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CHAPTER I
INTRODUCTION

Copulas, defined as joint distribution functions whose one-dimensional marginals
are uniformly distributed on [0, 1], have been successful in modeling dependence
between random variables. They have been used widely in many branches, for
instance, risk management, quantitative finance, geology, hydrology, including
many applications involving modeling and analyzing of data. Apart from the
perspective of probability theory, we can view any copula as a measure, called
doubly stochastic measure, because for any given copula C, the corresponding
doubly stochastic measure can be defined by the extension of its C-volume. In fact,
the class of copulas and the class of doubly stochastic measures are isomorphic.

With the aspect of copulas in measure theory, they can be decomposed into
an absolutely continuous part and a singular part. Absolutely continuous copulas
are very well-understood and more convenient in modeling real-world data because
they are presentable by joint density functions. On the other hand, copulas with
no absolutely continuous part are called singular copulas, which can be quite
complicated. However, in theoretical studies, singular copulas are very interesting
in its own right and also useful to study because they give some strange but
fascinating results connecting to other branches of mathematics. For example, in
[7], for any given s ∈ (1, 2), there exists a singular copula for which the Hausdorff
dimension of its support is exactly s.

In measure theory, the support of a copula can be defined as the smallest closed
set covering the whole mass of copula. The support gives a crude picture of the
copula mass distribution. For instance, if the support has Lebesgue measure zero
then the copula is singular. However, the concept of supports is a global property
which does not give any local character about points in the support. In dimension
theory, pointwise dimension is a local quantity that describes roughly a character
of mass distribution around a point via its value. It is defined in [1] by

dC (u, v) = lim
h→0

logVC (Rh (u, v))

log(h) whereRh (u, v) = [u− h, u+ h]×[v − h, v + h] ,

if the limit exists. From the definition, larger pointwise dimension means smaller
mass distribution around the point. Moreover, the concept of pointwise dimension
can be used to formulate a sufficient condition to infer some statements about



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

Hausdorff and Box dimensions, two quantities in dimension theory that measure
complexity of sets, measures, etc. For instance, any absolutely continuous copula
has Hausdorff dimension 2.

One of the most popular classes of copulas is the Archimedean copulas which
is defined in [9] by

C (u, v) = φ[−1] (φ(u) + φ(v)) for (u, v) ∈ I2,

where φ : [0, 1] → [0,∞], called Archimedean generator, is a continuous, strictly
decreasing and convex function such that φ(1) = 0 and φ[−1] is the pseudo-inverse
of φ. The class of Archimedean copulas is popular due to many desirable properties.
For example,

1. they are constructed by a simple formula which makes their properties much
easier to derive. In other words, many quantities and formulas obtaining from
Archimedean copulas can be expressed explicitly in terms of Archimedean
generators;

2. many Archimedean copulas form a dependence monotonic parametric family.

In [13], we computed the pointwise dimension of a few families of copulas:
Clayton copulas, Marshall-Olkin copulas and copulas with fractal support defined
in [7] (at some points). Especially for Clayton copulas, which are absolutely
continuous Archimedean copulas defined by

C (u, v) =
(
max{u−θ + v−θ − 1, 0}

)− 1
θ for θ ∈ (−1,∞) \{0},

we obtain the pointwise dimension in the case θ ∈ (−1, 0) that

dC (u, v) =


∞ if u−θ + v−θ > 1;

2 if u−θ + v−θ < 1;

−1
θ

if u−θ + v−θ = 1.

This shows that the behavior of pointwise dimension of absolutely continuous
copulas may not be the same throughout its support.

In this thesis, we are interested in extending the result in [13] for Archimedean
copulas case. That is, we find the pointwise dimension of general Archimedean
copulas. Furthermore, we shall also investigate general behaviors of pointwise
dimension of copulas constructed by various methods.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II
PRELIMINARIES

We organize the content in this chapter as follows. Section 1 lays out some back-
ground on copulas, especially Archimedean copulas and methods of constructing
copulas. Section 2 lists some results on convex functions, an essential property of
Archimedean generators, and conditions that are similar to differentiation. Section
3 contains some basic knowledge of regular variation, functions whose behavior is
similar to polynomial in some sense, while Section 4 introduces pointwise
dimension, another main concept we study in this thesis.

2.1 Background on copulas

First, we let I := [0, 1] and define a copula [9] to be a function C : I2 → I with
the following properties:

1. For every u, v ∈ I,

C (u, 0) = 0 = C (0, v) C (u, 1) = u and C (1, v) = v.

2. For every u1, u2, v1, v2 ∈ I such that u1 ≤ u2 and v1 ≤ v2,

VC ([u1, u2]× [v1, v2]) := C (u2, v2)− C (u1, v2)− C (u2, v1) + C (u1, v1) ≥ 0

where VC ([u1, u2]× [v1, v2]) is called C-volume of the set [u1, u2]× [v1, v2] .

• The condition 2 is called “2-increasing property” and implies that any copula
C is

– increasing in each variable: for any u, u1, u2, v, v1, v2 ∈ I with u1 ≤ u2

and v1 ≤ v2, C(u, v1) ≤ C(u, v2) and C(u1, v) ≤ C(u2, v), and

– Lipschitz continuous: for any (u1, v1), (u2, v2) ∈ I2,
|C(u2, v2)− C(u1, v1)| ≤ |u2 − u1|+ |v2 − v1|.

These two properties give rise to Fréchet-Hoeffding bound for copulas, i.e.,
for any copula C and (u, v) ∈ I2, max{u+ v − 1, 0} ≤ C(u, v) ≤ min{u, v},



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

where the Fréchet-Hoeffding lower bound W (u, v) := max{u + v − 1, 0} is
a copula, called countermonotonic copula and the Fréchet-Hoeffding upper
bound M(u, v) := min{u, v} is also a copula, called comonotonic copula.

• VC can be extended to a doubly stochastic measure µC , a Borel probability
measure on B(I2) satisfying µC (B × I) = λ(B) = µC (I×B) for all B ∈
B(I) where λ is Lebesgue measure on I. Conversely, for any doubly stochastic
measure µ, we define Cµ (u, v) := µ ([0, u]× [0, v]), which can be easily shown
to be a copula. Hence, there is a 1-1 correspondence between copulas and
doubly stochastic measures.

• By the 2-increasing property above, we can show that for any (u, v) ∈
I2, VC ({(u, v)}) = 0. Moreover, for any u, u1, u2, v, v1, v2 ∈ I with u1 ≤ u2

and v1 ≤ v2, VC ({u} × [v1, v2]) = 0 = VC ([u1, u2]× {v}). Hence C-volume
is invariant under replacing a closed rectangle with the open rectangle with
the same vertices, and vice versa.

• The support of a copula C is the smallest closed set containing the whole
mass distribution of copula which is defined as follows:

supp(C) =
∩{

R ⊆ I2 : R is closed and µC(R) = 1
}
.

Example 2.1. We consider examples of basic copulas, their doubly stochastic
measures, as well as their supports.

1. Π(u, v) := uv. This copula is called the independence copula. Since for any
rectangle R = [a, b] × [c, d] ⊆ I2, VΠ(R) = (b− a) (d− c), we have for any
E ∈ B(I2), µΠ(E) is equal to the area of E which implies that supp(Π) = I2.

2. M(u, v) = min{u, v}. For any rectangle R = [a, b]× [c, d], we consider 3 cases
as shown in Figure 2.1.
Hence VM(R) = λ ([a, b] ∩ [c, d]) which implies that for any E ∈ B(I2),
µM(E) = λ (π1(E) ∩ π2(E)) where π1(E) and π2(E) are projections of E into
x-axis and y-axis, respectively. Furthermore, supp(M) = {(x, x) : x ∈ I}.

3. W (u, v) = max{u+ v− 1, 0}. For any rectangle R = [a, b]× [c, d], we denote
c∗ = 1− c, d∗ = 1− d and consider 3 cases as shown in Figure 2.2.
Hence VW (R) = λ ([a, b] ∩ [d∗, c∗]) which implies that for any E ∈ B(I2),
µM(E) = λ (π1(E) ∩ (1− π2(E))) where 1−A = {1− a : a ∈ A} for any set
A. Furthermore, supp(W ) = {(x, 1− x) : x ∈ I}.
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VM (R) = 0

a b c d

c

d

VM (R) = 0

a bc d

c
d

VM (R) = x′′ − x′
a bc d

c

d

Figure 2.1: M -volume of rectangles in different positions where x′ = max{a, c}
and x′′ = min{b, d}

VW (R) = 0

a b c∗d∗
c

d

VW (R) = 0

a bc∗d∗

c

d

VW (R) = y′′ − y′
a bc∗d∗

c

d

Figure 2.2: W -volume of rectangles in different positions where y′ = max{a, d∗}
and y′′ = min{b, c∗}

Next, we classify types of copulas by the Lebesgue decomposition theorem with
respect to Lebesgue measure as follows.

Theorem 2.2 ([9]). Let C be a copula and λ2 be 2-dimensional Lebesgue measure.
Then we can write C = AC + SC where AC ≪ λ2 and SC ⊥ λ2 in the sense that
AC and SC induce measures µA and µS on B(I2) with µA ≪ λ2 and µS ⊥ λ2.
Moreover,

AC(u, v) =

∫ u

0

∫ v

0

∂2C

∂x∂y
(x, y)dydx and SC(u, v) = C(u, v)− AC(u, v)

for all (u, v) ∈ I2. We call AC and SC the absolutely continuous part and the
singular part of C, respectively. In particular, if C = AC, we call C an absolutely
continuous copula and if C = SC, it is a singular copula.

Before introducing Archimedean copulas, we show the following proposition
that gives a relationship between C-volume of a rectangle in I2 and its area.

Proposition 2.3 ([9]). Let R = [u1, u2]× [v1, v2] be a rectangle in I2. If VC(R) = θ

for some copula C, then A(R), the area of R, satisfies θ2 ≤ A(R) ≤
(
1 + θ

2

)2

.
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Proof. Recall that θ = VC(R) = C (u2, v2)− C (u1, v2)− C (u2, v1) + C (u1, v1).
To show that A(R) ≥ θ2, since VC ([u1, u2]× [0, v1]) and VC ([u1, u2]× [v2, 1]) are
nonnegative, we have C (u2, v1)−C (u1, v1) ≥ 0 and u2−u1−C (u2, v2)+C (u1, v2) ≥
0. So u2 − u1 ≥ C (u2, v2)− C (u1, v2) = θ + C (u2, v1)− C (u1, v1) ≥ θ. Similarly,
v2 − v1 ≥ θ by considering VC ([0, u1]× [v1, v2]) and VC ([u2, 1]× [v1, v2]). Hence
A(R) = (u2 − u1) (v2 − v1) ≥ θ2.

To show that A(R) ≤
(
1 + θ

2

)2

, since VC ([0, u1]× [0, v1]) , VC ([0, u1]× [v2, 1]) ,

VC ([u2, 1]× [0, v1]) and VC ([u2, 1]× [v2, 1]) are nonnegative, we have

C (u1, v1) ≥ 0; u1−C (u1, v2) ≥ 0; v1−C (u2, v1) ≥ 0; 1−u2−v2+C (u2, v2) ≥ 0,

and so by AM-GM inequality, 1+θ ≥ (u2 − u1)+(v2 − v1) ≥ 2
√
(u2 − u1) (v2 − v1).

Hence
(
1 + θ

2

)2

≥ A(R) as desired.

2.1.1 Archimedean copulas
Let φ : I → [0,∞] be a continuous and strictly decreasing function such that

φ(1) = 0 and define φ[−1] to be a function from [0,∞] to I such that

φ[−1](t) := inf {x ∈ [0, 1] | φ(x) ≤ t} =

φ−1(t) if t ∈ [0, φ(0)] ;

0 if t > φ(0).

It can be easily shown [9] that the pseudo-inverse φ[−1] satisfies the following.

1. φ[−1] is continuous, decreasing on [0,∞] and strictly decreasing on [0, φ(0)].

2. φ[−1](φ(t)) = t for any t ∈ I and φ
(
φ[−1](t)

)
= min{t, φ(0)} for any t ∈

[0,∞].

Now, we define Cφ (u, v) := φ[−1] (φ(u) + φ(v)) for any (u, v) ∈ I2.
By the definition above, we see that Cφ satisfies condition 1 in the definition of
copula because for any u, v ∈ I,

1. Cφ (u, 0) ≤ φ[−1](φ(0)) = 0 and similarly, Cφ (0, v) = 0,

2. Cφ (u, 1) = φ[−1](φ(u)) = u and similarly, Cφ (1, v) = v.

By [9], we obtain a necessary and sufficient condition on φ in order for Cφ to be a
copula.
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Theorem 2.4. Let φ : I → [0,∞] be a continuous and strictly decreasing function
such that φ(1) = 0. Let Cφ be a function given by

Cφ (u, v) = φ[−1] (φ(u) + φ(v)) for all u, v ∈ I. (2.1)

Then Cφ is a copula if and only if φ is convex.

Definition 2.5. A copula C is called an Archimedean copula if C = Cφ for some
function φ satisfying the condition in Theorem 2.4. The function φ is called a
generator for C.

Many examples of Archimedean copulas are given in [9].
Note:

• If φ is an Archimedean generator and c > 0 is a constant, then ϕ := cφ is
also an Archimedean generator and Cϕ = Cφ because for any x ∈ [0,∞],
ϕ[−1](x) = φ[−1]

(x
c

)
, which implies that for any (u, v) ∈ I2,

Cϕ(u, v) = ϕ[−1] (ϕ(u) + ϕ(v)) = φ[−1]

(
cφ(u) + cφ(v)

c

)
= φ[−1] (φ(u) + φ(v)) = Cφ(u, v).

• From (2.1), if (u, v) ∈ I2 is such that φ′(u), φ′(v) and φ′′(Cφ(u, v)) exist, then

∂2Cφ
∂u∂v

(u, v) = −φ
′′ (Cφ(u, v))φ

′(u)φ′(v)

[φ′ (Cφ(u, v))]
3 . (2.2)

In particular, if φ is twice differentiable, then (2.2) holds.

• If φ(t) = 1−t, then φ[−1](t) = max{1−t, 0} and Cφ(u, v)= max{u+v−1, 0} =

W (u, v).

• If ψ(t) = − log(t), then ψ[−1](t) = e−t and Cψ(u, v) = uv = Π(u, v).

Hence W and Π are Archimedean copulas.
For copula C, we define the diagonal section of C to be δC(x) := C(x, x)

for any x ∈ I. Note that for any copula C, δC(0) = 0, δC(1) = 1 and by the
Fréchet-Hoeffding upper bound, δC(x) ≤ x for all x ∈ (0, 1). By the definition of
Archimedean copula, it is easy to show the following statement.

Proposition 2.6 ([9]). Let C be an Archimedean copula. Then for any u ∈ (0, 1),
δC(u) < u.
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Since δM(u) = u, it is clear from Proposition 2.6 that M is not an Archimedean
copula.

The reason that copulas in this class are called “Archimedean” is that they have
a property which is similar to the Archimedean property : for any real number a, b
with a > 0, there is a positive integer n such that na > b. The property is stated
as follows.

Proposition 2.7 ([9]). Let C be an Archimedean copula. For any x ∈ (0, 1),
define x1C = x and xn+1

C = C(x, xnC) for any n ∈ N. Then for any u, v ∈ (0, 1),
there is n ∈ N such that unC < v.

2.1.2 Constructing methods of copulas
1. Convex sum [9]

Definition 2.8. Let {Ci}ni=1 be a collection of copulas and {αi}ni=1 be real numbers

in (0, 1) such that
n∑
i=1

αi = 1. We call C :=
n∑
i=1

αiCi a convex sum of {Ci}ni=1.

It is easy to see that the function C above is a copula because

• for any u ∈ I, C(u, 0) =
n∑
i=1

αiCi(u, 0) =
n∑
i=1

αi · 0 = 0 and, similarly,

C(0, v) = 0 for any v ∈ I.

• for any u ∈ I, C(u, 1) =
n∑
i=1

αiCi(u, 1) = u

n∑
i=1

αi = u and, similarly,

C(1, v) = v for any v ∈ I.

• for any u1, u2, v1, v2 ∈ I such that u1 ≤ u2 and v1 ≤ v2, VC ([u1, u2]× [v1, v2]) =
n∑
i=1

αiVCi
([u1, u2]× [v1, v2]) ≥ 0.

An example of a convex sum is shown in Figure 2.3.

Note: it is clear that supp(C) =
n∪
i=1

supp(Ci).

2. Ordinal sum [8]
First, we say that two distinct intervals I and J are non-overlapping if I ∩ J is
empty or a singleton set.

Definition 2.9. Let {Ji}i∈Λ, where Ji = [ai, bi] with ai < bi for all i ∈ Λ ⊆ N,
be a family of closed, non-overlapping, non-degenerate sub-intervals on I and let
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W

M

M+W
2

Figure 2.3: The support of a convex sum of W and M

{Ci}i∈Λ be a collection of copulas with the same index as Ji. Then the ordinal sum
of {Ci} with respect to {Ji} is a copula C given by

C (u, v) =

ai + (bi − ai)Ci

(
u− ai
bi − ai

,
v − ai
bi − ai

)
if (u, v) ∈ J2

i ;

min{u, v} otherwise.
(2.3)

An example of an ordinal sum is shown in Figure 2.4.

W

Π

M

M

M

Figure 2.4: The support of an ordinal sum of {W,Π,M} with respect to {J1 =

[0, 0.3] , J2 = [0.4, 0.7] , J3 = [0.7, 1]}

The following theorem gives a characterization of ordinal sums.

