A MORPHABLE FPGA SOFT PROCESSOR USING LLVM
INFRASTRUCTURE TARGETING LOW-POWER
APPLICATION-SPECIFIC EMBEDDED SYSTEMS

Mr. Ehsan Ali

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy in Electrical Engineering
Department of Electrical Engineering
FACULTY OF ENGINEERING
Chulalongkorn University
Academic Year 2020
Copyright of Chulalongkorn University



=\

1 v 4
yona 1Usamaes vuenidein/asuaninldlasldlassadeiuguneanoadidui

A v A Y o
Lﬂ']ﬁiJ']fJLWfJi%‘U’UPQI\WI’JLQW']%Q'IHVIGIFBWENQWUGH

UIBOHIU DA

o

UNIUBIMIANBIHANGATUS Y NI sumMaasquRtnume

o)
=
=
-
=)
=
5
N
e
ca
=
2.

vIvIrns sy i maddaanssy i
AUZAAINTTUANAAS JWIAINTAIUMIING1ED

Unsdnu 2563

4
asllﬁﬂ‘ﬁsllﬂ\iﬂW”Iﬁ\iﬂiﬂiﬂJﬁ1’31/]81’@8



Thesis Title A MORPHABLE FPGA SOFT PROCESSOR
USING LLVM INFRASTRUCTURE
TARGETING LOW-POWER APPLICATION-
SPECIFIC EMBEDDED SYSTEMS

By Mr. Ehsan Ali
Field of Study Electrical Engineering
Thesis Advisor Assistant Professor Wanchalerm Pora

Accepted by the FACULTY OF ENGINEERING, Chulalongkorn
University in Partial Fulfillment of the Requirement for the Doctor of
Philosophy

_________________________________________________________ Dean of the FACULTY OF
ENGINEERING
(Associate Professor Supot Teachavorasinskun)

DISSERTATION COMMITTEE
________________________________________________________ Chairman
(Associate Professor Ekachai Leelarasmee)
________________________________________________________ Thesis Advisor
(Assistant Professor Wanchalerm Pora)
________________________________________________________ Examiner
(Assistant Professor Suree Pumrin)
________________________________________________________ Examiner
(Assistant Professor Manop Wongsaisuwan)
_________________________________________________________ External Examiner
(Assistant Professor Kittiphan Techakittiroj)



Sa1u 013 © oA T smweumenioindouanmglae1#lasadeitugumeansaiud
dhmneifleszuudidimmeanuildndsnud. (A MORPHABLE FPGA SOFT
PROCESSOR USING LLVM INFRASTRUCTURE TARGETING

LOW-POWER APPLICATION-SPECIFIC EMBEDDED
SYSTEMS) e.iitfinumdn : fumdn Tals

msfaidmuaslnigld (Reconfigurable Computing: RC) fiyayjsmnaiiiesauaiy
Banduues Tlsisawesiounilszasd (General-Purpose Processor: GPP) fuiszaniamvedledion
Uszaart (Application Specific Integrated Circuits: ASIC) RC fianidagnssunaeuuusaudisy
finsaaduluil 1960 udnmua hiaunsanmodunszuandn Tasondnivaraneild RC naefuuuanlfia
i ldededtaiigsuiiunmssaneiiin (wie Tusunsumes) fesiFeudfuneiunmsesnuuuasanruvulng lu
RC s:ziilisiwaansneds (Hard Processor: HP) virsiusaududanssuunerfauss (Hardware
Accelerator: HA) dadmuamnd Iduuamsending demsssmuwenitiie (Field-Programmable
Gate Array: FPGA) HA sawisumserdiniisdnmuaniandiieivlszaniamiassm luuman
fiinsaueanidasnssy RC nuulmifishel il fiadmns@ouTsunsuiiinsounaeildnadnluvas il
HA sauiszunanadne aandasnssuilldlaseadeitugiuneyinaei LLVM ilesusanesinudraie
mpuatesiiioun nmfuesdumyamdailfiesiigaazatinns RC fifeuniiugadond "Miniature
Accelerator (MA)" aasidsnzgnaveenain’liillaives HP nazmadnsnnmssnamves MA agliunuii
iiemBaumdaiisaneiueriend (Fast Fourier Transform: FFT) guflugasdamdnlumsilszanana
Fyarudsiagnidouiudienir Cudrsalszunanavy ARM Cortex-MO $aufu MA misviauves
sy FET i$aaw 14.12% ideriouiuliil MA dszuamaiidmuadilni ldfmuedudaiu1guuy
founduadraauysal mynew Indiilu 'y TassaTuid oz Wisududeadlagefingnn C foonuuuannszuan

fieninms@eullsunsuilng

a a A A aa
w1V 'Jﬁ'Jﬂﬁﬁith‘IﬁW AYUDFOUAR

Unsdnu 2563 A0H0Y0 0. AUTABINEN veeeeeneeeeeieeeeeeeiees



## 5871458621 : MAJOR ELECTRICAL ENGINEERING

KEYWOR  Adaptive microprocessor, Reconfigurable computing, Hardware

D: accelerator, Field-programmable gate array, LLVVM compiler

infrastructure, Data Center, Computer architecture

Ehsan Ali : A MORPHABLE FPGA SOFT PROCESSOR USING LLVM
INFRASTRUCTURE TARGETING LOW-POWER APPLICATION-
SPECIFIC EMBEDDED SYSTEMS. Advisor: Asst. Prof. Wanchalerm
Pora

The reconfigurable computing (RC) aims to combine the flexibility of
General-Purpose Processor (GPP) with performance of Application Specific
Integrated Circuits (ASIC). There are several architectures proposed since RC’s
inception in 1960s, but all have failed to become mainstream. The main factor
preventing RC to become common practice is its requirement for implementers of
algorithms (programmers) to be familiar with hardware design. In RC, a hardened
processor cooperates with a dynamic reconfigurable Hardware Accelerator (HA)
which is implemented on Field-Programmable Gate Array (FPGA). The HA
implements crucial software kernel on hardware to increase performance and its
design demands digital circuit expertise. In this paper a novel RC architecture is
proposed that keeps the decades old programming practices intact while harnessing
the power of HA. The architecture uses LLVVM compiler infrastructure to receive an
algorithm and then outputs the equivalent machine language, it then finds the most
frequent instruction pairs and generates equivalent RC circuit called “Miniature
Accelerator (MA)”. The instruction pairs are dynamically removed from pipeline and
MA computed result replaces them in parallel. To demonstrate the concept the Fast
Fourier Transform (FFT) algorithm which is core Digital signal processing (DSP)
kernel is written in C and then executed on an ARM Cortex-MO0. The execution of
FFT function is improved by 14.12%. The proposed adaptive processor is fully
backward compatible, compilation is automated, and no modification of exiting
software or established programming paradigms is required.

Field of Study: Electrical Engineering Student's Signature
Academic 2020 Advisor's Signature
Year:



ACKNOWLEDGEMENTS

We would like to thank Prof. Ekachai Leelarasmee and Asst. Prof.
Kittiphan Techakittiroj for their continuous encouragement, and support. Special
thank to my advisor Asst. Prof. Wanchalerm Pora who patiently guided my
research by conducting weekly meetings during 6 consecutive years. We also
would like to thank the Chulalongkorn University for granting the "The 100th
Anniversary Chulalongkorn University Fund for Doctoral Scholarship” and "The
90th Anniversary of Chulalongkorn University, Rachadapisek Sompote Fund" to
the student.

Ehsan Ali



TABLE OF CONTENTS

Page
...................................................................................................................................... i
ABSTRACT (THAIY oot eee e s s es e eeseeeseseseeeseees s ss e eesseses s s i
....................................................................................................................................... \Y%
ABSTRACT (ENGLISH) ..ottt iv
ACKNOWLEDGEMENTS ... e v
TABLE OF CONTENTS ... vi
1. INEFOTUCTION ...t 1

1.0 IMOTIVALION ..ottt bbb 2
1.2, HYPOTNESES. .....veeeeciieie ettt ettt te e e sreesteennesreenae e 2
IR T O o =T £ YT USSP 3
1.4, SCOPE OF TRESIS....ctieiiiie ettt 3
ST Y [=11 10T (] (oo Y SO U TSRS 4
2. LItErature REVIEW .....oiuiiiiiiiiiiiiiie et 6
2.1, DAta CONTEIS......cueiiiieiiiiie et nre s 6
2,10, INEFOTUCTION ...ttt 6
2.1.2. Data Center REQUIFEMENTS. ......ccueiiiiiiiieeie e ittt 6
2.1.2.1. POWEL SUPPIY .eveeeeeieeece ettt 6

2.1.2.2. COOlING ..ottt 7

2.1.2.3. CONLIOIIEA ACCESS......ccueevieiieiisieeieiee e 7

2.1.3. Data Center TYPES .....vveeiiie ettt ettt 7
2.1.4. Data Center HardWare ...........ccooiiveiiiiiiiiiieceeeeese e 8
2.1.4.1. Computation Hardware ............cccceiveeiiieiiie e 8
2.1.4.1.1. Blade SEIVEI......ocoiiiiiiiiiiiiieeieeee s 8

2.1.4.1.2. Blade ENCIOSUIE........cccoeiiiiiiiieecieee e 8

2.1.4.2. Storage Interconnection ArchiteCtures .........ccccovvevieiiievieiieesinens 9



vii

2.1.4.2.1. Direct Attached Storage (DAS) ......cocevvevviieiieie e, 9
2.1.4.2.2. Network Attached Storage (NAS) .......ccceccvvveiveieiieinn, 9
2.1.4.2.3. Storage Area Networks (SANS).......ccccvvviverviiieieennan, 10
2.1.4.3. Storage Interconnection Technologies .........cccccvevevvevvciesieenenn, 10
2.1.4.3.1. Fibre Channel (FC) ......c.cccvveiiiiiiieie e, 10
2.1.4.3.2. Fibre Channel over Ethernet (FCOE)..........cccccoevvvennen. 10
2.1.4.3.3. Small Computer Systems Interface (SCSI) over IP
(ISCSI) oo 11
2.1.4.4. Data Center Network (DCN)........cccevieviiiieieeseee e, 11
2.1.4.5. Data Center Design Models ..........ccccoevviviiiciecie e, 12
2.1.45.1. Three-tier DCN......ccccooiiiiiiiiiiicise e, 13
2.1.45.2. FAttree DCN ......oooiiiiiiiiiece e 14
2.L453. DCell....cooiiiiiiiiiiiiie e 14
2.1.5. Data Center EFfiCIBNCY ......ccov e 15
2.1.5.1. Energy EffiCIENt SEIVEIS ......ccveiviiieiieeec e 15
2.1.5.2. SIMUIALOTS. ....oviiiiiiiiiiiine e 15
2.1.5.2.1. DONSIHM w.oviiiiiiiiiiieiiit et 15
215 2 NS e M. 15
21523 NSRS AL LIV DA B QA BE - veererereerrrerrraersreraeerneeeans 15
.52 4.1 Cladisihaas- LI I mm @ETas: e oeeerceecrerennmmnnnsseneens 15
2.1.5.2.5. Other SIMUIALOrS.........ccceiviiiiieie e, 16
2.1.5.3. Practical Ways to Reduce Power Consumption.............c.c.c........ 16
2.1.5.4. HOt Data CeNtErS .......ccoveiviiiiiieiinic e 16
2.1.5.5. My OWN ThOUGNTS.......coiviiiiieiie e 17
2.1.6. Data Center HardWare .............ooveiiiiiieiiiciieeeeeee s 17
2.1.6.1. Bla0e SEVET .....ocuiiiiiiciieece e 17
2.1.6.2. Blade SEVEr TYPES.....viiiiiiieiie ettt 17
2.1.6.2.1. CUSCO c.eevveiiesiienee ettt et 17

2.1.6.2.2. HP oo 17



viii

2.1.6.2.3. DIl ..o 18
2.1.6.2.4. LENOVO ....ceeiiiiiiiiiiticie 18
2.1.6.3. SEVEI FarmM ......cccoiiiiiiii 18
2.1.6.3.1. Performance Per Watt............ccccoovviieininenciiesee, 18
2.1.6.4. Server INtercoNNECHION........cccovverreiiiirieee e 18
2.1.7. SEIVEN PrOCESSON .....coiviiiiiiiieiiiiii it 18
2. 1.7 L INEEL. o 18
2.1.7.2. ARM ..o s 19
2.1.8. Considerations on Setting Up a Data Center............ccccocvevviiveieeseeinennnn, 20
2.1.8.1. INErOUCTION ...t 20
2.1.8.2. Cascade EffECt.........cccimiiiiniiecse e 21
2.1.8.3. Site Location Condition..........ccoeevevrereiiineieise e 21
2.1.8.4. Environmental FACOrS ...........ccooereiininiiiiiienee e 21
2.1.8.5. Technological FaCtors ..........ccccocvevieiieiicc e 21
2.1.9. Unconventional ArchiteCtUIeS ...........cocerveirireieinesiee e 22
2.1.10. BUIlding Condition ........ccceciieiiiiieie e 23
2.1.11. Metrics and Benchmarking ........ccccocovviieiviiiiciiece e 23
2.1.11.1. Power Usage Effectiveness (PUE) .........ccccccevvviveviievecieseenen, 23
2.1.11.2. Data Center Infrastructure Efficiency (DCIE): .........c.ccccevvenee.n. 24
2.1.11.3. Energy Reuse Effectiveness (ERE) ..........cccccoovevevieveciicirienenn, 24
2.1.11.4. Rack Cooling Index (RCI) .....cccecvveiiiiiiieiieceee e, 24
2.1.11.5. Return Temperature Index (RT1.....cccccoveiiiiiiiieiiece e, 25
2.1.11.6. Heating, Ventilation and Air-Conditioning (HVAC) System
EFfECTIVENESS. ... 25
2.1.11.7. Airflow EFfICIENCY....cccviiiiiiiecec e 26
2.1.11.8. Cooling System EffiCiency........cccccceveiiiiiiiiiiecec e 26
2.1.12. Energy Consumption Reduction Approaches ...........ccceeveeveeiiieeineene 27
2.1.13. Low-Power Design versus Energy Efficiency ..........cocevvveviiiiicinnnnn, 28

2.1.14. Energy Consumption Reduction Approaches ..........cccceevveiveniineineanne 31



2.1.15. COOlING SYSLEMS....cciviiieiiieiieeie et e e nneas 32
2.1.15.1. INrOQUCTION ..o 32
2.1.15.2. Basic Refrigeration CyCle ...........cccoovevviveiieiieie e, 32
2.1.15.3. Cooling ArChiteCtUre ........ccccveiueeieiieie e 33
2.1.15.4. C0oO0liNG ProCess TYPES ...ccveiveerreaiesieesieeiesteesiessesiaeseeeneessaesseens 33
2.1.15.5. Space Co0liNG.......coceiveiiiieiiere e 34
2.1.15.6. Heat REJECHION ......cuveiiveiecieceee et 34
2.1.15.7. Humidity and DUSL ..........cceiieiiiieceece e 35
2.1.15.8. DeSIGN CrItEIIa ...vecvi e eieeiiecieeie et 35
2.1.15.9. Data Center Thermal Considerations ............ccccoceverriereneiennnn, 36
2.1.15.10. Hot Aisle and Cold Aisle Layout .............cccccvevevieieciieiienenn, 37
2.1.15.11. Heat REMOVAL .........ccoiiiiiiiiiieieieeee e 37
2.1.15.12. Chilled Water SYStEM.........ccccivevieiieiieie e 38
2.1.15.13. Cooling Towers VS Dry CoOlers........c.ccccovvevveieiiene e, 41
2.1.15.14. CRAH VS CRAC ..ot 42
2.1.15.15. Pumped Refrigerant for Chilled Water Systems...................... 43
2.1.15.16. Air-Cooled System (2-Pi€Ce) ........cccccvevviieeiiiieiee e, 44
2.1.15.17. Glycol-Cooled SYStem .........ccccoeiieieeieieece e 45
2.1.15.18. Water-Cooled SyStem...........ccccocveiieiiciieiecce e 46
2.1.15.19. Air-Cooled Self-Contained System (1-piece) .........ccccevvvennen. 47
2.1.15.20. Direct Fresh Air Evaporative Cooling System........................ 48
2.1.15.21. Indirect Air Evaporative Cooling System ..........ccccccvevvevveennenn, 49
2.1.15.22. Self-Contained RooOf-Top SysStem ..........cccevvveveveevecicseenen, 50
2.1.15.23. Modern Energy Efficient Cooling Systems..........c.cccceevevvenee. 51
2.1.15.24. OPEX — CAPEX .. oot 51
2.1.15.25. Legacy Cooling and the End of Raised Floor ............c............ 52
2.1.15.26. Modern Data Center Temperature Set Point ..............ccccveeee. 52
2.1.15.27. Ligquid COO0lING ...ocovviiiiiieecie e 52
2.1.15.28. Immersion-Cooled SyStems ........cccccvevieeiieiiie e 53



2.1.15.29. Direct Contact Liquid CooliNg........ccceveviveieiieiieieee e, 55
2.1.16. Liquid Cooling Drawbacks ...........cccccceiieiiiiieiienesie e 55
2.1.17. Free COOIING ...ocveiieecie ettt 56
2.1.18. Data Center Cooling Challenges ..........cccevveieiieieiie e 56
2.1.19. Fine-Tuning AUtOMALION ..........cccveiueeieiierie e 59
2.1.20. FULUE TABAS .....evivieeiieie e 62
2.1.21. Cooling CONCIUSION .......ccviiiicie e 62
2.1.22. Security and Reliability ..........c.ccoeiiiiiiii e, 62

2.1.22.1. PhySiCal SECUNILY .....coieiiiiiiciieie e 62

2.1.22.2. Data Center Physical Security Checklist...........c.cccccooveviiinennenn. 64

2.1.22.2.1. Site LOCALION ......oiieuiiiiiiicsieieise e 64
2.1.22.2.2. Site PEIIMELEr ..ot 64
2.1.22.2.3. FACIHIITIES.....cviiiiiieiiiicece e 65
2.1.22.2.4. DiSaSter RECOVEIY ........covevuieiieeiesieesiecie s sie e, 65
2.1.22.2.5. PEOPIE ...ttt 66
2.1.22.2.6. Disaster Recovery PoliCI€S ........ccccccvveviiiieveiiciiene, 67
2.1.23. Data CeNter PrOCESSOIS. ......ciiiiiiiiiiiiieiiesiisee e 67

2.1.23.1. INtrodUCTION ..ot 67

2.1.23.2. ARM ArchiteCture REVIEW ..........ccocvieiiiieiiisc e, 67

2.1.23.3. ARM PIatfOrmS ........ooiiiiiiiiiii e 68

2.1.23.4. APPlIed MICIO ..o 68

2.1.23.5. ARM based server Doards ...........cccoceveriineneinc e, 68

2.1.23.5.1. X-Gene 2 X-C2 Evaluation Kit ..........cccccoevvrenennne. 68
2.1.23.5.2. LeMakKer CellO........ccooiiiiiiiiiiicicc e, 69
2.1.23.5.3. Gigabyte MP30-AR0........ccccceiiiiiieiiie e, 69
2.1.23.5.4. Gigabyte MP30-AR0........cccoceiiiniriiiie e, 69
2.1.23.5.5. ODROID-XUA......cooiiiiiiiiiiieceeseeee e 69
2.1.24. ARM REVIBW.......otiiiiiiiiieiieeeee st 70

2.1.25. Scanning the Server TeChnologies ... 72



Xi

2.1.25.1. INrOQUCTION ..ot 72
2.1.25.2. Intel High-End versus LOW-ENd............cccccoevviiniieiecc e, 74
2.1.26. Data Center Related Research HOIMZONS ..........ccccoeveiinenciniiees 74
2.1.27. Building an Ultra Power Data Center...........cccoovevvivieiieereciieseeseeiesnens 74
2.1.27.1. Server CONNECLIONS. .......ccueviiirieieirienreeee e 74
2.0.27.2. BOAIUS.....ooitiitiiiiiiieiei e 75
2.1.27.3. SErVer ENCIOSUIE........cociiiiiiiieeeseeee e 76
2.1.27.4. Final Data Center Solution Characteristics ............cccccuverveennen. 78
2.1.28. Innovative Chulalongkorn DeSIgN...........ccceevveieeieiieieese e 78
2.2. Data Center CONCIUSION ......cviiiiiiiicesiii e 79
2.3, IMIICTOPIOCESSON . vvvveeveiieestaeateanaesseestsesessraesbeesesseesaeesesssestaenteassesseenneaneesreenseans 81
2.3.1. INEFOTUCTION ..ottt 81
2.3.2. ProcesSOr ArCHITECIUIES ......c.vciviieieiiie et 81
2.3.2.1. DEFINITIONS ...ttt 81
2.3.2.2. ArChItECIUIE TYPES ..vviiiienreiiieiteeiiecie ettt 81
2.3.3. Microprocessor INStrUCtION SEt ..........cccvvveiiiieiiccece e 82
2.3.3.1. ISE SPeCIfiCations .........cccevviiiieiieaieii e 82
2.3.4. MACNINE TYPES ..ottt re e 83
2.3.4.1. ACCUMUIALON ...ttt 83
2.3.4.2 GECALONGKORN. UNIVERSILY ... 83
2.3.4.3. REQISIEr-IMEMOIY.......ccveiiiieitieite et 83
2.3.4.4. L080-STOTE ...t 83
2.3.4.5. MemMOIY-MEIMOTY .....ccociiiiiiieiiie et 83
2.3.5. INStruction LENGLN ......cviiiiiiiicce e 83
2.3.6. Memory ConSIAEratioNS ..........ccveiueeiieiie e 84
2.3.7. SUPPOItEd OPEIrAtiONS .....ccvviivieirieiieeciie ettt 84
2.3.8. Types Of BranChes .........ccoouiiiiiieii e 85
2.3.9. Instruction Set ENCOUING ......cvoiieiiieiiiciee e 85

2.4, LLVIM BACKENA ... e 85



xii

2.4.1. TermMiNOIOQIES. ......civveiieeie e sne s 85
2.4.1.1. 3-Stage of Compilation ..........ccccceeveiiieiiiie e 85
2.4.1.2. LLVM Backend Pipeline........c.ccccoeiieiiiieiicie e, 85

2.4.2. LLVM AsSSeMDBIY LaNQUAGE .......ccverveeeisierieeiesieesie e e see e sie e 86
2.4.2.1. INErOTUCTION ... 86
2.4.2.2. TAENTITIEIS.....ooiieiiiee e 86
2.4.2.3. High LeVvel STrUCTUIe .........ccoeiieeiie e 87

2.4.3. LLVM Target Independent Code Generator ............ccccovvevveieeieeneeinennnn, 87
2.4.3.1. INErOUCTION ...ttt 87
2.4.3.2. The high-level design of the code generator ...........c.cccccovevveennen. 88
2.4.3.3. TableGeNn TOO0I.........ciiiiiiiiriee e 89
2.4.3.4. The LLVM Code Generator Classes ..........c.ccoervrererreereneiennnn, 91

2.4.3.4.1. Target Description Classes ..........ccoevveveeivevesieesiennnn, 91
2.4.3.4.2. Machine code description classes.........c.ccccevevevveieennenn, 91
2.4.3.5. The MC LAYEN ...ocviiiiiieie et 91
2.4.3.6. InStruction SEIECLION........cc.coviiiiriiiiiicce e 92
2.4.3.7. SelectionDAG Select Phase ..........cccoovveriiiiiciiicsce, 93
2.4.3.8. LLC DAG Related Arguments............ccceevveveeieeieseesieee e, 93

2.4.4. LLVM IR to Machine Code Walk Through..........cc.ccccovveviiiieiieiiciennn, 94

2.4.5. LLVM Machine Code (MC) COMPONENTS ........cceevveiieiieriiiieiieieeieennn 96
2451 RET oo s 97

16-bit Integer VHDL-based Laser PrOCESSOI .........c.ccvevveiieirerieiiesieesie s 100

3.1 INErOUUCTION. ...ttt 100
3.2, IMPIEMENTALION ...t 100

3.2.1. Laser Final ISE DESIGN........ccoviiiiiiie et 100
3.2.1.1. Laser ENGIANNESS.......cccveiieieriiiiiiisesee e 100
3.2.1.2. Laser Supported Addressing MOdES..........cccccvevieeeieeiieisieesinnn 100
3.2.1.3. Laser Caller-Callee CONVENLION .......cccveieierieiiieniceseeeees 100

3.2.2. Final Instruction Set Bits ENCOAING.........cccccvviiiiiie i 101



3.2.2.1. Instruction DeSCIPION .......ccvcviiieieerie e 102

3.2.3. Designing the Instruction Set Implementation..............ccccocevvvevviienen. 104
3.2.3.1. Register Number ASSIgNMENt ..........ccceevvevvereiiese e 104

3L2.3.2. STACK ...ttt 108

3.2.3.3. Frame POINEN ........ccviiiiieieinieeese e 109

3.2.3.4. Flag ReQISIEr.......eciiiieeie et 110

3.2.3.5. Pass Method ArguUmENLS........cccccveieeieiiie e 110

3.2.3.6. ANtNMELIC. ... 110

3.2.4. Processor Implementation ........c.ccccovveveiieiieeie e 110
3.2.5. Processor File STHUCLUIE...........ccoiiiiiieciic e 110
3.2.6. SIMUIALION ....oviie et 111
3.2.6.1. Testing INStrUCLIONS .........c.civveiiiiecieee e 113
3.2.6.1.1. MOV inStruCtion test: ..........ceoveirereiinineieesesieeeen, 113

3.2.6.1.2. SUB INSLIUCLION: .....cviiiiiiisieiceicee e 114

3.2.7. FPGA IMplementation .........cccccvueiiieiieieiie e 114
BL2.7. L THMING 1ttt ettt 115
3.2.7.1.1. Setup and Hold TIMe.........ccceevivviiiiiece e 115

3.3L LIMILALION . 116
3.4.Result......... . 3W AN ARHN VI LANENNG 117
4. Processor Performance Evaluation.............c.ccocoiiiiiiieneineeese e 118
4.1 INEFOAUCTION. ...ttt 118
4.2, IMPIEMENTALION .....eoiiiiccee et 118
4.2.1. BENChMArKING ....cc.oovieiieieiicie e 118
4.2.1.1. Benchmarking Measurements ..........ccccocvevvveeveeiieeveesie e 119

4.2.2. Synthetic BENCMArKS.........cooiiiiiiiic e 120
4.2.3. EEMBC CoreMark BENChmark ...........c.ccoouvviiiiiiciiicinc e 120
4.2.3.1. Coremark Benchmark Score Reports..........cccccevvvivieiieciieeinnenn 121

4.2.4. COreMark fOr X80 ..........cccuiiiiiieiiieiisi e 121

4.2.4.1. Benchmarking in Assembly ..........cccooiiiiiiiiiii e, 122



Xiv

4.2.5. 256-Point Complex Fast Fourier Transform ...........ccccccoecvvieiivencccnennnn, 123

4.2.5.1. € NUMDET ..ot 123

N I\ Y] (o] =] 1SS 124

4.2.5.3. Euler’s Formula.........cccccooviiiiiiiiiiic e 124

4.2.5.4. Fourier TranSform ..o 125

4.2.5.5. Fast Fourier Transform ... 126

4.2.5.5.1. Discrete Fourier Transform ..........cccccovveviinencinnnnn, 126

4.2551.1. Radian........ccooevveiiiiniinienen, 126

4.2.5.6. 256-Point Complex Fast Fourier Transform ...............cccccoeee. 130

4.2.5.7. Cooley-Turkey Algorithm ..........cccccevviieinece e 132

4.2.5.8. FFT Computation Literature REVIEW ...........ccccoevveveiiieiieennene 133

4.2.5.9. PicoBlaze FFT Benchmark ..........ccccoeiiiiiiiiniicceee, 133

4.2.5.10. 8-bit Processor MathematiCs ............cccovvrereinineneineseenen, 133

4.3 RESUN ... e LSttt e e 134
5. Development of an Assembler for Laser Processor based on LLVM

INFRASTIUCTUIE ...t 135

5.1, INErOUUCTION. ...ttt 135

5.2. LLVM Backend DeVvelopment ..........cccoiiiiiiiiiiiciccecce e 135

5.2.1. Branch Implementation ..........cccccooiiiiiiieiiiiiie s 135

5.2.2. Writing the LLVM Backend ...........ccccccoviiiiiiiiiie e 135

5.2.2.1. Rapid Development of an Assembler...........ccccccevvveviiicinennene. 135

5.2.2.2. Add new Machine Target in Clang .........cccccccvevvevveieiieieeeee 136

5.2.3. Target RegiStration ...........cccciveiiiiieiie e 140

5.2.3.1. Minimum Backend Bare-bone Files...........c.ccocoiiniiiicnen, 145

5.2.3.2. To Handle Return RegiSter..........ccocvveiiieiieiiiecie e 149

5.3. Register AHOCALION ........cccuviiiiiie et 149

5.3.1. Live Variable ANalySiS.......ccocveiieiiiiiiiiie e 149

5.4. Instructions IMplementation .............cccovve i 149

5.4. 1. REIUIN TNSIIUCTION ...ttt eeeeeeeeseeeseneneennens 149



XV

5.4.2. MemOry 10Ad/SIOIE ........coviiiecieecie et 153
5.4.3. Frame INUEXES .......ooveiiiiiiieisienree s 155
5.4.4. “ADD” INSTIUCLION ...ooiuviiiiiiiiieiie st 156
5.4.5. “MUL” INSIIUCHION ..ottt 156
5.4.6. “DIV” INSIUCHION 1.eeivviiiiiiie ittt eine e 157
5.4.7. Branch INStrUCTIONS. ........cceoviiiiiieiiiieieise e 158
5.4.8. UNconditional JUMP ......ccoeiiiiieiiiie e 161
5.4.9. Global Variables..........ccooiiiiiiiiee e 163
5.4.10. REIOCS ...ttt 164
B4 L0, FIXUP . cttitieteeieesieie ittt sttt bbb s ettt bt beebeeneene e e 165
5.5. Implementing LLVM Integrated Assembler ...........cccccovvviiieieiiciiececenn, 166
5.5.1. Implementing Assembly Parser SUPPOIt.........ccccccvveevverieiicseene e, 166
5.5.2. FUNCEION Call ...ttt e 167
5.5.3. Laser StaCk Frame ........ccccoiiiiiiieiiiiieieise e 167
5.6. Machine Code (MC) FrameWOIK.......ccc.ccvveieieeiiaieieesieeiesee e sve e 169
9.6.1.1. ASMPAISE ...cviiiiiiiiiiieii i 169

5.6.1.2. ODJECt FIlES....viiiviiiiiiciiiic i 170

5.6.1.3. ASSEMDBIY ParSer.........cccooiiiiiiiiiicce e 170

5.6.1.4. InStruction ENCOE ..........cciiiiiiiiiiinicec e, 170

5.6.1.5. INStruction DECOUEN ..........ccuririiiieiiinieeeerie e 170

5.6.1.6. ELF ODJeCt WIILEr ......ccviiieiiiee e 170

5.7, LASEI ELF FIlE .o 171
5.7.1. Executable and Linkable FOrmat............ccooooeiiininiiinccic e 171
5.7.2. SYMDBOIS ... 172
5.8. The LINKING PrOCESS ......ccviiiiiiie ettt 172
5.8.1. Symbols and ReloCations ............ccceevieiiiiiiiciiecec e 172
5.8.2. The Global Offset Table..........cccooiiiiiiiiiiicc e, 173
5.8.3. SECtions and SEGMENTS .......ccvveiieiie e 173

5.8.4. A DIt MOIE @DOUL ELF ...t eeeeeeeeeees 174



XVi

5.8.5. HeX File GENEIatiON .........coeiiiiiiiiisieeeie e 175
5.9. Backend DebUgQiNG.......ccoviiriieiieie et nne s 175
5,10, ASIMPAISEN .....eviiiiiiiii e 175
511, LLD LINKEE .ttt ettt 176
5,12, SUMIMAIY ...ttt ittt bbbt e et e br et e e be e e antes 176

5.12.1. Getting The LLVM INfrastruCture..........ccccoevvevieiieineie e s e 176

5.12.2. Frontend: C language Support by Clang (16-bit).........cccccccevvevvinennenn 176

5.12.3. Target regisStration ............cccoiveiueiiieiie s 177

5.12.4. Laser Backend Related ClaSsSes...........ccourvrernininieininieee e 178

5.12.5. TabIeGEN TOON.....cceiiiiiiiiiiiiciiiis e 178

5.12.6. Laser LLVM Backend STrUCTUIE ..........ccovrveieirienieinesieeee e 178

5.12.7. ASSEMDBIET ..ottt e 179

5.12.8. FUNCEION Call ....c.ooiiiiiiiiicicc e 181

5.12.9. INliN€ ASSEMDIY . ....iiiiiiiiiieiee e 181

5.12.10. Label, Jump, and GOLO .......ccvveiieiieiiciccecce e 182

512,00, LINKEL 1.ttt sttt sttt sttt eneeneas 182
5.13. LIMITALION ...ttt 182
5.14. Result ... T e, 183

6. IEEE-754 64-bit Floating Point Arithmetic on 8-bit Processor: PicoBlaze case

184
B.1. INErOUUCTION. ...ttt 184
6.2. IMPIEMENTALION ........ecviiiieiece e 185

6.2.1. IEEE-754-2008 Floating-Point OVErVIEW..........cccccvevveivieieeiecic e, 185

6.2.2. Main DefiNItiONS..........ccoiiiiiiicc e 185

6.2.3. DOUDIE PreCiSiON .........ccoiiiiiiiiciii e 187

6.2.4. EXPONent ENCOAING .......ooiviiiiieiie et 187

6.2.5. Exception Handling ........ccoooiieiiiiii e 188

6.2.5.1. OVEIrfIOW......oiiiiiiiiiecc e 188

B.2.5. 2. UNAEITIOW ... 188



6.2.6. The INeXaCt EXCEPLION.......ccueieeie e 188
6.2.7. Addition/SUDIIACTION .......oveiiiiiiiicesee e 188
6.2.8. MUIIPHCALION ..o 189
8.2.9. DIVISION .vitiieieciistee e 190
6.2.10. Arithmetic Special CasesS.........ccoviieeiiiiieiiere e, 190
6.2.11. ROUNAING ...vveveeie ettt 192
6.2.12. Guard, Round, and StiCKY BitS.........ccccoceiieriiiieiiere e 194
6.2.13. Subnormal INPULS .......ccoooiiiree e 194
6.2.14. Conversion from biased to two’s complement.............ccccevieernrnnnene 195
6.2.15. FPGA Memory Block Requirement in PicoBlaze for FFT Algorithm195
6.3, LIMITALIONS ...ttt 195
6.4. ReSUIt ... AL I N e s 195
7. Improved Development Cycle for 8-bit FPGA-Based Soft-Macros Targeting
ComplexX AIGOTITNMS.........ooiiii e 197
7.1 INErOUUCTION. ...ttt 197
7.2, IMPIEMENTALION .....c.vevie et eae s 197
7.2.1. Related WOTKS ......coviiiiiiiiiiiiiiiisci e 197
7.2.1.1. Standard Development Cycle Limitations............c..ccccceevvenenne. 198
7.2.2. PicoBlaze ASSEMDIET ..ot 199
7.2.3. PicOBIaze SIMUIALOT ........couiiiiiiiiiiiiieiii e 200
7.2.4. Improved Development Cycle for PicoBlaze............cccccccovvevveieiieenenn, 200
7.2.5. Proposed Hardware Platform ...........cccccooveiiiiiiiciicce e, 201
7.2.6. Memory BIOCK RAMS.........covoi e 204
7.2.7. PicoBlaze Program BRAM .........cooo oo 204
7.2.8. Data Memory BRAM .......ooo ittt 204
7.2.9. Proposed Software ArchiteCture.........ccooovevieiieeiiecie e 204
7.2.9.1. ARM Application Project..........cccceveiiieiie i 204
7.2.10. Hex to Header File ULty .........ccoeeiieiiiiiiie e 205

7.2.11. Proposed Development CYCIe ........ccovvvieiiiiiiicic e 205



7.2.12. Proposed Address Generator CirCUItIY.........ccccevvereevieseeseeseeseennnn, 207
7.2.13. Proposed Verification MechaniSm ...........ccceveveieeieiiesee e, 208
7.2.13. 1. CONCEPLS ...ttt 208

7.2.13.2. MECRANISM ... 208

A S o] 1 VA T Vo - USSR 209
7.3 LIMITALION .o 209
T4 RESUIT ... 209

8. Zipi8: An Industry Level 8-bit Soft-Core PicoBlaze Compatible Processor..211

8.1 INTrOUUCTION. ...ttt et 211
8.2. IMPIEMENTALION .....c.veceiiiicie e 217
8.2.1. The PicoBlaze Firm-COore..........cccciouiineiiiieieise e 217
8.2.1.1. OVEIVIBW ...ttt 217
8.2.1.2. Related WOTK.......ccocciiiiiiisi it 218
8.2.1.3. PicoBlaze ApPlICAtIONS ..........ccccvveiueeieiieie e 218
8.2.1.4. PicoBlaze Source-Code ANalysiS..........cccocvevveiieenireieieeseeinenn 219
8.2.1.5. LLVM fOr PiCOBIAZE .......ccocviviiiiiiiicicceee e 219
8.2.1.6. Research on how to change PicoBlazeto IPC=1................. 219
8.2.2. Reverse Engineering of PicoBlaze .............ccccov e, 220
8.2.2.1. State Machine and Control ............cccoceeeiiineiniincec e 220
8.2.2.2. Program COUNTET .......cccvuiiiiiie it eiiee e sieessiee e siree e s ninesssee e 221
8.2.2.3. Logic Optimization............ccvvveieeieiie e 221
8.2.2.4. Primitive Conversion to Non-Vendor Specific VHDL ............. 221
8.2.2.4.1. LUT6, and LUT6 2: 6-Input Lookup Table................ 221
8.2.2.4.2. FD: D Flip-Flop, and its variants: FDR, FDRE.......... 222

8.2.2.4.3. XORCY: XOR gate, and MUXCY:: 2-to-1 Multiplexer
...................................................................................... 223

8.2.2.4.4. RAM32M, RAM256X1S: Multi Port Random Access
Memories (Select RAM) ......ccccveiiiiieiiiese e 224
8.2.2.5. Reversed Engineered ModUIES...........cccveiieiiiieiieiiie e 226

8.2.3. Zipi8: PicoBlaze Compatible Soft-Core.........cccceevvviviiieiie e, 228



XixX

8.2.3.1. PicoBlaze Conversion Using Modular Approach..................... 228

8.2.3.2. PicoBlaze ArchiteCture...........covveiiinciiiccee e 230

8.2.3.3. Zipi8 Modules’ SchematicC ........cccccvvviiiiiiiiniiiie e 233

8.2.3.4. Zipi8 VErifiCation ........c.ccceevviiiiieie e 234

8.2.3.4.1. CONCEPLS ..eeviirieiiiee ettt 234

8.2.3.4.2. MECNANISM......viiiiiiiiiieisees e 234

8.2.4. PicOBIaze 0N LALtiCe........cceieiiiiicisicee s 236

8.2.4.1. Synthesis Utilization ReSUlt .............cccooveeviiiiiiieie e 236

8.2.4.2. Lattice RAM BIOCKS. .......ccccoiiiriiiniiiiieiicsee e 237

8.2.4.3. Program MEMOTY .......cccciviiiiiiiiiiiiiiiiensiies e sreessinesssinessseee s 237

8.3 LIMITALION ..ot 238

8.4. RESUIL ...t L i it e s 239
9. DAP-Zipi8: Deterministic Real-Time Embedded System Microprocessor

without Branch and Load Delay Based on PicoBlaze Architecture ...........cccccccve.... 240

9.1, INErOTUCTION. ...tttk 240

9.2, IMPIEMENTALION .....c.vecvieieciice et eae s 242

9.2.1. DEFINITIONS ...ttt 242

9.2.2. Performance versus DeterminiSm ........cc.cccoererninennieneneeseneeenes 243

9.2.3. Related WOTK......cciuiiiiiiiiiiiciit i 245

9.2.4. The PicoBIlaze Firm-COore..........ccooeiiiiiiiiiiiinieineneee e 247

9.2.4. 1. OVEIVIBW ...ttt 247

9.2.4.2. PicoBlaze Source-Code ANalysiS.........cccooveveeieeieeieiie e 247

9.2.5. ZIPIB WIth CPI = L.ttt 249

9.2.5.1. Branch And Load Delay Elimination............cccccocovveviiniinennnnnn 249

9.2.5.2. Zipi8 Modifications to Achieve CPI =1.......ccccccceviviviiniiiennnnnn 251

9.2.5.3. Adding Dual Address-Bus Prediction to Zipi8 ...............ccceeve. 252

9.2.5.3.1. Program Counter Module Modification ..................... 254

9.2.5.3.2. Stack Module Modification ...........ccccocevvviiiiiiiiennenn 256

9.2.5.4. Resource and Power Utilization ...........cccceeeeeeeceeeeeeeeeeeeens 257



XX

9.2.5.5. VErIfICAtION......cviiiiiiiiiicieeee e 259
9.2.5.5.1. Isolated Instruction EXeCUtion ............cc.ccoeevrvrveinnnnn 259

9.2.5.5.2. Math Library EXecution...........c.cccccevvveviviieiiiesnsiennnn 259

9.2.5.5.3. Random Instruction Execution from A Pool .............. 260

9.3, LIMITALION ..t 260
9.4, RESUIT ... 261
10. ARM Cortex-MO Implementation in VHDL...........ccccocovviveiieiiece e 262
10.1. INErOUUCTION. ...ttt 262
10.2. IMPIEMENTALION .....eovicie et nae s 262
10.2.1. CorteX-IMO OVEIVIEW .........cieeiiiieieniinieesisie et 262
10.2.1.1. Pipeline Stages in CorteX-MO...........cccceeviieiiierecieceece e, 263

10.2.1.2. INSEFUCEION SEL.....ccviviiiiiiiisiiiec e e 263

10.2.2. Cortex-MO0 32-Dit INSTIUCLIONS ........cccivieeiiieieeisie e 264
O T o (=0 1) =] £ TS 269
10.2.4. Cortex-MO Instructions ENCoding ..........ccccevvivevveveiieieece e 269
10.2.5. Discovering Cortex-MO0 PC Register Behavior............cccccccvvvvevivennne. 270
10.2.6. Pipeline stages in the CorteX-MO Processor ..........cccccvveveerieivesieereene 274
10.2.7. INTEITACES ... 274
10.2.7.1. AMBA AHB-Lite Interface..........ccceovvriniininiiecee 274

10.2.8. MeMOIY MO ......ccoeiiriiiiiteeie et 275
10.2.9. L0OAd 8N SEOTE......cviieiieiiiiieiesteees e 277
10.2.10. LDR INSEIUCEION......c.ccuiiiiiiieiisieieeseieee e 277
10.2.11. Memory Access in Cortex-M0 (ARM-V6-M) .........cccoevvevviiieirene 277
10.2.12. AlIGNMENT SUPPOIT ....cviiiiiecie e 278
10.2.13. CorteX-MO MUIIPHET ....ccveiiiecee e 278
10.2.14. Cortex-MO Instruction EXECUtION..........c.coovviiiicieniiiieececeee, 278
10.2.15. Instruction Condition COUES..........cccoeriiiiiiieieieee e, 279
10.2.16. BranCh STEPS.....cceioiiiiiecec e 279

