

A MORPHABLE FPGA SOFT PROCESSOR USING LLVM

INFRASTRUCTURE TARGETING LOW-POWER

APPLICATION-SPECIFIC EMBEDDED SYSTEMS

Mr. Ehsan Ali

A Dissertation Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in Electrical Engineering

Department of Electrical Engineering

FACULTY OF ENGINEERING

Chulalongkorn University

Academic Year 2020

Copyright of Chulalongkorn University

ซอฟตโ์ปรเซสเซอร์บนเอฟพีจีเอท่ีเปล่ียนสภาพไดโ้ดยใชโ้ครงสร้างพื้นฐานแอลแอลวีเอม็มี
เป้าหมายเพื่อระบบฝังตวัเฉพาะงานท่ีใชพ้ลงังานต ่า

นายอิซาน อาลิ

วิทยานิพนธ์น้ีเป็นส่วนหน่ึงของการศึกษาตามหลกัสูตรปริญญาวิศวกรรมศาสตรดุษฎีบณัฑิต

สาขาวิชาวิศวกรรมไฟฟ้า ภาควิชาวิศวกรรมไฟฟ้า
คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลยั

ปีการศึกษา 2563

ลิขสิทธ์ิของจุฬาลงกรณ์มหาวิทยาลยั

Thesis Title A MORPHABLE FPGA SOFT PROCESSOR

USING LLVM INFRASTRUCTURE

TARGETING LOW-POWER APPLICATION-

SPECIFIC EMBEDDED SYSTEMS

By Mr. Ehsan Ali

Field of Study Electrical Engineering

Thesis Advisor Assistant Professor Wanchalerm Pora

Accepted by the FACULTY OF ENGINEERING, Chulalongkorn

University in Partial Fulfillment of the Requirement for the Doctor of

Philosophy

Dean of the FACULTY OF

ENGINEERING

 (Associate Professor Supot Teachavorasinskun)

DISSERTATION COMMITTEE

Chairman

 (Associate Professor Ekachai Leelarasmee)

Thesis Advisor

 (Assistant Professor Wanchalerm Pora)

Examiner

 (Assistant Professor Suree Pumrin)

Examiner

 (Assistant Professor Manop Wongsaisuwan)

External Examiner

 (Assistant Professor Kittiphan Techakittiroj)

 iii

ABST RACT (THAI) อิซาน อาลิ : ซอฟตโ์ปรเซสเซอร์บนเอฟพีจีเอท่ีเปล่ียนสภาพไดโ้ดยใชโ้ครงสร้างพ้ืนฐานแอลแอลวีเอม็มี

เป้าหมายเพื่อระบบฝังตวัเฉพาะงานท่ีใชพ้ลงังานต ่า. (A MORPHABLE FPGA SOFT

PROCESSOR USING LLVM INFRASTRUCTURE TARGETING

LOW-POWER APPLICATION-SPECIFIC EMBEDDED

SYSTEMS) อ.ท่ีปรึกษาหลกั : วนัเฉลิม โปรา

การค านวณท่ีก าหนดค่าใหม่ได้ (Reconfigurable Computing: RC) มีจุดมุ่งหมายเพ่ือรวมความ
ยืดหยุ่นของ โปรเซสเซอร์เอนกประสงค์ (General-Purpose Processor: GPP) กับประสิทธิภาพของไอซีเอก
ประสงค์ (Application Specific Integrated Circuits: ASIC) RC มีสถาปัตยกรรมหลายแบบตั้งแต่เร่ิม
มีการคิดคน้ในปี 1960 แต่ทั้งหมดไม่สามารถกลายเป็นกระแสหลกั ปัจจยัหลกัท่ีขดัขวางไม่ให้ RC กลายเป็นแนวปฏิบติั
ทัว่ไปคือขอ้จ ากดัท่ีผูด้ าเนินการอลักอริทึม (หรือ โปรแกรมเมอร์) ตอ้งเรียนรู้คุน้เคยกบัการออกแบบฮาร์ดแวร์แบบใหม่ ใน

RC จะมีโปรเซสเซอร์คงตัว (Hard Processor: HP) ท างานร่วมกับตัว เ ร่ งแบบฮาร์ดแวร์ (Hardware

Accelerator: HA) ซ่ึงก าหนดค่าใหม่ไดแ้บบตามซอฟตแ์วร์ ดว้ยการตั้งค่าบนเอฟพีจีเอ (Field-Programmable

Gate Array: FPGA) HA ช่วยท างานทางซอฟตแ์วร์บางส่วนบนฮาร์ดแวร์เพ่ือเพ่ิมประสิทธิภาพโดยรวม ในบทความ
น้ีมีการเสนอสถาปัตยกรรม RC แบบใหม่ท่ีช่วยให้แนวปฏิบติัดา้นการเขียนโปรแกรมท่ีมีมาก่อนหลายปียงัคงเดิมในขณะท่ีใช ้

HA ร่วมประมวลผลด้วย สถาปัตยกรรมน้ีใช้โครงสร้างพ้ืนฐานคอมไพเลอร์ LLVM เพ่ือรับอัลกอริทึมแล้วสร้าง
ภาษาเคร่ืองท่ีเทียบเท่า จากนั้นจะคน้หาชุดค าสั่งท่ีใชบ้่อยท่ีสุดและสร้างวงจร RC ท่ีเทียบเท่ากนัซ่ึงเรียกว่า "Miniature

Accelerator (MA)" ขดุค าสั่งจะถูกลบออกจากไปป์ไลน์ของ HP และผลลพัธ์จากการค านวณของ MA จะไปแทนท่ี

เพ่ือสาธิตแนวคิดน้ีอลักอริทึมเอฟเอฟที (Fast Fourier Transform: FFT) ซ่ึงเป็นชุดค าสั่งหลกัในการประมวลผล
สัญญาณดิจิทัลถูกเขียนขึ้นด้วยภาษา C แล้วจึงประมวลผลบน ARM Cortex-M0 ร่วมกับ MA การท างานของ
ฟังก์ชัน FFT เร็วขึ้น 14.12% เมื่อเทียบกับไม่มี MA ตัวประมวลผลท่ีก าหนดค่าใหม่ได้ท่ีเสนอนั้นเข้ากันได้แบบ
ยอ้นกลบัอย่างสมบูรณ์ การคอมไพล์เป็นไปโดยอตัโนมติั และไม่จ าเป็นตอ้งแกไ้ขซอฟต์แวร์ภาษา C ท่ีออกแบบจากกระบวน
ทศัน์การเขียนโปรแกรมปกติ

สาขาวิชา วิศวกรรมไฟฟ้า ลายมือช่ือนิสิต

..

ปีการศึกษา 2563 ลายมือช่ือ อ.ท่ีปรึกษาหลกั

 iv

ABST RACT (ENGLISH) # # 5871458621 : MAJOR ELECTRICAL ENGINEERING

KEYWOR

D:

Adaptive microprocessor, Reconfigurable computing, Hardware

accelerator, Field-programmable gate array, LLVM compiler

infrastructure, Data Center, Computer architecture

 Ehsan Ali : A MORPHABLE FPGA SOFT PROCESSOR USING LLVM

INFRASTRUCTURE TARGETING LOW-POWER APPLICATION-

SPECIFIC EMBEDDED SYSTEMS. Advisor: Asst. Prof. Wanchalerm

Pora

The reconfigurable computing (RC) aims to combine the flexibility of

General-Purpose Processor (GPP) with performance of Application Specific

Integrated Circuits (ASIC). There are several architectures proposed since RC’s

inception in 1960s, but all have failed to become mainstream. The main factor

preventing RC to become common practice is its requirement for implementers of

algorithms (programmers) to be familiar with hardware design. In RC, a hardened

processor cooperates with a dynamic reconfigurable Hardware Accelerator (HA)

which is implemented on Field-Programmable Gate Array (FPGA). The HA

implements crucial software kernel on hardware to increase performance and its

design demands digital circuit expertise. In this paper a novel RC architecture is

proposed that keeps the decades old programming practices intact while harnessing

the power of HA. The architecture uses LLVM compiler infrastructure to receive an

algorithm and then outputs the equivalent machine language, it then finds the most

frequent instruction pairs and generates equivalent RC circuit called “Miniature

Accelerator (MA)”. The instruction pairs are dynamically removed from pipeline and

MA computed result replaces them in parallel. To demonstrate the concept the Fast

Fourier Transform (FFT) algorithm which is core Digital signal processing (DSP)

kernel is written in C and then executed on an ARM Cortex-M0. The execution of

FFT function is improved by 14.12%. The proposed adaptive processor is fully

backward compatible, compilation is automated, and no modification of exiting

software or established programming paradigms is required.

Field of Study: Electrical Engineering Student's Signature

...............................

Academic

Year:

2020 Advisor's Signature

..............................

 v

ACKNOWLEDGEMENT S

ACKNOWLEDGEMENTS

We would like to thank Prof. Ekachai Leelarasmee and Asst. Prof.

Kittiphan Techakittiroj for their continuous encouragement, and support. Special

thank to my advisor Asst. Prof. Wanchalerm Pora who patiently guided my

research by conducting weekly meetings during 6 consecutive years. We also

would like to thank the Chulalongkorn University for granting the "The 100th

Anniversary Chulalongkorn University Fund for Doctoral Scholarship" and "The

90th Anniversary of Chulalongkorn University, Rachadapisek Sompote Fund" to

the student.

Ehsan Ali

TABLE OF CONTENTS

 Page

.. iii

ABSTRACT (THAI) ... iii

... iv

ABSTRACT (ENGLISH) ... iv

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS .. vi

1. Introduction ... 1

1.1. Motivation ... 2

1.2. Hypotheses .. 2

1.3. Objectives ... 3

1.4. Scope of Thesis ... 3

1.5. Methodology ... 4

2. Literature Review .. 6

2.1. Data Centers .. 6

2.1.1. Introduction ... 6

2.1.2. Data Center Requirements ... 6

2.1.2.1. Power Supply .. 6

2.1.2.2. Cooling .. 7

2.1.2.3. Controlled Access .. 7

2.1.3. Data Center Types ... 7

2.1.4. Data Center Hardware ... 8

2.1.4.1. Computation Hardware ... 8

2.1.4.1.1. Blade Server.. 8

2.1.4.1.2. Blade Enclosure .. 8

2.1.4.2. Storage Interconnection Architectures .. 9

 vii

2.1.4.2.1. Direct Attached Storage (DAS) 9

2.1.4.2.2. Network Attached Storage (NAS) 9

2.1.4.2.3. Storage Area Networks (SANs).................................... 10

2.1.4.3. Storage Interconnection Technologies .. 10

2.1.4.3.1. Fibre Channel (FC) ... 10

2.1.4.3.2. Fibre Channel over Ethernet (FCoE) 10

2.1.4.3.3. Small Computer Systems Interface (SCSI) over IP

(iSCSI).. 11

2.1.4.4. Data Center Network (DCN) ... 11

2.1.4.5. Data Center Design Models .. 12

2.1.4.5.1. Three-tier DCN ... 13

2.1.4.5.2. Fat tree DCN ... 14

2.1.4.5.3. DCell ... 14

2.1.5. Data Center Efficiency .. 15

2.1.5.1. Energy Efficient Servers ... 15

2.1.5.2. Simulators .. 15

2.1.5.2.1. DCNSim ... 15

2.1.5.2.2. NS2 ... 15

2.1.5.2.3. NS3 ... 15

2.1.5.2.4. Cladism ... 15

2.1.5.2.5. Other Simulators ... 16

2.1.5.3. Practical Ways to Reduce Power Consumption 16

2.1.5.4. Hot Data Centers ... 16

2.1.5.5. My Own Thoughts ... 17

2.1.6. Data Center Hardware ... 17

2.1.6.1. Blade Sever .. 17

2.1.6.2. Blade Sever Types ... 17

2.1.6.2.1. Cisco ... 17

2.1.6.2.2. HP ... 17

 viii

2.1.6.2.3. Dell ... 18

2.1.6.2.4. Lenovo .. 18

2.1.6.3. Sever Farm .. 18

2.1.6.3.1. Performance Per Watt ... 18

2.1.6.4. Server Interconnection... 18

2.1.7. Server Processor .. 18

2.1.7.1. Intel .. 18

2.1.7.2. ARM .. 19

2.1.8. Considerations on Setting Up a Data Center ... 20

2.1.8.1. Introduction ... 20

2.1.8.2. Cascade Effect ... 21

2.1.8.3. Site Location Condition ... 21

2.1.8.4. Environmental Factors .. 21

2.1.8.5. Technological Factors ... 21

2.1.9. Unconventional Architectures ... 22

2.1.10. Building Condition .. 23

2.1.11. Metrics and Benchmarking ... 23

2.1.11.1. Power Usage Effectiveness (PUE) .. 23

2.1.11.2. Data Center Infrastructure Efficiency (DCIE): 24

2.1.11.3. Energy Reuse Effectiveness (ERE) ... 24

2.1.11.4. Rack Cooling Index (RCI) .. 24

2.1.11.5. Return Temperature Index (RTI)... 25

2.1.11.6. Heating, Ventilation and Air-Conditioning (HVAC) System

Effectiveness ... 25

2.1.11.7. Airflow Efficiency ... 26

2.1.11.8. Cooling System Efficiency .. 26

2.1.12. Energy Consumption Reduction Approaches 27

2.1.13. Low-Power Design versus Energy Efficiency 28

2.1.14. Energy Consumption Reduction Approaches 31

 ix

2.1.15. Cooling Systems .. 32

2.1.15.1. Introduction ... 32

2.1.15.2. Basic Refrigeration Cycle ... 32

2.1.15.3. Cooling Architecture ... 33

2.1.15.4. Cooling Process Types .. 33

2.1.15.5. Space Cooling .. 34

2.1.15.6. Heat Rejection ... 34

2.1.15.7. Humidity and Dust .. 35

2.1.15.8. Design Criteria .. 35

2.1.15.9. Data Center Thermal Considerations .. 36

2.1.15.10. Hot Aisle and Cold Aisle Layout .. 37

2.1.15.11. Heat Removal .. 37

2.1.15.12. Chilled Water System .. 38

2.1.15.13. Cooling Towers vs Dry Coolers .. 41

2.1.15.14. CRAH vs CRAC ... 42

2.1.15.15. Pumped Refrigerant for Chilled Water Systems 43

2.1.15.16. Air-Cooled System (2-Piece) .. 44

2.1.15.17. Glycol-Cooled System .. 45

2.1.15.18. Water-Cooled System .. 46

2.1.15.19. Air-Cooled Self-Contained System (1-piece) 47

2.1.15.20. Direct Fresh Air Evaporative Cooling System 48

2.1.15.21. Indirect Air Evaporative Cooling System 49

2.1.15.22. Self-Contained Roof-Top System ... 50

2.1.15.23. Modern Energy Efficient Cooling Systems 51

2.1.15.24. OPEX – CAPEX ... 51

2.1.15.25. Legacy Cooling and the End of Raised Floor 52

2.1.15.26. Modern Data Center Temperature Set Point 52

2.1.15.27. Liquid Cooling .. 52

2.1.15.28. Immersion-Cooled Systems .. 53

 x

2.1.15.29. Direct Contact Liquid Cooling .. 55

2.1.16. Liquid Cooling Drawbacks ... 55

2.1.17. Free Cooling .. 56

2.1.18. Data Center Cooling Challenges ... 56

2.1.19. Fine-Tuning Automation ... 59

2.1.20. Future Ideas ... 62

2.1.21. Cooling Conclusion ... 62

2.1.22. Security and Reliability ... 62

2.1.22.1. Physical Security ... 62

2.1.22.2. Data Center Physical Security Checklist 64

2.1.22.2.1. Site Location ... 64

2.1.22.2.2. Site Perimeter.. 64

2.1.22.2.3. Facilities .. 65

2.1.22.2.4. Disaster Recovery ... 65

2.1.22.2.5. People ... 66

2.1.22.2.6. Disaster Recovery Policies ... 67

2.1.23. Data center Processors ... 67

2.1.23.1. Introduction ... 67

2.1.23.2. ARM Architecture Review .. 67

2.1.23.3. ARM Platforms ... 68

2.1.23.4. Applied Micro ... 68

2.1.23.5. ARM based server boards ... 68

2.1.23.5.1. X-Gene 2 X-C2 Evaluation Kit 68

2.1.23.5.2. LeMaker Cello .. 69

2.1.23.5.3. Gigabyte MP30-AR0 .. 69

2.1.23.5.4. Gigabyte MP30-AR0 .. 69

2.1.23.5.5. ODROID-XU4 .. 69

2.1.24. ARM Review ... 70

2.1.25. Scanning the Server Technologies .. 72

 xi

2.1.25.1. Introduction ... 72

2.1.25.2. Intel High-End versus Low-End .. 74

2.1.26. Data Center Related Research Horizons ... 74

2.1.27. Building an Ultra Power Data Center .. 74

2.1.27.1. Server Connections .. 74

2.1.27.2. Boards .. 75

2.1.27.3. Server Enclosure .. 76

2.1.27.4. Final Data Center Solution Characteristics 78

2.1.28. Innovative Chulalongkorn Design ... 78

2.2. Data Center Conclusion .. 79

2.3. Microprocessor ... 81

2.3.1. Introduction ... 81

2.3.2. Processor Architectures ... 81

2.3.2.1. Definitions ... 81

2.3.2.2. Architecture Types .. 81

2.3.3. Microprocessor Instruction Set ... 82

2.3.3.1. ISE Specifications ... 82

2.3.4. Machine Types .. 83

2.3.4.1. Accumulator .. 83

2.3.4.2. Stack: ... 83

2.3.4.3. Register-Memory ... 83

2.3.4.4. Load-Store ... 83

2.3.4.5. Memory-Memory .. 83

2.3.5. Instruction Length ... 83

2.3.6. Memory Considerations .. 84

2.3.7. Supported Operations .. 84

2.3.8. Types of Branches ... 85

2.3.9. Instruction Set Encoding ... 85

2.4. LLVM Backend .. 85

 xii

2.4.1. Terminologies .. 85

2.4.1.1. 3-Stage of Compilation ... 85

2.4.1.2. LLVM Backend Pipeline ... 85

2.4.2. LLVM Assembly Language .. 86

2.4.2.1. Introduction ... 86

2.4.2.2. Identifiers ... 86

2.4.2.3. High Level Structure ... 87

2.4.3. LLVM Target Independent Code Generator ... 87

2.4.3.1. Introduction ... 87

2.4.3.2. The high-level design of the code generator 88

2.4.3.3. TableGen Tool ... 89

2.4.3.4. The LLVM Code Generator Classes ... 91

2.4.3.4.1. Target Description Classes ... 91

2.4.3.4.2. Machine code description classes 91

2.4.3.5. The MC Layer ... 91

2.4.3.6. Instruction Selection .. 92

2.4.3.7. SelectionDAG Select Phase .. 93

2.4.3.8. LLC DAG Related Arguments .. 93

2.4.4. LLVM IR to Machine Code Walk Through .. 94

2.4.5. LLVM Machine Code (MC) Components .. 96

2.4.5.1. RET ... 97

3. 16-bit Integer VHDL-based Laser Processor .. 100

3.1. Introduction ... 100

3.2. Implementation ... 100

3.2.1. Laser Final ISE Design .. 100

3.2.1.1. Laser Endianness ... 100

3.2.1.2. Laser Supported Addressing Modes .. 100

3.2.1.3. Laser Caller-Callee Convention .. 100

3.2.2. Final Instruction Set Bits Encoding... 101

 xiii

3.2.2.1. Instruction Description .. 102

3.2.3. Designing the Instruction Set Implementation 104

3.2.3.1. Register Number Assignment ... 104

3.2.3.2. Stack .. 108

3.2.3.3. Frame Pointer .. 109

3.2.3.4. Flag Register .. 110

3.2.3.5. Pass Method Arguments .. 110

3.2.3.6. Arithmetic .. 110

3.2.4. Processor Implementation ... 110

3.2.5. Processor File Structure ... 110

3.2.6. Simulation ... 111

3.2.6.1. Testing Instructions ... 113

3.2.6.1.1. MOV instruction test: ... 113

3.2.6.1.2. SUB Instruction: ... 114

3.2.7. FPGA Implementation .. 114

3.2.7.1. Timing ... 115

3.2.7.1.1. Setup and Hold Time .. 115

3.3. Limitation ... 116

3.4. Result .. 117

4. Processor Performance Evaluation .. 118

4.1. Introduction ... 118

4.2. Implementation ... 118

4.2.1. Benchmarking ... 118

4.2.1.1. Benchmarking Measurements ... 119

4.2.2. Synthetic Benchmarks ... 120

4.2.3. EEMBC CoreMark Benchmark .. 120

4.2.3.1. Coremark Benchmark Score Reports .. 121

4.2.4. CoreMark for X86 ... 121

4.2.4.1. Benchmarking in Assembly .. 122

 xiv

4.2.5. 256-Point Complex Fast Fourier Transform ... 123

4.2.5.1. e number .. 123

4.2.5.2. Taylor series .. 124

4.2.5.3. Euler’s Formula ... 124

4.2.5.4. Fourier Transform ... 125

4.2.5.5. Fast Fourier Transform .. 126

4.2.5.5.1. Discrete Fourier Transform .. 126

4.2.5.5.1.1. Radian 126

4.2.5.6. 256-Point Complex Fast Fourier Transform 130

4.2.5.7. Cooley-Turkey Algorithm ... 132

4.2.5.8. FFT Computation Literature Review .. 133

4.2.5.9. PicoBlaze FFT Benchmark ... 133

4.2.5.10. 8-bit Processor Mathematics ... 133

4.3. Result .. 134

5. Development of an Assembler for Laser Processor based on LLVM

Infrastructure .. 135

5.1. Introduction ... 135

5.2. LLVM Backend Development ... 135

5.2.1. Branch Implementation ... 135

5.2.2. Writing the LLVM Backend ... 135

5.2.2.1. Rapid Development of an Assembler .. 135

5.2.2.2. Add new Machine Target in Clang ... 136

5.2.3. Target Registration .. 140

5.2.3.1. Minimum Backend Bare-bone Files .. 145

5.2.3.2. To Handle Return Register .. 149

5.3. Register Allocation ... 149

5.3.1. Live Variable Analysis .. 149

5.4. Instructions Implementation ... 149

5.4.1. Return Instruction .. 149

 xv

5.4.2. Memory load/store .. 153

5.4.3. Frame Indexes ... 155

5.4.4. “ADD” Instruction .. 156

5.4.5. “MUL” Instruction .. 156

5.4.6. “DIV” Instruction .. 157

5.4.7. Branch Instructions .. 158

5.4.8. Unconditional Jump .. 161

5.4.9. Global Variables .. 163

5.4.10. Relocs .. 164

5.4.11. Fixup .. 165

5.5. Implementing LLVM Integrated Assembler .. 166

5.5.1. Implementing Assembly Parser Support ... 166

5.5.2. Function Call ... 167

5.5.3. Laser Stack Frame ... 167

5.6. Machine Code (MC) Framework .. 169

5.6.1.1. AsmParser ... 169

5.6.1.2. Object Files .. 170

5.6.1.3. Assembly Parser .. 170

5.6.1.4. Instruction Encoder ... 170

5.6.1.5. Instruction Decoder ... 170

5.6.1.6. ELF Object Writer ... 170

5.7. Laser ELF file ... 171

5.7.1. Executable and Linkable Format ... 171

5.7.2. Symbols ... 172

5.8. The Linking Process ... 172

5.8.1. Symbols and Relocations .. 172

5.8.2. The Global Offset Table .. 173

5.8.3. Sections and Segments .. 173

5.8.4. A bit more about ELF .. 174

 xvi

5.8.5. Hex File Generation .. 175

5.9. Backend Debugging .. 175

5.10. AsmParser ... 175

5.11. LLD Linker ... 176

5.12. Summary ... 176

5.12.1. Getting The LLVM Infrastructure ... 176

5.12.2. Frontend: C language Support by Clang (16-bit) 176

5.12.3. Target registration ... 177

5.12.4. Laser Backend Related Classes ... 178

5.12.5. TableGen Tool ... 178

5.12.6. Laser LLVM Backend Structure ... 178

5.12.7. Assembler .. 179

5.12.8. Function Call ... 181

5.12.9. Inline Assembly ... 181

5.12.10. Label, Jump, and Goto .. 182

5.12.11. Linker .. 182

5.13. Limitation ... 182

5.14. Result .. 183

6. IEEE-754 64-bit Floating Point Arithmetic on 8-bit Processor: PicoBlaze case

 184

6.1. Introduction ... 184

6.2. Implementation ... 185

6.2.1. IEEE-754-2008 Floating-Point Overview ... 185

6.2.2. Main Definitions .. 185

6.2.3. Double Precision ... 187

6.2.4. Exponent Encoding ... 187

6.2.5. Exception Handling ... 188

6.2.5.1. Overflow .. 188

6.2.5.2. Underflow .. 188

 xvii

6.2.6. The inexact exception .. 188

6.2.7. Addition/Subtraction ... 188

6.2.8. Multiplication .. 189

6.2.9. Division ... 190

6.2.10. Arithmetic Special Cases ... 190

6.2.11. Rounding ... 192

6.2.12. Guard, Round, and Sticky Bits .. 194

6.2.13. Subnormal Inputs .. 194

6.2.14. Conversion from biased to two’s complement 195

6.2.15. FPGA Memory Block Requirement in PicoBlaze for FFT Algorithm195

6.3. Limitations .. 195

6.4. Result .. 195

7. Improved Development Cycle for 8-bit FPGA-Based Soft-Macros Targeting

Complex Algorithms .. 197

7.1. Introduction ... 197

7.2. Implementation ... 197

7.2.1. Related Works ... 197

7.2.1.1. Standard Development Cycle Limitations................................. 198

7.2.2. PicoBlaze Assembler ... 199

7.2.3. PicoBlaze Simulator .. 200

7.2.4. Improved Development Cycle for PicoBlaze .. 200

7.2.5. Proposed Hardware Platform .. 201

7.2.6. Memory Block RAMs ... 204

7.2.7. PicoBlaze Program BRAM ... 204

7.2.8. Data Memory BRAM .. 204

7.2.9. Proposed Software Architecture .. 204

7.2.9.1. ARM Application Project .. 204

7.2.10. Hex to Header File Utility ... 205

7.2.11. Proposed Development Cycle ... 205

 xviii

7.2.12. Proposed Address Generator Circuitry .. 207

7.2.13. Proposed Verification Mechanism .. 208

7.2.13.1. Concepts .. 208

7.2.13.2. Mechanism .. 208

7.2.14. Library Usage .. 209

7.3. Limitation ... 209

7.4. Result .. 209

8. Zipi8: An Industry Level 8-bit Soft-Core PicoBlaze Compatible Processor .. 211

8.1. Introduction ... 211

8.2. Implementation ... 217

8.2.1. The PicoBlaze Firm-Core .. 217

8.2.1.1. Overview ... 217

8.2.1.2. Related Work ... 218

8.2.1.3. PicoBlaze Applications ... 218

8.2.1.4. PicoBlaze Source-Code Analysis .. 219

8.2.1.5. LLVM for PicoBlaze ... 219

8.2.1.6. Research on how to change PicoBlaze to IPC = 1 219

8.2.2. Reverse Engineering of PicoBlaze .. 220

8.2.2.1. State Machine and Control .. 220

8.2.2.2. Program Counter ... 221

8.2.2.3. Logic Optimization .. 221

8.2.2.4. Primitive Conversion to Non-Vendor Specific VHDL 221

8.2.2.4.1. LUT6, and LUT6 2: 6-Input Lookup Table................ 221

8.2.2.4.2. FD: D Flip-Flop, and its variants: FDR, FDRE 222

8.2.2.4.3. XORCY: XOR gate, and MUXCY: 2-to-1 Multiplexer

 .. 223

8.2.2.4.4. RAM32M, RAM256X1S: Multi Port Random Access

Memories (Select RAM) .. 224

8.2.2.5. Reversed Engineered Modules .. 226

8.2.3. Zipi8: PicoBlaze Compatible Soft-Core .. 228

 xix

8.2.3.1. PicoBlaze Conversion Using Modular Approach 228

8.2.3.2. PicoBlaze Architecture .. 230

8.2.3.3. Zipi8 Modules’ Schematic .. 233

8.2.3.4. Zipi8 Verification .. 234

8.2.3.4.1. Concepts ... 234

8.2.3.4.2. Mechanism .. 234

8.2.4. PicoBlaze on Lattice .. 236

8.2.4.1. Synthesis Utilization Result .. 236

8.2.4.2. Lattice RAM Blocks .. 237

8.2.4.3. Program Memory .. 237

8.3. Limitation ... 238

8.4. Result .. 239

9. DAP-Zipi8: Deterministic Real-Time Embedded System Microprocessor

without Branch and Load Delay Based on PicoBlaze Architecture 240

9.1. Introduction ... 240

9.2. Implementation ... 242

9.2.1. Definitions ... 242

9.2.2. Performance versus Determinism ... 243

9.2.3. Related Work ... 245

9.2.4. The PicoBlaze Firm-Core .. 247

9.2.4.1. Overview ... 247

9.2.4.2. PicoBlaze Source-Code Analysis .. 247

9.2.5. Zipi8 With CPI = 1 .. 249

9.2.5.1. Branch And Load Delay Elimination .. 249

9.2.5.2. Zipi8 Modifications to Achieve CPI = 1 251

9.2.5.3. Adding Dual Address-Bus Prediction to Zipi8 252

9.2.5.3.1. Program Counter Module Modification 254

9.2.5.3.2. Stack Module Modification .. 256

9.2.5.4. Resource and Power Utilization .. 257

 xx

9.2.5.5. Verification .. 259

9.2.5.5.1. Isolated Instruction Execution 259

9.2.5.5.2. Math Library Execution .. 259

9.2.5.5.3. Random Instruction Execution from A Pool 260

9.3. Limitation ... 260

9.4. Result .. 261

10. ARM Cortex-M0 Implementation in VHDL ... 262

10.1. Introduction ... 262

10.2. Implementation ... 262

10.2.1. Cortex-M0 Overview .. 262

10.2.1.1. Pipeline Stages in Cortex-M0 .. 263

10.2.1.2. Instruction Set .. 263

10.2.2. Cortex-M0 32-bit instructions ... 264

10.2.3. Registers .. 269

10.2.4. Cortex-M0 Instructions Encoding ... 269

10.2.5. Discovering Cortex-M0 PC Register Behavior 270

10.2.6. Pipeline stages in the Cortex-M0 processor .. 274

10.2.7. Interfaces ... 274

10.2.7.1. AMBA AHB-Lite Interface ... 274

10.2.8. Memory Model .. 275

10.2.9. Load and Store ... 277

10.2.10. LDR Instruction ... 277

10.2.11. Memory Access in Cortex-M0 (ARM-v6-M) 277

10.2.12. Alignment Support .. 278

10.2.13. Cortex-M0 Multiplier .. 278

10.2.14. Cortex-M0 Instruction Execution .. 278

10.2.15. Instruction Condition Codes .. 279

10.2.16. Branch Steps .. 279

10.2.17. Operating Modes ... 280

 xxi

10.2.18. Privileged and Unprivileged Execution .. 280

10.2.19. Exception Numbers ... 280

10.2.20. The Vector Table ... 280

10.2.21. SVC instruction ... 281

10.2.22. ARM Cortex-M0 Implementation Overview Schematic 282

10.2.23. ARM Cortex-M0 Implementation Verification 282

10.2.24. Turning ARM Cortex-M0 Implementation into Laboratory Modules

for Graduate Engineering Students .. 285

10.2.24.1. Related Work on Microprocessor Laboratory Courses 285

10.2.24.2. Implementation Steps with Laboratory Modularization in Mind

 .. 285

10.3. Limitation ... 286

10.4. Result .. 286

11. Adaptive Microprocessor with Miniature Accelerator using LLVM

Infrastructure and FPGA: The Case of ARM Cortex-M0 ... 287

11.1. Introduction ... 287

11.2. Implementation ... 287

11.2.1. General Literature Review .. 287

11.2.1.1. Computation Models ... 287

11.2.1.2. Processor Classification .. 288

11.2.1.2.1. General Purpose Computing 288

11.2.1.2.2. Domain-Specific Processors 289

11.2.1.2.3. Application-Specific Processors 289

11.2.1.3. Flexibility vs Performance .. 290

11.2.1.4. Reconfigurable Computation... 290

11.2.1.4.1. History .. 290

11.2.1.4.2. Theories .. 292

11.2.1.4.3. Definitions .. 294

11.2.1.5. Applications of Reconfigurable Computing 294

11.2.1.5.1. High-performance Computing 294

 xxii

11.2.1.5.2. Custom Computing Machines 295

11.2.1.5.3. Fast Prototyping and Emulation Systems 295

11.2.1.5.4. Submicron and Nanoscale Computing Systems 295

11.2.1.6. Partial Re-configuration .. 295

11.2.1.7. Granularity ... 296

11.2.1.8. Rate of Reconfiguration .. 296

11.2.1.9. Host Coupling .. 297

11.2.1.10. Routing/Interconnects.. 297

11.2.1.11. Benefits .. 297

11.2.2. Preliminary Literature on Adaptive Processor 297

11.2.2.1. High-Performance Reconfigurable Computing (HPRC)......... 297

11.2.2.2. FPGA Technologies .. 298

11.2.2.3. Applications of C to HDL ... 298

11.2.2.4. Field Programmable Gate array (FPGA) 298

11.2.2.4.1. Vivado... 298

11.2.2.4.1.1. Hierarchical Design 298

11.2.2.4.2. Debugging FPGA ... 299

11.2.2.4.3. Joint Test Action Group (JTAG) 299

11.2.2.4.4. PetaLinux on ZynqMP .. 300

11.2.2.4.5. FPGA Terminologies .. 302

11.2.2.4.5.1. Logic Cell 302

11.2.2.5. Hardware Purchase .. 302

11.2.2.5.1. Partial Reconfiguration ... 302

11.2.2.5.2. Device Support ... 303

11.2.2.5.3. Lattice Ice40 ... 303

11.2.2.5.4. Spartan-6 ... 303

11.2.2.5.4.1. Macros: 303

11.2.2.5.4.2. Primitives: Components native to

the targeted FPGA. Data-width varies: 304

 xxiii

11.2.2.5.5. Xilinx Design Language (XDL) 304

11.2.2.5.6. RapidSmith ... 305

11.2.2.6. Adaptive Microprocessor Related Works and Literature Review

 .. 306

11.2.2.7. Adaptive Execution of LLVM IR Exploration 308

11.2.2.7.1. List of IRs ... 309

11.2.2.8. Zipi8 IPC Improvement: Dual Memory Port Approach Review

 .. 309

11.2.2.8.1. RISC History .. 309

11.2.2.8.2. Delayed Load and Delayed Branch Problem............ 310

11.2.2.8.3. RISV Solutions to Delayed Load and Delayed Branch

Problem .. 311

11.2.2.8.4. List of RISC processors: ... 312

11.2.2.9. Zipi8 Modifications to Achieve IPC = 1 Review 313

11.2.2.9.1. DAP-Zipi8 Stack .. 314

11.2.2.10. Review Recap .. 315

11.2.2.10.1. Flexibility vs Performance – Reconfigurable

Hardware .. 316

11.2.3. Adaptive Processor Related Work Recap ... 318

11.2.4. Motivation And Methodology ... 321

11.2.4.1. Motivation ... 321

11.2.4.2. Methodology ... 321

11.2.5. Benchmarking ... 322

11.2.5.1. Overview ... 322

11.2.5.2. Synthetic Benchmarks ... 322

11.2.6. LLVM Adaptive Backend Pass ... 325

11.2.7. Adaptive Processor Using Miniature Accelerators 327

11.2.7.1. Observations .. 328

11.2.7.2. Retaining Backward Compatibility ... 328

11.2.7.3. Pipeline Flush to Bypass Instruction Pair via Dual-Port Memory

Block RAMs ... 328

 xxiv

11.2.8. Parallel Execution of Removed Instruction Pairs 331

11.2.9. LLVM Compilation for ARM Cortex-M0 Baremetal 332

11.2.10. FFT in C++ .. 333

11.2.11. LLVM Pass .. 337

11.2.12. Periodic Pattern Mining (PPM) ... 339

11.2.13. Cortex-M0 Free Opcode Slots ... 340

No. 342

11.2.14. Cortex-M0 Reset Process .. 343

11.2.15. IAR Execution of fft_full.o .ELF File ... 343

11.2.16. Adaptive Modules Added to Cortex-M0 ... 345

11.2.17. Accelerator Operation ... 345

11.3. Miniature Accelerator Verification ... 346

11.4. The Future Work: Maximizing the MA Performance 346

11.5. Performance Evaluation .. 347

11.6. Limitations .. 347

11.7. Result .. 347

12. Conclusion ... 349

12.1. Processor Improvement Conclusion ... 349

12.2. Publications ... 351

12.3. Projects ... 352

12.4. Future Work .. 352

13. Appendices .. 353

13.1. Appendix A – Full KCPSM6 Schematic (High Resolution) 353

13.2. Appendix B – Zipi8 RTL VHDL Source Code .. 353

13.3. Appendix C – Zipi8 on Lattice FPGA iCEcube2 Project Source Code 353

13.4. Appendix D – C++ Tools Source Code .. 353

13.5. Appendix E – Cortex-M0 Implementation Schematic 354

13.6. Appendix F – Publications .. 354

 xxv

13.6.1. A guideline for rapid development of assembler to target tailor-made

microprocessors .. 355

13.6.2. Implementation and Verification of IEEE-754 64-bit Floating-Point

Arithmetic Library for 8-bit Soft-Core Processors 359

13.6.3. Improved Development Cycle for 8-bit FPGA-Based Soft-Macros

Targeting Complex Algorithms .. 364

13.6.4. Modular Transformation of Embedded Systems from Firm-cores to

Soft-cores .. 379

13.6.5. Deterministic Real-Time Embedded Processor without Branch and

Load Delay Based on PicoBlaze Architecture 409

13.6.6. VHDL Implementation of ARM Cortex-M0 Laboratory for Graduate

Engineering Students .. 413

13.6.7. Adaptive Microprocessor with Miniature Accelerator using LLVM

Infrastructure and FPGA: The Case of ARM Cortex-M0 417

REFERENCES .. 431

VITA .. 455

1. Introduction
The preliminary research on data centers power consumption makes it clear that there

are only two ways to reduce the energy consumption of a data center. The first approach

is to work on cooling systems used in data centers as they consume 50% of total energy

used in a data center. The second approach is to optimize the hardware used in a data

center. The studying of cooling systems falls under the physics of heat transfer and

thermodynamic and fluids, which usually goes under mechanical engineering

department and not electrical engineering. Therefore, as a researcher in electrical

engineering department my attention shifted on optimization of hardware components

of a server.

This explains why this thesis is divided into two major parts. The first part shows

the preliminary research on data center in general and identifies the server processor as

the most power consuming component. If one needs to reduce a data center power

consumption the most logical path is to optimize the microprocessor cores used in a

data center. Hundreds of cores exist in a server and thousands of servers sitting next

each other construct a data center. Hence, the power optimization of a core in

conjunction with cascading effect will enormously reduce the energy consumption.

The second part of the thesis explores the available microprocessor optimization

methods either in compiler or hardware design or both. Optimization concept always

revolves around the tradeoff concept. One cannot gain a factor without losing another

one. There is always cost when it comes to improving the performance of electrical

components including microprocessors. But one can always hope that perhaps there is

still room for improvement by shifting the cost to designer labor through manifestation

of his/her endeavors and intellect.

The second part contains the notable contribution of this thesis. At first the basics

of microprocessor design is explored. It was quickly realized that a processor without

compiler infrastructure is useless, and the work expanded to cover backend

development for Laser processor. Next, the 8-bit Xilinx PicoBlaze is picked as a

working platform and its internal behavior is unlocked using a new reverse engineering

method, 50% improvement is achieved by proposing a new method that removes

branch and load delays using dual-port memory blocks. Next stage of research shifted

to 32-bit ARM Cortex-M0 processor which is one of the most popular embedded

system processor architectures (e.g., it is the main architecture in in STMicroelectronics

STM32 boards [1]). Finally, an adaptive microprocessor based on ARM Cortex-M0

using LLVM infrastructure is proposed. The architecture uses miniature accelerators

to inject results into a pipeline in parallel with other instructions to improve

performance. Two notable characteristic of proposed method is backward

hardware/software compatibility and the absence of requirement for having a hardware

expert involved with the design.

The proposed adaptive processor can be used by regular programmers without any

hardware background and can be simply turned on/off to preserve compatibility. Seven

research articles as the outcome of the work have been published.

 2

1.1. Motivation
The two identified main factors which directly impact a data center consumption is (a)

cooling system efficiency, and (b) processor power efficiency (not only power

consumption). This thesis emphasizes merely on the processor part.

There are two types of processors: (a) General-purpose and (b) Application-

specific. The flexibility of a general-purpose processor is in negative-correlation with

application-specific processor efficiency. In other words, application-specific

processors are far more power efficient and exhibit higher performance than general-

purpose processor when it comes to specific tasks.

Sustained high performance across a broad suite of general-user applications is

usually the key requirement in the design of general-purpose processor cores, while in

the world of embedded processor, systems are geared to solve a single application (or

a limited class of applications) very efficiently [2]. The chance of having a processor

which can change itself to suit a task has been increased by recent advances in

manufacturing reconfigurable and reprogrammable devices such as modern FPGAs.

Therefore, one can design a system that evaluates necessary hardware for any

algorithms by identifying the sequential and parallel parts of them and then achieve

higher level of performance by automatic parallelization of the code into hardware and

then implement it on an FPGA to beat the general-purpose processors.

 That is why this thesis proposes new methods to design a kind of adaptive

processor that can be geared towards a specific application with performance in mind

and then let it be deployed in scenario (e.g., data centers). The motivation which drives

this thesis is to come up with an adaptive processor which can reconfigure itself. The

re-configurability aspect of the processor enables the system to evolve and to be fit for

any specific application. For example, a data center that hires the adaptive processors

as its PUs, can exhibit higher performance per each program by adapting the server

cores to that specific task. This allow data center to morph itself at daytime to support

massively parallel computations, ready to serve swarms of incoming web requests

(changing the usage to be an infrastructure for web services) or can switch to high

performance mode and become the infrastructure for High Performance Computing

(HPC) while retaining the notion of maximum efficiency in both cases [2].

1.2. Hypotheses
Current advances in reconfigurable Field-Programmable Gate Arrays (FPGAs) allow

the digital circuit designers to design circuits with self-modification capability. The

increasing number of transistors on a chip [3, 4] allows the fabrication of FPGAs with

extremely large number of transistor count (in order of billions) which in turn enables

multicore soft cores [5-7] on a single FPGA chip possible.

An adaptive processor can be realized on a reconfigurable FPGA and designed in

such a way to make architecture morphing from an instruction-stream based general-

purpose Von Neumann (VN) to a tailored VN machine. The processor by itself can be

opted to tackle any algorithm in most efficient way possible.

The input to this system is a set of known language semantics such as a new

programming language that supports parallelism natively, or an algorithm written in C

(3rd generation language) using parallel programming libraries (such as OpenMP API

[8], CUDA [9], etc.) or Matlab (4th generation language) with Parallel Computing

Toolbox [10] or simply ignoring parallelism in software and write code in old fashion

 3

procedural programming. The output of the system is a set of hardware modules

optimized for that specific algorithm which then will be transferred as bit-stream into

an FPGA device next to the original core.

The system details can be laid out as follow: A general-purpose RISC soft

processor on an FPGA with fixed Instruction Set Architecture (ISA) can adapt itself by

scanning through the program via its tightly coupled compiler (based on LLVM [11]

compiler infrastructure) on compiled time or run time and then extend its ISA by adding

instructions on the fly. The extended instructions can activate tailored miniature

accelerators (hardware) which have been designed by analytical part of the system.

The miniature accelerators work based on systolic arrays [12] designed for data-

streams driven computation operating at low pace. If the design can be realized, then

backward compatibility which is a very crucial factor in design acceptance in the

industry can be achieved. Additionally, the automation of adaptive part sets users of

system and implementers of algorithm free from hardware design part. This solves

another major obstacle that prevents most adaptive systems to be adopted in real-life

practices.

1.3. Objectives
The main objective of this thesis is: “To design an adaptive processor, able to change

its architecture and tune itself for efficiency and performance based on a given specific

task (an algorithm in form of a program)”. The stated main objective can be divided

into the following blocks:

1 . To develop the Laser processor: An FPGA based integer 16-bit soft processor

using VHDL. This gives us enough knowledge on how to design

microprocessors.

2 . To develop an LLVM backend for the Laser processor. This provides adequate

knowledge on compiler design and how to provide assembler, compiler, and

debugger for a newly designed processor.

3 . To embed essential software modules into the backend to analyze the compiled

program and produce appropriate hardware accelerators.

4 . To plug the automatic generated hardware accelerators as pseudo instructions

into the ISA and reconfigures the FPGA to support the hardware.

5 . To design a comprehensive system that reconfigures the soft processor on

FPGA and produces an adaptive processor which varies across the flexibility

versus efficiency spectrum depend on the needs of program and factors

defined by the user.

1.4. Scope of Thesis
This thesis explores the theories behind microprocessor and compiler design and FPGA

based reconfigurable circuits. The performance of modern processors is extremely

technology dependent. In 2016 the 1nm CMOS technology could be achieved in

laboratory [13], and currently (2021) TSMC and Intel have 5nm production line and

2nm in development, 3nm, and 4nm on Track for 2022 [14].

The true performance improvement comes via transistor implementation

technology. We set this area (hardware fabrication) as a limitation of this thesis where

research and development in this field is out of the reach of any academic institution.

 4

On the other hand, there are numerous ways to improve a processor without relying

on technology. For example, architectural modifications which includes ISA

modification and extension, various branch prediction techniques, multicore systems

with multi-layer caches, various memory architectures and processor pipelining,

superscalar versus superpipelined, and CISC, RISC and VLIW architectures, all open

viable opportunities for academic research to improve microprocessor performance.

We exclude all hardware fabrication technologies from this thesis. We also refrain

to compare the proposed architecture proposed in this thesis to industry level

microprocessor whenever a technological factors are involved.

This sets another limitation on this thesis and to get around it we compare each

proposed architectural improvement to the original processor that modifications are

applied and not to other industry level processors in the market.

This thesis is based on research conducted from August 2015 to July 2021 where

subjects it to tools and technologies available during this period.

The digital circuits and architectures proposed in this thesis and the results such as

clock frequency and power consumption obtained are all subject to available platforms

in our university laboratory. Most proposed architectures are based on Xilinx Zynq

UltraScale+ MPSoC ZCU104 Evaluation Kit based on 16nm FinFET technology.

The results obtained in FFT algorithm performance gain is subject to current

internal optimization passes implemented in LLVM compiler infrastructure which this

thesis excludes to tamper.

1.5. Methodology
To come up with a fully functional FPGA based adaptive processor one should start

learning a Hardware Description Language (HDL) such as Verilog or VHDL.

Next a fully functional processor must be developed using one of the mentioned

HDL languages. This is to gain enough insight into the processor architecture design

concepts. This step is a crucial one as it will familiarizes the processor designer with

the factors that later can be turned into adjustable knobs to provide on the fly tweaking

and rewiring of the processor architecture based on the structure of running algorithm.

For example: “Data path size can be changed; pipeline’s depth can be modified to

reduce the impact of cache misses and pipeline stalls, or the number of General Purpose

(GP) registers can be increased or reduced to compromise between fast context

switching ability versus speed gain drives from large number of GP registers, or special

instructions can be injected into the instruction set, etc.”

After processor development the focus shall shift towards the development of the

compiler infrastructure and supportive toolchain. Beside advanced knowledge in

compiler theory, deep understanding of C/C++ programming language is necessary as

almost all industrial-level compilers such as GCC and LLVM are written in C/C++

language.

Next phase is to develop a fully functional set of libraries which can receive an

algorithm (e.g., in C language) as input, and produce the machine code as output. Under

LLVM infrastructure this is achievable by developing a backend for the target

processor.

The knowledge of how to program and synthesize reconfigurable circuits on FPGA

devices must be learned, then a fine-grained reconfigurable FPGA device must be

purchased from a manufacturer such as Xilinx.

 5

At this stage the processor performance can be compared against others using

various benchmark programs such as Dhrystone [15], EEMBC’s CoreMark [16] or

SPEC [17].

Next step is to extensively cover the literature review on adaptive processors and

FPGA based reconfigurable circuits. After acquiring deep understanding in latest

algorithms and design concepts in the field of reconfigurable digital circuits, the idea

of having a fully functional adaptive processor on an FPGA can be realized.

The following sections describe the realization of the above methodology

conducted across 4 consecutive years.

 6

2. Literature Review
2.1. Data Centers

2.1.1. Introduction
In this part the research with the focus on data centers is presented. The data center

topic is very vast, and myriad of books and research articles cover several aspects of a

data center such as power sources, cooling, physical location, server’s hardware and

software specification, networking, simulation, security, etc. The goal here is to help

the reader to acquire sufficient understand on the definition of a data center a challenges

at hand when one needs to be constructed. Detailed treatments of advanced topics are

avoided as this part of research does not aim to push the edge of technology on this

matter but the frame the foundation and prepare the reader to process the part II of this

thesis easier.

All the current popular social online networks such as Facebook, Instagram, and

Tweeter; online storage services like Dropbox, Google Drive, and OneDrive; cloud-

based demand driven services such as Virtual Private Servers (VPS), file sharing

websites, and popular search engines like Google and Bing; all and all rely on an

infrastructure called Data Centers.

A data center is a physical or virtual infrastructure that houses many computers,

servers, and networking systems which can provide IT services to individuals or

companies. It is built upon thousands of microprocessor which in this context called

processing unit (PU) connected to each other through dedicated networks.

These services are generally about storing and processing large amount of personal

and sensitive data. The IT services are usually provided in client/server architecture. As

the data which resides in a data center is very sensitive, for example, “companies

financial records, banking transactions histories, staff information, etc.”, the loss of data

cannot be tolerated. Consequently, a data center must provide extensive redundancy

when it comes to store the data. Equipped with power supply system back up, cooling

systems, redundant network connection, are features which are essential to a data center

to provide a safe, and round the clock service to the customer. Security is a crucial

factor also.

2.1.2. Data Center Requirements

2.1.2.1. Power Supply
The data center is connected to at least two separate grid sectors operated by the local

utility company. If one sector were to fail, then the second one will ensure that power

is still supplied [18].

In addition, a data center has diesel generators, which are housed in a separate

building. It also must have batteries to ensure that all operating applications can run for

15 minutes. This backup system makes it possible to provide power from the time a

utility company experiences a total blackout to the time that the diesel generators start

up. The uninterruptible power supply (UPS) also ensures that the quality remains

constant. It compensates for voltage and frequency fluctuations and thereby effectively

protects sensitive computer electronic components and systems.

 7

2.1.2.2. Cooling
All electronic components and especially the processors generate heat when in

operation. If it is not dissipated, the processors efficiency decreases, in extreme cases,

to the point that the component could fail. Therefore, cooling a data center is essential,

and because of the concentrated computing power, the costs to do so are considerable.

 For this reason, servers are installed in racks, which basically resemble specially

standardized shelves. They are laid out so that two rows of racks face each other,

thereby creating an aisle from which the front side of the server is accessible. The aisles

are covered above and closed off at the ends by doors. Cool air set to 4a temperature of

24 to 26C is blown in through holes in the floor, flows through the racks, and dissipates

the heat emitted by the servers.

Generally, a server room will contain several such enclosed server rows. The warm

air from the server room is removed by the air-conditioning system. Yet even the air-

conditioning system must dissipate the heat. When the outside temperature is below 12

to 13C, outside air can be used to effectively cool the heat absorbed by the air-

conditioning systems.

At higher outside temperatures, the air-conditioning systems are cooled with water,

made possible by six turbo-cooling units. They are not all used to cool the data center,

given that some are used as reserve units. Should a cooling system fail, the time until

the backup unit is operational must be covered. To that end, 300,000 liters of ice-cold

water (4C) are available to absorb the heat from the air-conditioning systems during

this period.

To top it off, the turbo-cooling units also must dissipate heat. There are heat

exchangers on the data centers roof for this purpose, which release hot air into the

environment.

2.1.2.3. Controlled Access
There must be mechanisms to prevent unauthorized people to get into a data center, and

access the servers, like RFID cards, biometric scanners, etc.

2.1.3. Data Center Types
We can categorize data center into two groups:

1. Physical Data Centers: Physical infrastructures with large number of

computers and fast network connections.

2. Software-Defined Data Centers: Software-Defined Data Centers (SDDC) are

a virtualized data centers, and cloud-base data centers.

 8

Fig. 1: Supermicro SBI-7228R-T2X blade server. Contains two dual CPU server

nodes [19].

Fig. 2: HP BladeSystem c7000 enclosure (populated with 16 blades), with two 3U

UPS units below [20].

2.1.4. Data Center Hardware

2.1.4.1. Computation Hardware

2.1.4.1.1. Blade Server
To be able to compute we need a computer. each single computer in data center is called

a server computer. Normal servers are inefficient to be put next to each other, so a

modular design must be used that optimizes physical space and energy. The normal

server computers with CPU, RAM and mainboard installed on them usually stripped

down, and formed into a blade like chassis which can be inserted and removed easily

from rack-mount as shown in Fig. 1. This kind of design allow more processing power

in less rack space. They are also hot swappable.

2.1.4.1.2. Blade Enclosure
It is a physical structure that can hold multiple blade servers, and provides power,

cooling, and networking. A blade enclosure sample is shown in Fig. 2.

 9

Fig. 3: A Simple DAS Diagram [21].

Fig. 4: Simple NAS Architecture [21].

2.1.4.2. Storage Interconnection Architectures

2.1.4.2.1. Direct Attached Storage (DAS)
DAS is the traditional method of locally attaching storage devices to servers via a direct

communication path between the server and storage devices as shown in Fig. 3 the

connectivity between the server and the 6storage devices are on a dedicated path

separate from the network cabling. The storage can only be accessed through the

directly attached server.

2.1.4.2.2. Network Attached Storage (NAS)
NAS is a file-level access storage architecture with storage elements attached directly

to a LAN. Unlike other storage systems the storage is accessed directly via the network

as shown in Fig. 4. This system typically uses NFS (Network File System) or CIFS

(Common Internet File System) both of which are IP applications. A separate computer

usually acts as the “filer” which is basically a traffic and security access controller for

the storage which may be incorporated into the unit itself. The advantage to this method

 10

Fig. 5: Meshed SAN Architecture [21].

is that several servers can share storage on a separate unit. Unlike DAS, each server

does not need its own dedicated storage which enables more efficient utilization of

available storage capacity. The servers can be different platforms if they all use the IP

protocol.

2.1.4.2.3. Storage Area Networks (SANs)
Like DAS, a SAN is connected behind the servers. SANs provide block-level access to

shared data storage. Block level access refers to the specific blocks of data on a storage

device as opposed to file level access. One file will contain several blocks. SANs

provide high availability and robust business continuity for critical data environments.

SANs are typically switched fabric architectures using Fibre Channel (FC) for

connectivity. As shown in Fig. 5 the term switched fabric refers to each storage unit

being connected to each server via multiple SAN switches also called SAN directors

which provide redundancy within the paths to the storage units. This provides additional

paths for communications and eliminates one central switch as a single point of failure.

Ethernet has many advantages like Fibre Channel for supporting SANs. Some of these

include high speed, support of a switched fabric topology, widespread interoperability,

and a large set of management tools.

2.1.4.3. Storage Interconnection Technologies

2.1.4.3.1. Fibre Channel (FC)
Native FC is a standards-based SAN interconnection technology within and between

data centers limited by geography. It is an open, high-speed serial interface for

interconnecting servers to storage devices (discs, tape libraries or CD jukeboxes) or

servers to servers. It is the dominant storage networking interface today. The Fibre

Channel can be fully meshed providing excellent redundancy. FC can operate at the

following speeds: 1, 2, 4, 8, 16 and 32 Gb/s with 8Gb/s to 16 Gb/s currently being

predominant. The transmission distances vary with the speed and media.

2.1.4.3.2. Fibre Channel over Ethernet (FCoE)
With FCoE, the packets are processed with the lengths and distances afforded by an

Ethernet Network and again, vary according to speed and media. According to the IEEE

802.3ae standard for 10Gigabit Ethernet over fiber, when using single mode optical

 11

Fig. 6: Basic Layered Design [22].

fiber cables, the distance supported is 10 kilometers, up to 300m when using laser

optimized 50-micron OM3 multimode fiber and up to 400m with OM4 as compared to

native Fibre Channel with only 130m. Laser optimized OM3 and OM4 fiber is an

important consideration in fiber selection for 10Gb/s transmission.