Theorem 2.10 ([9]). Let C be a copula. Then C is an ordinal sum if and only if
there exists t ∈ (0, 1) such that C (t, t) = t.

In [8], the authors define IC , the idempotent of C, as IC := {x ∈ I : C(x, x) = x}.
By the continuity of C, IC is closed. Moreover, they derive a property on the
support of ordinal sums in the following statement.

Theorem 2.11 ([8]). Let C be the ordinal sum of {Ci}i∈Λ with respect to {Ji}i∈Λ
defined in Definition 2.9. Let I2

C := {(x, x) : x ∈ IC}. Then supp(C) ⊆ I2
C∪
∪
i∈Λ

J2
i .

3. Patched copulas
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Definition 2.12 ([7]). Let T ∈Mm×n(I) be a matrix of the form

T =


t1m t2m . . . tnm
...

... . .
. ...

t12 t22 . . . tn2

t11 t21 . . . tn1

 .

Then T is called a transformation matrix if T satisfies the following properties:

• No row or column of T contains only zero entries; and

•
n∑
i=1

m∑
j=1

tij = 1.

With the transformation matrix T , we can define a partition on the x-axis P :=

(p0 = 0, p1, . . . , pn = 1) and a partition on the y-axis Q := (q0 = 0, q1, . . . , qm = 1)

by

pk =
k∑
i=1

m∑
j=1

tij for k = 1, . . . , n and qℓ =
ℓ∑

j=1

n∑
i=1

tij for ℓ = 1, . . . ,m.

Note that P and Q subdivide I2 into a collection of non-overlapping rectangles
{Rij := [pi−1, pi]× [qj−1, qj] : i = 1, . . . , n, j = 1, . . . ,m}.

Next, we define patched copulas using transformation matrices which is a
special case of the same terminology in [4].

Definition 2.13. Let T = [tij] ∈Mm×n(I) be a transformation matrix with
partitions on the x-axis P and the y-axis Q, respectively, and let {Cij} be a
collection of copulas with the same indices as entries in T . For any (u, v) ∈ I2,
define

C(u, v) =
n∑
i=1

m∑
j=1

tijCij (Fi(u), Gj(v)) , (2.4)

where Fi(u) = min
{
u− pi−1

pi − pi−1

, 1

}
1(pi−1,∞)(u) is a uniform distribution function

on [pi−1, pi] and Gj(v) = min
{
v − qj−1

qj − qj−1

, 1

}
1(qj−1,∞)(v) is a uniform distribution

function on [qj−1, qj]. Then C is called the patched copula with respect to the
transformation matrix T and the collection of copulas {Cij} or patched copula for
short if the transformation matrix and the collection of copulas are known.
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Figure 2.5: The support of the patched copula with respect to T and {Cij}

An example of a patched copula is shown in Figure 2.5 where

T =

[
0.15 0.2 0.15

0.2 0 0.3

]
and {Cij} =

[
W Π M

M W Π

]
.

Note that

• if (u, v) ∈ Rkℓ, then (2.4) can be written as

C(u, v) =
∑

i<k,j<ℓ

tij + uk
∑
j<ℓ

tkj + vℓ
∑
i<k

tiℓ + tkℓCkℓ (uk, vℓ) , (2.5)

where uk =
u− pk−1

pk − pk−1

and vℓ =
v − qℓ−1

qℓ − qℓ−1

; and

• an ordinal sum of a finite collection of copulas (with respect to finite sub-
intervals on I) is a patched copula as stated in the following proposition.

Proposition 2.14. Let {Ji}Ni=1, where Ji = [ai, bi] with ai < bi for all i = 1, . . . , N ,
be a family of closed, non-overlapping, non-degenerate sub-intervals on I and
{Ci}Ni=1 a collection of copulas. If C is an ordinal sum of {Ci} with respect to
{Ji}, then C is a patched copula.

Proof. By reordering if necessary, we assume without loss of generality that bi ≤
ai+1 for all i = 1, . . . , N − 1.

We define {J ′
i}Ni=0 by J ′

i =


[0, a1] if i = 0;

[bi, ai+1] if i = 1, . . . , N − 1;

[bN , 1] if i = N.

Let S = {J ′
0} ∪ {Ji, J ′

i}Ni=1 and define a relation ≲ on S by I1 ≲ I2 if and only if
min I1 ≤ min I2. It is easy to see that ≲ is a total ordering on S. Next, we define
a collection of closed, non-overlapping, non-degenerate sub-intervals {Kℓ} on I by

K1 = min
≲

{I ∈ S : λ(I) > 0} and for any ℓ > 1, Kℓ = min
≲

{I ∈ S\
ℓ−1∪
k=1

Kk : λ(I) >

0} where min
≲

is the minimum under the relation ≲. Note that

•
∪
ℓ

Kℓ = I, that is, maxKℓ = minKℓ+1 for all ℓ; and
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0 1
J1 J2 J3 J4

0 1
J1 J2 J3 J4J ′

1 J ′
3 J ′

4

J ′
0 = {0} J ′

2 = {b2} = {a3}

0 1
K1 K2 K3 K4 K5K6K7

Figure 2.6: Example of defining {Kℓ}7ℓ=1 from {Ji}4i=1 in Proposition 2.14

• for each i = 1, . . . , N , there is ℓ such that Ji = Kℓ.

Now, let n := |{Kℓ}| and define a transformation matrix T ∈Mn(I) by

T =


0 0 . . . λ(Kn)
...

... . .
. ...

0 λ(K2) . . . 0

λ(K1) 0 . . . 0

 .

Also, we define a collection of copulas {Ckℓ}nk,ℓ=1 by

Ckℓ =

Ci if k = ℓ and Kk = Ji for some i = 1, . . . , N ;

M otherwise.

Claim. A patched copula D with respect to T and {Ckℓ}nk,ℓ=1 is the ordinal sum C.

To see this, let (u, v) ∈ I2. We consider 3 cases.
Case 1: (u, v) ∈ J2

ℓ = [aℓ, bℓ]
2 = Rkk for some ℓ = 1, . . . , N and k = 1, . . . , n.

Then by (2.5),

D(u, v) =
∑
i,j<k

tij + uk
∑
j<k

tkj + vk
∑
i<k

tik + tkkCkk (uk, vk)

= aℓ + uk · 0 + vk · 0 + λ(Kk)Cℓ(uk, vk)

= aℓ + (bℓ − aℓ)Cℓ

(
u− aℓ
bℓ − aℓ

,
v − aℓ
bℓ − aℓ

)
= C(u, v).

Case 2: (u, v) ∈ J ′2
ℓ = [bℓ, aℓ+1]

2 = Rkk for some ℓ = 0, 1, . . . , N and k = 1, . . . , n

(for convenience, b0 = 0 and aN+1 = 1). Then as in the previous case,

D(u, v) =
∑
i,j<k

tij + uk
∑
j<k

tkj + vk
∑
i<k

tik + tkkCkk (uk, vk)
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= bℓ + uk · 0 + vk · 0 + λ(Kk)M(uk, vk)

= bℓ + (aℓ+1 − bℓ)M

(
u− bℓ
aℓ+1 − bℓ

,
v − bℓ
aℓ+1 − bℓ

)
=M(u, v) = C(u, v).

Case 3: (u, v) ∈ Rkℓ for some k, ℓ = 1, . . . , n with k ̸= ℓ. Without loss of
generality, we assume that k < ℓ. Then by (2.5),

D(u, v) =
∑

i<k,j<ℓ

tij + uk
∑
j<ℓ

tkj + vℓ
∑
i<k

tiℓ + tkℓCkℓ (uk, vℓ)

=
k−1∑
i=1

λ(Ki) + ukλ(Kk) + vℓ · 0 + 0 ·M(uk, vℓ)

= maxKk−1 +
u− minKk

λ(Kk)
· λ(Kk) = u =M(u, v) = C(u, v).

Similarly, if k > ℓ, then D(u, v) = v =M(u, v) = C(u, v).
Therefore, C = D, i.e., C is a patched copula with respect to the transformation
matrix T and the collection of copulas {Ckℓ}nk,ℓ=1.

2.2 Some theorems in real analysis

In this section, we collect some basic knowledge about convex functions,
symmetric derivatives and strong differentiability, which will be used in this thesis.
See [2, 5, 6, 12] for more details.

2.2.1 Convex functions
We first recall some basic properties of convex functions on a subset of R.

Definition 2.15 ([2]). Let I be an interval in R. A function f : I → R is convex
if for any x, y ∈ I and t ∈ [0, 1], f (tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

Equivalently, f is convex if for any x < y < z in I, f(y)− f(x)

y − x
≤ f(z)− f(y)

z − y
.

Proposition 2.16 ([6]). Let I be an interval in R with Int(I) = (a, b) and f : I →
R be a convex function. Then

(1) for any x ∈ (a, b), the left derivative f ′(x−) := lim
h→0−

f(x+ h)− f(x)

h
and the

right derivative f ′(x+) := lim
h→0+

f(x+ h)− f(x)

h
exist. Moreover, f ′(a+) and

f ′(b−) exist.

(2) for any x, y ∈ I such that x < y, f ′(x+) ≤ f ′(y−) ≤ f ′(y+).
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(3) D := {x ∈ (a, b) : f ′(x) exists} has a countable complement. That is, any
convex function on I is differentiable at all but countably many points in I.

(4) By (2), we see that f ′ is increasing on D. Hence by Lebesgue Differentiation
Theorem, D2 := {x ∈ (a, b) : f ′′(x) exists} has Lebesgue measure λ(D2) = b−a
and for any x ∈ D2, f ′′(x) ≥ 0.

Now, if f is a convex differentiable function on (a, b) ⊆ R. From Darboux’s
Theorem [2]: the derivative of a differentiable function on an interval has the
intermediate value property, we can show the following statement.

Corollary 2.17. Let f be a convex and differentiable function on (a, b). Then f ′

is continuous on (a, b).

Proof. Let x ∈ (a, b). Then by Proposition 2.16(2), f ′(a+) ≤ f ′(x) ≤ f ′(b−).
Note that if f ′(a+) = f ′(b−), then f ′ is a constant function on (a, b). That is,
f ′ is continuous at x. With the same reason, we may assume without loss of
generality that f ′(a+) < f ′(x) < f ′(b−). Now, let c, d ∈ (f ′(a+), f ′(b−)) be such
that c < f ′(x) < d. Then by Darboux’s Theorem, there are y ∈ (a, x) and z ∈ (x, b)

such that f ′(y) = c and f ′(z) = d. This statement implies the continuity of f ′ at
x by Proposition 2.16(2).

2.2.2 Symmetric derivative and strong differentiability
Definition 2.18 (Symmetric derivative [12]). Let f be a real-valued function on an
open interval D and x ∈ D. We define the first and second symmetric derivatives
of f by the expressions

SD f(x) := lim
t→0

f(x+ t)− f(x− t)

2t
(2.6)

and
SD2 f(x) := lim

t→0

f(x+ t)− 2f(x) + f(x− t)

t2
. (2.7)

Next, we give some statements about symmetric derivatives.

Proposition 2.19 ([12]). Let f be a real-valued function on an open interval D
and x ∈ D.

1. If f ′(x) exists, then so does SD f(x) and SD f(x) = f ′(x).

2. If f ′(x+) and f ′(x−) exist, then so does SD f(x) and

SD f(x) =
f ′(x+) + f ′(x−)

2
.
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3. If f ′′(x) exists, then so does SD2 f(x) and SD2 f(x) = f ′′(x).

4. If f ′(x+), f ′(x−) exist and SD2 f(x) ∈ R, then f ′(x) exists.

5. If f is convex and SD2 f(x) exists, then SD2 f(x) ≥ 0.

However, if SD f(x) exists, it is not necessary that f ′(x) exists. Likewise, the
existence of SD2 f(x) does not guarantee the existence of f ′′(x). For example,

f(x) = |x| and g(x) = sgn(x) =


1 if x > 0;

0 if x = 0;

−1 if x < 0.

We see that SD f(0) = lim
t→0

|t| − | − t|
2t

= 0 but f ′(0) does not exist because f ′(0+) =

1 and f ′(0−) = −1.

Similarly, SD2 g(0) = lim
t→0

sgn(t)− 2 sgn(0) + sgn(−t)
t2

= 0 but g′(0) does not exist
(∵ g is not continuous at 0). So g′′(0) does not exist.

Definition 2.20 (strong differentiability [5]). Let f be a real-valued function on
an open interval D. For a ∈ D, we say that f is strongly differentiable at a if the
limit lim

(x,y)→(a,a)
x̸=y

f(x)− f(y)

x− y
exists and is finite. We denote the limit by f ∗(a) and

call it the strong derivative of f at a.

The following results from [5] will be used in the proof of Theorem 4.9(D).

Theorem 2.21. Let f be a real-valued function on an open interval D and a ∈ D.

1. If f ∗(a) exists, then so does f ′(a) and f ∗(a) = f ′(a).

2. If f ′ is continuous at a, then f is strongly differentiable at a.

2.2.3 Derivative of measures
Let µ be a complex Borel measure on R2. We define the symmetric derivative

of µ at x to be (Dµ)(x) := lim
r→0+

µ (B(x, r))

λ2 (B(x, r))
. In this subsection, we list a few

theorems about Lebesgue points and symmetric derivatives of singular measures
from [10] that are used to show some statements about association between
pointwise dimensions and types of copulas as follows.

Theorem 2.22 ([10]). If f ∈ L1(R2), then for λ2-almost all x ∈ R2,

lim
r→0+

1

λ2 (B(x, r))

∫
B(x,r)

|f(y)− f(x)| dλ(y) = 0,
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where B(x, r) = {y ∈ R2 : ||y − x|| < r}. This implies that for any complex
measure µ such that µ ≪ λ2 with Radon-Nikodym derivative f ∈ L1(R2) and for
λ2-almost all x ∈ R2, (Dµ)(x) = f(x).

Theorem 2.23 ([10]). If µ is a positive Borel measure on R2 and µ ⊥ λ2, then
for λ2-almost all x ∈ R2, (Dµ)(x) = 0 and for µ-almost all x ∈ R2, (Dµ)(x) = ∞.

2.3 Regular variation

Regular variation [3] is a subject that studies functions whose behavior at
some interesting points, espectially at infinity, is similar to the behavior of a power
function at those points. In this topic, we start by giving the definition of a
regularly varying function at infinity and at the right of 0.

Definition 2.24 ([3]). A positive measurable function f defined on [M,∞) such

that there exists a real number ρ satisfying lim
x→∞

f (λx)

f (x)
= λρ for any λ > 0 is called

a regularly varying function of index ρ; we write f ∈ RVρ.
In particular, if ρ = 0, we call f a slowly varying function.

Definition 2.25 ([3]). A positive measurable function f defined on (0, N ] such

that there exists a real number ρ satisfying lim
x→0+

f (λx)

f (x)
= λρ for any λ > 0 is

called a regularly varying function at the right of 0 of index ρ; we write f ∈ RV 0
ρ .

In particular, if ρ = 0, we call f a slowly varying function at the right of 0.

Note that f ∈ RV 0
ρ if and only if g : x 7→ f (1/x) is in RV−ρ because for any

λ > 0,

f ∈ RV 0
ρ ⇐⇒ lim

x→0+

f(λx)

f(x)
= λρ ⇐⇒ lim

x→0+

g (1/λx)

g (1/x)
=

(
1

λ

)−ρ

⇐⇒ lim
u→∞

g(αu)

g(u)
= α−ρ (use u = 1/x and α = 1/λ) ⇐⇒ g ∈ RV−ρ.

Example 2.26.

1. f(x) = arcsin(x) for x ∈ [0, 1] is in RV 0
1 because for any λ > 0,

lim
x→0+

f(λx)

f(x)
= lim

x→0+

arcsin(λx)
arcsin(x) = lim

x→0+

λ√
1− (λx)2

√
1− x2 = λ.

2. g(x) = − log(x) for x ∈ (0, 1] is in RV 0
0 because for any λ > 0,

lim
x→0+

g(λx)

g(x)
= lim

x→0+

− log(λx)
− log(x) = lim

x→0+

log(λ) + log(x)
log(x) = 1 + lim

x→0+

log(λ)
log(x) = 1.
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3. h(x) = 1

x− x2
for x ∈ (0, 1) is in RV 0

−1 because for any λ > 0,

lim
x→0+

h(λx)

h(x)
= lim

x→0+

1
λx−(λx)2

1
x−x2

= lim
x→0+

x(1− x)

λx(1− λx)
=

1

λ
lim
x→0+

1− x

1− λx
=

1

λ
.

From the definition, it is easy to see that f ∈ RVρ if and only if f(x) = xρℓ(x)

for some slowly varying function ℓ and the result holds for f ∈ RV 0
ρ in a similar

way. Hence we see that slowly varying functions are important in this subject.
Furthermore, they are related to the most important theorem in this subject,
Uniform Convergence Theorem (UCT), which is stated as follows

Theorem 2.27 (Uniform Convergence Theorem [3]). If ℓ is a slowly varying
function, then lim

x→∞

ℓ(λx)

ℓ(x)
= 1 uniformly on each compact λ-set in (0,∞).

Surely, there is a Uniform Convergence Theorem for slowly varying function
at 0. UCT is used to prove the following theorem which characterizes the slowly
varying functions.

Theorem 2.28 (Representation Theorem [3]). A positive measurable function ℓ

is slowly varying if and only if it can be written in the form

ℓ(x) = C(x) exp
{∫ x

a

ε(t)

t
dt
}

(for x ≥ a)

for some a > 0, where C(·) is positive and measurable, and C(x) → c ∈ (0,∞)

and ε(x) → 0 as x→ ∞.

See [3] for the proof of these two theorems. From Representation Theorem,
we prove Potter’s Theorem which gives bounds for the quotient of the values of a
slowly varying function at different points.