10.2.17. Operating MOES .......cccveiiiieiiiecie e 280



XXi

10.2.18. Privileged and Unprivileged EXECULION ........ccccovevevieieerieiie e 280

10.2.19. EXCeption NUMDEIS ........oieeieiieie et 280

10.2.20. The VeCtor TabIe.......c.ccoviiiiiiieiscsee e 280

10.2.21. SVC INSIIUCTION ...t 281

10.2.22. ARM Cortex-MO0 Implementation Overview Schematic .................. 282

10.2.23. ARM Cortex-MO0 Implementation Verification ...........cccccccoevvennne. 282
10.2.24. Turning ARM Cortex-MO0 Implementation into Laboratory Modules

for Graduate Engineering StUdents .........c.ccceevvvievrcce s 285

10.2.24.1. Related Work on Microprocessor Laboratory Courses......... 285

10.2.24.2. Implementation Steps with Laboratory Modularization in Mind

.................................................................................................... 285

10.3. LIMITALION ..ottt 286

10.4. RESUIL ... sl il i e e 286

11.  Adaptive Microprocessor with Miniature Accelerator using LLVM

Infrastructure and FPGA: The Case of ARM CorteX-MO .........cccoevvrineinincnennn, 287

110, INErOAUCTION. ...ttt bbbt 287

11,2, IMPIEMENTALION ...t eae s 287

11.2.1. General Literature REVIEW .........ccccovrieieimiineisinie e 287

11.2.1.1. Computation MOdelS ..........ccccoveiiiiiiieie e 287

11.2.1.2. Processor ClasSifiCation ............ccoccoerrininiineneesc e 288

11.2.1.2.1. General Purpose Computing...........cccccvevveveerueseennnnn 288

11.2.1.2.2. Domain-Specific Processors.........cocovvvvvveieeivesvennnn, 289

11.2.1.2.3. Application-Specific Processors..........ccccevvevvvrvenenn 289

11.2.1.3. Flexibility vs Performance ...........ccccooevvieiieiiic e, 290

11.2.1.4. Reconfigurable Computation...........cccccoevveviiiiiiiie e, 290

11.2. 140 HISEOMY ovviiieeciie et 290

11.2.1.4.2. TREOTIES ..ot 292

11.2.1.4.3. DefiNItIONS .....oooviiiiiiiiiieeec e 294

11.2.1.5. Applications of Reconfigurable Computing............ccccceveenneee. 294

11.2.1.5.1. High-performance Computing...........cccccevevveiiveeninnns 294



11.2.1.5.2. Custom Computing Machines ...........ccccccevvveverinennnn 295
11.2.1.5.3. Fast Prototyping and Emulation Systems................. 295
11.2.1.5.4. Submicron and Nanoscale Computing Systems....... 295
11.2.1.6. Partial Re-configuration ............cccoveveeieiie i 295
11.2.0.7. GranUIArity.....c.cccveveieesecie e 296
11.2.1.8. Rate of Reconfiguration ............ccccccevvveiiiieiinece e, 296
11.2.1.9. HOSt COUPIING.....eoieiiieiece e 297
11.2.1.10. Routing/INtErCONNECES........ccciveiieciecieeie e 297
11.2.2.11. BENETIES ..ottt e 297
11.2.2. Preliminary Literature on Adaptive ProCcessor .........ccccovveveivevivernenne. 297
11.2.2.1. High-Performance Reconfigurable Computing (HPRC)......... 297
11.2.2.2. FPGA TeChNOIOGIES .......coveiiiiiieieciesieeie e 298
11.2.2.3. Applications of C 10 HDL ......cc.cccoovveiieie i 298
11.2.2.4. Field Programmable Gate array (FPGA).......c.cccceveiiveiviinennnn, 298
11.2.2.4.1. VIVAUO. ...cuviiireeiiie et 298
11.2.2.4.1.1. Hierarchical Design ................ 298

11.2.2.4.2. Debugging FPGA ..o 299
11.2.2.4.3. Joint Test Action Group (JTAG) ......cccevvevveveiiennnnn 299
11.2.2.4.4. PetaLinux on ZyNgMP........c.cccceeveevveveiieseese e 300
11.2.2.4.5. FPGA Terminologies.........ccceeveiveeiveveiieseesie e 302
11.2.2.45.1. Logic Cell ...coovvvviiiiiiene, 302

11.2.2.5. Hardware PUrChaSe...........ccooerieirieieiicsieiee e 302
11.2.2.5.1. Partial Reconfiguration...............ccceevevvivieiieincieenn, 302
11.2.2.5.2. DEVICE SUPPOIt .....covviiiieciie et 303
11.2.2.5.3. LattiCe 1CRA0 ...oveiiieiiee e 303
11.2.2.5.4. SPArtan-6........cccceeiuieiiiieiiiee e 303
11.2.25.4.1. MaCIOS: ..o 303

11.2.2.5.4.2. Primitives: Components native to

the targeted FPGA. Data-width varies:....... 304



11.2.2.5.5. Xilinx Design Language (XDL) .......cccevvevvevviiiennenn 304
11.2.2.5.6. RapIASMIth .....oviiiiiiiiieee s 305

11.2.2.6. Adaptive Microprocessor Related Works and Literature Review
.................................................................................................... 306
11.2.2.7. Adaptive Execution of LLVM IR Exploration........................ 308
11.2.2.7. 1. LISEOF IRS ..o 309

11.2.2.8. Zipi8 IPC Improvement: Dual Memory Port Approach Review
.................................................................................................... 309
11.2.2.8.1. RISC HiStOIY .....ocviiviiiiiiiiinieieie e 309
11.2.2.8.2. Delayed Load and Delayed Branch Problem............ 310

11.2.2.8.3. RISV Solutions to Delayed Load and Delayed Branch
Problem ... 311
11.2.2.8.4. List of RISC ProCesSOrs: ......c.covivevveereesieieenieseesneas 312
11.2.2.9. Zipi8 Modifications to Achieve IPC = 1 Review.................... 313
11.2.2.9.1. DAP-ZIpi8 StaCK .......ccccvvivrieiiieiene e 314
11.2.2.10. REVIEW RECAP ....c.viiveeiiieiiciee et st 315

11.2.2.10.1. Flexibility vs Performance — Reconfigurable

HArAWArE .....ooeeeeeiiecc s 316
11.2.3. Adaptive Processor Related Work Recap ...........ccccceevvevvevieiecinennene, 318
11.2.4. Motivation And Methodology.........cccooviiieiiiiciicc e 321
11.2.4.1. MOUIVALION ..ottt 321
11.2.4.2. MethOdOolOgy .......coveivieiieeieiie e 321
11.2.5. BeNChMArKiNg .......ccveiuiiieiieeie et 322
11.2.5.1. OVEIVIBW w..viiiiieiesieeee et 322
11.2.5.2. Synthetic Benchmarks............ccccoooviiiiii e, 322
11.2.6. LLVM Adaptive Backend Pass...........ccccovveiiiiiieiie i 325
11.2.7. Adaptive Processor Using Miniature Accelerators .............cccccveennenne. 327
11.2.7.1. ODSEIVALIONS ....c.eoviiiiiiiieiee e 328
11.2.7.2. Retaining Backward Compatibility ............cccooevevieiiieiieinnnnn, 328

11.2.7.3. Pipeline Flush to Bypass Instruction Pair via Dual-Port Memory
BIOCK RAMS ..ot 328



11.2.8. Parallel Execution of Removed Instruction Pairs............cccccovvvrennnen. 331
11.2.9. LLVM Compilation for ARM Cortex-MO0 Baremetal........................ 332
0 O T e I T T O ST 333
11.2.10. LLVIM PSSttt 337
11.2.12. Periodic Pattern Mining (PPM) ........cccoiiveiiiie e 339
11.2.13. Cortex-MO Free Opcode SIOtS.......cccocveieeiiiieie e 340
No.342
11.2.14. CorteX-MO RESEt PrOCESS ........ccoiiiiiiiiiiii e 343
11.2.15. IAR Execution of fft_full.o .ELF File........c..cccooveiiiiiiii e 343
11.2.16. Adaptive Modules Added to Cortex-MO...........cccceevieveereiiie e 345
11.2.17. Accelerator OPeration ..........cccccvieereeeeieesieseese e see e e see e sie e 345
11.3. Miniature Accelerator VerifiCation.............coeovrereiniineneise e, 346
11.4. The Future Work: Maximizing the MA Performance ...........cccccceveviiienen, 346
11.5. Performance EValUation...........ccoceiiiiiiinincice e 347
11,6, LIMITATIONS ....eeitieceiei ettt 347
117 RESUI .o 347
12, CONCIUSION ...ttt 349
12.1. Processor Improvement CONCIUSION ............ccccoviiieieeie e 349
12.2. PUBIICALIONS. ...ttt 351
12.3. Projects ... HULALONGKORN. UNIVERSILY........oor 352
12,4, FULUIE WOTK ...ttt 352
I T Y o 1= o[ [or - OSSPSR 353
13.1. Appendix A — Full KCPSM6 Schematic (High Resolution)........................ 353
13.2. Appendix B — Zipi8 RTL VHDL Source Code.......c.ccevvevieiieeiieiieeiie e 353
13.3. Appendix C — Zipi8 on Lattice FPGA iCEcube2 Project Source Code ....... 353
13.4. Appendix D — C++ Tools Source Code..........ccouvvvieiieiiieiie e 353
13.5. Appendix E — Cortex-MO Implementation Schematic ............ccccoceevvvevinenne. 354

13.6. AppendixX F — PUDICALIONS. ........ccociiiiiieiie e 354



XXV

13.6.1. A guideline for rapid development of assembler to target tailor-made
MICTOPIOCESSOIS ..uvverveieieiteeseeeteesteesteaseesreessesseesseesseaseesseesseensessaesseaneenrens 355

13.6.2. Implementation and Verification of IEEE-754 64-bit Floating-Point

Arithmetic Library for 8-bit Soft-Core Processors..........c.ccccevvvvervenenne. 359
13.6.3. Improved Development Cycle for 8-bit FPGA-Based Soft-Macros
Targeting Complex AlGOrithms..........cccoeveieevi i 364
13.6.4. Modular Transformation of Embedded Systems from Firm-cores to
SOTE=COTES ..ttt 379
13.6.5. Deterministic Real-Time Embedded Processor without Branch and
Load Delay Based on PicoBlaze Architecture ...........cccoecevvevecieiieennenn, 409
13.6.6. VHDL Implementation of ARM Cortex-MO0 Laboratory for Graduate
ENgINeering STUAENTS........ccovviiiiieie e 413
13.6.7. Adaptive Microprocessor with Miniature Accelerator using LLVM
Infrastructure and FPGA: The Case of ARM Cortex-MO............cccu..... 417
REFERENGCES ..ottt sttt sttt sttt st ne e 431



1. Introduction

The preliminary research on data centers power consumption makes it clear that there
are only two ways to reduce the energy consumption of a data center. The first approach
IS to work on cooling systems used in data centers as they consume 50% of total energy
used in a data center. The second approach is to optimize the hardware used in a data
center. The studying of cooling systems falls under the physics of heat transfer and
thermodynamic and fluids, which usually goes under mechanical engineering
department and not electrical engineering. Therefore, as a researcher in electrical
engineering department my attention shifted on optimization of hardware components
of a server.

This explains why this thesis is divided into two major parts. The first part shows
the preliminary research on data center in general and identifies the server processor as
the most power consuming component. If one needs to reduce a data center power
consumption the most logical path is to optimize the microprocessor cores used in a
data center. Hundreds of cores exist in a server and thousands of servers sitting next
each other construct a data center. Hence, the power optimization of a core in
conjunction with cascading effect will enormously reduce the energy consumption.

The second part of the thesis explores the available microprocessor optimization
methods either in compiler or hardware design or both. Optimization concept always
revolves around the tradeoff concept. One cannot gain a factor without losing another
one. There is always cost when it comes to improving the performance of electrical
components including microprocessors. But one can always hope that perhaps there is
still room for improvement by shifting the cost to designer labor through manifestation
of his/her endeavors and intellect.

The second part contains the notable contribution of this thesis. At first the basics
of microprocessor design is explored. It was quickly realized that a processor without
compiler infrastructure is useless, and the work expanded to cover backend
development for Laser processor. Next, the 8-bit Xilinx PicoBlaze is picked as a
working platform and its internal behavior is unlocked using a new reverse engineering
method, 50% improvement is achieved by proposing a new method that removes
branch and load delays using dual-port memory blocks. Next stage of research shifted
to 32-bit ARM Cortex-MO processor which is one of the most popular embedded
system processor architectures (e.g., it is the main architecture in in STMicroelectronics
STM32 boards [1]). Finally, an adaptive microprocessor based on ARM Cortex-MO0
using LLVVM infrastructure is proposed. The architecture uses miniature accelerators
to inject results into a pipeline in parallel with other instructions to improve
performance. Two notable characteristic of proposed method is backward
hardware/software compatibility and the absence of requirement for having a hardware
expert involved with the design.

The proposed adaptive processor can be used by regular programmers without any
hardware background and can be simply turned on/off to preserve compatibility. Seven
research articles as the outcome of the work have been published.



1.1. Motivation

The two identified main factors which directly impact a data center consumption is (a)
cooling system efficiency, and (b) processor power efficiency (not only power
consumption). This thesis emphasizes merely on the processor part.

There are two types of processors: (a) General-purpose and (b) Application-
specific. The flexibility of a general-purpose processor is in negative-correlation with
application-specific processor efficiency. In other words, application-specific
processors are far more power efficient and exhibit higher performance than general-
purpose processor when it comes to specific tasks.

Sustained high performance across a broad suite of general-user applications is
usually the key requirement in the design of general-purpose processor cores, while in
the world of embedded processor, systems are geared to solve a single application (or
a limited class of applications) very efficiently [2]. The chance of having a processor
which can change itself to suit a task has been increased by recent advances in
manufacturing reconfigurable and reprogrammable devices such as modern FPGAs.

Therefore, one can design a system that evaluates necessary hardware for any
algorithms by identifying the sequential and parallel parts of them and then achieve
higher level of performance by automatic parallelization of the code into hardware and
then implement it on an FPGA to beat the general-purpose processors.

That is why this thesis proposes new methods to design a kind of adaptive
processor that can be geared towards a specific application with performance in mind
and then let it be deployed in scenario (e.g., data centers). The motivation which drives
this thesis is to come up with an adaptive processor which can reconfigure itself. The
re-configurability aspect of the processor enables the system to evolve and to be fit for
any specific application. For example, a data center that hires the adaptive processors
as its PUs, can exhibit higher performance per each program by adapting the server
cores to that specific task. This allow data center to morph itself at daytime to support
massively parallel computations, ready to serve swarms of incoming web requests
(changing the usage to be an infrastructure for web services) or can switch to high
performance mode and become the infrastructure for High Performance Computing
(HPC) while retaining the notion of maximum efficiency in both cases [2].

1.2. Hypotheses

Current advances in reconfigurable Field-Programmable Gate Arrays (FPGASs) allow
the digital circuit designers to design circuits with self-modification capability. The
increasing number of transistors on a chip [3, 4] allows the fabrication of FPGAs with
extremely large number of transistor count (in order of billions) which in turn enables
multicore soft cores [5-7] on a single FPGA chip possible.

An adaptive processor can be realized on a reconfigurable FPGA and designed in
such a way to make architecture morphing from an instruction-stream based general-
purpose Von Neumann (VN) to a tailored VN machine. The processor by itself can be
opted to tackle any algorithm in most efficient way possible.

The input to this system is a set of known language semantics such as a new
programming language that supports parallelism natively, or an algorithm written in C
(3rd generation language) using parallel programming libraries (such as OpenMP API
[8], CUDA [9], etc.) or Matlab (4th generation language) with Parallel Computing
Toolbox [10] or simply ignoring parallelism in software and write code in old fashion



procedural programming. The output of the system is a set of hardware modules
optimized for that specific algorithm which then will be transferred as bit-stream into
an FPGA device next to the original core.

The system details can be laid out as follow: A general-purpose RISC soft
processor on an FPGA with fixed Instruction Set Architecture (ISA) can adapt itself by
scanning through the program via its tightly coupled compiler (based on LLVM [11]
compiler infrastructure) on compiled time or run time and then extend its ISA by adding
instructions on the fly. The extended instructions can activate tailored miniature
accelerators (hardware) which have been designed by analytical part of the system.

The miniature accelerators work based on systolic arrays [12] designed for data-
streams driven computation operating at low pace. If the design can be realized, then
backward compatibility which is a very crucial factor in design acceptance in the
industry can be achieved. Additionally, the automation of adaptive part sets users of
system and implementers of algorithm free from hardware design part. This solves
another major obstacle that prevents most adaptive systems to be adopted in real-life
practices.

1.3. Objectives

The main objective of this thesis is: “To design an adaptive processor, able to change
its architecture and tune itself for efficiency and performance based on a given specific
task (an algorithm in form of a program)”. The stated main objective can be divided
into the following blocks:

1. Todevelop the Laser processor: An FPGA based integer 16-bit soft processor
using VHDL. This gives us enough knowledge on how to design
MICroprocessors.

2. Todevelop an LLVM backend for the Laser processor. This provides adequate
knowledge on compiler design and how to provide assembler, compiler, and
debugger for a newly designed processor.

3. Toembed essential software modules into the backend to analyze the compiled
program and produce appropriate hardware accelerators.

4 . To plug the automatic generated hardware accelerators as pseudo instructions
into the ISA and reconfigures the FPGA to support the hardware.

5. To design a comprehensive system that reconfigures the soft processor on
FPGA and produces an adaptive processor which varies across the flexibility
versus efficiency spectrum depend on the needs of program and factors
defined by the user.

1.4. Scope of Thesis
This thesis explores the theories behind microprocessor and compiler design and FPGA
based reconfigurable circuits. The performance of modern processors is extremely
technology dependent. In 2016 the 1nm CMOS technology could be achieved in
laboratory [13], and currently (2021) TSMC and Intel have 5nm production line and
2nm in development, 3nm, and 4nm on Track for 2022 [14].

The true performance improvement comes via transistor implementation
technology. We set this area (hardware fabrication) as a limitation of this thesis where
research and development in this field is out of the reach of any academic institution.



On the other hand, there are numerous ways to improve a processor without relying
on technology. For example, architectural modifications which includes ISA
modification and extension, various branch prediction techniques, multicore systems
with multi-layer caches, various memory architectures and processor pipelining,
superscalar versus superpipelined, and CISC, RISC and VLIW architectures, all open
viable opportunities for academic research to improve microprocessor performance.

We exclude all hardware fabrication technologies from this thesis. We also refrain
to compare the proposed architecture proposed in this thesis to industry level
microprocessor whenever a technological factors are involved.

This sets another limitation on this thesis and to get around it we compare each
proposed architectural improvement to the original processor that modifications are
applied and not to other industry level processors in the market.

This thesis is based on research conducted from August 2015 to July 2021 where
subjects it to tools and technologies available during this period.

The digital circuits and architectures proposed in this thesis and the results such as
clock frequency and power consumption obtained are all subject to available platforms
in our university laboratory. Most proposed architectures are based on Xilinx Zynq
UltraScale+ MPSoC ZCU104 Evaluation Kit based on 16nm FinFET technology.

The results obtained in FFT algorithm performance gain is subject to current
internal optimization passes implemented in LLVVM compiler infrastructure which this
thesis excludes to tamper.

1.5. Methodology
To come up with a fully functional FPGA based adaptive processor one should start
learning a Hardware Description Language (HDL) such as Verilog or VHDL.

Next a fully functional processor must be developed using one of the mentioned
HDL languages. This is to gain enough insight into the processor architecture design
concepts. This step is a crucial one as it will familiarizes the processor designer with
the factors that later can be turned into adjustable knobs to provide on the fly tweaking
and rewiring of the processor architecture based on the structure of running algorithm.
For example: “Data path size can be changed; pipeline’s depth can be modified to
reduce the impact of cache misses and pipeline stalls, or the number of General Purpose
(GP) registers can be increased or reduced to compromise between fast context
switching ability versus speed gain drives from large number of GP registers, or special
instructions can be injected into the instruction set, etc.”

After processor development the focus shall shift towards the development of the
compiler infrastructure and supportive toolchain. Beside advanced knowledge in
compiler theory, deep understanding of C/C++ programming language is necessary as
almost all industrial-level compilers such as GCC and LLVM are written in C/C++
language.

Next phase is to develop a fully functional set of libraries which can receive an
algorithm (e.g., in C language) as input, and produce the machine code as output. Under
LLVM infrastructure this is achievable by developing a backend for the target
processor.

The knowledge of how to program and synthesize reconfigurable circuits on FPGA
devices must be learned, then a fine-grained reconfigurable FPGA device must be
purchased from a manufacturer such as Xilinx.



At this stage the processor performance can be compared against others using
various benchmark programs such as Dhrystone [15], EEMBC’s CoreMark [16] or
SPEC [17].

Next step is to extensively cover the literature review on adaptive processors and
FPGA based reconfigurable circuits. After acquiring deep understanding in latest
algorithms and design concepts in the field of reconfigurable digital circuits, the idea
of having a fully functional adaptive processor on an FPGA can be realized.

The following sections describe the realization of the above methodology
conducted across 4 consecutive years.



2. Literature Review

2.1. Data Centers

2.1.1. Introduction

In this part the research with the focus on data centers is presented. The data center
topic is very vast, and myriad of books and research articles cover several aspects of a
data center such as power sources, cooling, physical location, server’s hardware and
software specification, networking, simulation, security, etc. The goal here is to help
the reader to acquire sufficient understand on the definition of a data center a challenges
at hand when one needs to be constructed. Detailed treatments of advanced topics are
avoided as this part of research does not aim to push the edge of technology on this
matter but the frame the foundation and prepare the reader to process the part 11 of this
thesis easier.

All the current popular social online networks such as Facebook, Instagram, and
Tweeter; online storage services like Dropbox, Google Drive, and OneDrive; cloud-
based demand driven services such as Virtual Private Servers (VPS), file sharing
websites, and popular search engines like Google and Bing; all and all rely on an
infrastructure called Data Centers.

A data center is a physical or virtual infrastructure that houses many computers,
servers, and networking systems which can provide IT services to individuals or
companies. It is built upon thousands of microprocessor which in this context called
processing unit (PU) connected to each other through dedicated networks.

These services are generally about storing and processing large amount of personal
and sensitive data. The IT services are usually provided in client/server architecture. As
the data which resides in a data center is very sensitive, for example, “companies
financial records, banking transactions histories, staff information, etc.”, the loss of data
cannot be tolerated. Consequently, a data center must provide extensive redundancy
when it comes to store the data. Equipped with power supply system back up, cooling
systems, redundant network connection, are features which are essential to a data center
to provide a safe, and round the clock service to the customer. Security is a crucial
factor also.

2.1.2. Data Center Requirements

2.1.2.1. Power Supply
The data center is connected to at least two separate grid sectors operated by the local
utility company. If one sector were to fail, then the second one will ensure that power
is still supplied [18].

In addition, a data center has diesel generators, which are housed in a separate
building. It also must have batteries to ensure that all operating applications can run for
15 minutes. This backup system makes it possible to provide power from the time a
utility company experiences a total blackout to the time that the diesel generators start
up. The uninterruptible power supply (UPS) also ensures that the quality remains
constant. It compensates for voltage and frequency fluctuations and thereby effectively
protects sensitive computer electronic components and systems.



2.1.2.2. Cooling
All electronic components and especially the processors generate heat when in
operation. If it is not dissipated, the processors efficiency decreases, in extreme cases,
to the point that the component could fail. Therefore, cooling a data center is essential,
and because of the concentrated computing power, the costs to do so are considerable.

For this reason, servers are installed in racks, which basically resemble specially
standardized shelves. They are laid out so that two rows of racks face each other,
thereby creating an aisle from which the front side of the server is accessible. The aisles
are covered above and closed off at the ends by doors. Cool air set to 4a temperature of
24 to 26C is blown in through holes in the floor, flows through the racks, and dissipates
the heat emitted by the servers.

Generally, a server room will contain several such enclosed server rows. The warm
air from the server room is removed by the air-conditioning system. Yet even the air-
conditioning system must dissipate the heat. When the outside temperature is below 12
to 13C, outside air can be used to effectively cool the heat absorbed by the air-
conditioning systems.

At higher outside temperatures, the air-conditioning systems are cooled with water,
made possible by six turbo-cooling units. They are not all used to cool the data center,
given that some are used as reserve units. Should a cooling system fail, the time until
the backup unit is operational must be covered. To that end, 300,000 liters of ice-cold
water (4C) are available to absorb the heat from the air-conditioning systems during
this period.

To top it off, the turbo-cooling units also must dissipate heat. There are heat
exchangers on the data centers roof for this purpose, which release hot air into the
environment.

2.1.2.3. Controlled Access
There must be mechanisms to prevent unauthorized people to get into a data center, and
access the servers, like RFID cards, biometric scanners, etc.

2.1.3. Data Center Types
We can categorize data center into two groups:
1. Physical Data Centers: Physical infrastructures with large number of
computers and fast network connections.
2. Software-Defined Data Centers: Software-Defined Data Centers (SDDC) are
a virtualized data centers, and cloud-base data centers.



Fig. 1: Supermicro SBI-7228R-T2X blade server. Contains two dual CPU server
nodes [19].

Fig. 2: HP BladeSystem ¢7000 enclosure (populated with 16 blades), with two 3U
UPS units below [20].

2.1.4. Data Center Hardware
2.1.4.1. Computation Hardware

2.1.4.1.1. Blade Server
To be able to compute we need a computer. each single computer in data center is called
a server computer. Normal servers are inefficient to be put next to each other, so a
modular design must be used that optimizes physical space and energy. The normal
server computers with CPU, RAM and mainboard installed on them usually stripped
down, and formed into a blade like chassis which can be inserted and removed easily
from rack-mount as shown in Fig. 1. This kind of design allow more processing power
in less rack space. They are also hot swappable.

2.1.4.1.2. Blade Enclosure
It is a physical structure that can hold multiple blade servers, and provides power,
cooling, and networking. A blade enclosure sample is shown in Fig. 2.



Administration

Network Switch [FH==8

IP Network / Cabling

Switch/SAN Director =1

Servers

Storage

Fig. 3: A Simple DAS Diagram [21].

Typically 10GbE
Links

Storage

Fig. 4: Simple NAS Architecture [21].

2.1.4.2. Storage Interconnection Architectures

2.1.4.2.1. Direct Attached Storage (DAS)
DAS is the traditional method of locally attaching storage devices to servers via a direct
communication path between the server and storage devices as shown in Fig. 3 the
connectivity between the server and the 6storage devices are on a dedicated path
separate from the network cabling. The storage can only be accessed through the
directly attached server.

2.1.4.2.2. Network Attached Storage (NAS)
NAS is a file-level access storage architecture with storage elements attached directly
to a LAN. Unlike other storage systems the storage is accessed directly via the network
as shown in Fig. 4. This system typically uses NFS (Network File System) or CIFS
(Common Internet File System) both of which are IP applications. A separate computer
usually acts as the “filer” which is basically a traffic and security access controller for
the storage which may be incorporated into the unit itself. The advantage to this method



10

Serve Server Server Server

Fig. 5: Meshed SAN Architecture [21].

is that several servers can share storage on a separate unit. Unlike DAS, each server
does not need its own dedicated storage which enables more efficient utilization of
available storage capacity. The servers can be different platforms if they all use the IP
protocol.

2.1.4.2.3. Storage Area Networks (SANs)

Like DAS, a SAN is connected behind the servers. SANs provide block-level access to
shared data storage. Block level access refers to the specific blocks of data on a storage
device as opposed to file level access. One file will contain several blocks. SANs
provide high availability and robust business continuity for critical data environments.
SANs are typically switched fabric architectures using Fibre Channel (FC) for
connectivity. As shown in Fig. 5 the term switched fabric refers to each storage unit
being connected to each server via multiple SAN switches also called SAN directors
which provide redundancy within the paths to the storage units. This provides additional
paths for communications and eliminates one central switch as a single point of failure.
Ethernet has many advantages like Fibre Channel for supporting SANs. Some of these
include high speed, support of a switched fabric topology, widespread interoperability,
and a large set of management tools.

2.1.4.3. Storage Interconnection Technologies

2.1.4.3.1. Fibre Channel (FC)

Native FC is a standards-based SAN interconnection technology within and between
data centers limited by geography. It is an open, high-speed serial interface for
interconnecting servers to storage devices (discs, tape libraries or CD jukeboxes) or
servers to servers. It is the dominant storage networking interface today. The Fibre
Channel can be fully meshed providing excellent redundancy. FC can operate at the
following speeds: 1, 2, 4, 8, 16 and 32 Gb/s with 8Gb/s to 16 Gb/s currently being
predominant. The transmission distances vary with the speed and media.

2.1.4.3.2. Fibre Channel over Ethernet (FCoE)
With FCoE, the packets are processed with the lengths and distances afforded by an
Ethernet Network and again, vary according to speed and media. According to the IEEE
802.3ae standard for 10Gigabit Ethernet over fiber, when using single mode optical



11

Campus Core

&4
53,

—E—g>|<
Rl

R

Aggregation

~— Gigabit Ethernet or

i ~——10 Gigabit Ethernet
I Etherchannel

Bl [k

Fig. 6: Basic Layered Design [22].

fiber cables, the distance supported is 10 kilometers, up to 300m when using laser
optimized 50-micron OM3 multimode fiber and up to 400m with OM4 as compared to
native Fibre Channel with only 130m. Laser optimized OM3 and OM4 fiber is an
important consideration in fiber selection for 10Gb/s transmission.

2.1.4.3.3. Small Computer Systems Interface (SCSI) over IP (iSCSI)

The iSCSI protocol unites storage and IP networking. iSCSI uses existing Ethernet
devices and the IP protocol to carry and manage data stored in a SCSI SAN. It is a
simple, high speed, low-cost, long distance storage solution. One problem with
traditional SCSI attached devices was the distance limitation. By using existing network
components and exploiting the advantages of IP networking such as network
management and other tools for LANs, MANs and WANSs, iSCSI is expanding in the
storage market and extending SAN connectivity without distance limitations. It is more
cost effective due to its use of existing equipment and infrastructure. 9With a 10x
increase from existing 1Gigabit to 10Gigabit Ethernet, it will become a major force in
the SAN market. Using 10Gigabit Ethernet, SANs are reaching the highest storage
transportation speeds ever.

2.1.4.4. Data Center Network (DCN)
In recent years, Ethernet networks have made significant progress toward bridging the
performance and scalability gap between capacity-oriented clusters built using COTS
(commaodity-off-the-shelf) components and purpose-built custom system architectures.
This is evident from the growth of Ethernet as a cluster interconnect on the Top500 list
of most powerful computers (top500.0rg). A decade ago, high-performance networks



12

were mostly custom and proprietary interconnects, and Ethernet was used by only 2
percent of the Top500 systems. Today, however, more than 42 percent of the most
powerful computers are using Gigabit Ethernet, according to the November 2011 list
of Top500 computers. The network topology describes precisely how switches and
hosts are interconnected. This is commonly represented as a graph in which vertices
represent switches or hosts, and links are the edges that connect them. The data center
network design is based on a proven layered approach, which has been tested and
improved over the past several years in some of the largest data center implementations
in the world, as shown in figure Fig. 6.

As you can see in Fig. 6 we have three layers:

1.

2.

3.

Core Layer: Provides the high-speed packet switching backplanes for all flows
going in and out of the data center. The core layer provides connectivity to
multiple aggregation modules and provides a resilient Layer 3 routed fabric with
no single point of failure. The core layer runs an interior routing protocol, such
as OSPF or EIGRP, and load balances traffic between the campus core and
aggregation layers using Cisco Express Forwarding-based hashing algorithms.
Aggregation layer modules: Provide important functions, such as service
module integration, Layer 2 domain definitions, spanning tree processing, and
default gateway redundancy. Server-to-server multitier traffic flows through the
aggregation layer and can use services, such as firewall and server load
balancing, to optimize and secure applications. The modules in this layer
provide services, such as content switching, firewall, SSL offload, intrusion
detection, network analysis, and more.

Access layer: Where the servers physically attach to the network. The server
components consist of 1RU servers, blade servers with integral switches, blade
servers with pass-through cabling, clustered servers, and mainframes with OSA
adapters. The access layer network infrastructure consists of modular switches,
fixed configuration 1 or 2RU switches, and integral blade server switches.
Switches provide both Layer 2 and Layer 3 topologies, fulfilling the various
server broadcast domain or administrative requirements.

2.1.4.5. Data Center Design Models

The multi-tier model is the most common design in the enterprise. It is based
on the web, application, and database layered design supporting commerce and
enterprise businesses. This type of design supports many web service
architectures, such as those based on Microsoft .NET or Java 2 Enterprise
Edition.

The server cluster model has grown out of the university and scientific
community to emerge across enterprise business verticals including financial,
manufacturing, and entertainment. The server cluster model is most commonly
associated with high-performance computing (HPC), parallel computing, and
high-throughput computing (HTC) environments, but can also be associated
with grid/utility computing.



13

Z X
N 7N\

/ \ / \ / \ / \

Fig. 7: Fat-Tree. Circles represent switches, and squares at the bottom are endpoints.

Mini-switch

) N DCelly[2]

Fig. 8: A DCell topology for 5 Cells of level 0, each containing 4 servers.

2.1.4.5.1. Three-tier DCN
The legacy three-tier DCN architecture follows a multi-rooted tree-based network
topology composed of three layers of network switches, namely access, aggregate, and
core layers. The servers in the lowest layers are connected directly to one of the edge
layer switches. The aggregate layer switches interconnect multiple access layer
switches together. All the aggregate layer switches are connected to each other by core



14

layer switches. Core layer switches are also responsible for connecting the data center
to the Internet. The three-tier is the common network architecture used in data centers.

However, three-tier architecture is unable to handle the growing demand of
cloud computing. Scalability is another major issue in three-tier DCN.

2.1.4.5.2. Fat tree DCN
Fat tree DCN architecture as shown in Fig. 7 handles the over subscription and cross
section bandwidth problem faced by the legacy three-tier DCN architecture. Fat tree
DCN employs commodity network switches-based architecture using Clos topology.
The network elements in fat tree topology also follows hierarchical organization
of network switches in access, aggregate, and core layers. However, the number of
network switches is much larger than the three-tier DCN.

2.1.4.5.3. DCell
DCell as shown in Fig. 8 is a server-centric hybrid DCN architecture where one server
is directly connected to many other servers. A server in the DCell architecture is
equipped with multiple Network Interface Cards (NICs). The DCell follows a
recursively build hierarchy of cells.

About the Authors.........ccimmninnn e XV
About the Technical Reviewers ..........cociininsnsmsensnessssnsessesnnXVil
Contributing AUthors ... sessssss s XIX
Acknowledgments.........ccociciinimmnenn s KX
Chapter 1: Why Data Center Efficiency Matters .........ccocnniinnninnnnnn 1
Chapter 2: CPU Power Management...........ccoenicinisnnmnsnmsnmssnssinnns 21
Chapter 3: Memory and 1/0 Power Management...........cceoiinininnns 71
Chapter 4: Platform Power Management ...........cccocevvinemrnieniinennnn. 93
Chapter 5: BIOS and Management Firmware .........cccceeemvrieernnene. 153
Chapter 6: Operating Systems.........cccccveerncinnrncnisnsssensssnnssnenns 173
Chapter 7: Monitoring......cccnvcemiicnminnisnnisss s issnissnissnisssssssssssssss 209
Chapter 8: Characterization and Optimization ...........coocniie00000. 269
Chapter 9: Data Center Management..........ccccunvenriinsrsssssssenssssnans 307
Appendix A: Technology and Terms.......cccesmmemssissessssssssnness 319
LT3 - PR ' |

Fig. 9: Content of a book on energy efficient data centers [23].



15

2.1.5. Data Center Efficiency

2.1.5.1. Energy Efficient Servers
To demonstrate the complexity of the matter a screenshot of the content of a book on
energy efficient serves is shown in Fig. 9. The title of the book is “Energy Efficient
Servers blueprints for data center optimization”. The content easily shows that an
efficient server design demands rethinking in all parts of a server, from CPU, Memory,
and 1/0 to power management, BIOS, and operating systems and applications.

2.1.5.2. Simulators
All networking simulators based on Discrete Event Simulation (DES) : models the
operation of a system as a discrete sequence of events in time. Each event occurs at a
particular instant in time and marks a change of state in the system. Between
consecutive events, no change in the system is assumed to occur; thus, the simulation
can directly jump in time from one event to the next. DES does not need to simulate a
system continuously, so the simulation process is faster.

2.1.5.2.1. DCNSim

DCNSIim is a general purpose DCN simulator that supports most well-known DCN
topologies proposed in the literature. The simulator can generate various metrics for the
topologies, including static metrics like average path length, aggregated bottleneck
throughput, routing failure rate, and dynamic metrics like packet loss rate, average
buffer size and link utilization. The modular and flexible architecture of the simulator
permits easy extension to support any future proposed topologies and compute new
metrics [24].

2.1.5.2.2. NS2
The NS (Network Simulator) project started long time ago in 1989. The latest update
dated Nov. 2011. I had to download the source code of several Linux packages. It
uses TCL/TK dynamic programming language.

I could install half of the required package, but the core package gives an error in
the middle of the compilation. It seems my CentOS 7 GCC version is too new for ns2.
| switched to older version, CentOS 6, and could successfully install the packages,
upon reading the basic tutorials to get started | realized that ns2 is absolute and has
been replaced by ns3.

2.1.5.2.3. NS3
Development of ns-3 began in July 2006, written from scratch, using the C++
programming language. The project is active, and there are many academic papers
being published using this simulator [25]. It is a replacement for ns2.

2.1.5.2.4. Cladism
Needed to spend several days just to figure out how to install the simulator on my
machine. | tried version 4.0 [26] It is basically a Maven Java project, completely
undocumented, and the examples are very vague. There is no GUI, and the user must
import the simulator as a Java library into a separate project and instantiate the classes
and call the start simulation method. The simulation output was very unorganized, it



16

seems there is a logging mechanism with an option to redirect the output to a file instead
of console, and maybe then we should use a graphing software to plot the output.

To summarize: Lack of documentation makes this simulator almost unusable.
There might be only an opportunity to investigate the code structure and reverse
engineer their employed simulation techniques.

2.1.5.2.5. Other Simulators
There are other simulators also that | did not try:
e Omnet++
e BigHouse
e The M5 Simulator

2.1.5.3. Practical Ways to Reduce Power Consumption
Upon months of research, | came to this conclusion that there are two viable practical
paths if one seeks to reduce the power consumption of a data center:

1. Design a low power processor

2. Design a low power server motherboard

2.1.5.4. Hot Data Centers
The Google has a data center in Belgium [27] which runs without air cooling system.
They rely on the natural cold weather of the country. The average temperature in a data
center room is 68 to 72 degrees and it reaches a peak of 95 degree, which prevents the
staff to work inside the data center rooms though the hardware functions properly.

There are reports of successful running of data centers without cooling system, the
data centers that used to be 55 degrees are now running comfortably at 75 degrees [28].
What is not scientifically well explored is the temperature set point for a data center
[29]. The set point is usually selected based on manufacturer conservative suggestions
and is about 20C to 22C. Hard-disks and DRAM are two components which frequently
fail. The effect of the temperature hike on their failure was studied [29] for 2 years
period upon 3 massive data centers. It is shown that as the temperature rises the failure
rate increases linearly. The increase becomes exponential for temperatures larger than
50C.

It was also observed that there is no relation between DRAM errors and rise of
temperature. Additionally, there is no evidence that high temperature results in node
outage, but the high temperature variability could be a stronger factor. The effect of
temperature on CPU and memory performance were observed [29]. It was shown that
by increasing the temperature above 50C the protective mechanism in CPU and
memory, like bus speed down scaling, enabling ECC, etc. can reduce the throughput
by 50%.

The server power consumption stays constant up to 30C and then begins to
continually increase, until it levels off at 40C. The increase in power consumption is
quite dramatic: up to 50%. Mostly due to an increase in fan power consumption [29]. It
seems what contributes to component failure is not the hot temperature but the quick
variation in temperature, so one way is to equip the servers with military grade
components that can run at very high temperature like 90C up to 125C and have no
cooling system. Instead, a temperature regulation mechanism must be employed to keep
the temperature fixed.



17

2.1.5.5. My Own Thoughts
We can see that each server component has different suggested operating temperature.
For example, a hard-drive temperature can be between 0C to 60C [30]. CPU can tolerate
an ambient temperature up to 70C [30] . A DRAM module can operate in range of 0 to
+105C [31].

We can see that components have different max temperature. This makes the idea
of separating the module into pools and let them operate at different max temperature.
Pools of hard-drives, pools of RAMs, and pools of CPUs, interconnected by robust,
intelligent high-speed channels, and operated by intermediary independent intelligent
controllers.

2.1.6. Data Center Hardware

2.1.6.1. Blade Sever
Tower servers are like PCs and restricted in flexibility. Rack mount server ae formed
into 19-inch industry standard wide enclosures which can be stacked on top of each
other and allow to form a mixture of server configurations. The need to occupy less
space, consume less power, and less time to deploy, forces us to have blade servers,
which is the best for large numbers of nodes such as data centers. The high-power
density also has drawbacks such as heating, ventilation, and air conditioning problems.

2.1.6.2. Blade Sever Types
Blade servers need a blade enclosure to hold all the blade servers together and form a
blade system. The blade servers are typically hot swappable. There are three properties
attributed to a blade server:
Shared infrastructure
2. Shared power/cooling
3. Shared I/0
4. Shared infrastructure management

=

2.1.6.2.1. Cisco
First position on blade server market with 40% share by revenue in America. They offer
a Unified Computing System (UCS) which integrates 10 Gigabit Ethernet unified
network fabric with enterprise-class, x86- architecture servers.

1. Cisco UCS M-Series Modular Servers: consists of two elements: the chassis and
the cartridge. A 2RU chassis accepts up to 8 compute cartridges. A cartridge
has two independent nodes, each consist of an Intel Xeon processor with two or
four cores. Maximum chassis per domain is 20, which gives up to 320 nodes
(servers).

2. Cisco UCS B-Series Blade Servers: A 6RU chassis can host up to 8 blade
servers. Each blade server has 2 Intel Xeon processors. Up to 20 chassis in a
domain.

2.1.6.2.2. HP
HPE BladeSystem: ¢7000 Enclosure is a 10U chassis which holds up to 16 server
blades. Each server blade can hold 2 Intel Xeon processor.



18

2.1.6.2.3. Dell
PowerEdge M1000e Blade Enclosure provides room for up to 16 blade servers. Each
PowerEdge M630 Blade Server has a single Intel Xeon processor.

2.1.6.2.4. Lenovo
A 9U chassis holds up to 14 blade severs. Each BladeCenter HS23 has a single Intel
Xeon processor.

2.1.6.3. Sever Farm
Server farm is usually referred to conventional servers used in cluster computing. The
performance is limited by cooling system and electricity cost rather than processor
performance. So, the critical design parameter is performance per watt.

2.1.6.3.1. Performance Per Watt
There are benchmark suits designed to predict performance per watt of server farms
such as: “EEMBC EnergyBench, SPECpower, and the Transaction Processing
Performance Council TPC-Energy”.

For every 100 watts spent on running the servers, roughly 40 to 60 watts is needed
to cool them [32]. That is why the fibre optic cables are being laid for example from
Iceland to North America and Europe to enable companies there to locate their servers
in Iceland. Therefore, many cold climate countries are trying to attract cloud computing
data centers.

2.1.6.4. Server Interconnection

e Server Interconnection: 10Gb, 20Gb, 40Gb
¢ Infiniband: 56Gb

e Myrinet

2.1.7. Server Processor

2.1.7.1. Intel
As we have already seen all giant server manufacturers are currently using Intel Xeon
processor in their products. Therefore, we will briefly look into the detail of this
processor which are all based on x86 architecture. The Inter processor comparison is
shown in Table 1.

Table 1: Intel server processors comparison.

