Theorem 2.27 (Uniform Convergence Theorem [3]). If ¢ is a slowly varying

A
function, then lim fz)
T—00 E(x)

= 1 uniformly on each compact \-set in (0, 00).

Surely, there is a Uniform Convergence Theorem for slowly varying function
at 0. UCT is used to prove the following theorem which characterizes the slowly

varying functions.

Theorem 2.28 (Representation Theorem [B]). A positive measurable function ¢

is slowly varying if and only if it can be written in the form

U(z) = C(z) exp {/ @dt} (for = > a)

t

for some a > 0, where C(-) is positive and measurable, and C(x) — ¢ € (0,00)
and e(x) = 0 as x — oo.

See [B] for the proof of these two theorems. From Representation Theorem,
we prove Potter’s Theorem which gives bounds for the quotient of the values of a

slowly varying function at different points.
Theorem 2.29 (Potter’s Theorem [3]).

1. If f is reqularly varying of index p then for any chosen constant A > 1 and
d >0, there is X = X (A, ) such that for any x,y > X,

-5 5
(Y Ty f(y) A Ty
z = 2 < LI < p(2 =2V ) (2
A <x> (max{y,x}) ) _A<x> max ' (2.8)
2. If f is reqularly varying at 0 of index p then for any chosen constant A > 1
and § > 0, there is Y =Y (A, ) such that for any 0 < z,y <Y, (@) holds.
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Proof. For the first part, it suffices to show the case where f is slowly varying.

To see this, assume that f is a slowly varying function. Then by Representation

Tt
Theorem, f(z) = C(z) exp{ / %)dt} for some a > 0, positive measurable

function C' with C(z) — ¢ Ea(O, oo) and n(x) — 0 as ¢ — oo. Let A > 1

A—1
and 9 > 0. Choose ¢ = min {A—H,(S} € (0,1). Then by the existence of the

limits of C' and n as * — o0, there exists zy > 0 such that for any x > =z,
c(l—¢e)<C(x) <c(l+¢€)and n(z)| <e. Let X = X(A,0) = max{zg,a}. Then
fory>x > X,

% B ggy; p{/ @dt} <t p{ /%}
< Aexp{elog(y/z)} = A(y/z)° < A(y/z)°.

Also, for x >y > X,

fly) 1+e

fla) S 1—¢"
The lower bound can be shown in a similar way.
For the second part, assume that f € RVY. Define fi: x + f(1/x). Then f; €
RV_,. By the previous part, for each A > 1 and § > 0, there is X = X (A, ) such
that for x,y > X,

o) ({2 =i =10 (1)

Choose Y = 1/X. Then for 0 < z,y <Y, we have 1/x,1/y > X i.e,

5= fam =G (i) =20y (e {553)
f(y)
f(x)

Now, we list some properties of regularly varying functions and slowly varying

p {—a 5 %} < Aexp{—clogly/z)} = Ala/y)* < A(a/y)’

and the lower bound of can be obtained similarly. O

functions at infinity and we give corresponding statements for regularly varying

functions and slowly varying functions at the right of 0 used in this thesis.
Proposition 2.30 ([3]).

(i) If £ € RVy, then for any a > 0, lim z*/(z) = oo and lim x~*¢(z) = 0.
T—r 00

T—00

(ii) If ¢ € RVy, then lim log (¢(z))

=0.
T—00 log(q:)
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(iii) Let « € R. If f € RV, and g(x) = (f(x))", then g € RV,,.
() If f € RV, g € RV,, then f+ g € RViaxipor and f-g € RV,,,. Moreover,
if we assume in addition that lim g(x) = oo, then fog € RV,,.
T—r00

Proof [11]. For (i) and (ii), by Theorem D.28, we write
l(x) = C(x)exp {/fﬂ #dt} (2.9)

for some a > 0, measurable functions C, e such that C' is positive, C(z) — ¢ > 0
and £(z) — 0 as x — oo.

(i) Assume that ¢ € RV and let o > 0. We give a proof for lim z*/(x) = oo as

T—r00

another case can be handled similarly. By (@), we see that

Te(t
z*(z) = C(x)exp {alog(x) +/ #dt} :
Since C'(z) — ¢ > 0 as * — oo, C' is eventually bounded away from 0. Hence

Te(t
it suffices to show that lim (a log(x) —i—/ #dt) =

T— 00
Let M > 0. Since e(z) — 0 as & — oo, there is M; > 0 such that for any

x> M, |e(z)] < %. Hence

alog(x) +/ e(t )dt = alog(x +/ ? / #dt
M- T
i e(t o 1
1 —=dt — = —dt
> alog(x) + ‘ 7 / /

M,
t
log +/ ‘Si dt+—1 g(M,).

M
J 5 |
Since C" := / l )dt+ 5 log(M;) is a constant and lim log(x) = oo, there

T—00

20M — '
is My > M, such that for any = > My, log(z) > g

(1), . o 2M=C)

Te
> M. 1 —=dt > —
x> g,aog(x)—I—/a ; 5 o

. Thus, for any

+ C" = M which implies that

mh_)rgox l(x) = 0.

Te(t
(ii) Assume that ¢ € RVy. Then by (@), log (¢(x)) = log (C(x)) +/ #dt.
Now, let 6 > 0. Since e(z) — 0 as x — oo, there is M; > 0 such that for any
x> My, |e(z)] < g Hence for any « > M,

log (((z)) _log(C(x)) . [ 2dt & [y, dt
log(z) ~ log(z) | log(z) 2 log(x)
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log(C(z)) — $log(My) + [ Wat 5
= + —.
log(x) 2

My
Since C"(x) := log(C’(:E))—g 10g(M1)+/ #dt is eventually bounded and
’ C"(xz) ¢

< -
log(z) 2

lim log(z) = oo, there is My > M, such that for any x > My,
Tr—00

log(¢(x))

Hence log () < ¢. Similarly, we can show that there is M3 > 0 such that
1 1
for any x > Ms, M —0. That is, lim M =0.
log(z) a0 log(z)
_ fAz)
Assume that f € RV, and g(z) = (f(z))". Then for any A > 0, lim @)
T—r00
_g(Az) ( ; f(M“))a o :
A, Thus, lim = | lim = (M) =X ie., g€ RV,,.
T—00 g(x) =00 f(x) ( ) P

Assume that f € RV,, g € RV, and without loss of generality, p > o. Then
f(z) = 2Pl (x) and g(x) = x7¢y(x) for some slowly varying functions ¢y, (5.
We divides the proof into 3 parts.

Part 1: f-g. We see that for any A > 0,

-g)(A\x . Ax)g(Ax . Az) Ax o o
tin GG =t TR = dim o)t S v =
Hence f-g € RV,4,.

Part 2: f + g. We see that if p = o, then for any A > 0,

b (Ax) + lo(Ax) - G(Az)  b(x) lo(Ax)  ly(x)

b (x) 4 lo(x) li(x) O(z) + ba(x)  la(x) O(x) + lo(x)

Now, let ¢ > 0. Since ¢1,{5 € RV}, there is M > 0 such that for any

tL(Az) ly(\x)
x> M, 0@ € (1—e1+¢)and ()

(M) + lo(Ax) o
x> M, € (1 —¢,14¢). This implies that ¢; + ¢, € RV,
= 01(2) + () ( ) p 1 2 0
and f(z) + g(z) = 2 ({1(x) + la(x)) € RV,

If p > o, then f(z)+g(x) = 2Pl (x)+ 270y (x) = xP ({1 (x) + 27 Ply(x

€ (1 —¢,1+¢). Hence for any

). Since

)
G(0x) + (A2)7Pls(Ax) 60) 1+ e
)

. . (
1 _
B (@) e (@) e f(n) e 14 g7
T L
2500 0 (2)

for any A > 0, where the second equality follows from (i),(iii) and (v) in the
product part, we have ¢,(x) + 277 ?ly(x) € RVp and f + g € RV,
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Part 3: fog. We suppose in addition that lim g(z) = oco. Then from (i),

o > 0. Since e
f(g(x)) = g(2)l1 (9(x)) = (27€a(2))" b1 (27Ls(x)) = 27 (La(2))" b1 (27la())

b (a0 4 ((V5) s)
0 (0 @) )

let ¢ > 0. Since ¢, € RVj, there is M; > 0 such that for any x > My,
. r(Az)
—e<
{5 ()
subset of (0,00), by UCT, there is My > 0 such that for any ¢ > M, and any

0 (k)
ke K, 1—e <
0]

such that for any z > Mj, g(x) > Ms. Hence for any = > max{M;, M},
gQ()\ZL') g 51 (()\ZE)U€2<)\ZE))

x) > My and \————= € K, that is, e (l—gl1+¢).
9(@) 2 0o(2) 0 (270a(x)) ( )
This implies that ¢; (z7¢5(x)) € RVy. Therefore, f o g € RV,, which follows
from (iii) and (v) in the product part. O

we see that for any A > 0,

. Now,

< 1+e. Next, since K :=[A\(1 —¢),\7(1 +¢)] is a compact

< 1+4¢. Moreover, since lim g(z) = oo, there is M3 > 0
T—00

Corollary 2.31.

(i) If ¢ € RV, then for any a > 0, liI(I)1+ x®(x) =0 and lim z~%(x) = cc.
z—

z—0t

log (£(x))
0 =
(it) If € € RV}, then xh_}r(r)h loz(z) =~

(iii) Let o« € R. If f € RV} and g(x) = (f(x))", then g € RV,

(i) If f € RV, g € RV, then f+g € ergm{p’a} and f - g € RV}, ,. Moreover,
if we assume in addition that lim+g(:v) =0, then fog € RVPOU.
z—0
Proof.

(i) Assume that ¢ € RVY and let @ > 0. Then £: z — ((1/x) is in RV;. By
s . . . " (1 Caj
Proposition (1), we have lim z%((z) = lim <—> 1 (;) = lim t7%(t) =

r—0+ t—o0 t t—oo
0 and similarly, lim x=*/(z) = occ.
z—0t

(ii) Assume that ¢ € RVy. Then (: z — {(1/z) is in RV,. By Proposition
log (¢ log (¢(1/t log (£(t
i, o OB o (e(1/0) o (00)
e—0+  log(x) t—oo  log(1/t) t—oo log(t)

(iii) It is similar to Proposition (iii).
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(iv) Assume that f € RV?, g € RV?. Then f: z — f(1/z) and g: x — g(1/x)
are in RV_, and RV_,, respectively. By Proposition (iv), f+3g €

RV nax{—p—o} and f-g € RV, ,. Since max{—p,—c} = —min{p,c},
we are done. Now, we suppose that lim+g(:c) = 0. Then lim g(x) =
z—0 T—r00
- 1
g};rgog(l/x) = tlir(gg(t) = 0. Let h(z) = 7@ Then by Proposition

(iii), h € RV, and lim h(r) = oo. Hence by Proposition (iv),
T—00

foh € RV_,,. Since (fog)(z)= f(ﬁ) = f(g(ll/x)) = (foh)(1/x),
we have fog e RV). O

2.4 Pointwise dimension

In this section, we introduce the pointwise dimension [l]. This notation is
used to measure a “local dimension” at each point in the domain under various
measures. Moreover, it gives a sufficient condition for equality between Hausdorff
dimension and box dimension, both of which are important tools in dimension

theory.