2.1.4.3.3. Small Computer Systems Interface (SCSI) over IP (iSCSI)
The iSCSI protocol unites storage and IP networking. iSCSI uses existing Ethernet

devices and the IP protocol to carry and manage data stored in a SCSI SAN. It is a

simple, high speed, low-cost, long distance storage solution. One problem with

traditional SCSI attached devices was the distance limitation. By using existing network

components and exploiting the advantages of IP networking such as network

management and other tools for LANs, MANs and WANs, iSCSI is expanding in the

storage market and extending SAN connectivity without distance limitations. It is more

cost effective due to its use of existing equipment and infrastructure. 9With a 10x

increase from existing 1Gigabit to 10Gigabit Ethernet, it will become a major force in

the SAN market. Using 10Gigabit Ethernet, SANs are reaching the highest storage

transportation speeds ever.

2.1.4.4. Data Center Network (DCN)
In recent years, Ethernet networks have made significant progress toward bridging the

performance and scalability gap between capacity-oriented clusters built using COTS

(commodity-off-the-shelf) components and purpose-built custom system architectures.

This is evident from the growth of Ethernet as a cluster interconnect on the Top500 list

of most powerful computers (top500.org). A decade ago, high-performance networks

 12

were mostly custom and proprietary interconnects, and Ethernet was used by only 2

percent of the Top500 systems. Today, however, more than 42 percent of the most

powerful computers are using Gigabit Ethernet, according to the November 2011 list

of Top500 computers. The network topology describes precisely how switches and

hosts are interconnected. This is commonly represented as a graph in which vertices

represent switches or hosts, and links are the edges that connect them. The data center

network design is based on a proven layered approach, which has been tested and

improved over the past several years in some of the largest data center implementations

in the world, as shown in figure Fig. 6.

As you can see in Fig. 6 we have three layers:

1. Core Layer: Provides the high-speed packet switching backplanes for all flows

going in and out of the data center. The core layer provides connectivity to

multiple aggregation modules and provides a resilient Layer 3 routed fabric with

no single point of failure. The core layer runs an interior routing protocol, such

as OSPF or EIGRP, and load balances traffic between the campus core and

aggregation layers using Cisco Express Forwarding-based hashing algorithms.

2. Aggregation layer modules: Provide important functions, such as service

module integration, Layer 2 domain definitions, spanning tree processing, and

default gateway redundancy. Server-to-server multitier traffic flows through the

aggregation layer and can use services, such as firewall and server load

balancing, to optimize and secure applications. The modules in this layer

provide services, such as content switching, firewall, SSL offload, intrusion

detection, network analysis, and more.

3. Access layer: Where the servers physically attach to the network. The server

components consist of 1RU servers, blade servers with integral switches, blade

servers with pass-through cabling, clustered servers, and mainframes with OSA

adapters. The access layer network infrastructure consists of modular switches,

fixed configuration 1 or 2RU switches, and integral blade server switches.

Switches provide both Layer 2 and Layer 3 topologies, fulfilling the various

server broadcast domain or administrative requirements.

2.1.4.5. Data Center Design Models

• The multi-tier model is the most common design in the enterprise. It is based

on the web, application, and database layered design supporting commerce and

enterprise businesses. This type of design supports many web service

architectures, such as those based on Microsoft .NET or Java 2 Enterprise

Edition.

• The server cluster model has grown out of the university and scientific

community to emerge across enterprise business verticals including financial,

manufacturing, and entertainment. The server cluster model is most commonly

associated with high-performance computing (HPC), parallel computing, and

high-throughput computing (HTC) environments, but can also be associated

with grid/utility computing.

 13

Fig. 7: Fat-Tree. Circles represent switches, and squares at the bottom are endpoints.

Fig. 8: A DCell topology for 5 Cells of level 0, each containing 4 servers.

2.1.4.5.1. Three-tier DCN
The legacy three-tier DCN architecture follows a multi-rooted tree-based network

topology composed of three layers of network switches, namely access, aggregate, and

core layers. The servers in the lowest layers are connected directly to one of the edge

layer switches. The aggregate layer switches interconnect multiple access layer

switches together. All the aggregate layer switches are connected to each other by core

 14

layer switches. Core layer switches are also responsible for connecting the data center

to the Internet. The three-tier is the common network architecture used in data centers.

However, three-tier architecture is unable to handle the growing demand of

cloud computing. Scalability is another major issue in three-tier DCN.

2.1.4.5.2. Fat tree DCN
Fat tree DCN architecture as shown in Fig. 7 handles the over subscription and cross

section bandwidth problem faced by the legacy three-tier DCN architecture. Fat tree

DCN employs commodity network switches-based architecture using Clos topology.

The network elements in fat tree topology also follows hierarchical organization

of network switches in access, aggregate, and core layers. However, the number of

network switches is much larger than the three-tier DCN.

2.1.4.5.3. DCell
DCell as shown in Fig. 8 is a server-centric hybrid DCN architecture where one server

is directly connected to many other servers. A server in the DCell architecture is

equipped with multiple Network Interface Cards (NICs). The DCell follows a

recursively build hierarchy of cells.

Fig. 9: Content of a book on energy efficient data centers [23].

 15

2.1.5. Data Center Efficiency

2.1.5.1. Energy Efficient Servers
To demonstrate the complexity of the matter a screenshot of the content of a book on

energy efficient serves is shown in Fig. 9. The title of the book is “Energy Efficient

Servers blueprints for data center optimization”. The content easily shows that an

efficient server design demands rethinking in all parts of a server, from CPU, Memory,

and I/O to power management, BIOS, and operating systems and applications.

2.1.5.2. Simulators
All networking simulators based on Discrete Event Simulation (DES) : models the

operation of a system as a discrete sequence of events in time. Each event occurs at a

particular instant in time and marks a change of state in the system. Between

consecutive events, no change in the system is assumed to occur; thus, the simulation

can directly jump in time from one event to the next. DES does not need to simulate a

system continuously, so the simulation process is faster.

2.1.5.2.1. DCNSim
DCNSim is a general purpose DCN simulator that supports most well-known DCN

topologies proposed in the literature. The simulator can generate various metrics for the

topologies, including static metrics like average path length, aggregated bottleneck

throughput, routing failure rate, and dynamic metrics like packet loss rate, average

buffer size and link utilization. The modular and flexible architecture of the simulator

permits easy extension to support any future proposed topologies and compute new

metrics [24].

2.1.5.2.2. NS2
The NS (Network Simulator) project started long time ago in 1989. The latest update

dated Nov. 2011. I had to download the source code of several Linux packages. It

uses TCL/TK dynamic programming language.

I could install half of the required package, but the core package gives an error in

the middle of the compilation. It seems my CentOS 7 GCC version is too new for ns2.

I switched to older version, CentOS 6, and could successfully install the packages,

upon reading the basic tutorials to get started I realized that ns2 is absolute and has

been replaced by ns3.

2.1.5.2.3. NS3
Development of ns-3 began in July 2006, written from scratch, using the C++

programming language. The project is active, and there are many academic papers

being published using this simulator [25]. It is a replacement for ns2.

2.1.5.2.4. Cladism
Needed to spend several days just to figure out how to install the simulator on my

machine. I tried version 4.0 [26] It is basically a Maven Java project, completely

undocumented, and the examples are very vague. There is no GUI, and the user must

import the simulator as a Java library into a separate project and instantiate the classes

and call the start simulation method. The simulation output was very unorganized, it

 16

seems there is a logging mechanism with an option to redirect the output to a file instead

of console, and maybe then we should use a graphing software to plot the output.

To summarize: Lack of documentation makes this simulator almost unusable.

There might be only an opportunity to investigate the code structure and reverse

engineer their employed simulation techniques.

2.1.5.2.5. Other Simulators
There are other simulators also that I did not try:

• Omnet++

• BigHouse

• The M5 Simulator

2.1.5.3. Practical Ways to Reduce Power Consumption
Upon months of research, I came to this conclusion that there are two viable practical

paths if one seeks to reduce the power consumption of a data center:

1. Design a low power processor

2. Design a low power server motherboard

2.1.5.4. Hot Data Centers
The Google has a data center in Belgium [27] which runs without air cooling system.

They rely on the natural cold weather of the country. The average temperature in a data

center room is 68 to 72 degrees and it reaches a peak of 95 degree, which prevents the

staff to work inside the data center rooms though the hardware functions properly.

There are reports of successful running of data centers without cooling system, the

data centers that used to be 55 degrees are now running comfortably at 75 degrees [28].

What is not scientifically well explored is the temperature set point for a data center

[29]. The set point is usually selected based on manufacturer conservative suggestions

and is about 20C to 22C. Hard-disks and DRAM are two components which frequently

fail. The effect of the temperature hike on their failure was studied [29] for 2 years

period upon 3 massive data centers. It is shown that as the temperature rises the failure

rate increases linearly. The increase becomes exponential for temperatures larger than

50C.

It was also observed that there is no relation between DRAM errors and rise of

temperature. Additionally, there is no evidence that high temperature results in node

outage, but the high temperature variability could be a stronger factor. The effect of

temperature on CPU and memory performance were observed [29]. It was shown that

by increasing the temperature above 50C the protective mechanism in CPU and

memory, like bus speed down scaling, enabling ECC, etc. can reduce the throughput

by 50%.

The server power consumption stays constant up to 30C and then begins to

continually increase, until it levels off at 40C. The increase in power consumption is

quite dramatic: up to 50%. Mostly due to an increase in fan power consumption [29]. It

seems what contributes to component failure is not the hot temperature but the quick

variation in temperature, so one way is to equip the servers with military grade

components that can run at very high temperature like 90C up to 125C and have no

cooling system. Instead, a temperature regulation mechanism must be employed to keep

the temperature fixed.

 17

2.1.5.5. My Own Thoughts
We can see that each server component has different suggested operating temperature.

For example, a hard-drive temperature can be between 0C to 60C [30]. CPU can tolerate

an ambient temperature up to 70C [30] . A DRAM module can operate in range of 0 to

+105C [31].

We can see that components have different max temperature. This makes the idea

of separating the module into pools and let them operate at different max temperature.

Pools of hard-drives, pools of RAMs, and pools of CPUs, interconnected by robust,

intelligent high-speed channels, and operated by intermediary independent intelligent

controllers.

2.1.6. Data Center Hardware

2.1.6.1. Blade Sever
Tower servers are like PCs and restricted in flexibility. Rack mount server ae formed

into 19-inch industry standard wide enclosures which can be stacked on top of each

other and allow to form a mixture of server configurations. The need to occupy less

space, consume less power, and less time to deploy, forces us to have blade servers,

which is the best for large numbers of nodes such as data centers. The high-power

density also has drawbacks such as heating, ventilation, and air conditioning problems.

2.1.6.2. Blade Sever Types
Blade servers need a blade enclosure to hold all the blade servers together and form a

blade system. The blade servers are typically hot swappable. There are three properties

attributed to a blade server:

1. Shared infrastructure

2. Shared power/cooling

3. Shared I/O

4. Shared infrastructure management

2.1.6.2.1. Cisco
First position on blade server market with 40% share by revenue in America. They offer

a Unified Computing System (UCS) which integrates 10 Gigabit Ethernet unified

network fabric with enterprise-class, x86- architecture servers.

1. Cisco UCS M-Series Modular Servers: consists of two elements: the chassis and

the cartridge. A 2RU chassis accepts up to 8 compute cartridges. A cartridge

has two independent nodes, each consist of an Intel Xeon processor with two or

four cores. Maximum chassis per domain is 20, which gives up to 320 nodes

(servers).

2. Cisco UCS B-Series Blade Servers: A 6RU chassis can host up to 8 blade

servers. Each blade server has 2 Intel Xeon processors. Up to 20 chassis in a

domain.

2.1.6.2.2. HP
HPE BladeSystem: c7000 Enclosure is a 10U chassis which holds up to 16 server

blades. Each server blade can hold 2 Intel Xeon processor.

 18

2.1.6.2.3. Dell
PowerEdge M1000e Blade Enclosure provides room for up to 16 blade servers. Each

PowerEdge M630 Blade Server has a single Intel Xeon processor.

2.1.6.2.4. Lenovo
A 9U chassis holds up to 14 blade severs. Each BladeCenter HS23 has a single Intel

Xeon processor.

2.1.6.3. Sever Farm
Server farm is usually referred to conventional servers used in cluster computing. The

performance is limited by cooling system and electricity cost rather than processor

performance. So, the critical design parameter is performance per watt.

2.1.6.3.1. Performance Per Watt
There are benchmark suits designed to predict performance per watt of server farms

such as: “EEMBC EnergyBench, SPECpower, and the Transaction Processing

Performance Council TPC-Energy”.

For every 100 watts spent on running the servers, roughly 40 to 60 watts is needed

to cool them [32]. That is why the fibre optic cables are being laid for example from

Iceland to North America and Europe to enable companies there to locate their servers

in Iceland. Therefore, many cold climate countries are trying to attract cloud computing

data centers.

2.1.6.4. Server Interconnection

• Server Interconnection: 10Gb, 20Gb, 40Gb

• Infiniband: 56Gb

• Myrinet

2.1.7. Server Processor

2.1.7.1. Intel
As we have already seen all giant server manufacturers are currently using Intel Xeon

processor in their products. Therefore, we will briefly look into the detail of this

processor which are all based on x86 architecture. The Inter processor comparison is

shown in Table 1.

Table 1: Intel server processors comparison.

Processor

Family

Cache Clock

Speed

Cores

Threads

Max

Power

Memory type/Extra

Xeon E7 60MB 2.20 GHz 24/48 165W DDR4-

1333/1600/1866

DDR3-

1066/1333/1600

Xeon E7 45MB 2.20 GHz 18/36 140W DDR4-

1333/1600/1866

 19

DDR3-

1066/1333/1600

Xeon E5 30MB 3.00 GHz 12/24 160W DDR4-1600/1866/

2133/2400

Xeon E5 35MB 1.70 GHz 14/28 65W DDR4-1600/1866/

2133/2400

Xeon E3 8.0MB 3.60 GHz 4/8 80W DDR4, DDR3L

Xeon E3 8.0MB 2.90 GHz 4/8 45W DDR4, DDR3L,

LPDDR3

D Family 18.0MB 2.10 GHz 12/24 65W DDR4, DDR3

(+2x10GbE)

D Family 24.0MB 1.30 GHz 16/32 45W DDR4, DDR3

(+2x10GbE)

Xeon Phi

Coprocessor

36MB 1.50 GHz 72/288 260W DDR4-2400

Xeon Phi

Coprocessor

32MB 1.30 GHz 64/256 215W DDR4-2133

Itanium 24MB 1.73 GHz 4/8 185W

Atom 4MB 2.4 GHz 9 20W

Atom 2MB 2.4 GHz 4 14W

2.1.7.2. ARM
The idea is that we do not need a huge and expensive Xeon processor for everything.

Sometimes a cheaper ARM processor can be a better option. The standard ARM

processors such as ARMv7-A Cortex and ARMv8-A Cortex cannot compete with

Xeon, instead an ARMv8-A processor with a micro-architecture revision called X-

Gene (by Applied Micro) is used in most blade servers based on ARM.

These X-gene server processors are 64-bit SoC systems with 64 cores, cache,

MMU, and visualization and run at 3.0 GHz. Dell offers a server infrastructure based

on ARM X-Gene equipped blade servers, initially by enabling Dell “Copper” servers

[33]. AMD officially started to ship its 64-bit ARM-based server chip, the Opteron

A1100 aka Seattle. It’s a quad or octo-core ARM Cortex-A57 CPU clocked at 1.7GHz

or 2GHz, with up to 4MB of shared L2 cache, 8MB L3 cache, and interfaces for up to

128GB of ECC DDR3-1600 or DDR4-1866 RAM split over two channels [34].

 20

Fig. 10: A 5000 square feet Data Center Power Consumption.

Fig. 11: The cascade effect.

2.1.8. Considerations on Setting Up a Data Center

2.1.8.1. Introduction
The goal of this chapter is to offer the best setup that one can aim for, to construct the

most energy efficient data center in the world using the technologies available to us in

year 2016.

The power demand of a server, which can be considered the smallest processing

unit in a data center, can vary with the actual work done, but even when the server

works at or below 20% of its capacity, the power consumption is between the 60-100%

of the maximum [35]. Furthermore, the consumption may vary with different types of

servers (i.e., single, or dual socket processor, or blade) and manufacturers.

Nevertheless, in literature various researchers estimate an average power demand of

400W for a standard server and 300W for a blade server [35-37].

Therefore, power density per rack can achieve 20kW or above. Moreover, a full-

length rack can be filled with 64 or more blade servers, depending on the chassis

dimensions, reaching higher power demand and hence thermal load [38].

 21

Before getting into the setup details of an energy efficient data center let us look at

a result obtained in a White Paper [39]. As we can see in Fig. 10, 52% (demand) of

power is used to support the data center computation (Supply). This ratio defines the

PUE (Power Usage Effectiveness) and in this case is
52

48
= 1.083 The lower PUE

suggest a more efficient data center.

2.1.8.2. Cascade Effect
In considering the power consumption of every data center we face a phenomena called

Cascade Effect. As we can see in Fig. 11 the power saving effort in a processor reduces

a significant percentage of total power consumption. That is why it is crucial to have

low power processor, as the cascade effect will bring us huge power saving gains.

2.1.8.3. Site Location Condition
The location of a data center is very important.

2.1.8.4. Environmental Factors
1 . Average temperature per year: Direct impact on power used for cooling and

sets the free cooling percentage.

2 . Natural disaster risk assessment and management: Earthquakes, volcano,

floods, typhoons, etc.

2.1.8.5. Technological Factors
1. The countries power Grid stability: Dictates the average power failure.

2. Proximity to submarine communication links: Sets the cost of running cables

between the site and international communication grid.

Fig. 12: A windcatcher and qanat used for cooling [40].

 22

Fig. 13: A windcatcher in Iran [40].

Fig. 14: A modern windcatcher in Barbados [40].

2.1.9. Unconventional Architectures
Wind catcher is a traditional Persian architectural element to create natural

ventilation in buildings. The windcatcher can function in three ways [40]:

1. Downward airflow due to direct wind entry

2. Upward airflow due to temperature gradient

i.Wind-assisted temperature gradient: Uses Coand effect, and the temperature

can go nearing freezing point. Fig. 12 shows how this method works in

combination with qanat.

ii.Solar-produced temperature gradient: Applicable to windless environment or

waterless house. A windcatcher functions as a solar chimney. It creates a

pressure gradient which allows hot air, which is less dense, to travel upwards

and escape out the top.

iii.The temperature in such an environment cannot drop below the nightly low

temperature.

Fig. 13 shows a traditional windcatcher in Iran and Fig. 14 shows a modern version

of it.

 23

2.1.10. Building Condition
In construction of an eco-friendly data center building, we must consider the following

items [41]: It becomes harder to implement these items after the data center has been

setup in an ordinary building:

1. Adoption of highly efficient air conditioning systems.

2. Air conditioning control systems

3. Solar power generation

4. Adoption of energy efficient and eco-friendly lights

5. Recycling of rainwater

6. Use of ambient air for air conditioning

7. Greening 8. Use of geothermal heat

2.1.11. Metrics and Benchmarking
These values are based on a data center benchmarking study carried out by Lawrence

Berkeley National Laboratories [42].

2.1.11.1. Power Usage Effectiveness
(PUE)

Equation 1: 𝑃𝑈𝐸 =
𝑇𝑜𝑡𝑎𝑙 𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑃𝑜𝑤𝑒𝑟

𝐼𝑇 𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑃𝑜𝑤𝑒𝑟

To get a better picture on PUE, we will mention some of the notable achieved

record by famous companies:

Fig. 15: Rack in/out air flow

1. In 2008, Google’s Data center was noted to have a ratio of 1.21 PUE across all

6 of its centers.

2. Through proprietary innovations in liquid cooling systems, French hosting

company OVH has managed to attain a PUE ratio of 1.09

3. Since 2015 Switch, the developer of SUPERNAP data centers, has had a third-

party audited colocation PUE of 1.18 for its SUPERNAP 7 Las Vegas Nevada

facility, with an average cold aisle temp of 69F and average humidity of 40.3%.

Standard Good Better

2.0 1.4 1.1

 24

This is attributed to switch patented hot aisle containment and HVAC

technologies.

4. In 2015 Facebook’s Prineville data center had a PUE of 1.078 and its Forest

City data center had a PUE of 1.082

5. In January 2016, the Green IT Cube in Darmstadt was dedicated with a 1.07

PUE. It uses cold water cooling through the rack doors.

2.1.11.2. Data Center Infrastructure
Efficiency (DCIE):

Equation 2: 𝐷𝐶𝐼𝐸 =
1

𝑃𝑈𝐸
=

𝐼𝑇 𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑃𝑜𝑤𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑃𝑜𝑤𝑒𝑟

2.1.11.3. Energy Reuse Effectiveness (ERE)

Equation 3: 𝐸𝑅𝐸 =
𝐶𝑜𝑜𝑙𝑖𝑛𝑔 + 𝑃𝑜𝑤𝑒𝑟 + 𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔 + 𝐼𝑇 − 𝑅𝑒𝑢𝑠𝑒 𝐸𝑛𝑒𝑟𝑔𝑦

𝑃𝑈𝐼𝑇 𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝐸𝑛𝑒𝑟𝑔𝑦

The range of values for PUE is mathematically bounded from 1.0 to infinity. A

PUE of 1.0 means 100% of the power brought to the data center goes to IT equipment

and none to cooling, lighting, or other non-IT loads. For ERE, the range is 0 to infinity.

ERE does allow values less than 1.0. An ERE of 0 means that 100% of the energy

brought into the data center is reused elsewhere, outside of the data center control

volume.

2.1.11.4. Rack Cooling Index (RCI)
Gartner has stated that for every 1-degree F that air intake temperatures are raised, 2%

of the annual power costs can be potentially saved [43].

Through exhaustive testing and analysis, ASHRAE has determined that rack air

intake temperatures need to be between 18 degrees C and 27 degrees C. Any

temperature below 18C is waste of power and above 27C is risk to IT equipment failure

due to excessive heat.

For optimal savings, the rack air intake temperature needs to be set as high as

possible while staying within the ASHRAE recommended range. This sounds easy but

it is not. The problem is in most data centers cooling needs are not uniform which is

why you have hot spots and cool spots.

Fine-grained thermal monitoring is required to provide the information needed to

optimize the data center air intake temperatures. That is to put lots of sensors to gather

raw temperature across many spots in the rooms. After receiving the raw temperatures,

we must study them and produce a report, there is where RCI come to rescue.

RCI measures how effectively equipment racks are cooled according to equipment

intake temperature guidelines established by ASHRAE/NEBS. By using the difference

between the allowable and recommended intake temperatures from the ASHRAE Class

1 (2008) guidelines, the maximum (RCIHI) and minimum (RCILO) limits for the RCI

are defined as follows:

Standard Good Better

0.5 0.7 0.9

 25

Equation 4: 𝑅𝐶𝐼𝐻𝐼 = [1 −
∑𝑇𝑥>80(𝑇𝑥−80)

(90−80)𝑛
] × 100[%]

Equation 5: 𝑅𝐶𝐼𝐿𝑂 = [1 −
∑𝑇𝑥>65(65−𝑇𝑥)

(65−59)𝑛
] × 100[%]

Where 𝑇𝑥 is the mean temperature at equipment intake 𝑥, and 𝑛 is total number of

intakes.

𝑅𝐶𝐼𝐻𝐼 is a measure of the absence of over-temperatures. 100% means that no

temperature is above the maximum recommended. Less than 100% means the greater

the probability (risk) that equipment experiences temperatures above the maximum

allowable (hotspots).

𝑅𝐶𝐼𝐿𝑂 is a measure of the absence of under-temperatures. 100% means that no

temperature is below minimum recommended. Less than 100% means the greater the

probability (risk) that equipment experiences temperatures below the minimum

allowable (over-cooling)

Table 2: RCI metrics analysis.

The raw temperature can be analyzed and by using RCI metrics we

can optimize the data center power consumption efficiency as shown in Error! R

eference source not found.

2.1.11.5. Return Temperature Index (RTI)
RTI evaluates the energy performance of the air management system.

Equation 6: 𝑅𝑇𝐼 =
∆ 𝑇𝐴𝐻𝑈

∆ 𝑇𝐸𝑄𝑈𝐼𝑃
× 100[%]

where ∆𝑇𝐴𝐻𝑈 is the typical (airflow weighted) air handler temperature drop and

∆𝑇𝐸𝑄𝑈𝐼𝑃 is the typical (airflow weighted) IT equipment temperature rise.

Deviations from an RTI of 100% indicate declining performance in the air

management system; over 100% suggests recirculation of air which results in sporadic

“hot spots” being significantly hotter than the average space temperature thus elevating

return air temperatures; less than 100% suggests by-pass of air where the cold air does

not contribute to cooling the electronic equipment and returns directly to the air handler

thus decreasing the return air temperature. Therefore, an RTI of 100% should be the

target goal for an efficient air management system

2.1.11.6. Heating, Ventilation and Air-
Conditioning (HVAC) System
Effectiveness

Equation 7: 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =
𝑘𝑊ℎ/𝑦𝑟𝐼𝑇

𝑘𝑊ℎ/𝑦𝑟𝐻𝑉𝐴𝐶

Poor Acceptable Good Ideal

≤

90%

91%-95% ≥96% 100%

Standard Good Better

0.7 1.4 2.5

 26

For a fixed value of IT equipment energy, a lower HVAC system effectiveness

corresponds to a relatively high HVAC system energy use and, therefore, a high

potential for improving HVAC system efficiency. Note that a low HVAC system

effectiveness may indicate that server systems are far more optimized and efficient

compared to the HVAC system. Thus, this metric is a coarse screen for HVAC

efficiency potential. According to a database of data centers surveyed by Lawrence

Berkeley National Laboratory, HVAC system effectiveness can range from 0.6 up to

3.5.

2.1.11.7. Airflow Efficiency

Equation 8:
𝑇𝑜𝑡𝑎𝑙 𝐹𝑎𝑛 𝑃𝑜𝑤𝑒𝑟 (𝑊)

𝑇𝑜𝑡𝑎𝑙 𝐹𝑎𝑛 𝐴𝑖𝑟𝑓𝑙𝑜𝑤 (𝑐𝑓𝑚)

This metric characterizes overall

airflow efficiency in terms of the total

fan power required per unit of airflow. This metric provides an overall measure of how

efficiently air is moved through the data center, from the supply to the return, and

considers low pressure drop design as well as fan system efficiency.

2.1.11.8. Cooling System Efficiency
 Equation 9:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝑆𝑦𝑠𝑡𝑒𝑚 𝑃𝑜𝑤𝑒𝑟 (𝑘𝑊)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝐿𝑜𝑎𝑑 (𝑡𝑜𝑛)

Standard Good Better

1.25

W/cfm

0.75

W/cfm

0.75

W/cfm

Standard Good Better

1.1

kW/ton

0.8

kW/ton

0.6

kW/ton

 27

Fig. 16: 10 approaches to reduce energy consumption.

There are several metrics that measure the efficiency of an HVAC system. The

most common metric used to measure the efficiency of an HVAC system is the ratio

of average cooling system power usage (kW) to the average data center cooling load

(tons). A cooling system efficiency of 0.8 kW/ton is considered good practice while

an efficiency of 0.6 kW/ton is considered a better benchmark value.

2.1.12. Energy Consumption Reduction Approaches
Fig. 16 discusses 10 approaches that can help us bring the power consumption down.

• Processor efficiency: No standard, usually TDP (Thermal Design Power) is

used.

• Power Supply: At least around 80

• Power Management Software: Design the capacity for peak but turn off things

when the servers are ideal.

• Blade Server: 10% less power than rack mount, because multiple servers share

same power supplies, cooling fans, etc.

• Server Virtualization: like 25% virtualized by replacing 8 physical servers

with 1 that has at least two or more processors.

 28

• Higher voltage AC Power Distribution: The UPS delivers power to the server

at 208V. If the voltage can be raised to 240V, the power supplies in the servers

will operate at increased efficiency.

• Cooling best practices: Use the natural cooling, Computational fluid dynamics

(CFD) can be used to identify inefficiencies and optimize data center airflow,

etc.

• Variable-Capacity Cooling: Variable fan speed, Digital Scroll Compressors,

and variable frequency drives in computer room air-conditioners (CRACs)

• High-Density Supplemental Cooling: Mounted above or alongside equipment

racks and pull hot air directly from the hot aisle and deliver cold air to the cold

aisle. 30 27

• Monitoring and Optimization: monitor conditions across the data center and

coordinate the activities of multiple units to prevent conflicts and increase

teamwork.

2.1.13. Low-Power Design versus Energy Efficiency
In this section we try to answer the question “Does Low-Power Design Imply Energy

Efficiency for Data Centers?” [44]and see if both indicators are related or not.

We need to mention two major caveats of using Low-Power designs in data centers:

1. First, scaling software to run on weaker systems presents a significant challenge

as it implies distributing the work of one high-power server across several low-

power servers. The greater demand for parallelism makes scale-out more

difficult; systems with finite parallelism run into Amdahl bottlenecks.

2. Constraining a systems power budget (e.g., by selecting low-power

components) eliminates points in its design space that may be more efficient.

While mobile platforms have inherent peak power budgets (e.g., driven by

form-factor), for servers there is no inherent advantage to using a low-power

design.

 29

Fig. 17: Historical trend in server efficiency.

Fig. 18: Peak Power.

In Fig. 17 we can see that for both high power (>300 W) and low-power (≤ 300W)

designs, efficiency is generally increasing, however there have been highly efficient

and inefficient designs recently in both classes.

 30

Fig. 19: Peak-efficiency versus average efficiency.

Fig. 20: Cores per Sockets efficiency.

Also, in Fig. 18 we can see that the peak power of a server has little to no correlation

to average efficiency. Some very high-power designs (shown by diamond symbol) are

very efficient.

Another interesting thing is the strong correlation between server peak-efficiency

versus the average efficiency. As we can see in Fig. 19 which suggest that for us to pick

 31

Fig. 21: Data center setup based on tiny Intel Edison computer on module.

a server we just need to measure its peak efficiency power consumption and

assume the same performance for its average efficiency.

Regarding the number of cores, in general, adding more cores to a system increases

efficiency, but the range of efficiencies for a given core integration is large and systems

with less cores can easily be more efficient than those with more. Many four core

designs are more efficient than 6 or 8 cores alternatives! as it can be seen in Fig. 20.

2.1.14. Energy Consumption Reduction Approaches
This idea that we can bringing the power consumption down by employing low power

processor has a long history. Many research works tried hard to reduce the power

consumption by using low power processors such as ARM or mobile or sensor

processors, etc. Take cluster of Intel Edison based micro-servers (consumes less than

1W) as an Example [45].

The setup has been shown in Fig. 21.The paper clearly shows that:

1. (-) In single threaded applications it loses to Dell General purpose server in all

cases. Its performance cannot even exceed 5.6% of Dell server due to lack of

sophisticated pipeline and cache structure that Xeon processors provide.

2. (+) Only on very specific applications such as dense concurrent web requests

the setup shows a degree of acceptable performance. (3.5x more efficient)

3. (+) Data intensive batch processing also shows a good acceptable performance.

(2.5x more efficient)

4. (+) The TCO is lower in Edison cluster.

5. (-) Less suitable for interactive and latency-sensitive applications.

6. (-) The limited resources in micro servers prevent them from acting as the

manager of the data processing framework.

 32

2.1.15. Cooling Systems

2.1.15.1. Introduction
Data center heat removal is one of the most important factors in design of a data center

which can lead to significant cost variant in running the data center. As the latest

computing equipment becomes smaller and uses the same or even more electricity than

the equipment it replaced, more heat is being generated in data centers. Precision

cooling and heat rejection equipment is used to collect and transport this unwanted heat

energy to the outside atmosphere [46]. Should the temperature and humidity rise to

excessive levels inside the data center, condensation can start to form - thereby

damaging the machines within. The recommended temperature for data centers is

between 21 and 24◦C [47]. Some studies have indicated that firms may be wasting

money by keeping temperatures below 21◦C [47].

2.1.15.2. Basic Refrigeration Cycle
The basic refrigeration cycle is shown in Figure 4.1, which is based on two simple

principles:

• Liquids absorb heat when changed from liquid to gas.

• Gases give off heat when changed from gas to liquid.

The basic operation cycle can be described as below:

• The refrigerant comes into the compressor as a low-pressure gas, it is

compressed and then moves out of the compressor as a high-pressure gas.

• The gas then flows to the condenser. Here the gas condenses to a liquid and

gives off its heat to the outside air.

• The liquid then moves to the expansion valve under high pressure. This valve

restricts the flow of the fluid and lowers its pressure as it leaves the expansion

valve.

• The low-pressure liquid then moves to the evaporator, where heat from the

inside air is absorbed and changes it from a liquid to a gas.

• As a hot low-pressure gas, the refrigerant moves to the compressor where the

entire cycle is repeated.

The refrigeration cycle consists of four primary devices [48]:

• Compressor: Prime mover, takes in the low-pressure gas and turns it into

high pressure gas.

• Evaporator: Absorbs the heat from the substance that we want to take the

heat from.

• Condenser: Takes the heat that is absorbs by evaporator and releases it

somewhere where it is not a problem (outside atmosphere for example).

 33

Fig. 22: Basic Refrigeration Cycle [48].

• Expansion device: Takes in the high-pressure liquid refrigerant and drops the

pressure to a lower evaporating pressure.

Figure Fig. 22 shows the basic refrigeration cycle.

2.1.15.3. Cooling Architecture
A cooling architecture is fundamentally described by:

1. A particular heat removal method (cooling process).

2. A particular air distribution type.

3. The location of the cooling unit that directly supplies cool air to the IT

equipment in data centers and network rooms.

The cooling process can be broken into steps [49]:

1. Server Cooling: Removing heat from information technology equipment

(ITE).

2. Space Cooling: Removing heat from the space housing the ITE.

3. Heat Rejection: Rejecting the heat to a heat sink outside the data center.

4. Fluid Conditioning: Tempering and returning fluid to the white space, to

maintain appropriate conditions within the space. In next section we discuss

each briefly.

2.1.15.4. Cooling Process Types
ITE generates heat as the electronic components within the ITE use electricity. Its

Newtonian physics: the energy in the incoming electricity is conserved. When we say

a server uses electricity, we mean the servers components are effectively changing the

state of the energy from electricity to heat. Heat transfers from a solid (the electrical

component) to a fluid (typically air) within the server, often via another solid (heat sinks

within the server). ITE fans draw air across the internal components, facilitating this

 34

heat transfer. Some systems make use of liquids to absorb and carry heat from ITE. In

general, liquids perform this function more efficiently than air [49].

There are three such systems [49]:

1. Liquid contact with a heat sink. A liquid flows through a server and contacts a

heat sink inside the equipment, absorbing heat and removing it from the ITE.

2. Immersion cooling. ITE components are immersed in a non-conductive liquid.

The liquid absorbs the heat and transfers it away from the components.

3. Dielectric fluid with state change. ITE components are sprayed with a non-

conductive liquid. The liquid changes state and takes heat away to another heat

exchanger, where the fluid rejects the heat and changes state back into a liquid.

2.1.15.5. Space Cooling
In legacy data center designs, heated air from servers mixes with other air in the space

and eventually makes its way back to a CRAC/CRAH unit. The air transfers its heat,

via a coil, to a fluid within the CRAC/CRAH. In the case of a CRAC, the fluid is a

refrigerant. In the case of a CRAH, the fluid is chilled water. The refrigerant or chilled

water removes the heat from the space. The air coming out of the CRAC/CRAH often

has a discharge temperature of 13-15.5 ◦C.

The CRAC/CRAH blows the air into a raised floor plenum typically using

constant-speed fans. The standard CRAC/CRAH configuration from many

manufacturers and designers controls the units cooling based on return air

temperature [49].

2.1.15.6. Heat Rejection
While raised floor free cooling worked okay in low-density spaces where no one paid

attention to efficiency, it could not meet the demands of increasing heat density and

efficiency. There are times that in legacy data centers which one can measure

temperatures 15.5◦C at the base of a rack and temperatures near 26◦C at the top of the

same rack. People began to employ best practices and technologies including Hot Aisles

and Cold 35Aisles, ceiling return plenums, raised floor management, and server

blanking panels to improve the cooling performance in raised floor environments.

These methods are beneficial, and operators should use them [49].

Around 2005, design professionals and operators began to experiment with the idea

of containment. The idea is simple; use a physical barrier to separate cool server intake

air from heated server exhaust air. Preventing cool supply air and heated exhaust air

from mixing (as shown in Fig. 23) provides several benefits, including [49]:

• More consistent inlet air temperatures.

• The temperature of air supplied to the white space can be raised, improving

options for efficiency

• The temperature of air returning to the coil is higher, which typically makes it

operate more efficiently

• The space can accommodate higher density equipment

 35

Fig. 23: Hot Aisle Enclosure Diagram [49].

Note that there is a difference between containing the hot aisle versus the cold aisle.

Nowadays they use hot aisle containment in new data centers [49]. After server heat is

removed from a white space, it must be rejected to a heat sink. The most common heat

sink is the atmosphere. Other choices include bodies of water or the ground.

2.1.15.7. Humidity and Dust
Beside temperature we must consider the effect of humidity and dust. Low humidity

increases the electro-static discharge (ESD) but is not of much concern, in contrast high

humidity does appear to pose a realistic threat to information technology equipment

(ITE) [49]. Dust can coat electronic components, reducing heat transfer. Certain types

of dust, called zinc whiskers, are conductive.

Zinc whiskers have been most found in electroplated raised floor tiles. The zinc

whiskers can become airborne and land inside a computer. Since they are conductive,

they can cause damaging shorts in tiny internal components. Uptime Institute

documented this phenomenon in a paper entitled “Zinc Whiskers Growing on Raised-

Floor Tiles Are Causing Conductive Failures and Equipment Shutdowns.” [49].

2.1.15.8. Design Criteria
To design a cooling system, the design team must agree upon certain criteria. Heat load

(most often measured in kilowatts) typically gets the most attention. Most often, heat

load includes two elements: total heat to be rejected and the density of that heat.

Traditionally, data centers have measured heat density in watts per square foot. Many

postulate that density should be measured in kilowatts per cabinet, which is a very

defensible in cases where one knows the number of cabinets to be deployed [49].

Airflow receives less attention than heat load. Many people use computational fluid

dynamics (CFD) software to model airflow. These programs can be especially useful

in non-contained raised floor environments. In all systems, but especially in

 36

Fig. 24: Data Center Temperature Flow [50].

contained environments, it is important that the volume of air produced by the

cooling system meet the ITE requirement. There is a direct relationship between heat

gain through a server, power consumed by the server, and airflow through that server.

Heat gain through a server is typically measured by the temperature difference between

the server intake and server exhaust or delta T (∆T).

Airflow is measured in volume over time, typically cubic feet per minute (CFM).

Assuming load has already been determined, a designer should know (or, more

realistically, assume) a T. If the designer does not assume a ∆T, the designer leaves it

to the equipment manufacturer to determine the design T, which could result in airflow

that does not match the requirements [49].

The ∆T for most commodity servers is about 11◦C [49].

2.1.15.9. Data Center Thermal Considerations
In Fig. 24 several locations in the data center where the environment can be measured

and controlled is shown.

These points include:

• Server inlet (point 1 in Fig. 24)

• Server exhaust (point 2 in Fig. 24)

• Floor tile supply temperature (point 3 in Fig. 24)

• Heating, ventilation, and air conditioning (HVAC) unit return air temperature

(point 4 in Fig. 24)

• Computer room air conditioning unit supply temperature (point 5 in Fig. 24)

The lower the air supply temperature in the data center, the greater the cooling costs.

In essence, the air conditioning system in the data center is a refrigeration system. The

cooling system moves heat generated in the cool data center into the outside ambient

environment. The power requirements for cooling a data center depend on the amount

of heat being removed (the amount of IT equipment you have) and the temperature delta

between the data center and the outside air.

The rack arrangement on the data center raised floor can also have a significant

impact on cooling-related energy costs and capacity, as summarized in the next

section [50].

 37

Fig. 25: Hot-Aisle and Cold-Aisle Layout [50].

Fig. 26: Server Inlet Air Mixing [50].

2.1.15.10. Hot Aisle and Cold Aisle Layout
The hot-aisle and cold-aisle layout in the data center has become a standard as shown

in Fig. 25. By arranging the rack into rows of hot and cold aisles, the mixing of air in

the data center is minimized. If warm air is allowed to mix with the server inlet air, the

air supplied by the air conditioning system must be supplied at an even colder supply

temperature to compensate [50].

In contrast, not using segregated hot and cold aisles results in server inlet air

mixing. Air must be supplied from the floor tile at a lower temperature to meet the

server inlet requirements, as shown in Fig. 26.

2.1.15.11. Heat Removal
There are 13 fundamental heat removal methods to cool the IT environment and

transport unwanted heat energy from IT equipment to the outdoors [46].

One can think of heat removal of as the process of “moving” heat energy from the

IT space to the outdoors. This “movement” may be as simple as using an air duct

 38

Fig. 27: Simplified breakdown of the 13 fundamental heat removal methods [46].

to “transport” heat energy to the cooling system located outdoors. However, this

“movement” is generally accomplished by using a heat exchanger to transfer heat

energy from one fluid to another (e.g., from air to water). In Fig. 27 there are two points:

indoor and outdoor.

2.1.15.12. Chilled Water System
A chiller is a machine that removes heat from a liquid via a vapor-compression or

absorption refrigeration cycle [51]. The system involves a compressor, evaporator,

condenser, and a pump. There is a YouTube video that demonstrates the chiller system

basics through animation at https://www.youtube.com/watch? v=0rzQhSXVq60.

The first row in Fig. 27 depicts a Computer Room Air Handler (CRAH) joined

together with a chiller. This combination is generally known as a chilled water system.

In a chilled water system, the components of the refrigeration cycle are relocated from

the computer room air conditioning systems to a device called a water chiller shown in

Fig. 27.

The function of a chiller is to produce chilled water (water refrigerated to about 8-

15C). Chilled water is pumped in pipes from the chiller to the CRAH units located in

the IT environment. Computer room air handlers are like computer room air

conditioners in appearance but work differently. They cool the air (remove heat) by

drawing warm air from the computer room through chilled water coils filled with

circulating chilled water. Heat removed from the IT environment flows out with the

(now warmer) chilled water exiting the CRAH and returning to the chiller. The chiller

then removes the heat from the warmer chilled water and transfers it to another stream

https://www.youtube.com/watch?%20v=0rzQhSXVq60

 39

Fig. 28: Water-cooled chilled water system [46].

Fig. 29: Water-cooled chiller [46].

of circulating water called condenser water which flows through a device known

as a cooling tower.

As seen in Fig. 28, a cooling tower rejects heat from the IT room to the outdoor

environment by spraying warm condenser water onto sponge-like material (called fill)

at the top of the tower. The water spreads out and some of it evaporates away as it drips

and flows to the bottom of the cooling tower (a fan is used to help speed up the

evaporation by drawing air through the fill material). In the same manner as the human

body is cooled by the evaporation of sweat, the small amount of water that evaporates

 40

Fig. 30: Air-cooled chiller [46].

Fig. 31: A Cooling Tower [46].

from the cooling tower serves to lower the temperature of the remaining water. The

cooler water at the bottom of the tower is collected and sent back into the condenser

water loop via a pump package.

Condenser water loops and cooling towers are usually not installed solely for the

use of water-cooled computer room air conditioning systems. They are usually part of

a larger system and may also be used to reject heat from the buildings comfort air

conditioning system (for cooling people).

There are three main types of chillers distinguished by their use of water or air to

reject heat:

1. Water-cooled chillers: Heat removed from the returning chilled water (as

shown in Fig. 29) is rejected to a condenser water loop for transport to the

outside atmosphere. The condenser water is then cooled using a cooling tower

- the final step in rejecting the heat to the outdoors. Water-cooled chillers are

typically located indoors, and one example can be seen in Fig. 31.

2. Glycol-cooled chillers: Look identical to water-cooled chillers. With glycol-

cooled chillers, heat removed from the returning chilled water is rejected to a

glycol loop for transport to the outside atmosphere. The glycol flows via pipes

to an outdoor-mounted device called a dry cooler also known as a fluid cooler.

 41

Heat is rejected to the outside atmosphere as fans force outdoor air through the

warm glycol-filled coil in the dry cooler. Glycol-cooled chillers are typically

located indoors, and one example can be seen in Fig. 30. Propylene Glycol is a

Food Grade Antifreeze. A food grade antifreeze is required when a food product

is being cooled. The glycol, mixed with city water, enables us to operate our

chiller systems in the -2 to -4 temperature range that breweries require [52].

3. Air-cooled chillers: Heat removed from the returning chilled water is rejected

to a device called an air-cooled condenser that is typically integrated with the

chiller. This type of chiller is known as a packaged chiller and can also be

integrated into a cooling facility module.

Fig. 32: Cooling Tower vs Dry Cooler [53].

2.1.15.13. Cooling Towers vs Dry Coolers
Cooling Towers use evaporation to provide cooling. They are located outdoor and are

capable of processing large amounts of heat and are commonly used to cool nuclear

power plants. In a Cooling Tower, hot water is sprayed on a medium to spread it out.

From there, outside air, which is cooler than the water, mixes with the water and causes

evaporation. Because of the evaporation, Cooling Towers require continuous water

refills to maintain an appropriate water level. This YouTube video helps to explain how

a cooling tower functions:

https://www.youtube.com/watch?v=xKzenFW0ZIg&feature=youtu.be

The main difference between Dry Coolers and Cooling Towers is that Dry Coolers

do not require water. Instead, air is blown over a heat exchanger to remove the heat

from the liquid in the system.

Chilled Water System pros and cons and their usual usage are stated below:

• Pros:

o Chilled water CRAH units generally cost less, contain fewer parts, and

have greater heat removal capacity than CRAC units with the same footprint.

(Next section compares CRAH vs CRAC)

https://www.youtube.com/watch?v=xKzenFW0ZIg&feature=youtu.be%20

 42

Fig. 33: CRAC vs CRAH [54].

o Chilled water system efficiency improves greatly with increased data

center capacity.

o Chilled water piping loops are easily run very long distances and can

service many IT environments (or the whole building) from one chiller plant.

o Chilled water systems can be engineered to be extremely reliable.

o Can be combined with economizer modes of operation to increase

efficiency. Designing the system to operate at higher water temperatures 12-

15C) will increase the hours on economizer operation.

• Cons:

o Chilled water systems generally have the highest capital costs for

installations below 100 kW of electrical IT loads.

o Introduces an additional source of liquid into the IT environment

• Usually Used:

o In data centers 200 kW and larger with moderate-to-high availability

requirements or as a high availability dedicated solution. Water-cooled chilled

water systems are often used to cool entire buildings where the data center

may be only a small part of that building.

2.1.15.14. CRAH vs CRAC
• Computer Room Air Conditioner (CRAC): A CRAC unit is exactly like the

air conditioner at your house. It has a direct expansion (DX) refrigeration

cycle built into the unit. This means that the compressors required to power

the refrigeration cycle are also located within the unit. Cooling is

accomplished by blowing air over a cooling coil filled with refrigerant. A

CRAC is typically constant volume therefore it can only modulate on and off.

Recently, some manufacturers have developed CRAC units that can vary the

airflow using multistage compressors, but most existing CRAC units have

on/off control only [54].

• Computer Room Air Handler (CRAH): A CRAH unit works exactly like a

chilled water air handling unit found in almost all high-rise commercial office

buildings. Cooling is accomplished by blowing air over a cooling coil filled

with chilled water. Typically, chilled water is supplied to the CRAHs by a

 43

Fig. 34: Example schematic drawing of a pumped refrigerant system connected to

chilled water [46].

chilled water plant (i.e., chiller). CRAHs can have VFDs that modulate fan

speed to maintain a set static pressure either under floor or in overhead ducts

[54]. Fig. 33 shows the difference between CRAC vs CRAH.

2.1.15.15. Pumped Refrigerant for Chilled Water Systems
The second row in Fig. 27 depicts a pumped refrigerant heat exchanger joined together

with a chiller. This combination is generally known as a pumped refrigerant system for

chilled water systems. Concerns regarding availability and the drive toward higher

densities have led to the introduction of pumped refrigerant systems within the data

center environment. These systems are typically composed of a heat exchanger and

pump which isolate the cooling medium in the data center from the chilled water.

However, the system could also isolate other cooling liquids such as glycol.

Typically, these pumped refrigerant systems use some form of refrigerant (R-

134A) or other non-conductive fluids like Flourinert that is pumped through the system

without the use of a compressor. Fig. 34 shows an example of a pumped refrigerant

system connected to a packaged air-cooled chiller using an overhead cooling unit.

Chilled water is pumped in pipes from the chiller to a heat exchanger which transfers

the heat from the pumped refrigerant. The colder refrigerant returns to the cooling unit

to absorb more heat and returns to the heat exchanger.

Pumped Refrigerant pros and cons and their usual usage are stated below:

• Pros:

o Keeps water away from IT equipment in chilled water applications.

o Oil-less refrigerants and non-conductive fluids eliminate risk of mess or

damage to servers in the event of a leak.

o Efficiency of cooling system due to proximity to servers or direct to chip

level.

• Cons

o Higher first cost because of adding additional pumps and heat

exchangers into the cooling system.

• Usually Used:

 44

Fig. 35: Air-cooled DX system (2-piece) [46].

Fig. 36: Example of Air-cooled DX system (2-piece) [46].

o These systems are usually used for cooling systems that are closely

coupled to the IT equipment for applications like row and rack based high

density cooling.

o Chip Level Cooling where coolant is piped directly to the server

2.1.15.16. Air-Cooled System (2-Piece)
The third row in Fig. 27 depicts an air-cooled CRAC joined together with a condenser.

This combination is generally known as an air-cooled CRAC DX system. The “DX”

designation stands for direct expansion and although this term often refers to an air-

cooled system, in fact any system that uses refrigerant and an evaporator coil can be

called a DX system.

Air-cooled CRAC units are widely used in IT environments of all sizes and have

established themselves as the “staple” for small and medium rooms. In an air-cooled 2-

piece system, half the components of the refrigeration cycle are in the CRAC, and the

rest are outdoors in the air-cooled condenser as shown in Fig. 35. Refrigerant circulates

between the indoor and outdoor components in pipes called refrigerant lines. Heat from

the IT environment is “pumped” to the outdoor environment using this circulating flow

of refrigerant. In this type of system, the compressor resides in the CRAC unit.

However, the compressor may alternatively reside in the condenser. When the

compressor resides in the condenser the correct term for the condenser is condensing

unit, and the overall system is known as a split system. Fig. 36 shows an example of an

air-cooled 2-piece DX system.

 45

Fig. 37: Glycol-Cooled System [46].

2.1.15.17. Glycol-Cooled System
The fourth row in Fig. 27 depicts a Glycol-Cooled CRAC joined together with a dry

cooler. This combination is generally known as a glycol-cooled system. This type of

system locates all refrigeration cycle components in one enclosure but replaces the

bulky condensing coil with a much smaller heat exchanger shown in Fig. 37.

The heat exchanger uses flowing glycol (a mixture of water and ethylene glycol,

like automobile anti-freeze) to collect heat from the refrigerant and transport it away

from the IT environment. Heat exchangers and glycol pipes are always smaller than

condensing coils found in 2-piece air-cooled systems because the glycol mixture has

the capability to collect and transport much more heat than air does. The glycol flows

via pipes to a dry cooler where the heat is rejected to the outside atmosphere. A pump

package (pump, motor, and protective enclosure) is used to circulate the glycol in its

loop to and from the Glycol-Cooled CRAC and dry cooler. A Glycol-Cooled system is

very similar in appearance to the equipment in Fig. 36.

The Glycol-Cooled system pros and cons and their usual usage are stated below:

• Pros:

o The entire refrigeration cycle is contained inside the CRAC unit as a

factory-sealed and tested system for highest reliability with the same floor

space requirement as a two-piece air-cooled system.

o Glycol pipes can run much longer distances than refrigerant lines (air-

cooled split system) and can service several CRAC units from one dry cooler

and pump package.

o In cold locations, the glycol within the dry cooler can be cooled so much

(below 10C [50F]) that it can bypass the heat exchanger in the CRAC unit and

flow directly to a specially installed economizer coil. Under these conditions,

the refrigeration cycle is turned off and the air that flows through the

economizer coil, now filled with cold flowing glycol, cools the IT

environment. This economizer mode, also known as free cooling, provides

excellent operating cost reductions when used.

• Cons:

o Additional required components (pump package, valves) raise capital

and installation costs when compared with air-cooled DX systems.

o Maintenance of glycol volume and quality within the system is

required.

 46

Fig. 38: Water-Cooled System [46].

o Introduces an additional source of liquid into the IT environment.

• Usually Used:

o In computer rooms and 30-1,000 kW data centers with moderate

availability requirements.

2.1.15.18. Water-Cooled System
The fifth row in Fig. 27 depicts a water-cooled CRAC joined together with a cooling

tower. This combination is generally known as a water-cooled system. Water-cooled

systems are very similar to glycol-cooled systems in that all refrigeration cycle

components are located inside the CRAC. However, there are two important differences

between a glycol-cooled system and a water-cooled system:

1. water (also called condenser water) loop is used instead of glycol to collect and

transport heat away from the IT environment.

2. Heat is rejected to the outside atmosphere via a cooling tower instead of a dry

cooler as seen in Fig. 38.

The Water-Cooled systems pros and cons and their usual usage are stated below:

• Pros:

o All refrigeration cycle components are contained inside the computer

room air conditioning unit as a factory-sealed and tested system for highest

reliability.

o Condenser water piping loops are easily run long distances and almost

always service many computer room air conditioning units and other devices

from one cooling tower.

o In leased IT environments, usage of the building’s condenser water is

generally less expensive than chilled water (chilled water is explained in the

next section).

• Cons:

o High initial cost for cooling tower, pump, and piping systems.

o Very high maintenance costs due to frequent cleaning and water

treatment requirements.

o Introduces an additional source of liquid into the IT environment.

o A non-dedicated cooling tower (one used to cool the entire building)

may be less reliable than a cooling tower dedicated to the computer room air

conditioner.

• Usually Used:

 47

Fig. 39: Indoor Air-Cooled Self-contained System [46].

Fig. 40: Examples of Indoor Air-Cooled Self-contained System [46].

o In conjunction with other building systems in data centers 30kW and

larger with moderate-to-high availability requirements.

2.1.15.19. Air-Cooled Self-Contained System (1-piece)
The sixth row in Fig. 27 depicts an air-cooled self-contained air conditioning unit joined

together with an air duct. This combination is generally known as an air-cooled self-

contained system. Self-contained systems locate all the components of the refrigeration

cycle in one enclosure that is usually found in the IT environment. Heat exits the self-

contained system as a stream of hot (about 49C) air called exhaust air. This stream of

hot air must be routed away from the IT room to the outdoors or into an unconditioned

space to ensure proper cooling of computer equipment as illustrated in Fig. 39.

If mounted above a drop ceiling and not using condenser air inlet or outlet ducts,

the hot exhaust air from the condensing coil can be rejected directly into the drop ceiling

area. The building’s air conditioning system must have available capacity to handle this

additional heat load. Air that is drawn through the condensing coil (becoming exhaust

air) should also be supplied from outside the computer room. This will avoid creating

a vacuum in the room that would allow warmer, unconditioned air to enter. Self-

contained indoor systems are usually limited in capacity (up to 15kW) because of the

additional space required to house all the refrigeration cycle components and the large

 48

Fig. 41: Example of a direct air evaporative cooling system [46].

Fig. 42: Example of a direct air evaporative cooling system [46].

air ducts required to manage exhaust air. Self-contained systems that mount outdoors

on a building roof can be much larger in capacity but are not commonly used for

precision cooling applications. Fig. 40 shows an example of an air-cooled self-

contained system.

2.1.15.20. Direct Fresh Air Evaporative Cooling System
The seventh row in Fig. 27 depicts an air-duct joined together with a direct fresh air

evaporative cooler. This combination is generally known as a direct fresh air

evaporative cooling system, sometimes referred to as direct air. A direct fresh air

economizer system uses fans and louvers to draw a certain amount of cold outdoor air

through filters and then directly into the data center when the outside air conditions are

within specified set points.

Louvers and dampers also control the amount of hot exhaust air that is exhausted

to the outdoors and mixed back into the data center supply air to maintain

environmental set points (see Fig. 41). The primary mode of operation for this cooling

method is “economizer” or free cooling mode and most systems use a containerized

 49

Fig. 43: Indirect Air Economizer System [46].

Fig, 44: Example of an indirect air evaporative cooling system [46].

DX air-cooled system as back-up. Although supply air is filtered, this does not

eliminate fine particulates such as smoke and chemical gases from entering the data

center.