Theorem 2.29 (Potter’s Theorem [3]).

1. If f is regularly varying of index ρ then for any chosen constant A > 1 and
δ > 0, there is X = X(A, δ) such that for any x, y ≥ X,

A−1
(y
x

)ρ(
max

{
x

y
,
y

x

})−δ

≤ f(y)

f(x)
≤ A

(y
x

)ρ(
max

{
x

y
,
y

x

})δ
. (2.8)

2. If f is regularly varying at 0 of index ρ then for any chosen constant A > 1

and δ > 0, there is Y = Y (A, δ) such that for any 0 < x, y ≤ Y , (2.8) holds.
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Proof. For the first part, it suffices to show the case where f is slowly varying.
To see this, assume that f is a slowly varying function. Then by Representation
Theorem, f(x) = C(x) exp

{∫ x

a

η(t)

t
dt
}

for some a > 0, positive measurable

function C with C(x) → c ∈ (0,∞) and η(x) → 0 as x → ∞. Let A > 1

and δ > 0. Choose ε = min
{
A− 1

A+ 1
, δ

}
∈ (0, 1). Then by the existence of the

limits of C and η as x → ∞, there exists x0 > 0 such that for any x ≥ x0,
c(1− ε) ≤ C(x) ≤ c(1 + ε) and |η(x)| < ε. Let X = X(A, δ) = max{x0, a}. Then
for y ≥ x ≥ X,

f(y)

f(x)
=
C(y)

C(x)
exp

{∫ y

x

η(t)

t
dt
}

≤ 1 + ε

1− ε
exp

{
ε

∫ y

x

dt
t

}
≤ A exp{ε log(y/x)} = A(y/x)ε ≤ A(y/x)δ.

Also, for x ≥ y ≥ X,

f(y)

f(x)
≤ 1 + ε

1− ε
exp

{
−ε
∫ y

x

dt
t

}
≤ A exp{−ε log(y/x)} = A(x/y)ε ≤ A(x/y)δ.

The lower bound can be shown in a similar way.
For the second part, assume that f ∈ RV 0

ρ . Define f1 : x 7→ f(1/x). Then f1 ∈
RV−ρ. By the previous part, for each A > 1 and δ > 0, there is X = X(A, δ) such
that for x, y ≥ X,

A−1
(y
x

)−ρ(
max

{
x

y
,
y

x

})−δ

≤ f1(y)

f1(x)
≤ A

(y
x

)−ρ(
max

{
x

y
,
y

x

})δ
.

Choose Y = 1/X. Then for 0 < x, y ≤ Y , we have 1/x, 1/y ≥ X, i.e.,

f(y)

f(x)
=
f1(1/y)

f1(1/x)
≤ A

(
1/y

1/x

)−ρ(
max

{
1/x

1/y
,
1/y

1/x

})δ
= A

(y
x

)ρ(
max

{
x

y
,
y

x

})δ
and the lower bound of f(y)

f(x)
can be obtained similarly.

Now, we list some properties of regularly varying functions and slowly varying
functions at infinity and we give corresponding statements for regularly varying
functions and slowly varying functions at the right of 0 used in this thesis.

Proposition 2.30 ([3]).

(i) If ℓ ∈ RV0, then for any α > 0, lim
x→∞

xαℓ(x) = ∞ and lim
x→∞

x−αℓ(x) = 0.

(ii) If ℓ ∈ RV0, then lim
x→∞

log (ℓ(x))
log(x) = 0.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19

(iii) Let α ∈ R. If f ∈ RVρ and g(x) = (f(x))α, then g ∈ RVαρ.

(iv) If f ∈ RVρ, g ∈ RVσ, then f + g ∈ RVmax{ρ,σ} and f · g ∈ RVρ+σ. Moreover,
if we assume in addition that lim

x→∞
g(x) = ∞, then f ◦ g ∈ RVρσ.

Proof [11]. For (i) and (ii), by Theorem 2.28, we write

ℓ(x) = C(x) exp
{∫ x

a

ε(t)

t
dt
}

(2.9)

for some a > 0, measurable functions C, ε such that C is positive, C(x) → c > 0

and ε(x) → 0 as x→ ∞.

(i) Assume that ℓ ∈ RV0 and let α > 0. We give a proof for lim
x→∞

xαℓ(x) = ∞ as
another case can be handled similarly. By (2.9), we see that

xαℓ(x) = C(x) exp
{
α log(x) +

∫ x

a

ε(t)

t
dt
}
.

Since C(x) → c > 0 as x→ ∞, C is eventually bounded away from 0. Hence

it suffices to show that lim
x→∞

(
α log(x) +

∫ x

a

ε(t)

t
dt
)

= ∞.

Let M > 0. Since ε(x) → 0 as x → ∞, there is M1 > 0 such that for any
x ≥M1, |ε(x)| <

α

2
. Hence

α log(x) +
∫ x

a

ε(t)

t
dt = α log(x) +

∫ M1

a

ε(t)

t
dt+

∫ x

M1

ε(t)

t
dt

> α log(x) +
∫ M1

a

ε(t)

t
dt− α

2

∫ x

M1

1

t
dt

=
α

2
log(x) +

∫ M1

a

ε(t)

t
dt+ α

2
log(M1).

Since C ′ :=

∫ M1

a

ε(t)

t
dt+ α

2
log(M1) is a constant and lim

x→∞
log(x) = ∞, there

is M2 > M1 such that for any x ≥ M2, log(x) > 2(M − C ′)

α
. Thus, for any

x ≥M2, α log(x)+
∫ x

a

ε(t)

t
dt > α

2
· 2(M − C ′)

α
+C ′ =M which implies that

lim
x→∞

xαℓ(x) = ∞.

(ii) Assume that ℓ ∈ RV0. Then by (2.9), log (ℓ(x)) = log (C(x)) +
∫ x

a

ε(t)

t
dt.

Now, let δ > 0. Since ε(x) → 0 as x→ ∞, there is M1 > 0 such that for any
x ≥M1, |ε(x)| <

δ

2
. Hence for any x ≥M1,

log (ℓ(x))
log(x) <

log(C(x))
log(x) +

∫M1

a
ε(t)
t

dt
log(x) +

δ

2

∫ x
M1

1
t
dt

log(x)
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=
log(C(x))− δ

2
log(M1) +

∫M1

a
ε(t)
t

dt
log(x) +

δ

2
.

Since C ′′(x) := log(C(x))− δ
2

log(M1)+

∫ M1

a

ε(t)

t
dt is eventually bounded and

lim
x→∞

log(x) = ∞, there is M2 > M1 such that for any x ≥ M2,
C ′′(x)

log(x) <
δ

2
.

Hence log(ℓ(x))
log(x) < δ. Similarly, we can show that there is M3 > 0 such that

for any x ≥M3,
log(ℓ(x))

log(x) > −δ. That is, lim
x→∞

log(ℓ(x))
log(x) = 0.

(iii) Assume that f ∈ RVρ and g(x) = (f(x))α. Then for any λ > 0, lim
x→∞

f(λx)

f(x)
=

λρ. Thus, lim
x→∞

g(λx)

g(x)
=

(
lim
x→∞

f(λx)

f(x)

)α
= (λρ)α = λαρ, i.e., g ∈ RVαρ.

(iv) Assume that f ∈ RVρ, g ∈ RVσ and without loss of generality, ρ ≥ σ. Then
f(x) = xρℓ1(x) and g(x) = xσℓ2(x) for some slowly varying functions ℓ1, ℓ2.
We divides the proof into 3 parts.
Part 1: f · g. We see that for any λ > 0,

lim
x→∞

(f · g)(λx)
(f · g)(x)

= lim
x→∞

f(λx)g(λx)

f(x)g(x)
= lim

x→∞

f(λx)

f(x)
lim
x→∞

g(λx)

g(x)
= λρλσ = λρ+σ.

Hence f · g ∈ RVρ+σ.
Part 2: f + g. We see that if ρ = σ, then for any λ > 0,

ℓ1(λx) + ℓ2(λx)

ℓ1(x) + ℓ2(x)
=
ℓ1(λx)

ℓ1(x)

ℓ1(x)

ℓ1(x) + ℓ2(x)
+
ℓ2(λx)

ℓ2(x)

ℓ2(x)

ℓ1(x) + ℓ2(x)
.

Now, let ε > 0. Since ℓ1, ℓ2 ∈ RV0, there is M > 0 such that for any
x ≥ M , ℓ1(λx)

ℓ1(x)
∈ (1− ε, 1 + ε) and ℓ2(λx)

ℓ2(x)
∈ (1− ε, 1 + ε). Hence for any

x ≥ M , ℓ1(λx) + ℓ2(λx)

ℓ1(x) + ℓ2(x)
∈ (1− ε, 1 + ε) . This implies that ℓ1 + ℓ2 ∈ RV0

and f(x) + g(x) = xρ (ℓ1(x) + ℓ2(x)) ∈ RVρ.
If ρ > σ, then f(x)+g(x) = xρℓ1(x)+x

σℓ2(x) = xρ (ℓ1(x) + xσ−ρℓ2(x)). Since

lim
x→∞

ℓ1(λx) + (λx)σ−ρℓ2(λx)

ℓ1(x) + xσ−ρℓ2(x)
= lim

x→∞

ℓ1(λx)

ℓ1(x)
lim
x→∞

1 + (λx)σ−ρ ℓ2(λx)
ℓ1(λx)

1 + xσ−ρ ℓ2(x)
ℓ1(x)

= lim
x→∞

ℓ1(λx)

ℓ1(x)
= 1

for any λ > 0, where the second equality follows from (i),(iii) and (v) in the
product part, we have ℓ1(x) + xσ−ρℓ2(x) ∈ RV0 and f + g ∈ RVρ.
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Part 3: f ◦ g. We suppose in addition that lim
x→∞

g(x) = ∞. Then from (i),
σ ≥ 0. Since

f(g(x)) = g(x)ρℓ1 (g(x)) = (xσℓ2(x))
ρ ℓ1 (x

σℓ2(x)) = xρσ (ℓ2(x))
ρ ℓ1 (x

σℓ2(x)) ,

we see that for any λ > 0, ℓ1 ((λx)
σℓ2(λx))

ℓ1 (xσℓ2(x))
=

ℓ1

((
λσ ℓ2(λx)

ℓ2(x)

)
g(x)

)
ℓ1 (g(x))

. Now,
let ε > 0. Since ℓ2 ∈ RV0, there is M1 > 0 such that for any x ≥ M1,
1− ε <

ℓ2(λx)

ℓ2(x)
< 1 + ε. Next, since K := [λσ(1− ε), λσ(1 + ε)] is a compact

subset of (0,∞), by UCT, there is M2 > 0 such that for any t ≥M2 and any

k ∈ K, 1−ε < ℓ1(kt)

ℓ1(t)
< 1+ε. Moreover, since lim

x→∞
g(x) = ∞, there is M3 > 0

such that for any x ≥ M3, g(x) > M2. Hence for any x ≥ max{M1,M3},

g(x) > M2 and λσ
ℓ2(λx)

ℓ2(x)
∈ K, that is, ℓ1 ((λx)

σℓ2(λx))

ℓ1 (xσℓ2(x))
∈ (1− ε, 1 + ε).

This implies that ℓ1 (xσℓ2(x)) ∈ RV0. Therefore, f ◦ g ∈ RVρσ which follows
from (iii) and (v) in the product part.

Corollary 2.31.

(i) If ℓ ∈ RV 0
0 , then for any α > 0, lim

x→0+
xαℓ(x) = 0 and lim

x→0+
x−αℓ(x) = ∞.

(ii) If ℓ ∈ RV 0
0 , then lim

x→0+

log (ℓ(x))
log(x) = 0.

(iii) Let α ∈ R. If f ∈ RV 0
ρ and g(x) = (f(x))α, then g ∈ RV 0

αρ.

(iv) If f ∈ RV 0
ρ , g ∈ RV 0

σ , then f + g ∈ RV 0
min{ρ,σ} and f · g ∈ RV 0

ρ+σ. Moreover,
if we assume in addition that lim

x→0+
g(x) = 0, then f ◦ g ∈ RV 0

ρσ.

Proof.

(i) Assume that ℓ ∈ RV 0
0 and let α > 0. Then ℓ̄ : x 7→ ℓ(1/x) is in RV0. By

Proposition 2.30(i), we have lim
x→0+

xαℓ(x) = lim
t→∞

(
1

t

)α
ℓ

(
1

t

)
= lim

t→∞
t−αℓ̄(t) =

0 and similarly, lim
x→0+

x−αℓ(x) = ∞.

(ii) Assume that ℓ ∈ RV 0
0 . Then ℓ̄ : x 7→ ℓ(1/x) is in RV0. By Proposition

2.30(ii), lim
x→0+

log (ℓ(x))
log(x) = lim

t→∞

log (ℓ(1/t))
log(1/t) = − lim

t→∞

log
(
ℓ̄(t)
)

log(t) = 0.

(iii) It is similar to Proposition 2.30(iii).
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(iv) Assume that f ∈ RV 0
ρ , g ∈ RV 0

σ . Then f̄ : x 7→ f(1/x) and ḡ : x 7→ g(1/x)

are in RV−ρ and RV−σ, respectively. By Proposition 2.30(iv), f̄ + ḡ ∈
RVmax{−ρ,−σ} and f̄ · ḡ ∈ RV−ρ−σ. Since max{−ρ,−σ} = −min{ρ, σ},
we are done. Now, we suppose that lim

x→0+
g(x) = 0. Then lim

x→∞
ḡ(x) =

lim
x→∞

g (1/x) = lim
t→0+

g(t) = 0. Let h̄(x) =
1

ḡ(x)
. Then by Proposition

2.30(iii), h̄ ∈ RVσ and lim
x→∞

h̄(x) = ∞. Hence by Proposition 2.30(iv),

f̄ ◦ h̄ ∈ RV−ρσ. Since (f ◦ g) (x) = f̄

(
1

g(x)

)
= f̄

(
1

ḡ(1/x)

)
=
(
f̄ ◦ h̄

)
(1/x),

we have f ◦ g ∈ RV 0
ρσ.

2.4 Pointwise dimension

In this section, we introduce the pointwise dimension [1]. This notation is
used to measure a “local dimension” at each point in the domain under various
measures. Moreover, it gives a sufficient condition for equality between Hausdorff
dimension and box dimension, both of which are important tools in dimension
theory.

Definition 2.32. Let µ be a measure on X ⊆ Rm. For each x ∈ X, define an
upper pointwise dimension dµ(x) and lower pointwise dimension dµ(x) to be

dµ(x) = lim sup
r→0+

logµ (B(x, r))

log r and dµ(x) = lim inf
r→0+

logµ (B(x, r))

log r .

If dµ(x) = dµ(x) := dµ(x), we called dµ(x) the pointwise dimension of x under µ.

We can write upper and lower pointwise dimensions in another form as follows.

Proposition 2.33. For each a > 0 and x ∈ X, we have
dµ(x) = lim sup

n→∞

logµ (B (x, ae−n))

−n
and dµ(x) = lim inf

n→∞

logµ (B (x, ae−n))

−n
.

In the following statement, we show the relationship between the Hausdorff
dimension and the lower pointwise dimension where the Hausdorff dimension of
measure µ is defined to be dimH µ = inf {dimH Z | µ (X\Z) = 0} and

dimH Z = inf
{
α ∈ R : lim

ε→0+
inf
U

∑
U

(diamU)α = 0

}

is the Hausdorff dimension of Z ⊆ X [1] where the infimum is taken over all
countable coverings U of the set Z with sup {diamU : U ∈ U} ≤ ε.
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Theorem 2.34. The following statements hold:

(i) if dµ(x) ≥ α for µ-almost all x ∈ X, then dimH µ ≥ α.

(ii) if dµ(x) ≤ α for all x ∈ Z ⊆ X, then dimH Z ≤ α.

(iii) dimH µ = ess sup
{
dµ(x) | x ∈ X

}
.

See [1] for the proof of this theorem.
Recall that for a finite measure µ on X, upper box dimension and lower box

dimension are defined to be

dimBµ = lim inf
ε→0+

{
dimBZ | µ(Z) ≥ µ(X)− ε

}
dimBµ = lim inf

ε→0+
{dimBZ | µ(Z) ≥ µ(X)− ε}

where dimBZ = lim sup
r→0+

logN(Z, r)

log r and dimBZ = lim inf
r→0+

logN(Z, r)

log r are upper

and lower box dimension of Z ⊆ X respectively and N(Z, r) is the least number
of balls of radius r that are needed to cover Z. In addition, by the well-known fact
in dimension theory [1] that for any measure µ in X and any Z ⊆ X, dimH Z ≤
dimBZ ≤ dimBZ, we have

dimH µ ≤ dimBµ ≤ dimBµ.

These inequalities could be strict for some measures µ. However, under a condition
on the pointwise dimension, these three quantities coincide.

Theorem 2.35. If µ is a finite measure on X and there is d ≥ 0 such that
dµ(x) = d for µ-almost all x ∈ X, then dimH µ = dimBµ = dimBµ = d.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III
POINTWISE DIMENSION OF COPULAS

In this chapter, we derive some properties of pointwise dimension of copulas
and the equality to the pointwise exponent defined in [13]. Moreover, we study the
behavior of the pointwise dimensions of copulas constructed by methods introduced
in Chapter 2.

3.1 Notation and some properties of pointwise dimension

First of all, for h > 0, let Rh (u, v) := [u− h, u+ h]× [v − h, v + h]. Since there
is a 1-1 correspondence between copulas and doubly stochastic measures, we use
notations dC ≡ dµC , dC ≡ dµC and dC ≡ dµC (if exists). According to Proposition
2.3, we see that VC (Rh (u, v)) ≤ 2h for any h > 0 such that (u, v) ∈ I2 and C is a

copula. That is, dC (u, v) ≥ lim inf
h→0

log(2h)
log(h) = 1.