Processor Cache Clock # Cores | Max Memory type/Extra

Family Speed # Threads | Power

Xeon E7 60MB 2.20 GHz | 24/48 165W | DDR4-
1333/1600/1866
DDR3-
1066/1333/1600

Xeon E7 45MB 2.20 GHz | 18/36 140w | DDR4-
1333/1600/1866




19

DDR3-
1066/1333/1600

Xeon E5 30MB 3.00 GHz | 12/24 160W | DDRA4-1600/1866/

2133/2400
Xeon E5 35MB 1.70 GHz | 14/28 65W DDR4-1600/1866/
2133/2400

Xeon E3 8.0MB | 3.60 GHz | 4/8 80W | DDR4, DDR3L

Xeon E3 8.0MB | 2.90 GHz | 4/8 45W | DDR4, DDR3L,
LPDDR3

D Family 18.0MB | 2.10 GHz | 12/24 65W | DDR4, DDR3
(+2x10GbE)

D Family 24.0MB | 1.30 GHz | 16/32 45W | DDR4, DDR3
(+2x10GbE)

Xeon  Phi | 36MB 1.50 GHz | 72/288 260W | DDR4-2400

Coprocessor

Xeon  Phi | 32MB 1.30 GHz | 64/256 215W | DDR4-2133

Coprocessor

Itanium 24MB 1.73GHz | 4/8 185W

Atom 4MB 24GHz |9 20W

Atom 2MB 24GHz |4 14W

2.1.7.2. ARM

The idea is that we do not need a huge and expensive Xeon processor for everything.
Sometimes a cheaper ARM processor can be a better option. The standard ARM
processors such as ARMv7-A Cortex and ARMv8-A Cortex cannot compete with
Xeon, instead an ARMv8-A processor with a micro-architecture revision called X-
Gene (by Applied Micro) is used in most blade servers based on ARM.

These X-gene server processors are 64-bit SoC systems with 64 cores, cache,
MMU, and visualization and run at 3.0 GHz. Dell offers a server infrastructure based
on ARM X-Gene equipped blade servers, initially by enabling Dell “Copper” servers
[33]. AMD officially started to ship its 64-bit ARM-based server chip, the Opteron
A1100 aka Seattle. It’s a quad or octo-core ARM Cortex-A57 CPU clocked at 1.7GHz
or 2GHz, with up to 4MB of shared L2 cache, 8MB L3 cache, and interfaces for up to
128GB of ECC DDR3-1600 or DDR4-1866 RAM split over two channels [34].



20

Building Switchgear | Computing Equipment 52% Category
MV Transformer 3% —————— (Demand) .
- Computing 588 kw
Lighting 1%
Processor . .
15% Lighting 10 kw
UPS and distribution
Server Po losses 72 kw
Support Supply 14%
Systems 48% Cooling power draw for
(Supply) computing and UPS losses 429 kw
Building switchgear/ MV
transformer/other losses 28 kw
U —0 Storaged% | TOTAL 1,127 kw
uPs 5%/ ———____ Communication
Equipment 4%

Fig. 10: A 5000 square feet Data Center Power Consumption.

1 Wott
saved here

Saves an odditional  and .31 W here
A8W here

and .04 W here

and .14 W here

1 Watt saved at the processor saves approximately

. and 1.07 W here
2.84 Watts of total consumption

= Cumulative Savin
ing and .10 W here

Fig. 11: The cascade effect.

2.1.8. Considerations on Setting Up a Data Center

2.1.8.1. Introduction
The goal of this chapter is to offer the best setup that one can aim for, to construct the
most energy efficient data center in the world using the technologies available to us in
year 2016.

The power demand of a server, which can be considered the smallest processing
unit in a data center, can vary with the actual work done, but even when the server
works at or below 20% of its capacity, the power consumption is between the 60-100%
of the maximum [35]. Furthermore, the consumption may vary with different types of
servers (i.e., single, or dual socket processor, or blade) and manufacturers.
Nevertheless, in literature various researchers estimate an average power demand of
400W for a standard server and 300W for a blade server [35-37].

Therefore, power density per rack can achieve 20kW or above. Moreover, a full-
length rack can be filled with 64 or more blade servers, depending on the chassis
dimensions, reaching higher power demand and hence thermal load [38].



21

Before getting into the setup details of an energy efficient data center let us look at
a result obtained in a White Paper [39]. As we can see in Fig. 10, 52% (demand) of
power is used to support the data center computation (Supply). This ratio defines the

PUE (Power Usage Effectiveness) and in this case is i—; = 1.083 The lower PUE
suggest a more efficient data center.

2.1.8.2. Cascade Effect
In considering the power consumption of every data center we face a phenomena called
Cascade Effect. As we can see in Fig. 11 the power saving effort in a processor reduces
a significant percentage of total power consumption. That is why it is crucial to have
low power processor, as the cascade effect will bring us huge power saving gains.

2.1.8.3. Site Location Condition
The location of a data center is very important.

2.1.8.4. Environmental Factors

1. Average temperature per year: Direct impact on power used for cooling and
sets the free cooling percentage.

2 . Natural disaster risk assessment and management: Earthquakes, volcano,
floods, typhoons, etc.

2.1.8.5. Technological Factors

1. The countries power Grid stability: Dictates the average power failure.

2. Proximity to submarine communication links: Sets the cost of running cables
between the site and international communication grid.

Hot Air

weii Wind Tower

Cooled Basement

©
=
w
o
(7]
L)
3
<

Fig. 12: A windcatcher and ganat used for cooling [40].



22

Fig. 14: A modern windcatcher in Barbados [40].

2.1.9. Unconventional Architectures
Wind catcher is a traditional Persian architectural element to create natural
ventilation in buildings. The windcatcher can function in three ways [40]:
1. Downward airflow due to direct wind entry
2. Upward airflow due to temperature gradient
i.Wind-assisted temperature gradient: Uses Coand effect, and the temperature
can go nearing freezing point. Fig. 12 shows how this method works in
combination with ganat.
ii.Solar-produced temperature gradient: Applicable to windless environment or
waterless house. A windcatcher functions as a solar chimney. It creates a
pressure gradient which allows hot air, which is less dense, to travel upwards
and escape out the top.
iii. The temperature in such an environment cannot drop below the nightly low
temperature.
Fig. 13 shows a traditional windcatcher in Iran and Fig. 14 shows a modern version
of it.



23

2.1.10. Building Condition
In construction of an eco-friendly data center building, we must consider the following

items [41]: It becomes harder to implement these items after the data center has been
setup in an ordinary building:

NookrwnpE

Adoption of highly efficient air conditioning systems.
Air conditioning control systems

Solar power generation

Adoption of energy efficient and eco-friendly lights
Recycling of rainwater

Use of ambient air for air conditioning

Greening 8. Use of geothermal heat

2.1.11. Metrics and Benchmarking

These values are based on a data center benchmarking study carried out by Lawrence
Berkeley National Laboratories [42].

2.1.11.1. Power Usage Effectiveness

(PUE) Standard Good Better

Equation 1: PUE = Total Facility Power 2.0 14 11

T Equipment Power

To get a better picture on PUE, we will mention some of the notable achieved
record by famous companies:

Rack Intake Rack Exhaust

Cool Air Hot Air

Fig. 15: Rack in/out air flow

1.

2.

3.

In 2008, Google’s Data center was noted to have a ratio of 1.21 PUE across all
6 of its centers.

Through proprietary innovations in liquid cooling systems, French hosting
company OVH has managed to attain a PUE ratio of 1.09

Since 2015 Switch, the developer of SUPERNAP data centers, has had a third-
party audited colocation PUE of 1.18 for its SUPERNAP 7 Las Vegas Nevada
facility, with an average cold aisle temp of 69F and average humidity of 40.3%.



24

This is attributed to switch patented hot aisle containment and HVAC
technologies.

4. 1In 2015 Facebook’s Prineville data center had a PUE of 1.078 and its Forest
City data center had a PUE of 1.082

5. In January 2016, the Green IT Cube in Darmstadt was dedicated with a 1.07
PUE. It uses cold water cooling through the rack doors.

2.1.11.2. Data Center Infrastructure
Efficiency (DCIE): Standard Good Better

Equation2: DCIE = — = 0.5 0.7 0.9

PUE

IT Equipment Power

Total Facility Power

2.1.11.3. Energy Reuse Effectiveness (ERE)
Equation 3: ERE = Cooling + Power + Lighting + IT — Reuse Energy

PUIT Equipment Energy

The range of values for PUE is mathematically bounded from 1.0 to infinity. A
PUE of 1.0 means 100% of the power brought to the data center goes to IT equipment
and none to cooling, lighting, or other non-1T loads. For ERE, the range is 0 to infinity.
ERE does allow values less than 1.0. An ERE of 0 means that 100% of the energy
brought into the data center is reused elsewhere, outside of the data center control
volume.

2.1.11.4. Rack Cooling Index (RCl)
Gartner has stated that for every 1-degree F that air intake temperatures are raised, 2%
of the annual power costs can be potentially saved [43].

Through exhaustive testing and analysis, ASHRAE has determined that rack air
intake temperatures need to be between 18 degrees C and 27 degrees C. Any
temperature below 18C is waste of power and above 27C is risk to IT equipment failure
due to excessive heat.

For optimal savings, the rack air intake temperature needs to be set as high as
possible while staying within the ASHRAE recommended range. This sounds easy but
it is not. The problem is in most data centers cooling needs are not uniform which is
why you have hot spots and cool spots.

Fine-grained thermal monitoring is required to provide the information needed to
optimize the data center air intake temperatures. That is to put lots of sensors to gather
raw temperature across many spots in the rooms. After receiving the raw temperatures,
we must study them and produce a report, there is where RCI come to rescue.

RCI measures how effectively equipment racks are cooled according to equipment
intake temperature guidelines established by ASHRAE/NEBS. By using the difference
between the allowable and recommended intake temperatures from the ASHRAE Class
1 (2008) guidelines, the maximum (RClui) and minimum (RClLo) limits for the RCI
are defined as follows:



25

XT,>80(Tx—80)

Equation 4: RCIy; = [1 — so—som | X 100[%]
. ] _ XTx>65(65-Tx)
Equation 5: RClyo =[1- WJ x 100[%]

Where T, is the mean temperature at equipment intake x, and n is total number of
intakes.

RCIy; is a measure of the absence of over-temperatures. 100% means that no
temperature is above the maximum recommended. Less than 100% means the greater
the probability (risk) that equipment experiences temperatures above the maximum
allowable (hotspots).

RCI,, is a measure of the absence of under-temperatures. 100% means that no
temperature is below minimum recommended. Less than 100% means the greater the
probability (risk) that equipment experiences temperatures below the minimum
allowable (over-cooling)

Table 2: RCI metrics analysis.

Poor Acceptable Good Ideal
< 91%-95% >96% 100%
90%
The raw temperature can be  analyzed and by using RCI metrics we

can optimize the data center power consumption efficiency as shown in Error! R
eference source not found.

2.1.11.5. Return Temperature Index (RTI)
RTI evaluates the energy performance of the air management system.

Equation 6: RTI = 40 100[%]

EQUIP

where AT,y is the typical (airflow weighted) air handler temperature drop and
ATgqup is the typical (airflow weighted) IT equipment temperature rise.

Deviations from an RTI of 100% indicate declining performance in the air
management system; over 100% suggests recirculation of air which results in sporadic
“hot spots” being significantly hotter than the average space temperature thus elevating
return air temperatures; less than 100% suggests by-pass of air where the cold air does
not contribute to cooling the electronic equipment and returns directly to the air handler
thus decreasing the return air temperature. Therefore, an RTI of 100% should be the
target goal for an efficient air management system

2.1.11.6. Heating, Ventilation and Air-
Conditioning (HVAC) System Standard Good Better
Effectiveness 0.7 1.4 2.5

Equation 7:  Effectiveness =

kWh/yT'IT
kWh/yryvac



26

For a fixed value of IT equipment energy, a lower HVAC system effectiveness
corresponds to a relatively high HVAC system energy use and, therefore, a high
potential for improving HVAC system efficiency. Note that a low HVAC system
effectiveness may indicate that server systems are far more optimized and efficient
compared to the HVAC system. Thus, this metric is a coarse screen for HVAC
efficiency potential. According to a database of data centers surveyed by Lawrence
Berkeley National Laboratory, HVAC system effectiveness can range from 0.6 up to
3.5.

2.1.11.7. Airflow Efficiency
Total Fan Power (W)

Equation 8: Total Fan Airflow (cfm) Standard Good Better
1.25 0.75 0.75
This metric characterizes overall | \W/cfm Wi/cfm W/cfm

airflow efficiency in terms of the total

fan power required per unit of airflow. This metric provides an overall measure of how
efficiently air is moved through the data center, from the supply to the return, and
considers low pressure drop design as well as fan system efficiency.

2.1.11.8. Cooling System Efficiency

Equation 9:
Standard Good Better
Average Cooling System Power (kW) 1.1 0.8 0.6
Average Cooling Load (ton) kW/ton kW!/ton kW/ton




27

Savings Independent of

Energy Logic Savings

) ) Other Actions with the Cascade Effect
Energy-Saving Action ROI
: . . : Cumulative
Savings (kW) | Savings (%) Savings (kW) | Savings (%) Savings (kW)
Low-power processors 1 10% 111 10% 111 12 to 18 mo.
High-efficiency power 141 12% 124 1% 235 5to7 mo.
supplies
fo""er Management 125 1% 86 8% 321 Immediate
eatures
Blade servers 8 1% 7 1% 328 TCO reduced
38%
Server virtualization 156 14% 86 8% 414 ché;gé‘f'i“?d
Higher voltage AC
power distribution” ** 34 3% 20 2% 434 2 to 3 mo.
Cooling best practices 24 2% 15 1% 449 4 to 6 mo.
e e 79 7% 49 4% 498 4t0 10 mo.
variable speed fan drives
Supplemental cooling 200 18% 72 6% 570 10 to 12 mo.
Monitoring and
optimization: Cooling 25 2% 15 1% 585 3 to 6 mo.
units work as a team

* Source for blade impact on TCO: IDC " * Source forvirtualization impact on TCO: VMware
*** Adjusted to reflect additional insight gained when applying this strategy.

Fig. 16: 10 approaches to reduce energy consumption.

There are several metrics that measure the efficiency of an HVAC system. The
most common metric used to measure the efficiency of an HVAC system is the ratio
of average cooling system power usage (kW) to the average data center cooling load
(tons). A cooling system efficiency of 0.8 kW/ton is considered good practice while

an efficiency of 0.6 kW/ton is considered a better benchmark value.

2.1.12. Energy Consumption Reduction Approaches
Fig. 16 discusses 10 approaches that can help us bring the power consumption down.
Processor efficiency: No standard, usually TDP (Thermal Design Power) is

used.

Power Supply: At least around 80
Power Management Software: Design the capacity for peak but turn off things
when the servers are ideal.
Blade Server: 10% less power than rack mount, because multiple servers share
same power supplies, cooling fans, etc.
Server Virtualization: like 25% virtualized by replacing 8 physical servers
with 1 that has at least two or more processors.




28

e Higher voltage AC Power Distribution: The UPS delivers power to the server
at 208V. If the voltage can be raised to 240V, the power supplies in the servers
will operate at increased efficiency.

e Cooling best practices: Use the natural cooling, Computational fluid dynamics
(CFD) can be used to identify inefficiencies and optimize data center airflow,
etc.

e Variable-Capacity Cooling: Variable fan speed, Digital Scroll Compressors,
and variable frequency drives in computer room air-conditioners (CRACS)

e High-Density Supplemental Cooling: Mounted above or alongside equipment
racks and pull hot air directly from the hot aisle and deliver cold air to the cold
aisle. 30 27

e Monitoring and Optimization: monitor conditions across the data center and
coordinate the activities of multiple units to prevent conflicts and increase
teamwork.

2.1.13. Low-Power Design versus Energy Efficiency
In this section we try to answer the question “Does Low-Power Design Imply Energy
Efficiency for Data Centers?” [44]and see if both indicators are related or not.
We need to mention two major caveats of using Low-Power designs in data centers:
1. First, scaling software to run on weaker systems presents a significant challenge
as it implies distributing the work of one high-power server across several low-
power servers. The greater demand for parallelism makes scale-out more
difficult; systems with finite parallelism run into Amdahl bottlenecks.
2. Constraining a systems power budget (e.g., by selecting low-power
components) eliminates points in its design space that may be more efficient.
While mobile platforms have inherent peak power budgets (e.g., driven by
form-factor), for servers there is no inherent advantage to using a low-power
design.



29

3.5 Efficient Designs
3.0 . Pl’cak < 300 W
o * Pl’(:ak - 300 W @
S, - '
E 2.() ¢ [ ] t'
o b e
€ 20 il ol
- 1) . :
2 151 sty
o o"-*l
2, % W .
= L.Ur =
o -E-:I:rf . Inefficient Designs
0.5 . Y L I
] P * o ¢
L L v ) . . A )
0.0 5605 2006 2007 2008 2009 2010 2011

System Availability Date

Fig. 17: Historical trend in server efficiency.

3.97

o
e
—
e’

Efficiency (kOps/J)

0.5}

[].l}[i

Pl
cn

[
—
f—

—

—

—
T

H
.’ : ety ¢ i
e 1 « 2007
LN = 2008
- A "1+ 2009
. of o "
.! . 'l'* . : - 2010
00 200 300 400 500 600 700 800

Peak Power(W)

Fig. 18: Peak Power.

In Fig. 17 we can see that for both high power (>300 W) and low-power (< 300W)
designs, efficiency is generally increasing, however there have been highly efficient
and inefficient designs recently in both classes.



— ] 3 il Cid
=T = =N o on
T ]

Efficiency (kOps/J)

(.57

r
0. i_[]

0.5

30

.0 1.5 20 25 30
Peak Efficiency(kOps/J)

Fig. 19: Peak-efficiency versus average efficiency.

i
n

e
S

Efficiency (kOps/J)
[

f‘

.
l.-"'"
‘l
. 2007
. 2008
* 2009
. 2010
35 4.0 4.5

1.5} . I §

’ b b . 2007
1.0} * 2008
. " 2009

el

! . 2010
] : ; . : ,
0.0 3 1 6 g 0 12
Cores/Sockets

Fig. 20: Cores per Sockets efficiency.

Also, in Fig. 18 we can see that the peak power of a server has little to no correlation
to average efficiency. Some very high-power designs (shown by diamond symbol) are

very efficient.

Another interesting thing is the strong correlation between server peak-efficiency
versus the average efficiency. As we can see in Fig. 19 which suggest that for us to pick



31

S N\
\\ 5 \\\,‘\\\ N

NI"I'OEAR" Sipetat Savin
Prosase | G100

Fig. 21: Data center setup based on tiny Intel Edison com'puter on module.

a server we just need to measure its peak efficiency power consumption and
assume the same performance for its average efficiency.

Regarding the number of cores, in general, adding more cores to a system increases
efficiency, but the range of efficiencies for a given core integration is large and systems
with less cores can easily be more efficient than those with more. Many four core
designs are more efficient than 6 or 8 cores alternatives! as it can be seen in Fig. 20.

2.1.14. Energy Consumption Reduction Approaches
This idea that we can bringing the power consumption down by employing low power
processor has a long history. Many research works tried hard to reduce the power
consumption by using low power processors such as ARM or mobile or sensor
processors, etc. Take cluster of Intel Edison based micro-servers (consumes less than
1W) as an Example [45].

The setup has been shown in Fig. 21.The paper clearly shows that:

1. (-) Insingle threaded applications it loses to Dell General purpose server in all
cases. Its performance cannot even exceed 5.6% of Dell server due to lack of
sophisticated pipeline and cache structure that Xeon processors provide.

2. (+) Only on very specific applications such as dense concurrent web requests
the setup shows a degree of acceptable performance. (3.5x more efficient)

3. (+) Data intensive batch processing also shows a good acceptable performance.

(2.5x more efficient)

(+) The TCO is lower in Edison cluster.

(-) Less suitable for interactive and latency-sensitive applications.

(-) The limited resources in micro servers prevent them from acting as the
manager of the data processing framework.

o oA



32

2.1.15. Cooling Systems

2.1.15.1. Introduction

Data center heat removal is one of the most important factors in design of a data center
which can lead to significant cost variant in running the data center. As the latest
computing equipment becomes smaller and uses the same or even more electricity than
the equipment it replaced, more heat is being generated in data centers. Precision
cooling and heat rejection equipment is used to collect and transport this unwanted heat
energy to the outside atmosphere [46]. Should the temperature and humidity rise to
excessive levels inside the data center, condensation can start to form - thereby
damaging the machines within. The recommended temperature for data centers is
between 21 and 24°C [47]. Some studies have indicated that firms may be wasting
money by keeping temperatures below 21°C [47].

2.1.15.2. Basic Refrigeration Cycle
The basic refrigeration cycle is shown in Figure 4.1, which is based on two simple
principles:

« Liquids absorb heat when changed from liquid to gas.

» Gases give off heat when changed from gas to liquid.

The basic operation cycle can be described as below:

« The refrigerant comes into the compressor as a low-pressure gas, it is
compressed and then moves out of the compressor as a high-pressure gas.

« The gas then flows to the condenser. Here the gas condenses to a liquid and
gives off its heat to the outside air.

« The liquid then moves to the expansion valve under high pressure. This valve
restricts the flow of the fluid and lowers its pressure as it leaves the expansion
valve.

» The low-pressure liquid then moves to the evaporator, where heat from the
inside air is absorbed and changes it from a liquid to a gas.

» Asa hot low-pressure gas, the refrigerant moves to the compressor where the
entire cycle is repeated.

The refrigeration cycle consists of four primary devices [48]:

« Compressor: Prime mover, takes in the low-pressure gas and turns it into
high pressure gas.

« Evaporator: Absorbs the heat from the substance that we want to take the
heat from.

« Condenser: Takes the heat that is absorbs by evaporator and releases it
somewhere where it is not a problem (outside atmosphere for example).



33

LOW SIDE HIGH SIDE
‘ (low pressure) (high pressure) ’

Heat is transfered
from inside air / Low ngh'\
to refrigerant Pressure Pressure

Liquid I Liquid

Evaporator I

Low I High
Pressure Pressure

\?as Gas /

Heat is transfered
from refrigerant
to outside air

Fig. 22: Basic Refrigeration Cycle [48].

Expansion device: Takes in the high-pressure liquid refrigerant and drops the
pressure to a lower evaporating pressure.

Figure Fig. 22 shows the basic refrigeration cycle.

2.1.15.3. Cooling Architecture

A cooling architecture is fundamentally described by:
1. A particular heat removal method (cooling process).
2. A particular air distribution type.

3.

The location of the cooling unit that directly supplies cool air to the IT
equipment in data centers and network rooms.

The cooling process can be broken into steps [49]:

1.

2.
3.
4.

Server Cooling: Removing heat from information technology equipment
(ITE).

Space Cooling: Removing heat from the space housing the ITE.

Heat Rejection: Rejecting the heat to a heat sink outside the data center.

Fluid Conditioning: Tempering and returning fluid to the white space, to
maintain appropriate conditions within the space. In next section we discuss
each briefly.

2.1.15.4. Cooling Process Types
ITE generates heat as the electronic components within the ITE use electricity. Its
Newtonian physics: the energy in the incoming electricity is conserved. When we say
a server uses electricity, we mean the servers components are effectively changing the
state of the energy from electricity to heat. Heat transfers from a solid (the electrical
component) to a fluid (typically air) within the server, often via another solid (heat sinks
within the server). ITE fans draw air across the internal components, facilitating this



34

heat transfer. Some systems make use of liquids to absorb and carry heat from ITE. In
general, liquids perform this function more efficiently than air [49].
There are three such systems [49]:
1. Liquid contact with a heat sink. A liquid flows through a server and contacts a
heat sink inside the equipment, absorbing heat and removing it from the ITE.
2. Immersion cooling. ITE components are immersed in a non-conductive liquid.
The liquid absorbs the heat and transfers it away from the components.
3. Dielectric fluid with state change. ITE components are sprayed with a non-
conductive liquid. The liquid changes state and takes heat away to another heat
exchanger, where the fluid rejects the heat and changes state back into a liquid.

2.1.15.5. Space Cooling
In legacy data center designs, heated air from servers mixes with other air in the space
and eventually makes its way back to a CRAC/CRAH unit. The air transfers its heat,
via a coil, to a fluid within the CRAC/CRAH. In the case of a CRAC, the fluid is a
refrigerant. In the case of a CRAH, the fluid is chilled water. The refrigerant or chilled
water removes the heat from the space. The air coming out of the CRAC/CRAH often
has a discharge temperature of 13-15.5 -C.

The CRAC/CRAH blows the air into a raised floor plenum typically using
constant-speed fans. The standard CRAC/CRAH configuration from many
manufacturers and designers controls the units cooling based on return air
temperature [49].

2.1.15.6. Heat Rejection

While raised floor free cooling worked okay in low-density spaces where no one paid
attention to efficiency, it could not meet the demands of increasing heat density and
efficiency. There are times that in legacy data centers which one can measure
temperatures 15.5°C at the base of a rack and temperatures near 26°C at the top of the
same rack. People began to employ best practices and technologies including Hot Aisles
and Cold 35Aisles, ceiling return plenums, raised floor management, and server
blanking panels to improve the cooling performance in raised floor environments.
These methods are beneficial, and operators should use them [49].

Around 2005, design professionals and operators began to experiment with the idea
of containment. The idea is simple; use a physical barrier to separate cool server intake
air from heated server exhaust air. Preventing cool supply air and heated exhaust air
from mixing (as shown in Fig. 23) provides several benefits, including [49]:

« More consistent inlet air temperatures.

« The temperature of air supplied to the white space can be raised, improving

options for efficiency

« The temperature of air returning to the coil is higher, which typically makes it

operate more efficiently

« The space can accommodate higher density equipment



35

[ | d

Supply Hot Aisle Enclosure
Air (Exhaust) =

Cool Air

— — Server Rack Server Rack

CRAC =
Unit =]

I —

I =
— e . =
% I
[ t
i = : O
f}_ 7\ Cold
|

K\L/ 7 L / Hot Air

. - —

Fig. 23: Hot Aisle Enclosure Diagram [49].

Note that there is a difference between containing the hot aisle versus the cold aisle.
Nowadays they use hot aisle containment in new data centers [49]. After server heat is
removed from a white space, it must be rejected to a heat sink. The most common heat
sink is the atmosphere. Other choices include bodies of water or the ground.

2.1.15.7. Humidity and Dust
Beside temperature we must consider the effect of humidity and dust. Low humidity
increases the electro-static discharge (ESD) but is not of much concern, in contrast high
humidity does appear to pose a realistic threat to information technology equipment
(ITE) [49]. Dust can coat electronic components, reducing heat transfer. Certain types
of dust, called zinc whiskers, are conductive.

Zinc whiskers have been most found in electroplated raised floor tiles. The zinc
whiskers can become airborne and land inside a computer. Since they are conductive,
they can cause damaging shorts in tiny internal components. Uptime Institute
documented this phenomenon in a paper entitled “Zinc Whiskers Growing on Raised-
Floor Tiles Are Causing Conductive Failures and Equipment Shutdowns.” [49].

2.1.15.8. Design Criteria
To design a cooling system, the design team must agree upon certain criteria. Heat load
(most often measured in kilowatts) typically gets the most attention. Most often, heat
load includes two elements: total heat to be rejected and the density of that heat.
Traditionally, data centers have measured heat density in watts per square foot. Many
postulate that density should be measured in kilowatts per cabinet, which is a very
defensible in cases where one knows the number of cabinets to be deployed [49].

Airflow receives less attention than heat load. Many people use computational fluid
dynamics (CFD) software to model airflow. These programs can be especially useful
in non-contained raised floor environments. In all systems, but especially in



36

Building Ceiling

~_ Suspended Ceiling
4 e

fr———

Fig. 24: Data Center Temperature Flow [50].

contained environments, it is important that the volume of air produced by the
cooling system meet the ITE requirement. There is a direct relationship between heat
gain through a server, power consumed by the server, and airflow through that server.
Heat gain through a server is typically measured by the temperature difference between
the server intake and server exhaust or delta T (AT).

Airflow is measured in volume over time, typically cubic feet per minute (CFM).
Assuming load has already been determined, a designer should know (or, more
realistically, assume) a T. If the designer does not assume a AT, the designer leaves it
to the equipment manufacturer to determine the design T, which could result in airflow
that does not match the requirements [49].

The AT for most commodity servers is about 11°C [49].

2.1.15.9. Data Center Thermal Considerations
In Fig. 24 several locations in the data center where the environment can be measured
and controlled is shown.
These points include:
» Server inlet (point 1 in Fig. 24)
« Server exhaust (point 2 in Fig. 24)
» Floor tile supply temperature (point 3 in Fig. 24)
« Heating, ventilation, and air conditioning (HVAC) unit return air temperature
(point 4 in Fig. 24)
« Computer room air conditioning unit supply temperature (point 5 in Fig. 24)

The lower the air supply temperature in the data center, the greater the cooling costs.
In essence, the air conditioning system in the data center is a refrigeration system. The
cooling system moves heat generated in the cool data center into the outside ambient
environment. The power requirements for cooling a data center depend on the amount
of heat being removed (the amount of IT equipment you have) and the temperature delta
between the data center and the outside air.

The rack arrangement on the data center raised floor can also have a significant
impact on cooling-related energy costs and capacity, as summarized in the next
section [50].



w

7

&=
&=
& =

tttt
VAR
ERR

Fig. 25: Hot-Aisle and Cold-Aisle Layout [50].

| Cold [ > Mixed 77> Hot I |

- o
CHS
= -
= - || =z

Fig. 26: Server Inlet Air Mixing [50].

2.1.15.10. Hot Aisle and Cold Aisle Layout
The hot-aisle and cold-aisle layout in the data center has become a standard as shown
in Fig. 25. By arranging the rack into rows of hot and cold aisles, the mixing of air in
the data center is minimized. If warm air is allowed to mix with the server inlet air, the
air supplied by the air conditioning system must be supplied at an even colder supply
temperature to compensate [50].

In contrast, not using segregated hot and cold aisles results in server inlet air
mixing. Air must be supplied from the floor tile at a lower temperature to meet the
server inlet requirements, as shown in Fig. 26.

2.1.15.11. Heat Removal
There are 13 fundamental heat removal methods to cool the IT environment and
transport unwanted heat energy from IT equipment to the outdoors [46].

One can think of heat removal of as the process of “moving” heat energy from the
IT space to the outdoors. This “movement” may be as simple as using an air duct



38

Indoor heat exchange or  Transport Qutdoor heat exchange
transport fluid or transport

Chilled o Cond.water  Cooling tower

{ chiller* | Glycol Dry cooler

Pumped
refrigerant heat
exchanger

Refrigerant Condenser ]

Glycol Dry cooler ]

Condenser water Cooling tower ]

Air-cooled
self-contained

* Note that in some cases the chiller is physically located indoors.

Fig. 27: Simplified breakdown of the 13 fundamental heat removal methods [46].

Air Air duct ]

Air [ Indirect air evaporative cooler ]

Data center
boundary

to “transport” heat energy to the cooling system located outdoors. However, this
“movement” is generally accomplished by using a heat exchanger to transfer heat
energy from one fluid to another (e.g., from air to water). In Fig. 27 there are two points:
indoor and outdoor.

2.1.15.12. Chilled Water System
A chiller is a machine that removes heat from a liquid via a vapor-compression or
absorption refrigeration cycle [51]. The system involves a compressor, evaporator,
condenser, and a pump. There is a YouTube video that demonstrates the chiller system
basics through animation at https://www.youtube.com/watch? v=0rzQhSXVg60.

The first row in Fig. 27 depicts a Computer Room Air Handler (CRAH) joined
together with a chiller. This combination is generally known as a chilled water system.
In a chilled water system, the components of the refrigeration cycle are relocated from
the computer room air conditioning systems to a device called a water chiller shown in
Fig. 27.

The function of a chiller is to produce chilled water (water refrigerated to about 8-
15C). Chilled water is pumped in pipes from the chiller to the CRAH units located in
the IT environment. Computer room air handlers are like computer room air
conditioners in appearance but work differently. They cool the air (remove heat) by
drawing warm air from the computer room through chilled water coils filled with
circulating chilled water. Heat removed from the IT environment flows out with the
(now warmer) chilled water exiting the CRAH and returning to the chiller. The chiller
then removes the heat from the warmer chilled water and transfers it to another stream



https://www.youtube.com/watch?%20v=0rzQhSXVq60

39

Cooling Tower____ __ Comp oom
I AirHandlin
Water Spray Jets \H‘A‘{N ) nit 5
€ ffé?fgf;}%
L L
il
Fill Area \ fedva ‘;z%{s’jfi% 5@?};{%
| 'gégg% 1
i
E%gé‘%é ‘Z&Qg%‘s
L
l Wa 4 ‘gséfe;é
odutatin L
alve
Vi e
Compressor—— p ) £ I~ Water Chiller
Condenser.Héat — 4 | Chilled Water Supply (CWS)
N Pipe
P
Evaporator Heat Chllled Water Return (CWR)
Exchanger Pipe
Pump  Byjlding Mechanical Room

Fig. 29: Water-cooled chiller [46].

of circulating water called condenser water which flows through a device known
as a cooling tower.

As seen in Fig. 28, a cooling tower rejects heat from the IT room to the outdoor
environment by spraying warm condenser water onto sponge-like material (called fill)
at the top of the tower. The water spreads out and some of it evaporates away as it drips
and flows to the bottom of the cooling tower (a fan is used to help speed up the
evaporation by drawing air through the fill material). In the same manner as the human
body is cooled by the evaporation of sweat, the small amount of water that evaporates



40

1 UNIFLAIR

A -"-%L
Fig. 31: A Cooling Tower [46].

from the cooling tower serves to lower the temperature of the remaining water. The
cooler water at the bottom of the tower is collected and sent back into the condenser
water loop via a pump package.

Condenser water loops and cooling towers are usually not installed solely for the
use of water-cooled computer room air conditioning systems. They are usually part of
a larger system and may also be used to reject heat from the buildings comfort air
conditioning system (for cooling people).

There are three main types of chillers distinguished by their use of water or air to

reject heat:

1. Water-cooled chillers: Heat removed from the returning chilled water (as
shown in Fig. 29) is rejected to a condenser water loop for transport to the
outside atmosphere. The condenser water is then cooled using a cooling tower
- the final step in rejecting the heat to the outdoors. Water-cooled chillers are
typically located indoors, and one example can be seen in Fig. 31.

2. Glycol-cooled chillers: Look identical to water-cooled chillers. With glycol-
cooled chillers, heat removed from the returning chilled water is rejected to a
glycol loop for transport to the outside atmosphere. The glycol flows via pipes
to an outdoor-mounted device called a dry cooler also known as a fluid cooler.



41

Heat is rejected to the outside atmosphere as fans force outdoor air through the
warm glycol-filled coil in the dry cooler. Glycol-cooled chillers are typically
located indoors, and one example can be seen in Fig. 30. Propylene Glycol is a
Food Grade Antifreeze. A food grade antifreeze is required when a food product
is being cooled. The glycol, mixed with city water, enables us to operate our
chiller systems in the -2 to -4 temperature range that breweries require [52].

3. Air-cooled chillers: Heat removed from the returning chilled water is rejected
to a device called an air-cooled condenser that is typically integrated with the
chiller. This type of chiller is known as a packaged chiller and can also be
integrated into a cooling facility module.

2, e \
Jooling Tower Dry Cooler
Warm, moist
air out
A e A e -Fan
!_‘_ﬁ'-—v_"/'/ Warm, moist
Hotwmterin ot _-Distribution system GKOU‘A i o _Fen

+— Spray nozzles

i Fill material Heat Exchanger

v F
Hot water in : H Cold water out
» : H 1 >

3 H i

Dry airin - . . .
n b= “ S e Dry air in -

Y Y Y
Cold water out

Y
- 1 Collection basin |

Drawine bv Zerodamage

Fig. 32: Cooling Tower vs Dry Cooler [53].

2.1.15.13. Cooling Towers vs Dry Coolers
Cooling Towers use evaporation to provide cooling. They are located outdoor and are
capable of processing large amounts of heat and are commonly used to cool nuclear
power plants. In a Cooling Tower, hot water is sprayed on a medium to spread it out.
From there, outside air, which is cooler than the water, mixes with the water and causes
evaporation. Because of the evaporation, Cooling Towers require continuous water
refills to maintain an appropriate water level. This YouTube video helps to explain how
a cooling tower functions:
https://www.youtube.com/watch?v=xKzenFWO0ZIg&feature=youtu.be
The main difference between Dry Coolers and Cooling Towers is that Dry Coolers
do not require water. Instead, air is blown over a heat exchanger to remove the heat
from the liquid in the system.
Chilled Water System pros and cons and their usual usage are stated below:
* Pros:
o Chilled water CRAH units generally cost less, contain fewer parts, and
have greater heat removal capacity than CRAC units with the same footprint.
(Next section compares CRAH vs CRAC)



https://www.youtube.com/watch?v=xKzenFW0ZIg&feature=youtu.be%20

CRAC

to condenser
' on roof

from condenser I

to chiller
f plant

CRAH

42

from chiller
plant I

Cooling Coil

refrigerant

Scroll

DX
Compressor

Scroll

Scroll

Cooling Coil
chiled water

Scroll

Chilled Water
Valve

Scroll

Motor

Fan Fan Fan Fan Fan

Fig. 33: CRAC vs CRAH [54].

o Chilled water system efficiency improves greatly with increased data
center capacity.
o  Chilled water piping loops are easily run very long distances and can
service many IT environments (or the whole building) from one chiller plant.
o Chilled water systems can be engineered to be extremely reliable.
o Can be combined with economizer modes of operation to increase
efficiency. Designing the system to operate at higher water temperatures 12-
15C) will increase the hours on economizer operation.
Cons:
o Chilled water systems generally have the highest capital costs for
installations below 100 kW of electrical IT loads.
o Introduces an additional source of liquid into the IT environment
Usually Used:
o In data centers 200 kW and larger with moderate-to-high availability
requirements or as a high availability dedicated solution. Water-cooled chilled
water systems are often used to cool entire buildings where the data center
may be only a small part of that building.

2.1.15.14. CRAH vs CRAC

Computer Room Air Conditioner (CRAC): A CRAC unit is exactly like the
air conditioner at your house. It has a direct expansion (DX) refrigeration
cycle built into the unit. This means that the compressors required to power
the refrigeration cycle are also located within the unit. Cooling is
accomplished by blowing air over a cooling coil filled with refrigerant. A
CRAC is typically constant volume therefore it can only modulate on and off.
Recently, some manufacturers have developed CRAC units that can vary the
airflow using multistage compressors, but most existing CRAC units have
on/off control only [54].

Computer Room Air Handler (CRAH): A CRAH unit works exactly like a
chilled water air handling unit found in almost all high-rise commercial office
buildings. Cooling is accomplished by blowing air over a cooling coil filled
with chilled water. Typically, chilled water is supplied to the CRAHSs by a



43

Packaged Air-Cooled Chiller Pumped Refrigerant System Overhead
Cooling Unit

et Chilled Refrigerant Out
1 UNIFLAIR i Water In

—

Fig. 34: Example schematic drawing of a pumped refrigerant system connected to
chilled water [46].

chilled water plant (i.e., chiller). CRAHs can have VFDs that modulate fan
speed to maintain a set static pressure either under floor or in overhead ducts
[54]. Fig. 33 shows the difference between CRAC vs CRAH.

2.1.15.15. Pumped Refrigerant for Chilled Water Systems
The second row in Fig. 27 depicts a pumped refrigerant heat exchanger joined together
with a chiller. This combination is generally known as a pumped refrigerant system for
chilled water systems. Concerns regarding availability and the drive toward higher
densities have led to the introduction of pumped refrigerant systems within the data
center environment. These systems are typically composed of a heat exchanger and
pump which isolate the cooling medium in the data center from the chilled water.
However, the system could also isolate other cooling liquids such as glycol.

Typically, these pumped refrigerant systems use some form of refrigerant (R-
134A) or other non-conductive fluids like Flourinert that is pumped through the system
without the use of a compressor. Fig. 34 shows an example of a pumped refrigerant
system connected to a packaged air-cooled chiller using an overhead cooling unit.
Chilled water is pumped in pipes from the chiller to a heat exchanger which transfers
the heat from the pumped refrigerant. The colder refrigerant returns to the cooling unit
to absorb more heat and returns to the heat exchanger.

Pumped Refrigerant pros and cons and their usual usage are stated below:

* Pros:

o Keeps water away from IT equipment in chilled water applications.

o  Oil-less refrigerants and non-conductive fluids eliminate risk of mess or
damage to servers in the event of a leak.

o Efficiency of cooling system due to proximity to servers or direct to chip
level.

« Cons

o Higher first cost because of adding additional pumps and heat
exchangers into the cooling system.

« Usually Used:



44

Air-Cooled Condenser
Coils

Condensing Coil

) Compres
5,

\/
\/ C uter Ro

Building Roof ir Congitigner Envirohme

Fig. 35: Air-cooled DX system (2-piece) [46].

CRAC unit

Air-cooled condenser

Fig. 36: Example of Air-cooled DX system (2-piece) [46].

o  These systems are usually used for cooling systems that are closely
coupled to the IT equipment for applications like row and rack based high
density cooling.

o Chip Level Cooling where coolant is piped directly to the server

2.1.15.16. Air-Cooled System (2-Piece)

The third row in Fig. 27 depicts an air-cooled CRAC joined together with a condenser.
This combination is generally known as an air-cooled CRAC DX system. The “DX”
designation stands for direct expansion and although this term often refers to an air-
cooled system, in fact any system that uses refrigerant and an evaporator coil can be
called a DX system.

Air-cooled CRAC units are widely used in IT environments of all sizes and have
established themselves as the “staple” for small and medium rooms. In an air-cooled 2-
piece system, half the components of the refrigeration cycle are in the CRAC, and the
rest are outdoors in the air-cooled condenser as shown in Fig. 35. Refrigerant circulates
between the indoor and outdoor components in pipes called refrigerant lines. Heat from
the IT environment is “pumped” to the outdoor environment using this circulating flow
of refrigerant. In this type of system, the compressor resides in the CRAC unit.
However, the compressor may alternatively reside in the condenser. When the
compressor resides in the condenser the correct term for the condenser is condensing
unit, and the overall system is known as a split system. Fig. 36 shows an example of an
air-cooled 2-piece DX system.



45

Air-Cooled Condenser >

N K\C \ﬁe/rR’\o e
\\Bundlng Roof /ﬂgm ner < \H’\Erhlmnment

Fig. 37: Glycol-Cooled System [46].

2.1.15.17. Glycol-Cooled System
The fourth row in Fig. 27 depicts a Glycol-Cooled CRAC joined together with a dry
cooler. This combination is generally known as a glycol-cooled system. This type of
system locates all refrigeration cycle components in one enclosure but replaces the
bulky condensing coil with a much smaller heat exchanger shown in Fig. 37.

The heat exchanger uses flowing glycol (a mixture of water and ethylene glycol,
like automobile anti-freeze) to collect heat from the refrigerant and transport it away
from the IT environment. Heat exchangers and glycol pipes are always smaller than
condensing coils found in 2-piece air-cooled systems because the glycol mixture has
the capability to collect and transport much more heat than air does. The glycol flows
via pipes to a dry cooler where the heat is rejected to the outside atmosphere. A pump
package (pump, motor, and protective enclosure) is used to circulate the glycol in its
loop to and from the Glycol-Cooled CRAC and dry cooler. A Glycol-Cooled system is
very similar in appearance to the equipment in Fig. 36.

The Glycol-Cooled system pros and cons and their usual usage are stated below:

* Pros:

o  The entire refrigeration cycle is contained inside the CRAC unit as a
factory-sealed and tested system for highest reliability with the same floor
space requirement as a two-piece air-cooled system.

o Glycol pipes can run much longer distances than refrigerant lines (air-
cooled split system) and can service several CRAC units from one dry cooler
and pump package.

o In cold locations, the glycol within the dry cooler can be cooled so much
(below 10C [50F]) that it can bypass the heat exchanger in the CRAC unit and
flow directly to a specially installed economizer coil. Under these conditions,
the refrigeration cycle is turned off and the air that flows through the
economizer coil, now filled with cold flowing glycol, cools the IT
environment. This economizer mode, also known as free cooling, provides
excellent operating cost reductions when used.