This heat removal method is normally used with evaporative cooling whereby the

outside air also passes through a wet mesh material before entering the data center. Note

that using evaporative assist increases the data center humidity because the direct fresh

air into the data center passes over the evaporative medium bringing the air to saturation

which minimizes the effectiveness of this method for data center applications.

Evaporative assist is most beneficial in dry climates. For more humid climates, such as

Singapore, evaporative assist should be evaluated based on ROI (return on investment).

Fig. 42 shows an example of a direct fresh air evaporative cooling system.

2.1.15.21. Indirect Air Evaporative Cooling System
The eighth row in Fig. 28 depicts an air-duct joined together with an indirect air

evaporative cooler. This combination is generally known as an indirect air evaporative

cooling system, sometimes referred to as indirect air. Indirect air evaporative cooling

 50

Fig. 45: Self-contained roof-top system [46].

systems use outdoor air to indirectly cool data center air when the temperature

outside is lower than the temperature set point of the IT inlet air, resulting in significant

energy savings. This “economizer mode or free cooling” of operation is the primary

mode of operation for this heat removal method although most do use a containerized

DX air-cooled system as back-up. Fans blow cold outside air through an air-to-air heat

exchanger which in turn cools the hot data center air on the other side of the heat

exchanger, thereby completely isolating the data center air from the outside air. Heat

exchangers can be of the plate or rotating type.

Like indirect air, this heat removal method normally uses evaporative assist

whereby the outside of the air-to-air heat exchanger is sprayed with water which further

lowers the temperature of the outside air and thus the hot data center air. Fig. 43

provides an illustration of an indirect air evaporative cooling system that uses a plate

heat exchanger with evaporative assist.

Fig, 44 shows an example of a complete cooling system with this type of heat

rejection method. Indirect air evaporative cooling systems provide cooling capacities

up to about 1,000kW. Most units are roughly the size of a shipping container or larger.

These systems mount either on a building roof or on the perimeter of the building. Some

of these systems include an integrated refrigeration cycle that works in conjunction with

an economizer mode.

2.1.15.22. Self-Contained Roof-Top System
The ninth row in Fig. 27 depicts an air-duct joined together with a self-contained roof-

top unit. This combination is generally referred to as a roof-top unit (RTU). These

systems are not a typical cooling solution for new data centers. Roof-top units are

basically the same as the air-cooled self-contained system described above except that

they are located outdoors, typically mounted on the roof, and are much larger than the

indoor systems. Roof-top units can also be designed with a direct fresh air economizer

mode. Fig. 45 shows an example of a roof-top unit.

 51

Fig. 46: Traditional Cooling Diagram [46].

The Water-Cooled systems pros and cons and their usual usage are stated below:

• Pros:

o All cooling equipment is placed outside the data center, allowing for

white space to be fully utilized for IT equipment.

o Significant cooling energy savings in mild climates compared to

systems with no economizer mode.

• Cons:

o May be difficult to retrofit into an existing data center.

• Usually Used:

o In data centers that are part of a mixed-use facility.

2.1.15.23. Modern Energy Efficient Cooling Systems
First, it is essential that data centers measure just how much energy they use for non-

computing functions such as cooling. This allows for more effective management. The

effective airflow management is particularly important. Through effective containment,

data centers can reduce the risk of hot and cold air mixing. Google suggests using

thermal modelling and computational fluid dynamics to devise an optimal strategy for

air flow management [47]. Free cooling can also help to improve data center energy

efficiency. There are several forms of free cooling, including thermal reservoirs, low-

temperature ambient air and evaporating water [47].

2.1.15.24. OPEX – CAPEX
An operating expense, operating expenditure, operational expense, operational

expenditure or Opex is an ongoing cost for running a product, business, or system. Its

counterpart, a capital expenditure (Capex), is the cost of developing or providing non-

consumable parts for the product or system. For example, the purchase of a photocopier

involves Capex, and the annual paper, toner, power, and maintenance costs represents

Opex. For larger systems like businesses, Opex may also include the cost of workers

and facility expenses such as rent and utilities [55].

 52

2.1.15.25. Legacy Cooling and the End of Raised Floor
For decades, computer rooms and data centers utilized raised floor systems to deliver

cold air to servers. Cold air from a computer room air conditioner (CRAC) or computer

room air handler (CRAH) pressurized the space below the raised floor. Perforated tiles

provided a means for the cold air to leave the plenum and enter the main space ideally

in front of server intakes. After passing through the server, the heated air returned to

the CRAC/CRAH to be cooled, usually after mixing with the cold air. Very often, the

CRAC units return temperature was the set point used to control the cooling systems

operation. Most commonly the CRAC unit fans ran at a constant speed, and the CRAC

had a humidifier within the unit that produced steam. The primary benefit of a raised

floor, from a cooling standpoint, is to deliver cold air where it is needed, with very little

effort, by simply swapping a solid tile for a perforated tile as show in Fig. 46 [49].

For many years, this system was the most common design for computer rooms

and data centers. It is still employed today. The legacy system relies on one of the

principles of comfort cooling: deliver a relatively small quantity of conditioned air and

let that small volume of conditioned air mix with the larger volume of air in the space

to reach the desired temperature. This system worked okay when ITE densities were

low. Low densities enabled the system to meet its primary objective despite its flaws

poor efficiency, uneven cooling, etc. At this point, it is an exaggeration to say the raised

floor is obsolete. Companies still build data centers with raised floor air delivery.

However, more and more modern data centers do not have raised floor simply because

improved air delivery techniques have rendered it unnecessary [49].

2.1.15.26. Modern Data Center Temperature Set Point
We must answer the question of “How cold is cold enough for a data center?”. Heat

must be removed from the vicinity of the ITE electrical components to avoid

overheating the components. If a server gets too hot, onboard logic will turn it off to

avoid damage to the server [49].

The ASHRAE Technical Committee TC9.9 guideline recommends that the device

inlet be between 18-27C and 20-80% relative humidity (RH) to meet the manufacturers

established criteria. Uptime Institute further recommends that the upper limit be

reduced to 25C to allow for upsets, variable conditions in operation, or to compensate

for errors inherent in temperature sensors and/or controls systems. It is extremely

important to understand that the TC 9.9 guidelines are based on server inlet

temperatures not internal server temperatures, not room temperatures, and certainly not

server exhaust temperatures.

It is also important to understand the concepts of Recommended and Allowable

conditions. If a server is kept too hot, but not so hot that it turns itself off, its lifespan

could be reduced. This lifespan reduction is a function of the high temperatures the

server experiences and the duration of that exposure. In providing a broader Allowable

range, ASHRAE TC 9.9 suggests that ITE can be exposed to the higher temperatures

for more hours each year.

2.1.15.27. Liquid Cooling
Organizations are increasingly evaluating and implementing liquid cooling solutions to

meet the heat challenges of blade servers and high-density computing. Liquid cooling

 53

solutions utilize air/liquid heat exchangers to provide quiet, uniform, effective cooling

[56].

Historically, liquid cooling solutions were successfully and safely used to cool

high-heat mainframe computers. Yet, as power consumption and densities fell to less

than 5 kW per rack, air cooling became the standard technology. With the increasing

need to again turn to liquid cooling the American Society of Heating, Refrigerating and

Air-Conditioning Engineers (ASHRAE) recently published a book entitled Liquid

Cooling Guidelines for Datacom Equipment Centers that discusses standards and

technologies related to data center liquid cooling, designs, and implementations [56].

A key driver of liquid cooling is the HPC community bid to super-charge the

processing power of supercomputers, creating exascale machines that can tackle

massive datasets. Although it can offer savings over the life of a project, liquid cooling

often requires higher up-front costs, making it a tougher sell during procurement [56].

Immersion solutions usually come into play when an end user is building a new

greenfield data center project and is seen less frequently in expansions or redesigns of

existing facilities. Direct-contact solutions are more likely candidates for existing

facilities but require bringing water to the rack requires piping (either below the raised-

floor or overhead) that is not standard in most data centers [56].

2.1.15.28. Immersion-Cooled Systems
Facebook and Intel have already validated the benefits of using submersion cooling

[57, 58]. The current popular solutions in the industry are:

1. The CarnotJet System: Immersion-cooled systems do not require chillers,

CRAC units, raised flooring, etc. This method has the potential to cut in half the

construction costs [59]. The system lets the servers immerse in a container filled

with a special nontoxic dielectric oil which has 1200 times heat capacity more

than air and then transferred with a pump to a cooling tower, the system

functionality is demonstrated at this YouTube video:

https://www.youtube.com/watch?v=7LgbN0cIu8k

2. 3M Two Phase Immersion Cooling: The two-phase immersion cooling using

3Ms Novec Engineered Fluids which is non-flammable, noncombustible,

electrically non-conductive is being used in the bitcoin sector that can support

100kW racks [56]. It is called two-phase because it literally boils thanks to its

low boiling point, and thus exists in both a liquid and gas phase. The system

takes advantage of a concept known as “latent heat” which the heat (thermal

energy) is required to change the phase of a fluid (in this case two-phase

dielectric mineral oil). The oil is only cooled by boiling and thus remains at the

boiling point (“saturation temperature”). Energy transferred from the servers

into the two-phase oil will cause a portion of it to boil off into a gas (this is the

https://www.youtube.com/watch?v=7LgbN0cIu8k

 54

Fig. 47: Air vs CoolIT Capex/Opex Comparison [60].

Fig. 48: Aspen Systems Liquid Cooled Server [61].

second phase of the oil). The gas rises above the liquid oil level where it contacts

a condenser which is cooler than the saturation temperature. This causes the vaporized

 55

oil to condense back into a liquid form and fall (rain) back into the bath [62]. A

YouTube video shows how this can be used in operational environment:

https://www.youtube.com/watch?v=a6ErbZtpL88

2.1.15.29. Direct Contact Liquid Cooling
1. Direct Contact Liquid Cooling (DCLC): uses the exceptional thermal

conductivity of liquid to provide dense, concentrated cooling to targeted small

surface areas. By using DCLC, the dependence on fans and expensive air

conditioning and air handling systems is drastically reduced. This enables over

80kW densities per rack using warm water cooling, allows reduced power use

and provides access to significantly higher performance potential. Liquid

cooling solutions are either installed directly into enclosures or mounted into

data center spaces. CoolIT Systems offers options for data centers with or

without facility water hook up. Any server in any rack can be liquid cooled

with CoolITs hardware, and benefit from immediate and measurable CAPEX

and OPEX savings as it is shown in Fig. 47 [60].

2. Asetek: specializes in liquid cooling systems for data centers, servers,

workstations, gaming, and high-performance PCs. The exterior of liquid

cooling system is shown in Figure 4.26.

2.1.16. Liquid Cooling Drawbacks
Some of the drawbacks of liquid cooling is listed below [63]:

• Lower profiles: Unlike a rack, a tub for immersion of servers is only accessible

from the top, meaning the potential for vertical scaling of infrastructure is

extremely limited. Traditional racks, however, effectively enable stacking of

server’s floor to ceiling in each floor space. Thus, this approach can reduce the

power density per square foot. To be fair, however, this consideration only

applies if an equivalent power density can be achieved using other cooling

methods; very high-density deployments preclude the use of air cooling, for

instance.

• Mess: Any maintenance, changing of cables or other activity involving contact

with the servers requires contact with the liquid mineral oil, for instance. These

liquids are chosen to avoid toxicity, but a spill can create a hazard for

employees, not to mention requiring significant effort to clean.

• Supporting infrastructure: Immersion cooling requires vats to hold the

servers, as well as a large supply of the liquid.

• Special HDDs: Hard-disk drives (HDDs) immersed in liquid must be designed

to prevent leakage or otherwise sealed, as the spinning disks must operate in a

gas.

• Retrofitting costs: Designing a new data center from scratch to accommodate

liquid cooling is less troublesome than retrofitting an existing data center. Thus,

investment in an existing deployment creates a barrier for many facilities.

In addition, liquid cooling systems whether immersion or otherwise require

filtration of the liquid to avoid problems like buildup of contaminants, excessive

sediment, and biological growth. For water-based systems such as those that employ

cooling towers or other evaporative measures, the amount of sediment in each volume

https://www.youtube.com/watch?v=a6ErbZtpL88

 56

increases as vapor is removed, requiring separation and disposal of this “blowdown”.

Even this disposal can create environmental concerns. Furthermore, water usage

particularly in dry areas is a concern, about both utility capacity (in the case of large

data centers) and the limited local supply [63].

2.1.17. Free Cooling
In 2010 the data center sector was accountable for 1.3% of worldwide electricity

consumption and 2% of US electricity consumption [64]. The energy consumption is

estimated to increase by 15-20% per year [35], which demands a rapid response to the

problem of rise of data centers. The use of the cooling system in economizer mode,

generally called free cooling, is one of the most effective solution to obtain energy

saving [65].

The Green Grid, a non-profit consortium working to improve data center energy

efficiency, has published a survey of data centers, mostly in the US, that shows that

almost half are now using natural cooling to save energy and cost [66].

The ASHRAE 90.1 standard is going to eliminate the present exceptions for data

centers. It is going to require that free cooling be included in the designs of all new data

centers [67].

There are two free cooling categories:

1. Air-side free cooling:

a. Direct: Blow outside cold air into the data center. Pros: Simple, Cons:

contamination, humidity.

b. Indirect: Uses air-to-air heat exchanger to avoid contamination.

2. Water-side free cooling: A simulation based on Seoul climate [68] shows that

the air-side economizer worked for 57% of the total data center operation

period, while the water-side economizer for about 35%. These numbers led to

an annual energy savings of 16.6% and 42.2%, respectively for the water-side

and the air-side economizer cooling system, compared with the base cooling

system. The calculated PUE was 1.62 for the air-side economizer system and

1.81 for the water-side economizer system. These facilities can operate 99% of

time in economizer mode.

As stated in [65], direct air-side economizer is adopted in the 40% of the total

number of data centers using free cooling technologies. Moreover, both Yahoo and

Facebook provide their facilities with advanced air-side economizer based cooling

system, avoiding the use of chillers. As presented in [69] the design of a cost-effective

data center taking advantage of outside air eliminates the need of mechanical

equipment. The data center also exploits the shape of the building, which was designed

emulating a chicken-coop building, to take advantage of natural convection in the heat

rejection. Cool air enters from the side of the building, and, after cooling the equipment,

exhaust air rises through a cupola in the roof. The system uses a direct air-side

economizer for the heat removal, with an evaporative cooling assistance for extreme

summer conditions. The achieved PUE is 1.08.

2.1.18. Data Center Cooling Challenges
Mission critical installations face several cooling system challenges in the modern data

center. The requirements of today’s IT systems, combined with the way those IT

 57

systems are deployed, has created new cooling related problems. These are new

problems which could not have been foreseen when the data center cooling principles

were developed over 30 years ago.

Core challenges in the data center cooling process can be grouped in the following

categories:

• Adaptability/Scalability

• Availability

• Lifecycle Costs

• Maintenance/Serviceability

• Manageability

For many companies, meeting adaptability requirements remains the biggest

challenge regarding data center cooling systems. Specifically, this involves problems

with the cooling of high-density rack systems, and the uncertainty of the quantity,

timing, and location of high-density racks. Data center cooling is further complicated

by IT refreshes that typically occur every 1.5 to 2.5 years.

The cooling system within a data center should be flexible and scalable with

redundant cooling features to guarantee steady performance. The data center cooling

requirements regarding lifecycle cost challenges share many features in common with

adaptability solutions. Pre-engineered, standardized, and modular solutions are

typically needed.

Once appropriate design goals are established there are several additional steps

recommended for data center cooling best practices:

1 . Determine the Critical Load and Heat Load. Determining the critical heat load

starts with the identification of the equipment to be deployed within the space.

However, this is only part of the entire heat load of the environment.

Additionally, the lighting, people, and heat conducted from the surrounding

spaces will also contribute to the overall heat load. As a very general rule-of-

thumb, consider no less than 1-ton (12,000 BTU/Hr / 3,516 watts) per 400

square-feet of IT equipment floor space.

2 . Establish Power Requirements on a per RLU Basis. Power density is best

defined in terms of rack or cabinet footprint area since all manufacturers

produce cabinets of generally the same size. A definite Rack Location Unit

(RLU) trend is that average RLU power densities are increasing every year.

The reality is that a computer room usually deploys a mix of varying RLU

power densities throughout its overall area. The trick is to provide predictable

cooling for these varying RLU densities by using the average RLU density as

a basis of the design while at the same time providing adequate room cooling

for the peak RLU and non-RLU loads.

3 . Determine the CFM Requirements for each RLU. Effective cooling is

accomplished by providing both the proper temperature and an adequate

quantity of air to the load. As temperature goes, the American Society of

Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) standard

is

Table 3: The three equipment cooling methods

Room Cooling 2 kW per RLU

Row Cooling 8 kW per RLU

Cabinet Cooling 20 kW per RL

 58

4 . to deliver air between the temperatures of 68 F and 75 F to the inlet of the IT

infrastructure. Although electronics performs better at colder temperatures it

is not wise to deliver lower air temperatures due to the threat of reaching the

condensate point on equipment surfaces. Regarding air volume, a load

component requires 160 cubic feet per minute (CFM) per 1 kW of electrical

load. Therefore, a 5,000-watt 1U server cabinet requires 800 CFM.

5 . Perform Computational Fluid Dynamic (CFD) Modeling. CFD modeling can

be performed for the under-floor air area as well as the area above the floor.

CFD modeling the airflow in a computer room provides information to make

informed decisions about where to place CRAC equipment, IT-equipment,

perforated tiles, high density RLUs, etc. Much of the software available today

also allows mapping of both under floor and overhead airflow obstructions to

represent the environment more accurately.

6 . Determine the Room Power Distribution Strategy. The two (2) main decisions

in developing a room power distribution strategy are:

1. Where to place the power distribution units (PDUs)?

2. Whether to run power cables overhead or under the floor?

7 . Determine the Cabinet Power Distribution Strategy. In deciding how power

will be distributed through the cabinet, use of dual power supplies, and cabling

approach, it is important to understand the impact of power distribution on

cooling, particularly as it is related to air flow within the cabinet.

8 . Determine the Room & Cabinet Data Cabling Distribution Impact. Typically,

there are three choices in delivering network connectivity to an RLU. They

are:

1. Home run every data port from a network core switch.

2. Provide matching port-density patch panels at both the RLU and the core

switch with pre-cabled cross-connections between them, such that server

connections can be made with only patch cables at both ends.

3. Provide an edge switch at every rack, row, or pod depending on

bandwidth requirements. This approach is referred to as zone switching.

9 . Establish a Cooling Zone Strategy. Recall that effective computer room

cooling is as much about removing heat as it is about adding cold. The three

equipment cooling methods along with their typical cooling potential can be

determined from Table 3. It is also critical to consider high-density cooling

and zone cooling requirements.

10 . Determine the Cooling Methodology. Upon determining what cooling zone

will be required, the decision of what types of air conditioners will be needed,

must be made. There are four (4) air conditioner types:

1. air cooled

2. glycol cooled

3. condenser water cooled

4. chilled water.

In addition, it is also important to determine how heat will be rejected

within the system and what type of cooling redundancy is required and available

for a particular methodology.

 59

11 . Determine the Cooling Delivery Methodology. Different architectural

attributes affect cooling performance in different ways. For instance, designs

should consider the location of the computer room within the facility (I.e.,

onside versus inside rooms), height of the raised floor, height of suspended

ceiling, etc.

12 . Determine the Floor Plan. The ’hot aisle / cold aisle’ approach is the accepted

layout standard for RLUs for good reason. It works. It was developed by, Dr.

Robert Sullivan, while working for IBM and it should be adapted for both new

and retrofit projects. After determining the hot/cold aisles it is critical to place

the CRAC units for peak performance. This may include room, row, or rack-

based cooling 63approaches. Each works well depending upon the IT

infrastructure, power densities, CFM requirements, and other attributes

previously discussed.

13 . Establish Cooling Performance Monitoring. It is vital to develop and deploy

an environmental monitoring system capable of monitoring each room, row,

and cabinet cooling zone. A given is that once effective cooling performance

is established for a particular load profile, it will change rapidly. It is important

to compile trending data for all environmental parameters for the site such that

moves, adds, and changes can be executed quickly.

2.1.19. Fine-Tuning Automation
Data center facilities managers normally must manage each individual component of

the cooling system (i.e., chillers, air handlers, economizers, etc.) to fine-tune the overall

system. Change the setting on one, and the entire system gets affected.

There are several ways to automate the fine-tuning process. One is to use machine

learning as Vertix has done [70].

• Machine Learning: The idea with iCOM Autotuning, Vertiv’s new software

feature, is to use machine learning techniques to control all the elements

automatically, the company said in a statement.

In a direct-expansion data center cooling system, that means compressors,

fans, and condensers are harmonized to eliminate short cycling, which is when

cool air returns into the cooling system without going through IT hardware.

In chilled-water systems, the autotuning feature avoids rapid fluctuations

in valve positions to balance fan speeds, water temperature, and flow rates.

The feature is part of Vertiv’s Liebert iCOM-S thermal system control. It

is available for select Liebert cooling systems installed in North America.

While running in production to improve cloud services by the likes of

Google and Facebook, machine learning algorithms are seldom applied to data

center management. The rare examples of companies that have done it include

Google, which uses machine learning to improve data center infrastructure

efficiency; Coolan, a startup that used machine learning to optimize the cost of

data center hardware acquired by Salesforce last year; and Romonet, whose

 60

Fig. 49: Two different rack configuration [71].

Fig. 50: Velocity plot comparison [71].

software analyzes the cost of customers data center assets and traces the

impact of infrastructure decisions on their bottom line [70].

Another case is the Google project that uses DeepMind AI to cut data center

energy bills. After accounting for “electrical losses and other non-cooling

inefficiencies,” 15 percent reduction in overall power saving was achieved [72].

• Cooling Simulation: In Fig. 49: Two different rack configuration [71]. Two

configurations have the same inlet and outlet conditions, except that the position

of the inlets is different. This seems to be a minor change from a viewpoint, but

it might end up giving considerably different results. The following images are

not just some colorful pictures, but they bring some physical relevance based

on scientific principles [71].

In HVAC design problems, we try to minimize recirculation of fluid as much

possible, which ensures proper ventilation in the space. The velocity plot comparison

 61

Fig. 51: Temperature plot comparison [71].

Fig. 52: An artist’s rendition of what a data center might look like under the sea [73].

in Fig. 50 shows that recirculation is less in Configuration 2 compared to the other

one. The temperature plot in Fig. 51 brings out the significance of reduced recirculation.

From the temperature plot in Fig. 51, the domain in Configuration 2 has a lower

temperature value than the corresponding points in Configuration 1. It was also

calculated that the average temperature at the center section in Configuration 1 is

303.9K, whereas the second case has 2.1 degrees lower average temperature, at 301.8K.

 62

For data center cooling, it is very important to understand the flow. This learning

helps us to create a channel for effectively removing the heat dissipated from server

vents. The illustrations compare two basic configurations in general, there might be so

many other possibilities which might give even better results. Temperature distribution

and pressure differences should be uniform to help in maintaining the conditions inside

the room. In this context, engineering simulation software such as “simscale”

[71]comes handy to assist engineers and designers in achieving the best possible design

for data center cooling. Save money, save time, save energy.

2.1.20. Future Ideas
One idea is to build data center under the oceans. Microsoft is testing the idea of

submerging Azure cloud data centers under the ocean, off the California Polytechnic

State University pier near Avila Beach [73]. An artistic picture of such idea is shown

in Fig. 52.

2.1.21. Cooling Conclusion
There is no panacea to data center cooling and efficiency. Disparate environments

require custom strategies to maximize the parameters of infrastructure, environment,

and equipment age [74].

If free cooling (nature) is not an option, we must use energy-consumed methods to

remove the heat generated by ITC. There are four categories of such methods:

1. Direct Expansion (DX)

2. Chilled Water

3. Evaporative/Air Side

4. Liquid/Immersion.

Direct Expansion directly cools the air and sends it into the building, while in

chilled water systems it is the chilled water itself that goes into the building. In

evaporative method the air is cooled by evaporation of water without using the

refrigeration cycle that is being used in the DX method. Liquid cooling can be done by

either introducing water pipes into servers and let them have direct contact with

electrical components to remove the heat, or completely immerse the servers into a non-

conductive, forced low-temperature liquid. Liquid immersion cooling is a very good

choice for super dense servers in High Performance Computing (HPC) applications as

it is the most energy-efficient method. Due to very high set-up cost and complicated

maintenance, it is not (yet) suitable for a small data center.

2.1.22. Security and Reliability

2.1.22.1. Physical Security
We can have three zones within one data center. One zone would be for researchers to

test and stage equipment, one would provide more control over which development

work on applications and systems is performed before putting them into production,

and a production zone, which only core systems administrators could access.

We must be sure the building is some distance from headquarters (20 miles is

typical) and at least 100 feet from the main road. Bad neighbors: airports, chemical

facilities, power plants. Foot-thick concrete is a cheap and effective barrier against the

elements and explosive devices. For extra security, we use walls lined with Kevlar.

 63

We shall avoid windows. Think warehouse, not office building. If you must have

windows, limit them to the break room or administrative area, and use bomb-resistant

laminated glass. We should use landscaping for protection. Trees, boulders and gulleys

can hide the building from passing cars, obscure security devices (like fences), and help

keep vehicles from getting too close.

A 100-foot buffer zone around the site is necessary. We shall use retractable crash

barriers at vehicle entry points. Control access to the parking lot and loading dock with

a staffed guard station that operates the retractable bollards. Use a raised gate and a

green light as visual cues that the bollards are down, and the driver can go forward. In

situations when extra security is needed, have the barriers left up by default, and

lowered only when someone has permission to pass through.

For data centers that are especially sensitive or likely targets, have guards use

mirrors to check underneath vehicles for explosives, or provide portable bomb-sniffing

devices. We can respond to a raised threat by increasing the number of vehicles we

check perhaps by checking employee vehicles as well as visitors and delivery trucks.

We shall limit entry points. Control access to the building by establishing one main

entrance, plus a back one for the loading dock. This keeps costs down too.

We shall make fire doors exit only. For exits required by fire codes, install doors

that do not have handles on the outside. When any of these doors is opened, a loud

alarm should sound and trigger a response from the security command center.

Surveillance cameras should be installed around the perimeter of the building, at

all entrances and exits, and at every access point throughout the building. A

combination of motion-detection devices, low-light cameras, pan-tilt-zoom cameras,

and standard fixed cameras is ideal. Footage should be digitally recorded and stored

offsite.

We must make sure the heating, ventilating and air-conditioning systems can be

set to recirculate air rather than drawing in air from the outside. This could help protect

people and equipment if there were biological or chemical attack or heavy smoke

spreading from a nearby fire. For added security, put devices in place to monitor the air

for chemical, biological or radiological contaminant.

We shall ensure nothing can hide in the walls and ceilings. In secure areas of the

data center, make sure internal walls run from the slab ceiling all the way to subflooring

where wiring is typically housed. Also make sure drop-down ceilings do not provide

hidden access points.

We shall use two-factor authentication. Biometric identification is becoming

standard for access to sensitive areas of data centers, with hand geometry or fingerprint

scanners usually considered less invasive than retinal scanning. In other areas, you may

be able to get away with less-expensive access cards.

We shall harden the core with security layers. Anyone entering the most secure part

of the data center will have been authenticated at least three times, including:

1. At the outer door. We need a way for visitors to buzz the front desk.

2. At the inner door. Separates visitor area from general employee area.

3. At the entrance to the “data” part of the data center. Typically, this is the layer

that has the strictest “positive control”, meaning no piggybacking allowed.

 64

2.1.22.2. Data Center Physical Security Checklist

2.1.22.2.1. Site Location
• Natural Disaster Risks: The site location SHOULD be where the risk of

natural disasters is acceptable. Natural Disasters include but are not limited to

forest fires, lightning storms, tornadoes, hurricanes, earthquakes, and floods

[75].

• Man-Made Disaster Risks: The Site Location SHOULD be in an area where

the possibility of manmade disaster is low. Man-made disasters include but are

not limited to plane crashes, riots, explosions, and fires. The Site SHOULD

NOT be adjacent to airports, prisons, freeways, stadiums, banks, refineries,

pipelines, tank farms, and parade routes.

• Infrastructure: The electrical utility powering the site SHOULD have a 99.9%

or better reliability of service. Electricity MUST be received from two separate

substations (or more) preferably attached to two separate power plants. Water

SHOULD be available from more than one source. Using well water as a

contingency SHOULD be an option. There MUST be connectivity to more than

one access provider at the site.

• Sole purpose: A data center SHOULD NOT share the same building with other

offices, especially offices not owned by the organization. If space must be

shared due to cost, then the data center SHOULD not have walls adjacent to

other offices.

2.1.22.2.2. Site Perimeter
• Perimeter: There SHOULD be a fence around the facility at least 20 feet from

the building on all sides. There SHOULD be a guard kiosk at each perimeter

access point. There SHOULD be an automatic authentication method for data

center employees (such as a badge reader reachable from a car). The area

surrounding the facility MUST be well lit and SHOULD be free of obstructions

that would block surveillance via CCTV cameras and patrols. Where possible,

parking spaces should be a minimum of 25 feet from the building to minimize

damage from car bombs. There SHOULD NOT be a sign advertising that the

building is in fact a data center or what company owns it.

• Surveillance: There SHOULD be CCTV cameras outside the building

monitoring parking lots and neighboring property. There SHOULD be guards

patrolling the perimeter of the property. Vehicles belonging to data center

employees, contractors, guards, and cleaning crew should have parking permits.

Service engineers and visitor vehicles should be parked in visitor parking areas.

Vehicles not fitting either of these classifications should be towed.

• Outside Windows and Computer Room Placement: The Site Location

MUST NOT have windows to the outside placed in computer rooms. Such

windows could provide access to confidential information via Van Eck

Radiation and a greater vulnerability to HERF gun attacks. The windows also

cast sunlight on servers unnecessarily introducing heat to the computer rooms.

Computer rooms SHOULD be within the interior of the data center. If a

computer room must have a wall along an outside edge of a data center there

SHOULD be a physical barrier preventing close access to that wall.

 65

• Access Points: Loading docks and all doors on the outside of the building

should have some automatic authentication method (such as a badge reader).

Each entrance should have a mantrap (except for the loading dock), a security

kiosk, physical barriers (concrete barricades), and CCTV cameras to ensure

each pers on entering the facility is identified. Engineers and Cleaning Crew

requiring badges to enter the building MUST be required to produce picture ID

in exchange for the badge allowing access. A log of equipment being placed in

and removed from the facility must be kept at each guard desk listing what

equipment was removed, when and by whom. Security Kiosks SHOULD have

access to read the badge database. The badge database SHOULD have pictures

of each user and their corresponding badge. Badges MUST be picture IDs

2.1.22.2.3. Facilities
• Cooling Towers: There MUST be redundant cooling towers. Cooling towers

MUST be isolated from the Data Center parking lot.

• Power: There MUST at least be battery backup power onsite with sufficient

duration to switch over to diesel power generation. If there is no diesel backup

t hen there should be 24 hours of battery power. There SHOULD be diesel

generators on site with 24 hours of fuel also on site. A contract SHOULD be in

place to get up to a week of fuel to the facility.

• Trash: All papers containing sensitive information SHOULD be shredded on

site or sent to a document destruction company before being discarded.

Dumpsters SHOULD be monitored by CCTV.

• NOC: The NOC MUST have fire, power, weather, temperature, and humidity

monitoring systems in place. The NOC MUST have redundant methods of

communication with the outside. The NOC MUST be manned 24 hours a day.

The NOC MAY monitor news channels for events which effect the health of the

data center.

2.1.22.2.4. Disaster Recovery
• Disaster Recovery Plan: The data center MUST have a disaster recovery plan.

Ensure that the plan addresses the following questions: What constitutes a

disaster? Who gets notified regarding a disaster and how? Who conducts

damage assessment and decides what back-up resources are utilized? Where are

backup sites located and what is done to maintain them on what schedule? How

often and under what conditions is the plan updated? If the organization does

not own the data center what downtime does the service level agreement with

the center allow? A list of people within the organization to notify MUST be

maintained by the NOC of the data center including pager, office, home, and

cell numbers and Instant Message Names if available. How often are those

people updated?

• Offsite Backup: There MUST be regular offsite backups of essential

information. There must be a backup policy in place listing the procedure for

restoring from backup and allowing for the scheduling of practice runs to test

that the backups work.

 66

• Redundant Site: Redundant servers MAY be set up in another data center. If

these are setup then they must be tested during a “dry run” to ensure that they

will switch over properly during a disaster.

2.1.22.2.5. People
• Guards: Security guards SHOULD submit to criminal background checks.

Guards SHOULD be trained to follow and enforce physical security policy

strictly (for example ensuring that everyone in the facility is wearing a badge).

• Cleaning Staff: Cleaning crews SHOULD work in groups of at least two.

Cleaning crew SHOULD be restricted to offices and the NOC. If cleaning staff

must access a Computer Room for any reason, they MUST be escorted by NOC

personnel.

• Service Engineers: Service Engineers MUST log their entering and leaving the

building at the entrance to the building. The NOC SHOULD log their badge

exchange to access a computer room.

• Visitors: Visitors MUST be escorted by the person whom they are always

visiting. Visitors MUST NOT be allowed access to a computer room without

•

Fig. 53: X-Gene vs Intel Xeon [76].

written approval from data center management. All visitors who enter

Computer Rooms must sign Non-Disclosure Agreements.

• Education: Users must be educated to watch out for potential intruders who

may shoulder surf or directly attempt social engineering. Users should be

educated on securing workstations and laptops within the facility and laptops

outside the facility, awareness of surroundings, and emergency procedures.

• Policy: All users at the facility must sign Non-Disclosure Agreements. A

Physical Security Policy SHOULD be signed by each user and enforced by

security guards.

 67

2.1.22.2.6. Disaster Recovery Policies
• Organizational Chart: An organizational chart should be maintained detailing

job function and responsibility. Ideally the org chart would also have

information on which functions the worker has been cross trained to perform.

• Job Function Documentation: It is not enough to document only what your

current employees know now about existing systems and hardware. All new

work, all changes, must be documented as well.

• Cross Training: Data Center employees should be cross trained in several other

job functions. This allows for a higher chance of critical functions being

performed in a crisis.

• Contact Information: A contact database MUST be maintained with contact

information for all Data Center employees.

• Telecommuting: Data Center employees should regularly practice

telecommuting. If the data center is damaged or the ability to reach the data

center is diminished, then work can still be performed remotely.

• Disparate Locations: If the organization has multiple Data Centers, then

personnel performing duplicate functions should be placed in disparate centers.

This allows for job consciousness to remain if personnel at one center are

incapacitated.

2.1.23. Data center Processors

2.1.23.1. Introduction
Currently as of 2016 Intel Xeon E5 and E7 server processor are the dominant processor

labor force employed in the data centers. ARM processor X-Gene 2 by Applied micro

shows a good performance against Xeon servers as it can be seen in Fig. 53 [76].

Therefore, we need to fully investigate the ARM architecture and the models which can

be used in server computing.

2.1.23.2. ARM Architecture Review
It is a RISC architecture. A British company called “ARM Holdings” develops the

architecture and license it to other companies. All cores from ARM Holdings support a

32-bit address space. The ARMv8-A architecture adds support for a 64-bit address

space and 64-bit arithmetic. ARM is the most widely used instruction set architecture

in terms of quantity produced.

ARM has three categories of processor:

1. Cortex-A: Highest performance, Optimized for rich operating systems

2. Cortex-R: Fast response Optimized for high-performance, hard real-time

applications

3. Cortex-M: Smallest/lowest power Optimized for discrete processing and

microcontroller

 68

Table 4: List of ARM microarchitectures.

Architecture Core

bit

width

Cores designed by ARM Holdings Cores designed by

third parties

Profile

ARMv1 32 ARM1

ARMv2 32 RM2, ARM250, ARM3 Amber, STORM Open Soft

Core

ARMv6-M 32 ARM Cortex-M0, ARM Cortex-M0+,

ARM Cortex-M1, SecurCore SC000

 Micro

controller

ARMv7-A 32 ARM Cortex-A5, ARM Cortex-A7,

ARM Cortex-A8, ARM Cortex-A9,

ARM Cortex-A12, ARM Cortex-

A15, ARM CortexA17

Qualcomm Krait, Scorpion,

PJ4/Sheeva, Apple Swift

Application

ARMv7-M 32 ARM Cortex-M3, SecurCore

SC300

 Micro

controller

ARMv8-A 32 ARM Cortex-A32 Application

ARMv8-A 32 ARM Cortex-A35, ARM Cortex-

A53, ARM Cortex-A57, ARM

Cortex-A72, ARM Cortex-A73

X-Gene, Nvidia

Project Denver, AMD K12,

Apple Cyclone/-

Typhoon/Twister, Cavium

Thunder X, Qualcomm Kryo

Application

2.1.23.3. ARM Platforms
List of ARM Platforms:

• Applied Micro X-Gene ARMv8

• HP Moonshot

• Marvell Armada XP

• Cavium Thunder 48 and 96 core ARMv8

2.1.23.4. Applied Micro
A US company which produces server on a chip products called X-Gene. The XC-2

evaluation board is a server board.

2.1.23.5. ARM based server boards

2.1.23.5.1. X-Gene 2 X-C2 Evaluation Kit
APM883408-X2 eight-core processor up to 2.4 GHz (900-1400):

• DDR3-1866 UDIMM/RDIMM 4-channels, 2 DIMMs/channel

• 32/64/128 GB options (Config dependent on SKU)

• 10 GbE XFI port (SFP+)

 69

• 1 GbE SGMII port (RJ45)

• PCIe x8 Gen-3 slot

• 6x SATA Gen-3 ports

• SDIO port

• 2x USB ports

• ASpeed 2400 BMC w/RJ45

• IPMI 2.0 compliant

2.1.23.5.2. LeMaker Cello
An ARM 64-bit Sever Main Board with 96Boards EE Specification (300$):

• AMD Opteron A1100 Series

• Quad-core ARM Cortex-A57 64 bit

• Two DDR3 SO-DIMM sockets

• Two SATA ports

• Two USB 3.0 ports

• USB-micro port for console support

• 1 GBe Ethernet

• x16 PCIe G3 slot

• 10-Pin JTAG headers

• Linaro 96Bords Expansion slot

• Standard 160 x 120 mm 96Boards Enterprise Edition form factor

• Weight 500g

2.1.23.5.3. Gigabyte MP30-AR0
microATX 244W x 244D (mm) (No price yet):

• CPU AppliedMicro X-Gene 1 processor

• ARMv8 architecture 8 cores 2.4 GHz 45W max. TDP

• 8 x DIMM slots Quad channel memory architecture RDIMM/ECC UDIMM

modules supported

• Single, dual rank UDIMM modules up to 8GB supported speeds:

- 1 DIMM per channel: up to 1600 MHz

- 2 DIMM per channel: up to 1333 MHz LAN 2 x 10GbE SFP+ LAN

ports (integrated) 2 x GbE LAN ports (Marvell 88E1512)

• 1 x 10/100/1000 management LAN

• Video Integrated in Aspeed AST2400

2.1.23.5.4. Gigabyte MP30-AR0
There are articles [77] which say X-Gene 1 performs poorly and consumes too much

power. The alternative might be Cavium processors.

Xeon D also worth to be considered. Cavium designs high core count SoCs. The

chip has 48 cores.

2.1.23.5.5. ODROID-XU4
Samsung Exynos5 Octa ARM Cortex-A15 Quad 2Ghz and Cortex-A7 Quad 1.3GHz

CPUs (75$):

• 2Gbyte LPDDR3 RAM at 933MHz

 70

Fig. 54: ARM versus Intel Performance Comparison [78].

• 3D Accelerator Mali-T628 MP6(OpenGL ES 3.0/2.0/1.1 and OpenCL 1.1 Full

profile)

• USB3.0 Host 2x ports

• USB2.0 Host 1x port

• Gigabit Ethernet LAN 10/100/1000Mbps Ethernet

• HDD/SSD SATA interface (Optional) SuperSpeed USB (USB 3.0) to Serial

ATA3 adapter for 2.5/3.5 HDD and SSD storage

• Power 5V 4A Power

2.1.24. ARM Review
Almost all the reviews and benchmarks on ARM processor have these on common:

1. Very passionate words in the beginning.

2. Run through the benchmarks.

3. ARMS get beaten by Intel left and right.

4. Claim that future will be bright even if this benchmark failed.

The main problems that we found for ARM servers are as below:

1. ARM server processors have no price tag at all, as there are new, and most

systems are experimental. While Intel provides a means of comparison between

its processors (TDP) and all their products have explicit price tags. For example,

no matter how hard we tried, we could not find the price tag for Cavium

processors.

2. Generally, have Low Power efficiency. (Performance per Watt)

3. Very low single-thread performance.

 71

Fig. 55: Power consumption VS performance [78].

Fig. 56: Ideal power consumption [79].

4. Always behind the Intel’s latest technology, e.g., 32nm of X-Gene vs 14nm of

Intel

Let us look at some benchmark performance available in online resources. As we

can see in Fig. 54 ARM based server processor X-Gene loses to Xeon.

Very low single-thread performance. 4. Always behind the Intel’s latest

technology, e.g., 32nm of X-Gene vs 14nm of Intel Let us look at some benchmark

 72

Table 5: Server processor comparison.

Manufacturer /

Designer

Clock

Speed

Cores

/Threads

Cache

size

Max

Power

Memory

Type /

Graphic

Price Total

Score

Score

Per

Core

Intel Xeon E7-8890 2.2 GHz 24/48 60 MB 165W DDR4-1866

DDR3-1600

7174$ 43.58 1.82

Intel Xeon E7-4809 2.1 GHz 8/16 20 MB 115W DDR4-1866

DDR3-1333

1223$ 23.18 2.90

Intel Xeon E5-2687W 3.0 GHz 12/24 30 MB 160W DDR4-2400 1885$ 33.92 2.83

Intel Xeon E5-2630L 1.8 GHz 10/20 25 MB 55W DDR4-2400 662$ 29.7 2.97

Intel Xeon E3-1285 3.5 GHz 4/8 6 MB 95W DDR3-1600

Intel P6300

662$ 32.14 8.04

Intel Xeon E3-1545MV 2.9 GHz 4/8 8 MB 45W DDR4-2133

 Intel P580

679$ 32.94 8.24

Intel Xeon D-1567 2.1 GHz 12/24 18 MB 65W DDR4-2400 1299$ 33.22 2.77

Intel Xeon D-1577 1.3 GHz 16/32 24 MB 45W DDR4-2400 1477$ 32.26 2.02

Intel Xeon D-1520 2.2 GHz 4/8 6 MB 45W DDR4-2400 200$ 26.14 6.54

Intel Atom C2750 2.4 GHz 9 4 MB 20W DDR3-1600 171$ 33.00 3.67

Intel Atom C2350 1.7 GHz 2 1 MB 6W DDR3-1333 43$ 19.83 9.92

AMD Opteron 6386 SE 2.8 GHz 16 16 MB 140W DDR3-1600 1392$ 33.20 2.08

AMD Opteron 6366 HE 1.8 GHz 16 16 MB 85W DDR3-1600 575$ 28.70 1.79

AMD Opteron 4386 3.1 GHz 8 8 MB 95W DDR3-1866 348$ 32.17 4.02

AMD Opteron 4310 EE 2.2 GHz 4 8 MB 35W DDR3-1866 415$ 25.17 6.30

AMD Opteron 3380 2.6 GHz 8 8 MB 65W DDR3-1866 229$ 30.17 3.77

AMD Opteron 3320 E 1.9 GHz 4 8 MB 25W DDR3-1333 174$ 22.63 5.66

AMD Opteron A1170 2.0 GHz 8 8 MB 32W DDR4-1866

DDR3-1600

150$ 28.40 3.55

AMD Opteron A1120 1.7 GHz 4 8 MB 25W DDR4-1866

DDR3-1600

174$ 22.10 5.52

APM X Gene 1 2.4 GHz 8 8 MB 30W DDR3 ? 31.80 3.98

Intel M- 5Y70 1.1 GHz 2/4 4 MB 4.5W DDR3-1600 280$ 14.54 7.27

performance available in online resources. As we can see in Fig. 55 ARM based

server processor X-Gene loses to Xeon.

Finally, in Fig. 56 we can see that an Intel Xeon processor can beat the ARM in

power consumption when it is ideal thanks to advanced power management available

in the processor that turns of the processor modules when they are not needed.

2.1.25. Scanning the Server Technologies

2.1.25.1. Introduction
Before we start to propose a thesis that improves the data center power consumption,

we must scan the current technologies and trends (till July 2016), and build our work

as an extension to the current deployed technologies.

First, we start to look at x86 servers which is dominated by Intel Xeon processors,

then we will try to discover all the attempts by other architectures to take over Xeon.

 73

Fig. 57: Intel Xeon D-1541 vs E7-8893 v2 [80].

Finally, we will compare them on performance, power consumption, pricing,

software support, etc.

To make sense out of above raw data we will use a custom formula to rank all the

processors according to our criteria which sets different factor to each attribute:

• Clock speed: x10

• No. of cores: x1

• No. of threads: x0.11

• Cache size: x0.1

• Max Power: x1: -x0.1

• Memory Type: DDR3 = x0.001, DDR4 = x0.0015

Using the above factors we can calculate a total score for each processor, for

example our first listed processor is Intel Xeon E7-8890, we calculate the total score:

 74

Total score = (Freq. × 10) + (Core × 1) + (Core × 0.11)(Cache × 0.1)
+ (−Power × 0.1) + (Memory × 0.0015)

= (2.2Ghz × 10) + (22 × 1) + (22 × 0.11)
+ (60 × 0.1) + (−165 × 0.1) + (1866 × 0.0015)

= 43.58

Then we divide 43.58 by 24 cores, which gives us a score of 1.82 per core in the

processor. We can see that Intel Atom C2350 is the winner, as it gives a score of 9.92

per core and each core costs only 21.5$

2.1.25.2. Intel High-End versus Low-End
In this section we try to get a perspective of Intel high-end and low-end processor let

us compare Xeon D-1541 VS E7-8893 v2. The result is shown in Fig. 57. The

conclusion is that if we do not need high frequency or multi-processing (Connecting

processors together, up to 8 Xeon microprocessors can be supported by a single server.)

then low-end server processor is the best choice as they are very cheap and show good

performance in multi-threaded applications.

2.1.26. Data Center Related Research Horizons
These are few topics related to data centers which a PhD student can pursue:

1. ARM based asynchronous servers. (AMULET is an example)

2. Mapping and scheduling for low power on Heterogeneous Multi-Processing

3. Programming for next generation CPU and GPGPU systems

4. Software and hardware to making multi-processing accessible to programmers

5. Parallelism discovery and automatic parallelization of sequential programs

6. Compilation for low power

7. Compilers and runtime for next generation ARM architectures

8. Data-center scale parallelism

9. Hardware assistance in detection of non-data race free concurrent programs

10. Security between cloud and terminal

11. High performance low power micro-architecture

2.1.27. Building an Ultra Power Data Center

2.1.27.1. Server Connections
In our search for a server board, we must ensure the support of the following

technologies:

1. 10Gbps Ethernet

2. We need to have top of rack (or bottom of rack) aggregation switches.

 75

Fig. 58: Gigabyte GA-9SISL Mini-ITX form factor.

Fig. 59: BB-ITX96 V2 Blade Computing System for Mini-ITX.

2.1.27.2. Boards
• GA-9SISL: Hosts Intel Atom C2750. Price: 380$ 4 x GbE LAN ports, 4 x

DIMM slots, up to 32GB UDIMM ECC 1600MHz, 2 x SATA III 6Gb/s + 4 x

SATA II 3Gb/s

• A1SAi-2750F Hosts Intel Atom C2750. Price: 360$ Up to 64GB DDR3

1600MHz ECC. Quad GbE LAN ports. 2x SATA3 and 4x SATA2 ports. 12V

DC or ATX power input.

• X10SDV-8C-TLN4F: Hosts Intel Xeon D. Price: 890$ Up to 128GB ECC

RDIMM DDR4 2400MHz or 64GB ECC/non-ECC UDIMM in 4 sockets, 1

PCI-E 3.0 x16, M.2 PCI-E 3.0 x4 (SATA support) 2 10GbE and 2 GbE LAN

ports, 6 SATA3 (6Gbps) ports via SoC.

• SUPERMICRO MBD-X10SDV-4C-TLN2F-O: Host Intel Xeon D-1520.

Price: 490$. Up to 128GB ECC RDIMM DDR4 2133MHz or 64GB ECC. 6 x

SATA3 (6Gbps). 12V DC input and ATX Power Source.

• H270-T70: Hosts 384 Cavium ThunderX cores. Price: 19,017$.

(a) front

(b) rare

 76

Fig. 60: 1U Mini-ITX 9.84 inch Deep Rackmount Chassis [81].

Fig. 61: Fixed and Hot Swappable Tray Options.

• MBD-X10QBI-P: Hosts 4 Xeon E7, Price: 1,400$. 4x PCI-E 3.0 x164x PCI-E

3.0 x16. 2x 10GBase-T ports, IPMI LAN port.2x SATA3 (6Gbps) ports 4x

SATA2 (3Gbps) ports. Need to get proprietary RAM slot (300$).

2.1.27.3. Server Enclosure
It is very likely that we will end up having a mini ITX server board if we choose to go

with low power Intel Xeon D processors or Atom C2750. The mini-ITX physical

appearance is shown in Fig. 58.

To turn these mini ITX boards into blades we can use the BB-ITX96 V2 Blade

[82]. The BB-ITX96 V2 Blade outer physical look is shown in Fig. 59.

The BB-ITX96 V2 is a 6U - 9 blades systems designed for mini ITX motherboards.

The advantage of using this system is that we are not locked into a specific company

like Cisco, HP, IBM, etc. We can choose any server node based on any processor and

motherboard and pack them into this enclosure if they adhere to mini-ITX form factor.

This also gives us some flexibility on choosing different servers and pack them all

together and benchmark them separately. There is always the option of using 1U mini-

ITX cases as shown in Fig. 60. The comparison of fixed and hot swappable tray options

is shown in Fig. 61 and another similar custom nonproprietary option is shown in Fig.

62.

We can also always use existing off-the-shelf blade server solutions like Cisco, HP,

Dell, Lenovo, etc. which were discussed in Section 2.1.4. The mini-ITX idea is very

(a) front (b) back

(a) Fixed Model Blade Tray (b) Hot Swap Blade Tray

 77

Fig. 62: WiredSystems 5U Blade Chassis for mini-ITX and WiredSystems 5U Blade

Chassis for mini-ITX [83].

Fig. 63: Google server based on Micro-ATX architecture [84].

close to what Google customized servers looks like. They use micro-ATX

architecture as shown in Fig. 63.

 78

2.1.27.4. Final Data Center Solution Characteristics
1. Location: North of Thailand: Has cooler weather, and the security is more stable

in comparison to the south. (Flood, earthquake possibilities must be considered.)

2. For low-end general-purpose D.C.: Intel Xeon D-1520 (used by FB) or Intel Atom

C2350.

3. For high-end general-purpose D.C.: Intel Xeon E7 or E5.

4. For Web Server D.C.: ARM clusters can be considered.

5. Mother Board: Mini-ITX form.

6. System: Custom Blade holds 9 of those mini-ITX boards.

7. Network Fabric: Ethernet 10Gb/40Gb.

8. Cooling: Custom liquid cooling design or just air.

2.1.28. Innovative Chulalongkorn Design
The following weakness can be identified with conventional cooling systems [85]:

• Re-circulation: Typically caused by poor rack hygiene and insufficient cool air

available at the face of the rack, hot exhaust air can find its way back into server

air intakes, heating IT equipment to potentially dangerous temperatures.

• Air stratification: To provide cooler air at the top of the face of the rack, the

natural tendency of air to mass in different temperature-based layers can force

set points on precision cooling equipment to be lower than recommended.

Often, in attempts to remediate air stratification, technicians increase the fan

speed of CRAC units to deliver more cool air to the room, which can result in

bypass air.

• Bypass air: The velocity of the cool air stream exceeds the ability of the server

fans to draw in the cool air; as a result, the cool air shoots beyond the face of

the IT rack. Cool supply air can join the return air stream before passing through

servers, weakening cooling efficiency.

To improve cooling efficiency, we have designed isolated racks that reduces the hot

air and cold air intermingling. Additionally, the isolation frame that wraps the server

racks eliminates the need to cool down the entire room hosting the racks. The heat will

be removed directly from each rack and temperature regulation of the air outside of the

rack becomes unnecessary.

As we can see in Fig. 64 a 42U rack is placed into a thermal insulator container. An

evaporator has been installed on the top to remove the heat from air and send the cold

heavy air to the bottom of the rack. The cool air at the bottom goes through the front

side of servers. As the air passes through the server components, it becomes hot and

elevates to the top of the container which again needs to be cooled down and the cycle

will be repeated. In this design the complete isolation of cold/hot aisles, plus the

isolation of rack from its outside surrounding have significantly improved the cooling

efficiency. (percentage/statistics needed to be sampled and documented)

 79

Fig. 64: New Design by Chulalongkorn University - Thailand.

2.2. Data Center Conclusion
Data centers as one of the most important backbone of today’s information technology

was the focus of this work. After providing the definition of a data center, the types of

hardware that can be implemented in a data center, and different type of networks used

in data centers, we focused on data center performance versus efficiency trade off.

We expanded our knowledge regarding data centers by examining cooling systems,

security and reliability, site location consideration, metrics, and benchmarking, and

energy consumption reduction approaches. Cooling with highest percentage (38%) is

the first and processor with 15% is the second most power consumption factors in data

centers. This research is being conducted in electrical engineering department and our

 80

expertise will not let us contribute to cooling systems efficiency, consequently our

attention shifted to processors.

The cascade effects shows that even very small power consumption reduction in

processor design translates to huge amount of total power consumption reduction.

Therefore, we decided to continue our research on processor efficiency. We compared

and examined several industry level processors such as Intel, AMD, ARM, etc. aimed

for data centers. This work shows that currently Intel Xeon processors have the best

performance and are the most efficient processor to be deployed in data centers. New

versions of multi-core ARM processors are advertised to target data centers. This

research shows that ARM processors will fail to reach the performance of Intel Xeon

processors and are only perform better in web server applications servicing myriad of

low intensity incoming requests. After selecting Intel Xeon to be the processor of

choice, we continued our research on other hardware such as server motherboard types,

rack and blade types, memory technologies, server enclosures, etc. One interesting

server model that was covered is custom-made blade based on Micro-ATX architecture

used in Google servers.

Finally, the following hardware and specifications were decided upon, and purchase

order got initiated:

1. Location: North of Thailand: Has cooler weather, and the security is more stable

in comparison to the South. (Flood, earthquake possibilities must be

considered.)

2. For low-end general-purpose D.C.: Intel Xeon D-1520 (used by FB) or Intel

Atom C2350.

3. For high-end general-purpose D.C.: Intel Xeon E7 or E5.

4. For Web Server D.C.: ARM clusters can be considered.

5. Mother Board: Mini-ITX form.

6. System: Custom Blade holds 9 of those mini-ITX boards.

7. Network Fabric: Ethernet 10Gb/40Gb.

8. Cooling: Custom liquid cooling design or just air.

 81

2.3. Microprocessor

2.3.1. Introduction
The final goal of this work is to design a RISC processor. In the past the CISC

processors used to dominate the general-purpose processor market. The x86 instruction

set dominated the market and myriad number of software packages and operating

systems were written to support that architecture. This made the industry to be reluctant

to migrate to better processor architectures. Later RISC processor such as ARM started

to become popular, and the market shifted to support them and use them in low power

embedded application such as smart phones and tablets.

Here we tried to initially explore the ups and downs of designing a complete RISC

processor using VHDL and then try to tailor it to improve the performance to get a

powerful adaptive processor.

2.3.2. Processor Architectures

2.3.2.1. Definitions

• Instruction Set (IS): The complete list of commands that can be run by a CPU

is known as that processor’s instruction set. These low-level commands are run

in a series of steps, which are synchronized with the computer’s clock [86].