Definition 2.32. Let p be a measure on X C R™. For each x € X, define an
upper pointwise dimension d,(r) and lower pointwise dimension d,(z) to be
_ log 11 (B(z, 7)) log pu (B(,r))

d = li d d = liminf
W) =lmep =y 2 T

If d,(z) = d,(r) = d,(z), we called d,(r) the pointwise dimension of x under p.
We can write upper and lower pointwise dimensions in another form as follows.

Proposition 2.33. For each a > 0 and v € X, we have
d,,(w) = limsup log (B (@, ac™)) and d,,(x) = lim inf log 1 (B (v, ac )>

n—00 —n n—o0 —n

In the following statement, we show the relationship between the Hausdorft
dimension and the lower pointwise dimension where the Hausdorff dimension of
measure g is defined to be dimy p = inf{dimgy Z | u(X\Z) = 0} and

e—0t

dimy Z = 1nf{a e R: lim 15f;(d1am U)* = 0}

is the Hausdorff dimension of Z C X [l] where the infimum is taken over all
countable coverings U of the set Z with sup {diam U : U e U} < e.
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Theorem 2.34. The following statements hold:
(i) if d,(x) > a for p-almost all x € X, then dimp p1 > a.
(ii) if d,(v) <« for allx € Z C X, then dimy Z < a.
(iii) dimp p = esssup {d,(z) |z € X }.

See [1] for the proof of this theorem.
Recall that for a finite measure p on X, upper box dimension and lower box

dimension are defined to be
dimpp = liminf {dimpZ | p(Z) > p(X) — ¢}
e—0Tt

dimpp = lim inf{dimp 7 | p(2) 2 p(X) -}

S log N(Z log N(Z
where dimpZ = lim supOg—(’r) and dimzZ = lim inng—(’r) are upper
0+ ogr r—0+ log r

and lower box dimension of Z C X respectively and N(Z,r) is the least number
of balls of radius r that are needed to cover Z. In addition, by the well-known fact
in dimension theory [1] that for any measure p in X and any Z C X, dimy Z <

dimpZ < dimpZ, we have
dimy g1 < dim g < dimpp.

These inequalities could be strict for some measures j. However, under a condition

on the pointwise dimension, these three quantities coincide.

Theorem 2.35. If u is a finite measure on X and there is d > 0 such that
d,(7) = d for p-almost all v € X, then dimy p = dimpp = dimppu = d.



CHAPTER III
POINTWISE DIMENSION OF COPULAS

In this chapter, we derive some properties of pointwise dimension of copulas
and the equality to the pointwise exponent defined in [[13]. Moreover, we study the
behavior of the pointwise dimensions of copulas constructed by methods introduced
in Chapter 2.

3.1 Notation and some properties of pointwise dimension

First of all, for b > 0, let Ry, (u,v) := [u — h,u+ h] X [v — h,v + h]. Since there
is a 1-1 correspondence between copulas and doubly stochastic measures, we use
notations do = C_ZMC, de = c_iuc and de = d,,, (if exists). According to Proposition
@, we see that Vo (Ry, (u,v)) < 2h for any h > 0 such that (u,v) € I? and C is a

log(2h
copula. That is, di (u,v) > liin_)igl . ngg((h))

From the relation B((u,v),h) € Ry(u,v) C B((u,v),v/2h), we see that the
topologies generated by the collection of squares { Ry (u,v) NI1%: (u,v) € I*,h > 0}
and the collection of open disks {B((u,v),r)NI2: (u,v) € I?,r > 0} are the same.
Hence we may replace B((u,v),r) in Theorems and with Rp(u,v).

Now, from Theorem , the Hausdorff dimension of every absolutely continuous

copula is two.

Proposition 3.1. Let C be an absolutely continuous copula with the corresponding
doubly stochastic measure uc. Then do(u,v) > 2 for uc-almost all (u,v) € I? and
so dimy pe = 2.

02C

Proof. Since e < Ag with Radon-Nikodym derivative f(z,y) = 920y

Theorem , for \p-almost all (u,v) € T2,

. He (Rh(ua U)) .
hlgcr)l+ o (Bl 0) f(u,v). (3.1)

(z,y), by

Next, let A = {(u,v) € I*: (@) holds and f(u,v) € [0,00)}. Then A, (I*\A) = 0
which also implies that uc (I*\A) = 0.
Note that for any (u,v) € A, there is 6 > 0 such that for any h € (0,0),
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po (R (u, v))
e < f(u,v) + 1. Hence

log ((f(u,v) +1) - 4h?)

log pic (Rp(u,v)) > lim inf ©

de(u,v) = liminf

h—0 log(h) h—0 log(h)
—liminf 28U D)
h—0 log(h)

Now, we have do(u,v) > 2 for all (u,v) € A which is pc-full measure, so by
Theorem , we obtain dimy puc > 2. But then, dimg uc < dimg(I?) = 2.
Thus, dimyg pe = 2 as desired. ]

Next, we turn to the pointwise dimension of singular copulas.

Proposition 3.2. Let C' be a singular copula with the corresponding doubly stochas-

tic measure pc. Then do(u,v) < 2 for pc-almost all (u,v) € 12

Proof. Since uc L Ay, by Theorem , for pc-almost all (u,v) € 12, there is
pic (Rp(u, v))

d > 0 such that for any h € (0,6), N (R, 0)) > 1. Hence
2 h\ W,
= : log pic (Bn(u,v)) _ . log(4h?)
d =1 <1 = 2. ]
o) = Bmnsup 7 e - = U gl

In [13], we introduce some notations used in this thesis as follows: for any

(u,v) € (0,1)*, @ > 0 and copula C, define DC (u,v) := limsup Vo (B (u,v))

h—0t (Qh)o‘
and D*C (u,v) := lim g Ve (B (w,v))

n AT . If these values coincide, we let
h—0

. VC (Rh (U, 'U))
D* = lim ———=
Cluv) = lim ——5ns
In the following lemma, we verify the monotonic property of D*C'(u,v) and
D*C (u,v) which will indicate values of D?C (u,v) for 8 on the left or right of

« as follows.

Lemma 3.3. Let C be a copula and (u,v) € I?. Then both D*C (u,v) and
D*C (u,v) are increasing in «. More precisely, for 0 < f < a < 7,

(1) If D*C (u,v) < oo, then DAC (u,v) = 0.
(2) If D*C (u,v) > 0, then D'C (u,v) = oc.
And the same statements hold for D*C(u,v). In particular,

e if D*C(u,v) < oo, then DPC(u,v) =0 for all B < a.
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e if D*C (u,v) >0, then DC (u,v) = oo for all v > «.

Proof. Let 0 < f < a < 7. To show (1), assume that D*C(u,v) < oco. Since
Vo (B (w,v) _ Vo (B (u,v)) - (2h)*7F lim sup Ve (B (u,v)) = DoC (u,v) < 00

(2n)P  (2h) "o (2h)*
and lim (2h)*" = 0, we have
h—0*t
FE . Ve (R (u, v)) ( c (Bn (u,v)) -
DAC (u,v) = limsup ————> = lim sup 2h)—F
( ) h—0+ (2h>ﬁ h—0+ (Qh)a ( )
Vo (B (u,v)) -
=1 ’ lim (2h)*F = D= =
1}rg%1ip 2n)e hi)n&( h) C(u,v)-0=0

Next, to show (2), assume that D*C'(u,v) > 0 and let M > 0. Since
Ve (Rh (U, U))

lim sup = DoC (u,v) > 0 and lim (2h)*™7 = oo, there is 6 > 0 such
h—0+ ( )a h—0+
2M
that for any h € (0,0), (2h)*™7 > ———— and there is a sequence h, 0 such
DaC(u,v)

Do

that Vo (B, (u,v)) > (1, U). Thus, for any n € N such that h,, <9,
(2h,)° 2
Vo (B, (u,v)) Vo (B, (u,v)) _
" E : - (2h,)*7 > M.
(2h,)7 @hyye )T
This implies that D7C'(u,v) = lim sup Vo (Bnv, v)) = 00.
h—0+ (2h)

Note that the proof of (1) for D*C(u,v) is similar to (1) for D*C'(u,v).
However, the proof of (2) for D*C(u,v) is easier than (2) for DO‘C(u v) because

. . (2h) ( ( h(ua U)) ) -
we can consider the reciprocal == 2h)7™% where
Do (Rl ) o) @Y

V. N ATANE -
lim inf (M) = (D*C(u,v)) ' which is finite by assumption of (2),

h—0+ o

(2h)
and lim (2h)""% = 0. Hence

etuor g (LB )
— : VC (Rh(u7 U)) - Y YAl -1
= (hiri)%lip W) hli\rgl+(2h) = (D*C(u,v)) -0
= 0.
That is, DYC(u,v) = 0. O

By the previous lemma, with the behaviors of both D*C' (u,v) and D*C' (u,v),

we can define upper pointwise exponent and lower pointwise exponent as follows.



27

e Let A:={aeR":DC (u,v) =0} and B := {a € R" : D*C (u,v) = oc}.
« By Proposition @ and Lemma @, we see that (0,1) C A.
e aq(u,v) :=sup A =sup {a e Rt : DoC (u,v) = 0}'

o ¢ (u,v) :=infB =inf{a € R : D*C (u,v) = oo} and

ac (u,v) = oo whenever B = &.

o These values are defined from completeness axiom of the extended real
numbers. In addition, if they coincide, we denote the common value by

ac (u,v), and call it the pointwise exponent of copula C at (u,v).
Lemma 3.4. For any copula C and (u,v) € I?, aq (u,v) < ac (u,v).
Proof. Let by < a (u,v). Then there is a € A such that by < a, i.e., D*C (u,v) =
0. By Lemma @, D*C (u,v) = D"C (u,v) = 0 so that by < b for any b € B
which implies by < inf B = @¢ (u,v). Therefore, o (u,v) = sup A < a¢ (u,v). O
From the definition of a¢ (u,v), we can show that ac (u,v) = do(u,v) and
ae (u,v) = de (u,v) as stated in the next proposition.
Proposition 3.5. For any copula C and (u,v) € 12, ac (u,v) = de (u,v) and
ac (u,v) = de (u,v).
Proof. We verify only that @c (u, v) = de (1, v) as the other equality can be proved
similarly.