From the relation B((u, v), h) ⊆ Rh(u, v) ⊆ B((u, v),
√
2h), we see that the

topologies generated by the collection of squares {Rh(u, v)∩ I2 : (u, v) ∈ I2, h > 0}
and the collection of open disks {B((u, v), r)∩ I2 : (u, v) ∈ I2, r > 0} are the same.
Hence we may replace B((u, v), r) in Theorems 2.22 and 2.23 with Rh(u, v).
Now, from Theorem 2.22, the Hausdorff dimension of every absolutely continuous
copula is two.

Proposition 3.1. Let C be an absolutely continuous copula with the corresponding
doubly stochastic measure µC. Then dC(u, v) ≥ 2 for µC-almost all (u, v) ∈ I2 and
so dimH µC = 2.

Proof. Since µC ≪ λ2 with Radon-Nikodym derivative f(x, y) =
∂2C

∂x∂y
(x, y), by

Theorem 2.22, for λ2-almost all (u, v) ∈ I2,

lim
h→0+

µC (Rh(u, v))

λ2 (Rh(u, v))
= f(u, v). (3.1)

Next, let A =
{
(u, v) ∈ I2 : (3.1) holds and f(u, v) ∈ [0,∞)

}
. Then λ2 (I2\A) = 0

which also implies that µC (I2\A) = 0.
Note that for any (u, v) ∈ A, there is δ > 0 such that for any h ∈ (0, δ),
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µC (Rh(u, v))

4h2
< f(u, v) + 1. Hence

dC(u, v) = lim inf
h→0

logµC (Rh(u, v))

log(h) ≥ lim inf
h→0

log ((f(u, v) + 1) · 4h2)
log(h)

= lim inf
h→0

log (4(f(u, v) + 1))

log(h) + 2 = 2.

Now, we have dC(u, v) ≥ 2 for all (u, v) ∈ A which is µC-full measure, so by
Theorem 2.34, we obtain dimH µC ≥ 2. But then, dimH µC ≤ dimH(I2) = 2.
Thus, dimH µC = 2 as desired.

Next, we turn to the pointwise dimension of singular copulas.

Proposition 3.2. Let C be a singular copula with the corresponding doubly stochas-
tic measure µC. Then dC(u, v) ≤ 2 for µC-almost all (u, v) ∈ I2.

Proof. Since µC ⊥ λ2, by Theorem 2.23, for µC-almost all (u, v) ∈ I2, there is

δ > 0 such that for any h ∈ (0, δ), µC (Rh(u, v))

λ2 (Rh(u, v))
> 1. Hence

dC(u, v) = lim sup
h→0

logµC (Rh(u, v))

log(h) ≤ lim sup
h→0

log(4h2)
log(h) = 2.

In [13], we introduce some notations used in this thesis as follows: for any

(u, v) ∈ (0, 1)2, α > 0 and copula C, define DαC (u, v) := lim sup
h→0+

VC (Rh (u, v))

(2h)α

and DαC (u, v) := lim inf
h→0+

VC (Rh (u, v))

(2h)α
. If these values coincide, we let

DαC (u, v) := lim
h→0+

VC (Rh (u, v))

(2h)α
.

In the following lemma, we verify the monotonic property of DαC (u, v) and
DαC (u, v) which will indicate values of DβC (u, v) for β on the left or right of
α as follows.

Lemma 3.3. Let C be a copula and (u, v) ∈ I2. Then both DαC (u, v) and
DαC (u, v) are increasing in α. More precisely, for 0 < β < α < γ,

(1) If DαC (u, v) <∞, then DβC (u, v) = 0.

(2) If DαC (u, v) > 0, then DγC (u, v) = ∞.

And the same statements hold for DαC(u, v). In particular,

• if DαC(u, v) <∞, then DβC(u, v) = 0 for all β < α.
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• if DαC (u, v) > 0, then DγC (u, v) = ∞ for all γ > α.

Proof. Let 0 < β < α < γ. To show (1), assume that DαC(u, v) < ∞. Since
VC (Rh (u, v))

(2h)β
=
VC (Rh (u, v))

(2h)α
· (2h)α−β, lim sup

h→0+

VC (Rh (u, v))

(2h)α
= DαC (u, v) <∞

and lim
h→0+

(2h)α−β = 0, we have

DβC (u, v) = lim sup
h→0+

VC (Rh (u, v))

(2h)β
= lim sup

h→0+

(
VC (Rh (u, v))

(2h)α
· (2h)α−β

)
= lim sup

h→0+

VC (Rh (u, v))

(2h)α
· lim
h→0+

(2h)α−β = DαC (u, v) · 0 = 0.

Next, to show (2), assume that DαC(u, v) > 0 and let M > 0. Since

lim sup
h→0+

VC (Rh (u, v))

(2h)α
= DαC (u, v) > 0 and lim

h→0+
(2h)α−γ = ∞, there is δ > 0 such

that for any h ∈ (0, δ), (2h)α−γ > 2M

DαC(u, v)
and there is a sequence hn ↘ 0 such

that VC (Rhn(u, v))

(2hn)α
>
DαC(u, v)

2
. Thus, for any n ∈ N such that hn < δ,

VC (Rhn(u, v))

(2hn)γ
=
VC (Rhn(u, v))

(2hn)α
· (2hn)α−γ > M.

This implies that DγC(u, v) = lim sup
h→0+

VC (Rh(u, v))

(2h)γ
= ∞.

Note that the proof of (1) for DαC(u, v) is similar to (1) for DαC(u, v).
However, the proof of (2) for DαC(u, v) is easier than (2) for DαC(u, v) because

we can consider the reciprocal (2h)γ

VC (Rh(u, v))
=

(
VC (Rh(u, v))

(2h)α

)−1

· (2h)γ−α where

lim inf
h→0+

(
VC (Rh(u, v))

(2h)α

)−1

=
(
DαC(u, v)

)−1, which is finite by assumption of (2),

and lim
h→0+

(2h)γ−α = 0. Hence

(DγC(u, v))−1 = lim inf
h→0+

((
VC (Rh(u, v))

(2h)α

)−1

· (2h)γ−α
)

=

(
lim sup
h→0+

VC (Rh(u, v))

(2h)α

)−1

· lim
h→0+

(2h)γ−α =
(
DαC(u, v)

)−1 · 0

= 0.

That is, DγC(u, v) = ∞.

By the previous lemma, with the behaviors of both DαC (u, v) and DαC (u, v),
we can define upper pointwise exponent and lower pointwise exponent as follows.
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• Let A :=
{
α ∈ R+ : DαC (u, v) = 0

}
and B := {α ∈ R+ : DαC (u, v) = ∞}.

• By Proposition 2.3 and Lemma 3.3, we see that (0, 1) ⊆ A.

• αC (u, v) := supA = sup
{
α ∈ R+ : DαC (u, v) = 0

}
.

• αC (u, v) := infB = inf {α ∈ R+ : DαC (u, v) = ∞} and
αC (u, v) = ∞ whenever B = ∅.

• These values are defined from completeness axiom of the extended real
numbers. In addition, if they coincide, we denote the common value by
αC (u, v), and call it the pointwise exponent of copula C at (u, v).

Lemma 3.4. For any copula C and (u, v) ∈ I2, αC (u, v) ≤ αC (u, v).

Proof. Let b0 < αC (u, v). Then there is a ∈ A such that b0 < a, i.e., DaC (u, v) =

0. By Lemma 3.3, Db0C (u, v) = Db0C (u, v) = 0 so that b0 ≤ b for any b ∈ B
which implies b0 ≤ infB = αC (u, v). Therefore, αC (u, v) = supA ≤ αC (u, v).

From the definition of αC (u, v), we can show that αC (u, v) = dC (u, v) and
αC (u, v) = dC (u, v) as stated in the next proposition.

Proposition 3.5. For any copula C and (u, v) ∈ I2, αC (u, v) = dC (u, v) and
αC (u, v) = dC (u, v).

Proof. We verify only that αC (u, v) = dC (u, v) as the other equality can be proved
similarly.
(≥) Let b ∈ B = {α ∈ R+ : DαC (u, v) = ∞}. Then there is δ > 0 such that for

any h ∈ (0, δ), VC (Rh (u, v))

(2h)b
> 1. Hence for such h,

logVC (Rh(u, v))

log(h) <
b log(2h)
log(h) = b+

b log(2)
log(h) , i.e.,

dC (u, v) = lim sup
h→0

logVC (Rh(u, v))

log(h) ≤ b. Therefore, dC (u, v) ≤ infB = αC (u, v).

(≤) Note that the case dC(u, v) = ∞ is obvious, so we show this statement only
in the case dC(u, v) < ∞. Let b > dC (u, v) and b0 ∈

(
dC(u, v), b

)
. Then there

is δ ∈
(
0,

1

2

)
such that for any h ∈ (0, δ), logVC (Rh(u, v))

log(h) < b0. Hence for

such h, (2h)b0 < (2h)logVC(Rh(u,v))/ log(h) = VC (Rh (u, v)) · 2logVC(Rh(u,v))/ log(h), i.e.,
VC (Rh (u, v))

(2h)b0
> 2− logVC(Rh(u,v))/ log(h). It yields that

Db0C (u, v) = lim inf
h→0+

VC (Rh (u, v))

(2h)b
≥ 1

2dC(u,v)
> 0.

Hence by Lemma 3.3(ii), b ∈ B, that is, αC (u, v) = infB ≤ dC (u, v).
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3.2 Pointwise dimension of copulas constructed by various
methods

In this section, we study copulas constructed from a collection of copulas. Their
pointwise dimension can be computed from the pointwise dimensions of copulas
used in the construction. We first prove the following statement which tells us
about a relation between the pointwise dimension of a point and the volume of
copulas around the point.

Proposition 3.6. Let C,D be copulas, (u1, v1) , (u2, v2) ∈ I2 and r, s ∈ R+.
Suppose that dC (u1, v1) = α and dD (u2, v2) = β.

1. If α < β, then there exists δ > 0 such that for any h ∈ (0, δ),

VD (Rsh (u2, v2)) < VC (Rrh (u1, v1))
log(sh)/ log(rh) .

2. If α = β, then for any ε > 0, there is δ > 0 such that for any h ∈ (0, δ),

hε
rα+

ε
2

sα−
ε
2

VD (Rsh (u2, v2)) < VC (Rrh (u1, v1)) < h−ε
rα−

ε
2

sα+
ε
2

VD (Rsh (u2, v2)) .

Proof. To prove 1., assume that α < β. Since α = lim
h→0

logVC (Rh(u1, v1))

log(h) and

β = lim
h→0

log (VD (Rh (u2, v2)))

log(h) , there is γ ∈ (0, 1) such that for any h ∈ (0, γ),

logVC (Rh(u1, v1))

log(h) − α <
β − α

2
and log (VD (Rh (u2, v2)))

log(h) − β >
α− β

2
.

Let δ = min{γ
r
,
γ

s
}. Then for any h ∈ (0, δ), we have rh, sh ∈ (0, γ) and so

logVC (Rrh(u1, v1))

log(rh) <
α + β

2
<

log (VD (Rsh (u2, v2)))

log(sh) .

Since sh ∈ (0, 1), log(sh) < 0 and

log (VD (Rsh(u2, v2))) <
log(sh)
log(rh) · logVC (Rrh(u1, v1))

= logVC (Rrh(u1, v1))
log(sh)/ log(rh) .

Thus, we obtain the desired inequality because log is a strictly increasing function.
To prove 2., assume that α = β and let ε > 0. By the definition of dC (u, v), there

is γ ∈ (0, 1) such that for any h ∈ (0, γ), logVC (Rh(u1, v1))

log(h) ∈
(
α− ε

2
, α +

ε

2

)
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and logVD (Rh(u2, v2))

log(h) ∈
(
α− ε

2
, α +

ε

2

)
. Since log(h) < 0 and log is a strictly

increasing function, we have VC (Rh(u1, v1)) , VD (Rh (u2, v2)) ∈
(
hα+

ε
2 , hα−

ε
2

)
for

any h ∈ (0, γ). Let δ = min{γ
r
,
γ

s
}. Then for h ∈ (0, δ), we have rh, sh ∈ (0, γ), so

hε
rα+

ε
2

sα−
ε
2

=
(rh)α+

ε
2

(sh)α−
ε
2

<
VC (Rrh (u1, v1))

VD (Rsh (u2, v2))
<

(rh)α−
ε
2

(sh)α+
ε
2

= h−ε
rα−

ε
2

sα+
ε
2

and we are done.

Now, we are ready to find the pointwise dimension of copulas constructed by
convex sum, patching, and ordinal sum as follows.

Theorem 3.7. Let {Ci}ni=1 be a collection of copulas and {αi}ni=1 ⊆ (0, 1) be such

that
n∑
i=1

αi = 1. Let C =
n∑
i=1

αiCi be the convex sum of {Ci}ni=1. Then for any

(u, v) ∈ I2, dC(u, v) = min
1≤i≤n

{dCi
(u, v)}.

Proof. By rearranging, we suppose without loss of generality that dCi
(u, v) =

dC1(u, v) for all i = 1, . . . , k and dCi
(u, v) > dC1(u, v) for all i = k + 1, . . . , n.

Note that for any h > 0, VC (Rh(u, v)) =
n∑
i=1

αiVCi
(Rh(u, v)). Hence by Proposi-

tion 3.6(1) and (2), for any ε > 0, there is δ ∈ (0, 1) such that for any h ∈ (0, δ),

VCi
(Rh(u, v)) < h−εVC1 (Rh(u, v)) if i = 1, . . . , k;

VCi
(Rh(u, v)) < VC1 (Rh(u, v)) < h−εVC1 (Rh(u, v)) if i = k + 1, . . . , n.

That is, for any h ∈ (0, δ),

α1VC1 (Rh(u, v)) ≤ VC (Rh(u, v)) ≤ h−εVC1 (Rh(u, v))
n∑
i=1

αi = h−εVC1 (Rh(u, v)) .

Since

lim
h→0

log (α1VC1 (Rh(u, v)))

log(h) = lim
h→0

(
log(α1)

log(h) +
log (VC1 (Rh(u, v)))

log(h)

)
= dC1(u, v)

and

lim
h→0

log (h−εVC1 (Rh(u, v)))

log(h) = lim
h→0

(
log(h−ε)
log(h) +

log (VC1 (Rh(u, v)))

log(h)

)
= dC1(u, v)− ε,

we have dC1(u, v)− ε ≤ lim
h→0

logVC (Rh(u, v))

log(h) ≤ dC1(u, v). Since ε > 0 is arbitrary,

we obtain dC(u, v) = dC1(u, v) = min
1≤i≤n

{dCi
(u, v)} as desired.
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Theorem 3.8. Let T = [tij] ∈ Mm×n(I) be a transformation matrix and {Cij} be
a collection of copulas with the same indices as entries in T . Let C be the patched
copula with respect to the transformation matrix T and the collection of copulas
{Cij}. Then for any (u, v) ∈ I2,

dC (u, v) = inf
(i,j)∈A(u,v)

{dCij
(ui, vj)}

where A(u, v) := {(i, j) : (u, v) ∈ Rij = [pi−1, pi] × [qj−1, qj] , tij > 0}, ui =
u− pi−1

pi − pi−1

and vj =
v − qj−1

qj − qj−1

.

Proof. Let (u, v) ∈ I2. For convenience, we define ∆pi := pi − pi−1 and ∆qj :=

qj − qj−1 for all i = 1, 2, . . . , n and j = 1, 2, . . . ,m.
Note that if A(u, v) = ∅, then there is δ > 0 such that for any h ∈ (0, δ),
VC (Rh(u, v)) = 0 which implies that dC(u, v) = ∞.
Now, we suppose that A(u, v) ̸= ∅ and assume without loss of generality that
tij > 0 for all (i, j) such that (u, v) ∈ Rij. Then we can divide the proof into 3
cases as in Figure 3.1.

Figure 3.1: (u, v) in which |A(u, v)| = 1 (Left), |A(u, v)| = 2 (Middle) and
|A(u, v)| = 4 (Right), respectively

Case 1: |A(u, v)| = 1. Then (u, v) is in the interior of Rkℓ for some unique pair
(k, ℓ) and there is δ > 0 such that for any h ∈ (0, δ), Rh (u, v) ⊆ Rkℓ. Next, let
k1 =

h

∆pk
and k2 =

h

∆qℓ
. Note that from

C(x, y) =
∑

i<k,j<ℓ

tij+
x− pk−1

∆pk

∑
j<ℓ

tkj+
y − qℓ−1

∆qℓ

∑
i<k

tiℓ+tkℓCkℓ

(
x− pk−1

∆pk
,
y − qℓ−1

∆qℓ

)
for (x, y) ∈ Rkℓ, we have

VC (Rh (u, v)) = tkℓVCkℓ

(
[uk − k1, uk + k1]× [vℓ − k2, vℓ + k2]

)
.