• Microarchitecture: An instruction set architecture is distinguished from a

microarchitecture, which is the set of processor design techniques used, in a

particular processor, to implement the instruction set. Processors with different

microarchitectures can share a common instruction set. For example, the Intel

Pentium and the AMD Athlon implement nearly identical versions of the x86

instruction set but have radically different internal designs [87]. Through the

history of processors, we have following notable architectures, which is

categorized based on the work they are designed to be tackle [86]:

2.3.2.2. Architecture Types
Below is the list of all architecture types:

• Embedded CPU architectures:

o ARM architecture (32-bit)

o ARM64 (64/32-bit)

o Atmel’s AVR architecture

o Microchip’s PIC architecture

o Texas Instruments’s MSP430 architecture

o Intel’s 8051 architecture

o Zilog’s Z80 architecture

o Western Design Center’s 65816 architecture

o Hitachi’s SuperH architecture

o Axis Communications’ ETRAX CRIS architecture

o Power Architecture (formerly PowerPC)

o EnSilica’s eSi-RISC architecture

o Milkymist architecture

o Inmos’ Transputer architectures

• Microcomputer CPU architectures:

o Pre-x86

 82

o x86

o Intel’s IA-32 architecture, also called x86-32

o x86-64 with AMD’s AMD64 and Intel’s Intel 64 version of it

o Motorola’s 6800 and 68000 architectures

o MOS Technology’s 6502 architecture

o Zilog’s Z80 architecture

o Power Architecture (formerly POWER and PowerPC)

o ARM (32-bit) (previously Advanced RISC Machines’ ARM, originally

Acorn’s RISC Machine) and StrongARM/XScale architectures

o ARM64 (64/32-bit) Renesas RX CPU architecture - Combination of

RISC and CISC architectures

• Workstation/Server CPU architectures:

o DEC’s Alpha architecture

o HP’s PA-RISC architecture

o Power Architecture (formerly POWER and PowerPC)

o Intel’s Itanium architecture (formerly IA-64)

o MIPS Computer Systems Inc.’s MIPS architecture

o Oracle’s (formerly Sun Microsystems’s) SPARC architecture

• Mini/Mainframe CPU architectures:

o Burroughs large systems architecture (1961-present) currently

supported in the Unisys ClearPath/MCP series.

o IBM’s System/360, System/370, ESA/390 and z/Architecture (1964-

present)

o DEC’s PDP-8 architecture, the successor PDP-11 architecture, and its

final form, the VAX architecture

o UNIVAC 1100/2200 series architecture (currently supported by Unisys

ClearPath IX computers)

o MIL-STD-1750A - the U.S.’s military standard computer AP-101 - the

space shuttle’s computer

• Mixed-core CPU architectures:

o IBM’s Cell architecture (a general-purpose architecture that uses a

POWER4 based core and 8 RISC based co-processors)

o CAS’s Loongson 3

o Parallax Propeller, a 160 MIPS multicore microcontroller with eight

32-bit RISC cores

2.3.3. Microprocessor Instruction Set
In this section the details of a microprocessor and its characteristics are discussed.

While providing the attributes of a processor the decisions for our first 16-bit

microprocessor (Laser) also is shaped and finalized.

2.3.3.1. ISE Specifications
The final ISE design should meet the following requirements [88]:

1. Completeness

2. Orthogonality

3. Regularity and simplicity

4. Compactness

 83

5. Ease of programming

6. Ease of implementation

2.3.4. Machine Types
We have four kinds of machines based on how the operands of an instruction is

mentioned [88]:

2.3.4.1. Accumulator
It has 1 operand.

1. Short instructions

2. Lots of instructions

3. Simple hardware

4. Little exposed architecture

2.3.4.2. Stack:
It has 0 operand.

Nearly same as accumulator

2.3.4.3. Register-Memory
It has 2 or 3 operands: Example: “add Ra Rb”, most operands can be registers or

memory:

1. Expressive instructions

2. Few instructions.

3. Instructions are complex and diverse

4. Lots of exposed architecture

2.3.4.4. Load-Store
It has 3 operands, Example: “add Ra Rb Rc”, Most operations (e.g., arithmetic) are only

between registers, explicit load, and store instructions to move data between registers

and memory.

1. Simple

2. Higher instruction count

3. Lots of exposed architecture

2.3.4.5. Memory-Memory
Memory accesses create memory bottleneck. Used in VAX and now is absolute. We

can also categorize a machine based on the number of operands [89]:

1. 3-address machines

2. 2-address machines

3. 1-address machines

4. 0-address machines

2.3.5. Instruction Length
The size of instruction can be variable or fixed. The variable-width instruction set could

have instruction size as small as 4-bits such as tiny microcontrollers, or as large as 120

 84

bits or more which is used in processors like X86. CISC processors usually use variable

size instructions while RISC processors use fixed size instruction such as 16, or 32 bits.

For example, there simply are not enough bits in a 16-bit instruction to

accommodate 32 general-purpose registers with 3 operands. each operands need 5 bits

which will consume 15 bits just for the operands and then we must allocate some bits

for opcode.

To solve the above restriction people who design instruction sets must make one or

more of the following compromises [90]:

• Sacrifice code density and use longer fixed-width instructions, typically 32 bit,

such as the MIPS and DLX and ARM.

• Sacrifice fixed-width instructions, requiring a more complicated decoder to

handle both short 16-bit instructions and longer 3-operand instructions, such as

ARM Thumb.

• Sacrifice 3-operands, using no more than 2 operands in all instructions for

everything, such as the Atmel AVR. 3-operand instructions allow better reuse

of data; without 3-operand instructions, programs occasionally require extra

copy instructions when both variable input operands to some ALU operation

need to be preserved for some later instruction(s).

• Sacrifice registers, so only 16 or 8 programmer-visible registers.

• Sacrifice the concept of general-purpose register - perhaps only 16 or 8 “data

registers” are visible to 3- operand ALU instructions, as in the 68000, or the

destination is restricted to one or two “accumulators”, but other registers (such

as “address registers”) are visible to other instructions.

2.3.6. Memory Considerations
Memory addressing mode must be specified [88].

1. Non-memory:

• Register direct Add R4, R3

• Immediate Add R4, #3

2. Memory:

• Displacement (1st most occurring) Add R4, 100 (R1)

• Indirect Add R4, (R1)

• Indexed Add R3, (R1 + R2)

• Direct (2nd in most occurring) Add R1, (1001)

• Mem. indirect Add R1, @(R3)

• Autoincrement Add R1, (R2)+

• Autodecrement Add R1, -(R2)

2.3.7. Supported Operations

• Arithmetic: add, subtract, multiply, divide

• Logical: and, or, shift left, shift right

• Data Transfer: load word, store word

• Control flow: branch, PC-relative: displacement added to the program counter

to get target address

 85

Fig. 65: Retargettable Compiler [91].

2.3.8. Types of Branches

• conditional branch (most occurring): beq r1,r2, label

• jump: jmp label

• procedure call: call label

• procedure return: return

2.3.9. Instruction Set Encoding
We have two type of encoding [88]:

1. Variable: VAX, x86

2. Fixed: MIPS, ARM, SPARC

2.4. LLVM Backend

2.4.1. Terminologies
Before we start adapting a compiler and assembler for our newly designed processor

using LLVM, we must get familiar with some terminologies used in LLVM.

• LLVM Intermediate Representation (IR): An assembly like language that

has infinite registers and RISC like instructions.

• Static compiler: One that emits text assembly

• Just In Time (JIT) compiler: Compilation done during execution of a program

at run time, rather than prior to execution.

2.4.1.1. 3-Stage of Compilation
As shown in Fig. 65, a 3-stage compilation consist of:

• Stage 1: Frontend: High level language (C/C++, Python, etc.)

• Stage 2: Optimization, in the middle.

• Stage 3: Backend that output specific machine code as its target.

2.4.1.2. LLVM Backend Pipeline
LLVM has a pipeline structure for the backend, where instructions travel through

several phases as shown below [92]:

LLVM IR → SelectionDAG → MachineDAG → MachineInstr → MCInst.

 86

A more detailed version is shown in Fig. 66. The light gray boxes are called

superpasses because, internally, they are implemented with several smaller passes,

these passes are critical to the success of the backend while the white boxes are not.

Fig. 66: Backend Pipeline [93].

The IR is converted into SelectionDAG (DAG stands for Directed Acyclic Graph).

Then SelectionDAG legalization occurs where illegal instructions are mapped on the

legal operations permitted by the target machine. After this stage, SelectionDAG is

converted to MachineDAG, which is basically an instruction selection supported by the

backend [92]. Before we start writing our backend, we must get ourselves familiar with

lots of background knowledge. Next section we will briefly review the LLVM

Assembly language.

2.4.2. LLVM Assembly Language

2.4.2.1. Introduction
LLVM is a Static Single Assignment (SSA) based representation that provides type

safety, low-level operations, flexibility, and the capability of representing ‘all’ high-

level languages cleanly. It is the common code representation used throughout all

phases of the LLVM compilation strategy [94].

The LLVM code representation is designed to be used in three different forms,

which are all equivalent [94]:

1. As an in-memory compiler IR.

2. As an on-disk bitcode representation (suitable for fast loading by a Just-In-Time

compiler)

3. As a human readable assembly language representation.

2.4.2.2. Identifiers
1. Global: @

2. Local: %

Example:

%result = mul i32 %X, 8 ; Multiply %X by 8 and put the result

; in local variable %result

 87

2.4.2.3. High Level Structure
LLVM programs are composed of Modules, each of which is a translation unit of the

input programs. Each module consists of functions, global variables, and symbol table

entries. Modules may be combined together with the LLVM linker [94].

Example:

2.4.3. LLVM Target Independent Code Generator

2.4.3.1. Introduction
The LLVM target-independent code generator is a framework that provides a suite of

reusable components for translating the LLVM internal representation to the machine

code for a specified target—either in assembly form (suitable for a static compiler) or

in binary machine code format (usable for a JIT compiler) [95].

The LLVM target-independent code generator consists of six main components:

1. Abstract target description interfaces which capture important properties about

various aspects of the machine, independently of how they will be used. These

interfaces are defined in include/llvm/Target/.

2. Classes used to represent the code being generated for a target. These classes

are intended to be abstract enough to represent the machine code for any target

machine. These classes are defined in include/llvm/CodeGen/. At this level,

concepts like “constant pool entries” and “jump tables” are explicitly exposed.

3. Classes and algorithms used to represent code at the object file level, the MC

Layer. These classes represent assembly level constructs like labels, sections,

and instructions. At this level, concepts like “constant pool entries” and “jump

tables” do not exist.

; Declare the string constant as a global constant.

@.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"

; External declaration of the puts function

declare i32 @puts(i8* nocapture) nounwind

; Definition of main function

define i32 @main() { ; i32()*

 ; Convert [13 x i8]* to i8 *...

 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0

 ; Call puts function to write out the string to stdout.

 call i32 @puts(i8* %cast210)

 ret i32 0

}

; Named metadata

!0 = !{i32 42, null, !"string"}

!foo = !{!0}

 88

4. Target-independent algorithms used to implement various phases of native code

generation (register allocation, scheduling, stack frame representation, etc).

This code lives in lib/CodeGen/.

5. Implementations of the abstract target description interfaces for particular

targets. These machine descriptions make use of the components provided by

LLVM, and can optionally provide custom target specific passes, to build

complete code generators for a specific target. Target descriptions live in

lib/Target/.

6. The target-independent JIT components. The LLVM JIT is completely target

independent (it uses the TargetJITInfo structure to interface for target-specific

issues. The code for the target-independent JIT lives in

lib/ExecutionEngine/JIT.

All developers must be familiar with the fundamental classes which are: “target

description” and “machine code representation” classes. If a developer needs to add a

new backend, then “implement the target description” classes must be familiarized and

“LLVM Code representation” must be understood. If the goal is to implement a new

code generation algorithm, then it should only depend on the target-description and

machine code representation classes, ensuring that it is portable [95].

2.4.3.2. The high-level design of the code generator
Code generation steps [95]:

1. Instruction Selection: This phase determines an efficient way to express the

input LLVM code in the target instruction set. This stage produces the initial

code for the program in the target instruction set, then makes use of virtual

registers in SSA form and physical registers that represent any required register

assignments due to target constraints or calling conventions. This step turns the

LLVM code into a DAG of target instructions.

2. Scheduling and Formation: This phase takes the DAG of target instructions

produced by the instruction selection phase, determines an ordering of the

instructions, then emits the instructions as MachineInstrs with that ordering.

Note that we describe this in the instruction selection section because it operates

on a SelectionDAG.

3. SSA-based Machine Code Optimizations: This optional stage consists of a

series of machine-code optimizations that operate on the SSA-form produced

by the instruction selector. Optimizations like modulo-scheduling or peephole

optimization work here.

4. Register Allocation: The target code is transformed from an infinite virtual

register file in SSA form to the concrete register file used by the target. This

phase introduces spill code and eliminates all virtual register references from

the program.

5. Prolog/Epilog Code Insertion: Once the machine code has been generated for

the function and the amount of stack space required is known (used for LLVM

allocations and spill slots), the prolog and epilog code for the function can be

inserted and “abstract stack location references” can be eliminated. This stage

is responsible for implementing optimizations like frame-pointer elimination

and stack packing.

 89

6. Late Machine Code Optimizations: Optimizations that operate on “final”

machine code can go here, such as spill code scheduling and peephole

optimizations.

7. Code Emission: The final stage puts out the code for the current function, either

in the target assembler format or in machine code.

2.4.3.3. TableGen Tool
The target description classes require a detailed description of the target architecture.

These target descriptions often have a large amount of common information (e.g., an

add instruction is almost identical to a sub instruction). To allow the maximum amount

of commonality to be factored out, the LLVM code generator uses the TableGen tool

to describe big chunks of the target machine, which allows the use of domain-specific

and target-specific abstractions to reduce the amount of repetition.

As LLVM continues to be developed and refined, we plan to move more and more

of the target description to the .td form. Doing so gives us several advantages. The most

important is that it makes it easier to port LLVM because it reduces the amount of C++

code that must be written, and the surface area of the code generator that needs to be

understood before someone can get something working. Second, it makes it easier to

change things. If tables and other things are all emitted by tblgen, we only need a change

in one place (tblgen) to update all the targets to a new interface [95].

The TableGen language is composed of definitions and classes that are used to

form records [93]. The definition def is used to instantiate records from the class and

multiclass keywords.

For example:

class Insn<bits <4> MajOpc, bit MinOpc> {

 bits<32> insnEncoding;

 let insnEncoding{15-12} = MajOpc;

 let insnEncoding{11} = MinOpc;

}

multiclass RegAndImmInsn<bits <4> opcode> {

 def rr : Insn<opcode, 0>;

 def ri : Insn<opcode, 1>;

}

def SUB : Insn<0x00, 0>;

defm ADD : RegAndImmInsn<0x01>;

 90

The Insn class represents a regular instruction and the RegAndImmInsn multiclass

represents instructions with the forms mentioned above. The def SUB construct defines

the SUB record whereas defm ADD defines two records: ADDrr and ADDri. Every

instruction or format must be a direct or indirect subclass of the Instruction TableGen

class defined in include /llvm/Target/Target.td.

• dag is a special TableGen type used to hold SelectionDAG nodes.

• OutOperandList stores resultant nodes, allowing the backend to identify the

DAG nodes that represent the outcome of the instruction. For example, in the

MIPS ADD instruction, this field is defined as (outs GP32Opnd:$rd). outs is a

special DAG node to denote that its children are output operands GPR32Opnd

is a MIPS-specific DAG node to denote an instance of a MIPS 32-bit general

purpose register $rd is an arbitrary register name that is used to identify the

node.

• InOperandList holds the input nodes, for example, in the MIPS ADD

instruction, ”(ins GPR32Opnd:$rs, GPR32Opnd:$rt)”.

• AsmString represents the instruction assembly string, for example, in the MIPS

ADD instruction, “add $rd, $rs, $rt”.

• Pattern is the list of dag objects that will be used to perform pattern matching

during instruction selection. If a pattern is matched, the instruction selection

phase replaces the matching nodes with this instruction. For example, in the

[(set GPR32Opnd:$rd, (add GPR32Opnd:$rs, GPR32Opns:$rt))] pattern of the

MIPS ADD instruction, [and] denote the contents of a list that has only one

dag element, which is defined between parenthesis in a LISP-like notation.

• Uses, Defs record the lists of implicitly used and defined registers during the

execution of this instruction. For example, the return instruction of a RISC

processor implicitly uses the return address register, while the call instruction

implicitly defines the return address register.

• Predicates stores a list of prerequisites that are checked before the instruction

selection tries to match the instruction. If the check fails, there is no match. For

example, a predicate may state that the instruction is only valid for a specific

subtarget. If you run the code generator with a target triple that selects another

subtarget, this predicate will evaluate to false, and the instruction never matches.

class Instruction {

 dag OutOperandList;

 dag InOperandList;

 string AsmString = "";

 list<dag> Pattern;

 list<Register> Uses = [];

 list<Register> Defs = [];

 list<Predicate> Predicates = [];

 bit isReturn = 0;

 bit isBranch = 0;

 ...

 91

2.4.3.4. The LLVM Code Generator Classes

2.4.3.4.1. Target Description Classes
1. The TargetMachine class provides virtual methods that are used to access the

target-specific implementations of the various target description classes via the

get*Info methods (getInstrInfo, getRegisterInfo, getFrameInfo, etc.).

2. The DataLayout class is the only required target description class, and it is the

only class that is not extensible (you cannot derive a new class from it).

DataLayout specifies information about how the target lays out memory for

structures, the alignment requirements for various data types, the size of pointers

in the target, and whether the target is little-endian or big-endian.

3. The TargetLowering class is used by SelectionDAG based instruction selectors

primarily to describe how LLVM code should be lowered to SelectionDAG

operations.

4. The TargetRegisterInfo class is used to describe the register file of the target

and any interactions between the registers.

5. The TargetInstrInfo class is used to describe the machine instructions

supported by the target

6. The TargetFrameLowering class is used to provide information about the stack

frame layout of the target.

7. The TargetSubtarget class is used to provide information about the specific chip

set being targeted.

8. The TargetJITInfo class exposes an abstract interface used by the Just-In-Time

code generator to perform target-specific activities, such as emitting stubs

2.4.3.4.2. Machine code description classes
1. The MachineInstr class: Target machine instructions are represented as

instances of the MachineInstr class. This class is an extremely abstract way of

representing machine instructions. It only keeps track of an opcode number and

a set of operands. The opcode number is a simple unsigned integer that only has

meaning to a specific backend. All the instructions for a target should be defined

in the *InstrInfo.td file for the target.

2. The MachineBasicBlock class contains a list of machine instructions

(MachineInstr instances).

3. The MachineFunction class contains a list of machine basic blocks

(MachineBasicBlock instances).

2.4.3.5. The MC Layer
The MC Layer is used to represent and process code at the raw machine code level,

devoid of “high level” information like “constant pools”, “jump tables”, “global

variables” or anything like that. At this level, LLVM handles things like label names,

machine instructions, and sections in the object file. The code in this layer is used for a

number of important purposes: the tail end of the code generator uses it to write a .s or

.o file, and it is also used by the llvm-mc tool to implement standalone machine code

assemblers and disassemblers [95].

1. The Context class is the owner of a variety of unique data structures at the MC

layer, including symbols, sections, etc.

2. The MCSymbol class represents a symbol (aka label) in the assembly file.

 92

3. The MCSection class represents an object-file specific section.

4. The MCInst class is a target-independent representation of an instruction.

2.4.3.6. Instruction Selection
In Section 2.4.3.2 six steps of code generation were listed. Here we get into the details

of the “Instruction Selection” step.

Instruction Selection is the process of translating LLVM code presented to the code

generator into target-specific machine instructions. There are several well-known ways

to do this in the literature. LLVM uses a SelectionDAG based instruction selector [95].

The SelectionDAG is a Directed-Acyclic-Graph whose nodes are instances of the

SDNode class. The primary payload of the SDNode is its operation code (Opcode) that

indicates what operation the node performs and the operands to the operation.

An SDNode has an opcode, operands, type requirements, and operation

properties. For example, is an operation commutative, does an operation load from

memory.

• The various operation node types are described in the

include/llvm/CodeGen/SelectionDAGNodes.h file (values of the NodeType

enum in the ISD namespace).

• The various operation node types are described at the top of the

include/llvm/CodeGen/ISDOpcodes.h file.

Although most operations define a single value, each node in the graph may

define multiple values. For example, a combined div/rem operation will define both the

dividend and the remainder. Many other situations require multiple values as well. Each

node also has some number of operands, which are edges to the node defining the used

value. Because nodes may define multiple values, edges are represented by instances

of the SDValue class, which is a pair, indicating the node and result value being used,

respectively. Each value produced by an SDNode has an associated MVT (Machine

Value Type) indicating what the type of the value is [95].

One important concept for SelectionDAGs is the notion of a “legal” vs. “illegal”

DAG. A legal DAG for a target is one that only uses supported operations and supported

types. On a 32-bit PowerPC, for example, a DAG with a value of type i1, i8, i16, or i64

would be illegal, as would a DAG that uses a SREM or UREM operation [95].

SelectionDAG-based instruction selection consists of the following steps [95]:

1. Build initial DAG: This stage performs a simple translation from the input

LLVM code to an illegal SelectionDAG.

2. Optimize SelectionDAG: This stage performs simple optimizations on the

SelectionDAG to simplify it and recognize meta instructions (like rotates and

div/rem pairs) for targets that support these meta operations. This makes the

resultant code more efficient and the select instructions from DAG phase

(below) simpler.

3. Legalize SelectionDAG Types: This stage transforms SelectionDAG nodes to

eliminate any types that are unsupported on the target.

4. Optimize SelectionDAG: The SelectionDAG optimizer is run to clean up

redundancies exposed by type legalization.

5. Legalize SelectionDAG Ops: This stage transforms SelectionDAG nodes to

eliminate any operations that are unsupported on the target.

 93

6. Optimize SelectionDAG: The SelectionDAG optimizer is run to eliminate

inefficiencies introduced by operation legalization.

7. Select instructions from DAG: Finally, the target instruction selector matches

the DAG operations to target instructions. This process translates the target-

independent input DAG into another DAG of target instructions.

8. SelectionDAG Scheduling and Formation: The last phase assigns a linear

order to the instructions in the target-instruction DAG and emits them into the

MachineFunction being compiled. This step uses traditional prepass scheduling

techniques.

After all these steps are complete, the SelectionDAG is destroyed, and the rest of

the code generation passes are run.

2.4.3.7. SelectionDAG Select Phase
The Select phase is the bulk of the target-specific code for instruction selection. This

phase takes a legal SelectionDAG as input, pattern matches the instructions supported

by the target to this DAG and produces a new DAG of target code. For example,

consider the following LLVM fragment:

This LLVM code corresponds to a SelectionDAG that looks basically like this:

TableGen uses the following target description (.td) input files to generate much of

the code for instruction definition [96]:

• Target.td: Where the Instruction, Operand, InstrInfo, and other fundamental

classes are defined.

• TargetSelectionDAG.td: Used by SelectionDAG instruction selection

generators, contains SDTC* classes (selection DAG type constraint),

definitions of SelectionDAG nodes (such as imm, cond, bb, add, fadd, sub), and

pattern support (Pattern, Pat, PatFrag, PatLeaf, ComplexPattern).

• XXXInstrFormats.td: Patterns for definitions of target-specific instructions.

• XXXInstrInfo.td: Target-specific definitions of instruction templates,

condition codes, and instructions of an instruction set. For architecture

modifications, a different file name may be used. For example, for Pentium with

SSE instruction, this file is X86InstrSSE.td, and for Pentium with MMX, this

file is X86InstrMMX.td.

2.4.3.8. LLC DAG Related Arguments
The llc arguments which generate DAGs in several phases are:

• view-dag-combine1-dags displays the DAG after being built, before the first

optimization pass.

• view-legalize-dags displays the DAG before Legalization.

%t1 = fadd float %W, %X

%t2 = fmul float %t1, %Yf

%t3 = fadd float %t2, %Z

fadd:f32 (fmul:f32 (fadd:f32 W, X), Y), Z)

 94

• view-dag-combine2-dags displays the DAG before the second optimization

pass.

• view-isel-dags displays the DAG before the Select phase.

• view-sched-dags displays the DAG before Scheduling.

TableGen generates code for instruction selection using the following target

description input files [96]:

• XXXInstrInfo.td contains definitions of instructions in a target-specific

instruction set, generates XXXGenDAGISel.inc, which is included in

XXXISelDAGToDAG.cpp.

• XXXCallingConv.td contains the calling and return value conventions for the

target architecture, and it generates XXXGenCallingConv.inc, which is

included in XXXISelLowering.cpp.

The implementation of an instruction selection pass must include a header that

declares the FunctionPass class or a subclass of FunctionPass. In

XXXTargetMachine.cpp, a Pass Manager (PM) should add each instruction selection

pass into the queue of passes to run.

2.4.4. LLVM IR to Machine Code Walk Through
Life of an instruction in LLVM: After compiling a C code by we get LLVM IR

instructions. SelectionDAG nodes are created by the SelectionDAGBuilder class acting

“in the service of” SelectionDAGISel, which is the main base class for instruction

selection. SelectionDAGISel goes over all the IR instructions and calls the

SelectionDAGBuilder::visit dispatcher on them. For example, the method handling a

SDiv instruction is SelectionDAGBuilder::visitSDiv. It requests a new SDNode from

the DAG with the opcode ISD::SDIV, which becomes a node in the DAG [97].

The initial DAG constructed this way is still only partially target dependent. In

LLVM nomenclature it is called “illegal” – the types it contains may not be directly

supported by the target; the same is true for the operations it contains.

An important interface used by the code generator to convey target-specific

information to the generally target-independent algorithms is TargetLowering. Targets

implement this interface to describe how LLVM IR instructions should be lowered to

legal SelectionDAG operations.

In constructor of LaserTargetLowering (in LaserISelLowering.cpp) we tell LLVM

how to legalize each IR by lowering it into target supported nodes.

For example, when SelectionDAGLegalize::LegalizeOp sees the Expand flag on a

SDIV node it replaces it by ISD::SDIVREM. This is an interesting example to

 95

Fig. 67: MC Framework [93].

 demonstrate the transformation an operation can undergo while in the selection

DAG form.

The next step in the code generation process is instruction selection. LLVM

provides a generic table-based instruction selection mechanism that is auto-generated

with the help of TableGen. Many target backends, however, choose to write custom

code in their SelectionDAGISel::Select (in LaserISelDAGToDAG.cpp)

implementations to handle some instructions manually. Other instructions are then sent

to the auto-generated selector by calling SelectCode.

The code we have at this point is still represented as a DAG. But CPUs do not

execute DAGs, they execute a linear sequence of instructions. The goal of the

scheduling step is to linearize the DAG by assigning an order to its operations (nodes).

The simplest approach would be to just sort the DAG topologically, but LLVM’s code

generator employs clever heuristics (such as register pressure reduction) to try and

produce a schedule that would result in faster code.

Finally, the scheduler emits a list of instructions into a MachineBasicBlock, using

InstrEmitter::EmitMachineNode to translate from SDNode.

The instructions here take the MachineInstr form (”MI form” from now on), and

the DAG can be destroyed.

We can examine the machine instructions emitted in this step by calling llc with

the -print-machineinstrs flag and looking at the first output that says, “After instruction

selection”.

Code Emission: The MCInst class defines a lightweight representation for

instructions. Compared to MIs, MCInsts carry less information about the program.

Each operand can be a register, immediate (integer or floating-point number), an

expression (represented by MCExpr), or another MCInstr instance. Expressions are

used to represent label computations and relocations. The MI instructions are converted

to MCInst instances early in the code emission phase.

 96

Let us have a walkthrough over the steps shown in the preceding diagram as shown

in Fig. 67:

1. AsmPrinter is a machine function pass that first emits the function header and

then iterates over all basic blocks, dispatching one MI instruction at a time to

the EmitInstruction() method for further processing.

2. The LaserAsmPrinter::EmitInstruction() method receives an MI instruction as

input and transforms it into an MCInst instance through the MCInstLowering

interface each target provides a subclass of this interface and has custom code

to generate these MCInst instances.

3. At this point, there are two options to continue: emit assembly or binary

instructions. The MCStreamer class processes a stream of MCInst instructions

to emit them to the chosen output via two subclasses: MCAsmStreamer and

MCObjectStreamer. The former converts MCInst to assembly language and the

latter converts it to binary instructions.

4. If generating assembly instructions, MCAsmStreamer::EmitInstruction() is

called and uses a target-specific MCInstPrinter subclass to print assembly

instructions to a file.

5. If generating binary instructions, a specialized-target and object-specific

version of MCObjectStreamer::EmitInstruction() calls the LLVM object code

assembler.

6. The assembler uses a specialized MCCodeEmitter::EncodeInstruction()

method that is capable of departing from a MCInst instance encoding and

dumping binary instruction blobs to a file in a target-specific manner.

2.4.5. LLVM Machine Code (MC) Components
MC components can be categorized into two parts [98]:

1. that which operates on instructions

2. that which does other stuff.

(MachineInst) → (MCInstr)

Some important classes:

• MCInst presents an instructions with operands.

• MCSymbol presents labels in .s file.

• MCSection

• MCExpr

MC Project:

1. Instruction Printer: MCInstPrinter

2. Instruction Encoder: MCCodeEmitter

3. Instruction Parser: MCTargetAsmParser

4. Instruction Decoder: MCDisassembler

5. Assembly Parser: Handles directives, invokes MCStreamer which has

EmitInstruction() function which takes in a MCInst.

6. Assembly backend: MCAsmStreamer

 97

Fig. 68: [93].

The compiler backend now invokes the same MCStreamer interface to emit code

that the stand-alone assembler parser does.

2.4.5.1. RET
To fully understand the process of IR transformation to machine instruction we start

with the following simple C program:

Running the Clang (with Laser target DataLayout defined in it and -O2 argument)

on the C program shown in Listing 1 gives the generated IR code.

int main(void) {

 return 0;

}

define i16 @main() local_unnamed_addr #0 {

 entry:

ret i16 0

}

Listing 1: main() IR code.

 98

Fig. 69: DAG combine1 input for main:entry.

We need to convert the LLVM IR “ret i16 0” to Laser machine code: “IMD

%RETVAL, 0; Ret;” Meanwhile the return address must be already saved in

%RETADDR register.

The first phase is “Instruction Selection” which transforms LLVM IR to

SelectionDag nodes (SDNode). Each SDNode corresponds to an instruction or operand.

Next, these nodes go through the lowering, DAG combiner, and legalization phases,

making it easier to match against target instructions. The instruction selection then

performs a DAG-to-DAG conversion using node pattern matching and transforms the

SelectionDAG nodes into nodes representing target instructions. More details are shown

in Fig. 68 [93].

First, a SelectionDAGBuilder instance (see SelectionDAGISel.cpp for details)

visits every function and creates a SelectionDAG object for each basic block. During

this pass LaserTaretLowering is used to lower special IR instructions such as ret and

call.

A SelectionDag object may have several instances of SDNode class, the primary

payload of SDNode is its operation code (Opcode) that indicates what operation the

node performs and the operands to the operation. The SDNode class can have default

opcodes which is defined in /CodeGen/ISDOpcodes.h or machine specific opcodes

which must be defined in LaserISelLowering.h. The C code in Listing 2 gets converted

to a SelectinDag object with 5 SDNodes as it can be seen in Fig. 69.

 99

We list the Opcode of each SDNode:

1. EntryToken

2. Register %RETVAL

3. Constant 0

4. CopyToReg

5. LASERISD:Ret

The edge of this DAG enforces ordering among its operations by means of a usedef

relationship. The black arrows represent regular edges showing a dataflow dependence.

The dashed blue arrows represent nondataflow chains that exist to enforce order

between two otherwise unrelated instructions. The red edge guarantees that its adjacent

nodes must be glued together, which means that they must be issued next to each other

with no other instruction in between them.

As we can see the fifth opcode “LASERISD:Ret” is target-dependent. How did this

happen? As it is already mentioned the LaserTaretLowering defined in

LaserISelLowering.h is used to lower special IR instructions such as ret.

First in LaserCallingConv.td we the code shown in Listing 2, which states that the

first return value must be saved in %RETVAL and the rest in stack. Then the override

function LaserTargetLowering::LowerReturn() lowers the LLVM IR “ret” to

LASERISD::Ret. We then define a pseudo instruction RET FLAG in LaserInstInfo.td

that will match LaserRet which is defined as an SDNode with opcode equal to

LASERISD::Ret. Therefore in instruction selection phase the LASERISD::Ret will be

replaced by RET FLAG pseudo instruction.

Finally in expandPostRAPseudo() we will replace the pseudo instruction by calling

expandRetFlag() with LASER::RET.

def RetCC_LASER : CallingConv<[

 CCIfType<[i16], CCAssignToReg<[RETVAL]>>,

 CCIfType<[i16], CCAssignToStack<2, 2>>

]>;

Listing 2: Return Calling Convention in LaserCallingConv.td

 100

3. 16-bit Integer VHDL-based Laser Processor
3.1. Introduction

In this section an attempt to design and implement a 16-bit integer microprocessor

based on VHDL language from scratch is presented. The goal here is to gain insights

in details of a general-purpose microprocessor design and tackle intricacies and

potential difficulties that might arise in the implementation process.

The knowledge gained in this section will be used in designing the ultimate goal

of this thesis which is to propose an adaptive microprocessor architecture.

The implementation uses standard theory behind microprocessor design to

construct a 3-stage pipeline and then implements cycle accurate instructions according

to the ARM Cortex-M0 technical reference manual precisely [99].

3.2. Implementation

3.2.1. Laser Final ISE Design
Since accessing memory is slower that internal registers, all modern processors avoid

the memory-memory architecture and either use Load-Store or register-memory

architecture [100].

The proposed instruction set is a fixed size 16-bit, with three operands and based on

Load-Store register architecture. It means most instructions will be allowed to operate

on registers and then result will be stored to memory.

3.2.1.1. Laser Endianness
The Big Endian is adopted. Therefore, 16-bit data 0xABCD will go to memory as

follows:

• location a = 0xAB

• location a + 1 = 0xCD

For Little Endian we would have:

• location a = 0xCD

• location a + 1 = 0xAB

3.2.1.2. Laser Supported Addressing Modes
Supported addressing modes are:

• PC-relative (11-bits) 2k away from PC. Jmp [11-bit-address] : PC=PC ± [11-

bit-address]

• Register indirect (16-bits)

3.2.1.3. Laser Caller-Callee Convention
Laser CPU adopts the following calling convention:

• The first 2 arguments pass through R8 and R9.

• The return value is in RETVAL register.

• This is the instruction set: (16-bit wide)

 101

3.2.2. Final Instruction Set Bits Encoding
Table 6 shows the details of instruction encoding for our 16-bit processor with 5-bit

set aside for opcode and 4-bit for source and destination registers, and 3-bit for target

register.

Table 6: Instruction Set Bits Encoding

Instruction Opcode Destination

Reg.

Source Reg. Target

Reg.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 MOV 0 0 0 0 0 RD RS

1 ADD 0 0 0 0 1 RD RS RT

2 ADC 0 0 0 1 0 RD RS RT

3 SUB 0 0 0 1 1 RD RS RT

4 SBC 0 0 1 0 0 RD RS RT

5 INC 0 0 1 0 1 RD

6 DEC 0 0 1 1 0 RD

7 MUL 0 0 1 1 1 RD RS RT

8 DIV 0 1 0 0 0 RD RS RT

9 AND 0 1 0 0 1 RD RS RT

10 OR 0 1 0 1 0 RD RS RT

11 XOR 0 1 0 1 1 RD RS RT

12 NOT 0 1 1 0 0 RD RS

13 SRL 0 1 1 0 1 RD RS

14 SLL 0 1 1 1 0 RD RS

15 LD 0 1 1 1 1 RD RS

16 ST 1 0 0 0 0 RD RS

17 CMP 1 0 0 0 1 RD RS

18 JMP 1 0 0 1 0 * * *

19 JZ 1 0 0 1 1 RD

20 JNZ 1 0 1 0 0 RD

21 JC 1 0 1 0 1 RD

22 JNC 1 0 1 1 0 RD

23 IMD 1 0 1 1 1 RD

24 IN 1 1 0 0 0 RD RS

25 OUT 1 1 0 0 1 RD RS

 102

26 CLRC 1 0 1 0 1

27 SETC 1 0 1 1 0

28 CALL 1 1 1 0 0 RD

29 RET 1 1 1 0 1

30 IN 1 1 1 1 0 RD RS

31 OUT 1 1 1 1 1 RD RS

32 NOP 1 1 1 1 0

3.2.2.1. Instruction Description
Table 7 shows the description of each instruction and the assembly string for each

instruction is shown in Table 8. Note: [RD] is a memory operand.

Table 7: Instruction Description.

Instruction Description

MOV RD ← RS

ADD RT ← (RS + RD)

ADC RT ← (RS + RD + Carry)

SUB RT ← (RS - RD)

SBC RT ← (RS - RD - Carry)

INC RD ← (RD + 1)

DEC RD ← (RD - 1)

MUL {RT, RD} ← (RS * RD)

DIV RT ← (RS / RD), RD ← Remainder

AND RT ← (RS AND RD)

OR RT ← (RS OR RD)

XOR RT ← (RS XOR RD)

NOT RD ← NOT (RS)

SRL RD ← (RS >> 1)

SLL RD ← (RS << 1)

LD RD ← [RS]

ST [RD] ← RS

CMP (RS CMP RD)? Set the Zero Flag if equal, Unset if not equal.

Set the Carry Flag if RS < RD, unset if RS > RD.

JMP Unconditional Short Jump to PC+IR [10-0], IR [10-0] must be

in two’s complement form.

JZ Jump to [RD] if Zero flag is set.

JNZ Jump to [RD] if Zero flag is unset.

JC Jump to [RD] if Carry flag is set.

JNC Jump to [RD] if Carry flag is set.

IMD RD ← Next 16-bit. (2 Cycles)

IN RD ← port [RS]

OUT port [RS] ← RD

CLRC Clears the Carry Flag.

 103

SETC Sets the Carry Flag.

CALL RETADDR ← PC and jumps to [RD].

RET PC ← RETADDR.

NOP No Operation.

Table 8: Instruction Assembly String

Instruction Assembly Instruction

MOV MOV RD, RS

ADD ADD RT, RS, RD

ADC ADC RT, RS, RD

SUB SUB RT, RS, RD

SBC SBC RT, RS, RD

INC INC RD

DEC DEC RD

MUL MUL RS, RD

DIV DIV RS, RD

AND AND RT, RS, RD

OR OR RT, RS, RD

XOR XOR RT, RS, RD

NOT NOT RD, RS

SRL SRL RD, RS

SLL SLL RD, RS

LD LD RD, [RS]

ST ST [RD], RS

CMP RD, RS

JMP JMP [11-bits immediate]

JZ JZ RD

JNZ JNZ RD

JC JC RD

JNC JNC RD

IMD IMD RD, #16-bits

immediate

IN IN RS, [RD]

OUT OUT RS, [RD]

CLRC CLRC

SETC SETC

CALL CALL RD

RET RET

IN IN RD, [RS]

OUT OUT [RD], RS

NOP NOP

 104

Table 9: RT Operand Binary Encoding.

Register Binary

R8 000

R9 001

R10 010

R11 011

R12 100

R13 101

R14 110

R15 111

We have 16 registers inside the data path: R0 to R15, SP, PC. The RT operand has

3 bits width. This restricts us to access only 8 registers. We will adapt the approach

used in Motorola 68000 and let RT operand to access the high register bank only: R8

to R15. The opcode encoding will be mapped as shown in Table 9.

Laser microprocessor has 16 registers: FLAGR keeps the track of flags such as

zero, carry, etc. SP: Stack Pointer, FP: Frame Pointer, SS: Stack Segment, LR: Link

Register, RETADDR: Return Address, GP: Global Pointer, RETVAL: Return Value.

Note that the special registers are not accessible to RT operand. R8 to R15 are

designed to be general purpose registers.

3.2.3. Designing the Instruction Set Implementation
The stages that we have in execution of one single instruction:

1. Start: MEM ADD ← PC (Next clock we have the memory data ready.)

2. Fetch:

• IR ← MEM DATA OUT

• PC = PC + 1

3. Decode:

• Select next state.

• RD ← IR (10 downto 7);

• RS ← IR (6 downto 3)

• RT ← ‘0’ & IR (2 downto 0);

4. Execution: We execute the instruction and then will

3.2.3.1. Register Number Assignment
Table 10 shows the assigned numbers to each register.

 105

Table 10: Registers’ Number.

Register Number (Decimal)

FLAGR 0

SP 1

FP 2

SS 3

LR 4

RETADDR 5

GP 6

RETVAL 7

R8 8

R9 9

R10 10

R11 11

R12 12

R13 13

R14 14

R15 15

User visible registers (Totally 19):

1. SP

2. FP

3. SS

4. RETADDR

5. R0 to R15

Let us now have a program that counts from 65000 to 65010 written in Laser

Machine language as listed in Listing 3. We use this program to develop and verify

each processor instruction.

 106

 -- 10101_0000_0000_000 = 0xA800, 0xFDE8

 IMD R0, 0xFDE8;

 -- 10101_0001_0000_000 = 0xA880, 0xFDF2

 IMD R1, 0xFDF2;

Loop1:

 -- 00101_0000_0000_000 = 0x2800

 INC R0;

 -- 10001_0000_0001_000 = 0x8808

 CMP R0, R1;

 -- 10100_1111_1111_101 = 0xA7FD

 JNZ Loop1

 -- 00000_0010_0000_000 = 0x0100

 MOV R2, R0

 -- 10101_0000_0000_000 = 0xA800, 0x0005

 IMD R0, 0x0005

 -- 00001_0010_0000_011 = 0x0903

 ADD R2, R0, R3

 -- 10101_0000_0000_000 = 0xA800, 0x0002

 IMD R0, 0x0002

 -- 10101_0001_0000_000 = 0xA880, 0x0003

 IMD R1, 0x0003

 -- 11001_0000_0000_000 = 0xC800

 SETC

 -- 00010_0000_0001_100 = 0x100C

 ADC R0, R1, R4

 -- 11000_0000_0000_000 = 0xC000

 CLRC

 -- 00011_0000_0100_101 = 0x1825

 SUB R0, R4, R5;

 -- 10101_0000_0000_000 = 0xA800, 0x0004

 IMD R0, 0x0003

 -- 00011_0101_0000_110 = 0x1A86

 SUB R5, R0, R6;

 -- 11001_0000_0000_000 = 0xC800

 SETC

 -- 00100_0101_0100_111 = 0x22A7

 SBC R5, R4, R7;

 -- 10101_0000_0000_000 = 0xA800, 0x0002

 IMD R0, 0x0002

 -- 00110_0000_0000_000 = 0x3000

 DEC R0;

 -- 00110_0000_0000_000 = 0x3000

 DEC R0;

0_000 = 0xA800, 0x0021

 IMD R0, 0x0021;

 -- 10101_0001_0000_000 = 0xA880, 0x0010

 IMD R1, 0x0010;

 -- 01000_0001_0000_010 = 0x4082

 DIV R1, R0, R2;

Listing 3: Sampled Laser Processor Program for Testing Purpose.

 107

Listing 1 continues:

 -- 00111_0010_0001_011 = 0x390B

MUL R2, R1, R3;

 -- 10101_0000_0000_000 = 0xA800, 0x0021

 IMD R0, 0x0021;

 -- 10101_0001_0000_000 = 0xA880, 0x0010

 IMD R1, 0x0010;

 -- 01000_0001_0000_010 = 0x4082

 DIV R1, R0, R2;

 -- 10101_0000_0000_000 = 0xA800, 0x81E5

 IMD R0, 0x81E5;

 -- 10101_0001_0000_000 = 0xA880, 0xCB85

 IMD R1, 0xCB85;

 -- 01001_0001_0000_010 = 0x4882

 AND R1, R0, R2;

 -- 01010_0001_0000_011 = 0x5083

 OR R1, R0, R3;

 -- 01011_0001_0000_100 = 0x5884

 XOR R1, R0, R4;

 -- 01100_1001_0000_000 = 0x6480

 NOT R9, R0;

 -- 01101_1010_0000_000 = 0x6D00

 SRL R10, R0;

 -- 01110_1011_0000_000 = 0x7580

 SLL R11, R0;

 -- 10101_0000_0000_000 = 0xA800, 0x0FF8

 IMD R0, 0x0FF8;

 -- 01111_1111_0000_000 = 0x7F80

 LD R15, R0;

 -- 00101_1111_0000_000 = 0x2F80

 INC R15;

 -- 10000_0000_1111_000 = 0x8078

 ST R0, R15;

 -- 01111_1110_0000_000 = 0x7F00

 LD R14, R0;

 -- 10110_0000_0000_000 = 0xB000

 PUSH R0

 -- 10110_1111_0000_000 = 0xB780

 PUSH R15

 -- 10111_0000_0000_000 = 0xB800

 POP R0

 -- 10111_1111_0000_000 = 0xBF80

 POP R15

 108

Fig. 70: Stack Concept [101].

Fig. 71: Stack for main() function [101].

3.2.3.2. Stack
When a program starts executing, a certain contiguous section of memory is set aside

for the program called the stack [101]. The way a stack is placed in memory is shown

in Fig. 70.

The stack pointer is usually a register that contains the top of the stack. In our

processor we call this register SP, and it is initialized by value 0xFFFF.

• Stack bottom: The largest valid address of a stack. When a stack is

initialized, the stack pointer points to the stack bottom.

• Stack limit: The smallest valid address of a stack. If the stack pointer gets

smaller than this, then there is a stack overflow.

• Stack frame: For each function call, there is a section of the stack reserved

for the function. This is usually called a stack frame.

 109

Fig. 72: Stack for foo() function [101].

Fig. 73: Stack for foo() function after foo() using the stack [101].

Let us imagine we are starting in main() in a C program. The stack looks like

something like Fig. 71. Suppose inside of body of main() there is a call to foo(). Suppose

foo() takes two arguments. One way to pass the arguments to foo() is through the stack.

Thus, there needs to be assembly language code in main() to “push” arguments for foo()

onto the stack. The result looks like Fig. 72.

As we can see in Fig. 72 the return value is also passed via stack, but Laser

processor has its own dedicated register to return a value from a function.

3.2.3.3. Frame Pointer
Once we get into code for foo(), the function foo() may need local variables, so foo()

needs to push some space on the stack, which looks like Fig. 73.

The added new pointer FP stands for frame pointer. The frame pointer points to the

location where the stack pointer was, just before foo() moved the stack pointer for

foo()’s own local. Having a frame pointer is convenient when a function is likely to

move the stack pointer several times throughout the course of running the function. The

idea is to keep the frame pointer fixed for the duration of foo()’s stack frame. The stack

pointer, in the meanwhile, can change values.

 110

We can use the frame pointer to compute the locations in memory for both

arguments as well as local variables. Since it does not move, the computations for those

locations should be some fixed offset from the frame pointer. The Laser CPU uses

SS:SP combination to address the stack frame. Initially SS and SP both have been set

to 0xFFFFh. For each 16-bit variable placed into the stack the compiler must subtract

2 from SP. It also has a 16-bit frame pointer called FP.

3.2.3.4. Flag Register
FLAG Register:

• BIT 0: Zero

• BIT 1: Carry

• BIT 2: Overflow

• BIT 3:

• BIT 4:

• BIT 5:

• BIT 6:

• BIT 7:

• BIT 8:

• BIT 9:

• BIT 10:

• BIT 11:

• BIT 12:

• BIT 13:

• BIT 14:

• BIT 15:

3.2.3.5. Pass Method Arguments
We have two ways to pass arguments in methods:

1. Pass all arguments via stack.

2. Pass via a limited number of registers and if arguments exceed the number of

registers, then we pass via stack.

Laser processor passes the first 2 arguments in registers [R8, R9] and the rest will

be placed in stack.

3.2.3.6. Arithmetic
The values in registers are signed agnostic. The compiler will consider if the values are

unsigned or two’s complement.

3.2.4. Processor Implementation
We have chosen VHDL language for Laser processor implementation in FPGA

devices.

3.2.5. Processor File Structure
The heart of processor is implemented in CU module in CU.vhd file.

The main.vhd contains an instance of CU and an interface to outside world.

 111

Fig. 74: Memory Editor Program.

The Vivado project is uploaded to the GitHub website: https://github.com/ehsan-

ali-th/laser

3.2.6. Simulation
For simulation we must save the machine code into a block RAM. We use Xilinx Block

Memory Generator.

• Interface Type: Native

• Memory Type: Single Port RAM

• Write width = 16bit, Read width = 16bit

• Write depth = 4096

• Use ENA Pin

• Memory initialization: Done by .Coe file. Located under ’memory’ directory.

We must use “Memory editor” to enter the machine code bytes manually. For each

memory block, the Memory Editor creates a single CGF file which defines the contents

of one or more COE files. For each memory block defined in a CGF file, the Memory

Editor generates a separate COE file [102].

In Xilinx ISE 14.6 the ’Tools/Memory Editor’ options are removed so we must run

the Memory Editor by using command prompt:

Run ’ISE Design Suite 64-bit Command Prompt

Then issue the command ’mem edit’. A screenshot of Memory Editor program is

shown in Fig. 74.

https://github.com/ehsan-ali-th/laser
https://github.com/ehsan-ali-th/laser

 112

Let us write a program that adds 2 to 3 and outputs the result to ROUT0:

After uploading the above program into a .COE file by manually entering the hex

values into a Xilinx coefficient file “main_bram_4k.coe” as shown in Listing 4. The

.COE file will be passed as initialization file to program block RAM and then the

behavioral simulation can be performed ash shown in Fig. 75.

To upload the designed processor into the ZYBO FPGA board: First download the

“zybo_master.xdc” constraint file for ISE design suit, then set input signals clk, reset,

halt and output signal ROUT0.

-- 10111_0000_0000_000 = 0xB800, 0x0002

 -- 00000_0000_0000_010

 IMD R0, 0x0002;
 -- 10111_0001_0000_000 = 0xB880, 0x0003

 -- 00000_0000_0000_011

 IMD R1, 0x0003;
 -- 00001_0000_0001_010 = 0x80A

 ADD R0, R1, R2

 -- 10111_0011_0000_000 = 0xB980, 0x0000
 -- 00000_0000_0000_000

 IMD R3, 0x0000;

 -- 11001_0011_0010_000 = 0xC990
 OUT R3, R2

Loop1:

 -- 11110_0000_0000_000 = 0xF000
 NOP

 -- 10010_1111_1111_110 = 0x97FE

 JMP Loop1

MEMORY_INITIALIZATION_RADIX=2;

MEMORY_INITIALIZATION_VECTOR=

1011100000000000,
0000000000000010,

1011100010000000,

0000000000000011,
0001100000001010,

1011100110000000,

0000000000000000,
0000001000010000,

1100100110010000,

1111000000000000,
1001011111111110,

0000000000000000,

0000000000000000,
0000000000000000,

0000000000000000,

Listing 4: main_bram_4k.coe: Sampled Laser program in Xilinx Coefficient File that

test Subtraction Instruction.

 113

Fig. 75: Vivado ISim simulation of Laser Processor showing subtraction of R1=3

from R0=2, the result is saved into R2 and forwarded to out port

3.2.6.1. Testing Instructions

3.2.6.1.1. MOV instruction test:
Below are two sample programs to test MOV and SUB instructions.

 -- 10111_0000_0000_000 = 0xB800, 0x0003

 -- 00000_0000_0000_011

 IMD R0, 0x0002;
 -- 10111_0001_0000_000 = 0xB880, 0x0003

 -- 00000_0000_0000_011

 IMD R1, 0x0003;
 -- 00001_0000_0001_010 = 0x80A

 ADD R0, R1, R2

 -- 10111_0011_0000_000 = 0xB980, 0x0000
 -- 00000_0000_0000_000

 IMD R3, 0x0000;

 -- 00000_0100_0010_000 = 0x0210
 MOV R5, R2

 -- 11001_0011_0100_000 = 0xC9A0

 OUT R3, R2
Loop1:

 -- 11110_0000_0000_000 = 0xF000

 NOP
 -- 10010_1111_1111_110 = 0x97FE

 JMP Loop1

 114

3.2.6.1.2. SUB Instruction:

3.2.7. FPGA Implementation
We use ZYBO board. Vivado version 2017.1. First, we must add ZBO board to the

Vivado by following the link below:

https://reference.digilentinc.com/software/vivado/board-files?redirect=2

1. First, we create a new project and select ZYBO board.

2. Copy CU.vhd into the project. Add it as a source file.

3. Run IP Catalog, Memory & Storage Elements, RAMs & ROMs & BRAM,

Block Memory Generator. Rename the RAM block to ’blk_mem_gen_0’

4. Add Master XDC from the link below:

https://github.com/Digilent/ZYBO/tree/master/Resources/XDC

5. Upload Laser program into BRAM (main_bram_4k.coe).

Note: For uploading the program to the board, we must start from small scale CU

which supports only NOP and JMP instructions:

Loop1:
 -- 10111_0000_0000_000 = 0xB800, 0x0002

 -- 00000_0000_0000_010

 IMD R0, 0x0002;
 -- 11110_0000_0000_000 = 0xF000

 NOP

 -- 10010_1111_1111_110 = 0x97FE

 JMP Loop1

 -- 10111_0000_0000_000 = 0xB800, 0x0002

 -- 00000_0000_0000_010

 IMD R0, 0x0002;
 -- 10111_0001_0000_000 = 0xB880, 0x0003

 -- 00000_0000_0000_011

 IMD R1, 0x0003;
 -- 00011_0000_0001_010 = 0x180A

 SUB R0, R1, R2

 -- 10111_0011_0000_000 = 0xB980, 0x0000
 -- 00000_0000_0000_000

 IMD R3, 0x0000;

 -- 00000_0100_0010_000 = 0x0210

 MOV R5, R2

 -- 11001_0011_0100_000 = 0xC9A0

 OUT R3, R2
Loop1:

 -- 11110_0000_0000_000 = 0xF000

 NOP
 -- 10010_1111_1111_110 = 0x97FE

 JMP Loop1

https://reference.digilentinc.com/software/vivado/board-files?redirect=2
https://github.com/Digilent/ZYBO/tree/master/Resources/XDC

 115

Fig. 76: Flipflop Setup and hold time.

3.2.7.1. Timing

3.2.7.1.1. Setup and Hold Time
The setup and hold time are measured with respect to the active clock edge only.

Considering a positive edge flip flop respective setup and hold times are shown in Fig.

76.

An input to a Flip-Flop needs to be stable (not changing) for an FPGA design to

work properly. The input must be stable for some small amount of time prior to being

sampled by the clock. This amount of time is called setup time. Setup time is the

amount of time required for the input to a Flip-Flop to be stable before a clock edge.

Hold time is like setup time, but it deals with events after a clock edge occurs.

Hold time is the minimum amount of time required for the input to a Flip-Flop to be

stable after a clock edge.

A finite positive setup time always occurs, however hold time can be positive, zero,

or even negative. We denote setup time by tsu, hold time by th. The time it takes for the

data to appear at Q after positive edge of clock is called “clock to Q delay” and denoted

by tckq. The propagation delay through a combinational logic between two FFs is

denoted by tpd.

Setup Time Slack = (provided setup time) - (required setup time) [103] as shown

in Fig. 77.

Hold Time Slack = (provided hold time) - (required hold time) [103] as shown in

Fig. 78.

To get the maximum clock frequency we issue the following commands in TCL

window of Vivado after synthesis:

“open run synth 1” and then “report timing summary -file mytiming.rpt”

 116

Fig. 77: Setup Time Slack.

Fig. 78: Hold Time Slack.

3.3. Limitation
This first processor proposed in this thesis is Laser processor which its details are

presented in this section. The limitations are as follows:

• It is 16-bit processor which means cannot run modern 32-/64- bit operating

systems.

• It does not support interrupts.

• The acceptable ISA efficiency is also not fully achieved. For example, shift

𝑛 bit to left or right is not supported which forces the user to call the shift

to left instructions 16 times if there is a shift to left by 16 is required.

 117

• It is a fixed 2-cycle processor and has no pipeline.

• The resource utilization, performance and power consumption are not

considered during design and development of the Laser processor, and the

only considered factor is operation correctness of the core.

The future work can be defined as refining the ISA and adding interrupt support.

3.4. Result
The processor design discussed in this section in conjunction with the LLVM backend

provides the possibility of coming up with a new foundation for processor design.

Several design passes can result to various architectures that can be compared according

to performance or power consumption by running compact benchmarking programs

written in assembly language. The Laser processor proposed here can be used in

graduate courses to teach general-purpose processor architecture.

The Vivado project can be found at GitHub website: https://github.com/ehsan-ali-

th/laser

https://github.com/ehsan-ali-th/laser
https://github.com/ehsan-ali-th/laser

 118

4. Processor Performance Evaluation
4.1. Introduction

In previous section the details of design and implementation of a 16-bit integer general-

purpose VHDL-based soft microprocessor was discussed. The next logical step is to

find out the established scientific methods to measure the performance of the proposed

processor.

This section concentrates on various ways that a processor performance can be

evaluated. Upon gaining more insights and knowledge on processor performance

evaluation it become obvious that there are serious obstacles in effective performance

measurement of the proposed Laser processor due to the following deficiencies:

• To compare a processor to other industry level cores a full stack development

software stack that includes an assembler, a C compiler, and a debugger is

needed. This is to either assemble or compile the synthetic benchmark and

compare the results of standard execution of some specific algorithms.