+ Cons:

o Additional required components (pump package, valves) raise capital
and installation costs when compared with air-cooled DX systems.

o Maintenance of glycol volume and quality within the system is
required.



46

Fill Area ‘.‘,‘){;

//
/{/ ,/, Vo i )./F;“
N \\\/\ Lk : |
ol Gpectn = <«
\\\\\ \;/y’/} P Com/\ r Room" <
- Building Raof " Pump- [~ i Condioner. <

Fig. 38: Water-Cooled System [46].

o Introduces an additional source of liquid into the IT environment.
Usually Used:

o In computer rooms and 30-1,000 kW data centers with moderate

availability requirements.

2.1.15.18. Water-Cooled System
The fifth row in Fig. 27 depicts a water-cooled CRAC joined together with a cooling
tower. This combination is generally known as a water-cooled system. Water-cooled
systems are very similar to glycol-cooled systems in that all refrigeration cycle
components are located inside the CRAC. However, there are two important differences
between a glycol-cooled system and a water-cooled system:

1.

2.

water (also called condenser water) loop is used instead of glycol to collect and

transport heat away from the IT environment.
Heat is rejected to the outside atmosphere via a cooling tower instead of a dry
cooler as seen in Fig. 38.
The Water-Cooled systems pros and cons and their usual usage are stated below:
Pros:
o  All refrigeration cycle components are contained inside the computer
room air conditioning unit as a factory-sealed and tested system for highest
reliability.
o Condenser water piping loops are easily run long distances and almost
always service many computer room air conditioning units and other devices
from one cooling tower.
o In leased IT environments, usage of the building’s condenser water is
generally less expensive than chilled water (chilled water is explained in the
next section).
Cons:
o High initial cost for cooling tower, pump, and piping systems.
o Very high maintenance costs due to frequent cleaning and water
treatment requirements.
o Introduces an additional source of liquid into the IT environment.
o A non-dedicated cooling tower (one used to cool the entire building)
may be less reliable than a cooling tower dedicated to the computer room air
conditioner.
Usually Used:



47

Cooling Tower—__

Water Spray Jets

Fill Area ‘.‘,‘)/’

S

//,/

/</ /,/ g |

\\\«\ ‘-‘.\ % i
Water Col c‘h@‘ g

Reservoir ~

\\

M Bmldlng ot %ond& ><)\ H/En
Fig. 39: Indoor Air-Cooled Self-contained System [46].

Air cooled self contained

Portable Self Contained
Cooling Unit

Fig. 40: Examples of Indoor Air-Cooled Self-contained System [46].

o In conjunction with other building systems in data centers 30kW and
larger with moderate-to-high availability requirements.

2.1.15.19. Air-Cooled Self-Contained System (1-piece)

The sixth row in Fig. 27 depicts an air-cooled self-contained air conditioning unit joined
together with an air duct. This combination is generally known as an air-cooled self-
contained system. Self-contained systems locate all the components of the refrigeration
cycle in one enclosure that is usually found in the IT environment. Heat exits the self-
contained system as a stream of hot (about 49C) air called exhaust air. This stream of
hot air must be routed away from the IT room to the outdoors or into an unconditioned
space to ensure proper cooling of computer equipment as illustrated in Fig. 39.

If mounted above a drop ceiling and not using condenser air inlet or outlet ducts,
the hot exhaust air from the condensing coil can be rejected directly into the drop ceiling
area. The building’s air conditioning system must have available capacity to handle this
additional heat load. Air that is drawn through the condensing coil (becoming exhaust
air) should also be supplied from outside the computer room. This will avoid creating
a vacuum in the room that would allow warmer, unconditioned air to enter. Self-
contained indoor systems are usually limited in capacity (up to 15kW) because of the
additional space required to house all the refrigeration cycle components and the large



48

Hot Air Returmn
[puct out of
Data Center

Hot
exhaust air =

Cold Air
Supply
Duct into

. z ~-,\_\. /.-"‘ .
-jg Data

} Center

.’z’ ’_.’
A gertafra,

- Cold outdoor air

Qutdoors IT Environment

Fig. 41: Example of a direct air evaporative cooling system [46].

Fig. 42: Example of a direct air evaporative cooling system [46].

air ducts required to manage exhaust air. Self-contained systems that mount outdoors
on a building roof can be much larger in capacity but are not commonly used for
precision cooling applications. Fig. 40 shows an example of an air-cooled self-
contained system.

2.1.15.20. Direct Fresh Air Evaporative Cooling System
The seventh row in Fig. 27 depicts an air-duct joined together with a direct fresh air
evaporative cooler. This combination is generally known as a direct fresh air
evaporative cooling system, sometimes referred to as direct air. A direct fresh air
economizer system uses fans and louvers to draw a certain amount of cold outdoor air
through filters and then directly into the data center when the outside air conditions are
within specified set points.

Louvers and dampers also control the amount of hot exhaust air that is exhausted
to the outdoors and mixed back into the data center supply air to maintain
environmental set points (see Fig. 41). The primary mode of operation for this cooling
method is “economizer” or free cooling mode and most systems use a containerized



49

Hot Air Retum
uct out of
Data Center

Hot
A

exhaust air =

MW " Droppedceing |
Hot Air P~ il e kst e

Return e

Duct " HotAisle

S

Cold Air
Supply
-~ Duct into

Data
Center

searce,

Cold outdoor air

Qutdoors IT Environment

Fig. 43: Indirect Air Economizer System [46].

Hot outdoor air

e

Fig, 44: Example of an indirect air evaporative cooling system [46].

DX air-cooled system as back-up. Although supply air is filtered, this does not
eliminate fine particulates such as smoke and chemical gases from entering the data
center.

This heat removal method is normally used with evaporative cooling whereby the
outside air also passes through a wet mesh material before entering the data center. Note
that using evaporative assist increases the data center humidity because the direct fresh
air into the data center passes over the evaporative medium bringing the air to saturation
which minimizes the effectiveness of this method for data center applications.
Evaporative assist is most beneficial in dry climates. For more humid climates, such as
Singapore, evaporative assist should be evaluated based on ROI (return on investment).
Fig. 42 shows an example of a direct fresh air evaporative cooling system.

2.1.15.21. Indirect Air Evaporative Cooling System
The eighth row in Fig. 28 depicts an air-duct joined together with an indirect air
evaporative cooler. This combination is generally known as an indirect air evaporative
cooling system, sometimes referred to as indirect air. Indirect air evaporative cooling



50

Fig. 45: Self-contained roof-top system [46].

systems use outdoor air to indirectly cool data center air when the temperature
outside is lower than the temperature set point of the IT inlet air, resulting in significant
energy savings. This “economizer mode or free cooling” of operation is the primary
mode of operation for this heat removal method although most do use a containerized
DX air-cooled system as back-up. Fans blow cold outside air through an air-to-air heat
exchanger which in turn cools the hot data center air on the other side of the heat
exchanger, thereby completely isolating the data center air from the outside air. Heat
exchangers can be of the plate or rotating type.

Like indirect air, this heat removal method normally uses evaporative assist
whereby the outside of the air-to-air heat exchanger is sprayed with water which further
lowers the temperature of the outside air and thus the hot data center air. Fig. 43
provides an illustration of an indirect air evaporative cooling system that uses a plate
heat exchanger with evaporative assist.

Fig, 44 shows an example of a complete cooling system with this type of heat
rejection method. Indirect air evaporative cooling systems provide cooling capacities
up to about 1,000kW. Most units are roughly the size of a shipping container or larger.
These systems mount either on a building roof or on the perimeter of the building. Some
of these systems include an integrated refrigeration cycle that works in conjunction with
an economizer mode.

2.1.15.22. Self-Contained Roof-Top System

The ninth row in Fig. 27 depicts an air-duct joined together with a self-contained roof-
top unit. This combination is generally referred to as a roof-top unit (RTU). These
systems are not a typical cooling solution for new data centers. Roof-top units are
basically the same as the air-cooled self-contained system described above except that
they are located outdoors, typically mounted on the roof, and are much larger than the
indoor systems. Roof-top units can also be designed with a direct fresh air economizer
mode. Fig. 45 shows an example of a roof-top unit.



51

Hot
™
( - N ) u
Mixed Air
CRAC Unit Server Rack Server Rack
[ - A B ]
a = \ =
0 = —
N A 1H A — A
// /‘ ‘: ¥ = =
[ \ I ==
) Il = A =1
s (e 1= \ H ) —
t =
1 | I~ SING o A
- d A U
{w / I Hot Air Cold
[ I [ I
1444 A\
Cool Air
- - - )

Fig. 46: Traditional Cooling Diagram [46].

The Water-Cooled systems pros and cons and their usual usage are stated below:

* Pros:
o  All cooling equipment is placed outside the data center, allowing for
white space to be fully utilized for IT equipment.
o Significant cooling energy savings in mild climates compared to
systems with no economizer mode.

+ Cons:
o May be difficult to retrofit into an existing data center.

« Usually Used:
o In data centers that are part of a mixed-use facility.

2.1.15.23. Modern Energy Efficient Cooling Systems

First, it is essential that data centers measure just how much energy they use for non-
computing functions such as cooling. This allows for more effective management. The
effective airflow management is particularly important. Through effective containment,
data centers can reduce the risk of hot and cold air mixing. Google suggests using
thermal modelling and computational fluid dynamics to devise an optimal strategy for
air flow management [47]. Free cooling can also help to improve data center energy
efficiency. There are several forms of free cooling, including thermal reservoirs, low-
temperature ambient air and evaporating water [47].

2.1.15.24. OPEX — CAPEX

An operating expense, operating expenditure, operational expense, operational
expenditure or Opex is an ongoing cost for running a product, business, or system. Its
counterpart, a capital expenditure (Capex), is the cost of developing or providing non-
consumable parts for the product or system. For example, the purchase of a photocopier
involves Capex, and the annual paper, toner, power, and maintenance costs represents
Opex. For larger systems like businesses, Opex may also include the cost of workers
and facility expenses such as rent and utilities [55].



52

2.1.15.25. Legacy Cooling and the End of Raised Floor

For decades, computer rooms and data centers utilized raised floor systems to deliver
cold air to servers. Cold air from a computer room air conditioner (CRAC) or computer
room air handler (CRAH) pressurized the space below the raised floor. Perforated tiles
provided a means for the cold air to leave the plenum and enter the main space ideally
in front of server intakes. After passing through the server, the heated air returned to
the CRAC/CRAH to be cooled, usually after mixing with the cold air. Very often, the
CRAC units return temperature was the set point used to control the cooling systems
operation. Most commonly the CRAC unit fans ran at a constant speed, and the CRAC
had a humidifier within the unit that produced steam. The primary benefit of a raised
floor, from a cooling standpoint, is to deliver cold air where it is needed, with very little
effort, by simply swapping a solid tile for a perforated tile as show in Fig. 46 [49].

For many years, this system was the most common design for computer rooms
and data centers. It is still employed today. The legacy system relies on one of the
principles of comfort cooling: deliver a relatively small quantity of conditioned air and
let that small volume of conditioned air mix with the larger volume of air in the space
to reach the desired temperature. This system worked okay when ITE densities were
low. Low densities enabled the system to meet its primary objective despite its flaws
poor efficiency, uneven cooling, etc. At this point, it is an exaggeration to say the raised
floor is obsolete. Companies still build data centers with raised floor air delivery.
However, more and more modern data centers do not have raised floor simply because
improved air delivery technigques have rendered it unnecessary [49].

2.1.15.26. Modern Data Center Temperature Set Point
We must answer the question of “How cold is cold enough for a data center?”. Heat
must be removed from the vicinity of the ITE electrical components to avoid
overheating the components. If a server gets too hot, onboard logic will turn it off to
avoid damage to the server [49].

The ASHRAE Technical Committee TC9.9 guideline recommends that the device
inlet be between 18-27C and 20-80% relative humidity (RH) to meet the manufacturers
established criteria. Uptime Institute further recommends that the upper limit be
reduced to 25C to allow for upsets, variable conditions in operation, or to compensate
for errors inherent in temperature sensors and/or controls systems. It is extremely
important to understand that the TC 9.9 guidelines are based on server inlet
temperatures not internal server temperatures, not room temperatures, and certainly not
server exhaust temperatures.

It is also important to understand the concepts of Recommended and Allowable
conditions. If a server is kept too hot, but not so hot that it turns itself off, its lifespan
could be reduced. This lifespan reduction is a function of the high temperatures the
server experiences and the duration of that exposure. In providing a broader Allowable
range, ASHRAE TC 9.9 suggests that ITE can be exposed to the higher temperatures
for more hours each year.

2.1.15.27. Liquid Cooling
Organizations are increasingly evaluating and implementing liquid cooling solutions to
meet the heat challenges of blade servers and high-density computing. Liquid cooling



53

solutions utilize air/liquid heat exchangers to provide quiet, uniform, effective cooling
[56].

Historically, liquid cooling solutions were successfully and safely used to cool
high-heat mainframe computers. Yet, as power consumption and densities fell to less
than 5 kW per rack, air cooling became the standard technology. With the increasing
need to again turn to liquid cooling the American Society of Heating, Refrigerating and
Air-Conditioning Engineers (ASHRAE) recently published a book entitled Liquid
Cooling Guidelines for Datacom Equipment Centers that discusses standards and
technologies related to data center liquid cooling, designs, and implementations [56].

A key driver of liquid cooling is the HPC community bid to super-charge the
processing power of supercomputers, creating exascale machines that can tackle
massive datasets. Although it can offer savings over the life of a project, liquid cooling
often requires higher up-front costs, making it a tougher sell during procurement [56].

Immersion solutions usually come into play when an end user is building a new
greenfield data center project and is seen less frequently in expansions or redesigns of
existing facilities. Direct-contact solutions are more likely candidates for existing
facilities but require bringing water to the rack requires piping (either below the raised-
floor or overhead) that is not standard in most data centers [56].

2.1.15.28. Immersion-Cooled Systems
Facebook and Intel have already validated the benefits of using submersion cooling
[57, 58]. The current popular solutions in the industry are:

1. The Carnotlet System: Immersion-cooled systems do not require chillers,
CRAC units, raised flooring, etc. This method has the potential to cut in half the
construction costs [59]. The system lets the servers immerse in a container filled
with a special nontoxic dielectric oil which has 1200 times heat capacity more
than air and then transferred with a pump to a cooling tower, the system
functionality is demonstrated at this YouTube video:
https://www.youtube.com/watch?v=7LgbNOclu8k

2. 3M Two Phase Immersion Cooling: The two-phase immersion cooling using
3Ms Novec Engineered Fluids which is non-flammable, noncombustible,
electrically non-conductive is being used in the bitcoin sector that can support
100kW racks [56]. It is called two-phase because it literally boils thanks to its
low boiling point, and thus exists in both a liquid and gas phase. The system
takes advantage of a concept known as “latent heat” which the heat (thermal
energy) is required to change the phase of a fluid (in this case two-phase
dielectric mineral oil). The oil is only cooled by boiling and thus remains at the
boiling point (“saturation temperature”). Energy transferred from the servers
into the two-phase oil will cause a portion of it to boil off into a gas (this is the



https://www.youtube.com/watch?v=7LgbN0cIu8k

54

CAPEX OPEX Rack Power
(annualized) (annualized)
12 ¢ 20 r 30 r
10 25
15
@ 8t @ J520 -
%’ 6t %10 L §15 L
® 4t & <10}
5 L
2} 5t
O J 0 J 0 J
Air  CoollT Air  CoollT Air  CoollT
25% DECREASE 22% DECREASE 80% INCREASE
capital expense operating expense rack capacity
Air Cooling CoollT
# of Racks 100 55
Total IT Power 1.5 MW 1.5 MW
Total Data Center Power 2.7 MW 1.8 MW
* Including Cooling IT UPS & AUX
IT Density 15 kW/rack 27.7 KW/rack

* Using Koomey's data center costing methods

Fig. 47: Air vs CoolIT Capex/Opex Comparison [60].

Fig. 48: Aspen Systems Liquid Cooled Server [61].

second phase of the oil). The gas rises above the liquid oil level where it contacts
a condenser which is cooler than the saturation temperature. This causes the vaporized



55

oil to condense back into a liquid form and fall (rain) back into the bath [62]. A
YouTube video shows how this can be used in operational environment:
https://www.youtube.com/watch?v=a6ErbZtplL 88

2.1.15.29. Direct Contact Liquid Cooling
1. Direct Contact Liquid Cooling (DCLC): uses the exceptional thermal

conductivity of liquid to provide dense, concentrated cooling to targeted small
surface areas. By using DCLC, the dependence on fans and expensive air
conditioning and air handling systems is drastically reduced. This enables over
80kW densities per rack using warm water cooling, allows reduced power use
and provides access to significantly higher performance potential. Liquid
cooling solutions are either installed directly into enclosures or mounted into
data center spaces. CoollT Systems offers options for data centers with or
without facility water hook up. Any server in any rack can be liquid cooled
with CoollTs hardware, and benefit from immediate and measurable CAPEX
and OPEX savings as it is shown in Fig. 47 [60].

Asetek: specializes in liquid cooling systems for data centers, servers,
workstations, gaming, and high-performance PCs. The exterior of liquid
cooling system is shown in Figure 4.26.

2.1.16. Liquid Cooling Drawbacks
Some of the drawbacks of liquid cooling is listed below [63]:

Lower profiles: Unlike a rack, a tub for immersion of servers is only accessible
from the top, meaning the potential for vertical scaling of infrastructure is
extremely limited. Traditional racks, however, effectively enable stacking of
server’s floor to ceiling in each floor space. Thus, this approach can reduce the
power density per square foot. To be fair, however, this consideration only
applies if an equivalent power density can be achieved using other cooling
methods; very high-density deployments preclude the use of air cooling, for
instance.

Mess: Any maintenance, changing of cables or other activity involving contact
with the servers requires contact with the liquid mineral oil, for instance. These
liquids are chosen to avoid toxicity, but a spill can create a hazard for
employees, not to mention requiring significant effort to clean.

Supporting infrastructure: Immersion cooling requires vats to hold the
servers, as well as a large supply of the liquid.

Special HDDs: Hard-disk drives (HDDs) immersed in liquid must be designed
to prevent leakage or otherwise sealed, as the spinning disks must operate in a
gas.

Retrofitting costs: Designing a new data center from scratch to accommodate
liquid cooling is less troublesome than retrofitting an existing data center. Thus,
investment in an existing deployment creates a barrier for many facilities.

In addition, liquid cooling systems whether immersion or otherwise require

filtration of the liquid to avoid problems like buildup of contaminants, excessive
sediment, and biological growth. For water-based systems such as those that employ
cooling towers or other evaporative measures, the amount of sediment in each volume


https://www.youtube.com/watch?v=a6ErbZtpL88

56

increases as vapor is removed, requiring separation and disposal of this “blowdown”.
Even this disposal can create environmental concerns. Furthermore, water usage
particularly in dry areas is a concern, about both utility capacity (in the case of large
data centers) and the limited local supply [63].

2.1.17. Free Cooling
In 2010 the data center sector was accountable for 1.3% of worldwide electricity
consumption and 2% of US electricity consumption [64]. The energy consumption is
estimated to increase by 15-20% per year [35], which demands a rapid response to the
problem of rise of data centers. The use of the cooling system in economizer mode,
generally called free cooling, is one of the most effective solution to obtain energy
saving [65].

The Green Grid, a non-profit consortium working to improve data center energy
efficiency, has published a survey of data centers, mostly in the US, that shows that
almost half are now using natural cooling to save energy and cost [66].

The ASHRAE 90.1 standard is going to eliminate the present exceptions for data
centers. It is going to require that free cooling be included in the designs of all new data
centers [67].

There are two free cooling categories:

1. Air-side free cooling:

a.  Direct: Blow outside cold air into the data center. Pros: Simple, Cons:
contamination, humidity.
b.  Indirect: Uses air-to-air heat exchanger to avoid contamination.

2. Water-side free cooling: A simulation based on Seoul climate [68] shows that
the air-side economizer worked for 57% of the total data center operation
period, while the water-side economizer for about 35%. These numbers led to
an annual energy savings of 16.6% and 42.2%, respectively for the water-side
and the air-side economizer cooling system, compared with the base cooling
system. The calculated PUE was 1.62 for the air-side economizer system and
1.81 for the water-side economizer system. These facilities can operate 99% of
time in economizer mode.

As stated in [65], direct air-side economizer is adopted in the 40% of the total
number of data centers using free cooling technologies. Moreover, both Yahoo and
Facebook provide their facilities with advanced air-side economizer based cooling
system, avoiding the use of chillers. As presented in [69] the design of a cost-effective
data center taking advantage of outside air eliminates the need of mechanical
equipment. The data center also exploits the shape of the building, which was designed
emulating a chicken-coop building, to take advantage of natural convection in the heat
rejection. Cool air enters from the side of the building, and, after cooling the equipment,
exhaust air rises through a cupola in the roof. The system uses a direct air-side
economizer for the heat removal, with an evaporative cooling assistance for extreme
summer conditions. The achieved PUE is 1.08.

2.1.18. Data Center Cooling Challenges
Mission critical installations face several cooling system challenges in the modern data
center. The requirements of today’s IT systems, combined with the way those IT



57

systems are deployed, has created new cooling related problems. These are new
problems which could not have been foreseen when the data center cooling principles
were developed over 30 years ago.

Core challenges in the data center cooling process can be grouped in the following
categories:

» Adaptability/Scalability

« Availability

+ Lifecycle Costs

« Maintenance/Serviceability

» Manageability

For many companies, meeting adaptability requirements remains the biggest
challenge regarding data center cooling systems. Specifically, this involves problems
with the cooling of high-density rack systems, and the uncertainty of the quantity,
timing, and location of high-density racks. Data center cooling is further complicated
by IT refreshes that typically occur every 1.5 to 2.5 years.

The cooling system within a data center should be flexible and scalable with
redundant cooling features to guarantee steady performance. The data center cooling
requirements regarding lifecycle cost challenges share many features in common with
adaptability solutions. Pre-engineered, standardized, and modular solutions are
typically needed.

Once appropriate design goals are established there are several additional steps
recommended for data center cooling best practices:

1. Determine the Critical Load and Heat Load. Determining the critical heat load
starts with the identification of the equipment to be deployed within the space.
However, this is only part of the entire heat load of the environment.
Additionally, the lighting, people, and heat conducted from the surrounding
spaces will also contribute to the overall heat load. As a very general rule-of-
thumb, consider no less than 1-ton (12,000 BTU/Hr / 3,516 watts) per 400
square-feet of IT equipment floor space.

2 . Establish Power Requirements on a per RLU Basis. Power density is best
defined in terms of rack or cabinet footprint area since all manufacturers
produce cabinets of generally the same size. A definite Rack Location Unit
(RLU) trend is that average RLU power densities are increasing every year.
The reality is that a computer room usually deploys a mix of varying RLU
power densities throughout its overall area. The trick is to provide predictable
cooling for these varying RLU densities by using the average RLU density as
a basis of the design while at the same time providing adequate room cooling
for the peak RLU and non-RLU loads.

3. Determine the CFM Requirements for each RLU. Effective cooling is
accomplished by providing both the proper temperature and an adequate
quantity of air to the load. As temperature goes, the American Society of
Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) standard

is
Table 3: The three equipment cooling methods

Room Cooling 2 KW per RLU

Row Cooling 8 kW per RLU

Cabinet Cooling 20 kW per RL




10.

58

to deliver air between the temperatures of 68 F and 75 F to the inlet of the IT
infrastructure. Although electronics performs better at colder temperatures it
IS not wise to deliver lower air temperatures due to the threat of reaching the
condensate point on equipment surfaces. Regarding air volume, a load
component requires 160 cubic feet per minute (CFM) per 1 kW of electrical
load. Therefore, a 5,000-watt 1U server cabinet requires 800 CFM.
Perform Computational Fluid Dynamic (CFD) Modeling. CFD modeling can
be performed for the under-floor air area as well as the area above the floor.
CFD modeling the airflow in a computer room provides information to make
informed decisions about where to place CRAC equipment, IT-equipment,
perforated tiles, high density RLUs, etc. Much of the software available today
also allows mapping of both under floor and overhead airflow obstructions to
represent the environment more accurately.
Determine the Room Power Distribution Strategy. The two (2) main decisions
in developing a room power distribution strategy are:
1. Where to place the power distribution units (PDUs)?
2. Whether to run power cables overhead or under the floor?
Determine the Cabinet Power Distribution Strategy. In deciding how power
will be distributed through the cabinet, use of dual power supplies, and cabling
approach, it is important to understand the impact of power distribution on
cooling, particularly as it is related to air flow within the cabinet.
Determine the Room & Cabinet Data Cabling Distribution Impact. Typically,
there are three choices in delivering network connectivity to an RLU. They
are:
1. Home run every data port from a network core switch.
2. Provide matching port-density patch panels at both the RLU and the core
switch with pre-cabled cross-connections between them, such that server
connections can be made with only patch cables at both ends.
3. Provide an edge switch at every rack, row, or pod depending on
bandwidth requirements. This approach is referred to as zone switching.
Establish a Cooling Zone Strategy. Recall that effective computer room
cooling is as much about removing heat as it is about adding cold. The three
equipment cooling methods along with their typical cooling potential can be
determined from Table 3. It is also critical to consider high-density cooling
and zone cooling requirements.
Determine the Cooling Methodology. Upon determining what cooling zone
will be required, the decision of what types of air conditioners will be needed,
must be made. There are four (4) air conditioner types:
1.  aircooled
2.  glycol cooled
3. condenser water cooled
4.  chilled water.

In addition, it is also important to determine how heat will be rejected
within the system and what type of cooling redundancy is required and available
for a particular methodology.



11

12.

13.

59

. Determine the Cooling Delivery Methodology. Different architectural
attributes affect cooling performance in different ways. For instance, designs
should consider the location of the computer room within the facility (l.e.,
onside versus inside rooms), height of the raised floor, height of suspended
ceiling, etc.

Determine the Floor Plan. The *hot aisle / cold aisle’ approach is the accepted
layout standard for RLUs for good reason. It works. It was developed by, Dr.
Robert Sullivan, while working for IBM and it should be adapted for both new
and retrofit projects. After determining the hot/cold aisles it is critical to place
the CRAC units for peak performance. This may include room, row, or rack-
based cooling 63approaches. Each works well depending upon the IT
infrastructure, power densities, CFM requirements, and other attributes
previously discussed.

Establish Cooling Performance Monitoring. It is vital to develop and deploy
an environmental monitoring system capable of monitoring each room, row,
and cabinet cooling zone. A given is that once effective cooling performance
is established for a particular load profile, it will change rapidly. It is important
to compile trending data for all environmental parameters for the site such that
moves, adds, and changes can be executed quickly.

2.1.19. Fine-Tuning Automation
Data center facilities managers normally must manage each individual component of
the cooling system (i.e., chillers, air handlers, economizers, etc.) to fine-tune the overall
system. Change the setting on one, and the entire system gets affected.

There are several ways to automate the fine-tuning process. One is to use machine
learning as Vertix has done [70].

Machine Learning: The idea with iCOM Autotuning, Vertiv’s new software
feature, is to use machine learning techniques to control all the elements
automatically, the company said in a statement.

In a direct-expansion data center cooling system, that means compressors,
fans, and condensers are harmonized to eliminate short cycling, which is when
cool air returns into the cooling system without going through IT hardware.

In chilled-water systems, the autotuning feature avoids rapid fluctuations
in valve positions to balance fan speeds, water temperature, and flow rates.

The feature is part of Vertiv’s Liebert iCOM-S thermal system control. It
is available for select Liebert cooling systems installed in North America.

While running in production to improve cloud services by the likes of
Google and Facebook, machine learning algorithms are seldom applied to data
center management. The rare examples of companies that have done it include
Google, which uses machine learning to improve data center infrastructure
efficiency; Coolan, a startup that used machine learning to optimize the cost of
data center hardware acquired by Salesforce last year; and Romonet, whose



60

Configuration 1 Configuration 2
Hot air from Hot air from
server rack server rack Inlet
N (_\ L Inlet & N
Qutlet \ Outlet ‘\

Fig. 49: Two different rack configuration [71].

Configuration 1 Configuration 2

Outlet
—

Outlet

¢ Inlet

| Inlet

Side view Side view

Top view Top view

Velocity (m/s)
e o
0 0.65

Fig. 50: Velocity plot comparison [71].

software analyzes the cost of customers data center assets and traces the
impact of infrastructure decisions on their bottom line [70].

Another case is the Google project that uses DeepMind Al to cut data center
energy bills. After accounting for “electrical losses and other non-cooling
inefficiencies,” 15 percent reduction in overall power saving was achieved [72].
Cooling Simulation: In Fig. 49: Two different rack configuration [71]. Two
configurations have the same inlet and outlet conditions, except that the position
of the inlets is different. This seems to be a minor change from a viewpoint, but
it might end up giving considerably different results. The following images are
not just some colorful pictures, but they bring some physical relevance based
on scientific principles [71].

In HVAC design problems, we try to minimize recirculation of fluid as much

possible, which ensures proper ventilation in the space. The velocity plot comparison



61

Configuration 1 Configuration 2

Outlet Outlet
j : —

Inlet

71 1let

Side view Side view

Top view Top view
Temperature (K)
291 320

Fig. 51: Temperature plot comparison [71].

At U

of what a data center ight look like under the sea [73].

Fig. 52: An artist’s rendition

in Fig. 50 shows that recirculation is less in Configuration 2 compared to the other
one. The temperature plot in Fig. 51 brings out the significance of reduced recirculation.
From the temperature plot in Fig. 51, the domain in Configuration 2 has a lower
temperature value than the corresponding points in Configuration 1. It was also
calculated that the average temperature at the center section in Configuration 1 is
303.9K, whereas the second case has 2.1 degrees lower average temperature, at 301.8K.



62

For data center cooling, it is very important to understand the flow. This learning
helps us to create a channel for effectively removing the heat dissipated from server
vents. The illustrations compare two basic configurations in general, there might be so
many other possibilities which might give even better results. Temperature distribution
and pressure differences should be uniform to help in maintaining the conditions inside
the room. In this context, engineering simulation software such as ‘“simscale”
[71]comes handy to assist engineers and designers in achieving the best possible design
for data center cooling. Save money, save time, save energy.

2.1.20. Future Ideas
One idea is to build data center under the oceans. Microsoft is testing the idea of
submerging Azure cloud data centers under the ocean, off the California Polytechnic
State University pier near Avila Beach [73]. An artistic picture of such idea is shown
in Fig. 52.

2.1.21. Cooling Conclusion
There is no panacea to data center cooling and efficiency. Disparate environments
require custom strategies to maximize the parameters of infrastructure, environment,
and equipment age [74].

If free cooling (nature) is not an option, we must use energy-consumed methods to
remove the heat generated by ITC. There are four categories of such methods:
1. Direct Expansion (DX)

2. Chilled Water
3. Evaporative/Air Side
4. Liquid/Immersion.

Direct Expansion directly cools the air and sends it into the building, while in
chilled water systems it is the chilled water itself that goes into the building. In
evaporative method the air is cooled by evaporation of water without using the
refrigeration cycle that is being used in the DX method. Liquid cooling can be done by
either introducing water pipes into servers and let them have direct contact with
electrical components to remove the heat, or completely immerse the servers into a non-
conductive, forced low-temperature liquid. Liquid immersion cooling is a very good
choice for super dense servers in High Performance Computing (HPC) applications as
it is the most energy-efficient method. Due to very high set-up cost and complicated
maintenance, it is not (yet) suitable for a small data center.

2.1.22. Security and Reliability

2.1.22.1. Physical Security
We can have three zones within one data center. One zone would be for researchers to
test and stage equipment, one would provide more control over which development
work on applications and systems is performed before putting them into production,
and a production zone, which only core systems administrators could access.

We must be sure the building is some distance from headquarters (20 miles is
typical) and at least 100 feet from the main road. Bad neighbors: airports, chemical
facilities, power plants. Foot-thick concrete is a cheap and effective barrier against the
elements and explosive devices. For extra security, we use walls lined with Kevlar.



63

We shall avoid windows. Think warehouse, not office building. If you must have
windows, limit them to the break room or administrative area, and use bomb-resistant
laminated glass. We should use landscaping for protection. Trees, boulders and gulleys
can hide the building from passing cars, obscure security devices (like fences), and help
keep vehicles from getting too close.

A 100-foot buffer zone around the site is necessary. We shall use retractable crash
barriers at vehicle entry points. Control access to the parking lot and loading dock with
a staffed guard station that operates the retractable bollards. Use a raised gate and a
green light as visual cues that the bollards are down, and the driver can go forward. In
situations when extra security is needed, have the barriers left up by default, and
lowered only when someone has permission to pass through.

For data centers that are especially sensitive or likely targets, have guards use
mirrors to check underneath vehicles for explosives, or provide portable bomb-sniffing
devices. We can respond to a raised threat by increasing the number of vehicles we
check perhaps by checking employee vehicles as well as visitors and delivery trucks.
We shall limit entry points. Control access to the building by establishing one main
entrance, plus a back one for the loading dock. This keeps costs down too.

We shall make fire doors exit only. For exits required by fire codes, install doors
that do not have handles on the outside. When any of these doors is opened, a loud
alarm should sound and trigger a response from the security command center.

Surveillance cameras should be installed around the perimeter of the building, at
all entrances and exits, and at every access point throughout the building. A
combination of motion-detection devices, low-light cameras, pan-tilt-zoom cameras,
and standard fixed cameras is ideal. Footage should be digitally recorded and stored
offsite.

We must make sure the heating, ventilating and air-conditioning systems can be
set to recirculate air rather than drawing in air from the outside. This could help protect
people and equipment if there were biological or chemical attack or heavy smoke
spreading from a nearby fire. For added security, put devices in place to monitor the air
for chemical, biological or radiological contaminant.

We shall ensure nothing can hide in the walls and ceilings. In secure areas of the
data center, make sure internal walls run from the slab ceiling all the way to subflooring
where wiring is typically housed. Also make sure drop-down ceilings do not provide
hidden access points.

We shall use two-factor authentication. Biometric identification is becoming
standard for access to sensitive areas of data centers, with hand geometry or fingerprint
scanners usually considered less invasive than retinal scanning. In other areas, you may
be able to get away with less-expensive access cards.

We shall harden the core with security layers. Anyone entering the most secure part
of the data center will have been authenticated at least three times, including:

1. At the outer door. We need a way for visitors to buzz the front desk.

2. At the inner door. Separates visitor area from general employee area.

3. At the entrance to the “data” part of the data center. Typically, this is the layer

that has the strictest “positive control”, meaning no piggybacking allowed.



64

2.1.22.2. Data Center Physical Security Checklist

2.1.22.2.1. Site Location
Natural Disaster Risks: The site location SHOULD be where the risk of
natural disasters is acceptable. Natural Disasters include but are not limited to
forest fires, lightning storms, tornadoes, hurricanes, earthquakes, and floods
[75].
Man-Made Disaster Risks: The Site Location SHOULD be in an area where
the possibility of manmade disaster is low. Man-made disasters include but are
not limited to plane crashes, riots, explosions, and fires. The Site SHOULD
NOT be adjacent to airports, prisons, freeways, stadiums, banks, refineries,
pipelines, tank farms, and parade routes.
Infrastructure: The electrical utility powering the site SHOULD have a 99.9%
or better reliability of service. Electricity MUST be received from two separate
substations (or more) preferably attached to two separate power plants. Water
SHOULD be available from more than one source. Using well water as a
contingency SHOULD be an option. There MUST be connectivity to more than
one access provider at the site.
Sole purpose: A data center SHOULD NOT share the same building with other
offices, especially offices not owned by the organization. If space must be
shared due to cost, then the data center SHOULD not have walls adjacent to
other offices.

2.1.22.2.2. Site Perimeter

» Perimeter: There SHOULD be a fence around the facility at least 20 feet from
the building on all sides. There SHOULD be a guard kiosk at each perimeter
access point. There SHOULD be an automatic authentication method for data
center employees (such as a badge reader reachable from a car). The area
surrounding the facility MUST be well lit and SHOULD be free of obstructions
that would block surveillance via CCTV cameras and patrols. Where possible,
parking spaces should be a minimum of 25 feet from the building to minimize
damage from car bombs. There SHOULD NOT be a sign advertising that the
building is in fact a data center or what company owns it.

« Surveillance: There SHOULD be CCTV cameras outside the building
monitoring parking lots and neighboring property. There SHOULD be guards
patrolling the perimeter of the property. Vehicles belonging to data center
employees, contractors, guards, and cleaning crew should have parking permits.
Service engineers and visitor vehicles should be parked in visitor parking areas.
Vehicles not fitting either of these classifications should be towed.

« Outside Windows and Computer Room Placement: The Site Location
MUST NOT have windows to the outside placed in computer rooms. Such
windows could provide access to confidential information via Van Eck
Radiation and a greater vulnerability to HERF gun attacks. The windows also
cast sunlight on servers unnecessarily introducing heat to the computer rooms.
Computer rooms SHOULD be within the interior of the data center. If a
computer room must have a wall along an outside edge of a data center there
SHOULD be a physical barrier preventing close access to that wall.



65

Access Points: Loading docks and all doors on the outside of the building
should have some automatic authentication method (such as a badge reader).
Each entrance should have a mantrap (except for the loading dock), a security
kiosk, physical barriers (concrete barricades), and CCTV cameras to ensure
each pers on entering the facility is identified. Engineers and Cleaning Crew
requiring badges to enter the building MUST be required to produce picture ID
in exchange for the badge allowing access. A log of equipment being placed in
and removed from the facility must be kept at each guard desk listing what
equipment was removed, when and by whom. Security Kiosks SHOULD have
access to read the badge database. The badge database SHOULD have pictures
of each user and their corresponding badge. Badges MUST be picture IDs

2.1.22.2.3. Facilities
Cooling Towers: There MUST be redundant cooling towers. Cooling towers
MUST be isolated from the Data Center parking lot.
Power: There MUST at least be battery backup power onsite with sufficient
duration to switch over to diesel power generation. If there is no diesel backup
t hen there should be 24 hours of battery power. There SHOULD be diesel
generators on site with 24 hours of fuel also on site. A contract SHOULD be in
place to get up to a week of fuel to the facility.
Trash: All papers containing sensitive information SHOULD be shredded on
site or sent to a document destruction company before being discarded.
Dumpsters SHOULD be monitored by CCTV.
NOC: The NOC MUST have fire, power, weather, temperature, and humidity
monitoring systems in place. The NOC MUST have redundant methods of
communication with the outside. The NOC MUST be manned 24 hours a day.
The NOC MAY monitor news channels for events which effect the health of the
data center.

2.1.22.2.4. Disaster Recovery

Disaster Recovery Plan: The data center MUST have a disaster recovery plan.
Ensure that the plan addresses the following questions: What constitutes a
disaster? Who gets notified regarding a disaster and how? Who conducts
damage assessment and decides what back-up resources are utilized? Where are
backup sites located and what is done to maintain them on what schedule? How
often and under what conditions is the plan updated? If the organization does
not own the data center what downtime does the service level agreement with
the center allow? A list of people within the organization to notify MUST be
maintained by the NOC of the data center including pager, office, home, and
cell numbers and Instant Message Names if available. How often are those
people updated?

Offsite Backup: There MUST be regular offsite backups of essential
information. There must be a backup policy in place listing the procedure for
restoring from backup and allowing for the scheduling of practice runs to test
that the backups work.



66

Redundant Site: Redundant servers MAY be set up in another data center. If
these are setup then they must be tested during a “dry run” to ensure that they
will switch over properly during a disaster.

2.1.22.2.5. People

» Guards: Security guards SHOULD submit to criminal background checks.
Guards SHOULD be trained to follow and enforce physical security policy
strictly (for example ensuring that everyone in the facility is wearing a badge).

« Cleaning Staff: Cleaning crews SHOULD work in groups of at least two.
Cleaning crew SHOULD be restricted to offices and the NOC. If cleaning staff
must access a Computer Room for any reason, they MUST be escorted by NOC
personnel.

« Service Engineers: Service Engineers MUST log their entering and leaving the
building at the entrance to the building. The NOC SHOULD log their badge
exchange to access a computer room.

» Visitors: Visitors MUST be escorted by the person whom they are always
visiting. Visitors MUST NOT be allowed access to a computer room without

mes26s002 HPCG HPCG CPU Utilization  gesass0

WES-2697v2*

30.0

HX-Gene 1 6.7 270 30% WES-2697v2

B X-Gene 1

25% 24% 24%

GF/fs
g

CPU Utilization (%)
"
R

§

K40 ECC K40 no ECC K40 ECC K40 no ECC

~ X-Gene: Applied Micro Gigabyte MP30 Platform 8-core @ 2.4GHz, 32GB DDR3-1600, Ubuntu 15.04
~ X86: Xeon E5-2680v2 10C/20T @2.8GHz Turbo/HT Enabled, 64GB DDR3-1600, CentOS 6.6

Xeon E5-2697v2 12C/24T @2.7GHz (n11o /i hocs-benchmark orz/downloads/scia/Hpcs 80F pd, slide 5)
~ CUDA 6.5

Fig. 53: X-Gene vs Intel Xeon [76].

written approval from data center management. All visitors who enter
Computer Rooms must sign Non-Disclosure Agreements.

« Education: Users must be educated to watch out for potential intruders who
may shoulder surf or directly attempt social engineering. Users should be
educated on securing workstations and laptops within the facility and laptops
outside the facility, awareness of surroundings, and emergency procedures.

« Policy: All users at the facility must sign Non-Disclosure Agreements. A
Physical Security Policy SHOULD be signed by each user and enforced by
security guards.



67

2.1.22.2.6. Disaster Recovery Policies

« Organizational Chart: An organizational chart should be maintained detailing
job function and responsibility. Ideally the org chart would also have
information on which functions the worker has been cross trained to perform.

» Job Function Documentation: It is not enough to document only what your
current employees know now about existing systems and hardware. All new
work, all changes, must be documented as well.

« Cross Training: Data Center employees should be cross trained in several other
job functions. This allows for a higher chance of critical functions being
performed in a crisis.

« Contact Information: A contact database MUST be maintained with contact
information for all Data Center employees.

e Telecommuting: Data Center employees should regularly practice
telecommuting. If the data center is damaged or the ability to reach the data
center is diminished, then work can still be performed remotely.

« Disparate Locations: If the organization has multiple Data Centers, then
personnel performing duplicate functions should be placed in disparate centers.
This allows for job consciousness to remain if personnel at one center are
incapacitated.

2.1.23. Data center Processors

2.1.23.1. Introduction
Currently as of 2016 Intel Xeon E5 and E7 server processor are the dominant processor
labor force employed in the data centers. ARM processor X-Gene 2 by Applied micro
shows a good performance against Xeon servers as it can be seen in Fig. 53 [76].
Therefore, we need to fully investigate the ARM architecture and the models which can
be used in server computing.

2.1.23.2. ARM Architecture Review
It is a RISC architecture. A British company called “ARM Holdings” develops the
architecture and license it to other companies. All cores from ARM Holdings support a
32-bit address space. The ARMvV8-A architecture adds support for a 64-bit address
space and 64-bit arithmetic. ARM is the most widely used instruction set architecture
in terms of quantity produced.

ARM has three categories of processor:

1. Cortex-A: Highest performance, Optimized for rich operating systems

2. Cortex-R: Fast response Optimized for high-performance, hard real-time
applications

3. Cortex-M: Smallest/lowest power Optimized for discrete processing and
microcontroller



Table 4: List of ARM microarchitectures.