SinceRmin{k1,k2}(uk, vℓ) ⊆ [uk − k1, uk + k1]×[vℓ − k2, vℓ + k2] ⊆ Rmax{k1,k2}(uk, vℓ),

lim
h→0

log (VCkℓ
(Rk1(uk, vℓ)))

log(h) = lim
k1→0

log (VCkℓ
(Rk1(uk, vℓ)))

log ((∆pk)k1)
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= lim
k1→0

(
log (VCkℓ

(Rk1(uk, vℓ)))

log(k1)
· 1

1 + log(∆pk)
log(k1)

)

= lim
k1→0

log (VCkℓ
(Rk1(uk, vℓ)))

log(k1)
= dCkℓ

(uk, vℓ),

and similarly, lim
h→0

log (VCkℓ
(Rk2(uk, vℓ)))

log(h) = dCkℓ
(uk, vℓ), we have

dC(u, v) = lim
h→0

logVC(Rh(u, v))

log(h)

= lim
h→0

log(tkℓ)
log(h) + lim

h→0

log
(
VCkℓ

(
[uk − k1, uk + k1]× [vℓ − k2, vℓ + k2]

))
log(h)

= dCkℓ
(uk, vℓ).

Case 2: |A(u, v)| = 2. Then (u, v) ∈ Rkℓ ∩ Rk′ℓ′ where |k − k′| + |ℓ − ℓ′| = 1.

Figure 3.2: All possibilities of (u, v) in Case 2

Without loss of generality, we assume that (u, v) ∈ Rkℓ∩R(k+1)ℓ where u = pk and
v ∈ (qℓ−1, qℓ) for some (k, ℓ). Then there is δ > 0 such that for any h ∈ (0, δ),
Rh(u, v) ⊆ Rkℓ ∪ R(k+1)ℓ. Considering Rh(u, v) ∩ Rkℓ and Rh(u, v) ∩ R(k+1)ℓ, we
have [1− k1, 1] × [vℓ − k2, vℓ + k2] ⊆ I2 and [0, k3] × [vℓ − k2, vℓ + k2] ⊆ I2 where
k1 =

h

∆pk
, k2 =

h

∆qℓ
and k3 =

h

∆pk+1

. Note that

VC (Rh(u, v)) = VC ([u− h, u]× [v − h, v + h]) + VC ([u, u+ h]× [v − h, v + h])

= tkℓVCkℓ
([1− k1, 1]× [vℓ − k2, vℓ + k2])

+ t(k+1)ℓVC(k+1)ℓ
([0, k3]× [vℓ − k2, vℓ + k2]) .

Now, we assume without loss of generality that dCkℓ
(1, vℓ) ≤ dC(k+1)ℓ

(0, vℓ). Let
s1 = min{k1, k2}, s2 = max{k1, k2}, s3 = max{k2, k3}. Then we have the following
inequalities:

VC (Rh(u, v)) ≥ tkℓVCkℓ
(Rs1(1, vℓ)) (3.2)

VC (Rh(u, v)) ≤ tkℓVCkℓ
(Rs2(1, vℓ)) + t(k+1)ℓVC(k+1)ℓ

(Rs3(0, vℓ)) . (3.3)
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As in Case 1, we obtain lim
h→0

log (VCkℓ
(Rs1(1, vℓ)))

log(h) = dCkℓ
(1, vℓ), which implies that

dC(u, v) ≤ dCkℓ
(1, vℓ). We then divide into 2 subcases as follows:

• If dCkℓ
(1, vℓ) < dC(k+1)ℓ

(0, vℓ), then by Proposition 3.6(1), there is δ′ < δ such

that for any h ∈ (0, δ′), VC(k+1)ℓ
(Rs3(0, vℓ)) < VCkℓ

(Rs2(1, vℓ))
log(s3)
log(s2) . Hence

by (3.3), for any h ∈ (0, δ′),

VC (Rh(u, v)) ≤ tkℓVCkℓ
(Rs2(1, vℓ)) + t(k+1)ℓVCkℓ

(Rs2(1, vℓ))
log(s3)
log(s2)

≤


(
tkℓ + t(k+1)ℓ

)
VCkℓ

(Rs2(1, vℓ)) if s2 ≥ s3;(
tkℓ + t(k+1)ℓ

)
VCkℓ

(Rs2(1, vℓ))
log(s3)
log(s2) if s2 < s3,

where lim
h→0

log (VCkℓ
(Rs2(1, vℓ)))

log(h) = dCkℓ
(1, vℓ) and

lim
h→0

log
(
VCkℓ

(Rs2(1, vℓ))
log(s3)
log(s2)

)
log(h) = lim

h→0

log(s3)
log(s2)

· log (VCkℓ
(Rs2(1, vℓ)))

log(h)

= dCkℓ
(1, vℓ) · lim

h→0

log
(

h
min{∆pk+1,∆qℓ}

)
log
(

h
min{∆pk,∆qℓ}

)
= dCkℓ

(1, vℓ).

Hence dC(u, v) ≥ dCkℓ
(1, vℓ), i.e.,

dC(u, v) = dCkℓ
(1, vℓ) = min

(i,j)∈A(u,v)
{dCij

(ui, vj)}.

• If dCkℓ
(1, vℓ) = dC(k+1)ℓ

(0, vℓ) = α, then by Proposition 3.6(2), for each ε > 0,
there is δ′ < δ such that for any h ∈ (0, δ′),

VC(k+1)ℓ
(Rs3(0, vℓ)) <

s
α− ε

2
3

s
α+ ε

2
2

VCkℓ
(Rs2(1, vℓ))

= h−ε · min{∆pk,∆qℓ}α+
ε
2

min{∆pk+1,∆qℓ}α−
ε
2

· VCkℓ
(Rs2(1, vℓ)) .

Hence by (3.3), for any h ∈ (0, δ′),

VC (Rh(u, v)) ≤ VCkℓ
(Rs2(1, vℓ))h

−ε
[
tkℓh

ε + t(k+1)ℓ
min{∆pk,∆qℓ}α+

ε
2

min{∆pk+1,∆qℓ}α−
ε
2

]
.

Now, since

lim
h→0

[
tkℓh

ε + t(k+1)ℓ
min{∆pk,∆qℓ}α+

ε
2

min{∆pk+1,∆qℓ}α−
ε
2

]
= t(k+1)ℓ

min{∆pk,∆qℓ}α+
ε
2

min{∆pk+1,∆qℓ}α−
ε
2

,
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we have

lim
h→0

log
[
VCkℓ

(Rs2(1, vℓ))h
−ε
[
tkℓh

ε + t(k+1)ℓ
min{∆pk,∆qℓ}α+ ε

2

min{∆pk+1,∆qℓ}α− ε
2

]]
log(h)

= lim
h→0

log (VCkℓ
(Rs2(1, vℓ)))

log(h) + lim
h→0

log
[
tkℓh

ε + t(k+1)ℓ
min{∆pk,∆qℓ}α+ ε

2

min{∆pk+1,∆qℓ}α− ε
2

]
log(h) − ε

= dCkℓ
(1, vℓ)− ε.

Thus, dC(u, v) ≥ dCkℓ
(1, vℓ)− ε.

Since ε is arbitrary, we have dC(u, v) = dCkℓ
(1, vℓ) = min

(i,j)∈A(u,v)
{dCij

(ui, vj)}.

Case 3: |A(u, v)| = 4. The proof in this case is similar to Case 2 above.

Corollary 3.9. Let {Ji}Ni=1, where Ji = [ai, bi] with ai < bi for all i = 1, . . . , N , be a
family of closed, non-overlapping, non-degenerate sub-intervals on I and let {Ci}Ni=1

be a collection of copulas. Moreover, let C be an ordinal sum of {Ci} with respect
to {Ji}. Set AN = {(ai, ai) : i = 1, . . . , N} and BN = {(bi, bi) : n = 1, . . . , N}.
Then for any (u, v) ∈ I2\{(0, 0), (1, 1)},

dC(u, v) =


dCi

(
u− ai
bi − ai

,
v − ai
bi − ai

)
if (u, v) ∈ J2

i \ (AN ∪BN) for some i;

min{dCi
(1, 1), dCj

(0, 0)} if u = v = bi = aj for some i ̸= j;

dM(u, v) otherwise.

Moreover,

dC(0, 0) =

dCi
(0, 0) if (0, 0) ∈ J2

i for some i;
1 otherwise,

and a similar statement holds for dC(1, 1).

Proof. It follows from Proposition 2.14 and Theorem 3.8.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV
POINTWISE DIMENSION OF ARCHIMEDEAN

COPULAS

Let φ be an Archimedean generator, i.e., φ is a convex, continuous and strictly
decreasing on I such that φ(1) = 0, and C(u, v) = φ[−1] (φ(u) + φ(v)), the
corresponding Archimedean copula. For more details, see Subsection 2.1.1 or [9].
We divide our results on Archimedean copulas into 2 parts: piecewise linear
generators case and general case.

Before we find the pointwise dimension, we can use properties of φ to compare
each term in VC (Rh(u, v)) as stated in the following lemma.

Lemma 4.1. Let φ be an Archimedean generator. Suppose that (u, v) ∈ (0, 1)2

satisfies φ(u)+φ(v) = φ(t) <∞ for some t ∈ (0, 1). Then for h > 0 small enough,

• if u > v, then

C(u− h, v − h) < C(u+ h, v − h) ≤ t ≤ C(u− h, v + h) < C(u+ h, v + h).

• if u < v, then

C(u− h, v − h) < C(u− h, v + h) ≤ t ≤ C(u+ h, v − h) < C(u+ h, v + h).

• if u = v, then

C(u− h, v − h) < C(u+ h, v − h) = C(u− h, v + h) ≤ t < C(u+ h, v + h).

Furthermore, if (u, v) ∈ (0, 1)2 satisfies φ(u) + φ(v) = φ(0) < ∞, then for h > 0

small enough,

VC (Rh(u, v)) =


C(u+ h, v + h)− C(u− h, v + h) if u > v;

C(u+ h, v + h)− C(u+ h, v − h) if u < v;

C(u+ h, v + h) if u = v.

Proof. First, we consider the case t ∈ (0, 1). Since φ is strictly decreasing on
I and {(x, y) ∈ (0, 1)2 : φ(x) + φ(y) < φ(0)} is an open set, we can find δ ∈
(0,m := min{u, v, 1− u, 1− v}) such that for any h ∈ (0, δ), φ(u + h) < φ(u) <

φ(u−h), φ(v+h) < φ(v) < φ(v−h) and φ(u−h)+φ(v−h) < φ(0). Consequently,



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

35

u− h u+ h

v − h

v + h <
≥

≥
<

u− h u+ h

v − h

v + h

<≤

≤

<

u− h u+ h

v − h

v + h
<

≤

=
<

Figure 4.1: Comparing the values at the corners of Rh(u, v) (for h > 0 small)
with C(u, v) = t > 0 in case u > v (Left), u < v (Middle) and u = v (Right),
respectively

(1) φ(u+ h) + φ(v + h) < φ(t);

(2) φ(t) < φ(u− h) + φ(v − h) < φ(0);

(3) φ(u+ h) + φ(v + h) < min{φ(u+ h) + φ(v − h), φ(u− h) + φ(v + h)}; and

(4) φ(u− h) + φ(v − h) > max{φ(u+ h) + φ(v − h), φ(u− h) + φ(v + h)}.

In addition, since φ[−1] is strictly decreasing on [0, φ(0)], we obtain

(I) C(u+ h, v + h) > t;

(II) C(u− h, v − h) < t;

(III) C(u+ h, v + h) > max{C(u+ h, v − h), C(u− h, v + h)};

(IV) C(u− h, v − h) < min{C(u+ h, v − h), C(u− h, v + h)}.

Next, we consider the case t = 0. By the strictly decreasing property of φ, we can
find δ > 0 such that for any h ∈ (0, δ), (1) and (3) hold. However, for such h, (2)
becomes φ(u − h) + φ(v − h) > φ(0). Moreover, since φ[−1] is strictly decreasing
on [0, φ(0)] and vanishes elsewhere, we see that (I) and (III) still hold in this case
but (II) becomes C(u− h, v − h) = 0.
Now, we compare C (u+ h, v − h) and C (u− h, v + h) with C(u, v) = t ∈ [0, 1).
We can consider 3 subcases as follows.

a. If u > v, then by convexity of φ, for any h ∈
[
0,min

{
u− v

2
,m

}]
, φ(v + h)−

φ(v) ≤ φ(u)− φ(u− h) and φ(v)− φ(v − h) ≤ φ(u+ h)− φ(u) which implies
that φ(u−h)+φ(v+h) ≤ φ(t) ≤ φ(u+h)+φ(v−h). Since φ[−1] is decreasing,
we have C (u+ h, v − h) ≤ t ≤ C(u− h, v + h).
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b. If u < v, with similar argument as the previous subcase, we have
C (u+ h, v − h) ≥ t ≥ C(u− h, v + h).

c. If u = v, then for any h ∈ [0,min {u, 1− u}], φ(u)−φ(u−h) ≤ φ(u+h)−φ(u)
which implies that φ(u + h) + φ(u − h) ≥ φ(t) and so C (u+ h, u− h) =

C (u− h, u+ h) ≤ t.

Corollary 4.2. Let (u, v) ∈ (0, 1)2 be such that φ(u) + φ(v) = φ(t) for some
t ∈ [0, 1).

• If there is h > 0 small enough such that C(u− h, v + h) = C(u, v), then for
any h′ ∈ [0, h], C(u− h′, v + h′) = C(u, v). That is, φ′(u−) = φ′(v+).

• If there is h > 0 small enough such that C(u+ h, v − h) = C(u, v), then for
any h′ ∈ [0, h], C(u+ h′, v − h′) = C(u, v). That is, φ′(u+) = φ′(v−).

Proof. We verify only the first statement in case u > v because the other cases can
be handled similarly. Assume that there is h ∈

(
0,
u− v

2

)
small enough such that

C(u−h, v+h) = C(u, v). Since φ is convex, for any h′ ∈ [0, h], φ(v+h)−φ(v+h′) ≤
φ(u − h′) − φ(u − h), i.e., φ(u − h) + φ(v + h) ≤ φ(u − h′) + φ(v + h′). Hence
C(u−h, v+h) ≥ C(u−h′, v+h′) ≥ C(u, v) by the decreasing property of φ[−1] and
Lemma 4.1. Now, from φ(u−h′)+φ(v+h′) = φ (C(u− h′, v + h′)) = φ (C(u, v)) =

φ(u) + φ(v) for any h′ ∈ [0, h], we have

φ′(v+) = lim
h′→0+

φ(v + h′)− φ(v)

h′
= lim

h′→0+

φ(u)− φ(u− h′)

h′
= φ′(u−).

4.1 Simple case: piecewise linear generators

Let φ be a piecewise linear Archimedean generator. Then φ′′ = 0 for all but
finitely many points in I. This implies that Cφ must be a singular copula because
of (2.2) and Theorem 2.2.

Before summarizing the case, we first write the formula of φ explicitly as follows.
Since φ is piecewise linear and non-negative, we can find {ai}ni=1, {bi}ni=1 ⊆ R+ and
0 = t0 < t1 < · · · < tn−1 < tn = 1 such that φ(0) = a1 and φ(t) = ak − bkt for
t ∈ (tk−1, tk], k = 1, 2, . . . , n.
Note:

• Each function in φ has negative slope because φ is strictly decreasing.

• Since φ is convex (by Theorem 2.4), the slope of φ is increasing, which implies
that b1 > b2 > · · · > bn > 0.
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• Since φ is continuous, we have ak+1 = ak+(bk+1 − bk) tk for all k = 1, . . . , n−
1, which implies that a1 > a2 > · · · > an > 0. Furthermore, for all k =

1, 2, . . . , n, ak = φ(tk−1) + bktk−1 = φ(tk) + bktk. In particular, an = bn

because φ(1) = 0.

t

φ(t)

t0 = 0 t1 t2 t3 tn−1 tn = 1

. . .

a1
a2

a3

an

−b1

−b2
−b3

−bn

slope of φ on (tk−1, tk) = −bk

ak = φ(tk−1) + bktk−1 = φ(tk) + bktk

Figure 4.2: Graph of a piecewise linear Archimedean generator φ

By all properties above, we see that if x ∈ [φ(tk), φ(tk−1)) for some k = 1, 2, . . . , n,

φ[−1](x) =
ak − x

bk
= tk +

φ(tk)− x

bk
= tk−1 +

φ(tk−1)− x

bk
, otherwise, φ[−1](x) = 0.

In addition, we can rewrite φ and φ[−1] in another form as follows.

φ(t) =



φ(0)− b1t if 0 ≤ t ≤ t1;

φ(t1)− b2 (t− t1) if t1 < t ≤ t2;
...

...

φ(tn−2)− bn−1 (t− tn−2) if tn−2 < t ≤ tn−1;

φ(tn−1)− bn (t− tn−1) = bn (1− t) if tn−1 < t ≤ 1,

(4.1)

and

φ[−1](x) =



tn−1 +
φ(tn−1)− x

bn
= 1− x

bn
if 0 ≤ x < φ(tn−1);

tn−2 +
φ(tn−2)− x

bn−1

if φ(tn−1) ≤ x < φ(tn−2);

...
...

t1 +
φ(t1)− x

b2
if φ(t2) ≤ x < φ(t1);

φ(0)− x

b1
if φ(t1) ≤ x < φ(0);

0 if x ≥ φ(0).

(4.2)

Next, we compute the pointwise dimension of Archimedean copulas generated by
piecewise linear generators in the following theorem.
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Theorem 4.3. Let C be an Archimedean copula with piecewise linear generator φ
in the form (4.1). Then for any (u, v) ∈ (0, 1)2,

(A) if φ(u) + φ(v) ̸= φ(tk) for any k = 0, 1, . . . , n, then dC(u, v) = ∞;

(B) if φ(u) + φ(v) = φ(tk) for some k = 0, 1, . . . , n, then dC(u, v) = 1.