• Laser processor lacks a functional assembler and several features for a

compiler support (e.g., context switching mechanism, proper argument

passing, etc.)

Therefore, a decision to move to an industry level architecture is made and 8-bit

Xilinx PicoBlaze is selected.

This section provides the details of several benchmarking approaches and

identifies most important algorithms (such as FFT) that appear in benchmarking

programs. It then tries to investigate the usage of the available benchmarks to gain more

understanding on the nature of processor performance evaluation.

4.2. Implementation

4.2.1. Benchmarking
Benchmarking is a way to measure performance of a computer system. More

specifically, benchmark is a program used to quantitatively evaluate computer hardware

and software resources [104]. We need to benchmark processors to accurately assess

and compare their key metrics which are [105]:

• DSP speed

• Memory efficiency

• Energy efficiency

• Cost-performance

We have several methods for benchmarking [105]:

• Simplified metrics: e.g., MIPS (Millions of Instructions Per Second), MOPS

(millions of operations per second), MMACS (Millions of Multiply-

Accumulates per Second), MFLOP (Millions of Floating-point Operations

Per Second).

• Full DSP applications: e.g., v.90 modem, GSM-EFR transcoder, Viterbi

encoder/decoder.

• DSP algorithm “kernel” benchmarks: e.g., FIR filter, FFT, IIR filters.

Simplified metrics such as MIPS and MFLOPS (Millions of Floating-Point

Operations per Second) are frequently used as shorthand for processor speed. But the

following comparison of two DSP processor instructions shows that these kinds of

metrics are inaccurate:

 119

• ”DSP16410”: A0=A0+P0+P1 P0=Xh*Yh P1=Xl*Yl Y=*R0++ X=*PT0++

• ”TMS320C6414”: ADD A0,A3,A0.

 Metrics approach is widely criticized in literature. Metrics lost significance when

RISC architectures were introduced. It is not worth counting instructions executed

during a period since different processors accomplish different amount of job with a

single instruction [104].

In contrast complete DSP Applications are real-world working DSP applications

such as v.90 modem, GSM-EFR transcoder, Viterbi encoder/decoder. Usually, they

consist of several thousand lines of C source code. They require assembly hand

optimizations. It is expensive to create such a benchmark - it consumes a lot of time

and efforts. Such a benchmark measures whole system, not only the processor. Since

the application consumes a lot of program memory, memory system and peripherals are

tested as well.

Finally, DSP Algorithm Kernels are code fragments extracted from real DSP

programs. Kernels are believed to be responsible for most of the execution time. They

have small code size and long execution time. They consist of small loops which

perform number crunching, bit processing etc. A few examples of kernels [104]:

1. Matrix product

2. Convolution

3. FIR, IIR, LMS filters

4. FFT The BDTI Benchmarks [106] are based on DSP algorithm kernels [105].

A DSP system consists of a processor, a compiler, and a DSP application. Thus,

we can distinguish the following components that can be benchmarked [104]:

1. Processor

2. Compiler

3. Platform (Processor and Compiler)

Since we are benchmarking the processor alone, we cannot use the compiler (if

we use compiler-generated code, we unintentionally measure compiler performance

too). The benchmark must be written in assembly language [104]. Although there are

attempts to benchmark processors using C [105], CoreMark [107], etc.

4.2.1.1. Benchmarking Measurements
The following parameters are usually measured when benchmarking DSPs [104]:

1. Cycle Count

2. Program Memory Usage

3. Data Memory Usage

4. Program execution time

5. Power consumption

6. Cache hit/miss ratio (if the cache exists)

They are sufficient to compare DSP processors from the user’s point of view. If

the user needs speed, then cycle count and program execution time matters. If user

programs are large and access memory a lot, then program and data memory usage must

be considered. Power consumption is important in small widgets that incorporate DSP

chips. If the system has hard real-time constraints, then cache hit/miss ratio

measurements are relevant [104].

 120

4.2.2. Synthetic Benchmarks
The synthetic benchmarks are artificial programs that are constructed to try to match

the characteristics of a large set of programs. The goal is to create a single benchmark

program where the execution frequency of statements in the benchmark matches the

statement frequency in a large set of benchmarks. Whetstone (floating-point) and

Dhrystone [108] (integer) are the most popular synthetic benchmarks.

Dhrystone was developed in 1984 by Reinhold P. Weicker. which is the

representative of general processor (CPU) performance for the last 30 years. Dhrystone

is a simple program that is carefully designed to statistically mimic the processor usage

of certain common set of programs. Dhrystone may represent a result in a more

meaningful manner than MIPS (Million Instructions Per Second) because instruction

count comparisons between different instruction sets (e.g., RISC vs. CISC) can

confound simple comparisons [109].

An ideal benchmark would provide a score that purely reflects the MCU’s core

performance capabilities, irrespective of the rest of the system. But that is not possible

as all MCU cores must interact with a different set of memory – the cache, data memory

as well as the instruction memory which might not run at an optimum MCU core

frequency. The MCU’s core performance is also linked with tool chains like compilers.

Different compilers generate different codes for the same C code. Hence, the overall

benchmarking should involve the MCU core, memory speed and compilers, which is

not the case with Dhrystone benchmarking [109].

In 1996, Markus Levy had executed a hands-on project intended to address the

ineffectiveness of Dhrystone MIPS as a tool for evaluating embedded processor

performance and for creation of a new set of benchmarks that would provide better

information to aid in the analysis of microprocessors, microcontrollers, and compilers.

In 1997 Markus Levy had proposed The EMCEE idea in a conference where attending

companies included AMD, ARM, DEC, Hitachi, IBM, Intel, LSI Logic, Microchip,

Motorola, National Semiconductor, NEC, Philips, SGS-Thomson, Siemens, Sun,

TEMIC, Texas Instruments, and Toshiba, a number of these which would go on to

become EEMBC’s original members. Six months later, with funding and legal approval

from 12 initial members, EEMBC [110] was founded as a non-profit industry-standard

consortium. Since that time, EEMBC’s membership has expanded to more than 50

members and its benchmark suites have effectively replaced Dhrystone MIPS as the

industry standard for measuring processor, DSP, and compiler performance [109].

4.2.3. EEMBC CoreMark Benchmark
The CoreMark is a simple, yet sophisticated, benchmark that is designed specifically to

test the functionality of a processor core. CoreMark is not system dependent, therefore

it functions the same regardless of the platform (e.g., big/little endian, high-end, or low-

end processor). Running CoreMark produces a single-number score allowing users to

make quick comparisons between processors [107].

CoreMark is comprised of small and easy to understand ANSI C code with a

realistic mixture of read/write operations, integer operations, and control operations.

CoreMark has a total binary size of no more than 16K using gcc on an x86 machine

(this small size makes it more convenient to run using simulation tools). The small size

of CoreMark allows it to easily fit in a processor’s cache. One of the goals of CoreMark

is to make it suitable for testing on a very wide range of processors. Some low-end

 121

microcontrollers do not even have caches, let alone large amounts of system

memory [107]. While compilers may find more efficient ways of processing the

workloads contained in CoreMark, the work itself cannot be optimized away.

Furthermore, CoreMark does not use special libraries that can be artificially

manipulated, and it was specifically designed not to make any library calls from within

the timed portion of the benchmark. Therefore, it is not possible for a compiler to

optimize away the CoreMark workload [107]. Coremark contains implementations of

the following algorithms:

• List processing (find and sort)

• Matrix manipulation (common matrix operations)

• State machine (determine if an input stream contains valid numbers)

• CRC (cyclic redundancy check)

The CRC algorithm serves a dual function; it provides a workload commonly seen

in embedded applications and ensures correct operation of the CoreMark benchmark,

essentially providing a self-checking mechanism. Specifically, to verify correct

operation, a 16-bit CRC is performed on the data contained in elements of the linked-

list.

4.2.3.1. Coremark Benchmark Score Reports
Coremark results are reported in the following format:

CoreMark 1.0: N / C / P / M

N = Number of iterations per second with seeds 0,0,0x66, size=2000)

C = Compiler version and flags

P = Parameters such as data and code allocation specifics

M = Type of parallel algorithm execution (if used) and number of contexts

Example: CoreMark 1.0: 128 / GCC 4.1.2 -O2 -fprofile-use / Heap in TCRAM /

FORK:2

4.2.4. CoreMark for X86
CoreMark is now available to license free of charge on GitHub, we download the

source code by issuing:

$ git clone https://github.com/eembc/coremark

$ make

 122

Running the benchmark on my laptop gives the following result:

The task at our hand is to compare some processors of interest versus another. Each

processor has specific architecture and hence a unique ISA. Any algorithm contains

concrete steps that must be performed by a processor.

The question here is: “How can we automate the benchmarking of all processors

with their unique ISAs?” One way is to define several complex tasks such as a

1000x1000 matrix multiplication and then for each processor under test we will

implement the algorithm manually and run it. The time duration to get the final answer

can be used as a measurement of processor’s performance.

Another dilemma is how to benchmark a processor which has no C compiler?

4.2.4.1. Benchmarking in Assembly
The benchmarks of basic DSP algorithms usually are written in assembly. The first

reason is that the purpose of benchmarking is to measure the quality of the assembly

instruction set; by nature, the benchmarking should be in assembly language. The

second reason is that most DSP assembly programs are relatively simple and can be

managed by programmers. The third reason is that effectiveness of programs written in

high-level language is very much dependent on the compiler [111].

BDTI (Berkeley Design Technologies Incorporation) always supplies

benchmarks based on hand-written assembly code while EEMBC uses C code. One

method might be to develop a program that can receive a pseudo-code (algorithm) of

well-accepted kernel DSP algorithms shown in Fig. 79 [111] as its input alongside of

ISA and automatically produce the assembly code.

2K performance run parameters for coremark.

CoreMark Size : 666

Total ticks : 13076
Total time (secs): 13.076000

Iterations/Sec : 15295.197308

Iterations : 200000
Compiler version : GCC4.8.5 20150623 (Red Hat 4.8.5-28)

Compiler flags : -O2 -DPERFORMANCE_RUN=1 -lrt

Memory location : Please put data memory location here

(e.g. code in flash, data on heap etc)

seedcrc : 0xe9f5

[0]crclist : 0xe714
[0]crcmatrix : 0x1fd7

[0]crcstate : 0x8e3a

[0]crcfinal : 0x4983
Correct operation validated. See readme.txt for run and reporting rules.

CoreMark 1.0 : 15295.197308 / GCC4.8.5 20150623 (Red Hat 4.8.5-28)

 -O2 -DPERFORMANCE_RUN=1 -lrt / Heap

 123

Fig. 79: Kernel DSP Algorithms [111].

4.2.5. 256-Point Complex Fast Fourier Transform
To fully understand the FFT we need to brush up our knowledge in some mathematic

fields. The next section will cover the FFT related fundamentals.

4.2.5.1. e number
The e is the base rate of growth shared by all continually growing processes [112]. If a

bacteria splits every 1 hour, then the rate of growth per hour is 2x, where x is the number

of hours passed. In our example the bacteria get doubled every hour so we can replace

2 by (original + 100%), which original number of bacteria is 1:

Equation 10: 𝑔𝑟𝑜𝑤𝑡ℎ = 2𝑥 = (1 + 100%)𝑥

We can substitute 100% by any percentage. If the bacteria triples, we plug 200%.

so, the general formula becomes:

Equation 11: 𝑔𝑟𝑜𝑤𝑡ℎ = (1 + 𝑟𝑎𝑡𝑒)𝑥

If instead of discrete number of bacteria we switch to a continuous value such a

money, and decide to calculate the grow rate of interest (let us say 100% interest per

hour) we have:

- At time = 0, we have 1$.

 124

- After 1 hour, we have 1$ + 100% = 2$. But the problem is that we have omitted

the interest rate during time 0 and 1 hour. Let us calculate the interest rate at the

middle:

- At time = 0, we have 1$.

- After 30 minutes, we have 1$ + (1$ ∗ 100% 2) = 1.5$:

- After 1 hour, we have 1.5$ + (1.5$ ∗ 100% 2) = 2.25$ We can see that instead

of 2$ we got 2.25$. Let us see what happens we divide one hour by 3:

- At time = 0, we have 1$.

- After 20 minutes, we have 1$ + (1$ ∗ 100% 3) = 1.33$:

- After 40 minutes, we have 1.33$ + (1.33$ ∗ 100% 3) = 1.76$:

- After 40 minutes, we have 1.76$ + (1.76$ ∗ 100% 3) = 2.34$:

- This time we got 2.34$ which is higher than all the previous results. Now we

can derive the general formula if we divide the one hour to n:

Assuming a = 1$, b =
100%

2
 :

Equation 12:

a + ab = a(1 + b)
a(1 + b) + [a(1 + b)b] = a(1 + b)(1 + b) = a(1 + b)2
a(1 + b)2 + [a(1 + b) 2b] = a(1 + b)2 (1 + b) = a(1 + b)3

The emerging pattern bring us to the general formula:

Equation 13: 𝑔𝑟𝑜𝑤𝑡ℎ = (1 +
1

𝑛
) 𝑛

Taking the limit of Eq. 6.4 when n → ∞:

lim
n→∞

(1 +
1

n
)
n

= 2.71828 = e

4.2.5.2. Taylor series
Taylor series is a representation of a function as an infinite sum of terms that are

calculated from the values of the function’s derivatives at a single point. If the Taylor

series is centered at zero, then that series is also called a Maclaurin series.

The Taylor series of a real or complex-valued function 𝑓(𝑥) that is infinitely

differentiable at a real or complex number a is the power series:

Equation 14: 𝑓(𝑎) +
𝑓′(𝑎)

1!
(𝑥 − 𝑎) +

𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 +

𝑓′′′(𝑎)

3!
(𝑥 − 𝑎)3 +⋯

4.2.5.3. Euler’s Formula
The most important characteristic of exponential function is that the value of its

derivative at any point equals to the value of function itself. We will exploit this and

will write down the Maclaurin series for 𝑒𝑖𝑥:

 125

Equation 15:

𝑒𝑖𝑥 = 𝑒0 +
𝑖𝑒0

1!
𝑥 +

𝑖2𝑒0

2!
𝑥2 +

𝑖3𝑒0

3!
𝑥3 +⋯

= 1 + 𝑖𝑥 +
𝑥2

2!
+
𝑖3𝑥3

3!
+ ⋯ (𝑎)

𝑠𝑖𝑛(𝑥) = 𝑠𝑖𝑛(0) +
𝑐𝑜𝑠(0)

1!
 𝑥 +

− 𝑠𝑖𝑛(0)

2!
 𝑥2 +

− 𝑐𝑜𝑠(0)

3!
 𝑥3 + ⋯

= 𝑥 −
𝑥3

3!
 +

𝑥5

5!
 − … (𝑏)

𝑖𝑠𝑖𝑛(𝑥) = 𝑖𝑥 −
𝑖3𝑥3

3!
 +

𝑖5𝑥5

5!
 − ⋯

𝑐𝑜𝑠(𝑥) = 𝑐𝑜𝑠(0) +
− 𝑠𝑖𝑛(0)

1!
 𝑥 +

− 𝑐𝑜𝑠(0)

2!
 𝑥2 +

𝑠𝑖𝑛(0)

3!
 𝑥3 + ⋯

= 1 −
𝑥 2

2!
 +
𝑥4

4!
 − ⋯ (𝑐)

Adding Equation 15: with Equation 15 (c) with we get:

cos(x) + isin(x) = 1 −
x2

2!
 +

x4

4!
 − . . . + ix −

i3x3

3!
 +

 i5x5

5!
 − ⋯

Which is equal to Equation 15: (a):

eix = cos(x) + isin(x)

Which is known as Euler’s formula.

We can think of 𝑒𝑖𝑥 as a mere notion for points in a complex plane when 𝑥 is the

angle.

A periodic circular motion on complex plane can be described in exponential

form: 𝐴𝑒𝑗𝜔𝑡+𝜃 which 𝐴 is the amplitude, 𝜔 is the fundamental frequency, and 𝜃 is

phase shift. Replacing the 𝜔 with 2𝜋𝑓 we get:

Aej2πf t+θ

4.2.5.4. Fourier Transform
What does the Fourier Transform do? Given a smoothie, it finds the recipe [113].

The Fourier transform (FT) decomposes a function of time (a signal) into the

frequencies that make it up. The Fourier transform of the function 𝑓 is traditionally

denoted by adding a circumflex: 𝑓. For integrable function 𝑓 ∶ ℝ → ℂ, and any real

number 𝜉:

𝑓(ξ) = ∫ f(t)e−j2πξt
−∞

∞

dt

 126

To understand the above formula:

𝑓(ξ)⏟
frequency function

 = ∫
−∞

∞⏟
𝑠𝑢𝑚 𝑢𝑝

 f(t)⏟
value of function at time t

 e−j2πξt⏟
contribution to point t from all frequencies ξ

 dt

4.2.5.5. Fast Fourier Transform
The Fast Fourier Transform (FFT) is an algorithm that samples a signal over a period

(or space) and divides it into its frequency components. An FFT algorithm computes

the discrete Fourier transform (DFT) of a sequence, or its inverse (IFFT). DFT, in

addition to lying at the heart of signal processing, have applications in data compression

and multiplying large polynomials and integers [114].

Fast Fourier transforms are widely used for many applications in engineering,

science, and mathematics. In 1994, Gilbert Strang described the FFT as “the most

important numerical algorithm of our lifetime” [115].

FFT can be used to reduce the time to multiply polynomials to 𝑂(𝑁𝑙𝑜𝑔𝑁), other

notable applications are compression techniques used to encode digital video and audio

information, including MP3 files [114].

Also, FFT and IFFT are primary calculations in pulse compression, and the modern

real-time radar systems [116].

Computing the DFT of 𝑁 points in the naive way, using the definition, takes 𝑂(𝑁2)
arithmetical operations, while an FFT can compute the same DFT in only 𝑂(𝑁𝑙𝑜𝑔𝑁)
operations.

4.2.5.5.1. Discrete Fourier Transform

4.2.5.5.1.1. Radian
One radian is 57.3 degrees; 3.14 radian is 180 degrees or π.

Let 𝑥0, , 𝑥𝑁−1 be complex numbers. The DFT is defined by the formula:

𝑋𝑘 = ∑ 𝑥𝑛𝑒
−
𝑗2πkn
N

𝑁−1

𝑛=0

 𝐾 = 0,… ,𝑁 − 1

𝑋𝑘 = ∑ 𝑥𝑛

𝑁−1

𝑛=0

[cos (
2πkn

N
) − 𝑗𝑠𝑖𝑛 (

2πkn

N
)]𝐾 = 0, … , 𝑁 − 1

 127

Evaluating this definition directly requires 𝑂(𝑁2) operations: there are 𝑁 outputs

𝑋𝑘, and each output requires a sum of 𝑁 terms. An FFT is any method to compute the

same results in 𝑂(𝑁𝑙𝑜𝑔𝑁) operations. All known FFT algorithms require 𝜃(𝑁𝑙𝑜𝑔𝑁)
operations, although there is no known proof that a lower complexity score is

impossible [117]. The Discrete Fourier Transform (DFT) can be implemented in C/C++

as shown in Listing 6 and Listing 5.

#include <iostream>

#include <cmath>

using namespace std;

#define PI 3.14159265

int main () {

 for (float f = 0; f < 1024; f = f + 1.0) {

 // sin (x), x must be in radian.

 if (f >= 250 && f <= 750)

 cout << f << " " << 5 << endl;

 else

 cout << f << " " << 0 << endl;

 }

 return 0;

}

Listing 6: func_gen.cpp - Rectangular Pulse Generator with Amplitude set to 5.

#include <iostream>

#include <fstream>

#include <cstdlib>

#include <cmath>

#include <vector>

#include <complex>

#include <chrono>

using namespace std;

using namespace std::chrono;

#define PI 3.14159265

void center_zero (vector<complex <double> > &vector_in);

int main () {

 // Read point from file in put into 'data_in'

 // vector<complex <double> > data_in;

 vector<double> data_in;

 ifstream inFile;

 inFile.open("orig.dat");

 if (!inFile) {

 cerr << "Unable to open file orig.dat" << endl;

 exit(1); // call system to stop

 }

 // reading x, y values from input file

 double x, y;

 while (inFile >> x >> y) {

 // Read two values: (x + jy)

 data_in.push_back(y);

 }

 high_resolution_clock::time_point t1 = high_resolution_clock::now();

 vector<double> data_out_real;

 vector<double> data_out_imag;

 int N = data_in.size();

 cout << "N = " << N << endl;

 for (int k = 0; k <= N - 1; k++) {

 double X_k_real = 0;

 double X_k_imag = 0;

 for(int n = 0; n <= N - 1; n++) {

 double theta = 2 * PI * k * n / N; // theta must be in radian

 double real = data_in[n] * cos(theta);

Listing 5: fft.cpp - DFT implementation in C++11. (1)

 128

 if (!inFile) {

 cerr << "Unable to open file orig.dat" << endl;

 exit(1); // call system to stop

 }

 // reading x, y values from input file

 double x, y;

 while (inFile >> x >> y) {

 // Read two values: (x + jy)

 data_in.push_back(y);

 }

 high_resolution_clock::time_point t1 = high_resolution_clock::now();

 vector<double> data_out_real;

 vector<double> data_out_imag;

 int N = data_in.size();

 cout << "N = " << N << endl;

 for (int k = 0; k <= N - 1; k++) {

 double X_k_real = 0;

 double X_k_imag = 0;

 for(int n = 0; n <= N - 1; n++) {

 double theta = 2 * PI * k * n / N; // theta must be in radian

 double real = data_in[n] * cos(theta);

 double imag = -data_in[n] * sin(theta);;

 X_k_real += real;

 X_k_imag += imag;

 }

 data_out_real.push_back(X_k_real);

 data_out_imag.push_back(X_k_imag);

 }

 high_resolution_clock::time_point t2 = high_resolution_clock::now();

 auto duration = duration_cast<microseconds>(t2 - t1).count();

 cout << "duration = "<< duration << endl;

 ofstream outFile;

 ofstream out2File;

 outFile.open ("out.dat", ios::out);

 out2File.open ("out2.dat", ios::out);

 vector<complex <double> > data_out;

 for(int n = 0; n <= N - 1; n++) {

 data_out.push_back(complex <double> (data_out_real[n], data_out_imag[n]));

 }

 center_zero(data_out);

 int n = 0;

 for(vector<complex <double> >::iterator it = data_out.begin();

 it != data_out.end(); it++) {

 complex <double> t = *it;

 out2File << "n = " << n << " Re = " << t.real() << " Im = "

 << t.imag() << endl;

 // outFile << n << " " <<

 // sqrt(pow(data_out_real[n], 2) + pow(data_out_imag[n],2)) << endl;

 // outFile << t.real() << " " << t.imag() << endl;

 outFile << n << " " << abs(t) << endl;

 n++;

 }

 inFile.close();

 outFile.close();

 return 0;

}

void center_zero (vector<complex <double> > &vector_in) {

 int N = vector_in.size();

 cout << "N = " << N << endl;

 int half_n = N / 2;

 int half_n2 = N / 2;

 cout << "half_n = " << half_n << endl;

 // check if N is odd or even

 if(N % 2 == 0) {

 // Even

 cout << "Even" << endl;

Listing 5: continues.

 129

The Listing 8 and Listing 7 shows the code for performing FFT in Matlab.

Running the FFT code listed above on “Intel(R) Core(TM) i7-4510U CPU @

2.00GHz” gives the following performance result:

void center_zero (vector<complex <double> > &vector_in) {

 int N = vector_in.size();

 cout << "N = " << N << endl;

 int half_n = N / 2;

 int half_n2 = N / 2;

 cout << "half_n = " << half_n << endl;

 // check if N is odd or even

 if(N % 2 == 0) {

 // Even

 cout << "Even" << endl;

 for (int n = 0; n < half_n2; n++) {

 complex <double> tmp = vector_in[n];

 vector_in[n] = vector_in[half_n];

 vector_in[half_n] = tmp;

 half_n++;

 }

 }

 else {

 // Odd

 cout << "Odd" << endl;

 complex <double> tmp2 = vector_in[half_n];

 for (int n = 0; n < half_n2; n++) {

 complex <double> tmp = vector_in[n];

 vector_in[n] = vector_in[half_n + 1];

 vector_in[half_n] = tmp;

 half_n++;

 }

 vector_in[N - 1] = tmp2;

 }

}

Listing 9: fft.cpp - DFT implementation in C++11. (3)

)

function fft_result = perform_fft(func)

a = 0;

while (a < 1000)

fft_result = fft (func);

a = a + 1;

end

end

Listing 8: perform_fft.m - Performs FFT for 1000 times

f = zeros(1, 1024);

f(250:750) = 5;

r = @() perform_fft(f); % handle to function

func_time = timeit(r);

Listing 7: test_fft.m: Measures FFT in Matlab.

 130

Table 11: DFT Implementation Performance Comparison.

Software Duration

C++11 (DFT) 129739 µs

Matlab (FFT) 5.551 µs

C++11 (FFT Cooley-Tukey) 4.588 µs

FFTW 0.843 µs

Table 11 shows the measure time duration when DFT is performed in

C++11(standard implementation) versus Matlab versus C++11 (Cooley-Tukey

implementation) versus FFTW [118] which is a C subroutine library for computing the

discrete Fourier transform (DFT).

4.2.5.6. 256-Point Complex Fast Fourier Transform
Highly efficient computer algorithms for estimating Discrete Fourier Transforms have

been developed since the mid-60’s. These are known as Fast Fourier Transform (FFT)

algorithms, and they rely on the fact that the standard DFT involves a lot of redundant

calculations [119].

Equation 16:

𝑋𝑘 = ∑ 𝑥𝑛𝑒
−
𝑗2πkn
N

𝑁−1

𝑛=0

 , 𝐾 = 0,… ,𝑁 − 1

Replacing 𝑒−
𝑗2πkn

N with 𝑊𝑁
𝑛𝑘 in Equation 16:

Equation 17:

𝑋𝑘 = ∑ 𝑥𝑛𝑊𝑁
𝑛𝑘

𝑁−1

𝑛=0

 , 𝐾 = 0, … ,𝑁 − 1

We can write Equation 17 in matrix form:

[

𝐹(0)

𝐹(1)

𝐹(2)
⋮

F(N − 1)]

=

[

1 1 1 1 ⋯ 1
1 𝑊 𝑊2 𝑊3 ⋯ 𝑊𝑁−1

1 𝑊2 𝑊4 𝑊6 ⋯ 𝑊𝑁−2

1 𝑊3 𝑊6 𝑊9 ⋯ 𝑊𝑁−3

⋮
1 𝑊𝑁−1 𝑊𝑁−2 𝑊𝑁−3 ⋯ 𝑊]

[

𝑓(0)

𝑓(1)

𝑓(2)
⋮

f(N − 1)]

It is easy to realize that the same values of 𝑊𝑁
𝑛𝑘 are calculated many times as the

computation proceeds. First, the integer product 𝑛𝑘 repeats for different combinations

of 𝑛 and 𝑘; second, 𝑊𝑁
𝑛𝑘 is a periodic function with only distinct values.

A radix-2 decimation-in-time (DIT) FFT is the simplest and most common form

of the Cooley-Tukey algorithm, although highly optimized Cooley-Tukey

implementations typically use other forms of the algorithm as described below. Radix-

 131

2 DIT divides a DFT of size N into two interleaved DFTs (hence the name “radix-2”)

of size 𝑁/2 with each recursive stage [120].

The Radix-2 DIT algorithm rearranges the DFT of the function 𝑥𝑛 into two parts:

a sum over the even-numbered indices 𝑛 = 2𝑚 and a sum over the odd-numbered

indices 𝑛 = 2𝑚 + 1;

From Equation 16 we get:

𝑋𝑘 = ∑ 𝑥2𝑚𝑒
−
𝑗2πk(2m)

N

𝑁
2
−1

𝑚=0

+ ∑ 𝑥2𝑚+1𝑒
−
𝑗2πk(2m+1)

N

𝑁
2
−1

𝑚=0

 , 𝐾 = 0, … , 𝑁 − 1

= ∑ 𝑥2𝑚𝑒
−
𝑗2πkm
N
2

𝑁
2
−1

𝑚=0⏟
DFT of even indexed part of x𝑛

+ 𝑒−
𝑗2πk
N ∑ 𝑥2𝑚+1𝑒

−
𝑗2πkm
N
2

𝑁
2
−1

𝑚=0⏟
DFT of odd indexed part of x𝑛

= 𝐸𝑘 + 𝑒
−
𝑗2πk
N 𝑂𝑘

The complex exponential is periodic, therefore:

𝑋𝑘 = 𝐸𝑘 + 𝑒
−
𝑗2πk
N 𝑂𝑘

𝑋
𝑘+
𝑁
2
= 𝐸𝑘 − 𝑒

−
𝑗2πk
N 𝑂𝑘

This result, expressing the DFT of length N recursively in terms of two DFTs of

size 𝑁/2, is the core of the radix-2 DIT fast Fourier transform. The algorithm gains its

speed by re-using the results of intermediate computations to compute multiple DFT

output.

A 256-point DFT computes a sequence x𝑛 of 256 complex-valued numbers given

another sequence of data x𝑘 of length 256 according to the formula [121]:

𝑋𝑘 = ∑𝑥𝑛𝑒
−
𝑗2πk𝑛
256

255

𝑛=0

, 𝐾 = 0,… ,𝑁 − 1

The normal calculation of 𝑋𝑘 is:

𝑋0 =∑𝑥𝑛𝑒
0

255

𝑛=0

= ∑𝑥𝑛

255

𝑛=0

𝑋1 = ∑𝑥𝑛𝑒
−
𝑗2π𝑛
256

255

𝑛=0

𝑋2 =∑𝑥𝑛𝑒
−
𝑗2π(2)𝑛
256

255

𝑛=0

 132

⋯

To simplify the notation, the complex-valued phase factor 𝑒−
𝑗2πk𝑛

256 is usually

defined as 𝑊256
𝑛 where:

𝑊256 = cos (
2π

256
) − jsin(

2π

256
)

The FFT algorithms take advantage of the symmetry and periodicity properties of

𝑊256
𝑛 to greatly reduce the number of calculations that the DFT requires.

In an FFT implementation the real and imaginary components of 𝑊𝑁
𝑛 are called

twiddle factors [121]. The basis of the FFT is that a DFT can be divided into smaller

DFTs.

4.2.5.7. Cooley-Turkey Algorithm
In this section we briefly present the Cooley-Turkey Algorithm [122].

Equation 18:

𝑋𝑘 = ∑ 𝑥𝑛𝑒
−
𝑗2πk𝑛
N

𝑁−1

𝑛=0

 , 𝐾 = 0,… ,𝑁 − 1

𝑊 = 𝑒
2πi
N

𝑋𝑘 = ∑ 𝑥𝑛𝑊
−𝑘𝑛

𝑁−1

𝑛=0

 , 𝐾 = 0,… ,𝑁 − 1

Suppose sequence 𝑁 is composite: 𝑁 = 𝑟1. 𝑟2. Now let the indices in Equation

18 be expressed:

k = k1r1 + k0 k0 = 0, 1, … , r1 − 1, k1 = 0, 1, … , r2 − 1
n = n1r2 + n0 n0 = 0, 1, … , r2 − 1, n1 = 0, 1, … , r1 − 1

Then one can write:

𝑋𝑛0,𝑛1 =∑∑𝑥𝑛1,𝑛0𝑊
𝑘𝑛1𝑟2𝑊𝑘𝑛0

𝑘1𝑘0

Since:

𝑊𝑘𝑛1𝑟2 = 𝑊𝑘0𝑛1𝑟2

Equation 19: 𝑋𝑛0,𝑛1 = ∑ 𝑥𝑛1,𝑛0𝑊

𝑘0𝑛1𝑟2
𝑛1

The result then can be written:

Equation 20: 𝑋𝑛0,𝑛1 = ∑ 𝑥1𝑛1𝑘0𝑊
(𝑘1𝑟1+𝑘0)𝑛0

𝑘0

 133

There are 𝑁 elements in the array 𝑥1 each requiring 𝑟1 operations, giving a total

number of 𝑁𝑟1 to obtain 𝑥1. Similarly, it takes 𝑁𝑟2 to calculate 𝑋 from 𝑥1. Therefore,

this two-step algorithm, given by Equation 19 and Equation 20 requires a total of T =
 N(r1 + r2) Operations.

Instead of two-step if we have an m-step algorithm:

T = N(r1 + r2 + ⋯+ r𝑚), 𝑁 = r1. r2. … , r𝑚

if all r𝑗 are equal to 𝑟, then:

𝑚 = log𝑟 𝑁

And total number of operations is:

𝑇(𝑟) = 𝑟𝑁 log𝑟 𝑁

4.2.5.8. FFT Computation Literature Review
In 1998 Matteo and Johnson developed a production-quality library called FFTW. They

used dynamic programming algorithm to determine a plan at run time to perform the

FFT by selecting a composition of codelets. Codelets are written in in the Cam1 Light

dialect of the functional language ML [118].

4.2.5.9. PicoBlaze FFT Benchmark
First, we set the USB to serial adapter BAUD rate in Linux:

The ‘en 16 x baud’ signal must therefore have a pulse rate of 16 x 9600 = 153,600

pulses per second. With a 125 MHz clock this equates one enable pulse every

125,000,000 / 153,600 = 814 clock cycles. ZYBO board connects a 50MHz external

clock to PS CLK pin of xc7z010-1clg400c.

We can drive the clock from PS. But ZYBO also provides a 125MHz external clock

directly to pin L16 of the PL. This will allow us to us he PL completely independent of

PS.

• Clock Management Tiles (CMT) provides clock frequency synthesis, deskew,

and jitter filtering functionality.

• Mixed-Mode Clock Manager (MMCM) Each CMT contains one mixed-mode

clock manager (MMCM) and one phase-locked loop (PLL), reside in the CMT

column next to the I/O column.

The PL of the Zynq-Z7010 also includes two MMCM’s and two PLL’s that can be

used to generate clocks with precise frequencies and phase relationships.

4.2.5.10. 8-bit Processor Mathematics
For performing FFT with double precision format we need to use 64-bit IEEE-754

floating-point. Next section will discuss this standard in detail and will provide

algorithms which can be implemented on an 8-bit machine.

$ stty -F /dev/ttyUSB0 9600 raw

 134

4.3. Result
Three crucial result can be derived from the work presented in this section:

• Laser processor performance evaluation fails if there is no compiler

infrastructure to support the architecture.

• The most important numerical algorithm is FFT and any improvement in FFT

computation has significant weight.

• The result presented in Table 11 shows that different implementation of same

algorithm on same machine can produce a huge gap in performance evaluation

result. A result gap of 129739µs downto 0.843µs (FFTW) was obtained.

 135

5. Development of an Assembler for Laser Processor based on
LLVM Infrastructure

5.1. Introduction
In Section 2.4 the basic LLVM terminologies were discussed. In this chapter the details

of developing an assembler for 16-bit integer VHDL-based Laser processor is provided.

5.2. LLVM Backend Development
Below the details of how to start writing a backend in LLVM is documented”

1. Create a directory under lib/Target.

2. Set LLVM TARGET DEFINITIONS in CMakeLists.txt

3. Make a subclass of TargetMachine. To use LLVM’s target independent code

generator: create a subclass of LLVMTargetMachine: LaserTargetMachine.h,

LaserTargetMachine.cpp

5.2.1. Branch Implementation
Table 12 shows how Laser branch operation can be implemented in LLVM backend.

Table 12: Laser Branch implementation in LLVM Backend

Sign Cond. Code Expression Instruction Sequence

 SETEQ L = R CMP L, R; JZ Dest;

 SETNE L 6= R CMP L, R; JNZ Dest;

Signed SETLT L < R IMD R0, 0x80; XOR R1, L, R0; XOR R2, R, R0; CMP R1,

R2; JC DEST;

 SETGT L > R IMD R0, 0x80; XOR R1, L, R0; XOR R2, R, R0; CMP R2,

R1; JC DEST;

 SETLE L ≤ R IMD R0, 0x80; XOR R1, L, R0; XOR R2, R, R0; CMP R1,

R2; JNC DEST;

 SETGE L ≥ R IMD R0, 0x80; XOR R1, L, R0; XOR R2, R, R0; CMP R2,

R1; JNC DEST;

Unsigned SETULT L < R IMD R0, 0x80; CMP R1, R2; JC DEST;

 SETUGT L > R IMD R0, 0x80; CMP R2, R1; JC DEST;

 SETULE L ≤ R IMD R0, 0x80; CMP R1, R2; JNC DEST;

 SETUGE L ≥ R IMD R0, 0x80; CMP R2, R1; JNC DEST;

5.2.2. Writing the LLVM Backend

5.2.2.1. Rapid Development of an Assembler
Here we discuss the process to develop an assembler for a new target, in our case the

Laser. First, we need to get the LLVM source code. This project started when LLVM

release was at 3.9.0 after one year the LLVM version reached 4.0.1. (Currently the latest

version is 5.0.1) Because of the fast pace of releases we should use SVN to get access

to the latest source code, instead of downloading the source tar files:

 136

Then let us build the original LLVM for X86 and SPARC:

The build should finish successfully. The Laser processor is a 16-bit machine. We

need to tell Clang to produce 16-bit LLVM IR code for the Laser target machine, next

section describes the details of the process.

5.2.2.2. Add new Machine Target in Clang
1. Create file: LLVM ROOT/tools/clang/lib/Basic/Targets/Laser.h (Listing 10)

2. Create file: LLVM ROOT/tools/clang/lib/Basic/Targets/Laser.cpp (Listing 11)

3. Edit LLVM ROOT/tools/clang/lib/Basic/Targets.cpp (Listing 13)

4. Add to LLVM ROOT/tools/clang/lib/Basic/CMakeLists.txt: (Listing 12)

$ cd /home/esi/workspace/src/llvm_svn

$ svn co https://user@llvm.org/svn/llvm-project/llvm/trunk llvm

$ cd llvm/tools

$ git clone http://llvm.org/git/clang.git

$ cmake3 -G "Ninja" -DCMAKE_BUILD_TYPE="Debug"

 -DCMAKE_EXPORT_COMPILE_COMMANDS=ON -

DBUILD_SHARED_LIBS=ON

 -DLLVM_TARGETS_TO_BUILD="X86;Sparc"

 /home/esi/workspace/src/llvm_svn/llvm

$ ninja

$ ninja install

 137

//===--- Laser.h - Declare Laser target feature support ---------*- C++ -*-===//

//

// The LLVM Compiler Infrastructure

//

// This file is distributed under the University of Illinois Open Source

// License. See LICENSE.TXT for details.

//

//===--===//

//

// This file declares Laser TargetInfo objects.

//

//===--===//

#ifndef LLVM_CLANG_LIB_BASIC_TARGETS_LASER_H

#define LLVM_CLANG_LIB_BASIC_TARGETS_LASER_H

#include "clang/Basic/TargetInfo.h"

#include "clang/Basic/TargetOptions.h"

#include "llvm/ADT/Triple.h"

#include "llvm/Support/Compiler.h"

namespace clang {

 namespace targets {

class LLVM_LIBRARY_VISIBILITY LaserTargetInfo : public TargetInfo {

// Class for Laser (32-bit).

// The CPU profiles supported by the Laser Backend

enum CPUKind {

 GENERAL

} CPU;

static const TargetInfo::GCCRegAlias GCCRegAliases[];

static const char *const GCCRegNames[];

public:

LaserTargetInfo(const llvm::Triple &Triple, const TargetOptions &)

: TargetInfo(Triple) {

 // Description string has to be kept in sync with Backend.

 resetDataLayout("e" // Little endian

 "-m:e" // ELF name manging

 "-p:16:16" // 16 bit pointers, 16 bit aligned

 "-i16:16" // 16 bit integers, 16 bit aligned

 "-a:0:16" // 16 bit alignment of objects of aggregate

 // type

 "-n16" // 32 bit native integer width

 "-S16" // 64 bit natural stack alignment

);

 // Setting RegParmMax equal to what

 // mregparm was set to in the old toolchain

 RegParmMax = 4;

 // Set the default CPU to GENERAL

 CPU = GENERAL;

 IntWidth = 16;

 IntAlign = 16;

}

void getTargetDefines(const LangOptions &Opts,

MacroBuilder &Builder) const override;

bool isValidCPUName(StringRef Name) const override;

bool setCPU(const std::string &Name) override;

bool hasFeature(StringRef Feature) const override;

ArrayRef<const char *> getGCCRegNames() const override;

BuiltinVaListKind getBuiltinVaListKind() const override {

 return TargetInfo::VoidPtrBuiltinVaList;

}

ArrayRef<Builtin::Info> getTargetBuiltins()

 const override { return None; }

bool validateAsmConstraint(const char *&Name,

Listing 10: Laser.h

 138

 // Setting RegParmMax equal to what

 // mregparm was set to in the old toolchain

 RegParmMax = 4;

 // Set the default CPU to GENERAL

 CPU = GENERAL;

 IntWidth = 16;

 IntAlign = 16;

}

void getTargetDefines(const LangOptions &Opts,

MacroBuilder &Builder) const override;

bool isValidCPUName(StringRef Name) const override;

bool setCPU(const std::string &Name) override;

bool hasFeature(StringRef Feature) const override;

ArrayRef<const char *> getGCCRegNames() const override;

BuiltinVaListKind getBuiltinVaListKind() const override {

 return TargetInfo::VoidPtrBuiltinVaList;

}

ArrayRef<Builtin::Info> getTargetBuiltins()

 const override { return None; }

bool validateAsmConstraint(const char *&Name,

TargetInfo::ConstraintInfo &info) const override {

 return false;

}

const char *getClobbers() const override { return ""; }

ArrayRef<TargetInfo::GCCRegAlias>

LaserTargetInfo::getGCCRegAliases() const {

 return llvm::makeArrayRef(GCCRegAliases);

}

};

} // namespace targets

} // namespace clang

#endif // LLVM_CLANG_LIB_BASIC_TARGETS_LASER_H

//===--- Laser.cpp - Implement Laser target feature support ===//

//

// The LLVM Compiler Infrastructure

//

// This file is distributed under the University of Illinois Open Source

// License. See LICENSE.TXT for details.

//

//===---===//

//

// This file implements Laser TargetInfo objects.

//

//===---===//

#include "Laser.h"

#include "clang/Basic/MacroBuilder.h"

#include "llvm/ADT/StringSwitch.h"

using namespace clang;

using namespace clang::targets;

const char *const LaserTargetInfo::GCCRegNames[] = {

"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "

r9", "r10", "r11", "r12", "r13", "r14", "r15"};

ArrayRef<const char *> LaserTargetInfo::getGCCRegNames() const {

 return llvm::makeArrayRef(GCCRegNames);

Listing 11: Laser.cpp

 139

using namespace clang;

using namespace clang::targets;

const char *const LaserTargetInfo::GCCRegNames[] = {

"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "

r9", "r10", "r11", "r12", "r13", "r14", "r15"};

ArrayRef<const char *> LaserTargetInfo::getGCCRegNames() const {

 return llvm::makeArrayRef(GCCRegNames);

}

const TargetInfo::GCCRegAlias LaserTargetInfo::GCCRegAliases[] = {

 {{"pc"}, "r0"}, // PC register cannot be accessed in

 // Laser processor directly.

 {{"sp"}, "r1"},

 {{"fp"}, "r2"},

 {{"rv"}, "r8"},

 {{"rr1"}, "r9"},

 {{"rr2"}, "r10"},

 {{"rca"}, "r11"},

};

ArrayRef<TargetInfo::GCCRegAlias>

LaserTargetInfo::getGCCRegAliases() const {

 return llvm::makeArrayRef(GCCRegAliases);

}

bool LaserTargetInfo::isValidCPUName(StringRef Name) const {

return llvm::StringSwitch<bool>

 (Name).Case("v11", true).Default(false);

}

bool LaserTargetInfo::isValidCPUName(StringRef Name) const {

return llvm::StringSwitch<bool>

 (Name).Case("generic", true).Default(false);

}

bool LaserTargetInfo::setCPU(const std::string &Name) {

CPU = llvm::StringSwitch<CPUKind>(Name)

 .Case("general", GENERAL)

 .Default(GENERAL);

return CPU != GENERAL;

}

bool LaserTargetInfo::hasFeature(StringRef Feature) const {

return llvm::StringSwitch<bool>

 (Feature).Case("laser", true).Default(false);

}

void LaserTargetInfo::getTargetDefines(const LangOptions &Opts,

MacroBuilder &Builder) const {

// Define __laser__ when building for target laser.

Builder.defineMacro("__laser__");

// Set define for the CPU specified.

switch (CPU) {

 case GENERAL:

 Builder.defineMacro("__LASER_GENRAL__");

 break;

 default:

 llvm_unreachable("Unhandled target CPU");

 }

}

 140

At this point the clang command can produce 16-bit LLVM code:

5.2.3. Target Registration
To implement the target registration in LLVM backend, we must follow the

following steps that needs editing the files in LLVM ROOT directory:

1. In LLVM ROOT/cmake/config-ix.cmake : Add

2. In LLVM ROOT/lib/Target/LLVMBuild.txt : Add Laser to [common]

subdirectories =

3. In LLVM ROOT/include/llvm/ADT/Triple.h:

#include "Targets/Lanai.h"

...

#include "Targets/Laser.h"

...

...

 case llvm::Triple::renderscript32:

return new LinuxTargetInfo<RenderScript32TargetInfo>(Triple, Opts);

case llvm::Triple::renderscript64:

return new LinuxTargetInfo<RenderScript64TargetInfo>(Triple, Opts);

...

 case llvm::Triple::laser:

return new LaserTargetInfo(Triple, Opts);

...

Listing 13: Targets.cpp

add_clang_library(clangBasic

Attributes.cpp

Builtins.cpp

...

Targets/Lanai.cpp

Targets/Laser.cpp

...

Listing 12: CMakeLists.txt

$ clang --target=laser -S -emit-llvm main.c -o main.ll

...

elseif (LLVM_NATIVE_ARCH MATCHES "wasm64")

set(LLVM_NATIVE_ARCH WebAssembly)
elseif (LLVM_NATIVE_ARCH MATCHES "laser")

set(LLVM_NATIVE_ARCH Laser)

[common] subdirectories =

 ...

 Laser

 ...

 141

4. LLVM ROOT/include/llvm/MC/MCExpr.h

5. LLVM ROOT/include/llvm/Object/ELFObjectFile.h

enum ArchType {

 UnknownArch,
 ...

 laser, // Laser: Laser 16-bit

 ...

// We don't need this
 enum VariantKind {

 ...

 VK_LASER_LO,

 VK_LASER_HI,
 ...

StringRef ELFObjectFile<ELFT>::getFileFormatName() const {

 bool IsLittleEndian = ELFT::TargetEndianness == support::little;
 switch (EF.getHeader()->e_ident[ELF::EI_CLASS]) {

 case ELF::ELFCLASS32:

 switch (EF.getHeader()->e_machine) {
 case ELF::EM_386:

 return "ELF32-i386";

 ...
 case ELF::EM_LASER:

 return "ELF32-laser";

 ...

template <class ELFT>

 unsigned ELFObjectFile<ELFT>::getArch() const {
 bool IsLittleEndian = ELFT::TargetEndianness == support::little;

 switch (EF.getHeader()->e_machine) {

 case ELF::EM_386:
 ...

 case ELF::EM_LASER:

 return Triple::laser;
 ...

 142

6. LLVM ROOT/include/llvm/Support/ELF.h

7. LLVM ROOT/lib/MC/MCELFStreamer.cpp

8. LLVM ROOT/lib/MC/MCExpr.cpp

enum {

 EM_NONE = 0, // No machine
 ...

 EM_LASER = 248, // Laser

 ...
// Laser Specific e_flags

enum {

 // Don't reorder instructions
 EF_LASER_NOREORDER = 0x00000001,

 // Position independent code

 EF_LASER_PIC = 0x00000002,
 // Mask for applying EF_LASER_ARCH_ variant

 EF_LASER_ARCH = 0xf0000000

};

// Add this in ELF.h before "#undef ELF_RELOC" line:

// ELF Relocation types for Laser

enum {

#include "ELFRelocs/Laser.def"

};

void MCELFStreamer::fixSymbolsInTLSFixups(const MCExpr *expr) {

switch (expr->getKind()) {

 ...
 case MCExpr::SymbolRef: {

 const MCSymbolRefExpr &symRef = *cast<MCSymbolRefExpr>(expr);

 switch (symRef.getKind()) {
 default:

 return;

 case MCSymbolRefExpr::VK_GOTTPOFF:
 ...

 case MCSymbolRefExpr::VK_LASER_HI:

 case MCSymbolRefExpr::VK_LASER_LO:
 ...

 break;

StringRef MCSymbolRefExpr::getVariantKindName(VariantKind Kind) {
 switch (Kind) {

 case VK_Invalid: return "<<invalid>>";

 ...
 case VK_LASER_HI: return "LASER_HI";

 case VK_LASER_LO: return "LASER_LO";

 ...

 143

9. LLVM ROOT/lib/Object/ELF.cpp

10. LLVM ROOT/include/llvm/Support/ELFRelocs/Laser.def

Changed to :LLVM

ROOT//include/llvm/BinaryFormat/ELFRelocs/Laser.def

11. llvm/include/llvm/BinaryFormat/ELF.h : Needed only for LLVM 4.0.1 and

5.0.1

StringRef getELFRelocationTypeName(uint32_t Machine, uint32_t Type) {
 switch (Machine) {

 case ELF::EM_X86_64:

 ...
 case ELF::EM_LASER:

 switch (Type) {

#include "llvm/BinaryFormat/ELFRelocs/Laser.def"
 default:

 break;

 }
 break;

 ...

#ifndef ELF_RELOC

#error "ELF_RELOC must be defined"

#endif

ELF_RELOC(R_LASER_NONE, 0)

ELF_RELOC(R_LASER_CALL16, 1)
ELF_RELOC(R_LASER_PC11, 2)

...

// ELF Relocation type for Lanai.
enum {

#include "ELFRelocs/Lanai.def"

};

// ELF Relocation type for Laser.

enum {
#include "ELFRelocs/Laser.def"

};

// ELF Relocation types for RISC-V

enum {
#include "ELFRelocs/RISCV.def"

};

...

 144

12. LLVM ROOT/lib/Support/Triple.cpp

const char *Triple::getArchTypeName(ArchType Kind) {
 switch (Kind) {

 case UnknownArch:

 return "unknown";
 ...

 case laser:

 return "laser";
 ...

 ..

 ...
const char *Triple::getArchTypePrefix(ArchType Kind) {

 switch (Kind) {

 ...

 case laser:

 return "laser";
 ...

 ..

 ...
Triple::ArchType Triple::getArchTypeForLLVMName(StringRef Name) {

 Triple::ArchType BPFArch(parseBPFArch(Name));

 return StringSwitch<Triple::ArchType>(Name)
 .Case("aarch64", aarch64)

 ...

 .Case("laser", laser)
 ...

 ..

 ...
static Triple::ArchType parseArch(StringRef ArchName) {

 auto AT = StringSwitch<Triple::ArchType>(ArchName)

 .Cases("i386", "i486", "i586", "i686", Triple::x86)
 ...

 .Case("laser", Triple::laser)

 ...
 ..

 ...

static Triple::ObjectFormatType getDefaultFormat(const Triple &T) {
 switch (T.getArch()) {

 case Triple::UnknownArch:

 ...
 case Triple::laser:

 ...

 return Triple::ELF;
 ...

 ..

 ...
static unsigned getArchPointerBitWidth(llvm::Triple::ArchType Arch) {

 switch (Arch) {

 ...
 case llvm::Triple::laser:

 return 16;

 ...

 ..

 ...

Triple Triple::get32BitArchVariant() const {
Triple T(*this);

 switch (getArch()) {

 case Triple::UnknownArch:
 ...

 case Triple::laser:

 T.setArch(UnknownArch);
 break;

 ...

 ..

 ...

 145

13. LLVM ROOT/CMakeLists.txt

5.2.3.1. Minimum Backend Bare-bone Files
The minimum bare bone files to support an assembler are listed below. First, create

folder ‘Laser’ under LLVM ROOT/lib/Target/ and then:

• LaserTargetMachine.cpp

• LaserTargetMachine.h

Triple Triple::get64BitArchVariant() const {
Triple T(*this);

 switch (getArch()) {

 ...
 case Triple::laser:

 ...

 T.setArch(UnknownArch);
 break;

 ...

 ..
 ...

Triple Triple::getBigEndianArchVariant() const {

Triple T(*this);
 // Already big endian.

 if (!isLittleEndian())

 return T;
 switch (getArch()) {

 ...

 case Triple::laser:
 ...

 T.setArch(UnknownArch);

 break;
 ...

 ..

 ...

 * we don't need this

Triple Triple::getLittleEndianArchVariant() const {
Triple T(*this);

 if (isLittleEndian())

 return T;

 switch (getArch()) {

 ...
 case Triple::laser: T.setArch(Triple::laser); break;

 ...

 ..
 ...

 * we don't need this
bool Triple::isLittleEndian() const {

 switch (getArch()) {

 ...
 case Triple::laser:

 ...

set(LLVM_ALL_TARGETS

AArch64

AMDGPU
ARM

...

Laser

)

 146

• LaserInstrFormats.td

• LaserInstrInfo.td

• LaserRegisterInfo.td

• Laser.td

• AsmParser/LaserAsmParser.cpp

• LaserTargetObjectFile.cpp

• LaserTargetObjectFile.h

We also need to current the following files under ’Laser’ directory:

• AsmParser/LaserAsmParser.cpp : Inline Assembly support

• InstPrinter/LaserInstPrinter .cpp : .s file Laser assembly language printer

• InstPrinter/LaserInstPrinter.h

• MCTargetDesc:

o LaserAsmBackend.cpp : ELF object file .obj creation

o LaserAsmBackend.h

o LaserBaseInfo.h : ELF object file .obj creation

o LaserELFObjectWriter.cpp: ELF object file .obj creation

o LaserFixupKinds.h : ELF object file .obj creation

o LaserMCAsmInfo.cpp : ELF object file .obj creation

o LaserMCAsmInfo.h – LaserMCCodeEmitter.cpp : ELF object file

.obj creation

o LaserMCCodeEmitter.h

o LaserMCExpr.cpp

o LaserMCExpr.h

o LaserMCTargetDesc.cpp : Register Backend modules

o LaserMCTargetDesc.h

o LaserTargetStreamer.cpp : ELF object file .obj creation

• TargetInfo/LaserTargetInfo.cpp : Just register target ’laser’

• CMakeLists.txt

• LaserAsm.td

• LaserCallingConv.td

• LaserCondCode.h

• LaserFrameLowering.cpp

• LaserFrameLowering.h

• Laser.h

• LaserInstrFormats.td

• LaserInstrInfo.cpp

• LaserInstrInfo.h

• LaserInstrInfo.td

• LaserISelDAGToDAG.cpp

• LaserISelLowering.cpp

• LaserISelLowering.h

• LaserMachineFunctionInfo.cpp

• LaserMachineFunctionInfo.h

• LaserOther.td

• LaserRegisterInfo.cpp

• LaserRegisterInfoGPROutForAsm.td

 147

• LaserRegisterInfoGPROutForOther.td

• LaserRegisterInfo.h

• LaserRegisterInfo.td

• LaserSchedule.td

• LaserSubtarget.cpp

• LaserSubtarget.h

• LaserTargetMachine.cpp

• LaserTargetMachine.h

• LaserTargetObjectFile.cpp

• LaserTargetObjectFile.h

LaserTargetStreamer.h

• Laser.td

• LLVMBuild.txt

To create the master .td file: new file at LLVM ROOT/lib/Target/Laser/Laser.td

from Laser.td we include:

1. LaserRegisterInfo.td

2. LaserInstrInfo.td which includes LaserInstrFormats.td

3. LaserSchedule.td

We also need to create the following files:

1. Laser.h

2. LaserTargetMachine.cpp (almost empty)

3. LaserTargetMachine.h (empty)

4. MCTargetDesc/LaserMCTargetDesc.cpp

5. MCTargetDesc/LaserMCTargetDesc.h

6. TargetInfo/LaserTargetInfo.cpp

Add this point LLVM can be rebuilt, and it should be successful. To rebuild a

build directory is created and then the following command is issued:

Then the main.c is compiled using Clang:

The file structure of backend is listed below:

1. LLVM ROOT/lib/Target/Laser/LaserTargetObjectFile.h ,

LaserTargetObjectFile.cpp

2. LLVM ROOT/lib/Target/Laser/LaserTargetMachine.h,

LaserTargetMachine.cpp

3. LLVM ROOT/lib/Target/Laser/Laser.td to include LaserCallingConv.td

4. LLVM ROOT/lib/Target/Laser/LaserCallingConv.td

$cmake -G "Unix Makefiles" DLLVM_TARGETS_TO_BUILD="Laser;Sparc;X86"

-DBUILD_SHARED_LIBS=ON -DLLVM_OPTIMIZED_TABLEGEN=ON

/home/esi/extra_space/src/llvm04/llvm

$make

$clang -S -emit-llvm main.c -o main.ll

$llc -march laserel -mcpu=generic -debug-pass=Structure main.ll

 148

5. LLVM ROOT/lib/Target/Laser/LaserFrameLowering.h ,

LaserFrameLowering.cpp

6. LLVM ROOT/lib/Target/Laser/LaserInstrInfo.h , LaserInstrInfo.cpp

7. LLVM ROOT/lib/Target/Laser/LaserISelLowering.h ,

LaserISelLowering.cpp

8. LLVM ROOT/lib/Target/Laser/LaserMachineFunctionInfo.h ,

LaserMachineFunctionInfo.cpp

9. LLVM ROOT/lib/Target/Laser/LaserSubtarget.h , LaserSubtarget.cpp

10. LLVM ROOT/lib/Target/Laser/LaserRegisterInfo.h ,

LaserRegisterInfo.cpp

At this point a built on the backend can be issued, which results in getting the error

message “MCAsmInfo not initialized.”