(>) Let b€ B={a€R":D*C (u,v) = oo}. Then there is § > 0 such that for

any h € (0,9), Ve (B (u,v)) > 1. Hence for such h,

(2h)°
log Ve (Ry(u,v))  blog(2h) b blog(2) e
log(h) log(h) " log(h) "
— 1 —
de (u,v) = limsup og Ve (Rilu,v)) < b. Therefore, de (u,v) < inf B = ac (u,v).
h—0 log<h)

(<) Note that the case d¢(u,v) = oo is obvious, so we show this statement only

in the case do(u,v) < oo. Let b > do (u,v) and by € (dc(u,v),b). Then there
1 log Ve (R

is 0 € (0,5) such that for any h € (0,9), 0g Vo (F(u, v))

log(h)
such h, (2h)% < (Qh)logVc(Rh(u,v))/log(h) = Ve (Ry, (u,v)) - log Ve (Rn(u,v))/log(h) 5 o

—VC <(R;;L)(Zz’ v)) > 27 logVoRa(uv))/log(h) ¢ yields that

< by. Hence for

e Vo (Ba (u,0))
bo o C h \ W,
DrClw ) =Bmit =5 2 gicen

Hence by Lemma @(ii), b € B, that is, @¢ (u,v) = inf B < d¢ (u,v). O

> 0.
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3.2 Pointwise dimension of copulas constructed by various

methods

In this section, we study copulas constructed from a collection of copulas. Their
pointwise dimension can be computed from the pointwise dimensions of copulas
used in the construction. We first prove the following statement which tells us
about a relation between the pointwise dimension of a point and the volume of

copulas around the point.

Proposition 3.6. Let C, D be copulas, (uy,v1), (ug,ve) € I and 7, s € RT.
Suppose that de (uy,v1) = a and dp (uz, ve) = B.

1. If a« < j3, then there exists 6 > 0 such that for any h € (0,9),

Vi (Rep (2, v2)) < Ve (Rup, (g, vy))'8¢n/ lostr)

2. If a = B, then for any € > 0, there is 6 > 0 such that for any h € (0,9),

ot
a+< VD (RSh <u27 UQ)) .
2

1>
rots r

h® VD (Rsh (UQ, ’Ug)) < VC (R,«h (ul, Ul)) < h™¢

£
a—3

S S

log Ve (R
Proof. To prove 1., assume that a < . Since a = lim 0g Vo (Fn(u1, 1))

lim g (1) and
log (Vp (Rp, (u2,v2)))

8= Ilzli% loa(h) , there is v € (0, 1) such that for any h € (0,7),
log Ve (Rp(uqy,v1)) 8 —« log (Vp (R, (u2,v2))) a—0
— d — )
log(h) imae i} log(h) p> 2

Let § = min{%, g} Then for any h € (0,4), we have rh, sh € (0,v) and so

log Ve (Ryp(ug, v1)) - a—+p - log (Vp (Rsp, (ug,v2)))
log(rh) 2 log(sh) '

Since sh € (0, 1), log(sh) < 0 and

log(sh)
log(rh)

= log Vo (Rpn(u1, 1

log (Vp (Ran(uz,v2))) <

-log Ve (Rrh(ub "Ul))

))log(sh)/ log(rh) .

Thus, we obtain the desired inequality because log is a strictly increasing function.

To prove 2., assume that a = § and let € > 0. By the definition of d¢ (u,v), there
log Vo (Rp(u1, v1)) c ( £ 5)

log(h) “TTy

is v € (0,1) such that for any h € (0,7),
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and log Vip (Rp(ug,v2))
log(h)
increasing function, we have Ve (Rp(ur,v1)), Vp (Rp (u2,v2)) € (RT3, h*"2) for

any h € (0,7). Let 6 = min{%, g} Then for h € (0,9), we have rh, sh € (0,7), so

€ <a - g,a + %) Since log(h) < 0 and log is a strictly

Vo (Ren (w1, v1)) - (rh)*~

B h
e = <
2 Vp (Ran (ug,v2)) — (sh)™t

Nlof oo
o nolm
3

ro
he
S

and we are done. OJ

Now, we are ready to find the pointwise dimension of copulas constructed by

convex sum, patching, and ordinal sum as follows.

Theorem 3.7. Let {C;}, be a collection of copulas and {c;}; C (0,1) be such
that Zozz =1. Let C = ZazC be the convex sum of {C;}i—,. Then for any

(u, v) 6 I?, do(u,v) = min {dc (u,v)}.

1<i<n

Proof. By rearranging, we suppose without loss of generality that d¢,(u,v) =
de,(u,v) for all ¢ = 1,...,k and dc,(u v) > de, (u,v) for all i = k+1,...,n

Note that for any h > 0, Vi (Rp(u,v) ZO&IVC (Rp(u,v)). Hence by Proposi-

tion @ and (2), for any € > 0, there is = E (0, 1) such that for any h € (0,9),

Ve, (Rh(u,v)) < h_a‘/Cl (Rh(u,v)) if1 = 1, ey k‘;

k3

Ve, (Rp(u,v)) < Ve, (Rp(u,v)) < h™ Ve, (Rp(u,v)) ifi=k+1,...,n

That is, for any h € (0, 6),

a1 Ve, (Rp(u,v)) < Vo (Rp(u,v)) < h™ Ve, (Ru(u,v)) iai = h™Vg, (Rp(u,v)).

=1

Since

o log (Ve (Ba(u,v) . (log(an) | log (Ve (Ba(w,0))\ _ o
}lzli% log(h) =) (log(h) + log(h) ) dea(u,v)
and

i 108 (W Vey (Bu(w,0))) (10g(h_6) log (Ve, (Rh(u,v))))
h—0 log(h) log(h) log(h)

=dc, (u,v) — ¢,

log Ve (R (u, v))
we have d¢, (u,v) —e < fll—>0 log(h)

we obtain dg(u,v) = de, (u,v) = 11211<n {dc,(u,v)} as desired. O

< d¢, (u,v). Since € > 0 is arbitrary,
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Theorem 3.8. Let T' = [t;;] € Mpyxn(I) be a transformation matriz and {C;;} be
a collection of copulas with the same indices as entries in T". Let C' be the patched

copula with respect to the transformation matriz T and the collection of copulas
{Ci;}. Then for any (u,v) € I?,

de (u,v) =  inf de,. (u;, v;
cluv) = inf {do, (us0)}

where A(u,v) = {(4,7) : (v,v) € Ry = [pi—1,pi] X [gj-1,4], tij > 0}, vy =
U — Pi—1 U—gj—

——— and v; = ———.

Pi — Pi—1 q; — qj-1

Proof. Let (u,v) € T2, For convenience, we define Ap; := p; — p;—; and Ag; =
q¢j —qj—1 foralli=1,2,...,nand j=1,2,...,m

Note that if A(u,v) = &, then there is § > 0 such that for any h € (0,0),
Ve (Rp(u,v)) = 0 which implies that de(u,v) = oo.

Now, we suppose that A(u,v) # & and assume without loss of generality that
ti; > 0 for all (¢,7) such that (u,v) € R;;. Then we can divide the proof into 3
cases as in Figure

Figure 3.1: (u,v) in which |A(u,v)| = 1 (Left), |A(u,v)] = 2 (Middle) and
|A(u,v)| = 4 (Right), respectively

Case 1: |A(u,v)| = 1. Then (u,v) is in the interior of Ry, for some unique pair
(k,?) and there is § > 0 such that for any h € (0,0), Ry (u,v) C Ry Next, let

h
ki = — and k Note that f
1 Apkan 5 = Aq ote that from

¢
pk 1 - qg 1 T —Pk—1 Y — Q-1
E tij + I Pt E i+ E tio e Chre ( , )
! ! Apy, Age

i<k,j<t j<t 1<k
for (z,y) € Ry, we have

Ve (Rh (u, U)) = tkgVCM < [uk — kﬁl, ug + /{31] X [’Ug — ]{?2, Vp + k‘g] )
Since Ruin{kr ko) (U, Vo) € [ — k1, wp + k1] X [vp — Ko, v + k] © Rinaxghy o} (U, Ve),

T log (VCM (Rkl (Uzk7 Ue))) T log (VCu (Rkl (uku Uf)))
im = lim
h—0 log(h) k1 =0 log ((Apk)k1)
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= lim <log (Ve (B (uk, ve))) 1 >

150 log(k:) 14 Belled

log (Ve (Ri, (ug, ve)))

AT loglhy Coeluerd)
1
and similarly, ,lllino 08 (Vckel(()ikg)(uk’ ve))) = d¢,,(ug,vg), we have
. log Ve (Ry(u,v))
dC(“? U) - }ILEI(I) log(h)
B log(txe) y log (VCH ( [ug, — k1, ug + K] X [ve — ko, ve + ko ))
kb log(h) +am log(h)

= de,, (ug, ve).

Case 2: |A(u,v)| = 2. Then (u,v) € Ry N Ryp where |k — K|+ |( — 0| = 1.

Figure 3.2: All possibilities of (u,v) in Case 2

Without loss of generality, we assume that (u,v) € Ry N R(q1ye where u = p;, and
v € (qo—1,qe) for some (k,€). Then there is § > 0 such that for any h € (0,9),
Ry(u,v) € Ry U Riigaye- Considering Rp(u,v) N Ry and Ry (u,v) N Rigi1ye, we
have [1 — ki, 1] x [vy — ko, vy + ko] C % and [0, k3] X [vy — ko, vy + ko] C 12 where

h
ki = ko = — and k3 = . Note that
' ? Aqy ’ Apgi1

Apy’
Ve (Rp(u,v)) = Ve (Ju — hyu] x [v—h,v+ h]) + Ve ([u,u + h] X [v—h,v+ h])
= tkgVCM ([1 — k‘l, 1] X [’Ug — ]{?2, Vp + k’g])
+ t(k+1)gVC(k+1)z ([0, k‘3] X [Ug — k‘g, Vp + k’g]) .