Proof. To prove (A), we consider 2 cases:
Case A.1 φ(u) + φ(v) > φ(0). Since A :=

{
(x, y) ∈ (0, 1)2 | φ(x) + φ(y) > φ(0)

}
is an open set and (u, v) ∈ A, we can choose δ > 0 small enough so that for
any h ∈ (0, δ), Rh (u, v) ⊆ A. Hence for any h ∈ (0, δ), VC (Rh (u, v)) = 0, i.e.,
logVC (Rh(u, v))

logh = ∞. Therefore, dC (u, v) = ∞.
Case A.2 φ(tk+1) < φ(u) + φ(v) < φ(tk) for some k = 0, 1, . . . , n − 1. Since
(u, v) ∈ Ok := {(x, y) ∈ (0, 1)2 | φ(x) + φ(y) ∈ (φ(tk+1), φ(tk))}, which is an open
set, there is δ > 0 such that for any h ∈ (0, δ), Rh(u, v) ⊆ Ok. Hence for any
h ∈ (0, δ), VC (Rh(u, v)) equals(
tk +

φ(tk)− (φ(u+ h) + φ(v + h))

bk+1

)
−
(
tk +

φ(tk)− (φ(u− h) + φ(v + h))

bk+1

)
−
(
tk +

φ(tk)− (φ(u+ h) + φ(v − h))

bk+1

)
+

(
tk +

φ(tk)− (φ(u− h) + φ(v − h))

bk+1

)
which is zero, that is, dC(u, v) = lim

h→0

logVC (Rh(u, v))

log(h) = ∞.

To prove (B), we again divide into 2 cases:
Case B.1 φ(u) + φ(v) = φ(0). By Lemma 4.1, there is δ > 0 such that for any
h ∈ (0, δ), VC (Rh(u, v)) is equal to

C(u+ h, v + h)− C(u− h, v + h) =
φ(u− h)− φ(u+ h)

b1
if u > v;

C(u+ h, v + h)− C(u+ h, v − h) =
φ(v − h)− φ(v + h)

b1
if u < v;

C(u+ h, u+ h) =
φ(0)− 2φ(u+ h)

b1
if u = v,

where the right-hand sides of equations above follow from (4.2).
In the case u ̸= v, we may assume without loss of generality that u > v.

• If u ∈ (tℓ, tℓ+1) for some ℓ = 0, 1, . . . , n − 1, then there is δ′ < δ such that
u− h, u+ h ∈ (tℓ, tℓ+1) for all h ∈ (0, δ′). Thus, for h ∈ (0, δ′),

VC (Rh(u, v)) =
1

b1
[(φ(tℓ)− bℓ+1 (u− h− tℓ))− (φ(tℓ)− bℓ+1 (u+ h− tℓ))]

=
2hbℓ+1

b1
.
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• If u = tℓ for some ℓ = 1, 2, . . . , n− 1 (u ̸= 0, 1), then there is δ′ < δ such that
for h ∈ (0, δ′), u− h ∈ (tℓ−1, tℓ) and u+ h ∈ (tℓ, tℓ+1). So for h ∈ (0, δ′),

VC (Rh(u, v)) =
1

b1
[(φ(tℓ−1)− bℓ (u− h− tℓ−1))− (φ(tℓ)− bℓ+1 (u+ h− tℓ))]

=
1

b1
[(φ(u) + hbℓ)− (φ(u)− hbℓ+1)] =

h (bℓ + bℓ+1)

b1
.

While in the case u = v, we have

VC (Rh(u, v)) =
1

b1
[φ(0)− 2 (φ(tℓ)− bℓ+1 (u+ h− tℓ))]

=
1

b1
[φ(0)− 2 (φ(u)− bℓ+1h)] =

2hbℓ+1

b1

for h > 0 small enough and u ∈ [tℓ, tℓ+1) for some ℓ. From all subcases, we see
that VC (Rh(u, v)) = Kh for some constant K where h > 0 is small enough which

implies that dC(u, v) = lim
h→0

log(Kh)
log(h) = 1.

Case B.2 φ(u) + φ(v) = φ(tk) for some k = 1, 2, . . . , n− 1. By Lemma 4.1, there
is δ > 0 such that for any h ∈ (0, δ), we have

• if u > v, VC (Rh(u, v))

=

[
tk +

φ(tk)− (φ(u+ h) + φ(v + h))

bk+1

]
−
[
tk +

φ(tk)− (φ(u− h) + φ(v + h))

bk+1

]
−
[
tk−1 +

φ(tk−1)− (φ(u+ h) + φ(v − h))

bk

]
+

[
tk−1 +

φ(tk−1)− (φ(u− h) + φ(v − h))

bk

]
=
φ(u− h)− φ(u+ h)

bk+1

− φ(u− h)− φ(u+ h)

bk

=
bk − bk+1

bkbk+1

(φ(u− h)− φ(u+ h)) .

• similarly, if u < v, VC (Rh(u, v))

=

[
tk +

φ(tk)− (φ(u+ h) + φ(v + h))

bk+1

]
−
[
tk +

φ(tk)− (φ(u+ h) + φ(v − h))

bk+1

]
−
[
tk−1 +

φ(tk−1)− (φ(u− h) + φ(v + h))

bk

]
+

[
tk−1 +

φ(tk−1)− (φ(u− h) + φ(v − h))

bk

]
=
bk − bk+1

bkbk+1

(φ(v − h)− φ(v + h)) .
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• if u = v, then from C(u+ h, u− h) = C(u− h, u+ h),

VC (Rh(u, v)) =

[
tk +

φ(tk)− 2φ(u+ h)

bk+1

]
+

[
tk +

φ(tk)− 2φ(u− h)

bk

]
− 2

[
tk +

φ(tk)− (φ(u− h) + φ(u+ h))

bk

]
=

[
tk +

φ(tk)− 2φ(u+ h)

bk+1

]
−
[
tk +

φ(tk)− 2φ(u+ h)

bk

]
=

[
1

bk+1

− 1

bk

]
(φ(tk)− 2φ(u+ h)) =

bk − bk+1

bkbk+1

(φ(tk)− 2φ(u+ h)) .

Now, with a similar argument to the Case B.1, if max{u, v} ∈ [tℓ, tℓ+1) for some ℓ,
then for h > 0 small enough,

VC (Rh(u, v)) =


h (bℓ + bℓ+1) (bk − bk+1)

bkbk+1

if u ̸= v and max{u, v} = tℓ;

2hbℓ+1 (bk − bk+1)

bkbk+1

otherwise.

This implies that VC (Rh(u, v)) = Lh for some constant L where h > 0 is small

enough, and so dC(u, v) = lim
h→0

log(Lh)
log(h) = 1.

Example 4.4. Let φ(t) =

1− 3t if t ∈
[
0, 1

4

]
;

1−t
3

if t ∈
(
1
4
, 1
]
.

The graph of φ and the support

of C = Cφ are shown in Figure 4.3.

t

φ(t)

0 1
4

1

1
4

1

u

v

0 1
4

1

1
4

1

Figure 4.3: (Left) Graph of φ. (Right) Support of C in Example 4.4

By Theorem 4.3(A) and (B), we have

dC(u, v) =

1 if φ(u) + φ(v) = 1 (solid) or φ(u) + φ(v) = 1
4

(dotted);
∞ otherwise.
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Example 4.5. Let ϕ(t) =


1− 2t if t ∈

[
0, 1

5

]
;

4−5t
5

if t ∈
(
1
5
, 7
10

]
;

1−t
3

if t ∈
(

7
10
, 1
]
.

The graph of ϕ and the support

of C = Cϕ are shown in Figure 4.4.

t

ϕ(t)

0 1
5

7
10

1

1
10

3
5

1

u

v

0 1
5

7
10

1

1
5

7
10

1

Figure 4.4: (Left) Graph of ϕ. (Right) Support of C in Example 4.5

By Theorem 4.3(A) and (B), we have

dC(u, v) =


1 if ϕ(u) + ϕ(v) = 1 (solid) or ϕ(u) + ϕ(v) = 3

5
(dotted)

or ϕ(u) + ϕ(v) = 1
10

(dashed);
∞ otherwise.

4.2 General case

First of all, let φ′(x−) and φ′(x+) denote the left and right derivatives of φ at
x, respectively. Now, we show some statements that will be used in a part of the
main theorem.

Remark 4.6. Let C be an Archimedean copula with generator φ, (u, v) ∈ (0, 1)2,
t = C(u, v) (i.e., φ(t) = φ(u) + φ(v)) and ∗, • ∈ {+,−}. If h > 0 is such that
s := C(u ∗ h, v • h)− C(u, v) ̸= 0, then

s =
C(u ∗ h, v • h)− C(u, v)

φ (C(u ∗ h, v • h))− φ (C(u, v))
· [φ (C(u ∗ h, v • h))− φ (C(u, v))]

=

(
φ(t+ s)− φ(t)

s

)−1

· [(φ(u ∗ h)− φ(u)) + (φ(v • h)− φ(v))] . (4.3)

Lemma 4.7. Let C be an Archimedean copula with generator φ. Suppose that
(u, v) ∈ (0, 1)2 satisfies φ(u) + φ(v) = φ(0) <∞. Then for any α > 0,

DαC (u, v) ≥ −φ′ (max{u, v}+
)

lim inf
h→0+

γ(h) (4.4)
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where γ(h) := C(u+ h, v + h)

fφ (C(u+ h, v + h)) (2h)α−1
and fφ(x) = φ(0)− φ(x).

Proof. By assumption, C(u, v) = 0. If u = v, then by Lemma 4.1, VC (Rh (u, v)) =

C (u+ h, u+ h) for h > 0 small enough. Hence by Remark 4.6,

VC (Rh(u, v))

(2h)α
=

(
φ (C(u+ h, u+ h))− φ(0)

C(u+ h, u+ h)

)−1 [
2 (φ(u+ h)− φ(u))

2h

]
1

(2h)α−1

= − C(u+ h, u+ h)

fφ (C(u+ h, u+ h))

[
φ(u+ h)− φ(u)

h

]
1

(2h)α−1
.

Taking limit inferior as h→ 0+ yields

DαC(u, v) ≥ − lim
h→0+

[
φ(u+ h)− φ(u)

h

]
lim inf
h→0+

γ(h) = −φ′(u+) lim inf
h→0+

γ(h).

Now, we will show (4.4) in the case u > v (the case u < v is similar).
From Lemma 4.1, we divide into 2 subcases:
Subcase 1: C(u− h, v + h) = 0 for some h > 0 small. Then by Corollary 4.2, for
any h′ ∈ [0, h], C(u−h′, v+h′) = 0. With a similar approach as in the case u = v,
we have

DαC(u, v) ≥ − lim
h→0+

[
φ(u+ h)− φ(u)

2h
+
φ(v + h)− φ(v)

2h

]
lim inf
h→0+

γ(h)

= −φ
′(u+) + φ′(v+)

2
lim inf
h→0+

γ(h) ≥ −φ′(u+) lim inf
h→0+

γ(h)

where the last inequality follows from Proposition 2.16(2).
Subcase 2: C(u−h, v+h) > 0 for all h > 0 small. In this case, we compute each
term of VC (Rh(u, v)) by using Remark 4.6 and we obtain

C(u+ h, v + h) =(
φ (C(u+ h, v + h))− φ(0)

C(u+ h, v + h)

)−1

[(φ(u+ h)− φ(u)) + (φ(v + h)− φ(v))] and

C(u− h, v + h) =(
φ (C(u− h, v + h))− φ(0)

C(u− h, v + h)

)−1

[(φ(u− h)− φ(u)) + (φ(v + h)− φ(v))] .

Since for h > 0 small enough,

(1) 0 < C(u− h, v + h) < C(u+ h, v + h) and

C(u− h, v + h) = K(h)C(u+ h, v + h) + (1−K(h)) · 0,

where K(h) :=
C(u− h, v + h)

C(u+ h, v + h)
;
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(2) v < v + h < u− h < u,

we apply φ to both inequalities and, by its convexity, we obtain

(1’) φ (C(u− h, v + h)) ≤ K(h)φ (C(u+ h, v + h)) + (1−K(h))φ(0);

(2’) φ(v + h)− φ(v)

h
≤ φ(u− h)− φ(v + h)

u− v − 2h
≤ φ(u)− φ(u− h)

h
.

Thus, these two inequalities become

(1”) φ (C(u− h, v + h))− φ(0)

C(u− h, v + h)
≤ φ (C(u+ h, v + h))− φ(0)

C(u+ h, v + h)
;

(2”) φ(v + h)− φ(v) ≤ φ(u)− φ(u− h),

i.e.,
(
φ (C(u− h, v + h))− φ(0)

C(u− h, v + h)

)−1

≥
(
φ (C(u+ h, v + h))− φ(0)

C(u+ h, v + h)

)−1

and

(φ(u− h)− φ(u)) + (φ(v + h)− φ(v)) ≤ 0. Hence C(u− h, v + h) ≤(
φ (C(u+ h, v + h))− φ(0)

C(u+ h, v + h)

)−1

[(φ(u− h)− φ(u)) + (φ(v + h)− φ(v))], i.e.,

VC (Rh(u, v)) ≥ − C(u+ h, v + h)

fφ (C(u+ h, v + h))
[(φ(u+ h)− φ(u))− (φ(u− h)− φ(u))] .

Since lim
h→0+

[
φ(u+ h)− φ(u)

2h
− φ(u− h)− φ(u)

2h

]
=
φ′(u+) + φ′(u−)

2
, we have

DαC(u, v) ≥ −φ
′(u+) + φ′(u−)

2
lim inf
h→0+

C(u+ h, v + h)

fφ (C(u+ h, v + h)) (2h)α−1

= −φ
′(u+) + φ′(u−)

2
lim inf
h→0+

γ(h) ≥ −φ′(u+) lim inf
h→0+

γ(h)

where the last inequality follows from Proposition 2.16(2).

Lemma 4.8. Let C be an Archimedean copula with generator φ and fφ(x) =

φ(0) − φ(x) be a regularly varying function of index β > 0 at 0. Suppose that
(u, v) ∈ (0, 1)2 satisfies φ(u) + φ(v) = φ(0). Then

(a) gφ(x) := φ[−1] (φ(0)− x) = φ−1 (φ(0)− x) = f−1
φ (x) ∈ RV 0

1/β, and

(b) F (x) = C (u+ x, v + x) ∈ RV 0
1/β.

Proof. To prove (a), let λ > 0. Since λ1/β = lim
x→0+

(
fφ(gφ(λx))

fφ(gφ(x))

)1/β

, we see that for

any ε > 0 small, there is δ1 > 0 such that for each x ∈ (0, δ1),

λ1/β − ε <

(
fφ(gφ(λx))

fφ(gφ(x))

)1/β

< λ1/β + ε.
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Now, let A > 1 be arbitrary and suppose that λ > 1. By Theorem 2.29, there is
X = X(A, ε) such that for each 0 < y ≤ x ≤ X,

A−1

(
x

y

)β−ε
<
fφ(x)

fφ(y)
< A

(
x

y

)β+ε
.

Since fφ is strictly increasing, so is gφ. Furthermore, from λ > 1, we have
gφ(λx) > gφ(x) for all x ∈ (0, φ(0)/λ). Next, from lim

x→0+
gφ(λx) = 0, there is

δ2 ∈ (0, φ(0)/λ) such that for x ∈ (0, δ2), gφ(x) < gφ(λx) < X, which implies that
for x ∈ (0, δ2),

A−1

(
gφ(λx)

gφ(x)

)β−ε
<
fφ(gφ(λx))

fφ(gφ(x))
< A

(
gφ(λx)

gφ(x)

)β+ε
.

Choose δ = min{δ1, δ2}. Then for x ∈ (0, δ), we have the following two inequalities:

λ1/β − ε < A1/β

(
gφ(λx)

gφ(x)

)1+ε/β

and A−1/β

(
gφ(λx)

gφ(x)

)1−ε/β

< λ1/β + ε.

Since above statements hold for any A > 1 and ε > 0 small enough, we have
lim
x→0+

gφ(λx)

gφ(x)
= λ1/β. The case 0 < λ < 1 is similar and thus, gφ ∈ RV 0

1/β as
desired.
Next, we show that (b) holds. First, we consider du(x) = φ(u) − φ(u + x) for
x ∈ [0, 1− u] and dv(x) = φ(v)− φ(v + x) for x ∈ [0, 1− v]. Then for any λ > 0,

du(λx)

du(x)
=

[
φ(u)− φ (u+ λx)

λx

] [
λx

φ(u)− φ (u+ x)

]
= λ

[
φ (u+ λx)− φ(u)

λx

] [
φ (u+ x)− φ(u)

x

]−1

.

Hence lim
x→0+

du(λx)

du(x)
= λ · φ′(u+) ·

[
φ′(u+)

]−1
= λ and, similarly, lim

x→0+

dv(λx)

dv(x)
= λ.

Hence du, dv ∈ RV 0
1 , which implies that du + dv ∈ RV 0

1 (by Corollary 2.31(iv)).
Now, since

F (x) = C (u+ x, v + x) = φ[−1] (φ(u+ x) + φ(v + x))

= φ[−1]
(
φ(0)−

(
(φ(u) + φ(v))− (φ(u+ x) + φ(v + x))

))
= gφ

((
φ(u)− φ(u+ x)

)
+
(
φ(v)− φ(v + x)

))
= (gφ ◦ (du + dv)) (x),

by (a), lim
x→0+

(du + dv) (x) = 0 and Corollary 2.31(iv), we have F ∈ RV 0
1/β as

desired.

We are now ready to consider the general case of Archimedean copulas.
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Theorem 4.9. Let C be an Archimedean copula with generator φ, a function that
is convex, continuous, strictly decreasing on I and φ(1) = 0. Let (u, v) ∈ (0, 1)2.

(A) If φ(u) + φ(v) > φ(0), then dC (u, v) = ∞.