Next is to add AsmPrinter:

1. LLVM ROOT/lib/Target/Laser/InstPrinter/LaserInstPrinter.h,

LaserInstPrinter.cpp

2. LLVM ROOT/lib/Target/Laser/LaserInstrInfo.td

3. LLVM ROOT/lib/Target/Laser/LaserMCInstLower.h,

LaserMCInstLower.cpp

4. LLVM ROOT/lib/Target/Laser/MCTargetDesc/LaserMCAsmInfo.h,

LaserMCAsmInfo.cpp

5. LLVM ROOT/lib/Target/Laser/MCTargetDesc/LaserMCTargetDesc.h,

LaserMCTargetDesc.cpp

6. LLVM ROOT/lib/Target/Laser/LaserAsmPrinter.h, LaserAsmPrinter.cpp

7. LLVM ROOT/lib/Target/Laser/LaserISelLowering.cpp

At this point the ASM Printer is implemented, and build is successful, but if the

llc command is run the following error:

“llc: target does not support generation of this file type!” will be generated.

The CPU0 tutorial page 128 is reached now.

Next is to add LaserDAGToDAGISel class:

1. LLVM ROOT/lib/Target/Laser/LaserInstrInfo.td : Define the instructions

2. LLVM ROOT/lib/Target/Laser/LaserTargetMachine.cpp

3. LLVM ROOT/lib/Target/LaserCpu0ISelDAGToDAG.h,

LaserISelDAGToDAG.cpp

4. LLVM ROOT/lib/Target/Laser/LaserInstrInfo.td

5. src/include/llvm/Target/TargetSelection.td

6. src/include/llvm/CodeGen/ValueTypes.td

7. LLVM ROOT/lib/Target/Laser/LaserInstrInfo.h, LaserInstrInfo.cpp

Note: I remember I had to change the clang to produce 16-bit LLVM IR, after that

to compile a C file the following command should be issued:

Then:

$clang -O2 --target=laser -S -emit-llvm main.c -o main.ll

 149

• For register set: LaserRegisterInfo.td, TargetRegisterInfo

• For instruction set: LaserInstrFormats.td, LaserInstrInfo.td

• For LLVM IR (DAG) to Native target-specific instructions: LaserInstrInfo.td,

LaserISelLowering.cpp

• For assembly printer that converts LLVM IR to a GAS format: TargetInstrInfo.td,

AsmPrinter, TargetAsmInfo

5.2.3.2. To Handle Return Register
Below is the list of the filed needed to be edited to handle return register:

1. LLVM ROOT/lib/Target/Laser/LaserCallingConv.td

2. LLVM ROOT/lib/Target/Laser/LaserInstrFormats.td

3. LLVM ROOT/lib/Target/Laser/LaserISelLowering.h LaserISelLowering.cpp

4. LLVM ROOT/lib/Target/Laser/LaserInstrInfo.h, LaserInstrInfo.cpp

5. LLVM ROOT/lib/Target/Laser/LaserInstrInfo.td

5.3. Register Allocation
This pass happens in instruction scheduling.

5.3.1. Live Variable Analysis
In compiler theory, live variable analysis (or simply liveness analysis) is a classic data-

flow analysis performed by compilers to calculate for each program point the variables

that may be potentially read before their next write, that is, the variables that are live at

the exit from each program point [123]. Listing 14 shows the concept of live in/live out

through a simple example.

5.4. Instructions Implementation

5.4.1. Return Instruction
In LaserCallingConv.td we set RETVAL register to hold the return value:

$ llc -print-after-all -march=laserel -mtriple=laser -mcpu=generic -debug-

pass=Structure -filetype=asm main.ll -o main.s

def RetCC_LASER : CallingConv<[

 CCIfType<[i16], CCAssignToReg<[RETVAL]>> ,

 CCIfType<[i16], CCAssignToStack<2, 2>>

]>;

 150

In TargetSelectionDAG.td we have:

Then we define a pseudo instruction LASER::RET FLAG to take care of

LASERISD::Ret in LaserInstInfo.td:

// Live in: {}

 b1: a = 3;

 b = 5;

 d = 4;

 x = 100; //x is never being used later thus not in the out set {a,b,d}

 if a > b then

// Live out: {a,b,d} //union of all (in) successors of

 b1 => b2: {a,b}, and b3:{b,d}

// Live in: {a,b}

b2: c = a + b;

d = 2;

// Live out: {b,d}

// Live in: {b,d}

b3: endif

c = 4;

return b * d + c;

// Live out: {}

Listing 14: The live in/live example.

//===---===//
// Selection DAG Node definitions.

//

class SDNode<string opcode, SDTypeProfile typeprof,
 list<SDNodeProperty> props = [], string sdclass = "SDNode"> {

 string Opcode = opcode;

 string SDClass = sdclass;
 list<SDNodeProperty> Properties = props;

 SDTypeProfile TypeProfile = typeprof;

}

//===--===//

// Selection DAG Node Properties.
//

// Note: These are hard coded into tblgen.

//
class SDNodeProperty;

def SDNPCommutative : SDNodeProperty; // X op Y == Y op X

def SDNPAssociative : SDNodeProperty; // (X op Y) op Z == X op (Y op Z)
def SDNPHasChain : SDNodeProperty; // R/W chain operand and result

def SDNPOutGlue : SDNodeProperty; // Write a flag result

def SDNPInGlue : SDNodeProperty; // Read a flag operand
def SDNPOptInGlue : SDNodeProperty; // Optionally read a flag operand

def SDNPMayStore : SDNodeProperty; // May write to memory,

 // sets 'mayStore'.
def SDNPMayLoad : SDNodeProperty; // May read memory,

 // sets 'mayLoad'.

def SDNPSideEffect : SDNodeProperty; // Sets 'HasUnmodelledSideEffects'.
def SDNPMemOperand : SDNodeProperty; // Touches memory, has assoc

 // MemOperand

def SDNPVariadic : SDNodeProperty; // Node has variable arguments.
def SDNPWantRoot : SDNodeProperty; // ComplexPattern gets the root

 // of match

def SDNPWantParent : SDNodeProperty; // ComplexPattern gets the parent

 151

In LaserInstFormats.td:

In LaseIselLowering.cpp, LowerReturn() will be called whenever the system meets

return keyword in C code:

Then expand the LASERISD::RET FLAG into instruction LASER::RET in “Post-

RA pseudo instruction expansion pass”. In LaserInstrInfo.cpp:

def LaserRet : SDNode<"LASERISD::Ret", SDTNone,

 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;

let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in {

 def RET_FLAG : LaserPseudo<(outs), (ins), "", [(LaserRet)]>;

}

class LaserPseudo<dag outs, dag ins, string asmString, list<dag> pattern>

 : F_base <outs, ins, asmString, pattern, IIPseudo, Pseudo> {

 let isCodeGenOnly = 1;

 let isPseudo = 1;
}

SDValue

LaserTargetLowering::LowerReturn(

 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
 const SmallVectorImpl<ISD::OutputArg> &Outs,

 const SmallVectorImpl<SDValue> &OutVals,

 const SDLoc &dl, SelectionDAG &DAG) const;

/// Expand Pseudo instructions into real backend instructions

bool LaserInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {

 MachineBasicBlock *MBB = MI.getParent();

 switch(MI.getOpcode()) {

 default:

 return false;

 case LASER::RET_FLAG:

 expandRetFlag(MBB, MI);

 break;

 }

 MBB->erase(MI);

 return true;

}

void LaserInstrInfo::expandRetFlag(MachineBasicBlock *MBB,

 MachineInstr &MI) const {

BuildMI(*MBB, MI, MI.getDebugLoc(), get(LASER::RET)).addReg(LASER::R15);

}

 152

Fig. 80: Return Instruction dag-combine1.

Fig. 81: Return Instruction Scheduler.

 153

Then first the following C code is compiled by clang with -O2 argument:

The LLVM IR is

The illegal SelectionDAG is shown in Fig. 80. After Instruction Selection the

return instruction scheduler is shown in Fig. 81.

5.4.2. Memory load/store
The store instruction is used to write to memory. Its syntax is [94]:

There are two arguments to the store instruction: a value to store and an address at

which to store it. The optional constant align argument specifies the alignment of the

operation (that is, the alignment of the memory address).

Suppose we have a C code as below:

We first compile the following C code by clang -O0 argument:

which can be read as allocate 16 bit for %retval, store value 0 into a 16-bit

pointer that point to the %retval and return 16 bit constant value 5.

After legalization:

int main(void) {

return 5;

}

define i16 @main() #0 {

entry:
 ret i16 5

}

store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>]

[, !nontemporal !<index>][, !invariant.group !<index>] ; yields void

store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread]

 <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void

int main(void) {

 return 5;

}

define i16 @main() #0 {

 entry:

 %retval = alloca i16, align 2
 store i16 0, i16* %retval, align 2

 ret i16 5

}

 154

This is how Cpu0 handles store:

This is how Lanai handles store:

t0: ch = EntryToken
t4: ch = store<ST2[%retval]> t0, Constant:i16<0>, FrameIndex:i16<0>,

 undef:i16

class AlignedStore<PatFrag Node> :
 PatFrag<(ops node:$val, node:$ptr), (Node node:$val, node:$ptr),

 [{

 StoreSDNode *SD = cast<StoreSDNode>(N);
 return SD->getMemoryVT().getSizeInBits()/8 <= SD->getAlignment();

 }]

>;

def store_a : AlignedStore<store>;

def addr :

ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], [SDNPWantParent]>;

def mem : Operand<iPTR> {

 let PrintMethod = "printMemOperand";

 let MIOperandInfo = (ops CPURegs, simm16);
 let EncoderMethod = "getMemEncoding";

 let ParserMatchClass = Cpu0MemAsmOperand;

}
class FMem <

 bits<8> op=0x02,

 dag outs,
 dag ins=(RC=CPURegs:$ra, MemOpnd=mem:$addr),

 string asmstr="st \t$ra, $addr",

 list<dag> pattern = [(OpNode=store_a RC=CPURegs:$ra, addr:$addr)],
 InstrItinClass itin = IIStore
 >

def ADDRsls : ComplexPattern<i32, 1, "selectAddrSls", [frameindex], []>;

def STADDR : InstSLS<0x1, (outs), (ins GPR:$Rd, MEMi:$dst),
"st\t$Rd, $dst",

[(store (i32 GPR:$Rd), ADDRsls:$dst)]>,

Sched<[WriteST]> {
 bits<21> dst;

 let Itinerary = IIC_ST;
 let msb = dst{20-16};

 let lsb = dst{15-0};

 let mayStore = 1;

}

 155

For Laser, In LaserInstInfo.td we define a ComplexPattern:

This says to instruction selection pass that we need pattern matching code in C++

whenever it faces addr operand, it must be matched with two operands next to each

other with root node ’frameindex’. SDNPWantParent passes a pointer to Parent at first

argument of SelectAddr(). In LaserInstInfo.td we have:

Which states that the pattern (store i16:$rs, addr:$rd) must be replaced by machine

instruction ST with conversion of first i16 operand to a register that belongs to

GNPRegs and addr operand to a memsrc operand. The memsrc itself is a kind of

oeprand which consists of a GNPRegs and Lasserimm16 operands:

After legalization we still have:

After instruction selection

5.4.3. Frame Indexes
LLVM uses a virtual stack frame during the code generation, and stack elements are

referred using frame indexes. The prologue insertion allocates the stack frame and gives

enough target-specific information to the code generator to replace virtual frame indices

with real (target-specific) stack references.

def addr : ComplexPattern<
 iPTR, // ValueType ty

 2, // int numops

 "SelectAddr", // string fn
 [frameindex], // list<SDNode> roots = []

 [SDNPWantParent] // list<SDNodeProperty> props = []
>;

def LASERimm16 : Operand<i16> {
 let ParserMatchClass = LaserImmAsmOperand;

 let PrintMethod = "printImm";

 let DecoderMethod= "DecodeLASERimm16";
}

def memsrc :Operand<iPTR> {
 let MIOperandInfo = (ops GNPRegs, LASERimm16);

 let PrintMethod = "printAddrModeMemSrc";

 let ParserMatchClass = LaserMemAsmOperand;
 let DecoderMethod= "DecodeLASERmemsrc";

}

def ST : F2 <0b10000, (outs), (ins GNPRegs:$rs, memsrc:$rd),
"st $rd, $rs", [(store i16:$rs, addr:$rd)], IIStore>;

store<ST2[%retval]> t0, Constant:i16<0>, FrameIndex:i16<0>

store<ST2[%retval]> t0, Constant:i16<0>, FrameIndex:i16<0>

t1: i16 = IMD TargetConstant:i16<0>
ST<Mem:ST2[%retval]> t1, TargetFrameIndex:i16<0>, TargetConstant:i16<0>,

 156

The method eliminateFrameIndex() in the LaserRegisterInfo class implements this

replacement by converting each frame index to a real stack offset for all machine

instructions that contain stack references (usually loads and stores) [93].

We need to generate extra instructions to handle the stack offset arithmetic, as the

Laser processor ST/LD instructions does not accept complex base/offset operand. After

frameindex elimination:

After register allocation:

5.4.4. “ADD” Instruction
We try to achieve compiling the C code shown in Listing 15.

Compiling the code shown in Listing 15 into LLVM IR we get:

5.4.5. “MUL” Instruction
The MUL instruction returns the product of its two operands. The syntax is [94]:

%0:gnpregs = IMD 0
ST killed %0, %stack.0.retval, 0; mem:ST2[%retval]

> renamable $r10 = IMD 0
> ST killed renamable $r10, %stack.0.retval, 0; mem:ST2[%retval]

int main(void) {

 int result;

 int a = 5;

 int b = 10;

 result = a + b;

 return result;

}

Listing 15: Sample C code with addition operation.

define i16 @main() #0 {
entry:

 %retval = alloca i16, align 2

 %result = alloca i16, align 2
 %a = alloca i16, align 2

 %b = alloca i16, align 2

 store i16 0, i16* %retval, align 2
 store i16 5, i16* %a, align 2

 store i16 10, i16* %b, align 2

 %0 = load i16, i16* %a, align 2
 %1 = load i16, i16* %b, align 2

 %add = add nsw i16 %0, %1

 store i16 %add, i16* %result, align 2
 %2 = load i16, i16* %result, align 2

 ret i16 %2

}

 157

The value produced is the integer product of the two operands.

Because LLVM integers use a two’s complement representation, and the result is

the same width as the operands, this instruction returns the correct result for both signed

and unsigned integers. If a full product (e.g., i32 * i32 → i64) is needed, the operands

should be sign-extended or zero-extended as appropriate to the width of the full product.

The nuw and nsw stand for ”No Unsigned Wrap” and ”No Signed Wrap”,

respectively. If the nuw and/or nsw keywords are present, the result value of the mul is

a poison value if unsigned and/or signed overflow, respectively, occurs.

Sign extension is the operation, in computer arithmetic, of increasing the number

of bits of a binary number while preserving the number’s sign (positive/negative) and

value.

5.4.6. “DIV” Instruction
LLVM IR has two division instructions and two remainder instructions:

• udiv: returns the quotient of its two operands. The value produced is the

unsigned integer quotient of the two operands.

• sdiv: returns the quotient of its two operands. The value produced is the

signed integer quotient of the two operands rounded towards zero.

• urem: returns the remainder from the unsigned division of its two arguments.

• srem: returns the remainder from the signed division of its two operands.

We compile the C code shown in Listing 16 using Clang:

The compilation result in:

<result> = mul <ty> <op1>, <op2> ; yields ty:result

<result> = mul nuw <ty> <op1>, <op2> ; yields ty:result

<result> = mul nsw <ty> <op1>, <op2> ; yields ty:result

<result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result

int main(void) {

 int a = 5;

 int b = 10;

 int c = b / a;

 return c;

}

Listing 16: Sample C code with division operation.

 158

5.4.7. Branch Instructions
Instruction selection steps:

1. LLVM IR → illegal SelectionDAG (SelectionDAGBuilder class) mostly hard-

coded.

2. Illegal SelectionDAG → Legalized Type SelectionDAG (Type promoting e.g.,

i1 to i16/expanding e.g., i32 to i16) Done in LaserTargetLowering constructor.

(LaserISelLowering.cpp)

3. Legalized Type SelectionDAG → Converting a DAG to only use the operations

that are natively supported by the target. Done in LaserTargetLowering

constructor. (LaserISelLowering.cpp)

a. Expansion: Convert a node to sequence of nodes.

b. Promotion: Promote node to larger node that supports the operation.

c. Custom: Custom target-specific hook to legalize operations. Done by

setOperationAction method in its TargetLowering constructor. Then Use the

LowerOperation().

4. DAG Combiner: is run multiple times for code generation, immediately after

the DAG is built and once after each legalization.

5. Legal SelectionDAG → new DAG of target code. Done by LaserIntrInfo.td

6. SelectionDAG Scheduling and Formation: Take the DAG of target instructions

from the selection phase and assigns an order.

The branching instructions for building the initial SelectionDAG can be one of the

following target-independent instructions:

1. BR: Unconditional branch. BR (chain, MBB to branch to)

2. 2. BRIND: Indirect branch. BRIND (chain, value to branch to (must be the

same type as target pointer type))

3. BR JT: Jumptable branch. BR JT (chain, jumptable index, jumptable entry

index)

4. BRCOND: Conditional branch. BRCOND (chain, condition, block to branch

to if condition is true)

5. BR CC - Conditional branch. Is like SELECT CC. BR CC (chain, condition

code, lhs, rhs, block to branch to if condition is true)

6. SELECT (COND, TRUEVAL, FALSEVAL)

define i16 @main() #0 {
entry:

 %retval = alloca i16, align 2

 %a = alloca i16, align 2
 %b = alloca i16, align 2

 %c = alloca i16, align 2

 store i16 0, i16* %retval, align 2
 store i16 5, i16* %a, align 2

 store i16 10, i16* %b, align 2

 %0 = load i16, i16* %b, align 2
 %1 = load i16, i16* %a, align 2

 %div = sdiv i16 %0, %1

 store i16 %div, i16* %c, align 2
 %2 = load i16, i16* %c, align 2

 ret i16 %2
}

 159

7. SELECT CC: This selects between a true value and a false value (ops #2 and

#3) based on the Boolean result of comparing the lhs and rhs (ops #0 and #1)

of a conditional expression with the condition code in op #4, , a

CondCodeSDNode.

8. SETCC: Compares two values (lhs and rhs) according to a given condition code

(CC) and outputs a Boolean value (i1). SETCC (lhs, rhs)

We first analyze how branching is implemented in other backends: The handling

of conditional branches in the code generator is relatively complicated. The reason is

that processor architectures implement conditions in a wildly different manner. There

are several basic ways to implement conditions in an ISA [124]:

• Comparison instruction tests a single given condition and sets a Boolean value

in a GP register (zero/non-zero). Branch sees if the register is zero. Example:

MIPS.

• Comparison instruction tests all possible conditions at once and sets a host of

flags (e.g., Zero, Carry, Negative, Overflow). The actual condition is encoded

in the branch instruction, which tests for specific combinations of flags.

Example: SPARC, x86.

• Comparison instruction tests some conditions (e.g., Zero, Carry). Branch

instruction can evaluate only a subset of flag combinations. Example:

PicoBlaze.

• Some comparison tests and branches can be fused in one instruction.

• As an alternative, the flow control can be implemented using predicated

execution of instructions.

Suppose we have the following C code:

int main(void) {

 int a = 10;

 int b = 5;

 if (a > b)

 b = b - 1;

 return b;

}

Listing 17: Sample C code with branch operation.

 160

Fig. 82: Combine1-dags for Branching.

After Listing 17 compilation by Clang, we get the following LLVM IR:

 161

The combine1 dags is shown in Fig. 82.

There are three SDNodes related to the branch operation:

1. BR

2. BRCOND

3. XOR

4. SETCC

5. SETGT

We can see that SETCC and XOR using i1 type which Laser processor does not

support so we must promote i1 to i16 in LaserISelLowering constructor

(LaserISelLowering.cpp) by adding the following line:

After legalization we get legalized dags as shown in Fig. 83 while the BR CC,

SETLT nodes are clearly visible.

5.4.8. Unconditional Jump
A goto statement is added to sampled C code as shown in Listing 18.

define i16 @main() #0 {
entry:

 %retval = alloca i16, align 2

 %a = alloca i16, align 2
 %b = alloca i16, align 2

 store i16 0, i16* %retval, align 2

 store i16 10, i16* %a, align 2
 store i16 5, i16* %b, align 2

 %0 = load i16, i16* %a, align 2

 %1 = load i16, i16* %b, align 2
 %cmp = icmp sgt i16 %0, %1

 br i1 %cmp, label %if.then, label %if.end

if.then: ; preds = %entry

 %2 = load i16, i16* %b, align 2
 %sub = sub nsw i16 %2, 1

 store i16 %sub, i16* %b, align 2

 br label %if.end

if.end: ; preds = %if.then, %entry

 %3 = load i16, i16* %b, align 2
 ret i16 %3

}

AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i16);

int main () {

start:

 asm ("imd %r8, #0");

 asm ("imd %r9, #1");

 asm ("add %r8, %r9, %r8");

 goto start;

 return 1;

}

Listing 18: Sample C code with goto statement.

 162

Fig. 83: Legalize dags for Branching.

Before and after legalization we have:

Then instruction selection will match:

ch = br t4, BasicBlock:ch<start 0x9b81d8>

def LASERimm11op : Operand<OtherVT> {

 }

def JMP : FJ <0b10010, (outs), (ins LASERimm11op:$address),

"jmp [$address]", [(br bb:$address)], IIBranch> {

let isBranch = 1;
let isTerminator = 1;

let isBarrier = 1;

let hasDelaySlot = 0;

}

 163

5.4.9. Global Variables
A program has symbols which are replaced by addresses (for example a 16-bit

address):

Table 13: Hex representation of addresses associated with symbols.

Symbol Address (16-bit)

my global int 0 0 0 0

start 0 4 0 0

func1 0 5 0 0

end 0 5 F 8

We use the above addresses to construct the constants used in jump and call

instructions. The constant address can have two possible interpretation:

1. Absolute address: Actual address of memory location.

2. Relative address: The offset to a memory location relative to a second known

location.

The position independent code (PIC) is a body of machine code that, being placed

somewhere in the primary memory, executes properly regardless of its absolute address.

PIC is commonly used for shared libraries [125].

Position-independent code can be executed at any memory address without

modification. Procedure calls inside a shared library are typically made through small

procedure linkage table stubs, which then call the definitive function. This notably

allows a shared library to inherit certain function calls from previously loaded libraries

rather than using its own versions [125].

Data references from position-independent code are usually made indirectly,

through global offset tables (GOTs), which store the addresses of all accessed global

variables. There is one GOT per compilation unit or object module, and it is located at

a fixed offset from the code (although this offset is not known until the library is linked).

When a linker links modules to create a shared library, it merges the GOTs and sets the

final offsets in code. It is not necessary to adjust the offsets when loading the shared

library later.

Laser branch instructions use absolute address saved in RD register. The JMP

instruction uses an 11-bit PC relative address. JMP instruction uses PC relative 11-bit

address. The CALL instruction uses an absolute address saved in RD register.

Relative addresses allow the program module to be loaded at any address in memory

without changing the addresses stored in the instructions. If all addresses in a module

are relative, the module is relocatable [126].

Relocation is the act of placing the program module in memory, we set a base

address starting at the starting address and then calculate the absolute addresses

regarding to the base.

In the old days, applications were built by compiling many .c files into .o files.

These files often had inter-related references that were not resolved at compile time.

The information on these references is stored within the .o files in a reloc (relocation)

object. Later, at link time, the linker would merge all the .o files, building a table of

 164

where symbols are ultimately located. Then the linker would run through the set of

relocs, filling them in.

A reloc consists of three parts [127]:

1. where in memory the fix is to be made.

2. the symbol which is involved in the fix.

3. an algorithm that the linker should use to create the fixup.

The algorithm can be as simple as “use the symbol memory location; store it in

binary” (R_386_32). Or it may be more complicated, such as “calculate the distance

from here to the symbol, divide by 4, subtract 2 and add the result to the 3 lower bytes”

(R_ARM_PC26).

At least this is the way things used to work, in the days of static linking. With the

introduction of run-time linking, the designers of the ELF format decided that relocs

are a suitable entity to hold run-time resolution information. So now we have executable

files which still have relocs in them, even after linking [127].

5.4.10. Relocs
What is a reloc? Binary executables often need certain bits of information fixed up

before they execute. ELF binaries carry a list of relocs which describe these fixups.

Each reloc contains:

• the address in the binary that is to get the fixup (offset)

• the algorithm to calculate the fixup (type)

• a symbol (string and object len)

At fixup time, the algorithm uses the offset & symbol, along with the value currently

in the file, to calculate a new value to be deposited into memory.

One of the targets of the ELF binary system is a separation of code and data. The

code of apps and libraries is marked read-only and executable. The data is marked read-

write, and not-executable. We have two addressing modes for relocation that we need

to support is:

1. Static: Absolute address

2. PIC: Postion Independent Address

Initially we have the LLVM IR:

Which can be read as load the content of the memory location which the @gv1 16-

bit pointer is pointing to. The result is a 16-bit value which must be saved into %0

register. In constructor of LaserTargetLowering (LaserISelLowering.cpp) we tell the

LLVM that we need to lower global variables according to our target:

Then we define the LowerGlobalAddress() to lower ISD::GlobalAddress to the

selectionDAG:

%0 = load i16, i16* @gv1, align 2

setOperationAction(ISD::GlobalAddress, MVT::i16, Custom);

t25: ch = CopyToReg t0, Register:i16 %1,
 TargetGlobalAddress:i16<i16* @gv1> 0 [TF=1]

t9: i16,ch = load<LD2[@gv1](dereferenceable)> t7, t25, undef:i16

 165

Next we use manual instruction selection in LaserDAGToDAGISel.cpp,

LaserDAGToDAGISel::Select (): Which then will be converter to Laser machine

code:

The relocation will be resolved at link time. So, we define this:

In SelectAddr() if the address is global or external, we return false for the address

since its address is calculated in the global context. In LaserInstrInfo.td we select

LASERISD::GPRel into following pattern:

For now, the Laser supports the static relocation model. For legalization of an

access to global variable in absolute mode we need to do the following steps: For

global variables we can use GP register as the base: GP + 16-bit address in RD

register.

We assume that the loader initially sets the GP to the starting point of global

variables. At this point we must dig into Cpu0 details of global variable handling:

Cpu0 handles two relocation mode: 1) Static 2) PIC.

5.4.11. Fixup
The relocation table is a list of pointers created by the translator (a compiler or

assembler) and stored in the object or executable file. Each entry in the table, or “fixup”,

is a pointer to an absolute address in the object code that must be changed when the

loader relocates the program so that it will refer to the correct location. Fixups are

designed to support relocation of the program as a complete unit. In some cases, each

fixup in the table is itself relative to a base address of zero, so the fixups themselves

must be changed as the loader moves through the table [128].

Within LLVM, fixups are used to represent information in instructions which is

currently unknown. During instruction encoding, if some information is unknown (such

as a memory location of an external symbol), it is encoded as if the value is equal to 0

and a fixup is emitted which contains information on how to rewrite the value when

information is known [129].

ELF Relocation types for a target are defined as an enum in the LLVM support

header llvm/include/llvm/BinaryFormat/ELFRelocs/Laser.def:

Fixups are defined in lib/Target/arch/MCTargetDesc/ LaserFixupKinds.h:

IMD RS, %(gl) ; Load the 16-bit global offset into RS

 LD RD,[RS] ; Read Memory location at RS and save into RD

LASERISD::GPRel getTargetGlobalAddress(LaserII::MO_GPREL)

ISD::ADD LASER::GP, LASERISD::GPRel

def : Pat<(add CPURegs:$GP, (LaserGPRel tglobaladdr:$in)),

(ADD CPURegs:$GP, (MOV tglobaladdr:$in))>;

ELF_RELOC(R_LASER_NONE, 0)

ELF_RELOC(R_LASER_PC16, 1)

ELF_RELOC(R_LASER_PC11, 2)

 166

MI gets translated to MCInst (in AsmPrinter). MCObjectStreamer emits Assembler

using EmitInstruction(). MCCodeEmiter gets the Assembler and emits binary.

Encoding of operands starts from getMachineOpValue() In

LaserMCCodeEmitter::getExprOpValue() if Kind == MCExpr::SymbolRef then we

return 0 and save the operand information in a fixup.

For doing so there is a switch on “cast(Expr)->getKind()” The case statements are

MCSymbolRefExpr:: which are defined in ”llvm/MC/MCExpr.h”.

Also the case statement can be LaserMCExpr:: which is defined in

”MCTargetDesc/LaserMCExpr.h”. For Laser we have:

5.5. Implementing LLVM Integrated Assembler
There are the parts extracted from a tutorial [129] which is important in Laser backend

development:

5.5.1. Implementing Assembly Parser Support
The first component which needs to be implemented is support for parsing assembly

files. This allows llvm-mc to correctly read in assembly instructions and provide an

internal representation of these for encoding.

First, we drive LaserAsmParser from MCTargetAsmParser. The class has

MatchAndEmitInstruction function, which is called for each instruction to be parsed,

emitting out an internal representation of each instruction as well as supporting

functions which help it parse instruction operands.

Usage:

We must see what kinds of operands the Laser processor supports:

1. Register (4-bits) e.g.: R0, R1, R2

2. Register (3-bits) e.g.: R0, R1, R2

enum Fixups {
//@ Pure upper 16 bit fixup resulting in - R_LASER_PC16.

fixup_Laser_PC16 = FirstTargetFixupKind,

// PC relative branch fixup resulting in - R_LASER_PC11.

// Laser JMP

fixup_Laser_PC11,

// Marker

LastTargetFixupKind,
NumTargetFixupKinds = LastTargetFixupKind - FirstTargetFixupKind

};

enum LaserExprKind {

CEK_None,
CEK_GOT_JMP,

CEK_GOT_CALL,

CEK_Special,

};

$ llvm-mc -assemble -show-encoding -arch=laser main.s

 167

3. Immediate (11-bits) e.g.: JMP 4. Immediate (16-bit) e.g.: IMD

We define these operands in AsmParser/LaserAsmParser.cpp enum KindTy.

5.5.2. Function Call
As we mentioned in Section 3.2.3.5, the Laser processor passes the first 2 arguments in

registers [R8, R9] and the rest will be placed in stack. We have mentioned the basics of

stack concept in section 3.2.2.

Our main funcs.c for testing function calls is:

Running clang -O0 –target=laser -S -emit-llvm main funcs.c -o main funcs.ll

produces:

5.5.3. Laser Stack Frame
1. When we enter a function, the LowerFormalArguments() in

LaserISelLowring.cpp will be invoked. It determines for each formal argument

where it is located, creates a new virtual register of the appropriate register

class, and inserts a sequence of moves and/or loads into the DAG. The emitted

SDValues are connected by “chain” edges.

2. When we exit a function LowerReturn() in LaserISelLowring.cpp will be

invoked. It takes care of moving the return value, which may be split up into

several parts, into the corresponding physical registers. Subsequently, a

RET_FLAG node is emitted that will later be matched with a ret instruction

during the instruction selection stage.

3. When a function is called all actual arguments will be copied into the right

places before the call and that afterwards all return value fragments be

void func1(void);

int main () {

 asm ("imd %r8, #5");

 func1 ();

 return 0;

}

void func1(void) {

 asm ("imd %r9, #10");

}

; Function Attrs: noinline nounwind optnone

define i16 @main() #0 {

 entry:

 %retval = alloca i16, align 2

 store i16 0, i16* %retval, align 2

 call void asm sideeffect "imd %r8, #5", ""() #1, !srcloc !2
 call void @func1()

 ret i16 0

}

; Function Attrs: noinline nounwind optnone

define void @func1() #0 {
 entry:

 call void asm sideeffect "imd %r9, #10", ""() #1, !srcloc !3

 ret void

}

 168

transferred back into the designated virtual registers. The whole process must

be “enframed” by a CALLSEQ_BEGIN and a CALLSEQ_END node. These

nodes will be transformed into ADJCALLSTACKDOWN and

ADJCALLSTACKUP pseudo-instructions during the instruction selection

stage. The function call is processed by the method LowerCall() in

LaserISelLowring.cpp , which emits an appropriate chain of SDValues.

To produce the right jump address:

1. First, we have the LLVM IR: ”call void @func1()”

2. Then LaserTargetLowering::LowerFormalArguments() in

LaserISelLowring.cpp will be called to “load incoming arguments in callee

function”.

3. Then LowerCall() will be called to “store outgoing arguments in caller

function”. There we create LASERISD::LaserCall with

TargetGlobalAddress:i16 operand. We also set the operand flag to

LaserII::MO_CALL_ FLAG

4. Next Legalization step happens which the related dag nodes will remain intact.

5. Before the instruction selection phase starts, we have defined CALL from F3

class which is derived from FJ class, with pattern match (LaserCall

imm:$target). LaserCall is an SDNode with ”LASERISD::LaserCall” as its

opcode.

6. In instruction selection phase we match def: Pat;

7. At the end, after register allocation and instruction scheduling, we have: (using

llc -print-machineinstrs or -print-after-all)

8. Now the instruction is in MachineInstr form.

9. We lower MachineInstr operands in LaserMCInstLower.cpp by calling

LaserMCInstLower::LowerSymbolOperand(). For call instruction the operand

is MachineOperand::MO GlobalAddress, so we set the Symbol value to

AsmPrinter.getSymbol(MO.getGlobal()); and we set TargetKind =

LaserMCExpr::VK LASER CALL16

10. The getMachineOpValue() when the operand is not immediate or register calls

getExprOpValue() in MCTargetDesc//LaserMCCodeEmitter.cpp which saves

the fixup fixup Laser CALL16 and returns 0.

11. Inside LowerCall we set the flag LaserII::MO_NO_FLAG

12. We use MC Framework for encoding instructions into their native bit patterns.

13. LaserMCCodeEmitter::encodeInstruction() emits the instruction byte by byte.

14. [MC Framework part starts here:] In

LaserMCCodeEmitter::getMachineOpValue() if the operand is Expr fixup will

be recorded and 0 will be returned. The problem that we are facing is that we

never get an Expr as operand.

15. If we want to emit .s file we use ‘llc -march laser -mcpu=generic -filetype=asm

-o main.s main.ll’ command. This will invoke

LaserAsmBackend::applyFixup() for fixup Laser CALL16 at provided offset

and then LaserInstPrinter::() writes the instructions into .s file.

renamable $r10 = IMD @func1

CALL killed renamable $r10, , implicit-def $sp

 169

16. If we want to emit .o file we use ‘llc -march laser -mcpu=generic -filetype=obj

-o main.o main.ll’ which invokes LaserMCCodeEmitter::EmitInstruction().

There of the instruction operand is an LaserMCExpr of type VK_LASER

CALL16 it will allocate space in object file and write 0 and adds a fixup Laser

CALL16 in relocation table of the ELF output file.

17. Finally linking the object files using ‘lld’ (which is another tool available

under LLVM umbrella project) the correct value of target call address will be

calculated in will be rewritten into the proper offset associated with the

recorded relocation symbol.

5.6. Machine Code (MC) Framework
The machine code (MC) classes comprise an entire framework for low level

manipulation of functions and instructions. In Section 2.4.5 we discussed the MC

framework briefly.

In the MC framework, machine code instructions (MCInst) replace machine

instructions (MachineInstr). The MCInst class, defines a lightweight representation for

instructions. Compared to MIs, MCInsts carry less information about the program [93].

Each operand can be a register, immediate (integer or floating-point number), an

expression (represented by MCExpr), or another MCInstr instance. Expressions are

used to represent label computations and relocations. The MI instructions are converted

to MCInst instances early in the code emission phase.

5.6.1.1. AsmParser
To support inline assembly in our C code we need to implement AsmParser. Our

sample C code is:

We faced a problem by changing the CMAKE options: The following CMAKE

options works:

But this one does not work:

int main()

{

 asm ("imd %r0, #5");

 asm ("imd %r1, #10");

 asm ("add %r0, %r1, %r2");

 return 20;

}

$ cmake -G "Unix Makefiles" -DLLVM_TARGETS_TO_BUILD="Laser;Sparc;X86"
 -DBUILD_SHARED_LIBS=ON -DLLVM_OPTIMIZED_TABLEGEN=ON

 /home/esi/extra_space/src/d/llvm04/llvm

$ cmake -G "Unix Makefiles" -DLLVM_TARGETS_TO_BUILD="Laser;Sparc;X86"

 -DBUILD_SHARED_LIBS=ON /home/esi/extra_space/src/llvm04/llvm

 170

5.6.1.2. Object Files
To produce object file:

To dump the object file:

To see the binary encoding of each instruction in front or the assembly code we

can issue:

5.6.1.3. Assembly Parser
No change.

5.6.1.4. Instruction Encoder
Resides in Laser/MCTargetDesc directory. LaserMCCodeEmitter::encodeInstruction()

encodes the instruction by calling Binary = getBinaryCodeForInstr(); and then

EmitInstruction(Binary, Size, OS); getBinaryCodeForInstr() uses

LaserMCCodeEmitter::getMachineOpValue(). If the operand is immediate its value

will be returned.

If it is Expr then information about this relocation is stored in a fixup, with 0 being

returned. TableGen’s EncoderMethod field is responsible for encoding custom

operands.

5.6.1.5. Instruction Decoder
No change.

5.6.1.6. ELF Object Writer
After implementing an encoder and decoder we can go for implementing an ELF file

writer.

$ llc -march=laser -mcpu=generic -filetype=obj main.ll -o main.o

$ objdump -s main.o

$ llc -march laser -mcpu=generic -show-mc-encoding -filetype=asm -o main.s main.ll

 171

Fig. 84: ELF Overview [130].

5.7. Laser ELF file

5.7.1. Executable and Linkable Format
The Executable and Linkable Format (ELF) is a common standard file format for

executable files, object code, shared libraries, and core dumps. By design, ELF is

flexible, extensible, and cross-platform, not bound to any given central processing unit

(CPU) or instruction set architecture [131, 132]. ELF overview can be seen in Fig. 84.

The ELF file layout consists of:

1. ELF file header: The ELF header describes the file in general such as

defining whether to use 32- or 64-bit addresses. This header has many fields

and has pointers to each of the individual sections that make up the file. For

example, the field ’e phoff’ points to the location of program header.

2. File data:

a. Program header table, describing zero or more memory segments:

The program header table tells the system how to create a process

image.

b. Section header table, describing zero or more sections

c. Data referred to by entries in the program header table or section

header table

The ELF header struct is shown in Listing 19.

 172

To see the section header table in an ELF file:

To check the ELF segments information, program headers:

 To check the ELF segments information, sections:

5.7.2. Symbols
Variables and functions all have names in source code which we refer to them by

symbols.

5.8. The Linking Process
Thus, the linking process is really two steps: combining all object files into one

executable file and then going through each object file to resolve any symbols. This

usually requires two passes; one to read all the symbol definitions and take note of

unresolved symbols and a second to fix up all those unresolved symbols to the right

place [130].

5.8.1. Symbols and Relocations
The ELF specification provides for symbol tables which are simply mappings of strings

(symbols) to locations in the file. Symbols are required for linking.

Closely related to symbols are relocations. A relocation is simply a blank space left

to be patched up later. In the previous example, until the address of foo is known it

cannot be used. However, on a 32-bit system, we know the address of foo must be a 4-

typedef struct {
 unsigned char e_ident[EI_NIDENT];

 Elf32_Half e_type;

 Elf32_Half e_machine;
 Elf32_Word e_version;

 Elf32_Addr e_entry;

 Elf32_Off e_phoff;
 Elf32_Off e_shoff;

 Elf32_Word e_flags;

 Elf32_Half e_ehsize;
 Elf32_Half e_phentsize;

 Elf32_Half e_phnum;

 Elf32_Half e_shentsize;
 Elf32_Half e_shnum;

 Elf32_Half e_shstrndx;
} Elf32_Ehdr;

Listing 19: The ELD header struct.

$ readelf -h main.o

$ readelf -l main.o

$ readelf -S main.o

 173

byte value, so any time the compiler needs to use that address (to say, assign a value) it

can simply leave 4-bytes of blank space and keep a relocation that essentially says to

the linker “place the real value of `foo’ into the 4 bytes at this address” [130].

5.8.2. The Global Offset Table
Imagine a situation that we have a symbol (like func1). With only relocations, we would

have the dynamic linker look up the memory address of that symbol and re-write the

code to load that address. A straightforward enhancement would be to set aside space

in our binary to hold the address of that symbol, and have the dynamic linker put the

address there rather than in the code directly. This way we never need to touch the code

part of the binary [130].

The area that is set aside for these addresses is called the Global Offset Table or

GOT. The GOT lives in a section of the ELF file called .got.

Let us go through one example:

1. We define an external global variable i in a shared library. (We do not know

its address in compile-time, so we leave for dynamic linker to fix it up)

2. So, compiler creates .got section. At load time always a register in processor

(let us say GP) will be set by dynamic linker to point to the beginning of

.got. The .got located for example 200 bytes from the beginning of shared

library so GP=200. (This is .got offset)

3. Therefore, if library is loaded at address 10000 then GP register will be

always 10200.

4. Now let us say we access the variable i in our code at location 24.

5. The compiler will produce a set of machine instructions that will add 24 +

GP = 10224. and then puts a load/store instruction to load/store from

[10224].

6. The relocation section then will have an entry which says to dynamic linker

replace the value at offset 10224 with the memory location that symbol i is

stored at.

7. So, before the program begins, the dynamic linker will have fixed up the

relocation to ensure that the value of the memory at offset 10224 is the

address of the global variable i.

5.8.3. Sections and Segments
We talk about sections in object code waiting to be linked into an executable. One or

more sections map to a segment in the executable [130].

 174

ELF header points to program headers:

Sections make up segments. Below are few example of sections in an ELF file:

1. .bss : large data

2. .sbss : small data

3. .text : program code

4. .symtab : symbol table

5. .got : global offset table

5.8.4. A bit more about ELF
The current a.out shared libraries are known as fixed address libraries: each library has

one specific address where it must be loaded to work, and it would be foolish to try to

load it anywhere else. ELF shared libraries achieve their position independence in a

couple of ways. The main difference is that you should compile everything you want to

insert into the shared library with the compiler switch -fPIC. This tells the compiler to

generate code that is designed to be position independent, and it avoids referencing data

by absolute address as much as possible [133].

 Position independence does not come without a cost, however. When you compile

something to be PIC, the compiler reserves one machine register to point to the start of

a special table known as the global offset table (or GOT for short).

When you reference global data within a shared library, the assembly code cannot

simply load the value from memory the way you would do with non-PIC code. If you

tried this, the code would not be position independent and a relocation would be

associated with the instruction where you were attempting to load the value from the

variable. Instead, the compiler/assembler/linker create the GOT, which is nothing more

than a table of pointers, one pointer for each global variable defined or referenced in

the shared library. Each time the library needs to reference a given variable; it first loads

the address of the variable from the GOT. Once we have this, we can dereference it to

obtain the actual value. The advantage of doing it this way is that to establish the address

of a global variable, we need to store the address in only one place, and hence we need

only one relocation per global variable.

typedef struct {

Elf32_Word p_type;

Elf32_Off p_offset;

Elf32_Addr p_vaddr;

Elf32_Addr p_paddr;

Elf32_Word p_filesz;

Elf32_Word p_memsz;

Elf32_Word p_flags;

Elf32_Word p_align;

}

 175

5.8.5. Hex File Generation
After completion of backend code, we can get the assembly language file and object

file by issuing:

5.9. Backend Debugging
We have the following options for debugging:

1. llc debugging parameters

2. call tracing using gdb, especially when assert fault or segmentation faults

arises.

5.10. AsmParser
The Laser AsmParser class is shown below:

A lexer is a software program that performs lexical analysis. Lexical analysis is

the process of separating a stream of characters into different words, which in computer

science we call ’tokens’. When you read this text, you are performing the lexical

operation of breaking the string of text at the space characters into multiple words.

A parser goes one level further than the lexer and takes the tokens produced by

the lexer and tries to determine if proper sentences have been formed. Parsers work at

the grammatical level, lexers work at the word level.

Parser is a MCAsmParser and is initialized in construction of aserAsmParser

class.

A token is an instance of AsmToken Class. a token can have different kinds which

are defined in enum TokenKind and can be a sign such as @ or # or an identifier such

as a label string. We always can get the location of a token by calling getLoc () and

getEndLoc().

The following functions needed to be understood in order to do proper lexering:

• getLexer() = Parser.getLexer(): Returns an instance of MCAsmLexer.

• Parser.getTok(): Get next token

• getLexer().getTok (): Get the current (last) lexed token.

• getLexer().getKind() : Get the kind of current token

• getLexer().is(k) : Check if the current token has kind K.

• getLexer().isNot(k) : Check if the current token has kind K.

$ llc -march laser -mcpu=generic -filetype=obj -o main.o main.ll

$ llc -march laser -mcpu=generic -filetype=asm -o main.s main.ll

$ cat main.s

$ objdump -s main.o

class LaserAsmParser : public MCTargetAsmParser {

 MCAsmParser &Parser;

 LaserAssemblerOptions Options;

 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,

 SMLoc NameLoc, OperandVector &Operands) override;

 bool ParseOperand(OperandVector &Operands, StringRef Mnemonic);

}

 176

• Parser.Lex(): Consume the next token from the input stream and return it.

The lexer will continuously return the end-of-file token once the end of the

main input file has been reached.

• getLexer().getLoc(): Get the current source location.

5.11. LLD Linker
The complete toolchain file formats are shown:

Clang → (LLVM IR) → llc → (.o object ELF) → lld → (a.out executable ELF)

→ elf2hex → (.hex) → FPGA RAM Block [134]

Clang produces the LLVM IR code and llc generates ELF object files with static

relocations. lld resolves the relocations in the object files and produces an executable

a.out file. Finaly we extract the machine code using elf2hex tool and save it into the

FPGA ROM Block for execution.

To add lld support we first download the source code for lld:

Then we change the following files to add ELF support for the Laser processor to

lld tool (LLD 7.0.0):

1. LLVM ROOT/Laser/lld/ELF/Driver.cpp

2. LLVM ROOT/Laser/lld/ELF/Target.h

3. LLVM ROOT/Laser/lld/ELF/CMakeLists.txt

4. LLVM ROOT/Laser/lld/ELF/Target.h

5. LLVM ROOT/Laser/lld/ELF/Arch/Laser.cpp (create new file)

After recompiling LLVM we use the following command to get the a.out file:

5.12. Summary
In this section we summarize the while LLVM-based assembler development for Laser

processor.

5.12.1. Getting The LLVM Infrastructure
At the time of writing this section the LLVM version is 6.0.0. We only discuss the

extremely important mechanisms. The location of all files is relative to LLVM ROOT

which is the top directory with the name ’llvm’ which the svn command creates. We

will get LLVM source code plus Clang by issuing the following commands:

5.12.2. Frontend: C language Support by Clang (16-bit)
The backend development can be started after the details of the target processor is

known. The LLVM is an enormous project and if we try to understand all components

and then start to develop the backend, we will lose the ”rapid development”

$ cd llvm/tools

$ svn co http://llvm.org/svn/llvm-project/lld/trunk lld

$ ld.lld -e main main.o --image-base=0

elf2hex -arch-name=laser > a.hex

$ svn co https://user@llvm.org/svn/llvm/llvm- project/llvm/trunk llvm
$ cd llvm/tools
$ git clone http://llvm.org/git/clang.git

 177

characteristic. We will consider the front end as a black box. It is the job of the compiler

to get the source code and send it to the optimization stage. Clang is an ”LLVM native”

C/C++/Objective-C compiler. Since the Laser processor is a 16-bit machine we must

tell the Clang to generate 16-bit IR instruction from C source code.

We create two new files at:

• LLVM ROOT/tools/clang/lib/Basic/Targets/Laser.h

• LLVM ROOT/tools/clang/lib/Basic/Targets/Laser.cpp

And add Target Laser to Clang by editing:

• LLVM ROOT/tools/clang/lib/Basic/Targets.cpp

• LLVM ROOT/tools/clang/lib/Basic/CMakeLists.txt

At this point we can compile the llvm project using the following setting:

At this point the clang command can produce 16-bit LLVM code:

which reads main.c file and outputs 16-bit LLVM IR in main.ll file.

5.12.3. Target registration
To add Laser target to LLVM we must edit the following files:

• LLVM ROOT/cmake/config-ix.cmake

• LLVM ROOT/lib/Target/LLVMBuild.txt

• LLVM ROOT/include/llvm/ADT/Triple.h

• LLVM ROOT/include/llvm/Object/ELFObjectFile.h

• LLVM ROOT/llvm/include/llvm/BinaryFormat/ELF.h

• LLVM ROOT/lib/Object/ELF.cpp

• LLVM ROOT/lib/Support/Triple.cpp

• LLVM ROOT/CMakeLists.txt

And the create:

• LLVM ROOT//include/llvm/BinaryFormat/ELFRelocs/Laser.def

We then create the folder ‘Laser’ under LLVM ROOT/lib/Target/ and create the

minimum bare bone files needed to support an assembler:

• LaserTargetMachine.cpp and .h

• LaserISelLowering.cpp and .h

• LaserInstrInfo.cpp and .h

• LaserMCInstLower.cpp and .h

• LaserFrameLowering.cpp and .h

• LaserISelDAGToDAG.cpp and .h

• LaserRegisterInfo.cpp and .h

• LaserInstrFormats.td

• LaserInstrInfo.td

• LaserRegisterInfo.td

• LaserCallingConv.td

$ cmake3 −G ” Ninja” −DCMAKE\BUILD\TYPE=”Debug ” −DCMAKE\EXPORT\COMPILE\ COMMANDS=ON

−DBUILD\SHARED\LIBS=ON−DLLVM\TARGETS\TO\BUILD=”Laser” /path/to/llvm/source/code && ninja &&

ninja install

$ clang –target=laser -S -emit-llvm main.c -o main.ll

 178

• Laser.td

5.12.4. Laser Backend Related Classes

• class LaserTargetMachine (defined in LaserTargetMachine.cpp and.h)

• class LaserTargetLowering (defined in LaserISelLowering.cpp and .h) *

includes LaserGenCallingConv.inc

• class LaserInstrInfo (defined in LaserInstrInfo.cpp and.h) *includes

”LaserGenInstrInfo.inc”

• class LaserMCInstLower (defined in LaserMCInstLower.cpp and .h)

• class LaserFrameLowering (defined in LaserFrameLowering.cpp and .h)

• class LaserDAGToDAGISel (defined in LaserISelDAGToDAG.cpp and .h)

• class LaserRegisterInfo (defined in LaserRegisterInfo.cpp and .h) *includes

”LaserGenRegisterInfo.inc”

• class LaserFrameLowering (defined in LaserFrameLowering.cpp and .h)

5.12.5. TableGen Tool
The target description classes require a detailed description of the target architecture.

These target descriptions often have a large amount of common information (e.g., an

add instruction is almost identical to a sub instruction). To allow the maximum amount

of commonality to be factored out, the LLVM code generator uses the TableGen tool

to describe big chunks of the target machine, which allows the use of domain-specific

and target-specific abstractions to reduce the amount of repetition [95].

Target descriptions reside in .td files which are written in the TableGen language

[135]. It is composed of definitions and classes that are used to form records [93]. The

definition def is used to instantiate records from the class and multiclass keywords.

We need to create the following .td files under LLVM ROOT/lib/Target/Laser

directory:

• LaserInstrFormats.td (Defines Instruction formats)

• LaserInstrInfo.td (Defines Instructions and their binary encoding)

• LaserCallingConv.td (Defines calling convention)

• LaserRegisterInfo.td (Defines the register set)

• LaserSchedule.td (Defines instruction scheduling types)

• Laser.td

In LLVM ROOT/lib/Target/Laser/CMakeLists.txt: we have ”set (LLVM TARGET

DEFINITIONS Laser.td)”. The Laser.td then includes all other related .td files. This

will send all .td files to Tablegen tool to automatically generate C++ source codes that

later can be injected in the Laser backend classes.

5.12.6. Laser LLVM Backend Structure
To connect all the components and show their relationship we must resort to a diagram

that tracks the life of a sampled ret instruction through the LLVM backend pipeline

[97].

Suppose we have the C code such as:

int main () { return 0; }

Running clang -O0 –target=laser -S -emit-llvm main.c -o main.ll will output

main.ll with LLVM IR ”ret i16 0”. From there the LLVM IR will be transformed to

 179

many forms as shown in Fig. 85. The gray background boxes show the ret instruction

in different forms as it travels in each backend stage.

5.12.7. Assembler
The main goal of this paper is the rapid development of a modular assembler; therefore,

we go for a novel approach and only support these three main components:

1. “Function calls” which will be lowered to Laser CALL instruction (argument

passing, frame lowering, etc. will be ignored).

2. “Inline assembly support” using asm() directive.

3. “Labeling and goto” support which will be lowered to Laser JMP instruction.

These components will enable us to use this code structure:

Fig. 85: The life of Laser ret instruction.

 180

Below is the complete detail of every step that a C function call instruction goes through

1. “count ();” C statement gets translated to LLVM IR: “call void @count() by

Clang.

2. Then LowerCall() will be called to store outgoing arguments in caller function.

There we create LASERISD::LaserCall with TargetGlobalAddress:i16<void ()*

@count> operand. We also set the operand flag to LaserII::MO CALL FLAG.

This is the starting point of saving the call target address as a static relocation

in an ELF file.

3. We have defined CALL as an instance of F3 class which is derived from FJ

class, to match the pattern (LaserCall imm:$target). LaserCall is an SDNode

with “LASERISD::LaserCall” as its opcode defined in LaserInstInfo.td.

4. After legalization, in instruction selection phase we match and replace: def :

Pat<(LaserCall (i16 tglobaladdr:$dst)), (CALL (IMD tglobaladdr:$dst))>;

5. At the end, after register allocation and instruction scheduling, we have (the

form can be examined by looking at the output of “llc -print-machineinstrs or -

print-after-all”): renamable $r10 = IMD @count CALL killed renamable $r10,

<regmask $r8 $r9>, implicit-def $sp

6. Now the instruction is in MachineInstr form.

7. From now on we enter the MC framework. We lower MachineInstr operands in

LaserMCInstLower.cpp by calling

LaserMCInstLower::LowerSymbolOperand(). For “call” instruction the

operand is MachineOperand::MO GlobalAddress, so we set the Symbol value

to AsmPrinter.getSymbol(MO.getGlobal()); and we set TargetKind =

LaserMC-Expr::VK LASER CALL16.

8. The getMachineOpValue() function calls getExprOpValue() in

MCTargetDesc//LaserMCCodeEmitter.cpp when the operand is not immediate

or register, which then it saves the “fixup Laser CALL16” and returns 0.

9. If we want to emit .s file, we use llc -march laser -mcpu=generic -filetype=asm

-o main.s main.ll command. This will invoke LaserAsmBackend::applyFixup()

for “fixup Laser CALL16” at provided offset and then LaserInstPrinter::()

writes the instructions into .s file.

10. If we want to emit .o file we use llc -march laser -mcpu=generic -filetype=obj -

o main.o main.ll which invokes LaserMCCodeEmitter::EmitInstruction().

There, if the instruction operand is an LaserMCExpr of type VK LASER

CALL16, it will allocate space in object file and will write 0 and add the “fixup

Laser CALL16” in relocation table of the output ELF file.