Now, we assume without loss of generality that dc,,(1,v) < dc,,,,,(0,v¢). Let
s1 = min{ky, ko }, so = max{ky, ko}, s3 = max{ko, k3}. Then we have the following
inequalities:

Vo (Bu(u,v)) 2 teeVey, (Rs, (1, ve)) (32)
Ve (Rh(u> U)) < tk@VCke (R82(1> W)) + t(lﬂ-l)fvc(kﬂ)z (R33 <O7 W)) : (3'3>
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As in Case 1, we obtain lim log (Ve (Rs, (1,00)))
h—0 log(h)

do(u,v) < dg,,(1,v,). We then divide into 2 subcases as follows:

= d¢,,(1,v,), which implies that

o If de,,(1,v) < dg,,),(0,ve), then by Proposition @(1), there is ¢’ < § such
log(s3)

that for any h € (0,0), Ve, (Rs;(0,v0)) < Vg, (Rs,(1,v))°=C2) . Hence
by (@), for any h € (0,¢'),

log(s3)

Ve (Ru(u,v)) < teeVoy, (Rey(1,00)) + treg1yeVoy, (Rsy (1, vg)) 0662

(tké + t(k+1)z) Ve (Rsy(1,00)) if 59 > s3;
log(s3) .
(tkg + t(k+1)g) Ve (RSQ(I, Ug))log(s2) if s9 < 83,

where lim log (Vo (Rs,(1,00)))
h—0 1Og(h)

= dckz(l, U[) and

log(s3)
log | Ve, (R, (1,vy))%s(2)
y g(c’“( s )_ log(ss) 10g (Ve (R (1,v1)))
im :
h—0 log(h) h—0 log(ss) log(h)

h
lOg < min{Apgy1,Aq¢} )

h—0 h
log (min{Apk,qu} >

Hence de(u,v) > de,, (1, v0), €.,

de(u,v) =de,,(1,v¢) = min  {dg, (ui,vj)}.
c(u,v) = dcy, (1, ve) (i’j)eA(u’v){ ey (ui; v;) }
o If de,,(1,v) = dg,,,,(0,v,) = c, then by Proposition @(2), for each € > 0,
there is ¢’ < § such that for any h € (0,d’),

a—E

52
VC(k+1)Z <R33 (07 Uf)) < i—_;,_%vcke (RS2(17 Uf))
S2

min{Apy, Ag,}t2
=h""- { D QZ} e " VCM <R82(17 UZ)) :

min{App1, Age}*2
Hence by (@), for any h € (0,4'),

mln{Aplm AQK}OH_%
min{Apy1, Age}*7z ]

VC (Rh(u, U)) S VCM (Rsz(l, Ug)) his |:tkgh€ + t(k+1)g

Now, since

min{Apk,AQK}"‘*% } ; min{Apk,Aqg}aJr%
= U(k+1)

A {t“h e Y min{Api1, Age}o

min{Apy.1, Age}o2
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we have

min oty
log [V, (Rs,(1,v0)) h™¢ [tkéha + tht1)e {BpiBae)” 2 H

min{Apy11,Aq}* 2

5
- log(h)
e min{Apy,Aq}*F 2 ]
o (Ve (Rg(Lu))) | 108 [+t et
= lim + lim —€
h—0 log(h) h—0 log(h)

= dee(lv ’Ug) — £&.

Thus, do(u,v) > de,,(1,v,) — €.

Since ¢ is arbitrary, we have d¢(u,v) = de,,(1,v0) = ( )mir(l ){dcij (wi,vj)}.
1,7)€EA(u,v

Case 3: |A(u,v)| = 4. The proof in this case is similar to Case 2 above. O

Corollary 3.9. Let {J;}¥,, where J; = [a;, b;] with a; < b; foralli=1,...,N, bea
family of closed, non-overlapping, non-degenerate sub-intervals on T and let {C;}¥,
be a collection of copulas. Moreover, let C' be an ordinal sum of {C;} with respect
to {J;}. Set Ax = {(ai,a;): i=1,...,N} and By = {(b;,b;) : n=1,...,N}.
Then for any (u,v) € T2\{(0,0), (1, }

de, (u—al v—az> if (u,v) € J2\ (An U By) for some i;
de(u,v) = min{de, (1, 1), de,;(0,0)} ifu=wv="b; = a; for some i # j;

dpr(u,v) otherwise.

Moreover,
dc,(0,0) if (0,0) € J? for some i;

1 otherwise,

dc(0,0) =

and a similar statement holds for dc(1,1).

Proof. It follows from Proposition and Theorem @ O]



CHAPTER IV
POINTWISE DIMENSION OF ARCHIMEDEAN
COPULAS

Let ¢ be an Archimedean generator, i.e., ¢ is a convex, continuous and strictly
decreasing on I such that ¢(1) = 0, and C(u,v) = =1 (o(u) + ¢(v)), the
corresponding Archimedean copula. For more details, see Subsection or [9].
We divide our results on Archimedean copulas into 2 parts: piecewise linear
generators case and general case.

Before we find the pointwise dimension, we can use properties of ¢ to compare

each term in Vi (Rp(u,v)) as stated in the following lemma.

Lemma 4.1. Let ¢ be an Archimedean generator. Suppose that (u,v) € (0,1)”
satisfies (u)+p(v) = @(t) < oo for somet € (0,1). Then for h > 0 small enough,

o if u>wv, then

Clu—h,v—h)<Cu+hov—h)<t<Clu—hv+h)<Cu+h,v+h).

e ifu<w, then

Cu—h,v—h)<Cu—hov+h)<t<C(u+hv—h)<C(u+h,v+h).

e if u=wv, then

Cu—h,v—h)<Clut+h,v—h)=C(u—h,v+h) <t<C(u+h,v+h).

Furthermore, if (u,v) € (0,1)* satisfies o(u) + o(v) = ©(0) < oo, then for h > 0
small enough,
Clu+h,v+h)—Clu—h,v+h) ifu>wv;
Ve (Ru(u,v)) = Cu+h,v+h) —Cu+h,v—h) ifu<uv;
C(u+ h,v+h) if u=n.
Proof. First, we consider the case t € (0,1). Since ¢ is strictly decreasing on
I and {(z,y) € (0,1)* : () + ©(y) < ¢(0)} is an open set, we can find § €
(0, m := min{u,v,1 —u,1 — v}) such that for any h € (0,9), p(u+ h) < p(u) <
o(u—nh), p(v+h) < p) < p(v—h)and p(u—h)+e(v—"h) < ¢(0). Consequently,
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I I I I I I
S Y B S S
L - S MRt
vt+hf---- & -<--e-- Y o Vv AN
\\A | | 3 NS |
o P RO S ol
I Qo I I v—hf---0--<--@---
T e o o ]
1 1 1 1 1 1
u—h u+h u—h u+h u—h u+h

Figure 4.1: Comparing the values at the corners of Rj(u,v) (for h > 0 small)
with C'(u,v) =t > 0 in case u > v (Left), u < v (Middle) and u = v (Right),
respectively
(1) @(u+h) +ev+h) <ot);
(2) ¢(t) < p(u—=h) + (v —h) < (0);
(3) p(u+h)+ e+ h) <min{e(u+ h)+ pv—"h),p(u—h)+ e+ h)}; and
(4) @(u—h)+e(v—"h)>max{o(u+h) + v = h),p(u—h)+ e+ h)}.
In addition, since !~! is strictly decreasing on [0, (0)], we obtain
(I) Clu+h,v+h) >t
(IT1) C(u—h,v—h) <t
(III) C(u+ h,v+ h) > max{C(u+ h,v — h),C(u —h,v+ h)};
(IV) C(u—h,v —h) <min{C(u + h,v — h),C(u—h,v+h)}.

Next, we consider the case t = 0. By the strictly decreasing property of ¢, we can
find & > 0 such that for any h € (0,0), (1) and (3) hold. However, for such h, (2)
becomes ¢(u — h) + @(v — h) > ¢(0). Moreover, since pl=1 is strictly decreasing
on [0, »(0)] and vanishes elsewhere, we see that (I) and (IIT) still hold in this case
but (II) becomes C'(u — h,v — h) = 0.

Now, we compare C' (u + h,v — h) and C (u — h,v + h) with C(u,v) =t € [0,1).
We can consider 3 subcases as follows.

— v

a. If u > v, then by convexity of ¢, for any h € [0, min {u ,m}] , p(v+h) —

e(v) < p(u) —p(u—h) and p(v) — p(v — h) < p(u+ h) — p(u) which implies
that @(u—h)+o(w+h) < p(t) < p(u+h)+@(v—h). Since pl~1 is decreasing,
we have C' (u+ h,v —h) <t < C(u—h,v+h).
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b. If u < v, with similar argument as the previous subcase, we have

Cu+hv—h)>t>C(u—h,v+h).

c. If u =wv, then for any h € [0, min {u,1 —u}], o(u) —p(u—h) < p(u+h) —p(u)
which implies that ¢(u + h) + @(u — h) > ¢(t) and so C (u+ h,u—h) =
C(u—h,u+h) <t O

Corollary 4.2. Let (u,v) € (0,1)* be such that o(u) + p(v) = @(t) for some
te0,1).

e If there is h > 0 small enough such that C(u — h,v + h) = C(u,v), then for
any b € [0,h], C(u—h',v+h') = C(u,v). That is, ¢'(u") = ¢'(v").

e If there is h > 0 small enough such that C(u + h,v — h) = C(u,v), then for
any h' € [0,h], C(u+ h',v—="h") = C(u,v). That is, ¢'(u™) = ¢'(v7).

Proof. We verify only the first statement in case u > v because the other cases can
be handled similarly. Assume that there is h € (0, %) small enough such that
C(u—h,v+h) = C(u,v). Since ¢ is convex, for any b’ € [0, k], p(v+h)—p(v+h') <
o(u—h')—p(u—nh), ie, p(u—h)+ev+h) <elu—"n)+ e+ k). Hence
C(u—h,v+h) > C(u—h',v+h') > C(u,v) by the decreasing property of ¢~ and
Lemma @ Now, from p(u—h")+p(v+h") = ¢ (Clu— W, v+ 1)) = ¢ (C(u,v)) =
o(u) + p(v) for any h' € [0, h], we have

P+ 1) — o) p(u) — p(u—N) -

Mo t) — li = i = . ]
plor) = Jim, W i W Plu)
4.1 Simple case: piecewise linear generators
Let ¢ be a piecewise linear Archimedean generator. Then ¢” = 0 for all but

finitely many points in I. This implies that C, must be a singular copula because
of (@) and Theorem @

Before summarizing the case, we first write the formula of ¢ explicitly as follows.
Since ¢ is piecewise linear and non-negative, we can find {a;}1,, {b;}’_, € R* and
0=ty <ty < -+ <ty <t,=1such that p(0) = a; and (t) = a, — byt for
te (b ti], k=1,2,...,n.

Note:

« Each function in ¢ has negative slope because ¢ is strictly decreasing.

 Since ¢ is convex (by Theorem @), the slope of ¢ is increasing, which implies
that by > by > --- > b, > 0.
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 Since ¢ is continuous, we have ag1 = ag+ (bpr1 — bg) tp forallk =1,... n—
1, which implies that a; > as > -+ > a, > 0. Furthermore, for all £ =
L,2,...,n, ap = @(tk—1) + bpt—1 = @(tr) + bity. In particular, a, = b,
because ¢(1) = 0.

slope of ¢ on (tx—1,tr) = —bx
ar = @(tr—1) + bt—1 = ©(tr) + brtr

as +
Ont--___
Tt —bn
. : ——e——y !
to=0 ¢t to t3 th—1 t, =1

Figure 4.2: Graph of a piecewise linear Archimedean generator ¢

By all properties above, we see that if = € [p(tr), p(tx—1)) for some k =1,2,...,n,
S0[—1] (ZL‘) _ ax — So(tk) -z @(tkfl) -7

T ty + =t + =" otherwise, ¢/~ (x) = 0.
In addition, we can rewrite ¢ and ¢!=! in another form as follows.