(B) If φ(u) + φ(v) = φ(0) and fφ(x) = φ(0) − φ(x) ∈ RV 0
β where β > 0, then

dC (u, v) =
1

β
.

(C) If φ(u) + φ(v) = φ(t) where t ∈ (0, 1) and φ is not differentiable at t, then
dC(u, v) = 1.

(D) If φ(u) + φ(v) = φ(t), SD2 φ(u), SD2 φ(v) < ∞, φ is differentiable at t and
SD2 φ(t) ∈ (0,∞) where t ∈ (0, 1), then dC (u, v) = 2, where SD2 φ(x) is the
second order symmetric derivative of φ at x defined in Definition 2.18.

Note: We see that Theorem 4.9(B) and (C) are generalizations of Theorem 4.3(B)
in piecewise linear generators case because if there exist a partition {ti}ni=0 of I and
finite subsets {ai}ni=1, {bi}ni=1 of R+ such that φ can be expressed as in (4.1), then
we have the following cases.

• If (u, v) ∈ (0, 1)2 is such that φ(u)+φ(v) = φ(0), then fφ(x) = φ(0)−φ(x) =
b1x for x ∈ [0, t1] which implies that fφ ∈ RV 0

1 and by Theorem 4.9(B),
dC(u, v) = 1.

• If (u, v) ∈ (0, 1)2 is such that φ(u) + φ(v) = φ(tk) for some k = 1, . . . , n,
then (u, v) satisfies the assumption of Theorem 4.9(C) and so dC(u, v) = 1.

By all cases in Theorem 4.9, any two points from the same level curve give the
same pointwise dimension as in Figure 4.5.

1/β

1

2

∞
u

v

0 1

1

Figure 4.5: The value of dC(u, v)

In this figure, the solid curve, Z(C) := {(u, v) : φ(u) + φ(v) = φ(0)}, is called the
zero curve of C, while the dashed and dotted curves are level curves {(u, v) : φ(u)+



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

46

φ(v) = φ(0.5)} and {(u, v) : φ(u)+φ(v) = φ(0.3)}, respectively (where we suppose
that φ is not differentiable at 0.5 but φ′(0.3) exists and SD2 φ(0.3) ∈ (0,∞)).
To prove this theorem, we divide the proof into several parts as follows:

Proof of Theorem 4.9(A),(B) and (C). First, for statement (A), we can prove in
the same way as Theorem 4.3(A.1) and we obtain dC(u, v) = ∞.
To prove (B), by Lemmas 4.1 and 4.8(b), we have VC (Rh(u, v)) ≤ C(u+h, v+h) =

h1/βℓ(h) for some ℓ ∈ RV 0
0 . Hence

dC(u, v) ≥ lim inf
h→0

log
(
h1/βℓ(h)

)
log(h) = lim inf

h→0

(
1

β
+

log (ℓ(h))
log(h)

)
=

1

β

where the last equality follows from Corollary 2.31(ii). Next, from C(u+h, v+h) ∈
RV 0

1/β (Lemma 4.8(b)), fφ ∈ RV 0
β , lim

h→0+
C(u+h, v+h) = 0 and Corollary 2.31(iv),

we have fφ (C(u+ h, v + h)) ∈ RV 0
1 . By Corollary 2.31(iv) again, we see that for

any α > 0, γ(h) = C(u+ h, v + h)

fφ (C(u+ h, v + h)) (2h)α−1
is a regularly varying function of

index 1

β
− 1− (α− 1) =

1

β
− α at the right of 0. Now, we can rewrite (4.4) as

DαC (u, v) ≥ −φ′ (max{u, v}+
)

lim inf
h→0

(
h1/β−αL(h)

)
for some L ∈ RV 0

0 . For α > 1/β, lim
h→0

h1/β−αL(h) = ∞ by Corollary 2.31(i) and
DαC (u, v) = ∞ by the above inequality. This implies that

dC(u, v) = αC(u, v) = inf
{
α ∈ R+ : DαC (u, v) = ∞

}
≤ 1

β
.

Therefore, dC(u, v) =
1

β
.

Next, we prove the statement (C). We first note that

lim
h→0+

φ(u+ h)− φ(u)

h
= φ′(u+) and lim

h→0+

φ(u− h)− φ(u)

h
= −φ′(u−).

The same statements hold for φ′(v+) and φ′(v−). Now, we define the following
notations for each h > 0.

s1(h) := C(u+ h, v + h)− C(u, v), s2(h) := C(u− h, v + h)− C(u, v),

s3(h) := C(u+ h, v − h)− C(u, v), s4(h) := C(u− h, v − h)− C(u, v).

By Lemma 4.1, we see that s1(h) > 0 and s4(h) < 0 for all h > 0. Hence by

Remark 4.6 and t = C(u, v), lim
h→0+

s1(h)

h

= lim
h→0+

(
φ(t+ s1(h))− φ(t)

s1(h)

)−1 [
φ(u+ h)− φ(u)

h
+
φ(v + h)− φ(v)

h

]
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=

(
lim
h→0+

φ(t+ s1(h))− φ(t)

s1(h)

)−1 [
lim
h→0+

φ(u+ h)− φ(u)

h
+ lim

h→0+

φ(v + h)− φ(v)

h

]
=

1

φ′(t+)

[
φ′(u+) + φ′(v+)

]
and similarly,

lim
h→0+

s4(h)

h
=

1

φ′(t−)

[
−φ′(u−)− φ′(v−)

]
.

Next, by Corollary 4.2, we consider 4 cases as follows.
Case 1: for any h > 0 small enough, C(u−h, v+h) ̸= C(u, v) and C(u+h, v−h) ̸=

C(u, v). We find lim
h→0+

s2(h)

h
and lim

h→0+

s3(h)

h
. For example, to find lim

h→0+

s2(h)

h
, we

use Remark 4.6 to obtain

s2(h) =

(
φ(t+ s2(h))− φ(t)

s2(h)

)−1

[(φ(u− h)− φ(u)) + (φ(v + h)− φ(v))] .

Later on, by taking limit h → 0+ together with using Lemma 4.1 to consider the
value of s2(h), it yields that

lim
h→0+

s2(h)

h
=

 1
φ′(t+)

[−φ′(u−) + φ′(v+)] if u > v;

1
φ′(t−)

[−φ′(u−) + φ′(v+)] if u ≤ v.

Similarly,

lim
h→0+

s3(h)

h
=

 1
φ′(t−)

[φ′(u+)− φ′(v−)] if u ≥ v;

1
φ′(t+)

[φ′(u+)− φ′(v−)] if u < v.

Hence D1C(u, v) = lim
h→0+

VC (Rh(u, v))

2h
equals


(

1
φ′(t+)

− 1
φ′(t−)

)(
φ′(w+)+φ′(w−)

2

)
if u ̸= v and w = max{u, v};(

1
φ′(t+)

− 1
φ′(t−)

)
φ′(u+) if u = v.

To see this, we show only the case u > v since the other cases are similar.

D1C(u, v) = lim
h→0+

s1(h)

2h
− lim

h→0+

s2(h)

2h
− lim

h→0+

s3(h)

2h
+ lim

h→0+

s4(h)

2h

=
1

2φ′(t+)

[
φ′(u+) + φ′(v+)

]
− 1

2φ′(t+)

[
−φ′(u−) + φ′(v+)

]
− 1

2φ′(t−)

[
φ′(u+)− φ′(v−)

]
+

1

2φ′(t−)

[
−φ′(u−)− φ′(v−)

]
=

(
1

φ′(t+)
− 1

φ′(t−)

)(
φ′(u+) + φ′(u−)

2

)
.
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Case 2: for any h > 0, C(u − h, v + h) ̸= C(u, v) and there is δ > 0 such that
C(u+ δ, v− δ) = C(u, v). Then by Corollary 4.2, C(u+ h, v− h) = C(u, v) for all
h ∈ (0, δ) and φ′(u+) = φ′(v−). Moreover, by symmetry of Archimedean copula
C, we have u ̸= v. Since for any h ∈ (0, δ),

VC (Rh(u, v)) = C(u+ h, v + h)− C(u− h, v + h)− C(u, v) + C(u− h, v − h)

= (C(u+ h, v + h)− C(u, v))− (C(u− h, v + h)− C(u, v))

+ (C(u− h, v − h)− C(u, v))

= s1(h)− s2(h) + s4(h),

we see that if u > v, then by Lemma 4.1 and Remark 4.6,

D1C(u, v) = lim
h→0+

s1(h)

2h
− lim

h→0+

s2(h)

2h
+ lim

h→0+

s4(h)

2h

=
1

2φ′(t+)

[
φ′(u+) + φ′(v+)

]
− 1

2φ′(t+)

[
−φ′(u−) + φ′(v+)

]
− 1

2φ′(t−)

[
φ′(u−) + φ′(v−)

]
=

1

φ′(t+)

(
φ′(u+) + φ′(u−)

2

)
− 1

φ′(t−)

(
φ′(u−) + φ′(v−)

2

)
=

(
1

φ′(t+)
− 1

φ′(t−)

)(
φ′(u+) + φ′(u−)

2

)
.

Similarly, if u < v, then D1C(u, v) =

(
1

φ′(t+)
− 1

φ′(t−)

)(
φ′(v+) + φ′(v−)

2

)
.

Case 3: there is δ > 0 such that C(u − δ, v + δ) = C(u, v) and for any h > 0,
C(u + h, v − h) ̸= C(u, v). We prove this in a similar manner as in Case 2 and
obtain

D1C(u, v) =

(
1

φ′(t+)
− 1

φ′(t−)

)(
φ′(w+) + φ′(w−)

2

)
,

where w = max{u, v}.
Case 4: there is δ > 0 such that C(u− δ, v+ δ) = C(u, v) = C(u+ δ, v− δ). Then
by Corollary 4.2, C(u − h, v + h) = C(u, v) = C(u + h, v − h) for all h ∈ (0, δ),
φ′(u+) = φ′(v−) and φ′(u−) = φ′(v+). Moreover, by Proposition 2.16(2), we have
φ′(u) = φ′(v). Since for any h ∈ (0, δ),

VC (Rh(u, v)) = C(u+ h, v + h)− C(u, v)− C(u, v) + C(u− h, v − h)

= (C(u+ h, v + h)− C(u, v)) + (C(u− h, v − h)− C(u, v))

= s1(h) + s4(h),

by Remark 4.6, we obtain

D1C(u, v) = lim
h→0+

s1(h)

2h
+ lim

h→0+

s4(h)

2h
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=
1

2φ′(t+)

(
φ′(u+) + φ′(v+)

)
− 1

2φ′(t−)

(
φ′(u−) + φ′(v−)

)
=

φ′(u)

φ′(t+)
− φ′(u)

φ′(t−)
=

(
1

φ′(t+)
− 1

φ′(t−)

)
φ′(u).

From all cases, since φ′(t−) < φ′(t+), we have D1C(u, v) ∈ (0,∞) which implies
by Lemma 3.3 and Proposition 3.5 that dC(u, v) = αC(u, v) = 1.

In order to prove (D), we introduce some notations of quotients as follows:

• for any real-valued function f on an open interval D ⊆ R, a ∈ R and r ̸= 0

such that a± r ∈ D, define Qrf(a) =
f(a+ r)− 2f(a) + f(a− r)

r2
.

• for any real-valued function F on an open set D ⊆ I2, (u, v) ∈ D and r ̸= 0

such that (u± r, v ± r) ∈ D, define

Q+
r F (u, v) =

F (u+ r, v + r)− 2F (u, v) + F (u− r, v − r)

r2

and Q−
r F (u, v) =

F (u− r, v + r)− 2F (u, v) + F (u+ r, v − r)

r2
.

Proof of Theorem 4.9(D). Since D :=
{
(x, y) ∈ (0, 1)2 | φ(x) + φ(y) < φ(0)

}
is an

open set and (u, v) ∈ D, we can choose δ > 0 small enough so that for any
h ∈ (0, δ), Rh (u, v) ⊆ D. From t = C(u, v), we set the following notations for each
h ∈ (0, δ).

s1 := s1(h) = C(u+ h, v + h)− C(u, v), s2 := s2(h) = C(u− h, v + h)− C(u, v),

s3 := s3(h) = C(u+ h, v − h)− C(u, v), s4 := s4(h) = C(u− h, v − h)− C(u, v),

and Ki(h) :=
φ(t+ s5−i)− φ(t− si)

si + s5−i
for i = 1, 2, 3, 4 with si + s5−i ̸= 0.

Note that s1 > 0, s4 < 0 and s1 + s4 ≥ s2 + s3 for all h ∈ (0, δ).
Since SD2 φ(u), SD2 φ(v) < ∞, by Proposition 2.19(4), we have φ′(u) and φ′(v)

exist. Moreover, since φ is convex and differentiable at t and SD2 φ(t) ∈ (0,∞),
by Corollary 4.2, we have the following results.

Remark 4.10. For all i ∈ {1, 2, 3, 4},

(a) lim
h→0+

Qsiφ(t) = lim
si→0

Qsiφ(t) = SD2 φ(t) if si ̸= 0 for all h ∈ (0, δ);

(b) lim
h→0+

si
φ(t+ si)− φ(t)

=
1

lim
si→0

φ(t+si)−φ(t)
si

=
1

φ′(t)
if si ̸= 0 for all h ∈ (0, δ);
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(c) By Theorem 2.21, φ is strongly differentiable at t, i.e., for all i ∈ {1, 2, 3, 4},

lim
h→0+

si+s5−i ̸=0

Ki(h) = lim
(si,s5−i)→(0,0)
si+s5−i ̸=0

φ(t+ s5−i)− φ(t− si)

si + s5−i
= φ′(t).

Next, consider

Q+
h (φ ◦ C)(u, v) = φ (C(u+ h, v + h))− 2φ (C(u, v)) + φ (C(u− h, v − h))

h2

= Qs1φ(t) ·
(s1
h

)2
+
φ(t+ s4)− φ(t− s1)

h2

=

Qs1φ(t) ·
(
s1
h

)2
+ φ(t+s4)−φ(t−s1)

s1+s4
·Q+

hC(u, v) if s1 + s4 ̸= 0;

Qs1φ(t) ·
(
s1
h

)2 if s1 + s4 = 0

=

Qs1φ(t) ·
(
s1
h

)2
+K1(h) ·Q+

hC(u, v) if s1 + s4 ̸= 0;

Qs1φ(t) ·
(
s1
h

)2 if s1 + s4 = 0.

Since Q+
h (φ ◦ C) (u, v) = Qhφ(u) +Qhφ(v), by Remark 4.6,

Qhφ(u) +Qhφ(v)

−Qs1φ(t) ·
[

s1
φ(t+ s1)− φ(t)

·
(
φ(u+ h)− φ(u)

h
+
φ(v + h)− φ(v)

h

)]2
=

K1(h) ·Q+
hC(u, v) if s1 + s4 ̸= 0;

0 if s1 + s4 = 0.
(4.5)

Moreover, from SD2 φ(u), SD2 φ(v) <∞, we see that Q+
hC(u, v) is bounded in h.

Now, we can divide the proof into 3 cases.
Case 1: s2(δ′) = s3(δ

′) = 0 for some δ′ ∈ (0, δ). Then by Corollary 4.2,
C(u−h, v+h) = C(u, v) = C(u+h, v−h) for all h ∈ (0, δ′) and φ′(u) = φ′(v). In
this case, if s1 + s4 = 0 for some h ∈ (0, δ′), then VC (Rh(u, v)) = 0 which implies
that s1 + s4 = s2 + s3 = 0 for all h′ ∈ (0, h) and

SD2 φ(t) = lim
s1→0

φ(t+ s1)− 2φ(t) + φ(t− s1)

s21

= lim
s1→0

φ(t+ s1)− φ(t+ s2)− φ(t+ s3) + φ(t+ s4)

s21
= 0,

which contradicts the assumption. Hence s1+s4 ̸= 0 for all h ∈ (0, δ′). From (4.5),
we obtain

Qhφ(u) +Qhφ(v)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

51

−Qs1φ(t) ·
[

s1
φ(t+ s1)− φ(t)

·
(
φ(u+ h)− φ(u)

h
+
φ(v + h)− φ(v)

h

)]2
= K1(h) ·Q+

hC(u, v) = K1(h) ·
VC (Rh(u, v))

h2
(4.6)

for all h ∈ (0, δ′). Since lim
h→0+

(Qhφ(u) +Qhφ(v))

= lim
h→0+

φ(u+ h)− 2φ(u) + φ(u− h) + φ(v + h)− 2φ(v) + φ(v − h)

h2

= lim
h→0+

φ(C(u+ h, v + h))− 2φ(t) + φ(C(u− h, v − h))

h2

= lim
h→0+

φ(t+ s1)− φ(t+ s2)− φ(t+ s3) + φ(t+ s4)

h2
= 0,

by Remark 4.10 above, we take limit as h→ 0+ of (4.6) on both sides and obtain

φ′(t) lim
h→0+

VC (Rh(u, v))

h2
= −SD2 φ(t)

(φ′(t))2
(
φ′(u+) + φ′(v+)

)2
= −4 SD2 φ(t) (φ

′(u))2

(φ′(t))2
.