68

Typhoon/Twister, Cavium
Thunder X, Qualcomm Kryo

Architecture | Core Cores designed by ARM Holdings | Cores designed by Profile
bit third parties
width
ARMv1 32 ARM1
ARMv2 32 RM2, ARM250, ARM3 Amber, STORM Open Soft
Core
ARMv6-M 32 ARM Cortex-M0, ARM Cortex-M0+, Micro
ARM Cortex-M1, SecurCore SC000 controller
ARMvV7-A 32 ARM Cortex-A5, ARM Cortex-A7, | Qualcomm Krait, Scorpion, | Application
ARM Cortex-A8, ARM Cortex-A9, | PJ4/Sheeva, Apple Swift
ARM Cortex-Al12, ARM Cortex-
A15, ARM CortexAl7
ARMvV7-M 32 ARM Cortex-M3, SecurCore Micro
SC300 controller
ARMvVS-A 32 ARM Cortex-A32 Application
ARMVS-A 32 ARM Cortex-A35, ARM Cortex- X-Gene, Nvidia Application
A53, ARM Cortex-A57, ARM Project Denver, AMD K12,
Cortex-A72, ARM Cortex-A73 Apple Cyclone/-

2.1.23.3. ARM Platforms
List of ARM Platforms:
» Applied Micro X-Gene ARMv8

« HP Moonshot

» Marvell Armada XP
* Cavium Thunder 48 and 96 core ARMv8

2.1.23.4. Applied Micro
A US company which produces server on a chip products called X-Gene. The XC-2
evaluation board is a server board.

2.1.23.5. ARM based server boards

2.1.23.5.1. X-Gene 2 X-C2 Evaluation Kit
APM883408-X2 eight-core processor up to 2.4 GHz (900$-14003%):
+ DDRS3-1866 UDIMM/RDIMM 4-channels, 2 DIMMs/channel
» 32/64/128 GB options (Config dependent on SKU)
« 10 GbE XFI port (SFP+)



An ARM 64-bit Sever Main Board with 96Boards EE Specification (300%):

1 GbE SGMII port (RJ45)
PCle x8 Gen-3 slot

6x SATA Gen-3 ports
SDIO port

2x USB ports

ASpeed 2400 BMC w/RJ45
IPMI 2.0 compliant

2.1.23.5.2. LeMaker Cello

AMD Opteron A1100 Series
Quad-core ARM Cortex-A57 64 bit
Two DDR3 SO-DIMM sockets
Two SATA ports

Two USB 3.0 ports

USB-micro port for console support
1 GBe Ethernet

x16 PCle G3 slot

10-Pin JTAG headers

Linaro 96Bords Expansion slot
Standard 160 x 120 mm 96Boards Enterprise Edition form factor
Weight 5009

2.1.23.5.3. Gigabyte MP30-ARO

microATX 244W x 244D (mm) (No price yet):

CPU AppliedMicro X-Gene 1 processor
ARMVS architecture 8 cores 2.4 GHz 45W max. TDP

69

8 x DIMM slots Quad channel memory architecture RDIMM/ECC UDIMM

modules supported
Single, dual rank UDIMM modules up to 8GB supported speeds:
- 1 DIMM per channel: up to 1600 MHz

- 2 DIMM per channel: up to 1333 MHz LAN 2 x 10GbE SFP+ LAN

ports (integrated) 2 x GbE LAN ports (Marvell 88E1512)
1 x 10/100/1000 management LAN
Video Integrated in Aspeed AST2400

2.1.23.5.4. Gigabyte MP30-AR0O

There are articles [77] which say X-Gene 1 performs poorly and consumes too much
power. The alternative might be Cavium processors.

chip has 48 cores.

2.1.23.5.5. ODROID-XU4

Xeon D also worth to be considered. Cavium designs high core count SoCs. The

Samsung Exynos5 Octa ARM Cortex-Al15 Quad 2Ghz and Cortex-A7 Quad 1.3GHz
CPUs (759%):

2Gbyte LPDDR3 RAM at 933MHz



70

Performance (Events/s)

APM XGenel Intel Xeon E5-2650 Xeon Phi SE10/7120
2.4GHz 2.0GHz 1.24GHz

Fig. 54: ARM versus Intel Performance Comparison [78].

3D Accelerator Mali-T628 MP6(OpenGL ES 3.0/2.0/1.1 and OpenCL 1.1 Full
profile)

USB3.0 Host 2x ports

USB2.0 Host 1x port

Gigabit Ethernet LAN 10/100/1000Mbps Ethernet

HDD/SSD SATA interface (Optional) SuperSpeed USB (USB 3.0) to Serial
ATAS3 adapter for 2.5/3.5 HDD and SSD storage

Power 5V 4A Power

2.1.24. ARM Review
Almost all the reviews and benchmarks on ARM processor have these on common:

1

2.
3.
4.

Very passionate words in the beginning.

Run through the benchmarks.

ARMS get beaten by Intel left and right.

Claim that future will be bright even if this benchmark failed.

The main problems that we found for ARM servers are as below:

1.

2.
3.

ARM server processors have no price tag at all, as there are new, and most
systems are experimental. While Intel provides a means of comparison between
its processors (TDP) and all their products have explicit price tags. For example,
no matter how hard we tried, we could not find the price tag for Cavium
processors.

Generally, have Low Power efficiency. (Performance per Watt)

Very low single-thread performance.



71

5 T T T T T T T
as 3?‘ R
2 threads per physical core
4 - 122T/61PC 4 )A T
per-threading
¥ e
Er 3r 1 thread per physical core ’)f N
] 61T/61PC
E 25 + . - - ‘-'f B -
] ¢
£ Ll X ]
= e
o R
1.5 33T,l'519‘£, .
#
#
l = 'J' —
IT/8PC I?T,*'Iilpﬁ
0.5 -2T/8PCH o .
#
1T/BPC ,
[i] | | 1'[,1‘61.P'(.‘. 1 1-”6}"&' | | | 1
0 20 40 60 80 100 120 140 160 180 200

Power (watt)

APM XGenel @ 2.4Ghz
Intel Xeon E5-2650 @ 2.0GHz —8—
Xeon Phi SE10/7120 @ 1.24GHz =—dr—
Xeon Phi SE10/7120 (the whole card) @ 1.24GHz = ¥=-

Fig. 55: Power consumption VS performance [78].

180+
160
140+

120

m HP Moonshot Atom Avoton

m Intel Xeon E3-1285L v3 (Haswell)
m HP Moonshot ARM 64-bit X-Gene
M BM OpenPOWER 8

100+

80

Active power (Watts)

60

40+

204

04

Idle power consumption

Fig. 56: Ideal power consumption [79].

4. Always behind the Intel’s latest technology, e.g., 32nm of X-Gene vs 14nm of
Intel

Let us look at some benchmark performance available in online resources. As we
can see in Fig. 54 ARM based server processor X-Gene loses to Xeon.

Very low single-thread performance. 4. Always behind the Intel’s latest
technology, e.g., 32nm of X-Gene vs 14nm of Intel Let us look at some benchmark



72

Table 5: Server processor comparison.

Manufacturer / Clock | Cores Cache | Max Memory Price| Total| Score
Designer Speed | /Threads| size Power| Type/ Score| Per
Graphic Core
Intel Xeon E7-8890 2.2 GHz 24/48 60 MB | 165W DDR4-1866 | 7174% | 43.58 | 1.82
DDR3-1600
Intel Xeon E7-4809 2.1 GHz 8/16 20MB | 115W DDR4-1866 | 1223% | 23.18 | 2.90
DDR3-1333

Intel Xeon E5-2687W 3.0GHz 12/24 30 MB | 160W DDR4-2400 | 1885% | 33.92 | 2.83

Intel Xeon E5-2630L 1.8 GHz 10/20 25MB | 55W DDR4-2400 | 662% | 29.7 | 2.97

Intel Xeon E3-1285 3.5GHz 4/8 6 MB 95W DDR3-1600 662% | 32.14 | 8.04
Intel P6300

Intel Xeon E3-1545MV 2.9 GHz 4/8 8 MB 45W DDR4-2133 6793 | 32.94 | 8.24
Intel P580

Intel Xeon D-1567 2.1 GHz 12/24 18 MB 65W DDR4-2400 | 1299$ | 33.22 | 2.77

Intel Xeon D-1577 1.3 GHz 16/32 24 MB 45W DDR4-2400 | 1477$ | 32.26 | 2.02

Intel Xeon D-1520 2.2 GHz 4/8 6 MB 45W DDR4-2400 200% | 26.14 | 6.54

Intel Atom C2750 2.4 GHz 9 4 MB 20W DDR3-1600 171$ | 33.00 | 3.67

Intel Atom C2350 1.7 GHz 2 1 MB 6W DDR3-1333 43% 19.83 | 9.92

AMD Opteron 6386 SE | 2.8 GHz 16 16 MB | 140W DDR3-1600 | 1392% | 33.20 | 2.08
AMD Opteron 6366 HE | 1.8 GHz 16 16 MB 85W DDR3-1600 575% | 28.70 | 1.79
AMD Opteron 4386 3.1 GHz 8 8 MB 95W DDR3-1866 348% | 32.17 | 4.02
AMD Opteron 4310 EE | 2.2 GHz 4 8 MB 35W DDR3-1866 415% | 25.17 | 6.30
AMD Opteron 3380 2.6 GHz 8 8 MB 65W DDR3-1866 229%$ | 30.17 | 3.77

4

8

AMD Opteron 3320 E 1.9 GHz 8 MB 25W DDR3-1333 174% | 22.63 | 5.66
AMD Opteron A1170 2.0 GHz 8 MB 32W DDR4-1866 150$ | 28.40 | 3.55

DDR3-1600
AMD Opteron A1120 1.7 GHz 4 8 MB 25W DDR4-1866 174% | 22.10 | 5.52
DDR3-1600
APM X Gene 1 2.4 GHz 8 8 MB 30W DDR3 ? 31.80 | 3.98
Intel M-5Y70 1.1 GHz 2/4 4 MB 4.5W DDR3-1600 280% | 1454 | 7.27

performance available in online resources. As we can see in Fig. 55 ARM based
server processor X-Gene loses to Xeon.

Finally, in Fig. 56 we can see that an Intel Xeon processor can beat the ARM in
power consumption when it is ideal thanks to advanced power management available
in the processor that turns of the processor modules when they are not needed.

2.1.25. Scanning the Server Technologies

2.1.25.1. Introduction
Before we start to propose a thesis that improves the data center power consumption,
we must scan the current technologies and trends (till July 2016), and build our work
as an extension to the current deployed technologies.

First, we start to look at x86 servers which is dominated by Intel Xeon processors,
then we will try to discover all the attempts by other architectures to take over Xeon.



73

The number of cores [ threads Operating frequency
<0 15 5 3.7GHE
16 12 4
12 3
a8 2
4 1
0 0
Higher is better Higher is better
N - intel xeon D-1541 ] - intel xeon E7-8893 v2

On-chip L2 + L3 cache Thermal Design Power
50 2aME 200 155W
40 v 180
30 120 aaw
20 a0
10 40
0 0

Higher is better Lower is better
Current official price

8000 £6841
6400
4300 £581
3200
1600

Lower is better

Fig. 57: Intel Xeon D-1541 vs E7-8893 v2 [80].

Finally, we will compare them on performance, power consumption, pricing,
software support, etc.

To make sense out of above raw data we will use a custom formula to rank all the
processors according to our criteria which sets different factor to each attribute:

* Clock speed: x10

* No. of cores: x1

* No. of threads: x0.11

» Cache size: x0.1

* Max Power: x1: -x0.1

+  Memory Type: DDR3 = x0.001, DDR4 = x0.0015

Using the above factors we can calculate a total score for each processor, for
example our first listed processor is Intel Xeon E7-8890, we calculate the total score:



74

Total score = (Freq. X 10) + (Core X 1) + (Core x 0.11)(Cache x 0.1)
+ (—Power x 0.1) + (Memory x 0.0015)
= (2.2Ghz x 10)+ (22 x 1)+ (22 x 0.11)
+(60 x 0.1) + (=165 x 0.1) + (1866 x 0.0015)
= 43.58

Then we divide 43.58 by 24 cores, which gives us a score of 1.82 per core in the
processor. We can see that Intel Atom C2350 is the winner, as it gives a score of 9.92
per core and each core costs only 21.5$

2.1.25.2. Intel High-End versus Low-End
In this section we try to get a perspective of Intel high-end and low-end processor let
us compare Xeon D-1541 VS E7-8893 v2. The result is shown in Fig. 57. The
conclusion is that if we do not need high frequency or multi-processing (Connecting
processors together, up to 8 Xeon microprocessors can be supported by a single server.)
then low-end server processor is the best choice as they are very cheap and show good
performance in multi-threaded applications.

2.1.26. Data Center Related Research Horizons

These are few topics related to data centers which a PhD student can pursue:

ARM based asynchronous servers. (AMULET is an example)

Mapping and scheduling for low power on Heterogeneous Multi-Processing
Programming for next generation CPU and GPGPU systems

Software and hardware to making multi-processing accessible to programmers
Parallelism discovery and automatic parallelization of sequential programs
Compilation for low power

Compilers and runtime for next generation ARM architectures

Data-center scale parallelism

Hardware assistance in detection of non-data race free concurrent programs
10 Security between cloud and terminal

11. High performance low power micro-architecture

WCoNOTk WM

2.1.27. Building an Ultra Power Data Center

2.1.27.1. Server Connections
In our search for a server board, we must ensure the support of the following
technologies:

1. 10Gbps Ethernet

2. We need to have top of rack (or bottom of rack) aggregation switches.



75

(@) front

Fig. 59: BB-ITX96 V2 Blade Computing System for Mini-ITX.

2.1.27.2. Boards

GA-9SISL: Hosts Intel Atom C2750. Price: 380% 4 x GbE LAN ports, 4 x
DIMM slots, up to 32GB UDIMM ECC 1600MHz, 2 x SATA 111 6Gb/s + 4 x
SATA 11 3Gb/s

A1SAI-2750F Hosts Intel Atom C2750. Price: 360$ Up to 64GB DDR3
1600MHz ECC. Quad GbE LAN ports. 2x SATA3 and 4x SATA2 ports. 12V
DC or ATX power input.

X10SDV-8C-TLNA4F: Hosts Intel Xeon D. Price: 890$ Up to 128GB ECC
RDIMM DDR4 2400MHz or 64GB ECC/non-ECC UDIMM in 4 sockets, 1
PCI-E 3.0 x16, M.2 PCI-E 3.0 x4 (SATA support) 2 10GbE and 2 GbE LAN
ports, 6 SATA3 (6Gbps) ports via SoC.

SUPERMICRO MBD-X10SDV-4C-TLN2F-O: Host Intel Xeon D-1520.
Price: 490%. Up to 128GB ECC RDIMM DDR4 2133MHz or 64GB ECC. 6 x
SATAS3 (6Gbps). 12V DC input and ATX Power Source.

H270-T70: Hosts 384 Cavium ThunderX cores. Price: 19,017$.



76

(a) front (b) back

Fig. 60: 1U Mini-ITX 9.84 inch Deep Rackmount Chassis [81].

Space for stacking

L gl 4x SATA 3 drives
5" drives or 4

3.5% drive in hot‘ su\rap pods
- - wiring harmness path  — -

J

{ .
12 voits DC
power input

wirkng haness path wiring harmess path Front panel

Front panel
controls

controls 2 voxs DG

power input

(a) Fixed Model Blade Tray (b) Hot Swap Blade Tray
Fig. 61: Fixed and Hot Swappable Tray Options.

«  MBD-X10QBI-P: Hosts 4 Xeon E7, Price: 1,400$. 4x PCI-E 3.0 x164x PCI-E
3.0 x16. 2x 10GBase-T ports, IPMI LAN port.2x SATA3 (6Gbps) ports 4x
SATA2 (3Gbps) ports. Need to get proprietary RAM slot (300$).

2.1.27.3. Server Enclosure
It is very likely that we will end up having a mini ITX server board if we choose to go
with low power Intel Xeon D processors or Atom C2750. The mini-ITX physical
appearance is shown in Fig. 58.

To turn these mini ITX boards into blades we can use the BB-1TX96 V2 Blade
[82]. The BB-ITX96 V2 Blade outer physical look is shown in Fig. 59.

The BB-1TX96 VV2isa6U - 9 blades systems designed for mini ITX motherboards.
The advantage of using this system is that we are not locked into a specific company
like Cisco, HP, IBM, etc. We can choose any server node based on any processor and
motherboard and pack them into this enclosure if they adhere to mini-ITX form factor.

This also gives us some flexibility on choosing different servers and pack them all
together and benchmark them separately. There is always the option of using 1U mini-
ITX cases as shown in Fig. 60. The comparison of fixed and hot swappable tray options
is shown in Fig. 61 and another similar custom nonproprietary option is shown in Fig.
62.

We can also always use existing off-the-shelf blade server solutions like Cisco, HP,
Dell, Lenovo, etc. which were discussed in Section 2.1.4. The mini-ITX idea is very



77

- O

www.wiredsystems.com waw wiredsystems.com

www.wiredsystems.com www.wiredsystems.com

Fig. 62: WiredSystems 5U Blade Chassis for mini-1TX and WiredSystems 5U Blade
Chassis for mini-1TX [83].

Fig. 63: Google server based on Micro-ATX architecture [84].

close to what Google customized servers looks like. They use micro-ATX
architecture as shown in Fig. 63.



78

2.1.27.4. Final Data Center Solution Characteristics
1. Location: North of Thailand: Has cooler weather, and the security is more stable
in comparison to the south. (Flood, earthquake possibilities must be considered.)
For low-end general-purpose D.C.: Intel Xeon D-1520 (used by FB) or Intel Atom
C2350.
For high-end general-purpose D.C.: Intel Xeon E7 or E5.
For Web Server D.C.: ARM clusters can be considered.
Mother Board: Mini-ITX form.
System: Custom Blade holds 9 of those mini-ITX boards.
Network Fabric: Ethernet 10Gb/40Gb.
Cooling: Custom liquid cooling design or just air.

N

NG~ W

2.1.28. Innovative Chulalongkorn Design
The following weakness can be identified with conventional cooling systems [85]:

» Re-circulation: Typically caused by poor rack hygiene and insufficient cool air
available at the face of the rack, hot exhaust air can find its way back into server
air intakes, heating IT equipment to potentially dangerous temperatures.

« Air stratification: To provide cooler air at the top of the face of the rack, the
natural tendency of air to mass in different temperature-based layers can force
set points on precision cooling equipment to be lower than recommended.
Often, in attempts to remediate air stratification, technicians increase the fan
speed of CRAC units to deliver more cool air to the room, which can result in
bypass air.

« Bypass air: The velocity of the cool air stream exceeds the ability of the server
fans to draw in the cool air; as a result, the cool air shoots beyond the face of
the IT rack. Cool supply air can join the return air stream before passing through
servers, weakening cooling efficiency.

To improve cooling efficiency, we have designed isolated racks that reduces the hot
air and cold air intermingling. Additionally, the isolation frame that wraps the server
racks eliminates the need to cool down the entire room hosting the racks. The heat will
be removed directly from each rack and temperature regulation of the air outside of the
rack becomes unnecessary.

As we can see in Fig. 64 a 42U rack is placed into a thermal insulator container. An
evaporator has been installed on the top to remove the heat from air and send the cold
heavy air to the bottom of the rack. The cool air at the bottom goes through the front
side of servers. As the air passes through the server components, it becomes hot and
elevates to the top of the container which again needs to be cooled down and the cycle
will be repeated. In this design the complete isolation of cold/hot aisles, plus the
isolation of rack from its outside surrounding have significantly improved the cooling
efficiency. (percentage/statistics needed to be sampled and documented)



79

Evaporator Coils

/\
<
B

v
Rl
<
O
o
O

Fig. 64: New Design by Chulalongkorn University - Thailand.

Hot aisle

Cold Aisle

42U Rack

Isolated Cabinet

2.2. Data Center Conclusion

Data centers as one of the most important backbone of today’s information technology
was the focus of this work. After providing the definition of a data center, the types of
hardware that can be implemented in a data center, and different type of networks used
in data centers, we focused on data center performance versus efficiency trade off.

We expanded our knowledge regarding data centers by examining cooling systems,
security and reliability, site location consideration, metrics, and benchmarking, and
energy consumption reduction approaches. Cooling with highest percentage (38%) is
the first and processor with 15% is the second most power consumption factors in data
centers. This research is being conducted in electrical engineering department and our



80

expertise will not let us contribute to cooling systems efficiency, consequently our
attention shifted to processors.

The cascade effects shows that even very small power consumption reduction in
processor design translates to huge amount of total power consumption reduction.
Therefore, we decided to continue our research on processor efficiency. We compared
and examined several industry level processors such as Intel, AMD, ARM, etc. aimed
for data centers. This work shows that currently Intel Xeon processors have the best
performance and are the most efficient processor to be deployed in data centers. New
versions of multi-core ARM processors are advertised to target data centers. This
research shows that ARM processors will fail to reach the performance of Intel Xeon
processors and are only perform better in web server applications servicing myriad of
low intensity incoming requests. After selecting Intel Xeon to be the processor of
choice, we continued our research on other hardware such as server motherboard types,
rack and blade types, memory technologies, server enclosures, etc. One interesting
server model that was covered is custom-made blade based on Micro-ATX architecture
used in Google servers.

Finally, the following hardware and specifications were decided upon, and purchase
order got initiated:

1. Location: North of Thailand: Has cooler weather, and the security is more stable
in comparison to the South. (Flood, earthquake possibilities must be
considered.)

For low-end general-purpose D.C.: Intel Xeon D-1520 (used by FB) or Intel
Atom C2350.

For high-end general-purpose D.C.: Intel Xeon E7 or E5.

For Web Server D.C.: ARM clusters can be considered.

Mother Board: Mini-ITX form.

System: Custom Blade holds 9 of those mini-1TX boards.

Network Fabric: Ethernet 10Gb/40Gb.

Cooling: Custom liquid cooling design or just air.

N

NG~ W



2.3. Microprocessor
2.3.1. Introduction

The final goal of this work is to design a RISC processor. In the past the CISC
processors used to dominate the general-purpose processor market. The x86 instruction
set dominated the market and myriad number of software packages and operating
systems were written to support that architecture. This made the industry to be reluctant
to migrate to better processor architectures. Later RISC processor such as ARM started
to become popular, and the market shifted to support them and use them in low power

embedded application such as smart phones and tablets.

Here we tried to initially explore the ups and downs of designing a complete RISC
processor using VHDL and then try to tailor it to improve the performance to get a

powerful adaptive processor.

2.3.2. Processor Architectures
2.3.2.1. Definitions

e Instruction Set (IS): The complete list of commands that can be run by a CPU
is known as that processor’s instruction set. These low-level commands are run
in a series of steps, which are synchronized with the computer’s clock [86].

e Microarchitecture: An instruction set architecture is distinguished from a
microarchitecture, which is the set of processor design technigues used, in a
particular processor, to implement the instruction set. Processors with different
microarchitectures can share a common instruction set. For example, the Intel
Pentium and the AMD Athlon implement nearly identical versions of the x86
instruction set but have radically different internal designs [87]. Through the
history of processors, we have following notable architectures, which is
categorized based on the work they are designed to be tackle [86]:

2.3.2.2. Architecture Types
Below is the list of all architecture types:
e Embedded CPU architectures:

o

0O O OO OO O 0O OO0 0O O0

o

ARM architecture (32-bit)

ARMG64 (64/32-bit)

Atmel’s AVR architecture

Microchip’s PIC architecture

Texas Instruments’s MSP430 architecture
Intel’s 8051 architecture

Zilog’s Z80 architecture

Western Design Center’s 65816 architecture
Hitachi’s SuperH architecture

Axis Communications’ ETRAX CRIS architecture
Power Architecture (formerly PowerPC)
EnSilica’s eSi-RISC architecture

Milkymist architecture

Inmos’ Transputer architectures

e Microcomputer CPU architectures:

o

Pre-x86



O O O O O O o0 O

o

82

x86

Intel’s IA-32 architecture, also called x86-32

x86-64 with AMD’s AMD64 and Intel’s Intel 64 version of it
Motorola’s 6800 and 68000 architectures

MOS Technology’s 6502 architecture

Zilog’s Z80 architecture

Power Architecture (formerly POWER and PowerPC)

ARM (32-bit) (previously Advanced RISC Machines’ ARM, originally
Acorn’s RISC Machine) and StrongARM/XScale architectures
ARMG64 (64/32-bit) Renesas RX CPU architecture - Combination of
RISC and CISC architectures

e \Workstation/Server CPU architectures:

o

o O O O

o

DEC’s Alpha architecture

HP’s PA-RISC architecture

Power Architecture (formerly POWER and PowerPC)

Intel’s Itanium architecture (formerly 1A-64)

MIPS Computer Systems Inc.’s MIPS architecture

Oracle’s (formerly Sun Microsystems’s) SPARC architecture

e Mini/Mainframe CPU architectures:

o

o

o

o

o

Burroughs large systems architecture (1961-present) currently
supported in the Unisys ClearPath/MCP series.

IBM’s System/360, System/370, ESA/390 and z/Architecture (1964-
present)

DEC’s PDP-8 architecture, the successor PDP-11 architecture, and its
final form, the VAX architecture

UNIVAC 1100/2200 series architecture (currently supported by Unisys
ClearPath 1X computers)

MIL-STD-1750A - the U.S.’s military standard computer AP-101 - the
Space shuttle’s computer

e Mixed-core CPU architectures:

o

@)
©)

IBM’s Cell architecture (a general-purpose architecture that uses a
POWER4 based core and 8 RISC based co-processors)

CAS’s Loongson 3

Parallax Propeller, a 160 MIPS multicore microcontroller with eight
32-bit RISC cores

2.3.3. Microprocessor Instruction Set
In this section the details of a microprocessor and its characteristics are discussed.
While providing the attributes of a processor the decisions for our first 16-bit
microprocessor (Laser) also is shaped and finalized.

2.3.3.1. ISE Specifications
The final ISE design should meet the following requirements [88]:
1. Completeness
2. Orthogonality
3. Regularity and simplicity
4. Compactness



83

5. Ease of programming
6. Ease of implementation

2.3.4. Machine Types
We have four kinds of machines based on how the operands of an instruction is
mentioned [88]:

2.3.4.1. Accumulator
It has 1 operand.
1. Short instructions
2. Lots of instructions
3. Simple hardware
4. Little exposed architecture

2.3.4.2. Stack:
It has O operand.
Nearly same as accumulator

2.3.4.3. Register-Memory
It has 2 or 3 operands: Example: “add Ra Rb”, most operands can be registers or
memory:

1. Expressive instructions

2. Few instructions.

3. Instructions are complex and diverse

4. Lots of exposed architecture

2.3.4.4. Load-Store
It has 3 operands, Example: “add Ra Rb Rc”, Most operations (e.g., arithmetic) are only
between registers, explicit load, and store instructions to move data between registers
and memory.

1. Simple

2. Higher instruction count

3. Lots of exposed architecture

2.3.4.5. Memory-Memory
Memory accesses create memory bottleneck. Used in VAX and now is absolute. We
can also categorize a machine based on the number of operands [89]:

1. 3-address machines

2. 2-address machines

3. 1-address machines

4. 0-address machines

2.3.5. Instruction Length
The size of instruction can be variable or fixed. The variable-width instruction set could
have instruction size as small as 4-bits such as tiny microcontrollers, or as large as 120



84

bits or more which is used in processors like X86. CISC processors usually use variable
size instructions while RISC processors use fixed size instruction such as 16, or 32 bits.

For example, there simply are not enough bits in a 16-bit instruction to
accommodate 32 general-purpose registers with 3 operands. each operands need 5 bits
which will consume 15 bits just for the operands and then we must allocate some bits
for opcode.

To solve the above restriction people who design instruction sets must make one or
more of the following compromises [90]:

Sacrifice code density and use longer fixed-width instructions, typically 32 bit,
such as the MIPS and DLX and ARM.

Sacrifice fixed-width instructions, requiring a more complicated decoder to
handle both short 16-bit instructions and longer 3-operand instructions, such as
ARM Thumb.

Sacrifice 3-operands, using no more than 2 operands in all instructions for
everything, such as the Atmel AVR. 3-operand instructions allow better reuse
of data; without 3-operand instructions, programs occasionally require extra
copy instructions when both variable input operands to some ALU operation
need to be preserved for some later instruction(s).

Sacrifice registers, so only 16 or 8 programmer-visible registers.

Sacrifice the concept of general-purpose register - perhaps only 16 or 8 “data
registers” are visible to 3- operand ALU instructions, as in the 68000, or the
destination is restricted to one or two “accumulators”, but other registers (such
as “address registers”) are visible to other instructions.

2.3.6. Memory Considerations
Memory addressing mode must be specified [88].

1.

Non-memory:

e Register direct Add R4, R3

e Immediate Add R4, #3

Memory:

Displacement (1st most occurring) Add R4, 100 (R1)
Indirect Add R4, (R1)

Indexed Add R3, (R1 + R2)

Direct (2nd in most occurring) Add R1, (1001)
Mem. indirect Add R1, @(R3)

Autoincrement Add R1, (R2)+
Autodecrement Add R1, -(R2)

2.3.7. Supported Operations

Arithmetic: add, subtract, multiply, divide

Logical: and, or, shift left, shift right

Data Transfer: load word, store word

Control flow: branch, PC-relative: displacement added to the program counter
to get target address



85

C -» C Frontend XB6 Backend - XB6

Common

Optimizer PowerPC Backend | == PowerPC

Fortran =e=| Fartran Frontend

Ada | Ada Frontend ARM Backend - ARM

Fig. 65: Retargettable Compiler [91].

2.3.8. Types of Branches

conditional branch (most occurring): beq r1,r2, label
jump: jmp label

procedure call: call label

procedure return: return

2.3.9. Instruction Set Encoding
We have two type of encoding [88]:

1. Variable: VAX, x86

2. Fixed: MIPS, ARM, SPARC

2.4. LLVM Backend

2.4.1. Terminologies
Before we start adapting a compiler and assembler for our newly designed processor
using LLVM, we must get familiar with some terminologies used in LLVM.
e LLVM Intermediate Representation (IR): An assembly like language that
has infinite registers and RISC like instructions.
e Static compiler: One that emits text assembly
e JustIn Time (JIT) compiler: Compilation done during execution of a program
at run time, rather than prior to execution.

2.4.1.1. 3-Stage of Compilation
As shown in Fig. 65, a 3-stage compilation consist of:
e Stage 1: Frontend: High level language (C/C++, Python, etc.)
e Stage 2: Optimization, in the middle.
e Stage 3: Backend that output specific machine code as its target.

2.4.1.2. LLVM Backend Pipeline
LLVM has a pipeline structure for the backend, where instructions travel through
several phases as shown below [92]:

LLVM IR — SelectionDAG — MachineDAG — Machinelnstr — MClnst.



86

A more detailed version is shown in Fig. 66. The light gray boxes are called
superpasses because, internally, they are implemented with several smaller passes,
these passes are critical to the success of the backend while the white boxes are not.

Passes Inschnon Instruction Passes Register
selection Schedunng aHocanon
v
Passes Instruction Passes
scheduling

Fig. 66: Backend Pipeline [93].

LLVM IR

Code
emission

The IR is converted into SelectionDAG (DAG stands for Directed Acyclic Graph).
Then SelectionDAG legalization occurs where illegal instructions are mapped on the
legal operations permitted by the target machine. After this stage, SelectionDAG is
converted to MachineDAG, which is basically an instruction selection supported by the
backend [92]. Before we start writing our backend, we must get ourselves familiar with
lots of background knowledge. Next section we will briefly review the LLVM
Assembly language.

2.4.2. LLVM Assembly Language

2.4.2.1. Introduction
LLVM is a Static Single Assignment (SSA) based representation that provides type
safety, low-level operations, flexibility, and the capability of representing ‘all’ high-
level languages cleanly. It is the common code representation used throughout all
phases of the LLVM compilation strategy [94].

The LLVM code representation is designed to be used in three different forms,
which are all equivalent [94]:

1. Asan in-memory compiler IR.

2. Asan on-disk bitcode representation (suitable for fast loading by a Just-In-Time

compiler)
3. As a human readable assembly language representation.

2.4.2.2. Identifiers
1. Globhal: @
2. Local: %

Example:

%result = mul i32 %X, 8




87

2.4.2.3. High Level Structure
LLVM programs are composed of Modules, each of which is a translation unit of the
input programs. Each module consists of functions, global variables, and symbol table
entries. Modules may be combined together with the LLVVM linker [94].
Example:

@.str = private unnamed_addr constant [13 x i8] c"hello world\OA\00"

declare i32 @puts(i8* nocapture) nounwind

define i32 @main() { ;i132()*
%cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, 164 0

call i32 @puts(i8* %cast210)
reti32 0

}

10 = 1{i32 42, null, !"string"}
Ifoo = 1{!0}

2.4.3. LLVM Target Independent Code Generator

2.4.3.1. Introduction
The LLVM target-independent code generator is a framework that provides a suite of
reusable components for translating the LLVM internal representation to the machine
code for a specified target—either in assembly form (suitable for a static compiler) or
in binary machine code format (usable for a JIT compiler) [95].

The LLVM target-independent code generator consists of six main components:

1. Abstract target description interfaces which capture important properties about
various aspects of the machine, independently of how they will be used. These
interfaces are defined in include/llvm/Target/.

2. Classes used to represent the code being generated for a target. These classes
are intended to be abstract enough to represent the machine code for any target
machine. These classes are defined in include/llvm/CodeGen/. At this level,
concepts like “constant pool entries” and “jump tables” are explicitly exposed.

3. Classes and algorithms used to represent code at the object file level, the MC
Layer. These classes represent assembly level constructs like labels, sections,
and instructions. At this level, concepts like “constant pool entries” and “jump
tables” do not exist.



4.

88

Target-independent algorithms used to implement various phases of native code
generation (register allocation, scheduling, stack frame representation, etc).
This code lives in lib/CodeGen/.

Implementations of the abstract target description interfaces for particular
targets. These machine descriptions make use of the components provided by
LLVM, and can optionally provide custom target specific passes, to build
complete code generators for a specific target. Target descriptions live in
lib/Target/.

The target-independent JIT components. The LLVM JIT is completely target
independent (it uses the TargetJITInfo structure to interface for target-specific
issues. The code for the target-independent JIT lives in
lib/ExecutionEngine/JIT.

All developers must be familiar with the fundamental classes which are: “target
description” and “machine code representation” classes. If a developer needs to add a
new backend, then “implement the target description” classes must be familiarized and
“LLVM Code representation” must be understood. If the goal is to implement a new
code generation algorithm, then it should only depend on the target-description and
machine code representation classes, ensuring that it is portable [95].

2.4.3.2. The high-level design of the code generator
Code generation steps [95]:

1.

Instruction Selection: This phase determines an efficient way to express the
input LLVM code in the target instruction set. This stage produces the initial
code for the program in the target instruction set, then makes use of virtual
registers in SSA form and physical registers that represent any required register
assignments due to target constraints or calling conventions. This step turns the
LLVM code into a DAG of target instructions.

Scheduling and Formation: This phase takes the DAG of target instructions
produced by the instruction selection phase, determines an ordering of the
instructions, then emits the instructions as Machinelnstrs with that ordering.
Note that we describe this in the instruction selection section because it operates
on a SelectionDAG.

SSA-based Machine Code Optimizations: This optional stage consists of a
series of machine-code optimizations that operate on the SSA-form produced
by the instruction selector. Optimizations like modulo-scheduling or peephole
optimization work here.

Register Allocation: The target code is transformed from an infinite virtual
register file in SSA form to the concrete register file used by the target. This
phase introduces spill code and eliminates all virtual register references from
the program.

Prolog/Epilog Code Insertion: Once the machine code has been generated for
the function and the amount of stack space required is known (used for LLVM
allocations and spill slots), the prolog and epilog code for the function can be
inserted and “abstract stack location references” can be eliminated. This stage
is responsible for implementing optimizations like frame-pointer elimination
and stack packing.



89

6. Late Machine Code Optimizations: Optimizations that operate on “final”
machine code can go here, such as spill code scheduling and peephole
optimizations.

7. Code Emission: The final stage puts out the code for the current function, either
in the target assembler format or in machine code.

2.4.3.3. TableGen Tool
The target description classes require a detailed description of the target architecture.
These target descriptions often have a large amount of common information (e.g., an
add instruction is almost identical to a sub instruction). To allow the maximum amount
of commonality to be factored out, the LLVVM code generator uses the TableGen tool
to describe big chunks of the target machine, which allows the use of domain-specific
and target-specific abstractions to reduce the amount of repetition.

As LLVM continues to be developed and refined, we plan to move more and more
of the target description to the .td form. Doing so gives us several advantages. The most
important is that it makes it easier to port LLVM because it reduces the amount of C++
code that must be written, and the surface area of the code generator that needs to be
understood before someone can get something working. Second, it makes it easier to
change things. If tables and other things are all emitted by tblgen, we only need a change
in one place (tblgen) to update all the targets to a new interface [95].

The TableGen language is composed of definitions and classes that are used to
form records [93]. The definition def is used to instantiate records from the class and
multiclass keywords.

For example:

class Insn<bits <4> MajOpc, bit MinOpc> {
bits<32> insnEncoding;
let insnEncoding{15-12} = MajOpc;
let insnEncoding{11} = MinOpc;

}

multiclass RegAndImmInsn<bits <4> opcode> {
def rr : Insn<opcode, 0>;
def ri : Insn<opcode, 1>;

}

def SUB : Insn<0x00, 0>;
defm ADD : RegAndimmIinsn<0x01>;




90

The Insn class represents a regular instruction and the RegAndImminsn multiclass
represents instructions with the forms mentioned above. The def SUB construct defines
the SUB record whereas defm ADD defines two records: ADDrr and ADDri. Every
instruction or format must be a direct or indirect subclass of the Instruction TableGen
class defined in include /llvm/Target/Target.td.

class Instruction {
dag OutOperandList;
dag InOperandL.ist;
string AsmString = "";
list<dag> Pattern;
list<Register> Uses = [];
list<Register> Defs = [];
list<Predicate> Predicates = [];
bit isReturn = 0;
bit isBranch = 0;

e dag is aspecial TableGen type used to hold SelectionDAG nodes.

e OutOperandList stores resultant nodes, allowing the backend to identify the
DAG nodes that represent the outcome of the instruction. For example, in the
MIPS ADD instruction, this field is defined as (outs GP320pnd:$rd). outs is a
special DAG node to denote that its children are output operands GPR320pnd
is a MIPS-specific DAG node to denote an instance of a MIPS 32-bit general
purpose register $rd is an arbitrary register name that is used to identify the
node.

e InOperandList holds the input nodes, for example, in the MIPS ADD
instruction, ”(ins GPR320pnd:$rs, GPR320pnd:$rt)”.

e AsmString represents the instruction assembly string, for example, in the MIPS
ADD instruction, “add $rd, $rs, $rt”.

e Pattern is the list of dag objects that will be used to perform pattern matching
during instruction selection. If a pattern is matched, the instruction selection
phase replaces the matching nodes with this instruction. For example, in the
[(set GPR320pnd:$rd, (add GPR320pnd:$rs, GPR320pns:$rt))] pattern of the
MIPS ADD instruction, [ and ] denote the contents of a list that has only one
dag element, which is defined between parenthesis in a LISP-like notation.

e Uses, Defs record the lists of implicitly used and defined registers during the
execution of this instruction. For example, the return instruction of a RISC
processor implicitly uses the return address register, while the call instruction
implicitly defines the return address register.

e Predicates stores a list of prerequisites that are checked before the instruction
selection tries to match the instruction. If the check fails, there is no match. For
example, a predicate may state that the instruction is only valid for a specific
subtarget. If you run the code generator with a target triple that selects another
subtarget, this predicate will evaluate to false, and the instruction never matches.



91

2.4.3.4. The LLVM Code Generator Classes

2.4.3.4.1. Target Description Classes

1. The TargetMachine class provides virtual methods that are used to access the
target-specific implementations of the various target description classes via the
get*Info methods (getInstrinfo, getRegisterinfo, getFramelnfo, etc.).

2. The DatalLayout class is the only required target description class, and it is the
only class that is not extensible (you cannot derive a new class from it).
Datalayout specifies information about how the target lays out memory for
structures, the alignment requirements for various data types, the size of pointers
in the target, and whether the target is little-endian or big-endian.

3. The TargetLowering class is used by SelectionDAG based instruction selectors
primarily to describe how LLVM code should be lowered to SelectionDAG
operations.

4. The TargetRegisterIinfo class is used to describe the register file of the target
and any interactions between the registers.

5. The Targetlnstrinfo class is used to describe the machine instructions
supported by the target

6. The TargetFramelLowering class is used to provide information about the stack
frame layout of the target.

7. The TargetSubtarget class is used to provide information about the specific chip
set being targeted.

8. The TargetJITInfo class exposes an abstract interface used by the Just-In-Time
code generator to perform target-specific activities, such as emitting stubs

2.4.3.4.2. Machine code description classes

1. The Machinelnstr class: Target machine instructions are represented as
instances of the Machinelnstr class. This class is an extremely abstract way of
representing machine instructions. It only keeps track of an opcode number and
a set of operands. The opcode number is a simple unsigned integer that only has
meaning to a specific backend. All the instructions for a target should be defined
in the *Instrinfo.td file for the target.

2. The MachineBasicBlock class contains a list of machine instructions
(Machinelnstr instances).

3. The MachineFunction class contains a list of machine basic blocks
(MachineBasicBlock instances).

2.4.3.5. The MC Layer
The MC Layer is used to represent and process code at the raw machine code level,
devoid of “high level” information like “constant pools”, “jump tables”, “global
variables” or anything like that. At this level, LLVM handles things like label names,
machine instructions, and sections in the object file. The code in this layer is used for a
number of important purposes: the tail end of the code generator uses it to write a .S or
.0 file, and it is also used by the llvm-mc tool to implement standalone machine code
assemblers and disassemblers [95].

1. The Context class is the owner of a variety of unique data structures at the MC

layer, including symbols, sections, etc.
2. The MCSymbol class represents a symbol (aka label) in the assembly file.



92

3. The MCSection class represents an object-file specific section.
4. The MClnst class is a target-independent representation of an instruction.

2.4.3.6. Instruction Selection
In Section 2.4.3.2 six steps of code generation were listed. Here we get into the details
of the “Instruction Selection” step.

Instruction Selection is the process of translating LLVM code presented to the code
generator into target-specific machine instructions. There are several well-known ways
to do this in the literature. LLVVM uses a SelectionDAG based instruction selector [95].

The SelectionDAG is a Directed-Acyclic-Graph whose nodes are instances of the
SDNode class. The primary payload of the SDNode is its operation code (Opcode) that
indicates what operation the node performs and the operands to the operation.

An SDNode has an opcode, operands, type requirements, and operation
properties. For example, is an operation commutative, does an operation load from
memory.

e The various operation node types are describped in the
include/llvm/CodeGen/SelectionDAGNodes.h file (values of the NodeType
enum in the ISD namespace).

e The various operation node types are described at the top of the
include/llvm/CodeGen/ISDOpcodes.h file.

Although most operations define a single value, each node in the graph may
define multiple values. For example, a combined div/rem operation will define both the
dividend and the remainder. Many other situations require multiple values as well. Each
node also has some number of operands, which are edges to the node defining the used
value. Because nodes may define multiple values, edges are represented by instances
of the SDValue class, which is a pair, indicating the node and result value being used,
respectively. Each value produced by an SDNode has an associated MVT (Machine
Value Type) indicating what the type of the value is [95].

One important concept for SelectionDAGs is the notion of a “legal” vs. “illegal”
DAG. A legal DAG for atarget is one that only uses supported operations and supported
types. On a 32-bit PowerPC, for example, a DAG with a value of type i1, i8, i16, or i64
would be illegal, as would a DAG that uses a SREM or UREM operation [95].
SelectionDAG-based instruction selection consists of the following steps [95]:

1. Build initial DAG: This stage performs a simple translation from the input

LLVM code to an illegal SelectionDAG.