11. Finally, by linking the object files using lld (which is another tool available

under LLVM project umbrella) the correct value of target call address will be

void count() {
 asm ("imd %r8, #0"); // Put 0 into R8

 asm ("imd %r9, #1"); // Put 1 into R9

 asm ("imd %r10, #0"); // Put 0 into R10
 start:

 asm ("add %r8, %r9, %r8"); // R8 = R8 + R9

 asm ("out %r10, %r8"); // out R8 to port 0
 goto start;

}

int main () { count(); return 0; }

 181

calculated and will be rewritten into the proper offset associated with the

recorded relocation symbol.

5.12.8. Function Call
When we enter a function, the LowerFormalArguments() in LaserISelLowring.cpp

will be invoked. When we exit a function LowerReturn() in LaserISelLowring.cpp

will be invoked. There, a RET FLAG node will be emitted that later can be matched

and replaced by a ret instruction during the instruction selection stage.

The complete details of the steps which a function call instruction goes through is

mentioned below:

1. “func1 ();” C statement gets translated to LLVM IR: “call void @func1()” by

Clang.

2. Then LaserTargetLowering::LowerFormalArguments() in

LaserISelLowring.cpp will be called to “load incoming arguments in callee

function”. Here we have none.

3. Then LowerCall() will be called to “store outgoing arguments in caller

function”. There we create LASERISD::LaserCall with

TargetGlobalAddress:i16<void()* @func1> operand. We also set the operand

flag to LaserII::MO CALL FLAG. This is the starting point of saving the call

target address as a static relocation in an ELF file.

4. Next legalization step happens which both the related dag nodes will remain

intact.

5. Before the instruction selection phase starts, we have defined CALL from F3

class, which is derived from FJ class, with pattern match (LaserCall

imm:$target). LaserCall is an SDNode with ”LASERISD::LaserCall” as its

opcode in LaserInstInfo.td.

6. In instruction selection phase we match: def : Pat<(LaserCall (i16

tglobaladdr:$dst)), (CALL (IMD tglobaladdr:$dst))>;

7. At the end, after register allocation and instruction scheduling we have: (the

form can be examined by looking at the output of llc -print-machineinstrs or -

print-after-all) renamable $r10 = IMD @func1 CALL killed renamable $r10,

<regmask $r8 $r9>, implicit-def $sp

8. Now the instruction is in MachineInstr form.

9. From now on we enter the MC framework. We lower MachineInstr operands

in LaserMCInstLower.cpp by calling

LaserMCInstLower::LowerSymbolOperand().

5.12.9. Inline Assembly
To support inline assembly, we need to add AsmParser module:

• Create LLVM ROOT/Laser/AsmParser/LaserAsmParser.cpp

The LaserAsmParser class is derived from MCTargetAsmParser class. The class

has MatchAndEmitInstruction() function which will be called for each instruction that

needs to be parsed. It then emits the binary representation of each instruction. There are

other supporting functions which help to parse the operands and emit the proper

machine code.

 182

5.12.10. Label, Jump, and Goto
Clang will convert a goto keyword in C source file into “br label %label name LLVM

IR. We simply match (br bb:$address) pattern with Laser JMP instruction with an

incoming argument of type LASERjmptarget11. In LaserInstrInfo.td file

LASERjmptarget11 has been defined with OperandType = “OPERAND PCREL”

property and EncoderMethod = “getJumpTarget11OpValue”.

The getJumpTarget11OpValue() function is defined in

MCTargetDesc/LaserMCCodeEmitter.cpp and it adds “fixup Laser PC11” in relocation

table of the output ELF file and write 0 on address field (11-bits) of the jump instruction.

“lld” tool recognizes “fixup Laser PC11” as a PC relative address and calculates the

final jump address and rewrites it into the executable ELF file.

5.12.11. Linker
To add lld support we first download the source code for lld:

Then we change the following files in LLVM ROOT/Laser/lld/ELF/ to add ELF

support for the Laser processor to lld tool (LLD 7.0.0):

• Driver.cpp

• Target.h

• CMakeLists.txt

• Laser.cpp.

After recompiling LLVM we use the following command to get the a.out file:

The complete tool-chain consist of the following stages (the associated output file

formats are mentioned in parentheses):

Clang → (LLVM IR) → llc → (.o object ELF) → lld → (a.out executable ELF)

→ FPGA RAM Block [134]

Clang produces the LLVM IR code and llc generates ELF object files with static

relocations. lld resolves the relocations in the object files and produces an executable

a.out file. Finally, we extract the machine code using:

Next hex2coe (written by the author in C language) generates an a.coe file. Then

we load the .coe file into the FPGA ROM Block for execution by generating a bit stream

file.

5.13. Limitation
The first limitation is about the LLVM infrastructure itself which is designed to support

32- and 64-bit architectures and not 16-bit architecture, therefore a lot of hacks is

required which contributes to fragility of the software.

$ cd llvm/tools

$ svn co http://llvm.org/svn/llvm-project/lld/trunk lld

$ ld.lld -e main main.o

$ elf2hex -arch-name=laser > a.hex

 183

The complete support for all instructions was not achieved here as the goal was to

get familiar with the process of assembler development in general. I realized that to

complete the project a lot of time must be spent to perform a repetitive task without

gaining any new knowledge. For example, if the support for ADD instruction is

achieved then it is just a matter of extra labor to extend the work for SUB, while both

instructions are in same category and are the same. Therefore, some instructions were

left unsupported to conserve time to work on other parts of thesis with higher priority.

5.14. Result
In this section a novel approach for rapid development of a modular assembler has been

proposed. An LLVM backend for the 16-bit Laser soft processor has been developed.

The processor design in conjunction with the LLVM backend provides the possibility

of coming up with a new processor design and compare its performance by running

compact benchmarking programs written in assembly language. The complete Laser

back-end source code can be found online at https://github.com/ehsan-ali-th/laser .

The most important conclusion is that the design of a processor is relatively easier

than providing an assembler and a complete compiler toolchain for it. The crucial issue

is that how the processor can run prominent operating systems such as the Linux? Will

we be able to provide enough tools for the user to be able to put the processor under

real load? The answer to this question decides the chance of the existence of a newly

designed processor.

Another thing that I learned is that not every VHDL code is synthesizable. For

example, take the division symbol in Verilog and VHDL as an example. The time that

the CAD software encounters this symbol it will be unable to infer it into real hardware

as the division algorithm is complex and the software cannot provide that level of

design complexity assistant, so the designer is forced to implement a division algorithm

into a separate module.

Writing an LLVM backend without proper documentation is just pure hacking task

and need a lot of trial and error. It is very slow and complex. The task is left unfinished

in this section, and I will keep trying to finish the task. But the goal of understanding

the backend writing is already achieved.

https://github.com/ehsan-ali-th/laser

 184

6. IEEE-754 64-bit Floating Point Arithmetic on 8-bit Processor:
PicoBlaze case

6.1. Introduction
In previous sections a processor was designed and when it came to the performance

evaluation, the lack of compiler and several processor architectural weaknesses forced

the research direction to go towards picking an industry-level processor which at least

has a mature assembler and a reputable name to satisfy the reviewers.

The Xilinx 8-bit PicoBlaze was selected as it is a firm-core that allows designer to

synthesize it on a programmable logic devices such as CPLDs and FPGAs which is

available in university laboratories. Instead of picking a full-blown 32- or 64-bit

processor one can gain enough inside into microprocessor architecture with less effort

if the processor is smaller in size and has less complexity as it is the case in 8-bit

microprocessors.

The other conclusion which will make in upcoming sections is the importance of

FFT algorithm in benchmarking processors. After selecting PicoBlaze it was clear that

the processor does not have floating-point (FP) coprocessor and therefore FP operations

(to calculate FLOPS) can only be performed via software.

The initial thought was to first establish an industry level 8-bit microprocessor and

then run the FFT algorithm on it using software implemented FP library unit. The next

step is to design an adaptive architecture that starts from extremely low-performance

(64-bit FP arithmetic is very slow if it needs to be implemented on an 8-bit architecture)

and evolve itself into extremely high-performance processor tailored for FFT

algorithm.

The above way of thinking is the driving force that motivated the work presented

in this section. The goal of project is to perform 64-bit FP arithmetic on PicoBlaze.

According to numerous recent market share reports [136-138], 8-bit

microprocessor architecture is well alive in year 2019, and approximately values about

6 to 7 billion US dollar which is more than half of the processor market by volume.

Considering the price difference, simple math tells us that for every other processor

(usually a 32-bit one) three 8-bit processors have been sold [139].

8-bit Low Pin Count (LPC) microcontrollers that integrate few precision analog

peripherals, General Purpose Input/Output (GPIO), serial interface, and fast data bus

architectures have an edge over their 32-bit counterparts as they exhibit high

performance and reliability adequately with lower power consumption, lower cost, and

lower electromagnetic interference (EMI) [140].

Although simplified metrics such as clock frequency, Million Instructions Per

Second (MIPS), and Millions of Floating-Point Operations per Second (MFLOPS) are

all meaningless as they do not consider the architecture of the processor [104], but for

the case of 8-bit Reduced Instruction Set Computer (RISC) processors we can still refer

to clock frequency for benchmarking. The clock cycle for 8-bit PIC and AVR MCUs

cannot exceed 64MHz [141].

Silicon Labs pushes the performance to 72 MHz operation with their pipelined

EFM8 family which executed 70% of the instructions in less than 1 or 2 clock cycles

[203], but it is this surprising result which makes soft processors on Field

Programmable Gate Arrays (FPGAs) interesting: ”Maximum clock frequency of

 185

PicoBlaze [204] reaches 105MHz in Spartan-6 (-2 speed grade) and up to 238MHz can

be achieved in Kintex-7 (-3 speed grade) devices [201]”. This faster speed makes soft

macros on FPGAs a viable alternative to hard-core microprocessors.

During FPGA development using soft microprocessors there are times that the

designer needs to perform sporadic non time critical floating-point operations. If fixed

point arithmetic is not available as a replacement option, and the floating point is a

mandatory requirement (e.g., financial sector data [142]) then the designer has no

choice but to implement the floating-point algorithm either in hardware or software.

 Using Xilinx LogiCORE IP Floating-Point Operator v7.1 to implement full range

double IEEE-754 utilizes: 31131 LUTs, 25654 FFs, and 45 DSPs [143]. The huge size

of FP IP core defeats the purpose of choosing an 8-bit processor on an FPGA.

Also, it only supports UltraScale and UltraScale + Architecture, Zynq-7000, and 7

Series and smaller FPGAs are not supported [144].

This section has tackled this problem by providing a library which is fully in

compliance with IEEE-754 64-bit Floating Point Standard and is written in assembly

language of PicoBlaze. Maximum program size for PicoBlaze is 4K [201], the size of

FP library is less than 2KB which leaves extra 2KB free for other functionalities.

6.2. Implementation

6.2.1. IEEE-754-2008 Floating-Point Overview
A rough presentation of floating-point arithmetic requires only a few words: a number

𝑥 is represented in radix 𝛽 floating-point arithmetic with a sign 𝑠, a significand 𝑚, and

an exponent 𝑒, such that 𝑥 = 𝑠 × 𝑚 × 𝛽𝑒 [145].

6.2.2. Main Definitions
A floating-point format is characterized by four integers:

• radix 𝛽 ≥ 2

• precision (number of digits in significand) 𝑝 (e.g., double precision = binary64:

𝑝 = 53)

• Two extremal exponent:𝑒𝑚𝑖𝑛 < 0 < 𝑒𝑚𝑎𝑥 and 𝑒𝑚𝑖𝑛 = 1 − 𝑒𝑚𝑎𝑥
• A finite floating-point number 𝑥 can be represented as below [145]:

Equation 21: 𝑥 = 𝑀 . 𝛽𝑒−𝑝+1

𝑀 is called integral significand of representation of x and is an integer such that
|𝑀| ≤ 𝛽𝑝 − 1.

𝑒 is called exponent and is an integer such that 𝑒𝑚𝑖𝑛 < 𝑒 < 𝑒𝑚𝑎𝑥 .
The representation (𝑀, 𝑒) of 𝑥 is not unique. For example, for 𝛽 = 10 and 𝑝 =

 3 the number 18 can be represented as 18 × 100 or 180 × 10 − 1 since both 18 and

180 are less than 𝛽 𝑝 − 1 = 999.

The set of these equivalent representations is called cohort. From Equation 21the

number 𝛽𝑒−𝑝+1 is called quantum of the representation of 𝑥.

quantum exponent is 𝑒 − 𝑝 + 1.

Another way to express same floating number is:

𝑥 = (−1)𝑠. 𝑚 . 𝛽𝑒

 186

𝑒 same as before, 𝑚 = |𝑀|. 𝛽𝑝−1 and is called normal significand or just

significand. It has one digit before the radix point and at most 𝑝 − 1 after, and 0 ≤
 𝑚 ≤ 𝛽. 𝑠 ∈ {0, 1} is the sign bit of 𝑥. The values 𝑀, 𝑞, 𝑚, and 𝑒 only depend on the

value of 𝑥. We, therefore, call 𝑒 the exponent of 𝑥, 𝑞 its quantum exponent (𝑞 = 𝑒 −
 𝑝 + 1), 𝑀 its integral significand, and 𝑚 its significand. When 𝑥 is a nonzero arbitrary

real number (i.e., 𝑥 is not necessarily exactly representable in each floating-point

format), we will call infinitely precise significand of 𝑥 (in radix 𝛽) is the number:

𝑥

 𝛽⌊log𝛽 |𝑥|⌋

Where 𝛽⌊log𝛽 |𝑥|⌋ is the largest integer power of 𝛽 smaller than or equal to |𝑥|.

Fig. 86: IEEE 754 Double Precision Format

To normalize a finite nonzero floating-point number, we choose the representation

which the exponent is minimum yet greater or equal to 𝑒𝑚𝑖𝑛. After normalization two

cases occur:

• 𝑥 is normal which means 1 ≤ |𝑚| < 𝛽 or equivalently 𝛽𝑝−1 ≤ |𝑀| < 𝛽𝑝 .

When 𝑥 is a normal floating-point number, its infinitely precise significand is

equal to its significand.

• 𝑥 is subnormal which means 𝑒 = 𝑒𝑚𝑖𝑛. In this case |𝑚| < 1 or equivalently

|𝑀 ≤ 𝛽𝑝−1 − 1 .

In radix 2, the first digit of the significand of a normal number is a 1, and the first

digit of the significand of a subnormal number is a 0. That tells us if a number is normal

or subnormal, there is no need to store the first bit of its significand.

In radix 2, the significand of a normal number always has the form:

1.𝑚1𝑚2𝑚3. . . . 𝑚𝑝−1

Whereas the significand of a subnormal number always has the form:

0.𝑚1𝑚2𝑚3… .𝑚𝑝−1

In both cases, the digit sequence 𝑚1𝑚2𝑚3… .𝑚𝑝−1 is called the trailing

significand of the number. It is also sometimes called the fraction.

 187

From above we can interpret that if the exponent is non-minimal, there is an

implicit leading 1, and if the exponent is minimal, there is not, and the number is

subnormal.

Important “extremal” floating-point numbers:

• the smallest positive subnormal number is 𝛼 = 𝛽𝑒𝑚𝑖𝑛−𝑝+1

• the smallest positive normal number is 𝛽 𝑒𝑚𝑖𝑛

• the largest finite floating-point number is Ω = (𝛽 − 𝛽1−𝑝). 𝛽𝑒𝑚𝑎𝑥

6.2.3. Double Precision
The IEEE-754 double precision format is shown in Fig. 86. The interpretation is that if

the exponent is non-minimal, there is an implicit leading 1, and if the exponent is

minimal, there is not, and the number is subnormal

The sign bit determines the sign of the number (including when this number is zero,

which is signed). The exponent field (e) can be interpreted as either an 11-bit signed

integer from -1024 to 1023 (2’s complement) or an 11-bit unsigned integer from 0 to

2047. Significand precision has 53 bits (52 explicitly stored). The format is written with

the significand having an implicit integer bit of value 1:

(−1)𝑠𝑖𝑔𝑛(1. 𝑏51. 𝑏50. . . 𝑏0) × 2
𝑒−1023

The precision of floating-point number is 𝑝 ≥ 2 the number of significant digits

of the representation. Therefore 𝑝 = 53 in double precision numbers.

6.2.4. Exponent Encoding
The 11-bit exponent value 𝑒 has 211 = 2048 possibilities with range: [0 2047]. Table

14 shows the encoding of 𝑒 in accordance with IEEE-754 standard where 𝑆 refers to

significance.

Table 14: IEEE-754 Exponent Encoding.

e Decimal e Hex Definition Biased

0 0x000 Signed zero (S = 0) and subnormals (S 6= 0) 2−1022

1 0x001 Smallest exponent for normal numbers 2−1022

2046 0x7FE Highest exponent 21023

2047 0x7FF ∞ if S = 0, NaNs if S 6= 0

1023 0x3FF Zero offset 20

Except for the exception mention in Table 14 the entire double-precision number

is described by:

(−1)𝑠𝑖𝑔𝑛 × 2𝑒−1023 × 1. 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

In case of subnormals (e = 0):

(−1)𝑠𝑖𝑔𝑛 × 21−1023 × 0. 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = (−1)𝑠𝑖𝑔𝑛 × 2−1022 × 0. 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

 188

In next section we will discuss the details of implementing IEEE 754 floating point

double-precision (64- bit) calculation on an 8-bit processor.

6.2.5. Exception Handling
The IEEE 754-2008 standard supports the following five exceptions:

• Invalid Operation: When the result is qNaN

• Division by zero

• Overflow

• Underflow

• Inexact: If the result of an operation differs from the exact result, then the

inexact exception is signaled. The correctly rounded result is returned.

6.2.5.1. Overflow
An overflow is signaled when 𝑒 > 𝑒𝑚𝑎𝑥 = 111_1111_110.

6.2.5.2. Underflow
An Underflow is signaled when 𝑒 < 𝑒𝑚𝑖𝑛 = 000_0000_0001.

6.2.6. The inexact exception
The inexact exception is signaled when the result is not exactly representable as a

floating-point number.

6.2.7. Addition/Subtraction
The addition of 𝑥 and 𝑦 is defined in Equation 22 [145].

Equation 22:

𝑥 + 𝑦 = (−1)𝑠𝑥 . (|𝑥| + (−1)𝑠𝑧 . |𝑦|)
𝑠𝑧 = 𝑠𝑥⊕𝑠𝑦 ∈ 0, 1

The sum or difference of two positive finite floating-point numbers 𝑜(|x| ± |y|)
according to the IEEE-754 standard is:

Equation 23:

𝑜(|x| ± |y|) = 𝑜(m𝑥 × β
e𝑥 ±m𝑦 × β

𝑒𝑦)

Where 𝑜() is the rounding function. We define the biased exponent 𝑒𝑥 = 𝐸𝑥 −
 𝑏𝑖𝑎𝑠 + 1 − 𝑛𝑥 and 𝑒𝑦 = 𝐸𝑦 − 𝑏𝑖𝑎𝑠 + 1 − 𝑛𝑦 where 𝑛𝑥 and 𝑛𝑦 are normal bits.

It means if the operand 𝑥 is normal then 𝑛𝑥 = 1 otherwise 𝑛𝑥 = 0 and so on.

Therefore, the subtraction of two exponents is [145]:

Equation 24:

𝑒𝑥 − 𝑒𝑦 = 𝐸𝑥 − 𝑏𝑖𝑎𝑠 + 1 − 𝑛𝑥 − (𝐸𝑦 − 𝑏𝑖𝑎𝑠 + 1 − 𝑛𝑦)

= 𝐸𝑥 − 𝐸𝑦 − 𝑛𝑥 + 𝑛𝑦

 189

We propose a suitable algorithm for an 8-bit processor to perform the FP

addition/subtraction as shown in Equation 23: is:

1. Decompose the operands.

2. Check for special cases and set the result accordingly. If the result is not a

special case, then go to next step otherwise the algorithm ends.

3. Compare 𝑒𝑥 with 𝑒𝑦. Swap 𝑥 and 𝑦 to ensure 𝑒𝑥 ≥ 𝑒𝑦

4. Exponent alignment: Compute 𝑚𝑦 × 𝛽
−(𝑒𝑥−𝑒𝑦) by shifting my right by 𝑒𝑥 −

𝑒𝑦 digit positions. Use Equation 24 to compute 𝑒𝑥 − 𝑒𝑦. The potential exponent

result is 𝑒𝑟.
5. Select the operation based on the operands’ sign as shown in Table 15

6. Compute the result significand as 𝑚𝑟 = 𝑚𝑥 ±𝑚𝑦. Either an addition or a

subtraction will be performed, depending on the signs 𝑠𝑥 and 𝑠𝑦. Then if 𝑚𝑟 is

negative, it will be negated. At this step, we have an exact result

(−1)𝑠𝑟 . 𝑚𝑟 . 𝛽
𝑒𝑟.

Table 15: Operation Select based on operands’ sign.

x y Operation

+ + x + y

+ - x - y

- + y - x

- - - (x + y)

7. Re-normalize: This exact result is not necessarily normalized. It may need to

be normalized in two cases:

• There was a carry out in the significand addition (𝑚𝑟 ≥ 𝛽).
• There was a cancellation in the significand addition (𝑚𝑟 < 𝛽).

8. The normalized result will be rounded.

9. Potentially re-normalize again.

10. Potentially round again.

11. Compose the result.

6.2.8. Multiplication
The multiplication of 𝑥 and 𝑦 is defined in Equation 22 [145].

𝑥 × 𝑦 = (−1)𝑠𝑟 . (|𝑥| × |𝑦|)
𝑠𝑟 = 𝑠𝑥⊕ 𝑠𝑦 ∈ 0, 1

The product of two positive finite floating-point numbers 𝑜(|x| × |y|) according to

the IEEE-754 standard is:

Equation 25:

𝑜(|x| × |y|) = 𝑜(𝑚𝑥.𝑚𝑦. 𝛽
𝑒𝑥+𝑒𝑦))

We propose a suitable algorithm for an 8-bit processor to perform the FP

multiplication shown in Equation 25:

1. Decompose the operands.

 190

2. Check for special cases and set the result accordingly. If the result is not a

special case, then go to next step otherwise the algorithm ends.

3. Normalize 𝑒𝑥 with 𝑒𝑦.

4. Multiply 𝑚𝑥 (53-bits) by 𝑚𝑦 (53-bits). 𝑚𝑟 = 𝑚𝑥 × 𝑚𝑦 (106-bits).

5. Calculate exponent 𝑒𝑟 = 𝑒𝑥 + 𝑒𝑦.

6. if 𝑒𝑟 < 0 and 𝑒𝑟 > −53 then result is subnormal, shift significand by 𝑒𝑟 and

set the 𝑒𝑟 to zero. if 𝑒𝑟 < 0 and 𝑒𝑟 <= −53 then the result is zero (underflow).

if 𝑒𝑟 == 0 then the result is subnormal, but no shift is needed. if 𝑒𝑟 > 0 then

the result is normal, no further action is needed.

7. If bit 106 is 1 then shift significand to right by 1 and increment the exponent.

8. Round the exact result.

9. Calculate the sign 𝑠𝑟 = 𝑠𝑥⊕ 𝑠𝑦

10. Compose the result.

6.2.9. Division
The division of 𝑥 and 𝑦 is defined in Equation 22 [145].

𝑥 ÷ 𝑦 = (−1)𝑠𝑟 . (|𝑥| ÷ |𝑦|)
𝑠𝑟 = 𝑠𝑥⊕ 𝑠𝑦 ∈ 0, 1

The division of two positive finite floating-point numbers |x|/|y| according to the

IEEE-754 standard is:

Equation 26:
|x|/|y| = 𝑚𝑥/𝑚𝑦. 𝛽

𝑒𝑥−𝑒𝑦

We propose a suitable algorithm for an 8-bit processor to perform the FP division

shown in Equation 26:

1. Decompose the operands.

2. Check for special cases and set the result accordingly. If the result is not a

special case, then go to next step otherwise the algorithm ends.

3. Normalize 𝑒𝑥 with 𝑒𝑦.

4. Divide 𝑚𝑥 (53-bits) by 𝑚𝑦 (53-bits). The quotient 𝑚𝑟 = 𝑚𝑥/ 𝑚𝑦 (53-bits).

5. Calculate exponent 𝑒𝑟 = 𝑒𝑥 − 𝑒𝑦.

6. If 𝑒𝑟 > 0 and 𝑒𝑟 < 2047 then it is normal case. If 𝑒𝑟 <= −53 then underflow

has occurred, and the result is zero. If 𝑒𝑟 > 2047 then overflow has occurred,

return infinity. If 𝑒𝑟 > −53 and 𝑒𝑟 < 0 then it is subnormal case.

7. If 𝑚𝑟 is subnormal: Shift 𝑚𝑟 to right and add one to 𝑒𝑟.
8. Round the exact result.

9. Calculate the sign 𝑠𝑟 = 𝑠𝑥⊕ 𝑠𝑦

10. Compose the result.

6.2.10. Arithmetic Special Cases
Before performing the arithmetic operation, it is necessary to take care of special

operands. An operand can have one of the following statuses:

1. Normal

 191

2. Subnormal

3. Zero +/-

4. Infinity +/-

5. NaN

First, we check the exponent of operand 1: 𝑒𝑥. For addition/subtraction special

cases we follow the information provided in Fig. 87. Below is the algorithm which takes

care of special inputs: 𝑒𝑥: exponent of op1 𝑆𝑥 : Significand of op1 𝑒𝑦 : exponent of op2

𝑆𝑦 : Significand of op2

1. Check if ex = 0x000 ? if yes check 𝑆𝑥 = all 0 ? if yes then set op1 status flag:

Zero, if no set status flag: Subnormal. Jump step 3.

Fig. 87: Specification of addition for floating-point data of positive sign [145].

Fig. 88: Specification of multiplication for floating-point data of positive sign [145].

Fig. 89: Special values for
|𝑥|

|𝑦|
 [145].

2. Check if 𝑒𝑥 = 0𝑥7𝐹𝐹 ? if yes check 𝑆𝑥 = all 0? if yes, then set op1 status

flag: Infinity, if no set status flag to NaN.

3. Do step 1 to 3 for op2.

4. Now we have status bits: 0xSZIN.

5. check if op1 is NaN then result is NaN.

 192

6. check if op2 is NaN then result is NaN.

7. check if op1 is infinity then result is infinity.

8. check if op2 is infinity then result is infinity.

9. check if op1 is zero then result is op2.

10. check if op2 is zero then result is op1.

11. check if op1 is subnormal then signal the normal addition operation to

replace hidden 1 by 0.

12. check if op2 is subnormal then signal the normal addition operation to

replace hidden 1 by 0.

13. Perform addition.

Fig. 90: The standard rounding functions. Here we assume that the real numbers 𝑥

and 𝑦 are positive.

Table 16: Rounding.

round/ sticky RD RU RN

0 / 0 - - -

0 / 1 - + -

1 / 0 - + -/+

1 / 1 - + +

For multiplication, the special cases are listed in Fig. 88, and the division special

vase are in Fig. 89.

6.2.11. Rounding
The IEEE 754-2008 standard specifies 5 different rounding functions:

• round toward −∞ (or “round downwards”): the rounding function 𝑅𝐷 is

such that 𝑅𝐷(𝑥) is the largest floating-point number (possibly −∞) less than

or equal to 𝑥;

• round toward +∞ (or “round upwards”): the rounding function 𝑅𝑈 is such

that 𝑅𝑈(𝑥) is the smallest floating-point number (possibly +∞) greater than

or equal to 𝑥;

• round toward zero: the rounding function 𝑅𝑍 is such that 𝑅𝑍(𝑥) is the

closest floating-point number to 𝑥 that is no greater in magnitude than 𝑥 (it

is equal to 𝑅𝐷(𝑥) if 𝑥 ≥ 0, and to 𝑅𝑈(𝑥) if 𝑥 ≤ 0;

 193

• two round to nearest functions 𝑅𝑁𝑒𝑣𝑒𝑛 (round to nearest ties to even) and

𝑅𝑁𝑎𝑤𝑎𝑦 (round to nearest ties to away): for any floating-point number 𝑡,

|𝑅𝑁𝑒𝑣𝑒𝑛(𝑥) − 𝑥| and |𝑅𝑁𝑎𝑤𝑎𝑦(𝑥) − 𝑥| are less than or equal to |𝑡 − 𝑥|.

A tie-breaking rule must be chosen when 𝑥 falls exactly halfway between

two consecutive floating-point numbers:

o 𝑅𝑁𝑒𝑣𝑒𝑛(𝑥) is the only one of these two consecutive floating-point

numbers whose integral significand is even. This is the default

rounding function in the IEEE 754-2008 standard.

o 𝑅𝑁𝑎𝑤𝑎𝑦(𝑥) is the one of these two consecutive floating-point

numbers whose magnitude is largest.

Table 17: Exponent Encoding.

Rounding Mode +3.5 +4.5 -3.5 -4.5

To nearest, ties to even +4 +4 -4 -4

To nearest, ties away from zero +4 +5 -4 -5

Toward 0 +3 +4 -3 -4

Toward +∞ +4 +5 -3 -4

Toward -∞ +3 +4 -4 -5

In radix 2 and precision 𝑝, how a positive real value 𝑥 greater than or equal to

2𝑒𝑚𝑖𝑛 , whose infinitely precise significand is 1.𝑚1𝑚2𝑚3.. , is rounded can be

expressed as a function of the bit 𝑟𝑜𝑢𝑛𝑑 = 𝑚𝑝 (round bit) and the 𝑏𝑖𝑡 𝑠𝑡𝑖𝑐𝑘𝑦 =

 𝑚𝑝+1 ∨ 𝑚𝑝+2 ∨ (𝑠𝑡𝑖𝑐𝑘𝑦 𝑏𝑖𝑡), as summarized in Table 16.

Rounding a radix-2 infinitely precise significand, depending on the “round” and

“sticky” bits. Let 𝑜 ∈ 𝑅𝑁, 𝑅𝐷, 𝑅𝑈 to be the rounding mode that we wish to implement.

A “-” in the Table 16 means that the significand of 𝑜(𝑥) is the truncated exact

significand 1.𝑚1𝑚2𝑚3…𝑚𝑝−1.

A “+” in the table means that one needs to add 2−𝑝+1 to this truncated significand

(possibly leading to an exponent change if all the 𝑚𝑖’s up to 𝑚𝑝−1 are equal to 1).

The “-/+” corresponds to the halfway cases for the round-to-nearest (𝑅𝑁) mode,

where the rounded result depends on the chosen tie-breaking rule. The result of

rounding 𝑥 to precision 𝑝 is either the floating-point number 𝑥𝑝 =

 (−1)𝑠 . (𝑚0. 𝑚1𝑚2. . . 𝑚𝑝−1)𝛽𝛽
𝑒 or [145]:

• the floating-point successor of 𝑥𝑝 when 𝑥 is positive.

• the floating-point predecessor of 𝑥𝑝 when 𝑥 is negative.

In other words, writing 𝑆𝑢𝑐𝑐(𝑥) for the successor of a floating-point number 𝑥, the

rounded value of 𝑥 will always be one of the two following values: (−1)𝑠 . |𝑥𝑝| or

(−1)𝑠. 𝑆𝑢𝑐𝑐(|𝑥𝑝|) with 𝑥𝑝 = (−1)
𝑠 . (𝑚0. 𝑚1𝑚2. . . 𝑚𝑝−1)𝛽𝛽

𝑒. The binary encoding

of the successor of a positive floating-point value is the successor of the binary

encoding of this value, considered as a binary integer [145].

This explains the choice of a biased exponent over two’s complement or sign-

magnitude. This is true for all positive floating-point numbers, including subnormal

 194

numbers, from +0 to the largest finite number (whose successor is +∞). This states

that if we add 1 to a mantisa of all 1, the carry propagates to exponent.

The general rule when rounding binary fractions to the 𝑛-th place prescribes to

check the digit following the 𝑛-th place in the number. If it is 0, then the number should

always be rounded down. If, instead, the digit is 1 and any of the following digits are

also 1, then the number should be rounded up. If, however, all the following digits are

0’s, then a tie breaking rule must be applied and usually it’s the ‘ties to even’. This rule

says that we should round to the number that has 0 at the 𝑛-th place. This will lead us

to introduce three extra bits after n-th place as it will be explained in next section.

A numerical example is provided in Table 17 to understand the rounding rules.

6.2.12. Guard, Round, and Sticky Bits
To assist rounding we add three extra bits to a floating-point number: guard (g), round

(r), and sticky (s). When a mantissa is to be shifted to align radix points, the bits that

fall off the least significant end of the mantissa go into these extra bits. If a value of 1

ever is shifted into the sticky bit position, that sticky bit remains a 1 (“sticks” at 1),

despite further shifts.

1.⏟
ℎ𝑖𝑑𝑑𝑒𝑛

𝑒0𝑒1…𝑒10⏟
𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡

𝑚1…𝑚51⏟
𝑚𝑎𝑛𝑡𝑖𝑠𝑎

0⏟
𝑔

0⏟
𝑟

0⏟
𝑠

Round to nearest 𝑅𝑁𝑒𝑣𝑒𝑛(𝑥) is the default rounding function in the IEEE 754-2008

standard. For guard + round + sticky scenario:

• Round up if 101 or higher, round down if 011 or lower.

• Round to nearest even if 100

The complete detailed algorithm is:

• Check the guard bit

• If guard bit = 0: round down (Do nothing - simple truncation)

• If guard bit = 1, check the round bit

• If guard bit = 1, and round bit = 1: round Up (Add 1 to mantissa)

• If guard bit = 1, and round bit = 0: check the sticky bit

• If guard bit = 1, and round bit = 0, and sticky bit = 1: round up (Add 1 to

mantissa)

• If guard bit = 1, and round bit = 0, and Sticky bit = 0: round to nearest even.

Means round up if bit before guard bit is 1, else round down. FP adder has

six steps, not three:

o Align exponents

o Add/subtract significands

o Re-normalize

o Round

o Potentially re-normalize again

o Potentially round again

6.2.13. Subnormal Inputs
The addition algorithm must be modified to support the subnormal inputs.

1. First, we check the 𝑒𝑥 and 𝑒𝑦 for normal/subnormal status.

 195

2. If both are normal or are subnormal, we follow the standard algorithm

procedure.

3. If one of the is subnormal: 𝑒𝑥 or 𝑒𝑦 is zero. Then when we swap first operand

will always be normal and second operands is subnormal. We observed the

ARM floating point unit behavior on A53 cores to be as follow:

(−∞) + (−∞) = −∞
(−∞) + (+∞) = +N aN
(+∞) + (−∞) = +NaN
(+∞) + (+∞) = ∞
NaN + NaN = op2NaN

6.2.14. Conversion from biased to two’s complement
The range that we need to cover is -1023 to 1023. 11-bit two’s complement can cover:

-1024 to 1023.

000h → 0 − 1023 = −1023 → 0x401h
001h → 1 − 1023 = −1022 → 0x402h

0x3FEh → 1022 − 1023 = −1 → 0x3FF h
0x3FFh → 1023 − 1023 = 0 → 0x000h
0x400h → 1024 − 1023 = 1 → 0x001h
0x7FF h → 2046 − 1023 = 1023 → 0x3FF h

• If number less than 0𝑥3𝐹𝐹 h then add 0𝑥401ℎ.

• If it is 0𝑥3𝐹𝐹ℎ (sign bit is zero) then replace it with zero.

• If it is greater than 0𝑥3𝐹𝐹ℎ (sign bit is one) then subtract by 0𝑥3𝐹𝐹ℎ

• I can see that 0𝑥401ℎ is tow’s complement of 0𝑥3𝐹𝐹ℎ. Therefore, the general

formula is:

two′s = biased ± (not(biased << 1) ∗ 2) + 0x3FFh two′ s = biased

6.2.15. FPGA Memory Block Requirement in PicoBlaze for FFT Algorithm
We need to save 256 points in double-precision floating-point format which requires

64-bit (8-bytes) per point: 256 × 8 = 2048 bytes. Thus, a 4K × 8 RAM block will

suffice. The XC7Z010 chip has 60 of 36 Kb Block RAM.

6.3. Limitations
The library proposed in this section has not been optimized for performance as the

aim is to provide clarity in algorithm steps which will help to port the code to any 8-

bit microprocessor.

6.4. Result
A double precision IEEE-754 Floating point arithmetic is implemented in software

using assembly language of an 8-bit soft-core processor called PicoBlaze. The proposed

FP arithmetic library has gone through rigorous verification and can be used in non-

time critical embedded system applications. Although the library performance varies

based on numeric value of the operands, the achieved performance when both operands

 196

are normal can be averaged and measured as shown in Table 18. We could achieve the

maximum frequency of 333MHz (3ns per clock cycle) for PicoBlaze core

implemented on XCZU7EV chips with speed grade -2 and perform a 64-bit FP

multiplication in 20.60µs.

The 64-bit floating-point library is purely in software and no hardware is used to

assist the FP operations. The additional memory expansion is required due to the

following conditions:

1. The PicoBlaze’s 12-bit address supports maximum range of 4KB program

memory. Its Scratch Pad Memory (SPM) which is used as data memory can

have maximum size of 256 bytes. The FP routines needs was more than 256

bytes for data storage.

2. Whenever a memory access to above 4KB data memory is needed. The

additional memory can be used. For example, to share data between ARM

processor in ZCU104 board and PicoBlaze.

Note that there is no 64-bit Floating-Point library implemented on 8-bit processor

architecture that is known to the author which can be used for resource and performance

comparison. This is due to unusual nature of the work. Usually 8-bit architectures are

picked for state machine-based control systems (programmable state machines) [146,

147]; For scientific projects 16-/32-/64-bit architectures are preferred which then

software- or hardware-based FP implementation are plenty, e.g., 16- and 18-bit [148],

parametrized [149], variable-precision [150] and myriad of 32-bit library for integer

processors such as FLIP [151].

Although performance comparison of our proposed library to other libraries is

possible but due to the 8-bit nature of the architecture, the performance comparison to

32-bit architecture will be unfair. To provide a realistic baseline the proposed

architecture is compared to FLIP library [151] and shown in Table 18.

The Fidex IDE project that contains the software implementation of IEEE-754

Double-Precision arithmetic on Xilinx PicoBlaze can be found at the GitHub website:

https://github.com/ehsan-ali-th/fp_on_picoblaze

Table 18: 64-BIT FP Arithmetic Performance on PicoBlaze versus FLIP library

(Measured by Num. Of clock cycles on ST220).

 Add/Subtract Multiplication Division

 Proposed FLIP Proposed FLIP Proposed FLIP

Num. of Clock Cycles 2312 75 6850 62 5308 149

Clock Frequency (@100Mhz) 23.12 µs N/A 68.5 µs N/A 53.08 µs N/A

Clock Frequency (@333Mhz) 6.94 µs N/A 20.60 µs N/A 15.93 µs N/A

https://github.com/ehsan-ali-th/fp_on_picoblaze

 197

7. Improved Development Cycle for 8-bit FPGA-Based Soft-
Macros Targeting Complex Algorithms

7.1. Introduction
In previous section the details of an 8-bit FP arithmetic library were presented. The

level of implementation complexity is to such an extent that numerous improvements

in standard development of PicoBlaze had to be proposed.

In this section various improvements in development of a complex 8-bit algorithm

related to synthesis, debugging, and verification are proposed.

Developing complex algorithms on 8-bit processors without proper development

tools is challenging. This section integrates a series of novel techniques to improve the

development cycle for 8-bit soft-macros such as Xilinx PicoBlaze. The improvements

proposed reduce development time significantly by eliminating the required resynthesis

of the whole design upon HDL source code changes. Additionally, a technique is

proposed to increase the maximum supported data memory size for PicoBlaze which

facilitates development of complex algorithms. Also, a general verification technique

is proposed based on a series of testbenches that perform code verification using

comparison method.

The proposed testbench scenario integrates “Inter-Processor Communication

(IPC), shared memory, and interrupt” concepts that lays out a guideline for FPGA

developers to verify their own designs using the proposed method. The proposed

development cycle relies on a chip that has Programmable Logic (PL) fabric (to hold

the soft processor) alongside of a hardened processor (to be used as algorithm verifier),

therefore, a Xilinx Zynq Ultrascale+ MPSoC is chosen which has a hardened ARM

processor. The development cycle proposed in this paper targets the PicoBlaze, but it

can be easily ported to other FPGA macros such as Lattice Mico8, or any non-Xilinx

FPGA macros.

The most important notable contribution of this section is to introduce a technique

which grants shorter development time on PicoBlaze by eliminating the need to

resynthesize the whole hardware when only PicoBlaze program gets modified.

7.2. Implementation

7.2.1. Related Works
The only related work to the work presented in this section is the standard development

cycle provided by Xilinx, which will be discussed in detail in this section.

The standard development cycle for the latest version of PicoBlaze (KCPSM6)

proposed by Xilinx is shown in Fig. 91. The steps for VHDL language are listed below

(Verilog language is also supported) [152]:

1. Import “KCPSM6.vhd” (PicoBlaze core VHDL version) into ISE [153] or

Vivado [154] project.

2. Write a PicoBlaze program and save the source code into a

“source_code.psm” file.

3. Select an appropriate “ROM_form.vhd” that matches target FPGA Xilinx

device.

 198

Fig. 91: PicoBlaze Standard Development Cycle.

4. Run assembler on “source_code.psm” and “ROM_form.vhd” files and get

“program.vhd” as assembler output.

5. Import “program.vhd” into ISE or Vivado project.

6. Connect both KCPSM6 and program modules together inside a wrapper

module (“top.vhd”) using signals.

7. Run ISE or Vivado simulator and debug the program by looking into

registers and SPM content by examining simulation signals and

waveforms.

8. Synthesize the complete design, and upload generated bit-stream file into

FPGA device.

7.2.1.1. Standard Development Cycle Limitations
The Xilinx PicoBlaze standard tools fall short when it comes to complex programming

tasks. The only way to check the register content and SPM memory is through

Vivado/ISE simulator waveform which is not practical if the program is more than few

hundred lines. Adding more instruction between lines or simply a change in conditional

jumps, modifies the simulation timing and makes waveform-based debugging very

challenging.

Other issues are lack of breakpoints, and step by step execution. Meanwhile the

mandatory resynthesis step, and the need to re-upload the bitstream file into FPGA

device increases the development time significantly.

In normal design flow, designer imports “program.vhd” to a Vivado/ISE Design

Suite project, and then synthesizes the design, and finally uploads the generated

bitstream into the FPGA board. The problem with this approach is that whenever

PicoBlaze program is modified, a rerun of assembler to generate a new “program.vhd”

is required. The change in content of “program.vhd” file triggers complete resynthesis

of wrapper module that holds the “program” Block RAM module.

To solve this the “JTAG Loader” [152] which is a tool that comes alongside of the

original KCPSM6 assembler is provided by Xilinx. It is designed to upload the

generated .hex file to program BRAM and eliminates the need to resynthesize the

design. Some shortcomings of the tool are mentioned below:

• Only one PicoBlaze core (marked with “C_JTAG_LOADER_ENABLE => 1”

generic) in the design is supported.

• Depends on old drivers provided by ChipScope [155], and needs ISE Design

Suite to be installed.

 199

Table 19: PicoBlaze Assemblers.

Assembler Supported

Cores

Host OS Status

License Features

Xilinx [52] KCPSM3

KCPSM6

Windows

Linux(wine)

v2.7 Stable

Xilinx Outputs .fmt, .log, .hex

Open

PicoBlaze

KCPSM3

KCPSM6

Python v1.3 Stable

Free MIT

license

High performance, m4

preprocessor, static code

analysis, local labels

Table 20: PicoBlaze Simulators.

Simulator Supported

Cores

Host OS Status

License Features

kpicosim KCPSM3

Linux v0.7 Beta Free Syntax highlighting, compiler,

simulator, and export functions to

VHDL, HEX and MEM files.

sc0ty KCPSM3

Linux Beta GNU GPL

license

wxWidgets library based, supports

LED, switches, keyboard, terminal,

and timer.

FIDEx KCPSM3

KCPSM6

Mico8

Linux

Windows

2016-09.0

Stable

Proprietary Project manager, memory page

support, full-fledged debug facility.

• No support for new advanced development boards such as “Xilinx

ZCU104”[156] that has several devices attached to its JTAG chain.

• Consumes a BSCAN primitive.

Another issue is lack of support for other FPGA vendors. PicoBlaze core and all

its development tools target Xilinx devices only and cannot be ported to other platforms

easily. The rest of this section covers proposed techniques needed to solve all issues

mentioned above by integrating third party tools with standard Xilinx tools to form a

reliable and consolidated solution for implementing complex algorithms on PicoBlaze.

7.2.2. PicoBlaze Assembler
Currently there are only two reliable PicoBlaze assemblers which are listed in Table

19. The original Xilinx assembler receives a program source code with extension .psm

and outputs a formatted PSM File (.fmt), a .log file, an .hex file which contains raw

equivalent hex value of each instruction and a .vhd file if “ROM_form.vhd” template

file exists. In most cases the original assembler is sufficient.

Open PicoBlaze Assembler (Opbasm [157]) is an alternative option which offers

special features such as faster assembling time, m4 preprocessor macros, static code

analysis to identify dead code and optionally remove it, code block annotations with

user defined PRAGMA meta-comments, and the support for local labels. In this paper,

the original KCPSM6 assembler is chosen as it exhibits acceptable degree of stability

and is used widely by the community.

 200

7.2.3. PicoBlaze Simulator
The standard waveform-based simulator suffices for simple algorithms that can be

implemented with less than one or two hundred instructions. Anything more complex

needs a full-fledged simulator with breakpoints, step by step execution, registers, and

SPM content monitoring capabilities.

An exhaustive search for all available PicoBlaze simulators yields few result.

Those which were buggy, unstable, or had no proper documentation were omitted.

Table 20 shows those simulators which have passed the following criteria:

• A stable version is available

• Graphical User Interface (GUI) is provided

• Debugging facilities such as step by step execution and breakpoints are

available

• Proper documentation for compiling the source and using the tool is

provided

We found the FIDEx the only solid simulator which supports the latest version of

PicoBlaze (KCPSM6). All other simulators are either out of date and only support

KCPSM3, or lack quality, or a crucial debugging functionality.

7.2.4. Improved Development Cycle for PicoBlaze
For implementing a complex algorithm on PicoBlaze the suggested development

method which is: “To debug using functional simulation or running the program on

hardware directly [152]” will not suffice.

Our proposed development setup includes an isolated PicoBlaze core on Program

Logic (PL) of an FPGA connected to standard URAT modules. Development starts in

any IDE which provides a simulator (such as FIDEx IDE [158]) by writing assembly

code. FIDEx supports several other processors beside PicoBlaze (e.g., Lattice Mico8)

and has its own assembler dialect. The FIDEx dialect is used to implement an

algorithm, and its simulator is invoked to verify algorithms’ correctness. Next, we

convert the developed machine code in FIDEx assembly dialect to original KCPSM6

syntax using a sed [159] script shown in Listing 20. The script outputs new .psm file

(PicoBlaze assembly source code) which then can be fed into standard KCPSM6

assembler.

s/\bRET\b/RETURN/g

s/\bCOMPC\b/COMPARECY/g

s/\bCOMP\b/COMPARE/g

s/\bTESTC\b/TESTCY/g

s/\bADDC\b/ADDCY/g

s/\bSUBC\b/SUBCY/g

s/\bROLC\b/SLA/g

s/\bRORC\b/SRA/g

s/\bLOADRET\b/LOAD&RETURN/g

s/\bRDMEM\b/FETCH/g

s/\bRDPRT\b/INPUT/g

s/\bWRPRT\b/OUTPUT/g

s/\bWRMEM\b/STORE/g

s/0x//g

Listing 20: sed script to convert FIDEx dialect to KCPSM6.

 201

7.2.5. Proposed Hardware Platform
Any Xilinx SoC FPGA which incorporates a processor next to an FPGA fabric can be

chosen as development platform. The “Xilinx Zynq Ultrascale+” device is chosen as it

provides a Processing System (PS) alongside of a Programmable Logic (PL). The

Vivado Design Suit 2018.3 [154] is used to create a project that demonstrates the

proposed improved development cycle for PicoBlaze. The Vivado project consist of a

main “Vivado Block Design” (BD) named “system.bd”.

The system BD schematic is shown in Fig. 92. At the heart of the BD resides a

ZYNQ UltraScale+ MPSoC which manages data transfer between all these components

via AXI interconnects: two shared Block RAMs, a PicoBlaze core, and hardened ARM

processor.

Fig. 93 and Fig. 94 show simplified schematic of components inside the BD. Both

Zynq Ultrascale+ MPSoC and PicoBlaze are equipped with UART send and receive

ports which boost the debugging process by providing terminal input and output for

both processors. Registers’ value, memory locations, and program variable can be

dumped to terminal through designated serial ports.

One of the two block RAMs contains the PicoBlaze program and the other one acts

as a shared data memory.

Next section discusses required BRAM setting for the proposed setup. Full Vivado

project is available at author’s GitHub public domain and the link to it is provided in

result section.

 202

Fig. 92: Vivado Block Design of PicoBlaze Development Environment.

 203

Fig. 93: Zynq Ultrascale+ and PicoBlaze Hardware Platform v2.

Fig. 94: Zynq Ultrascale+ and PicoBlaze Hardware Platform v1.

 204

7.2.6. Memory Block RAMs
Two Block RAMs (BRAMs) are used in proposed development cycle. One holds

PicoBlaze program while the other one shares data between PicoBlaze and ARM cores.

This shared channel is used for verifying algorithms implemented on PicoBlaze

with the ARM processor as verifier unit.

7.2.7. PicoBlaze Program BRAM
The following calculation must be considered to set a dual port PicoBlaze program

BRAM memory specification:

PicoBlaze has a 12-bit address bus, therefore, 212 = 4096 locations can be

addressed. Its instruction width is 18-bit; therefore, the memory size must be 18 ∗
 4096 = 73728 bits or 72 kbit = 9kB.

The PicoBlaze core is not the only module that accesses this BRAM. The ARM

processor through AXI interconnect also must be able to perform read and write

memory operation to and from this BRAM. The AXI interconnect supports only 32-bit

data-width, therefore, demanding a 32 ∗ 4096 = 131072 bits or 128 kbit = 16kB

BRAM.

The conclusion is that although program BRAM needs only 9KB, but AXI

interconnect forces us to assign 16KB resulting in 16 − 9 = 7kB unused memory.

Fig. 93 shows that the width of PORTA and PORTB of the program BRAM is 14-

bit. This provides the ability to address 16384 locations. A 2-bit logical left shift of

address bus is required for 4-byte alignment of PicoBlaze 12-bit addresses. Note that

write and read width of both ports are 18-bit.

7.2.8. Data Memory BRAM
A dual port BRAM is used to share information between two systems. The size of RAM

is 4098 ∗ 8 bits. Port A is 10-bit wide and connected to the ARM processor via AXI

interconnect. This gives access to 1024 memory location. ARM processor can access

the whole 4KB memory by reading or writing 32-bit per memory access. The port B is

12-bit wide and is connected to PicoBlaze with 8-bit read and write width.

7.2.9. Proposed Software Architecture

7.2.9.1. ARM Application Project
After synthesizing the design proposed in previous section in Vivado Design Suit, we

export the hardware platform to Xilinx SDK. We create a C language Application

Project for target processor psu_cortexa53_0 with OS Platform option set to

standalone. The project name is picoblaze_app and its source code can be found under

picoblaze_dev.sdk folder. The entry point is “main.c” which included the header file

“pBlaze_prog.h”. The “pBlaze_prog.h” file defines a 4K C language array that contains

hex value of instructions designed to be uploaded to PicoBlaze program BRAM

memory.

The utility function fill_picoBlaze_BRAM() which is defined in “main.c” is used to

upload a PicoBlaze program into the BRAM memory controlled by AXI_BRAM

_CTRL_1. It performs the task by reading a one-dimensional u32 array with the size

4096 of bytes (program_4k) and writes it into program BRAM.

The function source code is shown in Listing 21.

 205

.

Fig. 95: Improved Development Cycle for PicoBlaze Macro

7.2.10. Hex to Header File Utility
The program_4k array is defined in ”pBlaze_prog.h” header file and must be

regenerated every time the designer modifies the PicoBlaze’s program. This header file

must be included in the ”main.c”. Listing 22 shows the C++ source code for

“hex2ch.cpp” file. It is a command line utility to perform the conversion between

PicoBlaze hex file generated by KCPSM6 assembler to ”pBlaze_prog.h” header file.

To compile we issue the command “$ g++ -o hex2ch hex2ch.cpp”, and to convert

pBlaze_prog.hex we issue: “$./hex2ch pBlaze_prog.hex” which outputs

“pBlaze_prog.h” header file in current working directory.

7.2.11. Proposed Development Cycle
With discussed hardware platform and software tools, a complete development cycle

for PicoBlaze that can handle complex algorithms can be achieved.

To develop for PicoBlaze we propose the following steps:

1. Synthesize the hardware platform and export it to Xilinx SDK.

2. Program the FPGA using the synthesized hardware.

3. Edit source code in FIDEx (“program.psm” file)

4. Simulate the code in FIDEx.

5. Run sed script on program.psm file. (Output is “program_pb.psm” file)

6. Run KCPSM6 assembler on program_pb.psm. (Output is “program_pb.hex”)

7. Run hex2ch on program_pb.hex. (Output is “program_pb.h”)

8. Update “program_pb.h” that resides in SDK folder.

9. Run SDK Application on FPGA to update the PicoBlaze program in FPGA.

void fill_picoBlaze_BRAM() {

 int loc = 0;

 for (int i=0; i<16384; i=i+4) {

 Xil_Out32 (

 XPAR_AXI_BRAM_CTRL_1_S_AXI_BASEADDR

 + i,

 program_4k[loc]);

 loc++;

 }

}

Listing 21: fill_picoBlaze_BRAM() function [runs on FPGA PS]

 206

Any modification to PicoBlaze program (Step #3) triggers the rerun of steps #5 to

#8 which can be easily scripted in user development machine (e.g., a Linux bash script).

Fig. 95 shows the complete flowchart of improved development cycle for PicoBlaze

macro.

// ----------------------------------

// This program converts

// picoblaze's .hex to SDK .h

#include <iostream>

#include <fstream>

#include <string>

using namespace std;

int main (int argc, char *argv[]) {

 if (argc < 2) return -1;

 string input_filename = argv[1];

 // ---------------------------------

 // Extract the filename by removing

 // the extension

 size_t lastindex = input_filename.

 find_last_of(".");

 if (lastindex == string::npos)

 return -2;

 string rawname = input_filename.substr

 (0, lastindex);

 // ---------------------------------

 // Add .h extension to input filename

 string output_filename = rawname + ".h";

 ifstream file_in (

 input_filename.c_str(), ios::in);

 ofstream file_out (

 output_filename.c_str(), ios::out);

 file_out << "u32 program_4k[4096]={" <<

 endl;

 string l;

 string line;

 // ---------------------------------

 // Get the first line

 getline(file_in, l);

 if (l.size() && l[l.size()-1]=='\r')

 line = l.substr(0, l.size() - 1);

 else

 line = l;

 file_out << "0x" << line << endl;

 // ---------------------------------

 // iterate through the remaining

 // lines.

 while (getline(file_in, l)) {

 if (l.size() && l[l.size()-1]=='\r')

 line = l.substr(0, l.size() - 1);

 else

 line = l;

 file_out << "," << "0x" <<

 line << endl;

 }

 file_out << "};" << endl;

 return 0;

}

Listing 22: hex2ch.cpp Tool [runs on development environment]

 207

7.2.12. Proposed Address Generator Circuitry
The PicoBlaze’s 12-bit address supports maximum range of 4KB program memory. Its

SPM which is used as data memory can have maximum size of 256 bytes.

To add another 4KB BRAM as a shared data memory to PicoBlaze-based systems,

an address generator circuit as shown in Fig. 96. The design requires 7 instructions, or

14 clock cycles to read/write a byte from/to shared data memory location. Accessing

this BRAM is 7 times slower than the main program BRAM. To access the memory,

two routines are provided: Read_ext_mem() and Write_ext_mem() which are defined in

Listing 23. The programmer simply calls these two routines whenever a memory access

to above 4KB data memory is needed.

The s6, and s5 are general purpose PicoBlaze registers. For reading from memory,

the register pair [s6, s5] is used with s6 as high byte, and s5 as low byte. The 12-bit read

address is shown by letter ‘A’. The bit 7 of s6 is Clock Enable (represented by letter

‘C’) and register s7 will hold the read data. The 16-bit register pair format is shown

below:

C000_AAAA⏟
𝑠6

 AAAA_AAAA⏟
𝑠5

Similarly, for writing to memory, a 12-bit address is formed in [s6, s5] register pair.