(

©(0) — byt if 0 <t <ty
@(t1) — by (t —11) if t, <t <ty
o(t) = (4.1)
O(tn_2) — bpi (t — tns) ity o <t<t, i
(@(ts) = bo (b= tar) = by (1—1) ift, <t <1,

and
( O(tpr) — T .
tn_1+b—:1—b— if0<x<p(ty);
tn_n B n '
K “ b — if p(tp-1) < < @(tp-2);
n—1
() — : 4.2
) s | oy
t + 2 if p(ty) < < p(ty);
2
0)—=x .
2 2 if p(t1) < x < ¢(0);
1
L0 if x > (0).

Next, we compute the pointwise dimension of Archimedean copulas generated by

piecewise linear generators in the following theorem.
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Theorem 4.3. Let C' be an Archimedean copula with piecewise linear generator ¢

in the form (@) Then for any (u,v) € (0,1)%
(A) if o(u) + o(v) # @(ty) for any k =0,1,...,n, then dc(u,v) = 0o;
(B) if o(u) + ¢(v) = o(tg) for some k =0,1,...,n, then dc(u,v) = 1.

Proof. To prove (A), we consider 2 cases:
Case A.1 ¢(u) + ¢(v) > ¢(0). Since A := {(z,y) € (0,1)" [ ¢(x) + ¢(y) > ¢(0)}
is an open set and (u,v) € A, we can choose § > 0 small enough so that for

any h € (0,9), R, (u,v) € A. Hence for any h € (0,0), Vo (Ry (u,v)) = 0, i.e.,
log Vo (R (u, v))
log h
Case A.2 ¢(tit1) < p(u) + ¢(v) < @(tx) for some k = 0,1,...,n — 1. Since
(u,0) € O 1= {(,9) € (0,1)% | 9(x) + p() € (p(tasr), $(t))}, which is an open
set, there is & > 0 such that for any h € (0,0), Rp(u,v) € Of. Hence for any

h € (0,9), Vo (Rp(u,v)) equals

(tk L Pltn) = (pluth) + ot h))) - (tk L Plte) = (plu—h) + ov+ h)))

= 0. Therefore, d¢ (u,v) = 0.

bk+1 bk’—i—l
p(t) — (p(u+h) + v —h)) @(te) = (p(u—=h) + (v —h))
_ (tk + brt ) N7 (tk N~ bees )

log Ve (R
which is zero, that is, do(u,v) = ’lzirr(l) 25 Cl< (Zgu,v)) =
— Og

To prove (B), we again divide into 2 cases:
Case B.1 p(u) + ¢(v) = ¢(0). By Lemma @, there is 0 > 0 such that for any
h € (0,9), Vo (Rp(u,v)) is equal to

( — —
C(u+h,v+h)—0(u—h,v+h):Qp(u h)b pluth) if u>wv;
1
C(u+h,v+h)—0(u+h,v—h):(p(v_h)b_(p(ijh) if u<w;
1
C(u+h,u+h)=@(0)_i‘p(“+h) if u = v,
\ 1

where the right-hand sides of equations above follow from (@)

In the case u # v, we may assume without loss of generality that u > v.

o If u € (ty,tp41) for some £ = 0,1,...,n — 1, then there is & < § such that
u—h,u+h € (ty,tiq) for all h € (0,9"). Thus, for h € (0,0"),
1
Ve (Bi(u,v)) = o= [((te) = bt (u—h =) = (p(te) = bes (u + h = 10))]

1
_ 2hbe

by
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o Ifu=t,forsomel=1,2,..., n—1 (uz#0,1), then there is ' < § such that
for h € (0,0"), u —h € (ty_1,t,) and u+ h € (t,ter1). So for h € (0,0"),

Vo (Rulut,)) = o= [(plte1) — be (u = h— te-2)) = (plte) — bera (ut b — 1)

1

_ % [((u) + hbe) — (p(u) — hbeia)] = h(b%lbm)

While in the case u = v, we have

Vo (Ra(u,0)) = — [0(0) — 2 ((te) — bess (u+ h — 1))

by
= 2 19(0) = 2 pla) = brah)] = 2512

for h > 0 small enough and u € [ts, tr41) for some ¢. From all subcases, we see

that Vo (Rp(u,v)) = Kh for some constant K where h > 0 is small enough which
log(Kh
implies that de(u,v) = }llli% %(h)) =

Case B.2 p(u) + ¢(v) = p(tg) for some k= 1,2,...,n — 1. By Lemma @, there
is 0 > 0 such that for any h € (0,9), we have

o if u>w, Vo (Ry(u,v))

_ [tk L olt) = (pluth) +olu+ h>>} = [tk L lte) — (plu—h) + p(v+ w}
bk+1 b1
_ {tk L b)) = (pluth) + oo = h))}
. .

+ {tkl L pllen) = (90(“(; h) + (v — h))}

_plu—h) —plu+h)  plu—h)—p(uth)
b1 by,

=B D iy — (R,

bibi+1

o similarly, if u < v, Vo (Rp(u,v))

_ [tk n e(te) = (p(u+h) + v+ h))} _ [tk n ¢(te) — (p(u+ h) + p(v — h))
bi+1 bit1
_ {tk L #lbr) = (plu=h) + oo + h))}
4 i,
N {tk L #lber) = (plu = 1) + p(v — h))}
O "

= DD oy — ot ).
bibr41
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o if u =wv, then from C(u+ h,u —h) = C(u — h,u+ h),

e(t) — 2p(u+ h)] N {tk L elte) = 20(u - h)]

Ve (Rp(u,v)) = [tk +

bit1 b,
_ ltk N o(te) — (plu —h) + o(u+ h))]
by
B o(tr) = 2¢p(u + h) o(tx) = 2¢(u + h)
_ [tk+ k = } _ {tk—i- b i }

1 1 b, — b1
=[5 = 5] ot 2ot + 1) = 705 (ol — 200+ ).

Now, with a similar argument to the Case B.1, if max{u, v} € [ts, ;41) for some ¢,

then for A > 0 small enough,

h (be + bey1) (bk — bryr)

B bibrs1
Ve (Ru(u,v)) = 2hbey (b — Jbrk+1)

brbr11

if u # v and max{u,v} = ty;

otherwise.

This implies that Ve (Rp(u,v)) = Lh for some constant L where h > 0 is small

_ i log(Lh)
enough, and so d¢(u,v) = }ILILI(l) PR 1. ]

1-3t iftef0,1];
It ifte (4,1].

of C'= C, are shown in Figure §.3.

Example 4.4. Let ¢(t) = The graph of ¢ and the support

—_

R

o(t) v
1 1

=
N

1 0

N

0
Figure 4.3: (Left) Graph of ¢. (Right) Support of C' in Example @
By Theorem @(A) and (B), we have

1 if p(u) 4+ ¢(v) =1 (solid) or p(u) + ¢(v) = 1 (dotted);

de(u,v) =
oo otherwise.
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12t ifte0,i];
Example 4.5. Let ¢(t) = ¢ =2 if ¢t € (£, &] ; The graph of ¢ and the support

o(t) v
1 1 -
| (AN
| N
7 1% LN
§>77 ﬁkii\ 777777 \7777
5 ‘ 1 1
| ]! e
R R E— 51T TN
10 l l t l 1 u
0 1 TNk 0 1 71
5 10 5 10

Figure 4.4: (Left) Graph of ¢. (Right) Support of C' in Example @
By Theorem @(A) and (B), we have

1 if ¢(u) + ¢(v) =1 (solid) or ¢(u) + ¢(v) = £ (dotted)
de(u,v) = or ¢(u)+ ¢(v) = % (dashed);

oo otherwise.

4.2 General case

First of all, let ¢'(z7) and ¢'(z") denote the left and right derivatives of ¢ at
x, respectively. Now, we show some statements that will be used in a part of the
main theorem.
Remark 4.6. Let C' be an Archimedean copula with generator ¢, (u,v) € (0,1)%
t = C(u,v) (ie., p(t) = p(u) + ¢(v)) and *,e € {+,—}. If h > 0 is such that
s:=C(uxh,veh)—C(u,v) # 0, then

C(u*h,veh)—C(u,v)

P e ke )~ o,y PR ) =)
- (B ) = plu) + (e b =g (43

Lemma 4.7. Let C' be an Archimedean copula with generator . Suppose that
(u,v) € (0,1) satisfies p(u) + p(v) = p(0) < oo. Then for any a > 0,

D*C (u,v) > —¢' (max{u,v}") liminf~y(h) (4.4)

h—0t+
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B C(u+ h,v+h)
[ (C(u+h,v+h))(2h)
Proof. By assumption, C(u,v) = 0. If u = v, then by Lemma @, Ve (R, (u,v)) =
C (u+ h,u~+ h) for h > 0 small enough. Hence by Remark @,

Ve (Ba(u,v)) (90 (Cluthuth)) - 90(0))1 {2 (o(u+h)— w(u))} 1
(2h) C(u+h,u+h) 2h (2h)o1

_ C(u+ h,u+h) {gp(u+h)—gp(u)} 1

fo (Cu+ h,u+h)) h (2h)o-1

where y(h) :

a1 and fo(x) = ¢(0) = p(2).

Taking limit inferior as h — 01 yields

h—0t h h—0t+ h—0t

D*C(u,v) > — lim {gp(u +h) - @(u)} liminfy(h) = —¢'(u™) liminfy(h).

Now, we will show (@) in the case u > v (the case u < v is similar).

From Lemma W{.1, we divide into 2 subcases:

Subcase 1: C(u— h,v+ h) =0 for some h > 0 small. Then by Corollary @, for
any h' € [0,h], C(u—h';v+h') = 0. With a similar approach as in the case u = v,

we have
o o+ h)=p()  o+h)—p)], .
Drg(un) > - liy [P G 4 BT [umiata ()
W)+ wh) oA
= — 5 liminfy(h) > —¢'(u”) lim infy(h)

where the last inequality follows from Proposition (2)
Subcase 2: C(u—h,v+h) > 0 for all h > 0 small. In this case, we compute each
term of Vi (Rp(u, v)) by using Remark @ and we obtain

Cu+h,v+h)=
0 (C(u+h,v+h))—¢
C(u+ h,v+h)
C(u—h,v+h)=

(gp(C(u—h,v+h))—gp
C(u—h,v+h)

(O))_ (ol + h) — p(w) + (p(v + 1) — p(v)] and

D) otu =1 = () + (ot ) = )],
Since for A > 0 small enough,
(1) 0<C(u—h,v+h) < C(u+ h,v+ h) and

C(u—h,v+h)=K(h)C(u+ h,v+h)+ (1 - K(h)) -0,

C(u—h,v+h)
C(u+ h,v+h)’

where K (h) :=
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(2) v<v+h<u—h<u,
we apply ¢ to both inequalities and, by its convexity, we obtain
(1) ¢ (Clu—=h,v+h)) < K(h)e (Clu+h,v+h))+ (1 = K(h))(0);

() PO —elv) plu=h) —elv+h) o) =eu=h)
h - u—v—2h - h '

Thus, these two inequalities become

C(u—h,v+h)) —(0) < o (Clu+h,v+h)) —¢0)
C(u—h,v+h) - C(u+ h,v+h) ’