2. Optimize SelectionDAG: This stage performs simple optimizations on the
SelectionDAG to simplify it and recognize meta instructions (like rotates and
div/rem pairs) for targets that support these meta operations. This makes the
resultant code more efficient and the select instructions from DAG phase
(below) simpler.

3. Legalize SelectionDAG Types: This stage transforms SelectionDAG nodes to
eliminate any types that are unsupported on the target.

4. Optimize SelectionDAG: The SelectionDAG optimizer is run to clean up
redundancies exposed by type legalization.

5. Legalize SelectionDAG Ops: This stage transforms SelectionDAG nodes to
eliminate any operations that are unsupported on the target.




93

6. Optimize SelectionDAG: The SelectionDAG optimizer is run to eliminate
inefficiencies introduced by operation legalization.

7. Select instructions from DAG: Finally, the target instruction selector matches
the DAG operations to target instructions. This process translates the target-
independent input DAG into another DAG of target instructions.

8. SelectionDAG Scheduling and Formation: The last phase assigns a linear
order to the instructions in the target-instruction DAG and emits them into the
MachineFunction being compiled. This step uses traditional prepass scheduling
techniques.

After all these steps are complete, the SelectionDAG is destroyed, and the rest of

the code generation passes are run.

2.4.3.7. SelectionDAG Select Phase

The Select phase is the bulk of the target-specific code for instruction selection. This
phase takes a legal SelectionDAG as input, pattern matches the instructions supported
by the target to this DAG and produces a new DAG of target code. For example,
consider the following LLVM fragment:

%t1 = fadd float %W, %X
%t2 = fmul float %t1, %Yf
%t3 = fadd float %t2, %Z

This LLVM code corresponds to a SelectionDAG that looks basically like this:

fadd:f32 (fmul:f32 (fadd:f32 W, X), Y), 2)

TableGen uses the following target description (.td) input files to generate much of
the code for instruction definition [96]:

e Target.td: Where the Instruction, Operand, Instrinfo, and other fundamental
classes are defined.

e TargetSelectionDAG.td: Used by SelectionDAG instruction selection
generators, contains SDTC* classes (selection DAG type constraint),
definitions of SelectionDAG nodes (such as imm, cond, bb, add, fadd, sub), and
pattern support (Pattern, Pat, PatFrag, PatLeaf, ComplexPattern).

e XXXInstrFormats.td: Patterns for definitions of target-specific instructions.

e XXXInstrinfo.td: Target-specific definitions of instruction templates,
condition codes, and instructions of an instruction set. For architecture
modifications, a different file name may be used. For example, for Pentium with
SSE instruction, this file is X86InstrSSE.td, and for Pentium with MMX, this
file is X86InstrMMX.td.

2.4.3.8. LLC DAG Related Arguments
The llc arguments which generate DAGSs in several phases are:
e view-dag-combinel-dags displays the DAG after being built, before the first
optimization pass.
e view-legalize-dags displays the DAG before Legalization.



94

e view-dag-combine2-dags displays the DAG before the second optimization
pass.

e view-isel-dags displays the DAG before the Select phase.

e view-sched-dags displays the DAG before Scheduling.

TableGen generates code for instruction selection using the following target

description input files [96]:

e XXXInstrinfo.td contains definitions of instructions in a target-specific
instruction set, generates XXXGenDAGISel.inc, which is included in
XXXISeIDAGToDAG.cpp.

e XXXCallingConv.td contains the calling and return value conventions for the
target architecture, and it generates XXXGenCallingConv.inc, which is
included in XXXISelLowering.cpp.

The implementation of an instruction selection pass must include a header that
declares the FunctionPass class or a subclass of FunctionPass. In
XXXTargetMachine.cpp, a Pass Manager (PM) should add each instruction selection
pass into the queue of passes to run.

2.4.4. LLVM IR to Machine Code Walk Through

Life of an instruction in LLVM: After compiling a C code by we get LLVM IR
instructions. SelectionDAG nodes are created by the SelectionDAGBuilder class acting
“in the service of” SelectionDAGISel, which is the main base class for instruction
selection. SelectionDAGISel goes over all the IR instructions and calls the
SelectionDAGBuilder::visit dispatcher on them. For example, the method handling a
SDiv instruction is SelectionDAGBuilder::visitSDiv. It requests a new SDNode from
the DAG with the opcode ISD::SDIV, which becomes a node in the DAG [97].

The initial DAG constructed this way is still only partially target dependent. In
LLVM nomenclature it is called “illegal” — the types it contains may not be directly
supported by the target; the same is true for the operations it contains.

An important interface used by the code generator to convey target-specific
information to the generally target-independent algorithms is TargetLowering. Targets
implement this interface to describe how LLVM IR instructions should be lowered to
legal SelectionDAG operations.

In constructor of LaserTargetLowering (in LaserlSelLowering.cpp) we tell LLVM
how to legalize each IR by lowering it into target supported nodes.

For example, when SelectionDAGLegalize::LegalizeOp sees the Expand flag on a
SDIV node it replaces it by ISD::SDIVREM. This is an interesting example to



95

- Y
| MCinstlowering |
g /

Binary
instruction

F 3

[ AsmPrinter
/l

F
T 5 ——— 6) 1 —
ARMAsmPnnterJ MCStreamer [ Assembler j—b{ MCCodeEmitter
b A h. vy

2 R R
,, N Emitinstuction() N

Iy N \
(i MCAsmSteamerJ fMCObjeotSteamerﬂ LARM MCCodeEmitterj
e S W/
_ _ A AN
Emitinstuction() | (4) | S

1 N
~

N

- ~ ~N ~
| MClInstPrinter J | MCELFStreamer | | MCCOFFStreamer |
h. S A S AN vy
\ 1)

\ \
\ \

:\ [:
ARMMCInstPrinter ARMELFStreamer |

Fig. 67: MC Framework [93].

Assembly
instruction

demonstrate the transformation an operation can undergo while in the selection
DAG form.

The next step in the code generation process is instruction selection. LLVM
provides a generic table-based instruction selection mechanism that is auto-generated
with the help of TableGen. Many target backends, however, choose to write custom
code in their  SelectionDAGISel::Select  (in  LaserlSeIDAGToDAG.cpp)
implementations to handle some instructions manually. Other instructions are then sent
to the auto-generated selector by calling SelectCode.

The code we have at this point is still represented as a DAG. But CPUs do not
execute DAGs, they execute a linear sequence of instructions. The goal of the
scheduling step is to linearize the DAG by assigning an order to its operations (nodes).
The simplest approach would be to just sort the DAG topologically, but LLVM’s code
generator employs clever heuristics (such as register pressure reduction) to try and
produce a schedule that would result in faster code.

Finally, the scheduler emits a list of instructions into a MachineBasicBlock, using
InstrEmitter::EmitMachineNode to translate from SDNode.

The instructions here take the Machinelnstr form (”MI form” from now on), and
the DAG can be destroyed.

We can examine the machine instructions emitted in this step by calling llc with
the -print-machineinstrs flag and looking at the first output that says, “After instruction
selection”.

Code Emission: The MClInst class defines a lightweight representation for
instructions. Compared to Mls, MClnsts carry less information about the program.

Each operand can be a register, immediate (integer or floating-point number), an
expression (represented by MCExpr), or another MCInstr instance. Expressions are
used to represent label computations and relocations. The Ml instructions are converted
to MClinst instances early in the code emission phase.



96

Let us have a walkthrough over the steps shown in the preceding diagram as shown
in Fig. 67:

1.

AsmPrinter is a machine function pass that first emits the function header and
then iterates over all basic blocks, dispatching one MI instruction at a time to
the Emitlnstruction() method for further processing.

The LaserAsmPrinter::EmitInstruction() method receives an M1 instruction as
input and transforms it into an MClnst instance through the MClInstLowering
interface each target provides a subclass of this interface and has custom code
to generate these MClnst instances.

At this point, there are two options to continue: emit assembly or binary
instructions. The MCStreamer class processes a stream of MClnst instructions
to emit them to the chosen output via two subclasses: MCAsmStreamer and
MCObjectStreamer. The former converts MClInst to assembly language and the
latter converts it to binary instructions.

If generating assembly instructions, MCAsmStreamer::EmitInstruction() is
called and uses a target-specific MCInstPrinter subclass to print assembly
instructions to a file.

If generating binary instructions, a specialized-target and object-specific
version of MCObjectStreamer::Emitinstruction() calls the LLVM object code
assembler.

The assembler uses a specialized MCCodeEmitter::Encodelnstruction()
method that is capable of departing from a MClnst instance encoding and
dumping binary instruction blobs to a file in a target-specific manner.

2.4.5. LLVM Machine Code (MC) Components
MC components can be categorized into two parts [98]:

1.
2.

that which operates on instructions
that which does other stuff.

(Machinelnst) — (MClnstr)
Some important classes:

MClnst presents an instructions with operands.
MCSymbol presents labels in .s file.

e MCSection

e  MCEXxpr

MC Project:

1. [Instruction Printer: MCInstPrinter

2. Instruction Encoder: MCCodeEmitter

3. Instruction Parser: MCTargetAsmParser

4. Instruction Decoder: MCDisassembler

5. Assembly Parser: Handles directives, invokes MCStreamer which has
Emitlnstruction() function which takes in a MClnst.

6. Assembly backend: MCAsmStreamer



97

SelectionDAGBUuilder

Map IR

i3

instructions to SelectionDAG
SelectionDAG nodes combme 1
Legalize
Target type 1
lowering | |
Instruction
selection DAG
A combine
G DAG Legalize Legalize
combine 2 legalize combine type 2 vectors
/
Fig. 68: [93].

The compiler backend now invokes the same MCStreamer interface to emit code
that the stand-alone assembler parser does.

2.4.5.1. RET
To fully understand the process of IR transformation to machine instruction we start
with the following simple C program:

int main(void) {
return O;

}

Running the Clang (with Laser target DatalLayout defined in it and -O2 argument)
on the C program shown in Listing 1 gives the generated IR code.

Listing 1: main() IR code.

define 116 @main() local_unnamed_addr #0 {
entry:
retil6 O

}




98

Ifl:lnlry'l'c:':lv.lenﬂ"‘ (Constant<5>Y [ Re oister %R 15)
t0 tl t2
ch il6

CopyToReg

t3

ch glue

i

LASERISD::Ret
td
ch

i

dag-combine input for main:entry

Fig. 69: DAG combinel input for main:entry.

We need to convert the LLVM IR “ret 116 0” to Laser machine code: “IMD
%RETVAL, 0; Ret;” Meanwhile the return address must be already saved in
%RETADDR register.

The first phase is “Instruction Selection” which transforms LLVM IR to
SelectionDag nodes (SDNode). Each SDNode corresponds to an instruction or operand.
Next, these nodes go through the lowering, DAG combiner, and legalization phases,
making it easier to match against target instructions. The instruction selection then
performs a DAG-to-DAG conversion using node pattern matching and transforms the
SelectionDAG nodes into nodes representing target instructions. More details are shown
in Fig. 68 [93].

First, a SelectionDAGBuilder instance (see SelectionDAGISel.cpp for details)
visits every function and creates a SelectionDAG object for each basic block. During
this pass LaserTaretLowering is used to lower special IR instructions such as ret and
call.

A SelectionDag object may have several instances of SDNode class, the primary
payload of SDNode is its operation code (Opcode) that indicates what operation the
node performs and the operands to the operation. The SDNode class can have default
opcodes which is defined in /CodeGen/ISDOpcodes.h or machine specific opcodes
which must be defined in LaserlSelLowering.h. The C code in Listing 2 gets converted
to a SelectinDag object with 5 SDNodes as it can be seen in Fig. 69.



99

Listing 2: Return Calling Convention in LaserCallingConv.td

def RetCC_LASER : CallingConv<[
CClIfType<[il16], CCAssignToReg<[RETVAL]>>,

CCIfType<]il16], CCAssignToStack<2, 2>>

1>;

We list the Opcode of each SDNode:
1. EntryToken
2. Register %RETVAL
3. Constant 0
4, CopyToReg
5. LASERISD:Ret

The edge of this DAG enforces ordering among its operations by means of a usedef
relationship. The black arrows represent regular edges showing a dataflow dependence.
The dashed blue arrows represent nondataflow chains that exist to enforce order
between two otherwise unrelated instructions. The red edge guarantees that its adjacent
nodes must be glued together, which means that they must be issued next to each other
with no other instruction in between them.

As we can see the fifth opcode “LASERISD:Ret” is target-dependent. How did this
happen? As it is already mentioned the LaserTaretLowering defined in
LaserlSelLowering.h is used to lower special IR instructions such as ret.

First in LaserCallingConv.td we the code shown in Listing 2, which states that the
first return value must be saved in %RETVAL and the rest in stack. Then the override
function LaserTargetLowering::LowerReturn() lowers the LLVM IR “ret” to
LASERISD::Ret. We then define a pseudo instruction RET FLAG in Laserlnstinfo.td
that will match LaserRet which is defined as an SDNode with opcode equal to
LASERISD::Ret. Therefore in instruction selection phase the LASERISD::Ret will be
replaced by RET FLAG pseudo instruction.

Finally in expandPostRAPseudo() we will replace the pseudo instruction by calling
expandRetFlag() with LASER::RET.



100

3. 16-bit Integer VHDL-based Laser Processor

3.1. Introduction

In this section an attempt to design and implement a 16-bit integer microprocessor
based on VHDL language from scratch is presented. The goal here is to gain insights
in details of a general-purpose microprocessor design and tackle intricacies and
potential difficulties that might arise in the implementation process.

The knowledge gained in this section will be used in designing the ultimate goal
of this thesis which is to propose an adaptive microprocessor architecture.

The implementation uses standard theory behind microprocessor design to
construct a 3-stage pipeline and then implements cycle accurate instructions according
to the ARM Cortex-MO technical reference manual precisely [99].

3.2. Implementation

3.2.1. Laser Final ISE Design
Since accessing memory is slower that internal registers, all modern processors avoid
the memory-memory architecture and either use Load-Store or register-memory
architecture [100].

The proposed instruction set is a fixed size 16-bit, with three operands and based on
Load-Store register architecture. It means most instructions will be allowed to operate
on registers and then result will be stored to memory.

3.2.1.1. Laser Endianness
The Big Endian is adopted. Therefore, 16-bit data OXABCD will go to memory as
follows:

« location a = 0xAB

e locationa+1=0xCD

For Little Endian we would have:

e location a = 0xCD

« location a + 1 = OxAB

3.2.1.2. Laser Supported Addressing Modes
Supported addressing modes are:
» PC-relative (11-bits) 2k away from PC. Jmp [11-bit-address] : PC=PC + [11-
bit-address]
» Register indirect (16-bits)

3.2.1.3. Laser Caller-Callee Convention
Laser CPU adopts the following calling convention:
« The first 2 arguments pass through R8 and R9.
» The return value is in RETVAL register.
« This is the instruction set: (16-bit wide)



3.2.2. Final Instruction Set Bits Encoding

101

Table 6 shows the details of instruction encoding for our 16-bit processor with 5-bit
set aside for opcode and 4-bit for source and destination registers, and 3-bit for target

register.

Table 6: Instruction Set Bits Encoding

# Instruction Opcode Destination Source Reg. | Target

Reg. Reg.
15 14 13 12 11 (10 | 9 6 |54 (3210

0 MOV 0 0 0 0 0 RD RS

1 ADD 0 0 0 0 1 RD RS RT

2 ADC 0 0 0 1 0 RD RS RT

3 SUB 0 0 0 1 1 RD RS RT

4 SBC 0 0 1 0 0 RD RS RT

5 INC 0 0 1 0 1 RD

6 DEC 0 0 1 1 0 RD

7 MUL 0 0 1 1 1 RD RS RT

8 DIV 0 1 0 0 0 RD RS RT

9 AND 0 1 0 0 1 RD RS RT

10 | OR 0 1 0 1 0 RD RS RT

11 | XOR 0 1 0 1 1 RD RS RT

12 | NOT 0 1 1 0 0 RD RS

13 | SRL 0 1 1 0 1 RD RS

14 | SLL 0 1 1 1 0 RD RS

15 | LD 0 1 1 1 1 RD RS

16 | ST 1 0 0 0 0 RD RS

17 | CMP 1 0 0 0 1 RD RS

18 | JMP 1 0 0 1 0 * * *

19 | JZ 1 0 0 1 1 RD

20 | JNZ 1 0 1 0 0 RD

21 | JC 1 0 1 0 1 RD

22 | JNC 1 0 1 1 o0 RD

23 | IMD 1 0 1 1 1 RD

24 | IN 1 1 0 0 O RD RS

25 | OUT 1 1 0 0 1 RD RS




26

27

28

29

30

31

32

CLRC 1
SETC 1
CALL 1
RET 1
IN 1
ouT 1
NOP 1

1 1 0 0 RD

1 1 1 0 RD RS

102

3.2.2.1. Instruction Description
Table 7 shows the description of each instruction and the assembly string for each
instruction is shown in Table 8. Note: [RD] is a memory operand.

Table 7: Instruction Description.

Instruction | Description

MOV RD < RS

ADD RT < (RS + RD)

ADC RT < (RS + RD + Carry)

SUB RT < (RS - RD)

SBC RT <« (RS - RD - Carry)

INC RD « (RD + 1)

DEC RD < (RD - 1)

MUL {RT, RD} « (RS *RD)

DIV RT «— (RS /RD), RD « Remainder

AND RT < (RS AND RD)

OR RT «— (RS OR RD)

XOR RT « (RS XOR RD)

NOT RD «— NOT (RS)

SRL RD « (RS>>1)

SLL RD « (RS <<1)

LD RD « [RS]

ST [RD] < RS

CMP (RS CMP RD)? Set the Zero Flag if equal, Unset if not equal.
Set the Carry Flag if RS < RD, unset if RS > RD.

JMP Unconditional Short Jump to PC+IR [10-0], IR [10-0] must be
in two’s complement form.

Jz Jump to [RD] if Zero flag is set.

INZ Jump to [RD] if Zero flag is unset.

JC Jump to [RD] if Carry flag is set.

JNC Jump to [RD] if Carry flag is set.

IMD RD « Next 16-bit. (2 Cycles)

IN RD « port [RS]

ouT port [RS] « RD

CLRC Clears the Carry Flag.




103

SETC Sets the Carry Flag.

CALL RETADDR « PC and jumps to [RD].
RET PC — RETADDR.

NOP No Operation.

Table 8: Instruction Assembly String

Instruction | Assembly Instruction

MOV MOV RD, RS

ADD ADD RT, RS, RD

ADC ADC RT, RS, RD

SUB SUB RT, RS, RD

SBC SBCRT, RS, RD

INC INC RD

DEC DEC RD

MUL MUL RS, RD

DIV DIV RS, RD

AND AND RT, RS, RD

OR ORRT, RS, RD

XOR XOR RT, RS, RD

NOT NOT RD, RS

SRL SRL RD, RS

SLL SLL RD, RS

LD LD RD, [RS]

ST ST [RD], RS

CMP RD, RS

JMP JMP [11-bits immediate]

JZ JZRD

INZ JNZ RD

JC JCRD

JNC JNC RD

IMD IMD RD, #16-bits
immediate

IN IN RS, [RD]

ouT OUT RS, [RD]

CLRC CLRC

SETC SETC

CALL CALL RD

RET RET

IN IN RD, [RS]

ouT OUT [RD], RS

NOP NOP




104

Table 9: RT Operand Binary Encoding.

Register | Binary
R8 000
R9 001
R10 010
R11 011
R12 100
R13 101
R14 110
R15 111

We have 16 registers inside the data path: RO to R15, SP, PC. The RT operand has
3 bits width. This restricts us to access only 8 registers. We will adapt the approach
used in Motorola 68000 and let RT operand to access the high register bank only: R8
to R15. The opcode encoding will be mapped as shown in Table 9.

Laser microprocessor has 16 registers: FLAGR keeps the track of flags such as
zero, carry, etc. SP: Stack Pointer, FP: Frame Pointer, SS: Stack Segment, LR: Link
Register, RETADDR: Return Address, GP: Global Pointer, RETVAL.: Return Value.

Note that the special registers are not accessible to RT operand. R8 to R15 are
designed to be general purpose registers.

3.2.3. Designing the Instruction Set Implementation
The stages that we have in execution of one single instruction:

1. Start: MEM ADD « PC (Next clock we have the memory data ready.)

2. Fetch:
« IR «— MEM DATA OUT
« PC=PC+1

3. Decode:
» Select next state.
* RD « IR (10 downto 7);
* RS « IR (6 downto 3)
e RT « ‘0’ & IR (2 downto 0);

4. Execution: We execute the instruction and then will

3.2.3.1. Register Number Assignment
Table 10 shows the assigned numbers to each register.



105

Table 10: Registers’ Number.

Register | Number (Decimal)
FLAGR 0
SP 1
FP 2
SS 3
LR 4
RETADDR 5
GP 6
RETVAL 7
R8 8
R9 9
R10 10
R11 11
R12 12
R13 13
R14 14
R15 15

User visible registers (Totally 19):
1. SP
2. FP
3. SS

4. RETADDR

5. ROtoR15

Let us now have a program that counts from 65000 to 65010 written in Laser
Machine language as listed in Listing 3. We use this program to develop and verify
each processor instruction.



Listing 3: Sampled Laser Processor Program for Testing Purpose.

106

Loopl:

-- 10101_0000_0000_000 = 0xA800, OxFDES
IMD RO, OXFDES;
-- 10101_0001_0000_000 = 0xA880, OXxFDF2
IMD  R1, OXFDF2;

-- 00101_0000_0000_000 = 0x2800

INC RO;

-- 10001_0000_0001_000 = 0x8808

CMP RO, R1;

--10100_1111 1111 101 = OXA7FD

JNZ  Loopl

-- 00000_0010_0000_000 = 0x0100

MOV R2, RO

-- 10101_0000_0000_000 = 0xA800, 0x0005
IMD RO, 0x0005

-- 00001_0010_0000_011 = 0x0903

ADD R2, R0, R3

-- 10101_0000_0000_000 = 0xA800, 0x0002
IMD RO, 0x0002

-- 10101_0001_0000_000 = 0xA880, 0x0003
IMD R1, 0x0003

-- 11001_0000_0000_000 = 0xC800

SETC

-- 00010_0000_0001_100 = 0x100C

ADC RO, R1, R4

-- 11000_0000_0000_000 = 0xC000

CLRC

-- 00011_0000_0100_101 = 0x1825

SUB RO, R4, R5;

-- 10101_0000_0000_000 = 0xA800, 0x0004
IMD RO, 0x0003
--00011_0101_0000_110 = 0x1A86

SUB R5, RO, R6;

-- 11001_0000_0000_000 = 0xC800

SETC

--00100_0101 0100_111 = 0x22A7

SBC R5, R4, R7;

-- 10101_0000_0000_000 = 0xA800, 0x0002
IMD RO, 0x0002

-- 00110_0000_0000_000 = 0x3000

DEC RO;

-- 00110_0000_0000_000 = 0x3000

DEC RO;




Listing 1 continues:

107

~-00111_0010_0001_011 = 0x390B
MUL R2, R1, R3;

-- 10101_0000_0000_000 = 0xA800, 0x0021

IMD RO, 0x0021,

-- 10101_0001_0000_000 = 0xA880, 0x0010

IMD  R1, 0x0010:;
~-01000_0001_0000_010 = 0x4082
DIV R1, R0, R2;

-- 10101_0000_0000_000 = 0xA800, Ox81E5

IMD RO, Ox81ES5;

-- 10101_0001_0000_000 = 0xA880, 0xCB85

IMD R1, 0XCBSS;
~-01001_0001_0000_010 = 0x4882
AND R, RO, R2;
~-01010_0001_0000_011 = 0x5083
OR  R1,RO,R3;
~-01011_0001_0000_100 = 0x5884
XOR R1, RO, R4;
~-01100_1001_0000_000 = 0x6480
NOT R, RO:
~-01101_1010_0000_000 = 0x6D00
SRL  R10, RO:;
~-01110_1011_0000_000 = 0x7580
SLL R11, RO;

-- 10101_0000_0000_000 = 0xA800, OXOFF8

IMD RO, OXOFFS;

- 01111 1111 0000_000 = Ox7F80
LD  R15, RO;
--00101_1111_0000_000 = 0x2F80
INC  RI15;
--10000_0000_1111_000 = 0x8078
ST RO, R15;
--01111_1110_0000_000 = 0X7F00
LD  R14,RO:
--10110_0000_0000_000 = 0xB0OOO
PUSH RO
--10110_1111_0000_000 = 0xB780
PUSH R15
--10111_0000_0000_000 = 0xB80O
POP RO

~-10111 1111 0000_000 = OXBF80
POP RI15




108

stack limit /’\/\/\/
—
smaller
ddr
Garbage a assas
stack pointer
— 0x0010 0QQa
larger
addresses
bottom of stack
—
f,/\/\_.-—-../\\
Fig. 70: Stack Concept [101].
SPp—= }
main {)
main stack
frame

Fig. 71: Stack for main() function [101].

3.2.3.2. Stack
When a program starts executing, a certain contiguous section of memory is set aside
for the program called the stack [101]. The way a stack is placed in memory is shown
in Fig. 70.
The stack pointer is usually a register that contains the top of the stack. In our
processor we call this register SP, and it is initialized by value OXFFFF.
« Stack bottom: The largest valid address of a stack. When a stack is
initialized, the stack pointer points to the stack bottom.
« Stack limit: The smallest valid address of a stack. If the stack pointer gets
smaller than this, then there is a stack overflow.
» Stack frame: For each function call, there is a section of the stack reserved
for the function. This is usually called a stack frame.



109

SP—® | rat val

Iargs
main{)
stack

main frame

Fig. 72: Stack for foo() function [101].

SP—»| rat val

Iarg’s
main()

stack
main frame

Fig. 73: Stack for foo() function after foo() using the stack [101].

Let us imagine we are starting in main() in a C program. The stack looks like
something like Fig. 71. Suppose inside of body of main() there is a call to foo(). Suppose
foo() takes two arguments. One way to pass the arguments to foo() is through the stack.
Thus, there needs to be assembly language code in main() to “push” arguments for foo()
onto the stack. The result looks like Fig. 72.

As we can see in Fig. 72 the return value is also passed via stack, but Laser
processor has its own dedicated register to return a value from a function.

3.2.3.3. Frame Pointer
Once we get into code for foo(), the function foo() may need local variables, so foo()
needs to push some space on the stack, which looks like Fig. 73.

The added new pointer FP stands for frame pointer. The frame pointer points to the
location where the stack pointer was, just before foo() moved the stack pointer for
foo()’s own local. Having a frame pointer is convenient when a function is likely to
move the stack pointer several times throughout the course of running the function. The
idea is to keep the frame pointer fixed for the duration of foo()’s stack frame. The stack
pointer, in the meanwhile, can change values.



110

We can use the frame pointer to compute the locations in memory for both
arguments as well as local variables. Since it does not move, the computations for those
locations should be some fixed offset from the frame pointer. The Laser CPU uses
SS:SP combination to address the stack frame. Initially SS and SP both have been set
to OXFFFFh. For each 16-bit variable placed into the stack the compiler must subtract
2 from SP. It also has a 16-bit frame pointer called FP.

3.2.3.4. Flag Register
FLAG Register:

« BITO0: Zero
« BIT 1: Carry
« BIT 2: Overflow
« BIT3:

« BIT4:

« BITS:

« BITG:

- BITT:

« BITS:

« BITO:

« BIT 10:

« BIT 1L

« BIT12:

« BIT13:

« BIT 14:

« BIT15:

3.2.3.5. Pass Method Arguments
We have two ways to pass arguments in methods:
1. Pass all arguments via stack.
2. Pass via a limited number of registers and if arguments exceed the number of
registers, then we pass via stack.

Laser processor passes the first 2 arguments in registers [R8, R9] and the rest will
be placed in stack.

3.2.3.6. Arithmetic
The values in registers are signed agnostic. The compiler will consider if the values are
unsigned or two’s complement.

3.2.4. Processor Implementation
We have chosen VHDL language for Laser processor implementation in FPGA
devices.

3.2.5. Processor File Structure
The heart of processor is implemented in CU module in CU.vhd file.
The main.vhd contains an instance of CU and an interface to outside world.



111

] . - i
~y Memory Editor - [main_bram_dk.cgf] o= | =] "': Memaory Contents @
File Help
Jump To Address: | 0]
Memary Black Options [ Configure Yalues for Address Range. .. ]
Add Block
Mernory Block Name: Address +0 +1 +2 +3
- Rename Block
main_bram_sk E [ As00 FDES AsE0 FOFZ -
Celeteflock 08 500 o00s 0903 A50D a
010 100c Z000 1825 AZOD
Biock Depth: 4096 018 4300 o0z 3000 3000
Data Width: 020 o010 4082 300 B1ES
025 S84 G430 G000 7530
Defaul: Word: 1] 030 3075 FFO0 ({0} B730
035 ] 0 0 0
Defaulk Pad Bit Value: |0 IZ| Pad Direction: | left |E| 040 0 0 0 0
045 0 o o o
ixg: 16 i<: 16
Address Radix IZ| Data Radix IZ| = o a A A
055 0 0 0 0
Configure COE File Parameter Mames 0sa 0 a a a
058 0 il 0 0
Radix: MEMORY _INITIALIZATION _RADIS |z| 070 0 ] 0 0
075 ] 0 0 0
Data: MEMORY _INITIALIZATION _YECTOR |z| 030 ] 0 0 0
055 ] 0 0 0
090 ] 0 0 0
Cansole 098 0 0 0 0
Loading data from main bram dk.cgf... & 040 o o 0 0
0a8 0 0 0 0
= 0b0 0 0 0 0
b3 0 il 0 0
0c0 0 o 0 0 N
== = o - m m -

Fig. 74: Memory Editor Program.

The Vivado project is uploaded to the GitHub website: https://github.com/ehsan-
ali-th/laser

3.2.6. Simulation
For simulation we must save the machine code into a block RAM. We use Xilinx Block
Memory Generator.
e Interface Type: Native
Memory Type: Single Port RAM
Write width = 16bit, Read width = 16bit
Write depth = 4096
Use ENA Pin
Memory initialization: Done by .Coe file. Located under 'memory’ directory.
We must use “Memory editor” to enter the machine code bytes manually. For each
memory block, the Memory Editor creates a single CGF file which defines the contents
of one or more COE files. For each memory block defined in a CGF file, the Memory
Editor generates a separate COE file [102].
In Xilinx ISE 14.6 the *Tools/Memory Editor’ options are removed so we must run
the Memory Editor by using command prompt:
Run ’ISE Design Suite 64-bit Command Prompt
Then issue the command *mem edit’. A screenshot of Memory Editor program is
shown in Fig. 74.


https://github.com/ehsan-ali-th/laser
https://github.com/ehsan-ali-th/laser

112

Let us write a program that adds 2 to 3 and outputs the result to ROUTO:

IMD RO, 0x0002;
IMD R1, 0x0003;
ADD RO, R1, R2
IMD R3, 0x0000;
ouT R3, R2

Loopl:
NOP
JMP Loopl

MEMORY_INITIALIZATION_RADIX=2;
MEMORY_INITIALIZATION_VECTOR=
1011100000000000,
0000000000000010,
1011100010000000,
0000000000000011,
0001100000001010,
1011100110000000,
0000000000000000,
0000001000010000,
1100100110010000,
1111000000000000,
1001011111111110,
0000000000000000,
0000000000000000,
0000000000000000,
0000000000000000,

Listing 4: main_bram_4k.coe: Sampled Laser program in Xilinx Coefficient File that
test Subtraction Instruction.

After uploading the above program into a .COE file by manually entering the hex
values into a Xilinx coefficient file “main_bram_4k.coe” as shown in Listing 4. The
.COE file will be passed as initialization file to program block RAM and then the
behavioral simulation can be performed ash shown in Fig. 75.

To upload the designed processor into the ZYBO FPGA board: First download the
“zybo_master.xdc” constraint file for ISE design suit, then set input signals clk, reset,
halt and output signal ROUTO.



113

fiif

0000

0001

0000 y
10001 4
0009

1

0

0000

foo0

0001

0000
0001
0000
0000
0000
0000
0000
0000

0000

0000
0000
0000

Fig. 75: Vivado 1Sim simulation of Laser Processor showing subtraction of R1=3
from R0=2, the result is saved into R2 and forwarded to out port

3.2.6.1. Testing Instructions

3.2.6.1.1. MOV instruction test:
Below are two sample programs to test MOV and SUB instructions.

IMD RO, 0x0002;
IMD R1, 0x0003;
ADD RO, R1, R2
IMD R3, 0x0000;
MOV R5, R2

ouT R3, R2
Loopl:

NOP




114

3.2.6.1.2. SUB Instruction:

~-10111_0000_0000_000 = 0xB80O, 0x0002
-~ 00000_0000_0000_010

IMD RO, 0x0002;
~-10111_0001_0000_000 = 0xB880, 0x0003
~- 00000_0000_0000_011

IMD R1, 0x0003;
-- 00011_0000_0001_010 = 0x180A
SUB RO, R1, R2

-- 10111 0011_0000_000 = 0xB980, 0x0000
-- 00000_0000_0000_000
IMD R3, 0x0000;
-- 00000_0100_0010_000 = 0x0210
MOV R5, R2
--11001_0011_0100_000 = 0xC9A0
ouT R3, R2
Loopl:
--11110_0000_0000_000 = 0xF000
NOP

3.2.7. FPGA Implementation
We use ZYBO board. Vivado version 2017.1. First, we must add ZBO board to the
Vivado by following the link below:

https://reference.digilentinc.com/software/vivado/board-files?redirect=2

1. First, we create a new project and select ZYBO board.

2. Copy CU.vhd into the project. Add it as a source file.

3. Run IP Catalog, Memory & Storage Elements, RAMs & ROMs & BRAM,

Block Memory Generator. Rename the RAM block to ’blk_mem_gen_0’
4. Add Master XDC from the link below:
https://github.com/Digilent/ZYBO/tree/master/Resources/XDC
5. Upload Laser program into BRAM (main_bram_4Kk.coe).

Note: For uploading the program to the board, we must start from small scale CU
which supports only NOP and JMP instructions:

Loop1l:
--10111_0000_0000_000 = 0xB800, 0x0002
-- 00000_0000_0000_010
IMD RO, 0x0002;
--11110_0000_0000_000 = 0xF000
NOP
--10010_1111 1111 110 =0x97FE
JMP Loopl



https://reference.digilentinc.com/software/vivado/board-files?redirect=2
https://github.com/Digilent/ZYBO/tree/master/Resources/XDC

115

Setup time 1
Clock = e

1
1 1
I I Hold time
1 —Ql -—

Fig. 76: Flipflop Setup and hold time.

3.2.7.1. Timing

3.2.7.1.1. Setup and Hold Time
The setup and hold time are measured with respect to the active clock edge only.
Considering a positive edge flip flop respective setup and hold times are shown in Fig.
76.

An input to a Flip-Flop needs to be stable (not changing) for an FPGA design to
work properly. The input must be stable for some small amount of time prior to being
sampled by the clock. This amount of time is called setup time. Setup time is the
amount of time required for the input to a Flip-Flop to be stable before a clock edge.

Hold time is like setup time, but it deals with events after a clock edge occurs.
Hold time is the minimum amount of time required for the input to a Flip-Flop to be
stable after a clock edge.

A finite positive setup time always occurs, however hold time can be positive, zero,
or even negative. We denote setup time by ts, hold time by t,. The time it takes for the
data to appear at Q after positive edge of clock is called “clock to Q delay” and denoted
by tcq. The propagation delay through a combinational logic between two FFs is
denoted by tpq.

Setup Time Slack = (provided setup time) - (required setup time) [103] as shown
in Fig. 77.

Hold Time Slack = (provided hold time) - (required hold time) [103] as shown in
Fig. 78.

To get the maximum clock frequency we issue the following commands in TCL
window of Vivado after synthesis:

“open run synth 1 and then “report timing summary -file mytiming.rpt”



116

ER f ~Clock Period S,
clk f L ]
@l &
: - tsu slack _
: n-% - : -0
b1 :
ce—pbde—bg } } }k<—>mt : |
ot ] ] ] ] ] ; ‘
ckq ‘pd o tsu (provided) ; Su_fi}EQD)
tsu
D Q Q0 Combinatorial |21 D Q-
3 / Logic
/\— tckq
clk i 'pd f

Fig. 77: Setup Time Slack.

ot : .
— B(providedy ™

th

D Q Combinatorial D1 ) Q

/ Logic

lcl(q [ N\
clk pd I

Fig. 78: Hold Time Slack.

3.3. Limitation
This first processor proposed in this thesis is Laser processor which its details are
presented in this section. The limitations are as follows:
e Itis 16-bit processor which means cannot run modern 32-/64- bit operating
systems.
e It does not support interrupts.
e The acceptable ISA efficiency is also not fully achieved. For example, shift
n bit to left or right is not supported which forces the user to call the shift
to left instructions 16 times if there is a shift to left by 16 is required.



117

e Itisafixed 2-cycle processor and has no pipeline.

e The resource utilization, performance and power consumption are not
considered during design and development of the Laser processor, and the
only considered factor is operation correctness of the core.

The future work can be defined as refining the ISA and adding interrupt support.

3.4. Result

The processor design discussed in this section in conjunction with the LLVM backend
provides the possibility of coming up with a new foundation for processor design.
Several design passes can result to various architectures that can be compared according
to performance or power consumption by running compact benchmarking programs
written in assembly language. The Laser processor proposed here can be used in
graduate courses to teach general-purpose processor architecture.

The Vivado project can be found at GitHub website: https://github.com/ehsan-ali-
th/laser



https://github.com/ehsan-ali-th/laser
https://github.com/ehsan-ali-th/laser

118

4. Processor Performance Evaluation

4.1. Introduction
In previous section the details of design and implementation of a 16-bit integer general-
purpose VHDL-based soft microprocessor was discussed. The next logical step is to
find out the established scientific methods to measure the performance of the proposed
processor.

This section concentrates on various ways that a processor performance can be
evaluated. Upon gaining more insights and knowledge on processor performance
evaluation it become obvious that there are serious obstacles in effective performance
measurement of the proposed Laser processor due to the following deficiencies:

e Tocompare a processor to other industry level cores a full stack development
software stack that includes an assembler, a C compiler, and a debugger is
needed. This is to either assemble or compile the synthetic benchmark and
compare the results of standard execution of some specific algorithms.

e Laser processor lacks a functional assembler and several features for a
compiler support (e.g., context switching mechanism, proper argument
passing, etc.)

Therefore, a decision to move to an industry level architecture is made and 8-bit
Xilinx PicoBlaze is selected.

This section provides the details of several benchmarking approaches and
identifies most important algorithms (such as FFT) that appear in benchmarking
programs. It then tries to investigate the usage of the available benchmarks to gain more
understanding on the nature of processor performance evaluation.

4.2. Implementation

4.2.1. Benchmarking
Benchmarking is a way to measure performance of a computer system. More
specifically, benchmark is a program used to quantitatively evaluate computer hardware
and software resources [104]. We need to benchmark processors to accurately assess
and compare their key metrics which are [105]:

e DSP speed

e Memory efficiency

e Energy efficiency

e Cost-performance

We have several methods for benchmarking [105]:

e Simplified metrics: e.g., MIPS (Millions of Instructions Per Second), MOPS
(millions of operations per second), MMACS (Millions of Multiply-
Accumulates per Second), MFLOP (Millions of Floating-point Operations
Per Second).

e Full DSP applications: e.g., v.90 modem, GSM-EFR transcoder, Viterbi
encoder/decoder.

e DSP algorithm “kernel” benchmarks: e.g., FIR filter, FFT, IIR filters.

Simplified metrics such as MIPS and MFLOPS (Millions of Floating-Point
Operations per Second) are frequently used as shorthand for processor speed. But the
following comparison of two DSP processor instructions shows that these kinds of
metrics are inaccurate:



119

e ”DSP16410”: AO=A0+P0+P1 PO=Xh*Yh P1=XI*Y1 Y=*RO++ X=*PTO++

e “TMS320C6414”: ADD A0,A3,A0.

Metrics approach is widely criticized in literature. Metrics lost significance when
RISC architectures were introduced. It is not worth counting instructions executed
during a period since different processors accomplish different amount of job with a
single instruction [104].

In contrast complete DSP Applications are real-world working DSP applications
such as v.90 modem, GSM-EFR transcoder, Viterbi encoder/decoder. Usually, they
consist of several thousand lines of C source code. They require assembly hand
optimizations. It is expensive to create such a benchmark - it consumes a lot of time
and efforts. Such a benchmark measures whole system, not only the processor. Since
the application consumes a lot of program memory, memory system and peripherals are
tested as well.

Finally, DSP Algorithm Kernels are code fragments extracted from real DSP
programs. Kernels are believed to be responsible for most of the execution time. They
have small code size and long execution time. They consist of small loops which
perform number crunching, bit processing etc. A few examples of kernels [104]:

1. Matrix product

2. Convolution

3. FIR, lIR, LMS filters

4. FFT The BDTI Benchmarks [106] are based on DSP algorithm kernels [105].

A DSP system consists of a processor, a compiler, and a DSP application. Thus,

we can distinguish the following components that can be benchmarked [104]:
1. Processor
2. Compiler
3. Platform (Processor and Compiler)

Since we are benchmarking the processor alone, we cannot use the compiler (if
we use compiler-generated code, we unintentionally measure compiler performance
too). The benchmark must be written in assembly language [104]. Although there are
attempts to benchmark processors using C [105], CoreMark [107], etc.

4.2.1.1. Benchmarking Measurements

The following parameters are usually measured when benchmarking DSPs [104]:
Cycle Count

Program Memory Usage

Data Memory Usage

Program execution time

Power consumption

Cache hit/miss ratio (if the cache exists)

They are sufficient to compare DSP processors from the user’s point of view. If
the user needs speed, then cycle count and program execution time matters. If user
programs are large and access memory a lot, then program and data memory usage must
be considered. Power consumption is important in small widgets that incorporate DSP
chips. If the system has hard real-time constraints, then cache hit/miss ratio
measurements are relevant [104].

coarwNE



120

4.2.2. Synthetic Benchmarks
The synthetic benchmarks are artificial programs that are constructed to try to match
the characteristics of a large set of programs. The goal is to create a single benchmark
program where the execution frequency of statements in the benchmark matches the
statement frequency in a large set of benchmarks. Whetstone (floating-point) and
Dhrystone [108] (integer) are the most popular synthetic benchmarks.

Dhrystone was developed in 1984 by Reinhold P. Weicker. which is the
representative of general processor (CPU) performance for the last 30 years. Dhrystone
is a simple program that is carefully designed to statistically mimic the processor usage
of certain common set of programs. Dhrystone may represent a result in a more
meaningful manner than MIPS (Million Instructions Per Second) because instruction
count comparisons between different instruction sets (e.g., RISC vs. CISC) can
confound simple comparisons [109].

An ideal benchmark would provide a score that purely reflects the MCU’s core
performance capabilities, irrespective of the rest of the system. But that is not possible
as all MCU cores must interact with a different set of memory — the cache, data memory
as well as the instruction memory which might not run at an optimum MCU core
frequency. The MCU’s core performance is also linked with tool chains like compilers.
Different compilers generate different codes for the same C code. Hence, the overall
benchmarking should involve the MCU core, memory speed and compilers, which is
not the case with Dhrystone benchmarking [109].

