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ABSTRACT

5571006063: Petrochemical Technology Program
Kusuma Kulajanpeng: lonic-Liquid Based Separation of Azeotropic
Mixtures.
Thesis Advisors: Dr. Uthaipom Suriyapraphadilok and Prof. Rafiqul
Gani 186 pp.
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A methodology for screening of ionic liguids (ILs) as entrainers and for de-
sign of ILs-based separation processes in various homogeneous hinary azeotropic
mixtures is presented through two case studies: ethanol + water and isopropanol +
water. ILs as entrainers were screened based on a combination of criteria such as sta-
bility, toxicity, environmental impacts, their miscibility in the target solute compo-
nent (water) and their Hildebrand solubility parameter group contribution. The best
candidates for the aqueous systems were selected, namely I-Ethyl-3-
Methylimidazolium Ethylsulfate [C2M IM][EtS04], [|-Ethyl-3-Methylimidazolium
Dicyanamide [C2M IM][N(CN)2], [-Ethyl-3-Methylimidazolium Acetate
[C2M IM ][Ac], and 1,3-Dimethylimidazolium Dimethyl phosphate [C)MIM][DMP].
Extractive distillation with a solvent recovery was simulated in Pro Il simulator to
evaluate the energy requirement to obtain 99.8% mol purity of alcohol. Based on
minimum energy requirement of each IL entrainer, [CIMIM][DMP] was chosen as
the final candidate for the ethanol + water, given an energy savings 0f22% compared
to the conventional solvent (Ethylene glycol). The design flexibility for azeotropic
separation process with the same ILs entrainer, product purity, and designed parame-
ters was investigated for the isopropanol + water azeotrope. [CIMIM][DMP] was
excluded since the extraction with [CIMIM][DMP] could not give 99.8% mol purity
of the alcohol with a reasonable number of theoretical stages. By fixing all design
parameters with the same [C2M IM ][N (CN)2] as entrainer, an increase in size of alco-
hol from ethanol to isopropanol gives a lower overall energy consumption because
the isopropanol + water had a weaker interaction than the ethanol + water leading to

the easier to extract water from isopropanol than extracting of water from ethanol.
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X111

ABBREVIATIONS

Nomenclature of the lonic Liquids

Cations

[MIM]+ N-methylimidazolium

[MMIM ]+ 1-Methyl-3'-methylimidazolium
[EMIM ]+ 1-Ethyl-3-methylimidazolium
[PMIM]+ 1-Propyl-3-methylimidazolium

[BMIM]+or [C4-MIM]+
[HM IM]+or [C6-M M+

1-Butyl-3-methylimidazolium

I-Hexyl-3-methylimidazolium

[OMIM]+ 1-Methyl-3-octylimidazolium
[DMIM ]+ 1-Decyl-3-methylimidazolium
[DoM IM f I-Dodecyl-3-methylimidazolium
[EEIM ]+ 1-Ethyl-3-ethylimidazolium
[AMIM]+ I-Allyl-3-methylimidazolium
[EMMIM ]+ 1-Ethyl-2,3-dimethylimidazolium

[(EtOH)M IM]+
[(EOH)MM IM]+
[(HeOH)MIM]+

I-(2-Hydroxyethyl)-3-methyl-imidazolium

I-(2-Hydroxyethyl)-2,3-dimethylimidazolium

1-(6-Hydroxyhexyl)-3-methylimidazolium

[Epy]+ L-Ethylpyridinium

[EMpy]+ 1-Ethyl-3-methylpyridinium
[3MBpy]+ 3-Methyl-N-butylpyridinium
[AMBpy]+ 4-Methyl-N-butylpyridinium
[C6-PY]+ L-hexylpyridinium

[OMpy]+ 1-Octyl-4-methylpyridinium
[BMpyr]+ 1-Butyl-1-methylpyrrolidinium

[P66614]+ or [3C6-C14-Ph]+

[EEES]+

[MOOON]+or [CI-3C8-Am]+

[(EtOH)NH 3]+

Trihexyl(tetradecyl)phosphonium
Triethylsulfonium
Methyltrioctylammonium

Monoethanolammonium



[(EtOH)2N H 2]+
[(EtOH)INH]+
[MMM (EtOH)N]+
[EMM (EtOH)N]+
[HMM (EtOH)N]+
[EEM (MeOEt)N]+
[C6-CL-PYR]!
[C6-CL-PIP]+
[C6-Qui+
[C8Chin]+

)
)

Anions
[Brf
[Cl]-
[PF6]-

pr4*

[0Tf]