(27) p(v+h) —p(v) < p(u) — p(u—h),

o (Clu—hv+h)) —90(0))_1 (so(0<u+h,v+h>> —¢<0>)‘1 ond
C(u—h,v+h) C(u+ h,v+h)
(p(u—"h) —@(u) + (p(v+h) —p(v)) <0. Hence C(u — h,v+h) <

(gp (c%alﬂzhﬁ)h; 90(0))_[@(” —h) — () + (p(v+ h) — pv))], ie.,

C(u+ h,v+h)

(1)

Vv

ie.,

_ g < & / —+ / —
Since lim | Pt o) Spw=h) —e()| _ )+ () oy
h—0+ 2h 20 2
o) +e'u) . C(u+h,v+h)
D“ > — 1 f
DC(u,0) 2 2 50t f, (Clu+ hyv+ h)) (2h)1
_ )+ liminfy(h) > —¢'(u™) liminf~y(h)
2 h—0t = A h—0+ i
where the last inequality follows from Proposition (2) H

Lemma 4.8. Let C be an Archimedean copula with generator ¢ and f,(x) =
©(0) — p(z) be a regularly varying function of index 5 > 0 at 0. Suppose that
(u,v) € (0,1)% satisfies p(u) + @(v) = ©(0). Then

(a) go(x) == o (p(0) —2) = ¢! (p(0) —2) = [, (x) € RV}, and

(b) F(z)=C(u+z,v+1z) € RVlo/ﬁ.

folgs (M) \ "
Proof. To prove (a), let A > 0. Since AY? = lim <L> , we see that for
z—0F fcp(gcp(x))

any £ > 0 small, there is §; > 0 such that for each x € (0, d;),

1/8 fo(gp(Az)) e 1/8
4 6<<f¢(9¢(fﬂ))) SATEE
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Now, let A > 1 be arbitrary and suppose that A\ > 1. By Theorem , there is
X = X(A,¢) such that for each 0 < y <z < X

B+e
A1(> fgo()<A<I> .
y fo(y) y
Since f, is strictly increasing, so is g,. Furthermore, from A > 1, we have
go(Ax) > g(x) for all x € (0,9(0)/A). Next, from lim go(Ax) = 0, there is
z—0

92 € (0,(0)/A) such that for z € (0,62), g,(x) < g,(Az) < X, which implies that
for = € (0, 0s),

B (M)55<M<A(M)B+s’

9gp() fe(94()) 9gp()
Choose § = min{dy, do}. Then for = € (0, ), we have the following two inequalities:

1+¢/p 1-¢/B
N/B e < AYP (_gw(Ax)) and ATYV/A (_gw()\x)) < AVP pe

9ge(T) 9gp()
Since above statements hold for any A > 1 and € > 0 small enough, we have
A
lim 9¢(\7) = A8 The case 0 < A < 1 is similar and thus, g, € RVY); as
x>0t g T
desired.

Next, we show that (b) holds. First, we consider d,(z) = ¢(u) — ¢(u + z) for
z €1[0,1—u] and d,(x) = ¢(v) — p(v + x) for € [0,1 — v]. Then for any A > 0,

du(Az) _ [gp(u) —90(u+)\3:)} Lp(u) Az }

du() Az —(u+z)
o [elutde) — o] [e(uta) = ow)]™
S| i
Hence lim du(rz) _ A (ut) - [gp’(u*)T = A and, similarly, lim dy(Az) _ A

z—0t d,, ( ) =0T dy
Hence d,,d, € RV, which implies that d, + d, € RV (by Corollary (iv)).

Now, since
Flz)=Cu+z,v+z) = (p(u+z)+ p(v+z))
= ¢ 1((0) = (W) +9(v) = (plu+1) + p(v +2))) )
= 9 ((p(w) = plu+2)) + (p() = (v +2) ) = (g, © (du +d)) (=),

by (a), hm (dy, + dy) (z) = 0 and Corollary (iv), we have F € RVl% as
desired. [

We are now ready to consider the general case of Archimedean copulas.
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Theorem 4.9. Let C' be an Archimedean copula with generator ¢, a function that
is convex, continuous, strictly decreasing on 1 and ¢(1) = 0. Let (u,v) € (0,1)°.

(A) If p(u) + ¢(v) > ¢(0), then de (u,v) = oo.

(B) If o(u) + ¢(v)

de (u,v) =

—~

©(0) and fy(z) = ©(0) — p(x) € RVY where § > 0, then

| =

(C) If p(u) + ¢(v) = @(t) where t € (0,1) and ¢ is not differentiable at t, then
de(u,v) = 1.

—

(D) If o(u) + p(v) = @(t), SDyp(u),SDyp(v) < oo, ¢ is differentiable at t and
SDs ¢(t) € (0,00) where t € (0,1), then do (u,v) = 2, where SDy p(x) is the
second order symmetric derivative of @ at x defined in Definition .

Note: We see that Theorem @(B) and (C) are generalizations of Theorem @(B)
in piecewise linear generators case because if there exist a partition {¢;}!" , of I and
finite subsets {a;}", {b;}?.; of R such that ¢ can be expressed as in (@), then

we have the following cases.

o If (u,v) € (0,1)” is such that p(u)+p(v) = ©(0), then f,(x) = ¢(0) —p(z) =
biz for x € [0,¢] which implies that f, € RV and by Theorem @(B),
de(u,v) = 1.

o If (u,v) € (0,1)% is such that o(u) + p(v) = @(t;) for some k = 1,...,n,
then (u,v) satisfies the assumption of Theorem @(C) and so d¢(u,v) = 1.

By all cases in Theorem @, any two points from the same level curve give the

same pointwise dimension as in Figure §.5.

(%
1 I

Figure 4.5: The value of d¢(u,v)

In this figure, the solid curve, Z(C) := {(u,v) : p(u) + p(v) = ¢(0)}, is called the
zero curve of C', while the dashed and dotted curves are level curves {(u,v) : o(u)+
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o(v) = p(0.5)} and {(u,v) : p(u)+e(v) = ¢(0.3)}, respectively (where we suppose
that ¢ is not differentiable at 0.5 but ¢'(0.3) exists and SDs ¢(0.3) € (0, 00)).
To prove this theorem, we divide the proof into several parts as follows:

Proof of Theorem @(A},(B} and (C). First, for statement (A), we can prove in
the same way as Theorem {1.3(A.1) and we obtain d¢(u,v) = oo.
To prove (B), by Lemmas @ and @(b), we have Vo (Rp(u,v)) < C(u+h,v+h) =
hY/84(h) for some ¢ € RVY. Hence
log (R'/A¢(h)) 1 log(¢(h)) 1
S i8R (L log (E(R)) Y L
deluw,v) 2 it == oy~ ot (5 " Tlog(h) ) 5
where the last equality follows from Corollary (ii). Next, from C(u+h,v+h) €
RV (Lemma @(b)), fo € RV}, hlir(r)1+ C(u+h,v+h) =0 and Corollary (iv),
3

we have f, (C(u+ h,v+ h)) € RV. By Corollary (iv) again, we see that for
C(u+ h,v+h)

" [, (Clu+ hyo+ h)) (2h)e1

1 1
index 5 l—(a—1)= 3 a at the right of 0. Now, we can rewrite (@) as

D°C (u,v) > —¢ (max{u, v} ") lim inf (h"/*=*L(h))

any o > 0, y(h) is a regularly varying function of

for some L € RVY. For a > 1/, ’llir% hY/#=2L(h) = oo by Corollary (1) and
—>
D*C (u,v) = 0o by the above inequality. This implies that

- 1
do(u,v) = @c(u,v) = inf {a € R* : D*C (u,v) = 00} < 3
1
Therefore, do(u,v) = 7
Next, we prove the statement (C). We first note that
. pluth)—p(w) pu—h)—p)
Jig P < g A <)

The same statements hold for ¢/(v") and ¢'(v™). Now, we define the following

notations for each h > 0.

si(h) :=C(u+ h,v+h) — C(u,v),  sq2(h):
sg(h) == C(u+ h,v —h) — C(u,v),  s4(h):

C(u—h,v+h)—C(u,v),
C(u—h,v—h) —C(u,v).

By Lemma @, we see that si(h)
Remark @ and t = C'(u,v), lim
h—07+

> 0 and s4(h) < 0 for all h > 0. Hence by
s1(h)
h

(ot +si(h) — o)\ [e(u+h) —p(u) | @+ h) —p(v)
1y (s [ s
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(et s (D) — e\ T L e+ h) — () (v +h) — p(v)
B <hli>%l+ s1(h) > lhli%i o h

1 1o+ 10+
= o) [’ (u™) + ¢'(v7)]

and similarly,

. 34(h) 1 ro— 1o —
1 = - - .
dm =57 = S ) =)
Next, by Corollary , we consider 4 cases as follows.

Case 1: for any h > 0 small enough, C(u—h,v+h) # C(u,v) and C(u+h,v—h) #

h h h
C(u,v). We find lim s2(h) and lim s3( ) For example, to find lim 52( ), we
h—0+ h—0+ hsot  h

use Remark to obtain

sa() = (22O ot =) = plu) + (ol -+ 1) = ()]

Later on, by taking limit h — 07 together with using Lemma @ to consider the
value of sy(h), it yields that

so(h) y ﬁ (o' (u™) + ¢ ()] if u>wv;

lim

T | ) + ) <o
Similarly,

| s3(h) Lp’é—) [p(wh) =/ (wT)] ifu>w;
h=0t N <p/é+) [@’(u"‘) = (P,(U_)] if u<w.
. Vo (Bu(u,v))
Hence D'C(u,v) = hli>I(I)l+ — equals
(@,(lﬁ) - @,(lt,)> (‘p/(w+);‘p/(w_)> if u # v and w = max{u,v};
i ~ 7 ) P ifu=v.