In 1996, Markus Levy had executed a hands-on project intended to address the
ineffectiveness of Dhrystone MIPS as a tool for evaluating embedded processor
performance and for creation of a new set of benchmarks that would provide better
information to aid in the analysis of microprocessors, microcontrollers, and compilers.
In 1997 Markus Levy had proposed The EMCEE idea in a conference where attending
companies included AMD, ARM, DEC, Hitachi, IBM, Intel, LSI Logic, Microchip,
Motorola, National Semiconductor, NEC, Philips, SGS-Thomson, Siemens, Sun,
TEMIC, Texas Instruments, and Toshiba, a number of these which would go on to
become EEMBC’s original members. Six months later, with funding and legal approval
from 12 initial members, EEMBC [110] was founded as a non-profit industry-standard
consortium. Since that time, EEMBC’s membership has expanded to more than 50
members and its benchmark suites have effectively replaced Dhrystone MIPS as the
industry standard for measuring processor, DSP, and compiler performance [109].

4.2.3. EEMBC CoreMark Benchmark
The CoreMark is a simple, yet sophisticated, benchmark that is designed specifically to
test the functionality of a processor core. CoreMark is not system dependent, therefore
it functions the same regardless of the platform (e.g., big/little endian, high-end, or low-
end processor). Running CoreMark produces a single-number score allowing users to
make quick comparisons between processors [107].

CoreMark is comprised of small and easy to understand ANSI C code with a
realistic mixture of read/write operations, integer operations, and control operations.
CoreMark has a total binary size of no more than 16K using gcc on an x86 machine
(this small size makes it more convenient to run using simulation tools). The small size
of CoreMark allows it to easily fit in a processor’s cache. One of the goals of CoreMark
is to make it suitable for testing on a very wide range of processors. Some low-end



121

microcontrollers do not even have caches, let alone large amounts of system
memory [107]. While compilers may find more efficient ways of processing the
workloads contained in CoreMark, the work itself cannot be optimized away.

Furthermore, CoreMark does not use special libraries that can be artificially
manipulated, and it was specifically designed not to make any library calls from within
the timed portion of the benchmark. Therefore, it is not possible for a compiler to
optimize away the CoreMark workload [107]. Coremark contains implementations of
the following algorithms:

e List processing (find and sort)

e Matrix manipulation (common matrix operations)

e State machine (determine if an input stream contains valid numbers)

e CRC (cyclic redundancy check)

The CRC algorithm serves a dual function; it provides a workload commonly seen
in embedded applications and ensures correct operation of the CoreMark benchmark,
essentially providing a self-checking mechanism. Specifically, to verify correct
operation, a 16-bit CRC is performed on the data contained in elements of the linked-
list.

4.2.3.1. Coremark Benchmark Score Reports
Coremark results are reported in the following format:

CoreMark 1.0:N/C/P/M

N = Number of iterations per second with seeds 0,0,0x66, size=2000)

C = Compiler version and flags

P = Parameters such as data and code allocation specifics

M = Type of parallel algorithm execution (if used) and number of contexts

Example: CoreMark 1.0: 128 / GCC 4.1.2 -0O2 -fprofile-use / Heap in TCRAM /
FORK:2

4.2.4. CoreMark for X86
CoreMark is now available to license free of charge on GitHub, we download the
source code by issuing:

$ git clone https://github.com/eembc/coremark
$ make




122

Running the benchmark on my laptop gives the following result:

The task at our hand is to compare some processors of interest versus another. Each
processor has specific architecture and hence a unique ISA. Any algorithm contains
concrete steps that must be performed by a processor.

2K performance run parameters for coremark.

CoreMark Size : 666

Total ticks  : 13076

Total time (secs): 13.076000

Iterations/Sec : 15295.197308

Iterations ~ : 200000

Compiler version : GCC4.8.5 20150623 (Red Hat 4.8.5-28)

Compiler flags :-O2 -DPERFORMANCE_RUN=1 -Irt

Memory location : Please put data memory location here

(e.g. code in flash, data on heap etc)

seedcrc : 0xe9f5

[OJcrclist  : Oxe714

[O]crcmatrix  : Ox1fd7

[O]crcstate  : Ox8e3a

[OJcrcfinal ~ : 0x4983

Correct operation validated. See readme.txt for run and reporting rules.

CoreMark 1.0 : 15295.197308 / GCC4.8.5 20150623 (Red Hat 4.8.5-28)
-02 -DPERFORMANCE_RUN=1 -Irt / Heap

The question here is: “How can we automate the benchmarking of all processors
with their unique ISAs?” One way is to define several complex tasks such as a
1000x1000 matrix multiplication and then for each processor under test we will
implement the algorithm manually and run it. The time duration to get the final answer
can be used as a measurement of processor’s performance.

Another dilemma is how to benchmark a processor which has no C compiler?

4.2.4.1. Benchmarking in Assembly
The benchmarks of basic DSP algorithms usually are written in assembly. The first
reason is that the purpose of benchmarking is to measure the quality of the assembly
instruction set; by nature, the benchmarking should be in assembly language. The
second reason is that most DSP assembly programs are relatively simple and can be
managed by programmers. The third reason is that effectiveness of programs written in
high-level language is very much dependent on the compiler [111].

BDTI (Berkeley Design Technologies Incorporation) always supplies
benchmarks based on hand-written assembly code while EEMBC uses C code. One
method might be to develop a program that can receive a pseudo-code (algorithm) of
well-accepted kernel DSP algorithms shown in Fig. 79 [111] as its input alongside of
ISA and automatically produce the assembly code.



123

Algorithm kernel Descriptions or specifications

Block transfer To transfer a data block from one memory to another memory

256p complex FFT 256-point FFT including all computing, addressing, and
memory access

Single FIR A N-tap FIR filter running one sample

Frame FIR A N-tap FIR filter running K samples

Complex FIR A N-tap FIR filter running one sample complex data

Simple IIR A Biquadrate IR (2nd order IIR) running one sample

LMS Adaptive FIR Least significant square adaptive filter including convergence

control and coefficient adaptation

16-bit/16-bit division A positive 16 bits divided by 16 bits positive data

Vector add Cli] <= Alil + BIil (i is from O to N-1)
Vector window Cli] <= Alil * BIil (i is from O to N-1)
Vector max R <= MAX {Alil} (i is from O to N-1)

FSM Finite state machine (not yet standardized)
DCT 8X8 Discrete cosine transform

Fig. 79: Kernel DSP Algorithms [111].

4.2.5. 256-Point Complex Fast Fourier Transform
To fully understand the FFT we need to brush up our knowledge in some mathematic
fields. The next section will cover the FFT related fundamentals.

4.2.5.1. e number
The e is the base rate of growth shared by all continually growing processes [112]. If a
bacteria splits every 1 hour, then the rate of growth per hour is 2%, where x is the number
of hours passed. In our example the bacteria get doubled every hour so we can replace
2 by (original + 100%), which original number of bacteria is 1:

Equation 10: growth = 2* = (1 + 100%)*

We can substitute 100% by any percentage. If the bacteria triples, we plug 200%.
so, the general formula becomes:
Equation 11: growth = (1 + rate)*

If instead of discrete number of bacteria we switch to a continuous value such a
money, and decide to calculate the grow rate of interest (let us say 100% interest per

hour) we have:
- Attime =0, we have 1$.



124

- After 1 hour, we have 1$ + 100% = 2$. But the problem is that we have omitted
the interest rate during time 0 and 1 hour. Let us calculate the interest rate at the
middle:

- Attime =0, we have 1$.

- After 30 minutes, we have 1$ + (1$ * 100% 2) = 1.5%:

- After 1 hour, we have 1.5$ + (1.5$ * 100% 2) = 2.25% We can see that instead
of 2% we got 2.25%. Let us see what happens we divide one hour by 3:

- Attime =0, we have 1$.

- After 20 minutes, we have 1$ + (1$ * 100% 3) = 1.33$:

- After 40 minutes, we have 1.33$ + (1.33% * 100% 3) = 1.76%:

- After 40 minutes, we have 1.76$ + (1.76$ = 100% 3) = 2.34$:

- This time we got 2.34$ which is higher than all the previous results. Now we
can derive the general formula if we divide the one hour to n:

Assuminga = 1$,b = 1007,

Equation 12:
a+ ab = a(l + b)
a(1 + b)+ [a(1 + b)b] = a(1 + b)(1 + b) = a(1 + b)?
a(l + b)2 + [a(1 + b)2b] = a(1l + b)2 (1 + b) = a(1 + b)3

The emerging pattern bring us to the general formula:
Equation 13: growth = (1 + %)”

Taking the limit of Eq. 6.4 when n — co:

n

1
lim (1+H) = 2.71828 = e

n—»,oo

4.2.5.2. Taylor series
Taylor series is a representation of a function as an infinite sum of terms that are
calculated from the values of the function’s derivatives at a single point. If the Taylor
series is centered at zero, then that series is also called a Maclaurin series.

The Taylor series of a real or complex-valued function f(x) that is infinitely
differentiable at a real or complex number a is the power series:

_ fl@, 2, f"@, 3., .
(x a)+—2 (x—a) +—3! (x—a)’ +

!

. _ f' (@
Equation 14: f(a) + ua
4.2.5.3. Euler’s Formula
The most important characteristic of exponential function is that the value of its
derivative at any point equals to the value of function itself. We will exploit this and

will write down the Maclaurin series for e'*:



125

Equation 15:
o ie® i2e® " i3e0 5
et =e +TX+TX +Tx + .-
x?  i3x3
=1+lx+a+T+"' (a)
cos(0 —sin(0 —cos(0
sin(x) = sin(0) + © x + —sin© x? + —cos(0) x3
1! 2! 3!
B x3 x5
=X —a + ? - .. (b)
i3x3  i%x®
isin(x) = ix — T + = "
—sin(0 —cos(0 sin(0
cos(x) = cos(0) + |( ) 2'( ) x? 3(| ) )3 + -
x? x* .
R TIAT ©

Adding Equation 15: with Equation 15 (c) with we get:

o 2 X4 . i3X3 i5X5
cos(x) + isin(x) = 1 — 51 + A —...+ix — T -|-T -

Which is equal to Equation 15: (a):

e = cos(x) + isin(x)
Which is known as Euler’s formula.
We can think of e* as a mere notion for points in a complex plane when x is the
angle.
A periodic circular motion on complex plane can be described in exponential
form: Ae/*t*9 which A is the amplitude, w is the fundamental frequency, and 6 is
phase shift. Replacing the w with 2rtf we get:

AejZT[f t+6

4.2.5.4. Fourier Transform
What does the Fourier Transform do? Given a smoothie, it finds the recipe [113].

The Fourier transform (FT) decomposes a function of time (a signal) into the
frequencies that make it up. The Fourier transform of the function f is traditionally
denoted by adding a circumflex: £. For integrable function f : R — C, and any real
number &:

ﬂa=f?mﬂmm

o)



126

To understand the above formula:

— 0o

f®) = f f(t) a-j2mit dt
frequency function ®___ value of function at time t contribution to point t from all frequencies §
sumup

4.2.5.5. Fast Fourier Transform
The Fast Fourier Transform (FFT) is an algorithm that samples a signal over a period
(or space) and divides it into its frequency components. An FFT algorithm computes
the discrete Fourier transform (DFT) of a sequence, or its inverse (IFFT). DFT, in
addition to lying at the heart of signal processing, have applications in data compression
and multiplying large polynomials and integers [114].

Fast Fourier transforms are widely used for many applications in engineering,
science, and mathematics. In 1994, Gilbert Strang described the FFT as “the most
important numerical algorithm of our lifetime” [115].

FFT can be used to reduce the time to multiply polynomials to O(NlogN), other
notable applications are compression techniques used to encode digital video and audio
information, including MP3 files [114].

Also, FFT and IFFT are primary calculations in pulse compression, and the modern
real-time radar systems [116].

Computing the DFT of N points in the naive way, using the definition, takes O (N?)
arithmetical operations, while an FFT can compute the same DFT in only O(NlogN)
operations.

4.2.5.5.1. Discrete Fourier Transform

4.2.55.1.1. Radian
One radian is 57.3 degrees; 3.14 radian is 180 degrees or 7.

Let x,,...., xy_, be complex numbers. The DFT is defined by the formula:
N-1
_j2mkn
Xe= ) xpe” N K=0,..,N—1

=3
mOo

S
&=
Il

2mkn . (2mkn
xn[cos< N )—]sm( N )]K=O,...,N—1

S
o



127

Evaluating this definition directly requires O(N?) operations: there are N outputs
Xy, and each output requires a sum of N terms. An FFT is any method to compute the
same results in O(NlogN) operations. All known FFT algorithms require 86(NlogN)
operations, although there is no known proof that a lower complexity score is
impossible [117]. The Discrete Fourier Transform (DFT) can be implemented in C/C++
as shown in Listing 6 and Listing 5.

Listing 6: func_gen.cpp - Rectangular Pulse Generator with Amplitude set to 5.

#include <iostream>
#include <cmath>
using namespace std;

#define PI 3.14159265

int main () {

for (float £ = 0; £ < ; £ =£f + ) {
// sin (x), x must be in radian.
if (f >= && £ <= )
cout << f << " " L << endl;
else
cout < f <« " " K << endl;
}
return

}

Listing 5: fft.cpp - DFT implementation in C++11. (1)

#include <iostream>
#include <fstream>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <complex>
#include <chrono>

using namespace std;
using namespace std::chrono;

#define PI 3.14159265
void center zero (vector<complex <double> > &vector_ in);
int main () {

// Read point from file in put into 'data in'

// vector<complex <double> > data in;

vector<double> data in;

ifstream inFile;
inFile.open("orig.dat");




Listing 5: continues.

128

}

if ('inFile) {

cerr << "Unable to open file orig.dat" << endl;
exit (1) ; // call system to stop

}

// reading x, y values from input file
double x, y;
while (inFile >> x >> vy ) {
// Read two values: (x + jy)
data_in.push back(y);
}

high resolution clock::time point tl = high resolution clock::now();

vector<double> data_out_real;
vector<double> data out imag;

int N = data_in.size();

cout << "N = " << N << endl;

for (int k = 0; k <= N - 1; k++) {
double X k real = 0;

double X k imag ;

for(int n = 0; n <= N - 1; n++) {

double theta = * PI * k¥ * n / N; // theta must be in radian
double real = data in[n] * cos(theta);

double imag = -data in[n] * sin(theta);;

X k real += real;

X k imag += imag;

}

data out real.push back(X k real);
data out imag.push back(X k imag);
}

high resolution_clock::time point t2 = high resolution_clock::now() ;
auto duration = duration cast<microseconds>( t2 - tl ).count();
cout << "duration = "<< duration << endl;

ofstream outFile;

ofstream out2File;

outFile.open ("out.dat", ios::out);
out2File.open ("out2.dat'", ios::out);

vector<complex <double> > data out;

for(int n = 0; n <= N - 1; n++) {

data out.push back(complex <double> (data out real[n], data out imag[n]));
}

center zero(data out);

int n = 0;

for (vector<complex <double> >::iterator it = data out.begin();
it '= data _out.end(); it++) {

complex <double> t = *it;

out2File << '"'n = " << n << " Re = " << t.real() << " Im ="
<< t.imag() << endl;
// outFile << n << " " <<
// sqgrt (pow (data out real[n], 2) + pow(data out imag[n],2)) << endl;
// outFile << t.real() << " " << t.imag() << endl;
outFile << n << " " << abs(t) << endl;
n++;

}

inFile.close();
outFile.close();

return 0O;




129

Listing 9: fft.cpp - DFT implementation in C++11. (3)

void center zero (vector<complex <double> > &vector in) {
int N = vector in.size();
cout << "N " << N << endl;

int half n =N /
int half n2 =N / 2;
cout << "half n " << half n << endl;

// check if N is odd or even

if(N % == 0) {
// Even

cout << "Even" << endl;

for (int n = 0; n < half n2; n++) {
complex <double> tmp = vector in[n];
vector in[n] = vector in[half n];
vector_in[half n] = tmp;
half n++;
}

}

else {

// 0Odd

cout << "Odd" << endl;

complex <double> tmp2 = vector in[half n];

for (int n = 0; n < half n2; n++) {
complex <double> tmp = vector in[n];
vector_in[n] = vector in[half n + 1];
vector_in[half n] = tmp;
half n++;
}

vector in[N - 1] = tmp2;

}
}

Listing 8: perform_fft.m - Performs FFT for 1000 times

function fft result = perform fft(func)
a = 0;

while (a < )

fft result = fft (func);

a=a+ 1;

end

end

Listing 7: test_fft.m: Measures FFT in Matlab.

f = zeros(1, )

f£( : ) = 55

r = @() perform fft(f); % handle to function
func time = timeit(r);

The Listing 8 and Listing 7 shows the code for performing FFT in Matlab.
Running the FFT code listed above on “Intel(R) Core(TM) i7-4510U CPU @
2.00GHz” gives the following performance result:



130

Table 11: DFT Implementation Performance Comparison.

Software Duration
C++11 (DFT) 129739 us
Matlab (FFT) 5.551 us
C++11 (FFT Cooley-Tukey) 4.588 us
FFTW 0.843 us

Table 11 shows the measure time duration when DFT is performed in
C++11(standard implementation) versus Matlab versus C++11 (Cooley-Tukey
implementation) versus FFTW [118] which is a C subroutine library for computing the
discrete Fourier transform (DFT).

4.2.5.6. 256-Point Complex Fast Fourier Transform
Highly efficient computer algorithms for estimating Discrete Fourier Transforms have
been developed since the mid-60’s. These are known as Fast Fourier Transform (FFT)
algorithms, and they rely on the fact that the standard DFT involves a lot of redundant
calculations [119].

Equation 16:

N-1

_Jj2mkn
X, = ZXne N ,K=0,.,N—-1
n=0
. _jzmkn 2 :
Replacing e~ ~ with W* in Equation 16:
Equation 17:
N-1
Wan Z x,Wi¥* K =0,..,N—1

n=0

We can write Equation 17 in matrix form:

1 1 1 1 1 7
F(0) L ow owr owr . ow|[ SO
F(l) 1 WZ W4- W6 WN—Z f(l)
F(Z) = 1 W3 W6 W9 WN—3 f(Z)
FIN = DI [} vt yve v g JEN =D

It is easy to realize that the same values of W** are calculated many times as the
computation proceeds. First, the integer product nk repeats for different combinations
of n and k; second, W is a periodic function with only distinct values.

A radix-2 decimation-in-time (DIT) FFT is the simplest and most common form
of the Cooley-Tukey algorithm, although highly optimized Cooley-Tukey
implementations typically use other forms of the algorithm as described below. Radix-



131

2 DIT divides a DFT of size N into two interleaved DFTs (hence the name “radix-2")
of size N /2 with each recursive stage [120].

The Radix-2 DIT algorithm rearranges the DFT of the function x,, into two parts:
a sum over the even-numbered indices n = 2m and a sum over the odd-numbered
indicesn = 2m + 1,

From Equation 16 we get:

N_ N_,
2 2
_j2mk(2m) _j2mk(Zm+1)
X = Z Xom€ N + Xom+1€ N , K=0,.,N—-1
m=0 m=0
N N
>-1 _j2mkm 71 _Jj2mkm
N _j2mk N
= Z Xome 2 r.él /N Xom+1€ 2
m=0 m=0
DFT of even indexed part of x, DFT of odd indexed part of x;,
j2mk

= Ek+ e_TOR

The complex exponential is periodic, therefore:

j2mk

Xk=Ek+e N Ok
j2nk

X N=Ek—€ N Ok

k+7

This result, expressing the DFT of length N recursively in terms of two DFTs of
size N /2, is the core of the radix-2 DIT fast Fourier transform. The algorithm gains its
speed by re-using the results of intermediate computations to compute multiple DFT
output.

A 256-point DFT computes a sequence x,, of 256 complex-valued numbers given
another sequence of data x; of length 256 according to the formula [121]:

255
_Jj2mkn
Xy = ane 26 , K=0,..,N—1

n=0

The normal calculation of X, is:

n=0 n=0

255

_j2mn
X1 = Z Xnp€ 256

n=0
255

_j2m(2)n
X2 = Z Xn€ 256

n=0




132

j2mkn

To simplify the notation, the complex-valued phase factor e 2ss is usually
defined as Wjt, where:
21

Wyse = cos(ﬁ> — jsin(

2T
256

The FFT algorithms take advantage of the symmetry and periodicity properties of
Wk to greatly reduce the number of calculations that the DFT requires.

In an FFT implementation the real and imaginary components of W} are called
twiddle factors [121]. The basis of the FFT is that a DFT can be divided into smaller
DFTs.

4.2.5.7. Cooley-Turkey Algorithm
In this section we briefly present the Cooley-Turkey Algorithm [122].

Equation 18:
N-1
_j2mkn
X, = xR /[N N, K=0..,N-1
n=0_
2mi
W= eN
N-1
Xe= ) x,Wwk K=0,.,N—-1
n=0

Suppose sequence N is composite: N = r1.r2. Now let the indices in Equation
18 be expressed:

k = k1r1 + kOkO = 0,1,...,r1 — 1,k1 = 0,1,...,r2 — 1
n =nlr2 + nOn0 = 0,1,...,r2 — 1,n1 =0,1,...,11 — 1

Then one can write:

— E knlr2y47kno
XnO,nl - z xnl,nOW w

kO k1
Since:
Wknlrz — Wk0n1r2
Equation 19: Xnont = Ynt Xn1noWkOM1T2

The result then can be written:

Equation 20: Xnoni = Lko xlkaW(ka’kO)no



133

There are N elements in the array x; each requiring r; operations, giving a total
number of N,. to obtain x;. Similarly, it takes N, to calculate X from x,. Therefore,
this two-step algorithm, given by Equation 19 and Equation 20 requires a total of T =
N(r; + r,) Operations.

Instead of two-step if we have an m-step algorithm:

T =Ny +ry+ -+ r1,), N=r1.17 ...,y
if all r; are equal to r, then:
m = log, N

And total number of operations is:
T(r) = rNlog, N

4.2.5.8. FFT Computation Literature Review
In 1998 Matteo and Johnson developed a production-quality library called FFTW. They
used dynamic programming algorithm to determine a plan at run time to perform the
FFT by selecting a composition of codelets. Codelets are written in in the Cam1 Light
dialect of the functional language ML [118].

4.2.5.9. PicoBlaze FFT Benchmark
First, we set the USB to serial adapter BAUD rate in Linux:

$ stty -F /dev/ttyUSBO0 9600 raw

The ‘en 16 x baud’ signal must therefore have a pulse rate of 16 x 9600 = 153,600
pulses per second. With a 125 MHz clock this equates one enable pulse every
125,000,000 / 153,600 = 814 clock cycles. ZYBO board connects a 50MHz external
clock to PS CLK pin of xc7z010-1clg400c.

We can drive the clock from PS. But ZYBO also provides a 125MHz external clock
directly to pin L16 of the PL. This will allow us to us he PL completely independent of
PS.

e Clock Management Tiles (CMT) provides clock frequency synthesis, deskew,

and jitter filtering functionality.

e Mixed-Mode Clock Manager (MMCM) Each CMT contains one mixed-mode

clock manager (MMCM) and one phase-locked loop (PLL), reside in the CMT
column next to the I/O column.

The PL of the Zyng-Z7010 also includes twvo MMCM’s and two PLL’s that can be
used to generate clocks with precise frequencies and phase relationships.

4.2.5.10. 8-bit Processor Mathematics
For performing FFT with double precision format we need to use 64-bit IEEE-754
floating-point. Next section will discuss this standard in detail and will provide
algorithms which can be implemented on an 8-bit machine.



134

4.3. Result
Three crucial result can be derived from the work presented in this section:
e Laser processor performance evaluation fails if there is no compiler
infrastructure to support the architecture.
e The most important numerical algorithm is FFT and any improvement in FFT
computation has significant weight.
e The result presented in Table 11 shows that different implementation of same
algorithm on same machine can produce a huge gap in performance evaluation
result. A result gap of 129739us downto 0.843us (FFTW) was obtained.



135

5. Development of an Assembler for Laser Processor based on
LLVM Infrastructure

5.1. Introduction
In Section 2.4 the basic LLVM terminologies were discussed. In this chapter the details
of developing an assembler for 16-bit integer VHDL-based Laser processor is provided.

5.2. LLVM Backend Development
Below the details of how to start writing a backend in LLVM is documented”
1. Create a directory under lib/Target.
2. Set LLVM TARGET DEFINITIONS in CMakeL.ists.txt
3. Make a subclass of TargetMachine. To use LLVM’s target independent code
generator: create a subclass of LLVMTargetMachine: LaserTargetMachine.h,
LaserTargetMachine.cpp

5.2.1. Branch Implementation
Table 12 shows how Laser branch operation can be implemented in LLVM backend.

Table 12: Laser Branch implementation in LLVM Backend

Sign Cond. Code | Expression | Instruction Sequence
SETEQ L=R CMP L, R; JZ Dest;
SETNE L6=R CMP L, R; INZ Dest;
Signed SETLT L<R IMD RO, 0x80; XOR R1, L, RO; XOR R2, R, RO; CMP R1,
R2; JC DEST;
SETGT L>R IMD RO, 0x80; XOR R1, L, RO; XOR R2, R, RO; CMP R2,
R1; JC DEST;
SETLE L<R IMD RO, 0x80; XOR R1, L, RO; XOR R2, R, RO; CMP R1,
R2; JNC DEST;
SETGE L>R IMD RO, 0x80; XOR R1, L, RO; XOR R2, R, RO; CMP R2,
R1; JNC DEST;
Unsigned SETULT L<R IMD RO, 0x80; CMP R1, R2; JC DEST;
SETUGT L>R IMD RO, 0x80; CMP R2, R1; JC DEST;
SETULE L<R IMD RO, 0x80; CMP R1, R2; JNC DEST,;
SETUGE L>R IMD RO, 0x80; CMP R2, R1; JNC DEST;

5.2.2. Writing the LLVM Backend

5.2.2.1. Rapid Development of an Assembler
Here we discuss the process to develop an assembler for a new target, in our case the
Laser. First, we need to get the LLVM source code. This project started when LLVM
release was at 3.9.0 after one year the LLVM version reached 4.0.1. (Currently the latest
version is 5.0.1) Because of the fast pace of releases we should use SVN to get access
to the latest source code, instead of downloading the source tar files:



136

$ cd /home/esi/workspace/src/llvm_svn

$ svn co https://user@llvm.org/svn/llvm-project/llvm/trunk llvm
$ cd llvm/tools

$ git clone http://llvm.org/git/clang.git

Then let us build the original LLVM for X86 and SPARC:

$ cmake3 -G "Ninja" -DCMAKE_BUILD_TYPE="Debug"
-DCMAKE_EXPORT_COMPILE_COMMANDS=0ON -
DBUILD SHARED LIBS=ON
-DLLVM_TARGETS_TO_BUILD="X86;Sparc"
/home/esi/workspace/src/llvm_svn/llvm
$ ninja
$ ninja install

The build should finish successfully. The Laser processor is a 16-bit machine. We
need to tell Clang to produce 16-bit LLVVM IR code for the Laser target machine, next
section describes the details of the process.

5.2.2.2. Add new Machine Target in Clang
1. Create file: LLVM ROOT/tools/clang/lib/Basic/Targets/Laser.h (Listing 10)
2. Create file: LLVM ROOT/tools/clang/lib/Basic/Targets/Laser.cpp (Listing 11)
3. Edit LLVM ROOT/tools/clang/lib/Basic/Targets.cpp (Listing 13)
4. Addto LLVM ROOT/tools/clang/lib/Basic/CMakeL.ists.txt: (Listing 12)



137

Listing 10: Laser.h

//===--- Laser.h - Declare Laser target feature support --------- *— CH+ —*-===//
//

// The LLVM Compiler Infrastructure

//

// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.

#ifndef LLVM CLANG LIB BASIC TARGETS LASER H
#define LLVM CLANG LIB BASIC TARGETS LASER H

#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/TargetOptions.h"
#include "1llvm/ADT/Triple.h"

#include "1llvm/Support/Compiler.h"

namespace clang {
namespace targets {
class LLVM_LIBRARY VISIBILITY LaserTargetInfo : public TargetInfo {
// Class for Laser (32-bit).
// The CPU profiles supported by the Laser Backend
enum CPUKind {
GENERAL
} CPU;

static const TargetInfo::GCCRegAlias GCCRegAliases|[];
static const char *const GCCRegNames][];

public:
LaserTargetInfo(const 1llvm::Triple &Triple, const TargetOptions &)
TargetInfo(Triple) {
// Description string has to be kept in sync with Backend.
resetDatalayout ("e" // Little endian
"-m:e" // ELF name manging
"-p:16:16" // 16 bit pointers, 16 bit aligned
"-il6:16" // 16 bit integers, 16 bit aligned
"-a:0:16" // 16 bit alignment of objects of aggregate

// type
"-nle" // 32 bit native integer width
"-Sle" // 64 bit natural stack alignment

)

// Setting RegParmMax equal to what
// mregparm was set to in the old toolchain
ReaParmMax = 4:




138

// Setting RegParmMax equal to what
// mregparm was set to in the old toolchain
RegParmMax = 4;

// Set the default CPU to GENERAL
CPU = GENERAL;

IntWidth 16;
IntAlign 57

}

void getTargetDefines (const LangOptions &Opts,
MacroBuilder &Builder) const override;

bool isValidCPUName (StringRef Name) const override;
bool setCPU(const std::string &Name) override;

bool hasFeature(StringRef Feature) const override;
ArrayRef<const char *> getGCCRegNames () const override;

BuiltinValListKind getBuiltinValListKind() const override {
return TargetInfo::VoidPtrBuiltinValList;
}

ArrayRef<Builtin::Info> getTargetBuiltins()
const override { return None; }

bool validateAsmConstraint (const char *&Name,
TargetInfo::ConstraintInfo &info) const override {
return false;

}
const char *getClobbers() const override { return ""; }

ArrayRef<TargetInfo::GCCRegAlias>
LaserTargetInfo::getGCCRegAliases () const {

return llvm::makeArrayRef (GCCRegAliases) ;
}

}i
} // namespace targets
} // namespace clang

#endif // LLVM CLANG LIB BASIC TARGETS LASER H

Listing 11: Laser.cpp

//===--- Laser.cpp - Implement Laser target feature support ===//
//

// The LLVM Compiler Infrastructure

//

// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.

//

e —==//

//

#include "Laser.h"
#include "clang/Basic/MacroBuilder.h"
#include "1lvm/ADT/StringSwitch.h"




139

using namespace clang;
using namespace clang::targets;

const char *const LaserTargetInfo::GCCRegNames[] = {
MEQU,  MplM,  Mypm, Mp3nC ompgn o owpsm Cowpgn owpgw o npgme "

ro", "r10", "rll", "rl2", "r13", "rl4", "rl5"};

ArrayRef<const char *> LaserTargetInfo::getGCCRegNames () const
return llvm::makeArrayRef (GCCRegNames) ;

-~

}

const TargetInfo::GCCRegAlias LaserTargetInfo::GCCRegAliases|[]
{{"pc"}, "r0"}, // PC register cannot be accessed in
// Laser processor directly.

I
-~

{{"sp"}, "1},

{{"p"}, "eovy,

{{"rv"}, "ravy,

{{"rri"y, "rovy,

{{"rr2"}, "ri0"},

{{"rca™}, "rilm"y},
};

ArrayRef<TargetInfo::GCCRegAlias>
LaserTargetInfo::getGCCRegAliases () const {

return llvm::makeArrayRef (GCCRegAliases) ;
}

bool LaserTargetInfo::isValidCPUName (StringRef Name) const {
return llvm::StringSwitch<bool>

(Name) .Case("v11", true).Default(false);
}

bool LaserTargetInfo::isValidCPUName (StringRef Name) const {
return llvm::StringSwitch<bool>
(Name) .Case("generic", true).Default(false);

}

bool LaserTargetInfo::setCPU(const std::string &Name) {
CPU = 1llvm::StringSwitch<CPUKind>(Name)
.Case("general", GENERAL)
.Default (GENERAL) ;

return CPU != GENERAL;
}

bool LaserTargetInfo::hasFeature(StringRef Feature) const {
return llvm::StringSwitch<bool>
(Feature) .Case("laser™, true).Default (false);

}

void LaserTargetInfo::getTargetDefines (const LangOptions &Opts,
MacroBuilder &Builder) const {

// Define _ laser  when building for target laser.
Builder.defineMacro(" laser ");

// Set define for the CPU specified.
switch (CPU) {
case GENERAL:
Builder.defineMacro(" LASER GENRAL ");
break;
default:
1llvm_unreachable("Unhandled target CPU");




Listing 13: Targets.cpp

140

#include "Targets/Lanai.h"

#include "Targets/Laser.h"

case llvm::Triple::renderscript32:
return new LinuxTargetInfo<RenderScript32TargetInfo>(Triple, Opts);
case llvm::Triple::renderscript64:
return new LinuxTargetInfo<RenderScript64TargetInfo>(Triple, Opts);

case llvm::Triple::laser:
return new LaserTargetInfo(Triple, Opts);

Listing 12: CMakeLists.txt

add clang library(clangBasic
Attributes.cpp
Builtins.cpp

Targets/Lanai.cpp
Targets/Laser.cpp

At this point the clang command can produce 16-bit LLVVM code:

$ clang --target=laser -S -emit-llvm main.c -o main.l|

5.2.3. Target Registration

To implement the target registration in LLVVM backend, we must follow the
following steps that needs editing the files in LLVM ROOT directory:

1. In LLVM ROOQOT/cmake/config-ix.cmake : Add

elseif (LLVM_NATIVE_ARCH MATCHES "wasm64")
set(LLVM_NATIVE_ARCH WebAssembly)

elseif (LLVM_NATIVE_ARCH MATCHES "laser")
set(LLVM_NATIVE_ARCH Laser)

2. In LLVM ROOT/lib/Target/LLVMBuild.txt : Add Laser to [common]
subdirectories =
3. In LLVM ROOT/include/llvm/ADT/Triple.h:

[common] subdirectories =

Laser




141

enum ArchType {
UnknownArch,

laser, // Laser: Laser 16-bit

4. LLVM ROOT/include/livm/MC/MCExpr.h

/I We don't need this
enum VariantKind {

VK_LASER LO,
VK_LASER_HI,

5. LLVM ROOT/include/llvm/Object/ELFODbjectFile.h

StringRef ELFObjectFile<ELFT>::getFileFormatName() const {
bool IsLittleEndian = ELFT::TargetEndianness == support::little;
switch (EF.getHeader()->e_ident[ELF::El_CLASS]) {
case ELF::ELFCLASS32:
switch (EF.getHeader()->e_machine) {
case ELF::EM_386:
return "ELF32-i386";

case ELF::EM_LASER:
return "ELF32-laser";

template <class ELFT>
unsigned ELFObjectFile<ELFT>::getArch() const {
bool IsLittleEndian = ELFT::TargetEndianness == support::little;
switch (EF.getHeader()->e_machine) {
case ELF::EM_386:

case ELF::EM_LASER:
return Triple::laser;




142

6. LLVM ROOT/include/llvm/Support/ELF.h

enum {
EM_NONE =0, // No machine
EM LASER =248, // Laser

/I Laser Specific e_flags
enum {
/I Don't reorder instructions
EF_LASER_NOREORDER = 0x00000001,
/I Position independent code
EF_LASER_PIC = 0x00000002,
/I Mask for applying EF_LASER_ARCH_ variant
EF_LASER_ARCH = 0xf0000000

¥
/I Add this in ELF.h before "#undef ELF_RELOC" line:

/I ELF Relocation types for Laser
enum {
#include "ELFRelocs/Laser.def"

}

7. LLVM ROOT/lib/MC/MCELFStreamer.cpp

void MCELFStreamer::fixSymbolsInTLSFixups(const MCExpr *expr) {
switch (expr->getKind()) {

case MCExpr::SymbolRef: {
const MCSymbolRefExpr &symRef = *cast<MCSymbolRefExpr>(expr);
switch (symRef.getKind()) {
default:
return;
case MCSymbolRefExpr::VK_GOTTPOFF:

case MCSymbolRefExpr::VK_LASER_HI:
case MCSymbolRefExpr::VK_LASER_LO:

.t;.reak;

8. LLVM ROOT/Iib/MC/MCEXxpr.cpp

StringRef MCSymbolRefExpr::getVariantKindName(VariantKind Kind) {
switch (Kind) {
case VK_Invalid: return "<<invalid>>";

case VK_LASER_HI: return "LASER_HI";
case VK_LASER_LO: return "LASER_LO";




9. LLVM ROOT/Iib/Object/ELF.cpp

143

StringRef getELFRelocationTypeName(uint32_t Machine, uint32_t Type) {
switch (Machine) {
case ELF::EM_X86_64:

case ELF::EM_LASER:
switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/Laser.def"
default:
break;
}

break;

10. LLVM ROOT/include/llvm/Support/ELFRelocs/Laser.def
Changed to :LLVM

#ifndef ELF_RELOC
#error "ELF_RELOC must be defined"
#endif

ELF_RELOC(R_LASER_NONE,  0)
ELF_RELOC(R_LASER CALL16, 1)
ELF_RELOC(R_LASER PCl11, 2

ROOQOT//include/llvm/BinaryFormat/ELFRelocs/Laser.def

11. llvm/include/llvm/BinaryFormat/ELF.h : Needed only for LLVM 4.0.1 and
5.0.1

/I ELF Relocation type for Lanai.
enum {

#include "ELFRelocs/Lanai.def"
¥

/I ELF Relocation type for Laser.
enum {
#include "ELFRelocs/Laser.def"

+

/I ELF Relocation types for RISC-V
enum {
#include "ELFRelocs/RISCV.def"

+




12. LLVM ROOT/lib/Support/Triple.cpp

144

const char *Triple::getArchTypeName(ArchType Kind) {
switch (Kind) {
case UnknownArch:
return "unknown";

case laser:
return "laser";

coﬁlét char *Triple::getArchTypePrefix(ArchType Kind) {
switch (Kind) {

case laser:
return "laser";

Triple::ArchType Triple::getArchTypeForLLVMName(StringRef Name) {
Triple::ArchType BPFArch(parseBPFArch(Name));
return StringSwitch<Triple::ArchType>(Name)
.Case("aarch64", aarch64)

.Case("laser", laser)

static Triple::ArchType parseArch(StringRef ArchName) {
auto AT = StringSwitch<Triple::ArchType>(ArchName)

.Cases("i386", "i486", "i586", "i686", Triple::x86)

.Case("laser", Triple::laser)

static Triple::ObjectFormatType getDefaultFormat(const Triple &T) {
switch (T.getArch()) {
case Triple::UnknownArch:

case Triple::laser:

return Triple::ELF;

sta.t.i.c unsigned getArchPointerBitWidth(llvm:: Triple::ArchType Arch) {
switch (Arch) {

case llvm::Triple::laser:
return 16;

Triple Triple::get32BitArchVariant() const {
Triple T(*this);
switch (getArch()) {
case Triple::UnknownArch:

case Triple::laser:
T.setArch(UnknownArch);
break;




145

Triple Triple::get64BitArchVariant() const {
Triple T(*this);
switch (getArch()) {

case Triple::laser:

.‘;I'.setArch(UnknownArch);
break;

Triple Triple::getBigEndianArchVariant() const {
Triple T(*this);
/I Already big endian.
if (tisLittleEndian())
return T,
switch (getArch()) {

case Triple::laser:

";I'.setArch(UnknownArch);
break;

* we don't need this
Triple Triple::getLittleEndianArchVariant() const {
Triple T(*this);
if (isLittleEndian())
return T,

switch (getArch()) {

case Triple::laser:  T.setArch(Triple::laser); break;

* we don't need this
bool Triple::isLittleEndian() const {
switch (getArch()) {

case Triple::laser:

13. LLVM ROOT/CMakeL.ists.txt

set(LLVM_ALL_TARGETS
AArch64

AMDGPU

ARM

Laser

)

5.2.3.1. Minimum Backend Bare-bone Files
The minimum bare bone files to support an assembler are listed below. First, create
folder ‘Laser’ under LLVM ROOT/lib/Target/ and then:
e LaserTargetMachine.cpp
e LaserTargetMachine.h



146

LaserInstrFormats.td
LaserInstrinfo.td
LaserRegisterInfo.td
Laser.td
AsmParser/LaserAsmParser.cpp
LaserTargetObjectFile.cpp
LaserTargetObjectFile.h
We also need to current the following files under ’Laser’ directory:
AsmParser/LaserAsmParser.cpp : Inline Assembly support
InstPrinter/LaserInstPrinter .cpp : .s file Laser assembly language printer
InstPrinter/LaserInstPrinter.h
MCTargetDesc:
o LaserAsmBackend.cpp : ELF object file .obj creation

o LaserAsmBackend.h

o LaserBaselnfo.h : ELF object file .obj creation

o LaserELFObjectWriter.cpp: ELF object file .obj creation

o LaserFixupKinds.h : ELF object file .obj creation

o LaserMCAsminfo.cpp : ELF object file .obj creation

o LaserMCAsmInfo.h — LaserMCCodeEmitter.cpp : ELF object file
.0bj creation

o LaserMCCodeEmitter.h

o LaserMCEXxpr.cpp

o LaserMCExpr.h

o LaserMCTargetDesc.cpp : Register Backend modules

o LaserMCTargetDesc.h

o LaserTargetStreamer.cpp : ELF object file .obj creation
TargetInfo/LaserTargetInfo.cpp : Just register target ’laser’
CMakeL.ists.txt
LaserAsm.td
LaserCallingConv.td
LaserCondCode.h
LaserFrameLowering.cpp
LaserFrameLowering.h
Laser.h
LaserInstrFormats.td
LaserInstrinfo.cpp
LaserInstrinfo.h
LaserInstrinfo.td
LaserlSeIDAGToDAG.cpp
LaserISelLowering.cpp
LaserISelLowering.h
LaserMachineFunctioninfo.cpp
LaserMachineFunctioninfo.h
LaserOther.td
LaserRegisterInfo.cpp
LaserRegisterinfoGPROutForAsm.td



147

LaserRegisterinfoGPROutForOther.td
LaserRegisterInfo.h
LaserRegisterInfo.td
LaserSchedule.td
LaserSubtarget.cpp
LaserSubtarget.h
LaserTargetMachine.cpp
LaserTargetMachine.h
LaserTargetObjectFile.cpp
LaserTargetObjectFile.h
LaserTargetStreamer.h
e Laser.td
e LLVMBuild.txt
To create the master .td file: new file at LLVM ROOT/lib/Target/Laser/Laser.td
from Laser.td we include:
1. LaserRegisterinfo.td
2. LaserInstrinfo.td which includes LaserInstrFormats.td
3. LaserSchedule.td
We also need to create the following files:
Laser.h
LaserTargetMachine.cpp (almost empty)
LaserTargetMachine.h (empty)
MCTargetDesc/LaserMCTargetDesc.cpp
MCTargetDesc/LaserMCTargetDesc.h
Targetinfo/LaserTargetInfo.cpp
Add thls point LLVM can be rebuilt, and it should be successful. To rebuild a
build directory is created and then the following command is issued:

C”.U".b.w!\’!*

$cmake -G "Unix Makefiles" DLLVM_TARGETS_TO_BUILD="Laser;Sparc;X86"
-DBUILD_SHARED_LIBS=ON -DLLVM_OPTIMIZED_TABLEGEN=ON
/home/esi/extra_space/src/llvmO04/llvm

$make

Then the main.c is compiled using Clang:

$clang -S -emit-llvm main.c -o main.ll
$lic -march laserel -mcpu=generic -debug-pass=Structure main.ll

The file structure of backend is listed below:
1. LLVM ROOT/lib/Target/Laser/LaserTargetObjectFile.h ,
LaserTargetObjectFile.cpp
2. LLVM ROOT/lib/Target/Laser/LaserTargetMachine.h,
LaserTargetMachine.cpp
3. LLVM ROOT/lib/Target/Laser/Laser.td to include LaserCallingConv.td
4. LLVM ROOT/lib/Target/Laser/LaserCallingConv.td



9.

10.