[NTf2]~
[PF3(C2F5)3]-
[OAcS
[CF3C 02]-
[CF3S0 3]-
[Salicylate]”
[TOS]
[SCN]-
[N(CN)2)~
[C(CN)3]'
[B(CN)4]- or [TCB]
[BOB]"
[EtS04f

Diethanolammonium
Triethanolammonium
(2-Hydroxyethyl)trimethylammonium
Ethyl(2-hydroxyethyl)dimethylammonium
Hexyl(2-hydroxyethyl)dimethylammonium
Diethylmethyl(2-methoxyethyl)ammonium
hexylmethylpyrrolidonium
hexylmethylpiperidinium

hexylquinolinium

L-octylquinolinium

Bromide

Chloride

Hexafluorophosphate

Tetrafluoroborate
Trifluoromethanesulfonate or Triflate or
Trifluoromethylsulfonate
Bis(trifluoromethylsulfonyl)imide
Tris(pentafluoroethyl)trifluorophosphate
Acetate

Trifluoroacetate

Nitrate

Salicylate

Tosylate

Thiocyanate

Dicyanamide

Tricyanomethanide

Tetracyanohorate
Bis[oxalato(2-)]-borate

Ethyl sulfate

XXIV



[MeS04
[0cS04-
[Me(Et0)2S04"

[HS04*
[MeSOsF
[ToSOs]'
[(Bu)2P04r
[DMP]~
[(EPO4~ _
[MePChF
[(MesPe) 2P0

[BMA]~
[BMB
BTI*
BTA"
[MACA]

XXV

Methyl sulfate

Octyl sulfate

Diethylenglycol monomethyl ether sulfate
or 2-(2-methoxyethoxy)ethylsulfate
Hydrogen sulfate

Methanesulfonate

p-Toluenesulfonate

Dibutylphosphate

Dimethylphosphate

Diethylphosphate

Methylphosphonate

Phosphonium
Bis(2,4,4-trimethylpentyl) phosphinate
bis(methylsulfonyl) amice
bis(malonato(z -))borate
bis(trifluoromethyl-sulfonyl) imide
bis(trifluoromethylsulfonyl)amid
Methylsulfony! acetamice



LIST OF SYMBOLS

anm = group interaction parameter between groups and m
Ak =van Der Waals volume ofgroup k

cohesive energy density

Cii

Y

contribution of group i

CpL = liquid heat capacity

D = largest driving force

Ds = relative position ofside-draw driving force

Dx = relative position of largest driving force

Dy =size of largest driving force

F = flowrate

Fi = surface area/mole fraction of component i

Fjj = driving force for componentifor property |

gjj = energy parameter characteristic ofthe i-j interaction

Agjj = binary interaction parameter between component iandj

Ahvap = enthalpy of vaporization
Ki = K-factor for component 1
K2 = K-factor for component 2
M =molecular mass

, numberofgroups of type i

; numberoftimes that a group appearsin themolecule

N =numberofstages

Nf = feed stage location

p = opresure

Pc = critical pressure

Px = vaporpressures ofcomponent 1

PS = vapor pressures of component 2

q; = relative van der Waals volumes molecular surface areas of component i

o)

relative van der W aals surface areas of group k

—
1

relative van der Waals volume of component i



XXV11

Rk =relative van der Waals volume ofgroup k
R = gas constant

RR = reflux ratio

SF =scaling factor

T = absolute temperature

Tb  =normal boiling temperature

Tc = critical temperature

Tr =reduced temperature

TbR = reduced temperature at the normal boiling point
Vi =molarvolume of component i

Vi =volume/mole fraction of component i

VC = critical volume

Vk = van der Waals group volumes of group k

X) =maole fraction for component Lin the liquid phase

X2 =mole fraction forcomponent2 in the liquid phase
XM = fraction of group m in the mixture

xlk.d = specification for the light key distillate mole fraction
xhk.b = specification for the heavy key bottoms mole fraction
yi =mole fraction forcomponent Lin the vapor phase

y2 =mole fraction for component2 in the vapor phase

Greek Symbols
al' ='separation factor or relative volatility

cj = non-randomness parameter in the NRTL equation

Y1 = activity coefficientofcomponent 1

Y2 =activity coefficientofcomponent 2

Yp =caombination part of the activity coefficientofcomponenti

yP = residual part of the activity coefficient of component i

(3] = relative separability parameter for component i with respect to property j
Tk = group residual activity coefficient of group k

8j =solubility parameter of component i



\lInm = group interaction parameter

surface area fractions

Om
co = acentric factor

PL = liquid densities of the ionic liquids
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