To see this, we show only the case u > v since the other cases are similar.

h) . sa(h) . ss(h) . s4(h)
D' =i 2 2 s sl
Cluv) = Jim == =l = = lim =5+ i =,
— 1 /(0 o EY] 1 (= 1+
1 1

57 12001~ 9 0] + g [90) — )

2
- («p’(lzfﬂ - ¢f<175—>> (Wﬁ) : MU)) |
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Case 2: for any h > 0, C(u — h,v + h) # C(u,v) and there is § > 0 such that
C(u+8,v—6) = C(u,v). Then by Corollary .4, C'(u+ h,v — h) = C(u,v) for all
h € (0,9) and ¢'(u™) = ¢'(v7). Moreover, by symmetry of Archimedean copula
C, we have u # v. Since for any h € (0, 9),
Vo (Rp(u,v)) = C(u+ h,v+h) — C(u—h,v+h) — C(u,v) + C(u— h,v —h)
= (C(U + h,U + h) - C(U, U)) - (C(U - ha v+ h’) - C(u7 'U))
+ (C(u—h,v—h) —C(u,v))

= 51<h) — Sg(h) + S4(h),

we see that if u > v, then by Lemma @ and Remark @,

1) gy 200 gy, 52(R)

D'C =1l Sa\t)
(u,v) = lim hoot 2R

h—0t+ 2h h—0t+  2h

1 y /0 + 1 I() — /(2 t
~ ot W+ P = s [0 + 0]
- 5o )¢ )]

_ 1 (W) 4+ew)) 1 (P w) ¢ (vT)
Yt ( 2 ) ¢'(t7) ( 2 )
(1 JA ¢'(ut) +¢'(u7)
- (@’(ﬁ) 90’(15)) ( 2 ) '

Similarly, if u < v, then D'C/(u,v) = <80/(1t+) — cp/(lt—) (SD/(W) _5 7

Case 3: there is § > 0 such that C'(u — d,v + 0) = C(u,v) and for any h > 0,

C(u + h,v — h) # C(u,v). We prove this in a similar manner as in Case 2 and

D) = (s s ) (FU 200,

obtain

where w = max{u,v}.
Case 4: there is 0 > 0 such that C(u—d,v+0) = C(u,v) = C(u+0,v—0). Then
by Corollary [t.d, C(u — hyv + ) = Cu,v) = C(u+ h,v — h) for all h € (0,4),
O(ut) =¢'(v7) and ¢'(u™) = ¢'(v"). Moreover, by Proposition (2), we have
¢ (u) = ¢'(v). Since for any h € (0,0),
Vo (Rp(u,v)) = C(u+ h,v+ h) — C(u,v) — C(u,v) + C(u — h,v — h)

= (C(u+ h,v+h) — C(u,v)) + (C(u — h,v — h) — C(u,v))

= s51(h) + s4(h),
by Remark @, we obtain

1 ooosi(h) o sa(h)
DC(u,v)—hlLr(rﬁ 2h —i—hlir& 2h
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— 1 I(,,+ (. .+ . 1 1/ — 1/ —
~ 5o (P ) - s (P + ¢ )
o) () ( 1 1 ) :
f— _— p— h— (p u .
/) ) \ee e
From all cases, since ¢'(t7) < ¢'(tT), we have D'C(u,v) € (0,00) which implies
by Lemma @ and Proposition @ that de(u,v) = ac(u,v) = 1. O

In order to prove (D), we introduce some notations of quotients as follows:

o for any real-valued function f on an open interval D C R, a € R and r # 0

such that a £ r € D, define Q, f(a) = flatr)—2f(a) + fla—T)

72

o for any real-valued function F' on an open set D C I?) (u,v) € D and r # 0
such that (u +r,v+7r) € D, define

Pk )= 2 (1) + Fu =10 =1
r2
and Q7 F(u,v) = F(U—T,v+r)—2F(u,v)+F(u+r7U_T)'

r2

Proof of Theorem @(D) Since D := {(z,y) € (0, 1)* | o(z) 4+ o(y) < ¢(0)} is an
open set and (u,v) € D, we can choose 6 > 0 small enough so that for any

h € (0,9), Ry (u,v) C D. From t = C(u,v), we set the following notations for each
h € (0,6).

s1:=s1(h) =C(u+ h,v+h) — C(u,v), sy:= s9(h)
sg:=s3(h) = C(u+ h,v —h) — C(u,v), s4:=s4(h)

C(u—h,v+h)—C(u,v),
C(u—h,v—h) —C(u,v),

t PENCE- o (" Ns] . .
and K;(h) := plt + 55 —|)— plt = s) for i =1,2,3,4 with s; + s5_; # 0.
Si T S5

Note that s; > 0, s4 < 0 and s1 + s4 > s2 + s3 for all h € (0,9).
Since SDg ¢(u),SDs ¢(v) < oo, by Proposition (4), we have ¢'(u) and ¢'(v)
exist. Moreover, since ¢ is convex and differentiable at ¢ and SDy () € (0, 00),

by Corollary @, we have the following results.
Remark 4.10. For all i € {1,2, 3,4},

(a) lim Qs p(t) = limo Qs,0(t) = SDyp(t) if s; # 0 for all h € (0,0);
Si—>

h—0t

S 1 1
I i - _ if 5; £ 0 for all h € (0,0):
D T 0 oD Ty e gy 7 Oeralthe(0.)

s;—0 i

(b)
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(¢) By Theorem , ¢ is strongly differentiable at ¢, i.e., for all ¢ € {1,2,3,4},

t _i) — ot —s;
i K= m AT meltms)
h—07T (8i,55—1)—(0,0) S; + S5
si+s5—i#0 $i+s5-i7#0

Next, consider

Qi (po O)(u,v) = ¢ (Clu+h,v+h)) =20 (C(u,v)) + ¢ (Clu—h,v—h))

2
= Q.. (1) (%)2 n plt + 34)hh—2 p(t —s1)
Quety - (3)7 4 Btteein) QR 0) f sy sa £ O
) Quel) - (32)° 545,20
Q) (3)? + Ku(R) - Qi Cu,v) if s+ sg #£0;
- Qs,p(t) - (%)2 if 5,4 54 = 0.

Since Q; (¢ o C) (u,v) = Qnp(u) + Qne(v), by Remark @,

Qnip(u) + Qnep(v)
B , 51 (pluth) — o) pvth) —e@\]?
Qurt): | (B - )|
Ki(h) - Q) C(u,v) if 81+ s4 # 0;

0 if S1+ 84 = 0.

Moreover, from SDj (1), SDy ¢(v) < oo, we see that Q; C'(u,v) is bounded in h.
Now, we can divide the proof into 3 cases.

Case 1: s9(d') = s3(¢") = 0 for some 0" € (0,0). Then by Corollary ,
Clu—h,v+h)=C(u,v) =C(u+h,v—~h) for all h € (0,0") and ¢'(u) = ¢'(v). In
this case, if s; + s4 = 0 for some h € (0,’), then Vi (Rp(u,v)) = 0 which implies
that s; + s4 = so + s3 = 0 for all K’ € (0,h) and

SDy p(t) = lim p(t + 1) — 20(t) + o(t — 51)

s1—0 S%
iy P 51) — ot 52) — 4 55) + ot 50) _
s1—0 S% ’

which contradicts the assumption. Hence sy +s4 # 0 for all h € (0,4’). From (@),
we obtain

Qnp(u) + Qnp(v)



o1

- Qsﬁp(t) ’

51 (luth) =) p(v+h) = ()]’
g (e )|

— K\ (h) - QFClu,v) = Ky (h) - w

for all h € (0,4"). Since lim (Qrp(u) + Qnp(v))
h—0+

(4.6)

o(u+h) —2¢(u) + o(u—"h) + e+ h) = 2p(v) + (v —h)

= lim
h—0t h?
i Pt b+ ) = 20(8) + 9(Clu = by — 1))
a h—0t h?
_ Pt +s1) — p(t +52) — p(t + 53) + (t +84)
= lim =0,
h—0t h?

by Remark M above, we take limit as h — 0% of (@) on both sides and obtain

2

Ve (Ra(u,0)) _ SDa ()

() lim £ '(ut (vt
() lim ———2 GO (¢' (") + ¢ (v"))
__A4SD, (1) (@'(U)f
(¢'(t))?

Thus, D°C(u,v) = lim V@) SDa(t) (¢ (u)”

h—0+ 2h)2 "t 3
be summarized by Lemma B.3 and Proposition B.5 that d¢(u,v) = ac(u,v) = 2.
Case 2: sy # 0 for all h € (0,6). In a similar manner as in (@), by considering

€ (0,00), which can

Q;, (¢ o C)(u,v) instead, we have

Qne(u) + Qrp(v)
5 p(u—h) —p(u) | (v+h)—e)\]
~ @l {w I B < AVERSITY——, )}

_JKa(h) - Q,C(u,v)  if o+ 53 # 0
0 if 82+$3:O.

(4.7)

Now, we see that the limit of the left-hand sides of (@)—(@) when h — 07 is

S () +607) - () + )]
_SDQSD(t) — ' (u (v 2 "(u (v 2 :_4SD290(t) ()& (v
= G [P+ — (W) + )] = =R e ()

To consider the right-hand sides of (@)—(@), we first see that if there is h € (0, 9)
such that s;(h) 4 s4(h) = s2(h) + s3(h), then Vo (Ry(u,v)) = 0 which implies that
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s1(h) + sa(h') = sa(R') + s3(k') for all A’ € (0, h). Hence the right-hand sides of
)

(3 (.7

become

[K1(R') — Ky(W)] Qr Clu,v) if 81+ 84 = s9+ 83 # 0;
0 if81+84232+83:07

for any b’ € (0,h), which converges to 0 as b’ — 0% because of Remark (C)
4SDy p(t

and boundedness of Q;"C(u,v). That is, —#;i(Q)go’(u)cp’(v) = 0.

¥

But then, since ¢/'(z) < 0 for x = u,v,t, we have SDy ¢(t) = 0 which contradicts

the assumption. Hence the right-hand sides of (@)—(@) become

Ko (h)YeBnle) 4 (5 (h) — Ky(R)] - QFCl(u,v) if 81 + 54 # 0,59 + 53 # 0;

Kl(h)w if s1 4+ 84 # 0,89 + 53 = 0;
KQ(h)VC(R+2(u’U)) if 81+S4:O,82+837é0,

as h — 07 by Remark and

Dy (t

boundedness of Q; C(u,v). Thus, D*C(u,v) = —S(/2<—f>()3)g0’(u)g0'(v) € (0,00),
¥

which can be summarized by Lemma and Proposition @ that do(u,v) =

ac(u,v) = 2.

Ve (R
which converges to ¢'(t) hlim+ %(u,v))
—0

Case 3: s3 # 0 for all h € (0,4). In this case, we can prove in a similar manner

as in Case 2, by using s3 instead of sy in (@), to show that de(u,v) = 2. ]

Example 4.11. We consider a family of Clayton copulas which are in the form

Co (u,v) = [max (u?+v?—1,0)] ? for § € [-1,00)\{0}. For each 6, its
1

generator is @y(t) = g (t7?=1). We see that if § = —1, then C_; (u,0) =

max (u+v —1,0) = W (u,v). It is easy to show that

1 ifut+v=1;
dw (u,v) =
oo otherwise.

o0 if 0 > 0;
Now, we suppose that § > —1. Then we see that py(0) =
~1/0 if 0 e (~1,0),

wp is twice differentiable and j(t) = (0 +1)¢t%2 € (0,00) for ¢t € (0,1), so we
consider 2 cases as follows.

e If 6 > 0, then pp(u) 4+ wo(v) < ©(0) for any (u,v) € (0,1)>. Hence by
Theorem @(D), we have dg¢, (u,v) = 2 for any (u,v) € (0,1)%.
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v
2 1

Figure 4.7: (Left) Graph of ¢ = P (Right) Support of C_

%
« If § € (—1,0), then by Theorem @(A) and (D),

oo if pg(u) + wp(v) > —1/0;

de, (u,v) = :
2 if pp(u) + pa(v) < —1/0.
1
To consider the case pp(u) + @y(v) = —9 since fp(t) = @o(0) — pp(t) =
1 1
—étfe € RV°,, by Theorem @(B), we have d¢, (u,v) = —g
¥(t)
1
Ll _____
4 |
0 1 1t
2

Figure 4.8: (Left) Graph of ¢. (Right) Support of C' and d¢(u,v) in Example
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(1—10)? iftel0,1];
= if t € (3,1].
support of C' = Cy, are shown in Figure @ We see that v is not differentiable at
2 ifte(0,3);
0 ifte(31).