148

LLVM ROOT/lib/Target/Laser/LaserFrameLowering.h ,
LaserFrameLowering.cpp

LLVM ROOT/lib/Target/Laser/LaserInstrinfo.h , LaserInstrinfo.cpp
LLVM ROOT/lib/Target/Laser/Laser|SelLowering.h ,
LaserlSelLowering.cpp

LLVM ROOT/lib/Target/Laser/LaserMachineFunctioninfo.h ,
LaserMachineFunctioninfo.cpp

LLVM ROOT/lib/Target/Laser/LaserSubtarget.h , LaserSubtarget.cpp
LLVM ROOT/lib/Target/Laser/LaserRegisterinfo.h ,
LaserRegisterInfo.cpp

At this point a built on the backend can be issued, which results in getting the error
message “MCAsmlInfo not initialized.”

Next is to add AsmPrinter:

1.

2.
3.

4.

5.

6.
7

LLVM ROOT/lib/Target/Laser/InstPrinter/LaserInstPrinter.h,
LaserInstPrinter.cpp

LLVM ROOT/lib/Target/Laser/LaserlInstrinfo.td

LLVM ROOT/lib/Target/Laser/LaserMCInstLower.h,
LaserMClInstLower.cpp

LLVM ROOT/lib/Target/Laser/MCTargetDesc/LaserMCAsmInfo.h,
LaserMCAsmInfo.cpp

LLVM ROOT/lib/Target/Laser/MCTargetDesc/LaserMCTargetDesc.h,
LaserMCTargetDesc.cpp

LLVM ROOT/lib/Target/Laser/LaserAsmPrinter.h, LaserAsmPrinter.cpp
LLVM ROOT/lib/Target/Laser/LaserlSelLowering.cpp

At this point the ASM Printer is implemented, and build is successful, but if the
llc command is run the following error:
“llc: target does not support generation of this file type!” will be generated.
The CPUO tutorial page 128 is reached now.

Next is to add LaserDAGToDAGISel class:

1.
2.
3.

No ok

LLVM ROOT/lib/Target/Laser/LaserInstrinfo.td : Define the instructions
LLVM ROOT/lib/Target/Laser/LaserTargetMachine.cpp

LLVM ROOT/lib/Target/LaserCpu0ISeIDAGToDAG.h,
LaserlSeIDAGToDAG.cpp

LLVM ROOT/lib/Target/Laser/LaserInstrinfo.td
src/include/llvm/Target/TargetSelection.td
src/include/llvm/CodeGen/ValueTypes.td

LLVM ROOT/lib/Target/Laser/LaserInstrinfo.h, LaserInstrinfo.cpp

Note: | remember | had to change the clang to produce 16-bit LLVM IR, after that
to compile a C file the following command should be issued:

$clang -O2 --target=laser -S -emit-llvm main.c -o main.l|

Then:



149

$ llc -print-after-all -march=laserel -mtriple=laser -mcpu=generic -debug-
pass=Structure -filetype=asm main.ll -0 main.s

e For register set: LaserRegisterInfo.td, TargetRegisterinfo

e Forinstruction set: LaserInstrFormats.td, LaserInstrinfo.td

e For LLVM IR (DAG) to Native target-specific instructions: LaserlInstrinfo.td,
LaserlSelLowering.cpp

e For assembly printer that converts LLVM IR to a GAS format: Targetlnstrinfo.td,
AsmPrinter, TargetAsmInfo

5.2.3.2. To Handle Return Register
Below is the list of the filed needed to be edited to handle return register:
1. LLVM ROOT/lib/Target/Laser/LaserCallingConv.td
2. LLVM ROOT/lib/Target/Laser/LaserInstrFormats.td
3. LLVM ROOT/lib/Target/Laser/LaserlSelLowering.h LaserlSelLowering.cpp
4. LLVM ROOT/lib/Target/Laser/LaserInstrinfo.h, LaserInstrinfo.cpp
5. LLVM ROOT/lib/Target/Laser/LaserlInstrinfo.td

5.3. Register Allocation
This pass happens in instruction scheduling.

5.3.1. Live Variable Analysis
In compiler theory, live variable analysis (or simply liveness analysis) is a classic data-
flow analysis performed by compilers to calculate for each program point the variables
that may be potentially read before their next write, that is, the variables that are live at
the exit from each program point [123]. Listing 14 shows the concept of live in/live out
through a simple example.

5.4. Instructions Implementation

5.4.1. Return Instruction
In LaserCallingConv.td we set RETVAL register to hold the return value:

def RetCC_LASER : CallingConv<|
CCIfType<[il16], CCAssignToReg<[RETVAL]>>,
CClIfType<]il6], CCAssignToStack<2, 2>>

1>




150

Listing 14: The live in/live example.

// Live in: {}

bl: a = 3;

b =5;

d = 4;

X = ; //x 1is never being used later thus not in the out set {a,b,d}

if a > b then
// Live out: {a,b,d} //union of all (in) successors of
bl => b2: {a,b}, and b3:{b,d}

// Live in: {a,b}
b2: ¢ =a + b;
d=2;

// Live out: {b,d}

// Live in: {b,d}
b3: endif

c = 4;

return b * d + c;
// Live out: {}

In TargetSelectionDAG.td we have:

=== ===//
/I Selection DAG Node definitions.
1
class SDNode<string opcode, SDTypeProfile typeprof,
list<SDNodeProperty> props = [], string sdclass = "SDNode"> {
string Opcode = opcode;
string SDClass = sdclass;
list<SDNodeProperty> Properties = props;
SDTypeProfile TypeProfile = typeprof;

[|=== ===//
/I Selection DAG Node Properties.
1
/I Note: These are hard coded into thigen.
1
class SDNodeProperty;
def SDNPCommutative : SDNodeProperty; // XopY ==Y op X
def SDNPAssociative : SDNodeProperty; // (Xop Y)op Z==Xop (Y op Z)
def SDNPHasChain : SDNodeProperty; // R/W chain operand and result
def SDNPOutGlue : SDNodeProperty; // Write a flag result
def SDNPInGlue  : SDNodeProperty; // Read a flag operand
def SDNPOptInGlue : SDNodeProperty; // Optionally read a flag operand
def SDNPMayStore : SDNodeProperty; // May write to memory,
/I sets 'mayStore'.
def SDNPMayLoad : SDNodeProperty; // May read memory,
/I sets'mayLoad'.
def SDNPSideEffect : SDNodeProperty; // Sets 'HasUnmodelledSideEffects'.
def SDNPMemOperand : SDNodeProperty; // Touches memory, has assoc
/I MemOperand
def SDNPVariadic : SDNodeProperty; // Node has variable arguments.
def SDNPWantRoot : SDNodeProperty; // ComplexPattern gets the root
/I of match
def SDNPWantParent : SDNodeProperty; // ComplexPattern gets the parent

Then we define a pseudo instruction LASER::RET FLAG to take care of
LASERISD::Ret in LaserInstinfo.td:



151

def LaserRet : SDNode<"LASERISD::Ret", SDTNoneg,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;

let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrIDep=1 in {
def RET_FLAG : LaserPseudo<(outs), (ins), ", [(LaserRet)]>;
}

In LaserInstFormats.td:

class LaserPseudo<dag outs, dag ins, string asmString, list<dag> pattern>
: F_base <outs, ins, asmString, pattern, IIPseudo, Pseudo> {
let isCodeGenOnly = 1;
let isPseudo = 1;

}

In LaselselLowering.cpp, LowerReturn() will be called whenever the system meets
return keyword in C code:

SDValue
LaserTargetLowering::LowerReturn(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorimpl<ISD::OutputArg> &Outs,
const SmallVectorimpl<SDValue> &OutVals,
const SDLoc &dl, SelectionDAG &DAG) const;

Then expand the LASERISD::RET FLAG into instruction LASER::RET in “Post-
RA pseudo instruction expansion pass”. In LaserInstrInfo.cpp:

/// Expand Pseudo instructions into real backend instructions
bool LaserInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
MachineBasicBlock *MBB = MI.getParent();
switch (MI.getOpcode()) {
default:
return false;
case LASER::RET_FLAG:
expandRetFlag (MBB, MI);
break;

}

MBB->erase (MI) ;
return true;

}

void LaserInstrInfo::expandRetFlag(MachineBasicBlock *MBB,
MachineInstr &MI) const {

BuildMI (*MBB, MI, MI.getDebugloc(), get(LASER::RET)) .addReg(LASER::R15);




Irl:‘nlry'l'o ken )

(‘Constant<5> ) (Regisler %R 15 )

t0

2

ch

.

/%

il6

-~

S AN

il6

-

g
‘\<-
5
g

ch | glue

)

LASERISD::Ret

i

dag-combine] input for main:entry

Fig. 80: Return Instruction dag-combinel.

T ot
l'argetConstant<5>

t5

rRegi ster %R15Y (E nlry'l'okenﬂ\

t0

A\ )

0

|

ol 1]2

CopyToReg
t3
ch | glue

RE

T_HFLAG

t4
ch

scheduler input for main:entry

N

T

o

IMD

il6

Fig. 81: Return Instruction Scheduler.

152



153

Then first the following C code is compiled by clang with -O2 argument:

int main(void) {
return

}

The LLVM IR is

define i16 @main() #0 {
entry:

retilé 5
}

The illegal SelectionDAG is shown in Fig. 80. After Instruction Selection the
return instruction scheduler is shown in Fig. 81.

5.4.2. Memory load/store
The store instruction is used to write to memory. Its syntax is [94]:

store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>]
[, Inontemporal !<index>][, linvariant.group !<index>] ; yields void

store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread]
<ordering>, align <alignment> [, !invariant.group !<index>] ; yields void

There are two arguments to the store instruction: a value to store and an address at
which to store it. The optional constant align argument specifies the alignment of the
operation (that is, the alignment of the memory address).

Suppose we have a C code as below:

int main(void) {
return

}

We first compile the following C code by clang -O0 argument:

define i16 @main() #0 {
entry:
%retval = alloca i16, align 2
store i16 0, i16* %retval, align 2
retilé 5

}

which can be read as allocate 16 bit for %retval, store value 0 into a 16-bit
pointer that point to the %retval and return 16 bit constant value 5.

After legalization:




154

t0: ch = EntryToken
t4: ch = store<ST2[%retval]> t0, Constant:i16<0>, Framelndex:i16<0>,
undef:il6

This is how Cpu0 handles store:

class AlignedStore<PatFrag Node> :
PatFrag<(ops node:$val, node:$ptr), (Node node:$val, node:$ptr),

K

StoreSDNode *SD = cast<StoreSDNode>(N);

return SD->getMemoryVT().getSizelnBits()/8 <= SD->getAlignment();
1

>-

def store_a : AlignedStore<store>;

def addr :
ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], [SDNPWantParent]>;

def mem : Operand<iPTR> {
let PrintMethod = "printMemOperand";
let MIOperandInfo = (ops CPURegs, simm16);
let EncoderMethod = "getMemEncoding";
let ParserMatchClass = CpuOMemAsmOperand;

class FMem <
bits<8> op=0x02,
dag outs,
dag ins=(RC=CPURegs:$ra, MemOpnd=mem:$addr),
string asmstr="st \t$ra, $addr",
list<dag> pattern = [(OpNode=store_a RC=CPURegs:$ra, addr:$addr)],
InstritinClass itin = |IStore
>

This is how Lanai handles store:

def ADDRsls : ComplexPattern<i32, 1, “selectAddrSls", [frameindex], []>;

def STADDR : InstSLS<0x1, (outs), (ins GPR:$Rd, MEMi:$dst),
"st\t$Rd, $dst",
[(store (i32 GPR:$Rd), ADDRsls:$dst)]>,
Sched<[WriteST]> {
bits<21> dst;

let Itinerary = IIC_ST;
let msb = dst{20-16};
let Isb = dst{15-0};

let mayStore = 1;




155

For Laser, In LaserInstinfo.td we define a ComplexPattern:

def addr : ComplexPattern<
iPTR, /I ValueType ty
2, /' int numops
"SelectAddr", I/ string fn
[frameindex], I/ list<SDNode> roots = []
[SDNPWantParent] // list<SDNodeProperty> props =[]

>,

This says to instruction selection pass that we need pattern matching code in C++
whenever it faces addr operand, it must be matched with two operands next to each
other with root node ’frameindex’. SDNPWantParent passes a pointer to Parent at first
argument of SelectAddr(). In LaserInstinfo.td we have:

def LASERImm16 : Operand<i16> {
let ParserMatchClass = LaserimmAsmOperand;
let PrintMethod = "printimm";
let DecoderMethod= "DecodeLASERIimm16";

}

def memsrc :Operand<iPTR> {
let MIOperandinfo = (ops GNPRegs, LASERIimm16);
let PrintMethod = "printAddrModeMemSrc";
let ParserMatchClass = LaserMemAsmOperand,;
let DecoderMethod= "DecodeL ASERmemsrc";

}

def ST : F2 <0b10000, (outs), (ins GNPRegs:$rs, memsrc:$rd),
"st $rd, $rs", [(store i16:$rs, addr:$rd)], 1Store>;

Which states that the pattern (store i16:$rs, addr:$rd) must be replaced by machine
instruction ST with conversion of first i16 operand to a register that belongs to
GNPRegs and addr operand to a memsrc operand. The memsrc itself is a kind of
oeprand which consists of a GNPRegs and Lasserimm16 operands:

store<ST2[%retval]> t0, Constant:i16<0>, Framelndex:i16<0>

After legalization we still have:

store<ST2[%retval]> t0, Constant:i16<0>, Framelndex:i16<0>

After instruction selection

t1: i16 = IMD TargetConstant:i16<0>
ST<Mem:ST2[%retval]> t1, TargetFramelndex:i16<0>, TargetConstant:i16<0>,

5.4.3. Frame Indexes
LLVM uses a virtual stack frame during the code generation, and stack elements are
referred using frame indexes. The prologue insertion allocates the stack frame and gives
enough target-specific information to the code generator to replace virtual frame indices
with real (target-specific) stack references.



156

The method eliminateFramelndex() in the LaserRegisterinfo class implements this
replacement by converting each frame index to a real stack offset for all machine
instructions that contain stack references (usually loads and stores) [93].

We need to generate extra instructions to handle the stack offset arithmetic, as the
Laser processor ST/LD instructions does not accept complex base/offset operand. After
frameindex elimination:

%0:gnpregs = IMD 0
ST killed %0, %stack.0.retval, 0; mem:ST2[%retval]

After register allocation:

> renamable $r10 = IMD 0
> ST killed renamable $r10, %stack.0.retval, 0; mem:ST2[%retval]

5.4.4. “ADD” Instruction
We try to achieve compiling the C code shown in Listing 15.

Listing 15: Sample C code with addition operation.

int main(void) {
int result;
int a =
int b = ;
result = a + b;
return result;

}

Compiling the code shown in Listing 15 into LLVM IR we get:

define 116 @main() #0 {

entry:
%retval = alloca i16, align 2
%result = alloca i16, align 2
%a = alloca i16, align 2
%b = alloca i16, align 2
store i16 0, i16* %oretval, align 2
store i16 5, i16* %a, align 2
store i16 10, i16* %b, align 2
%0 = load i16, i16™ %a, align 2
%1 = load i16, i16* %b, align 2
%add = add nsw i16 %0, %1
store i16 %add, i16* %result, align 2
%?2 = load i16, i16™ %result, align 2
ret i16 %2

5.4.5. “MUL” Instruction
The MUL instruction returns the product of its two operands. The syntax is [94]:



157

<result> = mul <ty> <op1>, <op2> ; yields ty:result
<result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
<result> = mul nsw <ty> <op1>, <op2> ; yields ty:result

<result> = mul nuw nsw <ty> <opl>, <op2> ; yields ty:result

The value produced is the integer product of the two operands.

Because LLVM integers use a two’s complement representation, and the result is
the same width as the operands, this instruction returns the correct result for both signed
and unsigned integers. If a full product (e.g., 132 * 132 — i64) is needed, the operands
should be sign-extended or zero-extended as appropriate to the width of the full product.

The nuw and nsw stand for ”No Unsigned Wrap” and "No Signed Wrap”,
respectively. If the nuw and/or nsw keywords are present, the result value of the mul is
a poison value if unsigned and/or signed overflow, respectively, occurs.

Sign extension is the operation, in computer arithmetic, of increasing the number
of bits of a binary number while preserving the number’s sign (positive/negative) and
value.

5.4.6. “DIV” Instruction
LLVM IR has two division instructions and two remainder instructions:

e udiv: returns the quotient of its two operands. The value produced is the
unsigned integer quotient of the two operands.

e sdiv: returns the quotient of its two operands. The value produced is the
signed integer quotient of the two operands rounded towards zero.

e urem: returns the remainder from the unsigned division of its two arguments.

e srem: returns the remainder from the signed division of its two operands.

We compile the C code shown in Listing 16 using Clang:
Listing 16: Sample C code with division operation.

int main(void) {
int a = 5;
int b ;
int c b / a;
return c;

The compilation result in:



158

define i16 @main() #0 {

entry:
Y%retval = alloca i16, align 2
%a = alloca i16, align 2
%b = alloca i16, align 2
%c = alloca i16, align 2
store i16 0, i16* %retval, align 2
store i16 5, i16* %a, align 2
store i16 10, i16* %b, align 2
%0 = load 16, i16* %b, align 2
%1 = load 16, i16* %ea, align 2
%div = sdiv 116 %0, %1
store i16 %div, i16* %c, align 2
%2 = load 16, i16* %c, align 2
ret i16 %2

5.4.7. Branch Instructions
Instruction selection steps:

1.

2.

o1

LLVM IR — illegal SelectionDAG (SelectionDAGBuilder class) mostly hard-
coded.

Illegal SelectionDAG — Legalized Type SelectionDAG (Type promoting e.g.,
i1 to 116/expanding e.g., 132 to i116) Done in LaserTargetLowering constructor.
(LaserlSelLowering.cpp)

Legalized Type SelectionDAG — Converting a DAG to only use the operations
that are natively supported by the target. Done in LaserTargetLowering
constructor. (LaserlSelLowering.cpp)

Expansion: Convert a node to sequence of nodes.

Promotion: Promote node to larger node that supports the operation.

Custom: Custom target-specific hook to legalize operations. Done by
setOperationAction method in its TargetLowering constructor. Then Use the
LowerOperation().

DAG Combiner: is run multiple times for code generation, immediately after
the DAG is built and once after each legalization.

Legal SelectionDAG — new DAG of target code. Done by LaserIntrInfo.td
SelectionDAG Scheduling and Formation: Take the DAG of target instructions
from the selection phase and assigns an order.

The branching instructions for building the initial SelectionDAG can be one of the
following target-independent instructions:

1.
2.

3.

BR: Unconditional branch. BR (chain, MBB to branch to)

2. BRIND: Indirect branch. BRIND (chain, value to branch to (must be the
same type as target pointer type))

BR JT: Jumptable branch. BR JT (chain, jumptable index, jumptable entry
index)

BRCOND: Conditional branch. BRCOND (chain, condition, block to branch
to if condition is true)

BR CC - Conditional branch. Is like SELECT CC. BR CC (chain, condition
code, lhs, rhs, block to branch to if condition is true)

SELECT (COND, TRUEVAL, FALSEVAL)



159

7. SELECT CC: This selects between a true value and a false value (ops #2 and

#3) based on the Boolean result of comparing the Ihs and rhs (ops #0 and #1)
of a conditional expression with the condition code in op #4, , a
CondCodeSDNode.

SETCC: Compares two values (Ihs and rhs) according to a given condition code
(CC) and outputs a Boolean value (i1). SETCC (lhs, rhs)

We first analyze how branching is implemented in other backends: The handling
of conditional branches in the code generator is relatively complicated. The reason is
that processor architectures implement conditions in a wildly different manner. There
are several basic ways to implement conditions in an ISA [124]:

Comparison instruction tests a single given condition and sets a Boolean value
in a GP register (zero/non-zero). Branch sees if the register is zero. Example:
MIPS.

Comparison instruction tests all possible conditions at once and sets a host of
flags (e.g., Zero, Carry, Negative, Overflow). The actual condition is encoded
in the branch instruction, which tests for specific combinations of flags.
Example: SPARC, x86.

Comparison instruction tests some conditions (e.g., Zero, Carry). Branch
instruction can evaluate only a subset of flag combinations. Example:
PicoBlaze.

Some comparison tests and branches can be fused in one instruction.

As an alternative, the flow control can be implemented using predicated
execution of instructions.

Suppose we have the following C code:

Listing 17: Sample C code with branch operation.

int main(void) {

int a = ;
int b = 5;
if (a > b)
b=Db -
return b;




160

(EnlryToken\ (‘Constani<0>)  (FrameIndex<0> ) undef
t0 tl 2 t3
\__¢h A il6 \ il6 P il6
i
|
PO 2 [2 ] 3N e T
Constant<10> FrameIndex<1>
store<ST2([%retval]>
t5 t6
4 — -
il6 1:;3

ch

5>) (TFramehndex<2> )

(Constani<5
store<ST2[%al>
t8 t9

t7 :

= | 16 L
N

‘\
Py
~
~

o\
i ! £
(ol rJ2YYoT 1 2)
; [ ] | 112V oy
; load<1.D2[%al> load<I.D2[%b]> 7
(13
tl 12
i - — & ¢h
1o ie [ en ) ite | oen ) —r
I *
i F e
!
I Constant<-1>
! 13
! :
| il
|
I
I
| (0] TS 3 N
BasicBlock<if.end 0x31a2668>
\ xor
7
\ 16 >
b i1 ) 4N B ~/
3 N B 2T
\ 4 \
-
~ |
=—=—0]1]|2V¥
(BasicBlockif.then 0x31a25b8> )
breond
t19
118 l
ch
7
ch \ﬂ\
h ¢ \
01
br
20

dag-combinel input for main:entry

Fig. 82: Combinel-dags for Branching.

After Listing 17 compilation by Clang, we get the following LLVM IR:



161

define i16 @main() #0 {

entry:
%retval = alloca i16, align 2
%a = alloca i16, align 2
%b =alloca 16, align 2
store i16 0, i16* %retval, align 2
store i16 10, i16* %ea, align 2
store i16 5, i16* %D, align 2
%0 = load 16, i16* %ea, align 2
%1 = load 16, i16* %b, align 2
%cmp = icmp sgt 116 %0, %1
br i1 %cmp, label %if.then, label %if.end

if.then: ; preds = %entry
%2 = load 16, i16* %b, align 2
%sub = sub nsw i16 %2, 1
store i16 %sub, i16* %b, align 2
br label %if.end

if.end: ; preds = %if.then, %entry
%3 = load 16, i16* %b, align 2
ret i16 %3

}

The combinel dags is shown in Fig. 82.
There are three SDNodes related to the branch operation:

1. BR

2. BRCOND
3. XOR

4. SETCC

5. SETGT

We can see that SETCC and XOR using il type which Laser processor does not
support so we must promote il to i16 in LaserISelLowering constructor
(LaserlISelLowering.cpp) by adding the following line:

AddPromotedToType(ISD::SETCC, MVT::il, MVT::i16);

After legalization we get legalized dags as shown in Fig. 83 while the BR CC,
SETLT nodes are clearly visible.

5.4.8. Unconditional Jump
A goto statement is added to sampled C code as shown in Listing 18.

Listing 18: Sample C code with goto statement.

int main () {

start:
asm ("imd %r8, #0");
asm ("imd %r9, #1");
asm ("add %rs, r9, r8");

goto start;

return




(1 EntryToken Constant<0> ) TrameIndex<0> )
t0 tl t2
\_ ch » il6

0

1 2 3

store<8T2[%retval]>

Constant<10>

5

il6

M/"

undef

3

i16

" p
FrameIndex<1>

16

i16
A

(Constant<5> )

(‘Framelndex<2> )

store<ST2[%a]>
8 ©
7 ile ile
1 L
ch J
| B, §
N
~
~
S=—0f1
store<ST2[%%b]>

t10

I
I
v | T Constant<6> ) ( BasicBlock<if.cnd 0x4233528> )
load<! al>

v [ @ - - 24 7
. : ul - :

% ch \___ 6 TN ch

\ Y

(BasicBlockif.then 0x4a33478>

t19

ch

br_cc
127
ch O\
Neeo 7T
LAY
v X
o1
br
20
ch

legalize input for main:entry

Fig. 83: Legalize dags for Branching.

Before and after legalization we have:

162

ch = br t4, BasicBlock:ch<start 0x9b81d8>

Then instruction selection will match:

def LASERimm11op : Operand<OtherVT> {
}

def JMP : FJ <0b10010, (outs), (ins LASERimm11op:$address),
"jmp [$address]", [(br bb:$address)], 11Branch> {

let isBranch =1,

let isTerminator = 1;

let isBarrier = 1;

let hasDelaySlot = 0;




163

5.4.9. Global Variables
A program has symbols which are replaced by addresses (for example a 16-bit
address):

Table 13: Hex representation of addresses associated with symbols.

Symbol Address (16-bit)
my global int 0000
start 0400
funcl 0500
end 05F8

We use the above addresses to construct the constants used in jump and call
instructions. The constant address can have two possible interpretation:

1. Absolute address: Actual address of memory location.

2. Relative address: The offset to a memory location relative to a second known

location.

The position independent code (PIC) is a body of machine code that, being placed
somewhere in the primary memory, executes properly regardless of its absolute address.
PIC is commonly used for shared libraries [125].

Position-independent code can be executed at any memory address without
modification. Procedure calls inside a shared library are typically made through small
procedure linkage table stubs, which then call the definitive function. This notably
allows a shared library to inherit certain function calls from previously loaded libraries
rather than using its own versions [125].

Data references from position-independent code are usually made indirectly,
through global offset tables (GOTSs), which store the addresses of all accessed global
variables. There is one GOT per compilation unit or object module, and it is located at
a fixed offset from the code (although this offset is not known until the library is linked).
When a linker links modules to create a shared library, it merges the GOTs and sets the
final offsets in code. It is not necessary to adjust the offsets when loading the shared
library later.

Laser branch instructions use absolute address saved in RD register. The JMP
instruction uses an 11-bit PC relative address. JMP instruction uses PC relative 11-bit
address. The CALL instruction uses an absolute address saved in RD register.

Relative addresses allow the program module to be loaded at any address in memory
without changing the addresses stored in the instructions. If all addresses in a module
are relative, the module is relocatable [126].

Relocation is the act of placing the program module in memory, we set a base
address starting at the starting address and then calculate the absolute addresses
regarding to the base.

In the old days, applications were built by compiling many .c files into .o files.
These files often had inter-related references that were not resolved at compile time.
The information on these references is stored within the .o files in a reloc (relocation)
object. Later, at link time, the linker would merge all the .o files, building a table of



164

where symbols are ultimately located. Then the linker would run through the set of
relocs, filling them in.
A reloc consists of three parts [127]:
1. where in memory the fix is to be made.
2. the symbol which is involved in the fix.
3. an algorithm that the linker should use to create the fixup.

The algorithm can be as simple as “use the symbol memory location; store it in
binary” (R_386_32). Or it may be more complicated, such as “calculate the distance
from here to the symbol, divide by 4, subtract 2 and add the result to the 3 lower bytes”
(R_ARM_PC26).

At least this is the way things used to work, in the days of static linking. With the
introduction of run-time linking, the designers of the ELF format decided that relocs
are a suitable entity to hold run-time resolution information. So now we have executable
files which still have relocs in them, even after linking [127].

5.4.10. Relocs
What is a reloc? Binary executables often need certain bits of information fixed up
before they execute. ELF binaries carry a list of relocs which describe these fixups.
Each reloc contains:

e the address in the binary that is to get the fixup (offset)

e the algorithm to calculate the fixup (type)

e asymbol (string and object len)

At fixup time, the algorithm uses the offset & symbol, along with the value currently
in the file, to calculate a new value to be deposited into memory.

One of the targets of the ELF binary system is a separation of code and data. The
code of apps and libraries is marked read-only and executable. The data is marked read-
write, and not-executable. We have two addressing modes for relocation that we need
to support is:

1. Static: Absolute address
2. PIC: Postion Independent Address
Initially we have the LLVM IR:

%0 = load i16, i16* @gv1, align 2

Which can be read as load the content of the memory location which the @gv1 16-
bit pointer is pointing to. The result is a 16-bit value which must be saved into %0
register. In constructor of LaserTargetLowering (LaserlSelLowering.cpp) we tell the
LLVM that we need to lower global variables according to our target:

setOperationAction(ISD::Global Address, MVT::i16, Custom);

Then we define the LowerGlobalAddress() to lower ISD::GlobalAddress to the
selectionDAG:

t25: ch = CopyToReg t0, Register:il16 %1,
TargetGlobal Address:i16<i16* @gv1> 0 [TF=1]
t9: i16,ch = load<LD2[@gv1](dereferenceable)> t7, 25, undef:il6




165

Next we use manual instruction selection in LaserDAGToDAGISel.cpp,
LaserDAGToDAGISel::Select (): Which then will be converter to Laser machine
code:

The relocation will be resolved at link time. So, we define this:

LASERISD::GPRel getTargetGlobalAddress(Laserll::MO_GPREL)
ISD::ADD LASER::GP, LASERISD::GPRel

IMD RS, %(gl) ; Load the 16-bit global offset into RS
LD RD,[RS] ; Read Memory location at RS and save into RD

In SelectAddr() if the address is global or external, we return false for the address
since its address is calculated in the global context. In LaserInstrinfo.td we select
LASERISD::GPRel into following pattern:

def : Pat<(add CPURegs:$GP, (LaserGPRel tglobaladdr:$in)),
(ADD CPURegs:$GP, (MOV tglobaladdr:$in))>;

For now, the Laser supports the static relocation model. For legalization of an
access to global variable in absolute mode we need to do the following steps: For
global variables we can use GP register as the base: GP + 16-bit address in RD
register.

We assume that the loader initially sets the GP to the starting point of global
variables. At this point we must dig into CpuO details of global variable handling:
Cpu0 handles two relocation mode: 1) Static 2) PIC.

5.4.11. Fixup
The relocation table is a list of pointers created by the translator (a compiler or
assembler) and stored in the object or executable file. Each entry in the table, or “fixup”,
is a pointer to an absolute address in the object code that must be changed when the
loader relocates the program so that it will refer to the correct location. Fixups are
designed to support relocation of the program as a complete unit. In some cases, each
fixup in the table is itself relative to a base address of zero, so the fixups themselves
must be changed as the loader moves through the table [128].

Within LLVM, fixups are used to represent information in instructions which is
currently unknown. During instruction encoding, if some information is unknown (such
as a memory location of an external symbol), it is encoded as if the value is equal to 0
and a fixup is emitted which contains information on how to rewrite the value when
information is known [129].

ELF Relocation types for a target are defined as an enum in the LLVM support
header llvm/include/llvm/BinaryFormat/ELFRelocs/Laser.def:

ELF_RELOC(R_LASER_NONE, 0)
ELF_RELOC(R_LASER PC16, 1)
ELF_RELOC(R_LASER PC11, 2

Fixups are defined in lib/Target/arch/MCTargetDesc/ LaserFixupKinds.h:



166

enum Fixups {
//@ Pure upper 16 bit fixup resulting in - R_LASER_PC16.
fixup_Laser_PC16 = FirstTargetFixupKind,

/I PC relative branch fixup resulting in - R_LASER_PC11.
/I Laser JIMP
fixup_Laser_PC11,

/I Marker
LastTargetFixupKind,
NumTargetFixupKinds = LastTargetFixupKind - FirstTargetFixupKind

b

MI gets translated to MClnst (in AsmPrinter). MCObjectStreamer emits Assembler
using Emitinstruction(). MCCodeEmiter gets the Assembler and emits binary.
Encoding of operands starts from getMachineOpValue() In
LaserMCCodeEmitter::getExprOpValue() if Kind == MCExpr::SymbolRef then we
return 0 and save the operand information in a fixup.

For doing so there is a switch on “cast(Expr)->getKind()” The case statements are
MCSymbolRefExpr:: which are defined in ”llvm/MC/MCExpr.h”.

Also the case statement can be LaserMCExpr:: which is defined in
"MCTargetDesc/LaserMCExpr.h”. For Laser we have:

enum LaserExprKind {
CEK_None,
CEK_GOT_JMP,
CEK_GOT_CALL,
CEK_Special,

5.5. Implementing LLVM Integrated Assembler
There are the parts extracted from a tutorial [129] which is important in Laser backend
development:

5.5.1. Implementing Assembly Parser Support

The first component which needs to be implemented is support for parsing assembly
files. This allows llvm-mc to correctly read in assembly instructions and provide an
internal representation of these for encoding.

First, we drive LaserAsmParser from MCTargetAsmParser. The class has
MatchAndEmitlnstruction function, which is called for each instruction to be parsed,
emitting out an internal representation of each instruction as well as supporting
functions which help it parse instruction operands.

Usage:

$ llvm-mc -assemble -show-encoding -arch=Ilaser main.s

We must see what kinds of operands the Laser processor supports:
1. Register (4-bits) e.g.: RO, R1, R2
2. Register (3-bits) e.g.: RO, R1, R2



167

3. Immediate (11-bits) e.g.: IMP 4. Immediate (16-bit) e.g.: IMD
We define these operands in AsmParser/LaserAsmParser.cpp enum KindTy.

5.5.2. Function Call
As we mentioned in Section 3.2.3.5, the Laser processor passes the first 2 arguments in
registers [R8, R9] and the rest will be placed in stack. We have mentioned the basics of
stack concept in section 3.2.2.

Our main funcs.c for testing function calls is:

void funcl (void) ;

int main () {
asm ("imd %r8, #5");
funcl (),
return

}

void funcl (void) {
asm ("imd %r9, #10");

}

Running clang -O0 —target=laser -S -emit-llvm main funcs.c -0 main funcs.ll
produces:

; Function Attrs: noinline nounwind optnone
define i16 @main() #0 {
entry:
%retval = alloca i16, align 2
store i16 0, i16™ %retval, align 2
call void asm sideeffect “imd %r8, #5", ""() #1, !srcloc 12
call void @funcl()
retil6 0
}

; Function Attrs: noinline nounwind optnone

define void @funcl() #0 {
entry:
call void asm sideeffect "imd %r9, #10", "'() #1, !srcloc !3
ret void

}

5.5.3. Laser Stack Frame

1. When we enter a function, the LowerFormalArguments() in
LaserISelLowring.cpp will be invoked. It determines for each formal argument
where it is located, creates a new virtual register of the appropriate register
class, and inserts a sequence of moves and/or loads into the DAG. The emitted
SDValues are connected by “chain” edges.

2. When we exit a function LowerReturn() in LaserlSelLowring.cpp will be
invoked. It takes care of moving the return value, which may be split up into
several parts, into the corresponding physical registers. Subsequently, a
RET_FLAG node is emitted that will later be matched with a ret instruction
during the instruction selection stage.

3. When a function is called all actual arguments will be copied into the right
places before the call and that afterwards all return value fragments be



168

transferred back into the designated virtual registers. The whole process must
be “enframed” by a CALLSEQ BEGIN and a CALLSEQ END node. These
nodes will be transformed into ADJCALLSTACKDOWN and
ADJCALLSTACKUP pseudo-instructions during the instruction selection
stage. The function call is processed by the method LowerCall() in
LaserISelLowring.cpp , which emits an appropriate chain of SDValues.

To produce the right jump address:

1.
2.

o~

o

First, we have the LLVM IR: "call void @func1()”

Then LaserTargetLowering::LowerFormalArguments() in
LaserISelLowring.cpp will be called to “load incoming arguments in callee
function”.

Then LowerCall() will be called to “store outgoing arguments in caller
function”. There we create LASERISD::LaserCall with
TargetGlobalAddress:il6 operand. We also set the operand flag to
Laserll::MO_CALL_FLAG

Next Legalization step happens which the related dag nodes will remain intact.
Before the instruction selection phase starts, we have defined CALL from F3
class which is derived from FJ class, with pattern match (LaserCall
imm:$target). LaserCall is an SDNode with "LASERISD::LaserCall” as its
opcode.

In instruction selection phase we match def: Pat;

At the end, after register allocation and instruction scheduling, we have: (using
llc -print-machineinstrs or -print-after-all)

renamable $r10 = IMD @funcl
CALL killed renamable $r10, , implicit-def $sp

®©

10.

11.
12.
13.
14.

15.

Now the instruction is in Machinelnstr form.

We lower Machinelnstr operands in LaserMClnstLower.cpp by calling
LaserMClnstLower::LowerSymbolOperand(). For call instruction the operand
is MachineOperand::MO GlobalAddress, so we set the Symbol value to
AsmPrinter.getSymbol(MO.getGlobal()); and we set TargetKind =
LaserMCEXxpr::VK LASER CALL16

The getMachineOpValue() when the operand is not immediate or register calls
getExprOpValue() in MCTargetDesc//LaserMCCodeEmitter.cpp which saves
the fixup fixup Laser CALL16 and returns 0.

Inside LowerCall we set the flag Laserll::MO_NO_FLAG

We use MC Framework for encoding instructions into their native bit patterns.
LaserMCCodeEmitter::encodelnstruction() emits the instruction byte by byte.
[MC Framework part starts here:] In
LaserMCCodeEmitter::getMachineOpValue() if the operand is Expr fixup will
be recorded and O will be returned. The problem that we are facing is that we
never get an Expr as operand.

If we want to emit .s file we use ‘llc -march laser -mcpu=generic -filetype=asm
-0 main.s main.1l’ command. This will invoke
LaserAsmBackend::applyFixup() for fixup Laser CALL16 at provided offset
and then LaserInstPrinter::() writes the instructions into .s file.



169

16. If we want to emit .o file we use ‘llc -march laser -mcpu=generic -filetype=obj
-0 main.o main.ll” which invokes LaserMCCodeEmitter::Emitinstruction().
There of the instruction operand is an LaserMCExpr of type VK_LASER
CALL16 it will allocate space in object file and write 0 and adds a fixup Laser
CALL16 in relocation table of the ELF output file.

17. Finally linking the object files using ‘lld’ (which is another tool available
under LLVM umbrella project) the correct value of target call address will be
calculated in will be rewritten into the proper offset associated with the
recorded relocation symbol.

5.6. Machine Code (MC) Framework

The machine code (MC) classes comprise an entire framework for low level
manipulation of functions and instructions. In Section 2.4.5 we discussed the MC
framework briefly.

In the MC framework, machine code instructions (MClInst) replace machine
instructions (Machinelnstr). The MCinst class, defines a lightweight representation for
instructions. Compared to MlIs, MClnsts carry less information about the program [93].

Each operand can be a register, immediate (integer or floating-point number), an
expression (represented by MCExpr), or another MClnstr instance. Expressions are
used to represent label computations and relocations. The Ml instructions are converted
to MClnst instances early in the code emission phase.

5.6.1.1. AsmParser
To support inline assembly in our C code we need to implement AsmParser. Our
sample C code is:

int main()
{
asm ("imd %r0, #5");
asm ("imd %rl, #10");
asm ("add %ro0, rl, r2");

return

We faced a problem by changing the CMAKE options: The following CMAKE
options works:

$ cmake -G "Unix Makefiles" -DLLVM_TARGETS_TO_BUILD="Laser;Sparc;X86"
-DBUILD_SHARED_LIBS=ON -DLLVM_OPTIMIZED_TABLEGEN=ON
/homel/esi/extra_space/src/d/Ilvm04/llvm

But this one does not work:

$ cmake -G "Unix Makefiles" -DLLVM_TARGETS_TO_BUILD="Laser;Sparc;X86"
-DBUILD_SHARED_LIBS=0ON /home/esi/extra_space/src/llvmO04/llvm




170

5.6.1.2. Object Files
To produce object file:

$ llc -march=laser -mcpu=generic -filetype=obj main.Il -o main.o

To dump the object file:

$ objdump -s main.o

To see the binary encoding of each instruction in front or the assembly code we
can issue:

$ llc -march laser -mcpu=generic -show-mc-encoding -filetype=asm -0 main.s main.ll

5.6.1.3. Assembly Parser
No change.

5.6.1.4. Instruction Encoder
Resides in Laser/MCTargetDesc directory. LaserMCCodeEmitter::encodelnstruction()
encodes the instruction by calling Binary = getBinaryCodeForlnstr(); and then
Emitinstruction(Binary, Size, 0S); getBinaryCodeForinstr() uses
LaserMCCodeEmitter::getMachineOpValue(). If the operand is immediate its value
will be returned.

If it is Expr then information about this relocation is stored in a fixup, with 0 being
returned. TableGen’s EncoderMethod field is responsible for encoding custom
operands.

5.6.1.5. Instruction Decoder
No change.

5.6.1.6. ELF Object Writer
After implementing an encoder and decoder we can go for implementing an ELF file
writer.



171

Header

Headar

Data

Fig. 84: ELF Overview [130].

5.7. Laser ELF file

5.7.1. Executable and Linkable Format

The Executable and Linkable Format (ELF) is a common standard file format for
executable files, object code, shared libraries, and core dumps. By design, ELF is
flexible, extensible, and cross-platform, not bound to any given central processing unit
(CPU) or instruction set architecture [131, 132]. ELF overview can be seen in Fig. 84.

The ELF file layout consists of:

1. ELF file header: The ELF header describes the file in general such as
defining whether to use 32- or 64-bit addresses. This header has many fields
and has pointers to each of the individual sections that make up the file. For
example, the field ’e phoff” points to the location of program header.

2. File data:

a. Program header table, describing zero or more memory segments:
The program header table tells the system how to create a process
image.

b. Section header table, describing zero or more sections

c. Data referred to by entries in the program header table or section
header table

The ELF header struct is shown in Listing 19.



172

Listing 19: The ELD header struct.

typedef struct {

unsigned char e_ident[EI_NIDENT];
EIf32_Half e_type;
EIf32_Half e_machine;
EIf32_Word e_version;
EIf32_Addr e_entry;
EIf32_Off e_phoff;
EIf32_Off e_shoff;
EIf32_Word e_flags;
EIf32_Half e_ehsize;
EIf32_Half e_phentsize;
EIf32_Half e_phnum;
EIf32_Half e_shentsize;
EIf32_Half e_shnum;
EIf32_Half e_shstrndx;
} EIf32_Ehdr;

To see the section header table in an ELF file:

$ readelf -h main.o

To check the ELF segments information, program headers:

$ readelf -1 main.o

To check the ELF segments information, sections:

$ readelf -S main.o

5.7.2. Symbols
Variables and functions all have names in source code which we refer to them by
symbols.

5.8. The Linking Process

Thus, the linking process is really two steps: combining all object files into one
executable file and then going through each object file to resolve any symbols. This
usually requires two passes; one to read all the symbol definitions and take note of
unresolved symbols and a second to fix up all those unresolved symbols to the right
place [130].

5.8.1. Symbols and Relocations
The ELF specification provides for symbol tables which are simply mappings of strings
(symbols) to locations in the file. Symbols are required for linking.

Closely related to symbols are relocations. A relocation is simply a blank space left
to be patched up later. In the previous example, until the address of foo is known it
cannot be used. However, on a 32-bit system, we know the address of foo must be a 4-



173

byte value, so any time the compiler needs to use that address (to say, assign a value) it
can simply leave 4-bytes of blank space and keep a relocation that essentially says to
the linker “place the real value of ‘foo’ into the 4 bytes at this address” [130].

5.8.2. The Global Offset Table

Imagine a situation that we have a symbol (like funcl). With only relocations, we would

have the dynamic linker look up the memory address of that symbol and re-write the

code to load that address. A straightforward enhancement would be to set aside space
in our binary to hold the address of that symbol, and have the dynamic linker put the
address there rather than in the code directly. This way we never need to touch the code

part of the binary [130].

The area that is set aside for these addresses is called the Global Offset Table or

GOT. The GOT lives in a section of the ELF file called .got.

Let us go through one example:

1. We define an external global variable i in a shared library. (We do not know
its address in compile-time, so we leave for dynamic linker to fix it up)

2. So, compiler creates .got section. At load time always a register in processor
(let us say GP) will be set by dynamic linker to point to the beginning of
.got. The .got located for example 200 bytes from 