Thus, D2C(u, v) = lim
h→0+

VC (Rh(u, v))

(2h)2
= −SD2 φ(t) (φ

′(u))2

(φ′(t))3
∈ (0,∞), which can

be summarized by Lemma 3.3 and Proposition 3.5 that dC(u, v) = αC(u, v) = 2.
Case 2: s2 ̸= 0 for all h ∈ (0, δ). In a similar manner as in (4.5), by considering
Q−
h (φ ◦ C)(u, v) instead, we have

Qhφ(u) +Qhφ(v)

−Qs2φ(t) ·
[

s2
φ(t+ s2)− φ(t)

·
(
φ(u− h)− φ(u)

h
+
φ(v + h)− φ(v)

h

)]2
=

K2(h) ·Q−
hC(u, v) if s2 + s3 ̸= 0;

0 if s2 + s3 = 0.
(4.7)

Now, we see that the limit of the left-hand sides of (4.5)-(4.7) when h→ 0+ is

SD2 φ(t)

(φ′(t))2

[(
−φ′(u−) + φ′(v+)

)2 − (φ′(u+) + φ′(v+)
)2]

=
SD2 φ(t)

(φ′(t))2

[
(−φ′(u) + φ′(v))

2 − (φ′(u) + φ′(v))
2
]
= −4 SD2 φ(t)

(φ′(t))2
φ′(u)φ′(v).

To consider the right-hand sides of (4.5)-(4.7), we first see that if there is h ∈ (0, δ)

such that s1(h) + s4(h) = s2(h) + s3(h), then VC (Rh(u, v)) = 0 which implies that
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s1(h
′) + s4(h

′) = s2(h
′) + s3(h

′) for all h′ ∈ (0, h). Hence the right-hand sides of
(4.5)-(4.7) become[K1(h

′)−K2(h
′)]Q+

h′C(u, v) if s1 + s4 = s2 + s3 ̸= 0;

0 if s1 + s4 = s2 + s3 = 0,

for any h′ ∈ (0, h), which converges to 0 as h′ → 0+ because of Remark 4.10(c)

and boundedness of Q+
hC(u, v). That is, −4 SD2 φ(t)

(φ′(t))2
φ′(u)φ′(v) = 0.

But then, since φ′(x) < 0 for x = u, v, t, we have SD2 φ(t) = 0 which contradicts
the assumption. Hence the right-hand sides of (4.5)-(4.7) become

K2(h)
VC(Rh(u,v))

h2
+ [K1(h)−K2(h)] ·Q+

hC(u, v) if s1 + s4 ̸= 0, s2 + s3 ̸= 0;

K1(h)
VC(Rh(u,v))

h2
if s1 + s4 ̸= 0, s2 + s3 = 0;

K2(h)
VC(Rh(u,v))

h2
if s1 + s4 = 0, s2 + s3 ̸= 0,

which converges to φ′(t) lim
h→0+

VC (Rh(u, v))

h2
as h→ 0+ by Remark 4.10 and

boundedness of Q+
hC(u, v). Thus, D2C(u, v) = −SD2 φ(t)

(φ′(t))3
φ′(u)φ′(v) ∈ (0,∞),

which can be summarized by Lemma 3.3 and Proposition 3.5 that dC(u, v) =

αC(u, v) = 2.
Case 3: s3 ̸= 0 for all h ∈ (0, δ). In this case, we can prove in a similar manner
as in Case 2, by using s3 instead of s2 in (4.7), to show that dC(u, v) = 2.

Example 4.11. We consider a family of Clayton copulas which are in the form
Cθ (u, v) =

[
max

(
u−θ + v−θ − 1, 0

)]− 1
θ for θ ∈ [−1,∞) \{0}. For each θ, its

generator is φθ(t) =
1

θ

(
t−θ − 1

)
. We see that if θ = −1, then C−1 (u, v) =

max (u+ v − 1, 0) = W (u, v). It is easy to show that

dW (u, v) =

1 if u+ v = 1;

∞ otherwise.

Now, we suppose that θ > −1. Then we see that φθ(0) =

∞ if θ > 0;

−1/θ if θ ∈ (−1, 0) ,

φθ is twice differentiable and φ′′
θ(t) = (θ + 1) t−θ−2 ∈ (0,∞) for t ∈ (0, 1), so we

consider 2 cases as follows.
• If θ > 0, then φθ(u) + φθ(v) < φ(0) for any (u, v) ∈ (0, 1)2. Hence by

Theorem 4.9(D), we have dCθ
(u, v) = 2 for any (u, v) ∈ (0, 1)2.
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0 1

2

4

−2

−4

t

logφ(t)

0 1

1

u

v

Figure 4.6: (Left) Graph of log(φ) = log(φ2). (Right) Support of C2

0 1

1

2

t

ϕ(t)

0 1

1

u

v

Figure 4.7: (Left) Graph of ϕ = φ− 1
2
. (Right) Support of C− 1

2

• If θ ∈ (−1, 0), then by Theorem 4.9(A) and (D),

dCθ
(u, v) =

∞ if φθ(u) + φθ(v) > −1/θ;

2 if φθ(u) + φθ(v) < −1/θ.

To consider the case φθ(u) + φθ(v) = −1

θ
, since fθ(t) = φθ(0) − φθ(t) =

−1

θ
t−θ ∈ RV 0

−θ, by Theorem 4.9(B), we have dCθ
(u, v) = −1

θ
.

0 1
2

1
t

1
4

1
ψ(t)

S
L

0 1

1

1
2

1
2

u

v

∞
1

2

1

∞

Figure 4.8: (Left) Graph of ψ. (Right) Support of C and dC(u, v) in Example 4.12
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Example 4.12. Let ψ(t) =

(1− t)2 if t ∈
[
0, 1

2

]
;

1−t
2

if t ∈
(
1
2
, 1
]
.

The graph of ψ and the

support of C = Cψ are shown in Figure 4.8. We see that ψ is not differentiable at
1

2
but twice differentiable elsewhere with ψ′′(t) =

2 if t ∈
(
0, 1

2

)
;

0 if t ∈
(
1
2
, 1
)
.

Moreover, fψ(t) =

1− (1− t)2 = 2t− t2 if t ∈
[
0, 1

2

]
;

1− 1−t
2

= 1+t
2

if t ∈
(
1
2
, 1
]
,

which lies in RV 0
1 .

Hence by Theorem 4.9(A),(B),(C) and (D), respectively, we have

dC(u, v) =


∞ if ψ(u) + ψ(v) > 1;

1 if ψ(u) + ψ(v) = 1
4

(dashed);
1 if ψ(u) + ψ(v) = 1 (solid);
2 if 1

4
< ψ(u) + ψ(v) < 1 (shaded).

We see that Theorem 4.9 cannot be applied on regions

S =

{
(u, v) : ψ(u) + ψ(v) ∈

(
0,

1

4

)}
and

L =

({
1

2

}
×

(
1−

√
3

2
, 1

))
∪

((
1−

√
3

2
, 1

)
×
{
1

2

})

because

1. for any (u, v) ∈ S, ψ(t) = ψ(u) + ψ(v) ∈
(
0,

1

4

)
, i.e., t ∈

(
1

2
, 1

)
and

SD2 ψ(t) = 0 for all t ∈
(
1

2
, 1

]
;

2. we see that

lim
h→0+

ψ
(
1
2
+ h
)
− 2ψ

(
1
2

)
+ ψ

(
1
2
− h
)

h2
= lim

h→0+

(
1
4
− h

2

)
− 2

(
1
4

)
+
(
1
2
+ h
)2

h2

= lim
h→0+

h2 + h
2

h2
= ∞

and lim
h→0−

ψ
(
1
2
+ h
)
− 2ψ

(
1
2

)
+ ψ

(
1
2
− h
)

h2
= ∞, i.e., SD2 ψ

(
1

2

)
= ∞.

To find dC(u, v) for (u, v) ∈ S, since C(u, v) = u + v − 1 for all (u, v) ∈ S, it is
easy to show that for such (u, v), dC(u, v) = ∞.
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Next, we find dC(u, v) for (u, v) ∈ L. By symmetry of C, it suffices to find

dC

(
1

2
, v

)
where v ∈

(
1−

√
3

2
, 1

)
. For any h > 0 small, let

A1(h) := ψ

(
1

2
+ h

)
=

1

4
− h

2
,

A2(h) := ψ

(
1

2
− h

)
=

(
1

2
+ h

)2

,

B1(h) := ψ(v + h) =

(1− v − h)2 if v < 1
2
;

1−v−h
2

if v ≥ 1
2
,

and

B2(h) := ψ(v − h) =

(1− v + h)2 if v ≤ 1
2
;

1−v+h
2

if v > 1
2
.

Then

A2(h)− A1(h) = h2 +
3h

2
and B2(h)−B1(h) =


4h(1− v) if v < 1

2
;

h2 + 3h
2

if v = 1
2
;

h if v > 1
2
,

which implies that VC
(
Rh

(
1

2
, v

))
=
(
1−

√
A1(h) + B1(h)

)
−
(
1−

√
A2(h) + B1(h)

)
−
(
1−

√
A1(h) +B2(h)

)
+
(
1−

√
A2(h) +B2(h)

)
=
√
A2(h) +B1(h) +

√
A1(h) +B2(h)−

√
A1(h) + B1(h)−

√
A2(h) +B2(h)

=
A2(h)− A1(h)√

A2(h) + B1(h) +
√
A1(h) + B1(h)

− A2(h)− A1(h)√
A1(h) +B2(h) +

√
A2(h) +B2(h)

.

Next, we consider
VC
(
Rh

(
1
2
, v
))

A2(h)− A1(h)
=
VC
(
Rh

(
1
2
, v
))

h2 + 3h
2

=

√
A1(h) +B2(h) +

√
A2(h) +B2(h)−

√
A2(h) +B1(h)−

√
A1(h) +B1(h)(√

A2(h) + B1(h) +
√
A1(h) + B1(h)

)(√
A1(h) +B2(h) +

√
A2(h) +B2(h)

)
=

B2(h)−B1(h)√
A1(h)+B2(h)+

√
A1(h)+B1(h)

+ B2(h)−B1(h)√
A2(h)+B2(h)+

√
A2(h)+B1(h)(√

A2(h) + B1(h) +
√
A1(h) + B1(h)

)(√
A1(h) +B2(h) +

√
A2(h) +B2(h)

) .
Note that lim

h→0+

(√
Ai(h) +Bj(h)

)
=

√
1

4
+ (1− v)2 for all i, j ∈ {1, 2}. By the

value of B2(h)−B1(h), we divide the value of v into 3 cases.
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Case 1: v < 1

2
. Then

D2C

(
1

2
, v

)
= lim

h→0+

VC
(
Rh

(
1
2
, v
))

(2h)2

=
1

32
(
1
4
+ (1− v)2

)3/2 lim
h→0+

(
h2 + 3h

2

)
(4h(1− v))

h2

=
1− v

8
(
1
4
+ (1− v)2

)3/2 lim
h→0+

(
h+

3

2

)
=

3(1− v)

16
(
1
4
+ (1− v)2

)3/2 ∈ (0,∞) .

Case 2: v =
1

2
. Then

D2C

(
1

2
,
1

2

)
=

1

32
(
1
4
+ 1

4

)3/2 lim
h→0+

(
h2 + 3h

2

)2
h2

=
1

8
√
2

lim
h→0+

(
h+

3

2

)2

=
9

32
√
2
∈ (0,∞) .

Case 3: v > 1

2
. Then

D2C

(
1

2
, v

)
=

1

32
(
1
4
+ (1− v)2

)3/2 lim
h→0+

(
h2 + 3h

2

)
h

h2

=
3

64
(
1
4
+ (1− v)2

)3/2 ∈ (0,∞) .

Therefore, we conclude that dC(u, v) = 2 for all (u, v) ∈ L.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V
CONCLUSION

5.1 Our results

In our thesis, we investigate the pointwise dimension

dC(u, v) = lim
h→0

logVC (Rh(u, v))

log(h)

of copulas constructed from other copulas by simple methods and compute the
pointwise dimension of some well-known copulas.

In Chapter 3, we obtain formulas of the pointwise dimension of copulas
constructed by joining finitely many copulas via 3 methods: convex sum, patching
and ordinal sum as restated in the following statements. In a nutshell, the pointwise
dimension of a constructed copula at a point is the minimum of those of ingredient
copulas at the corresponding point.

Theorem 3.7. Let {Ci}ni=1 be a collection of copulas and {αi}ni=1 ⊆ (0, 1) be such

that
n∑
i=1

αi = 1. Let C =
n∑
i=1

αiCi be the convex sum of {Ci}ni=1. Then for any

(u, v) ∈ I2, dC(u, v) = min
1≤i≤n

{dCi
(u, v)}.

Theorem 3.8. Let T = [tij] ∈ Mm×n(I) be a transformation matrix and {Cij} be
a collection of copulas with the same indices as entries in T . Let C be the patched
copula with respect to the transformation matrix T and the collection of copulas
{Cij}. Then for any (u, v) ∈ I2,

dC (u, v) = inf
(i,j)∈A(u,v)

{dCij
(ui, vj)}

where A(u, v) := {(i, j) : (u, v) ∈ Rij = [pi−1, pi] × [qj−1, qj] , tij > 0}, ui =
u− pi−1

pi − pi−1

and vj =
v − qj−1

qj − qj−1

.

Corollary 3.9. Let {Ji}Ni=1, where Ji = [ai, bi] with ai < bi for all i = 1, . . . , N , be a
family of closed, non-overlapping, non-degenerate sub-intervals on I and let {Ci}Ni=1

be a collection of copulas. Moreover, let C be an ordinal sum of {Ci} with respect
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to {Ji}. Set AN = {(ai, ai) : i = 1, . . . , N} and BN = {(bi, bi) : n = 1, . . . , N}.
Then for any (u, v) ∈ I2\{(0, 0), (1, 1)},

dC(u, v) =


dCi

(
u− ai
bi − ai

,
v − ai
bi − ai

)
if (u, v) ∈ J2

i \ (AN ∪BN) for some i;

min{dCi
(1, 1), dCj

(0, 0)} if u = v = bi = aj for some i ̸= j;

dM(u, v) otherwise.

Moreover,

dC(0, 0) =

dCi
(0, 0) if (0, 0) ∈ J2

i for some i;
1 otherwise,

and a similar statement holds for dC(1, 1).

In Chapter 4, we compute the pointwise dimension of Archimedean copulas
which is divided into 2 cases: piecewise linear and general generators. We restate
the following theorems.

Theorem 4.3. Let C be an Archimedean copula with piecewise linear generator φ
in the form (4.1). Then for any (u, v) ∈ (0, 1)2,

(A) if φ(u) + φ(v) ̸= φ(tk) for any k = 0, 1, . . . , n, then dC(u, v) = ∞;

(B) if φ(u) + φ(v) = φ(tk) for some k = 0, 1, . . . , n, then dC(u, v) = 1.

Recall that φ in (4.1) can be written as φ(t) = φ(tk) − bk (t− tk−1) for t ∈
(tk−1, tk] and k = 1, . . . , n where {bk}nk=1 is a strictly decreasing sequence in R+

and {tk}nk=0 is a strictly increasing sequence in I such that t0 = 0 and tn = 1.
Before we restate the main theorem, recall

RV 0
β =

{
f : (0, N) → [0,∞) | N ∈ R+ and lim

x→0+

f(λx)

f(x)
= λβ for all λ > 0

}
.

Theorem 4.9. Let C be an Archimedean copula with generator φ, a function that
is convex, continuous, strictly decreasing on I and φ(1) = 0. Let (u, v) ∈ (0, 1)2.

(A) If φ(u) + φ(v) > φ(0), then dC (u, v) = ∞.

(B) If φ(u) + φ(v) = φ(0) and fφ(x) = φ(0) − φ(x) ∈ RV 0
β where β > 0, then

dC (u, v) =
1

β
.

(C) If φ(u) + φ(v) = φ(t) where t ∈ (0, 1) and φ is not differentiable at t, then
dC(u, v) = 1.
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(D) If φ(u) + φ(v) = φ(t), SD2 φ(u), SD2 φ(v) < ∞, φ is differentiable at t and
SD2 φ(t) ∈ (0,∞) where t ∈ (0, 1), then dC (u, v) = 2, where SD2 φ(x) is the
second order symmetric derivative of φ at x defined in Definition 2.18.

5.2 Further studies

1. Compute the pointwise dimension of copulas constructed by more
complicated methods, such as

• ordinal sum of countably many copulas,

• mixing distribution: CΛ(u, v) =

∫
R
Cθ(u, v)dΛ(θ) where Λ is a

distribution function of a random variable Θ with value θ and {Cθ} is
a collection of copulas. If Λ is a distribution function of probability

function f(i) = αi for i = 1, . . . , n, then CΛ =
n∑
i=1

αiCi. Hence, this

method is a generalization of convex sum in Definition 2.8,

• ∗-product: (C ∗ D)(u, v) =

∫ 1

0

∂2C(u, t)∂1D(t, v) dt where C,D are
copulas. By testing with a few pairs of copulas, we have a conjecture
about pointwise dimension of product of copulas as follows.

Conjecture 1. For any copulas C,D and (u, v) ∈ I2, dC∗D(u, v) =

inf
t∈I

{dC(u, t), dD(t, v)}.

2. Compute the pointwise dimension of Archimedean copulas in the case that
φ(u) + φ(v) = φ(t) where t ∈ (0, 1), φ′(t) exists and at least one of the
following conditions hold:

• SD2 φ(t) ∈ {0,∞};
• SD2 φ(u) = ∞ or SD2 φ(v) = ∞;
• SD2 φ(t), SD2 φ(u) or SD2 φ(v) does not exist.

Is there a possibility that dC(u, v) /∈ Z ∪ {∞} in this case ?

3. From Theorem 4.9, we see that for any Archimedean copula C and (u, v) ∈
(0, 1)2, dC(u, v) depends on the value of C(u, v) but not on u and v. Hence
we have the following conjecture.

Conjecture 2. For any Archimedean copula C with generator φ and (u, v) ∈
(0, 1)2 such that φ(u) + φ(v) ≤ φ(0), dC(u, v) = dC(t, t) where

t = φ−1

(
φ(C(u, v))

2

)
.
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