Example 4.12. Let 9(t) = The graph of ¢ and the

1
5 but twice differentiable elsewhere with ¢ (t) =

1—(1—t)2=2t—¢t> ifteo0i];
(=1 0:3] which lies in RV

1— Lt = 1 ift € (3,1],

Hence by Theorem {.9(A),(B),(C) and (D), respectively, we have

Moreover, f,(t) =

(0 if () +v(v) > 1
1 if ¢(u) +(v) = 1 (dashed);
1 if(u) + ¢(v) =1 (solid);
(2 if 1 <¥(u) +9¥(v) <1 (shaded).

de(u,v) =

We see that Theorem @ cannot be applied on regions
4

- (2l 290

1. for any (u,0) € S, ¥(t) = ¥(u) + bv) € (o,1>, et € <- 1) and
1}

SDo9(t) =0 for all t € (

5= {(u,v) () 4 D(v) € (0, 1)} and

because

9

N | —

2. we see that

GG+ -2 @) +o (1)

hli%{r h? - hlir(% h?
. hrh
B hlggr pr
Lonp)—29(2 1 h 1
and lim ¢(2+ ) ¢<2)+¢<2 ) = 00, i.e., SDo ¢ | = | = .
h—0— h? 2

To find de(u,v) for (u,v) € 9, since C(u,v) = u+ v — 1 for all (u,v) € S, it is

easy to show that for such (u,v), do(u,v) = 0.
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Next, we find do(u,v) for (u,v) € L. By symmetry of C, it suffices to find

1
de (§,v> where v € (1 — \/§’ 1). For any h > 0 small, let

2

1 1 A
Al(h)‘:¢(§+h)21_§’
2
A(h) —w(%— )‘(%”’) ’
(1—-v—h)? ifv<l;
Bl(h> = ’l/}(U + h) - {lgh if v Z 27 e
(1—v+h? ifv<i;
By(h) == (v —h) = {112;+h if v > ;

Then
4h(1—v) ifv<3;

3h
Ay(h) — Ay(h) = h* + — and  By(h) — By(h) = S b+ 3 if ¢y =

2
h ifv>

l\?l»—‘ [\DI»—I

1
which implies that Vi (Rh (5, v>)

(1—\/A1 )+ Bi(h ) <1—\/A2 Y Bilh ) <1—\/A1 + B ))

+<1—\/A2 1) + Ba(h )
= \/As(h) + Bi(h) + \/Ai(h) + Ba(h) — \/AL(R) + Bi(h) — \/As(h) + By(h)
_ Az(h) = Ai(h) " Ay (h) — A(h)
VAy(R) + By(h) + /AL (R) + Bi(h)  \/Ai(h) + By(h) + \/As(h) + Bo(h)

)
Vo (R ( v)) _ Ve(Ba(3,9)
Ao(h) = Ar(h) — n2+ %
VAi(h) + Ba(h) + v/ As(h) + Ba(h) — \/Aa(h) + Bi(h) — \/A1(h) + Bi(h)
(VA0 + BiB) + /A0 + Bi0)) (VALR) + Balh) + /Aa(B) + Ba(h) )

Bg(h)—Bl(h) + B?(h)_Bl(h)
VA1(R)+Ba(h)+1/A1(R)+Bi(h) — +/Az2(h)+Ba(h)++/Az2(h)+B1(h)

(V) T BB+ A+ Ba(h)) (VA + Balh) + /Aa(h) + Balh))

1
Note that lim (\/Al(h) + Bj(h)> =1/=+ (1 —w)?forallije {1,2}. By the
h—07+ 4

value of By(h) — By(h), we divide the value of v into 3 cases.

Next, we consider
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1
Case 1: v < 3 Then

e (b) -y, Tl Gl

2 h—0+ (2h)2
_ ! (%) (h(1 - )
32 (A+(1- v)2)3/2 h—0+ h2
1 - 3 3(1 —
= v 3/2 llm (h, + —) — ( U) 3/2 E (O7 OO) )
8 (1 + (1 —w)2)7" hoor 2 16 (1 + (1 —2)?)

1
Case 2: v = 5 Then

11 1 B2 4 3h 2 9
DC(5,5)= i BHE) L (3
22 32(1+ l)3/2 h—0t 2 8v/2 h—0+ 9

4

9
:32—\/56(0,00).

1
Case 3: v > 3 Then

2 3h
D?*C <%,v> = \ im (h + Q)h

w
[\
A=
=
+
—~
—_
I
®
SN—
o
~—
w
=
%)
>
1
o
+
=
o

Therefore, we conclude that do(u,v) = 2 for all (u,v) € L.



CHAPTER V
CONCLUSION

5.1 Our results

In our thesis, we investigate the pointwise dimension

de(u,v) = lim log Vo (Fn(u, v))
h=0 log(h)
of copulas constructed from other copulas by simple methods and compute the
pointwise dimension of some well-known copulas.

In Chapter 3, we obtain formulas of the pointwise dimension of copulas
constructed by joining finitely many copulas via 3 methods: convex sum, patching
and ordinal sum as restated in the following statements. In a nutshell, the pointwise
dimension of a constructed copula at a point is the minimum of those of ingredient

copulas at the corresponding point.

Theorem 3.7. Let {C;}!, be a collection of copulas and {c;}?_, C (0,1) be such
that Zai =1. Let C = ZaZCi be the convexr sum of {C;},. Then for any

i=1 i=1

(U, U) < H27 dC(“?“) = 1I£11<n {dCi(U’7 U)}

Theorem 3.8. Let T = [t;;] € Myxn(I) be a transformation matriz and {C;;} be
a collection of copulas with the same indices as entries in T". Let C' be the patched

copula with respect to the transformation matriz T and the collection of copulas
{Cy}. Then for any (u,v) € I%

de (u,v) = inf  {de,,(us,v5)}

(3,5)€A(u,v)

where A(u,v) = {(i,j) : (u,v) € Ry = [picy,pi] X [gj—1,q5], ti > 0}, ui =

U — Pi_1 v — i1

Di — Pi—1 4G — qj-1
Corollary 3.9. Let {J;},, where J; = [a;, b;] with a; < b; foralli=1,...,N, be a

family of closed, non-overlapping, non-degenerate sub-intervals on T and let {C;}X,

be a collection of copulas. Moreover, let C' be an ordinal sum of {C;} with respect
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to {J;}. Set Ay = {(a;,a;) :

i=1,...,N} and By = {(bj,b;) : n=1,...,N}.
Then for any (u,v) € I*\{(0,0), (1,

de, (u—az - ) if (u,v) € J2\ (Axy U By) for some i;

d(;(U,U) = mln{dc (1 1) dc (O O)} ifu=v==b = a; for some i # j;

dy(u,v) otherwise.

Moreover,

dc,(0,0) if (0,0) € J? for some i;
P LU U
1 otherwise,

and a similar statement holds for do(1,1).
In Chapter 4, we compute the pointwise dimension of Archimedean copulas

which is divided into 2 cases: piecewise linear and general generators. We restate

the following theorems.

Theorem 4.3. Let C be an Archimedean copula with piecewise linear generator ¢
in the form (@) Then for any (u,v) € (0,1)%,
(A) if o(u) + o(v) # @(ty) for any k=0,1,...,n, then dc(u,v) = 0o;
(B) if p(u) + ¢(v) = p(tx) for some k=0,1,...,n, then dc(u,v) = 1.

Recall that ¢ in (@) can be written as @(t) = p(tx) — by (t —tg_1) for t €
(tk—1,tx) and k = 1,...,n where {bx}7_, is a strictly decreasing sequence in R

and {tx}7_, is a strictly increasing sequence in I such that ¢, = 0 and ¢,, = 1.

Before we restate the main theorem, recall

RV;:{f;(O’N) 0.00) | N €R* and lim 102

= Mforall A>0%.
Ry e f(:L‘) or a > }

Theorem 4.9. Let C' be an Archimedean copula with generator ¢, a function that

is convex, continuous, strictly decreasing on T and ¢(1) = 0. Let (u,v) € (0,1)%.
(A) If p(u) + o(v) > ©(0), then de (u,v) = oco.

(B) If p(u) + o(v) = ¢(0) and f,(x) = ©(0) — (x) € RV) where § > 0, then
de (u,v) =

@ =

(C) If o(u) + ¢(v) = p(t) where t € (0,1) and ¢ is not differentiable at t, then
de(u,v) = 1.

—~
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(D) If o(u) + ¢(v) = @(t), SDap(u),SDap(v) < oo, ¢ is differentiable at t and
SDy p(t) € (0,00) where t € (0,1), then dc (u,v) = 2, where SDy @(x) is the
second order symmetric derivative of ¢ at x defined in Definition .

5.2 Further studies

1. Compute the pointwise dimension of copulas constructed by more

complicated methods, such as

o ordinal sum of countably many copulas,
 mixing distribution: Cy(u,v) = / Co(u,v)dA(0) where A is a

R

distribution function of a random variable © with value 6 and {Cp} is
a collection of copulas. If A is a distribution function of probability
function f(i) = «a; for i = 1,...,n, then C) = Z%Ci- Hence, this

i=1
method is a generalization of convex sum in Definition @,

1
o s-product: (C * D)(u,v) = / 0 C(u,t)0 D(t,v)dt where C, D are
0

copulas. By testing with a few pairs of copulas, we have a conjecture

about pointwise dimension of product of copulas as follows.

Conjecture 1. For any copulas C, D and (u,v) € I?, do.p(u,v) =
itn]f{dC(uut%dD(t?v)}'
€

2. Compute the pointwise dimension of Archimedean copulas in the case that
o(u) + p(v) = @(t) where t € (0,1), ¢'(t) exists and at least one of the
following conditions hold:

* SDy () € {0, 00};
e SDs ¢(u) = 00 or SDs ¢(v) = o0;
o SDy p(t),SDs p(u) or SDy p(v) does not exist.

Is there a possibility that de(u,v) ¢ Z U {oo} in this case ?

3. From Theorem @, we see that for any Archimedean copula C' and (u,v) €
(0,1)%, d¢(u, v) depends on the value of C'(u,v) but not on u and v. Hence

we have the following conjecture.

Conjecture 2. For any Archimedean copula C' with generator ¢ and (u, v) €
(0,1)% such that ¢(u) + @(v) < ©(0), de(u,v) = de(t,t) where
1 (p(C(u,v))
t=p !
o (2
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