The bit 7 of s6 is Clock Enable, and bit 6 of s6 is Write Enable, and are represented by

letters ‘C’, and ‘W’. The register s7 must contain 8-bit write data. The 16-bit register

pair format is shown below:

CW00_AAAA⏟
𝑠6

 AAAA_AAAA⏟
𝑠5

CONSTANT Extra_mem_lo_output_port, 01
CONSTANT Extra_mem_hi_output_port, 02

CONSTANT Extra_mem_output_port, 03

Read_ext_mem:

 OR s6, 80 ;Enable BRAM clock

 OUTPUT s5, Extra_mem_lo_output_port
 OUTPUT s6, Extra_mem_hi_output_port

 OR s5, s5 ;Delay

 INPUT s7, Extra_mem_input_port
 AND s6, 7F ;Disable BRAM clock

 OUTPUT s6, Extra_mem_hi_output_port
RETURN

Write_ext_mem:
 ;Enable BRAM and write enable.

 OR s6, C0

 OUTPUT s7, Extra_mem_output_port
 OUTPUT s5, Extra_mem_lo_output_port

 OUTPUT s6, Extra_mem_hi_output_port

 OR s5, s5 ;Delay
 ;Disable BRAM and write enable.

 AND s6, 3F

 OUTPUT s6, Extra_mem_hi_output_port
RETURN

Listing 23: Shared Memory Read/Write Routines

 208

Fig. 96: PicoBlaze data memory expansion hardware (address generator).

7.2.13. Proposed Verification Mechanism

7.2.13.1. Concepts
Verification is the process of determining that a model implementation accurately

represents the developer’s conceptual description of the model and the solution to the

model[160, 161]. Verification can be classified into:

• Code Verification: To identify and eliminate programming and

implementation errors within the software

• Calculation Verification: to quantify the error of a numerical simulation or in

other words “numerical error estimation” [161].

A widely used approach in code verification is the comparison method in which

one code is compared to another established code [162]. In our proposed method

the already established code resides in PS side of FPGA. It can be an already established

code (e.g., C language library which ARM Cortex A-53 of Zynq Platform runs it), or a

hardware module which is available in PS side such as the VFPv4 hard unit inside ARM

processor which is fully IEEE-754 compliant [163].

An Inter-Processor Communication (IPC)[164] is established based on shared-

memory, and interrupt signaling as shown in Fig. 97.

Take implementing a 64-bit floating point library (very complex algorithm) on

PicoBlaze as an example [165]. After writing the routines that perform floating point

operations in assembly language of PicoBlaze we can verify the result by first writing

the PicoBlaze floating point arithmetic result into the “Shared BRAM” and then

compare the result with of those produced by ARM processor (either by a software

library or hardware floating point unit).

7.2.13.2. Mechanism
Initially the ARM core writes input data into the shared memory and resets the

PicoBlaze core (pl_resetn1 in Fig. 97). PicoBlaze reads the input data written by ARM

through routines defined in previous section, and performs the operations specified in

algorithm (e.g., addition), and then writes the result back to the shared BRAM memory.

Next it calls invoke_done_interrupt() routine to send an interrupt to ARM core (irqs

in Fig. 97), signaling the end of calculation. The ARM core then reads the calculated

result and compares it with of its own result. The verification loop then and rewrites it

 209

Fig. 97: PicoBlaze & Zynq Ultrascale+ Inter-Processor Communication Platform for

Verification.

into shared memory and resets the PicoBlaze again. It keeps comparing the result until

all test cases pass. Finally, a list of all failed cases is printed, or else it outputs a

verification pass message to ZCU104 serial debugging output port.

7.2.14. Library Usage
After implementing the arithmetic operators mentioned in previous sections, we will

have the following routines available:

• arith_add_x_y

• arith_mul_x_y

• arith div_x_y

• load_8Bytes_from_ext_BRAM

The designer simply writes two 64-bit FP numbers in external BRAM memory and

then calls load 8Bytes from external BRAM to fetch the data into PicoBlaze’s Scratch

Pad Memory (SPM), Next a call instruction to one of the arithmetic routines must be

performed which will calculate and save the result back into SPM. Next section will

introduce a technique to add the external BRAM and get rid of the PicoBlaze’s 4K

memory barrier.

7.3. Limitation
In this section a new development cycle for 8-bit Xilinx PicoBlaze is proposed. The

limitation of method is its requirement for a commercial IDE named Fidex. The future

work can provide a workaround by writing a PicoBlaze simulator from scratch using

C/C++.

7.4. Result
In this section an improved development cycle for PicoBlaze is proposed. It integrates

a simulator with assembler and eliminates the FPGA resynthesis whenever programmer

changes the source code of soft-core. The proposed method supports multi-core

PicoBlaze architecture and does not rely on BSCAN primitives and JTAG

communication, but AXI interconnect core.

Additionally, a verification mechanism is proposed which enables designers to

verify their PicoBlaze code against already established libraries or hardware units.

 210

Another proposed improvement is the expansion of PicoBlaze SPM size through

introducing a 4KB shared memory controlled by an address generator circuitry.

The Vivado 2018.3 Project that demonstrates the complete development tool for

PicoBlaze can be found at the GitHub website:

https://github.com/ehsan-ali-th/picoblaze_dev

https://github.com/ehsan-ali-th/picoblaze_dev

 211

8. Zipi8: An Industry Level 8-bit Soft-Core PicoBlaze Compatible
Processor

8.1. Introduction
In this chapter we try to design an 8-bit processor with an instruction set compatible

with the PicoBlaze. We also try to pipeline the processor. The pipeline length must vary

in an adaptive manner. The initial motivation of the work presented in this section

basically is to get our hands on an industry level core and then modify the architecture

to achieve adaptive behavior.

As discussed in previous chapters 8-bit PicoBlaze is selected and an FFT algorithm

for it is developed. Logically, the next step is to modify the core towards an adaptive

architecture. Unfortunately, the email communications with Xilinx to get RTL source

code of PicoBlaze produced no result. Consequently, a search for open-source

variations of PicoBlaze is conducted. The effort also shows that there exists no reliable

PicoBlaze compatible core which prompted the work presented in this chapter.

The work proposed here reverse engineers the PicoBlaze and produces a new

modifiable core.

Currently, there are only a handful of industry level 8-bit firm-core processors

which are well proven (bug-free) and come with solid development tools. Among them

we can mention Xilinx PicoBlaze and Lattice Mico8. One of the drawbacks of these

cores is that their source code is locked to vendor-specific primitives. This limits the

range of supported target devices. It is impractical to modify PicoBlaze firm-core or

implement it on non-Xilinx FPGA devices, unless we have its behavioral source code.

In this section we have proposed a systematic approach to port primitive-level

designs or firm-cores to non-vendor specific designs or soft-cores. This allows

modification, and implementation of the design on any FPGA devices. Rigorous

verification mechanisms have been employed to ensure the validity of the porting

process; Hence the result of porting is up to the industry expectation. The produced

soft-core is implemented on a Lattice iCE40LP1k FPGA device and is shown to be

fully compatible with the PicoBlaze. The methodology presented in this paper can be

generalized to automate retargeting any primitive-level designs to vendor independent

ones. In embedded systems, byte-oriented (8-bit) design is one of the dominant

architectures. 8-bit microprocessors continue to drive the computer industry alongside

of their 16/32/64/128-bit counterparts since the introduction of Intel 8008 in November

1971 [166] till now. The implementation of an 8-bit processor-based design can be done

via two mediums:

1. Microcontroller Unit (MCU)

2. Field-Programmable Gate Array (FPGA).

We exclude Application-Specific Integrated Circuit (ASIC) approach due to its

high Non-Recurring Engineering (NRE) cost, and its impracticality for low volume

production [167].

An FPGA chip includes input/output (I/O) blocks, and the core programmable

fabric [168]. FPGAs are being used extensively to cover a broad range of digital

applications from simple ‘glue logic” [169], and hardware accelerators to very powerful

system-on-chip (SoC) platforms [170]. An “SoC platform”, or “platform FPGA”

[171]is a single chip which accommodates a Programmable Logic (PL) fabric next to

fixed-function components such as sophisticated clocking circuitry, Phase-Locked

 212

Loops (PLLs), analog-to-digital and digital-to-analog converters (ADCs and DACs)

[172], hard-core processors, high-speed hardened peripherals [173], memory

controllers, and etc.

An MCU has a CPU (a microprocessor) in addition to a fixed amount of RAM,

ROM, I/O Ports, and a timer all on a single chip [174]. The 8-bit architecture is the

cornerstone of MCUs used in designing embedded systems [175]. We can mention

numerous applications for 8-bit microcontrollers, from implementing simple RGB

LEDs [176], control applications [177, 178], battery-powered data acquisition,

Maximum Power Point Tracking (MPPT), to efficient cryptography, and even

implementing TCP/IP stack.

FPGAs have higher level of flexibility than MCUs by providing a PL fabric. This

for example allows designers to change a product after release, by upgrading its

firmware [179]. The drawback of FPGA’s flexibility is that it uses approximately 20 to

35 times more area, has a speed roughly 3 to 4 times slower, and consumes roughly 10

times as much dynamic power [180].

But there is a growing body of research which shows that by identifying the critical

kernels within a software application, one can re-implement those kernels in FPGA

hardware next to a soft processor which enables a soft-core performance to compete

and even out-perform a hard-core processor [181]. This is done by mapping algorithms

to FPGA hardware to leverage the inherent parallelism of FPGA devices in an optimal

way [182].

If flexibility in design has highest priority and consequently FPGA approach is

chosen, then the next decision would be about the type of processor which resides inside

the device. FPGA-based embedded processor types are categorized into three

groups [183]:

• Soft-cores: Written in HDL language without extensive optimization for the

target architecture.

• Firm-cores: Written in HDL implementations but have been optimized for a

target FPGA architecture.

• Hard-cores: Hard cores are a fixed-function gate-level IP within the FPGA

fabric.

As discussed above, hard-cores implemented in SoC chips run faster and consume

less power than soft-cores, but their fixed design prevents them to be changed for

accommodating custom designs. In contrast soft-cores are easy to modify and have

much higher level of portability [183]. There are other factors besides performance

which make soft processor attractive. For example, at CERN institution the

performance of a soft processor versus pure VHDL code was evaluated. It was showed

that the usage of embedded processors could surely lead advantages in the readability

of the code and, therefore, an improvement of the reliability as well as the

maintainability of the whole system [184].

One of the important applications of soft-core processors is in safety-critical real-

time embedded systems where designer can take advantage of deterministic timing of

soft macros [185]. For instance, each instruction of PicoBlaze takes exactly two clock

cycles [152], which ensures deterministic response time to external events such as

interrupts, or a signal change on an FPGA input pin.

Meanwhile, if a project calls for both a microcontroller and FPGA, a soft-core

processor can decrease the overall printed circuit board (PCB) footprint, speed

 213

Table 21: 8-bit processor IP cores, sorted alphabetically.

No. No. Name (Author/Company,

Year)

Instr. Set Source

Code

Instr.

Width

CPI

1 Core8051 * (Microsemi, 2019) Intel

MCS-51

Verilog

VHDL

1-3 B 1-11

2 DP80390 * (Digital Core Design,

2019a)

Intel

MCS-51

Verilog

VHDL

1-3 B 2-3

3 DRPIC16 * (Digital Core Design,

2019c)

PIC

16XXX

Verilog

VHDL

14-bit 1-2

4 G.P.8-bit RISC † (Antonio et al., 2015) G.P.8-bit

RISC

Verilog

VHDL

16-bit 2-3

5 HCS08 * (Silvaco, 2019a) Freescale

MC9S08xx

Verilog 1-4 B 2-6

6 L8051XC1 * (CAST Inc., 2019) Intel MCS-51 Verilog VHDL 1-3 B 4/6/12

7 M8051EW

M8051W *

(Silvaco, 2019b) Freescale

MC9S08xx

Verilog 1-4 B 2-6

8 MCL51 * (MicroCore Labs, 2019a) Intel

MCS-51

Encrypted

Verilog

1-3 B 1-4

9 MCL65 * (MicroCoreLabs,2019b) NMOS

6502

Encrypted Verilog 1-3 B 2-7

10 Mico8 * (Lattice Semi, 2017) Mico8 Verilog RTL 18-bit 2

11 MiniMIPS † (Cesar, 2011) MIPS VHDL 16-bit 1

12 Natalius ‡ (Fabio, 2012) Natalius Verilog 16-bit 3

13 Navré ‡ (Sebastien, 2013) Atmel

AVR

Verilog 1.7

14 Open8 uRISC ‡ (Kirk, 2016) V8uRISC VHDL 1-3 B 1-7

15 pAVR ‡ (Doru, 2009) Atmel

AVR

VHDL 16-bit 1.7

16 PicoBlaze * (Xilinx, 2014) PicoBlaze Primitive level 18-bit 2

17 risc8 ‡ (Tom 2016) PIC16C5X Verilog 12-bit 2-4

18 ZA-SUA † (Fernando et al., 2018) ZA-SUA Verilog 17-bit 4

 * Commercial product: The RTL (or behavioral-level) source code is not freely available.

 † Academic work: Might provide more reliability, and design integrity.

 ‡ Individual project: Lacks rigorous testing with high probability of having hidden bugs.

Table 22: PicoBlaze Utilization on ZCU104.

Module CLB LUTs

KCPSM6 130

PauloBlaze 375

rx 27

tx 23

development time, and permit more flexible redesigns by implementing both on a single

chip [185]. We also can mention multi-core custom soft processors which can be used

 214

in CPU intensive DSP applications such as image processing tasks [186], or to simply

boost parallel applications by using multi-softcore architecture [187].

In embedded systems the resources are scarce and that prompts designers to use

tiny 8-bit processors in their designs. A thorough search was conducted to identify all

available 8-bit IP cores. The result is categorized into three groups:

1. Commercial product [168]

2. Academic work

3. Individual project.

Table 21 shows all notable 8-bit IP cores available as of writing this article. We

have omitted those academic works that their HDL source code could not be found in

public domain. Additionally, individual projects which have no proper documentation

or were simply duplication of other designs were also excluded.

Another interesting characteristic of a soft processors on an FPGA is their higher

clock frequency.

At the time of writing this section the fastest 8-bit MCU runs at 100MHz (Silicon

Labs MCU devices) while a PicoBlaze core can run at 105 megahertz (MHz) in Spartan-

6 (-2 speed grade) and up to 238MHz in Kintex-7 (-3 speed grade) devices [152].

To fully materialize the competitiveness of soft-core processor we can mention

multi-core custom soft processors which can be used in CPU intensive DSP

applications such as image processing [186], or simply boost parallel applications by

using multi-softcore architecture [187].

After establishing the importance of 8-bit architecture, and flexibility of FPGA-

based soft-cores in embedded systems, we list the result of our search for available 8-

bit intellectual-property (IP) processor cores as below:

• Xilinx PicoBlaze [188]

• Lattice Mico8 [189]

• Navre [190] and pAVR [191]: Atmel AVR compatible 8-bit RISC hosted on

OpenCores.org

• MCL86, MCL51, and MCL65 [192]: Intel 8088/8086, 8051, and MOS 6502

compatible

There are also academic-level cores which we mention a few: “8-bit interface task

oriented processor [193], an 8-bit RISC core [167], and an 8-bit MiniMIPS [194] for

educational purposes , a soft-core with dual accumulator [195]”. Among all cores

mentioned, only Xilinx and Lattice are industry-level 8-bit cores, and consequently

most probable to be bug-free. For example, we tested PauloBlaze [196], which is a plain

VHDL implementation of PicoBlaze, and is hosted on GitHub website. We observed

that under specific circumstances the processor produces wrong result. Replacing the

PicoBlaze with PauloBlaze [196] produced wrong result when executing the FP library

proposed in previous section. Note that the FP library itself is verified against ARM

hard FP unit that guarantees bugs in our side of design. This shows that unlike the

PauloBlaze author’s claim, the core still has some serious bugs.

 215

No. No. Name (Author/Company,

Year)

Instr. Set Source

Code

Instr.

Width

CPI

1 Core8051 * (Microsemi, 2019) Intel

MCS-51

Verilog

VHDL

1-3 B 1-11

2 DP80390 * (Digital Core Design,

2019a)

Intel

MCS-51

Verilog

VHDL

1-3 B 2-3

3 DRPIC16 * (Digital Core Design,

2019c)

PIC

16XXX

Verilog

VHDL

14-bit 1-2

4 G.P.8-bit RISC † (Antonio et al., 2015) G.P.8-bit

RISC

Verilog

VHDL

16-bit 2-3

5 HCS08 * (Silvaco, 2019a) Freescale

MC9S08xx

Verilog 1-4 B 2-6

6 L8051XC1 * (CAST Inc., 2019) Intel MCS-51 Verilog VHDL 1-3 B 4/6/12

7 M8051EW

M8051W *

(Silvaco, 2019b) Freescale

MC9S08xx

Verilog 1-4 B 2-6

8 MCL51 * (MicroCore Labs, 2019a) Intel

MCS-51

Encrypted

Verilog

1-3 B 1-4

9 MCL65 * (MicroCoreLabs,2019b) NMOS

6502

Encrypted Verilog 1-3 B 2-7

10 Mico8 * (Lattice Semi, 2017) Mico8 Verilog RTL 18-bit 2

11 MiniMIPS † (Cesar, 2011) MIPS VHDL 16-bit 1

12 Natalius ‡ (Fabio, 2012) Natalius Verilog 16-bit 3

13 Navré ‡ (Sebastien, 2013) Atmel

AVR

Verilog 1.7

14 Open8 uRISC ‡ (Kirk, 2016) V8uRISC VHDL 1-3 B 1-7

15 pAVR ‡ (Doru, 2009) Atmel

AVR

VHDL 16-bit 1.7

16 PicoBlaze * (Xilinx, 2014) PicoBlaze Primitive level 18-bit 2

17 risc8 ‡ (Tom 2016) PIC16C5X Verilog 12-bit 2-4

18 ZA-SUA † (Fernando et al., 2018) ZA-SUA Verilog 17-bit 4

 * Commercial product: The RTL (or behavioral-level) source code is not freely available.

 † Academic work: Might provide more reliability, and design integrity.

 ‡ Individual project: Lacks rigorous testing with high probability of having hidden bugs.

Table 22 shows the PicoBlaze resource utilization versus PauloBlaze and UART

tx and rx modules. Therefore, any soft-core available on open-source websites such as

github.com or opencores.org must be treated with cautiousness.

The Xilinx company, the inventor of FPGA technology, has the highest FPGA

market share [197]. This naturally makes their community larger than others and

consequently their 8-bit IP core which is named PicoBlaze to be more reliable. Other

commercial products such as Mico8, DP80390, HCS08, etc. are also viable options, but

this should be considered that sometimes when a smaller company is acquired by a

larger one their products might get discontinued, and all support tools and

documentation become outdated or inaccessible. For example, the RISC V8-uRISC

core [198] got disappeared after ARC International acquisition of VAutomation[199].

 216

Fortunately, there is an open-source implementation of it named Open8 uRISC on

public domain [200].

Many cores listed in Table 21 are based on Intel MCS-51[201] which is a complex

instruction set computer (CISC). Others are based on reduced instruction set computer

(RISC) architectures like PIC16 and MIPS. As Tariq [202] points out, several studies

show 25% of the instructions in the instructions’ set make up 95% of the execution

time. This justifies that adaptation of RISC in 8-bit IP cores.

Unfortunately, IP cores offered by commercial companies are either close source

or technology dependent [203]. For example, the source code of PicoBlaze is in not in

behavioral-level, but in highly optimized Xilinx primitive-level (firm-core), which

restricts it to only Xilinx development tools and devices and makes modification of the

design impractical. This situation is the motivation for work presented in this paper. We

propose a systematic approach that transforms firm-cores to soft-core while retaining

the optimization level and reliability. Additionally, the adapted modular approach,

makes modification of the transformed core possible.

That will leave us with two choices:

1. Xilinx PicoBlaze

2. Lattice Mico8

Both are industry-level cores with enough users to find and fix their potential bugs.

We chose Xilinx PicoBlaze solely based on availability of Xilinx FPGA devices in our

lab, and we hereby refrain to perform any performance comparison between Xilinx

versus Lattice devices.

The publicized source code of PicoBlaze is in not in behavioral-level but in highly

optimized Xilinx primitive-level, which restricts the core to only Xilinx development

tools and devices. This exasperate the matter knowing that there are only a handful of

reliable 8-bit soft macros available as discussed before.

The motivation behind the work presented here originated from the need to

implement PicoBlaze’s firm-core on non-Xilinx devices. We propose a systematic

method to port any firm-core design for soft-core which enables them to be synthesized

and implemented on any FPGA architecture. This chapter is divided into eight sections.

First section is introduction which explains the scope of work and justification of work.

Second section mentions notable works which use PicoBlaze as processor. In third

section the PicoBlaze specifications and operating mechanisms have been discussed.

Four section explain the transformation mechanism which is the main contribution of

this paper. In section five the reversed engineering result for PicoBlaze is provided so

designers can use it to modify and customize the processor according to project

requirements. In section six, the newly generated core which we have given the name

’Zipi-8’ is synthesized for Lattice devices. Meanwhile the necessary modification

needed to port to Lattice is provided.

In section seven verification method is discussed which ensure the new design

operates the same as the original PicoBlaze. Section eight concludes the work by

comparing the resource utilization of both designs. -

 217

8.2. Implementation

8.2.1. The PicoBlaze Firm-Core

8.2.1.1. Overview
The latest version of PicoBlaze is technically called KCPSM6 which is derived from

older version “(K)constant Coded Programmable State Machine 3” (KCPSM3) [204].

It is a soft macro which defines an 8-bit data processor that can execute a program of

up to 4K instructions. All instructions are defined by a single 18-bit instruction and all

instructions execute in 2 clock cycles. It provides 2 banks of 16 general purpose

registers [152].

The KCPSM6 architecture overview as provided in official user manual is shown

in Fig 98 . As we can see in Fig 98 there is a Scratch Pad Memory (SPM) with maximum

size of 256 bytes. The 18-bit instruction fetched from data bus of program memory has

two bit-fields as shown in Table 23. The 6-bit opcode provides up to 64 instructions,

which PicoBlaze utilizes 55 of them. This makes room for 9 instructions to be added in

the future. The operands field can have just one or a mixture of the following fields:

“aaa, kk, pp, p, ss, x, y” as shown in Table 9.2.

For example, the “JUMP aaa” instruction is encoded to “22aaa” which 22 is the

opcode and aaa is the 12-bit jump address, or “LOAD sX, sY” is encoded to “00xy0”

which 00 is the opcode and 4-bit x is destination register, and 4-bit y is source register.

PicoBlaze has three flags: Carry (c), Zero (Z), and Interrupt Enable (IE). There are 256

Fig 98 KCPSM6 Architecture and Features [152].

Table 23: PicoBlaze Instruction Bit-fields.

Opcode (6-bit) Operands (12-bit)

6-bit always aaa 12-bit address 000 to FFF

 kk 8-bit constant 00 to FF

 pp 8-bit port ID 00 to FF

 p 4-bit port ID 0 to F

 218

 ss 8-bit scratch pad location 00 to FF

 x 4-bit register within bank s0 to sF

 y 4-bit register within bank s0 to sF

input and 256 output ports accessible by shared port ID bus, and a program counter

stack with the depth of 30. There is an interrupt pin which forces the processor to

execute code resides in Interrupt Service Routine (ISR) (address location predefined),

and a sleep pin which freezes all operations [152].

8.2.1.2. Related Work
Farhad et al. [205] provide a platform independent implementation of older version of

PicoBlaze (KCPSM3) by replacing lookup-tables (LUTs), multiplexers (MUXs), and

RAMs, with behavioral HDL models, and then implement it on an Altera device. Their

transformed core uses 236 LUTs while the original design uses just 99, which is a 138%

increase. There is also no verification mechanism that ensures the reliability of the new

core.

The PauloBlaze soft-core written in VHDL exists on GitHub.com that is 100%

compatible with instructions set architecture (ISA) of latest version of PicoBlaze

(KCPSM6) [196]. This design uses 276 LUTs, and 91 Flip-Flops (FFs) on a Xilinx

Vortex-6 device while the original PicoBlaze uses 121 LUTs, and FFs. That is 128%

increase in LUTs and -20.9% decrease in FFs. The verification method is based on

simulating a test program, unfortunately this is not a sufficient verification mechanism,

and we observed discrepancies between the core and PicoBlaze.

The PacoBlaze [206] is another behavioral Verilog clone of KCPSM3 firm-core.

There is no documented official resource utilization report of PacoBlaze. We therefore

must synthesize and implement the design on a Spartan6 device which reports

utilization of 158 LUTs, 8 MUXs, 30 FFs.

In conclusion, there is no reliable soft-core version of latest PicoBlaze (KCPSM6)

available.

8.2.1.3. PicoBlaze Applications
We have PicoBlaze used in embedded systems for “monitoring applications” [207],

Vladimir has employed the processor to provide a controller for traffic light [208],

Pavel has constructed a multiprocessor parallel architecture based on message passing

paradigm using multiple PicoBlaze cores [209], Venkata has studies the usage of the

PicoBlaze in “multiprocessor systems” [210], and Robert has implemented a network

interface using the PicoBlaze [211]. Lung, Sabou, and Barz have implemented “smart

sensor using multiple cores” of PicoBlaze [212]. Seema and Purushottam have used

PicoBlaze to implement a “wireless sensor network” [213]. PicoBlaze has been used as

a “configuration engine” in a fault-tolerance technique [214]. Hassan and Benaissa have

implemented a scalable elliptic curve cryptography (ECC) on PicoBlaze [215]. Tim

Good and Benaissa have used PicoBlaze for “advanced encryption standard” (AES)

[216]. This body of literature justifies the usage of 8-bit soft-core processors such as

PicoBlaze in a broad range of applications.

 219

8.2.1.4. PicoBlaze Source-Code Analysis
There are currently two dominant industry standard Hardware Description Languages

(HDL): “Very High-Speed Integrated Circuit (VHSIC) Hardware Description

Language (VHDL), and Verilog Hardware Description Language (Verilog-HDL)”

[217]. They are formal notations intended for use in all phases of the creation of

electronic systems. Because they are both machine-readable and human-readable, they

support the development, verification, synthesis, and testing of hardware designs; the

communication of hardware design data; and the maintenance, modification, and

procurement of hardware [218, 219].

The PicoBlaze core is provided in both VHDL and Verilog languages. We choose

VHDL over Verilog based on personal preferences and taking the advantage of having

a very strongly typed language model into account [217].

FPGA primitives are the basic building blocks of a design. They perform dedicated

functions in the device and implement standards for I/O pins in devices. Primitives’

names are standard [220].

The first step in source code analysis is to scan the code for all primitives used in

the design. The list of all primitives used in PicoBlaze is as follow:

• LUT6

• LUT6_2

• FD

• FDR

• FDRE

• XORCY

• MUXCY

• RAM32M

• RAM256X1S

• RAM128X1S

• RAM64M

The second step is to study FPGA manufacturer library guide to retrieve the

detailed functionality of each primitive, and then write a VHDL implementation of it

accordingly. In our case, the “Xilinx 7 Series FPGA Libraries Guide” [221] provides

the detailed behavior of each primitive. Next, we will provide an equivalent vendor

independent VHDL module for the used primitives.

8.2.1.5. LLVM for PicoBlaze
There is an LLVM-Based C Compiler for the PicoBlaze Processor by Jaroslav Sykora

[124] without any public available source code. The user guide is located at

http://sp.utia.cz/smecy/pblaze-cc-v2/Users_Guide/index.html and the binary compiler

can be downloaded from http://sp.utia.cz/index.php?ids=results&id=pblazecc.

8.2.1.6. Research on how to change PicoBlaze to IPC = 1
Instruction per cycle (IPC) is a measurement of processor performance. PicoBlaze

executes each instruction in two cycles which sets its IPC to 0.5. In future we will

research on how to improve performance by having an IPC = 1.

A single cycle processor is a processor that carries out one instruction in a single

Clock cycle. One approach is to use superscalar concept and try to execute two

http://sp.utia.cz/smecy/pblaze-cc-v2/Users_Guide/index.html
http://sp.utia.cz/index.php?ids=results&id=pblazecc

 220

instructions at each clock cycle. If the source of second is the same as destination of

previous instruction and the second instruction is in even memory address, then it fails.

At this point we must come up with a solution. One solution is to switch the second

instruction with the next instructor if the following conditions are met:

• Next instruction is not REGBANK A/B

• Next instruction is not jump

If first instruction is jump, then second instruction is invalid, and must not be

executed. solution: Check if first instruction is jump then instead of fetching PC+1,

fetch PC= JUMP ADDRESS but then what to do with jump conditions? Oh, if jump is

the first instruction, then jump conditions are already set. This shows that superscalar

needs out of order execution, and dynamic schedule of instructions which increases the

processor size a lot and defeats the purpose of PicoBlaze as a compact soft macro.

Another approach is to find a way to execute instruction in one cycle. Like

processors such as MIPS, or DLX. The DLX (pronounced “Deluxe”) is a RISC

processor architecture designed by John L. Hennessy and David A. Patterson, the

principal designers of the Stanford MIPS and the Berkeley RISC designs. It seems

every instruction can be executed in one cycle except the JUMP instructions which need

to set the PC value after decoding. The best solution to this is to fetch the next

instruction and predict if it is JUMP or not, if it is not then nothing must be changed. If

it is a jump the JUMP instruction will be decoded concurrently and will be executed in

next cycle

8.2.2. Reverse Engineering of PicoBlaze
By looking into the simulation waveform of PicoBlaze one can see the initial values of

all signals. The first module to investigate is the State Machine and Control:

8.2.2.1. State Machine and Control
The input/output ports to the module are:

• t_state := B”00”

• instructions := X”00000”

• special_bit := ’0’

• stack_pointer_carry(4) := ’0’

• bank := ’0’

• run := ’0’

• internal_reset := ’0’

The internal signals are:

• t_state_value := B”00”

• interrupt_enable_value := ’0’

• active_interrupt_value := ’0’

Having the following module inputs:

• sleep := ’0’

• interrupt := ’0’

• reset := ’1’

Sets “t_state” to B”00” and after pulling down the reset, “t_state” goes to B”10”

and B”01” and then keeps alternating between these two modes. The “t_state(2)” signal

is connected to BRAM enable signal.

 221

8.2.2.2. Program Counter
Depending on pc mode it generates pc signal which is connected to address output port.

8.2.2.3. Logic Optimization
To optimize logic, we can use the following methods:

• Minimization by hand: Karnaugh maps.

• Quine–McCluskey algorithm: It is exhaustive, the tabular method, can be used

only for functions with a limited number of input variables and output functions.

• Espresso algorithm: The source code for Espresso is located under Berkeley.edu

website [222]. A modern version of it has been provided under MIT

license [223].

8.2.2.4. Primitive Conversion to Non-Vendor Specific VHDL

8.2.2.4.1. LUT6, and LUT6 2: 6-Input Lookup Table
Both design elements are 6-input look-up table (LUT). LUT6 has, 1-output, and LUT6

2 has 2-outputs. They can either act as asynchronous 64-bit ROM (with 6-bit

addressing) or implement any 6-input logic function. LUTs are the basic logic building

blocks and are used to implement most logic functions of the design [221]. The LUT6

primitive in PicoBlaze is used only to implement Combination Logic (CL). Listing 24

shows an example of PicoBlaze LUT6 instance. The “pc_mode2_lut” is instance name,

and “0xFFFFFFFF00040000” is a 64-bit hexadecimal constant used as initial value of

LUT6 primitive. I0, I1, I2, I3, I4, and I5 are inputs, and O is output.

We first perform Boolean minimization on the 6-input logic function using the

given 64-bit LUT value. The minimization method can be either manual or automated

using algorithms such as Espresso logic minimizer [222]. In above example, the

minimized function is shown in Equation 27.

Equation 27: 𝑂 = 𝐼5 + 𝐼4. 𝐼3. 𝐼2. 𝐼1. 𝐼0

pc_mode2_lut: LUT6

generic map (INIT => X"FFFFFFFF00040000")

port map(

 I0 => instruction(12),

 I1 => instruction(14),

 I2 => instruction(15),

 I3 => instruction(16),

 I4 => instruction(17),

 I5 => active_interrupt,

 O => pc_mode(2)

);

pc_mode(2) <= (active_interrupt or

 instruction(17) and

 (not instruction(16)) and

 (not instruction(15)) and

 instruction(14) and

 (not instruction(12));

Listing 24: An Example of PicoBlaze LUT6 Primitive Instantiation.

Listing 25: An Example of VHDL Implementation of LUT6 Primitive.

 222

After replacing the I0, I1, I2, I3, I4, I5, and O variables in Equation 27 with the

name of signals connected to them, we get the exact equivalent non-vendor VHDL

implementation of LUT6 which is shown in Listing 25.

The case for LUT6_2 is similar except that the lower 32-bit LUT value is used for

first, and the full 64- bit of the same shared value is used for the second output. For

example, if “0x7777027700000200” is the LUT6_2 value, then for O5 pin output, the

value “0x00000200” is used, and for O6 pin output, the value “0x7777027700000200”

is used.

8.2.2.4.2. FD: D Flip-Flop, and its variants: FDR, FDRE
This design element is a D-type flip-flop. The data on input is loaded into the flip-flop

during the Low-to-High clock transition [221]. Listing 26 shows an example of

PicoBlaze FD instance. The “alu_mux_sel0_flop” is the instance name, D is input, Q is

output, and C is clock.

The non-vendor specific VHDL code for FD primitive is shown in Listing 27.

Replacing C, Q, and D with the name of connected signals will yields the final

equivalent non-vendor specific VHDL code for FD primitive as shown in Listing 28.

alu_mux_sel0_flop: FD

 port map (

 D => alu_mux_sel_value(0),

 Q => alu_mux_sel(0),

 C => clk

);

Listing 26: An Example of PicoBlaze FD Primitive Instantiation.

flipflops_process: process (C) begin

 if rising_edge(C) then

 Q <= D;

 end if;

end process flipflops_process;

Listing 27: General VHDL Implementation of FD Primitive.

flipflops_process: process (clk) begin

 if rising_edge(clk) then

 alu_mux_sel(0) <= alu_mux_sel_value(0);

 end if;

end process flipflops_process;

Listing 28: An example of VHDL Implementation of FD Primitive.

 223

The design elements FDR, and FDRE are D-type flip-flop with Synchronous Reset,

and Clock Enable and Synchronous Reset, respectively. FDR has an extra R pin used

for resetting the flip-flop, and FDRE in addition to a synchronous reset has a CE pin

used as Clock Enable signal. Listing 29 shows the non-vendor specific VHDL

implementation of these primitives.

8.2.2.4.3. XORCY: XOR gate, and MUXCY: 2-to-1 Multiplexer
The XORCY is a special XOR with general output that generates faster and smaller

arithmetic functions. It is a dedicated XOR function within the carry-chain logic of

FPGA slice. It allows for fast and efficient creation of arithmetic (add/subtract) or wide

logic functions (large AND/OR gate) [221]; the MUXCY is a simple 2-to-1 Multiplexer

[221]. Listing 30 shows an example of PicoBlaze XORCY, and MUCY instances. For

XORCY, the “arith_carry_xorcy” is the instance name, LI, and CI are inputs, O is

output.

For MUXCY, the “parity_muxcy” is the instance name, DI, and CI are inputs, S is

selector, and O is multiplexer output. If S is Low then DI drives the O, and if S is High

then CI drives the O output.

-- FDR

flipflops_R_process: process (C) begin

 if rising_edge(C) then

 if (R = '1') then

 Q <= '0';

 else

 Q <= D;

 end if;

 end if;

end process flipflops_R_process;

-- FDRE

flipflops_R_CE_process: process (C) begin

 if rising_edge(C) then

 if (R = '1') then

 Q <= '0';

 elsif CE = '1' then

 Q <= D;

 end if;

 end if;

end process flipflops_R_CE_process;

Listing 29: General VHDL Implementation of FDR and FDRE Primitives.

arith_carry_xorcy: XORCY

 port map(

 LI => '0',

 CI => carry_arith_logical(7),

 O => arith_carry_value

);

parity_muxcy: MUXCY

 port map(

 DI => lower_parity,

 CI => '0',

 S => lower_parity_sel,

 O => carry_lower_parity

);

Listing 30: An Example of PicoBlaze XORCY and MUXCY Primitives Instantiation.

 224

The non-vendor specific VHDL code for XORCY, and MUCY primitives are

shown in Listing 31.

8.2.2.4.4. RAM32M, RAM256X1S: Multi Port Random Access Memories (Select
RAM)

These design elements are multi-port, random access memory with synchronous write

and asynchronous independent read capability. RAM32M is a 32-bit deep by 8-bit

wide, and RAM256X1S is a 256-bit deep by 1-bit wide [221].

Listing 32 shows an example of PicoBlaze RAM32M instance. The “stack ram

low” is the instance name, INIT A, INIT B, INIT C, INIT D define initial RAM values,

DIA, DIB, DIC, DID, are data input, DOA, DOB, DOC, DOD, are data output,

ADDRA, ADDRB, ADDRC, ADDRD, are read address bus, “WE” is Write Enable,

and “WCLK” is Write Clock. All writes are synchronous, while all reads are

asynchronous. The RAM32M can have several configurations. PicoBlaze uses this

primitive as a 32x8 single port RAM by connecting ADDRX pins to the same signal

(“stack_pointer”).

The non-vendor specific VHDL code for RAM32M primitive is shown in Listing

33. The general “ram” VHDL module is defined in “ram.vhd” file. To have a 32x8

RAM the depth and width of memory is set through generic parameters: “DATA

WIDTH” is set to 8 and “ADDRESS WIDTH” is set to 5. Note that DIA, DIB, DIC,

DID, are all 2-bit signals which are combined into 8-bit DI signal. Similarly, DOA,

DOB, DOC, DOD, are all 2-bit signals which are combined into 8-bit DO. In PicoBlaze

design, ADDRA, ADDRB, ADDRC, ADDRD are all connected to a shared bus (e.g.,

stack pointer), therefore we combine all of them into ADDR signal.

Similar approach can be taken to convert RAM256X1S primitive except that

“DATA WIDTH” is set to 1 and “ADDRESS WIDTH” is set to 8.

-- XORCY

 O <= LI xor CI;

-- MUXCY

muxcy_process: process (S, DI) begin

 case S is

 when '0' => O <= DI;

 when '1' => O <= CI;

 when others => O <= 'X';

 end case;

end process muxcy_process;

Listing 31: General VHDL Implementation of XORCY Primitive.

 225

stack_ram_low: RAM32M

 generic map (

 INIT_A => X"0000000000000000",

 INIT_B => X"0000000000000000",

 INIT_C => X"0000000000000000",

 INIT_D => X"0000000000000000"

)

 port map (

 DOA(0) => stack_carry_flag,

 DOA(1) => stack_zero_flag,

 DOB(0) => stack_bank,

 DOB(1) => stack_bit,

 DOC => stack_memory(1 downto 0),

 DOD => stack_memory(3 downto 2),

 ADDRA => stack_pointer(4 downto 0),

 ADDRB => stack_pointer(4 downto 0),

 ADDRC => stack_pointer(4 downto 0),

 ADDRD => stack_pointer(4 downto 0),

 DIA(0) => carry_flag,

 DIA(1) => zero_flag,

 DIB(0) => bank,

 DIB(1) => run,

 DIC => pc(1 downto 0),

 DID => pc(3 downto 2),

 WE => t_state(1),

 WCLK => clk

);

Listing 32: An Example of PicoBlaze RAM32M Primitive Instantiation.

 226

8.2.2.5. Reversed Engineered Modules
Below is the list of reversed engineered modules:

1. top.vhd: Top module

2. zipi8.vhd: processor

3. state_machine.vhd

4. register_bank_control.vhd

5. decode4_pc_statck.vhd

6. decode4alu.vhd

7. decode4_strobes_enables.vhd

8. flags.vhd

9. x12_bit_program_address_generator.vhd

-- General ram module defined in ram.vhd file

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity ram is generic (

 DATA_WIDTH : positive;

 ADDRESS_WIDTH : positive);

 port (

 WCLK : in std_logic;

 WE : in std_logic;

 DI : in std_logic_vector (DATA_WIDTH-1 downto 0);

 ADDR : in std_logic_vector (ADDRESS_WIDTH-1 downto 0);

 DO : out std_logic_vector (DATA_WIDTH-1 downto 0)

);

end ram;

architecture Behavioral of ram is

type ram_type is array ((2**ADDR'length) - 1 downto 0) of

std_logic_vector(DI'range);

 signal ram_s : ram_type := (others=> (others=>'0'));

begin

 -- Synchronous write, asynchronous read

 RamProc: process(WCLK) begin

 if rising_edge(WCLK) then

 if WE = '1' then

 ram_s(to_integer(unsigned(ADDR))) <= DI;

 end if;

 end if;

 end process RamProc;

 -- Asynchronous read

 DO <= ram_s(to_integer(unsigned(ADDR)));

end Behavioral;

-- RAM32M instantiation

stack_ram_low: ram

generic map (

 DATA_WIDTH => 8, -- 32x8-bit RAM

 ADDRESS_WIDTH => 5

)

port map (

 WCLK => clk,

 WE => t_state(1),

 DI => data_in_ram_low,

 ADDR => stack_pointer,

 DO => data_out_ram_low

);

Listing 33: General VHDL Implementation of RAM32M Primitive.

 227

10. program_counter.vhd

11. stack.vhd

12. two_banks_of_16_gp_reg.vhd

13. sel_of_2nd_op_to_alu_and_port_id.vhd

14. sel_of_out_port_value.vhd

15. arith_and_logic_operations.vhd

16. shift_and_rotate_operations.vhd

17. spm_with_output_reg.vhd

18. mux_outputs_from_alu_spm_input_ports.vhd

19. ram.vhd

20. ram32m_behav.vhd

This is how we will construct 4KB block RAM for Lattice iCE40 FPGA: Each

iCE40 device includes multiple high-speed synchronous RAM blocks, each 4Kbit in

size, which can be configured into a RAM block of size 256x16, 512x8, 1024x4 or

2048x2 [224].

The PicoBlaze’s instructions are 18-bit wide, iCE40 LP1K has 64Kbit RAM which

means we can instantiate 16 of 4Kb RAM blocks. to have 4K memory location we need

16 RAM block with 256x16, and 2 RAM block with 2048x2 configuration which

exceeds the amount of RAM blocks available in iCE40 LP1K.

Therefore, we go for 2K memory which needs 8 RAM block with 256x16, and 1

RAM block with 2048x2 configuration iCE40 primitives needed:

• 8 x SB_RAM256x16

• 1 x SB_RAM2048x2

If we need to instantiate the Lattice primitives, we need to add the library to VHDL

code as shown in Listing 35.

The VHDL instantiation details are in .vhd files which can be found in the

installation directory of iCECube2 SW. The resource utilization of multiplexing RAM

blocks to construct 2k memory is shown in Listing 34.

library sb_ice40_components_syn;

use sb_ice40_components_syn.components.all;

-- or just:

library ice;

Listing 35: Lattice Primitive Library.

################### Begin Area Report (top)######################

Number of register bits => 577 of 1280 (45 %)

SB_DFF => 548

SB_DFFESR => 12

SB_DFFESS => 1

SB_DFFSR => 12

SB_DFFSS => 4

SB_GB_IO => 1

SB_IO => 2

SB_LUT4 => 1229

SB_RAM2048x2 => 1

SB_RAM256x16 => 8

SB_RAM512x8 => 3

################### End Area Report ##################

Listing 34: RAM Block Resource Utilization on a Lattice Device.

 228

8.2.3. Zipi8: PicoBlaze Compatible Soft-Core

8.2.3.1. PicoBlaze Conversion Using Modular Approach

Fig. 99: Datapath and control [225].

A processor is divided into two section as shown in Fig. 99.

1. Control

2. Datapath

The 5-stage pipelined RISC processor might have the following pipeline stages:

• IF – Instruction fetch (usually from instruction cache or local memory)’

• RD – Read the source operands from the register file

• ALU – Perform the operation specified by the instruction

• MEM – Read memory (for a load) or write to memory (for a store)

• WB – Write back, write operation result to the register file

The PicoBlaze VHDL source code has no modular structure. It is a single module

in a single VHDL file with long list of primitive instantiations, alongside of signals that

connect them together. To port the design from firm-core to soft-core it is enough to

directly replace all the instances with non-vendor specific VHDL equivalent codes as

mentioned in previous section. But with grouping the related primitives into isolated

modules, and then perform the transformation we can handle the complexity and

minimize the human errors. We also can infer general processor component as depicted

in Fig. 99 such as data path, instruction path, and control unit. Additionally, we can try

to discover the pipelined stages of the processor.

 229

Fig. 100: Modular PicoBlaze Architecture (Zipi8).

This also gives us better understanding of internal working of the PicoBlaze core.

We have used the available comments in source code, and primitive instance names to

divide the PicoBlaze core into 16 modules. Each module resides in an VHDL file with

.vhd file extension, and the filename is chosen exactly like the module name. All

modules involved in constructing the PicoBlaze core are listed below:

1. arith_and_logic_operations

2. decode4alu

3. decode4_pc_statck

4. decode4_strobes_enables

5. flags

6. mux_outputs_from_alu_spm_input_ports

7. program_counter

8. register_bank_control

9. sel_of_2nd_op_to_alu_and_port_id

10. sel_of_out_port_value

11. shift_and_rotate_operations

12. spm_with_output_reg

13. stack

14. state_machine

15. two_banks_of_16_gp_reg

16. x12_bit_program_address_generator

The modules listed above, and important signals and buses which connect them are

shown in Fig. 100 which is a simplified version of a fully detailed schematic shown in

Fig. 101, the original scalable schematic is provided in Appendix A.

To simplify the diagram occasionally two or three related modules combined into

a single design element. This is indicated by mentioning module numbers in

parentheses beneath the design element name. Both program memory and the soft

macro share the same clock signal. Those modules which are synchronous to the clock

are marked with triangular symbol. The absence of clock symbol in modules such as

“Operand Selection” indicates pure Combinatorial Logic (CL).

 230

Fig. 101: Modular PicoBlaze Schematic (Zipi8) – Scalable version in Appendix A.

8.2.3.2. PicoBlaze Architecture
As shown in Fig. 100 the two most important paths: “data path”, and “instruction path”

are explicitly marked with blue color arrows. The allocation of two separate buses

connected to two different memory blocks indicates a Harvard Architecture [226]. To

explain the execution cycle of PicoBlaze we go through the following sample program:

Start_at_000:

LOAD s0, 05 ; Load 05 into register s0

LOAD s1, 04 ; Load 04 into register s1

JUMP subprogram_at_01c

...

subprogram_at_01c:

ADD s1, s0 ; s1 <= s1 + s0

Listing 36: PicoBlaze Sample Program.

 231

Fig. 102: PicoBlaze Decoder Schematic.

Fig. 103: PicoBlaze Decoder Modules with Input/Output Ports, Grouped Primitives,

and in-sheet Connections.

 232

Fig. 104: Zipi8 Decoders Modules Zoom in.

The de-assertion of reset signal puts the processor into run state. In this state the

processor waits for the first clock transition from low to high, which triggers a fetch

instruction from location 0x000 of program memory. The fetch makes the “Instruction

Path” bus to hold valid data (In our example, it is the first instruction: LOAD s0, 05).

The instruction bus is connected to flip-flops in “Decoders”, “State Machine &

Control”, “Flags”, and “Program Counter” modules. When the second clock cycle

occurs, the instruction is decoded (“sx_addr” is set to 0 to select register s0, and 05

constant value is held on instruction bus [7:0] named as kk field); next state of machine

is calculated; flags are set, and finally Program Counter (PC) is incremented by 1.

In clock cycle #3 the instruction at location 0x001 is fetched, and at the same time

the result of ALU is written back into register, which results s0 to hold value 05. Next

clock fetches instruction at location 1 (LOAD s1, s0). Similarly decode and execute

happens in next clock cycle which sets “sx_addr” to 1, and second ALU operand (kk)

to constant 04. Next clock cycle writes back the result into register bank, which results

s1 to hold value 04, and at the same time fetches the next instruction (JUMP subprogram

at 01c).

Next clock cycle decodes the JUMP instruction and instead of “PC + 1”, the “PC”

is set to value 0x01C which is the jump target location. Next clock cycle fetches the

instruction at location 0x01C of program memory (ADD s1, s0) and then next clock

cycles it decodes it and finally at next clock cycle the ALU result of addition of 5+4

which is 9 is written back into the register s1, and so on.

Each PicoBlaze instruction takes exactly two clock cycles to execute which makes

its performance deterministic. This turns PicoBlaze into a suitable candidate for safety-

critical real-time embedded systems [185].

 233

Fig. 105: Zipi8 Integrity Verification: VHDL Simulation Testbench.

8.2.3.3. Zipi8 Modules’ Schematic
The modular overview of PicoBlaze macro that is depicted in Fig. 100 is derived from

a full version schematic that is shown in Fig. 101 and is attached to Appendix A.

The full version schematic is drawn by analyzing the original VHDL source code

of PicoBlaze and then grouping related primitives into separate modules. We discuss

the sampled module “Decoders” shown in Fig. 102 (a more simplified version in Fig.

103) to help readers see the correlation between modules shown in full schematic versus

the VHDL module files provided as supplementary material alongside of this paper.

In Fig. 102 the blue dashed line rectangle “Decoders” indicates a virtual module as

it does not have a numbering, and it has is no corresponding VHDL file. It merely

groups three modules which their functionality is related to decoding under one

umbrella as shown in Fig. 104. Inside “Decoders” we can see three sub-modules:

• “(2) Decoding for ALU”

• “(3) Decoding for Program Counter and Stack”

• “(4) Decoding for Strobes and enables”

These modules have a corresponding VHDL module with the exact same name.

For example, under the zipi8 project folder there is a VHDL file named

“decode4alu.vhd” which corresponds to “(2) Decoding for ALU” modules depicted in

Fig. 102. The “instruction” signal bus is an input port to PicoBlaze, and

“k_write_strobe” is a PicoBlaze output port (both PicoBlaze input/output ports marked

with green color). The “instruction[16:13]”, and “carry_flag” are inputs, and

“alu_mux_sel[1:0]”, “arith_logical_sel[2:0]”, and “arith_carry_in” are outputs of the

module “(2) Decoding for ALU”. The 45-degree rotated squares indicate in-sheet local

connection.

 234

Fig. 106: PicoBlaze Random Program Generator Classes.

8.2.3.4. Zipi8 Verification

8.2.3.4.1. Concepts
Verification is the process of determining that a model implementation accurately

represents the developer’s conceptual description of the model and the solution to the

model [161, 227]. Verification can be classified into:

1. Code Verification: To identify and eliminate programming and

implementation errors within the software

2. Calculation Verification: to quantify the error of a numerical simulation or in

other words numerical error estimation [161]. A widely used approach in code

verification is the comparison method in which one code is compared to another

established code [162]. After firm-core to soft-core transformation, we can use

comparison method to verify the integrity of Zipi8 by comparing the value of

Zip8 signal buses to PicoBlaze.

8.2.3.4.2. Mechanism
Fig. 105 shows the details of testbench that is used for verification process. The VHDL

simulation module “test_zipi8.vhd” instantiates the “top” module as unit under test

(UUT). The top module consists of two block RAM modules, both holding an exact

copy of a PicoBlaze program. The program is randomly generated by a C++ tool

developed by authors. The classes used in random program generator tool is shown in

Fig. 106. The InstructionPool class instantiates 51 instructions and returns a random

instruction per each calling of getRandomInst() method. The Instruction class

represents a PicoBlaze instruction and has an opcode data field and operands. The

generate_ops() method calls the toss() method of Operand class to generate random

values for each operand. This will allow to random generate an instruction and then

randomly assign values to its operands. The instruction pool does not contain the jump,

and subroutine instructions (CALL and RETURN variations) as it does not make sense

to generate them randomly. Instead, a separate test program is written to test them

manually.

As we mentioned in previous section the Zipi8 has 16 modules. We probe the

output of all these 16 modules (102 signals in total) and compare it against the

corresponding signals in KCPSM6 using VHDL assert simulation command. The

comparison mechanism is synchronized with clocks, and it checks the validity of all

 235

102 signals in every clock cycle. We use VHDL alias command for assigning short

names to internal signals which run down into hierarchy of modules. Listing 37 shows

a sample of VHDL code for just probing one of those 102 signals. The Vivado project

that contains the complete VHDL simulation source code is provided in Appendix B.

In conjunction with above method a second verification mechanism is employed

to debug the process. The process prompts both Zipi8, and KCPSM6 cores to dump the

18-bit hex value of the instruction that they execute in every clock cycle into two

separate files. We then use Linux diff command to find out the existence of any

discrepancy in dumped simulation files. The absence of any discrepancies, and

assertion failure brings us to this conclusion that Zipi8 is a reliable PicoBlaze

compatible core.

Listing 38 shows the VHDL simulation code that dumps the instructions run by

Zipi8 into “zipi8_instructions.txt”. We obtain the instructions run by KCPSM6 by

converting the test program source code to .hex file through the assembling process

(PicoBlaze assembler automatically dumps a .hex file)

instruction_seq_dump : process(uut_clk)

 -- open write_mode the file:

 -- "zipi8_instructions.txt";

 file file_handler : text;

 variable outline : line;

 variable file_is_open: boolean := false;

 begin

 if not file_is_open then

 file_open (file_handler, "zipi8_instructions.txt", write_mode);

 file_is_open := true;

 end if;

 if rising_edge(uut_clk) then

 if(zipi8_reset = '0') then

 hwrite(outline, "00" & zipi8_instruction);

 writeline(file_handler, outline);

 end if;

 end if;

end process instruction_seq_dump;

Listing 38: VHDL Verification: Instruction Dump.

test_internal_signals: process (uut_clk)

 alias zipi8_run is << signal uut.processor_zipi8.state_machine_i.run :

std_logic >>;

 alias kcpsm6_run is << signal uut.processor_kcpsm6.run : std_logic >>;

 begin

 if rising_edge(uut_clk) then

 assert (zipi8_run = kcpsm6_run)

 report "zipi8_run internal signal mismatch @ " &

integer'image (now / 1ns) &

" ns" severity failure;

 end if;

end process;

Listing 37: VHDL Verification: Signal Assertion.

 236

8.2.4. PicoBlaze on Lattice

8.2.4.1. Synthesis Utilization Result
This section provides proof of concept by synthesizing Zipi8 and implementing it on a

Lattice [228] FPGA device. The Lattice iCEcube2 version 2017.08.27940 is used as

project manager, and “Synplify Pro L2016.09L+ice40, Build 077R, Dec 2 2016” is used

as synthesis tool. The complete source code and project files are provided in Appendix

C. Table 24 shows the resource utilization reported by Synplify Pro for Lattice

iCe40LP1K after synthesizing and mapping the Zipi8. This device is one of the tiniest

FPGAs on the market with only 1280 Logic Cells, and 64Kb RAM [228].

Table 24: Zipi8 Resource Utilization on Lattice iCe40LP1K.

Cell Usage Count

DFF Variation 322

Logic Cell 642 of 1280 uses (50%) (190 inferred register)

SB RAM2048x2 9 uses

SB RAM256x16 2 uses

Block Rams: 11 of 16 (68%)

Fig. 107: Lattice Logic Cell [228].

The most important count is LUT4 consumption. Table 24 shows that for Zipi8,

“distribution of all consumed LUTs” is 642 (SB_LUT4). Synthesis of PicoBlaze using

Vivado v2018.3 (64-bit) for a Spartan-7 series device utilizes 139 LUTs. The reason

for an increase in LUT consumption is that Spartan-7 series devices provide LUTs with

6 and 5 input LUTs, while Lattice iCE40 series devices are only equipped with 4 input

LUTs. Additionally, the synthesis tool fails to map a memory block to Lattice

technology specific RAM primitive and maps it to 256 individual registers instead.

 237

A Programmable Logic Block (PLB) in Lattice device consist of an LUT4 and a D

Flip-Flop (DFF) as shown in Fig. 107 [228]. Therefore, 256 DFF automatically

increases the LUT4 count which must be considered, which consequently makes LUT

count for Zipi8 on the Lattice to 642 − 256 = 382 uses.

Table 25: Zipi8 Modules with Parameterized Memory Block.

Zipi8 Module Depth Width

two banks of 16 gp reg 32 8

spm with output reg 256 8

stack 32 16

program memory 4096 18

8.2.4.2. Lattice RAM Blocks
The PicoBlaze macro uses Random Access Memory (RAM) elements to implement

SPM, stack, and internal registers. These modules (plus the program memory) with

their depth and width are listed in Table 25. It is up to synthesis tool, and its user settings

to infer memory clock elements, therefore we refrain from converting general

parameterized RAM blocks to Lattice RAM blocks.

8.2.4.3. Program Memory
A 4KB block RAM with width of 18-bit is needed to be connected to PicoBlaze as

“program memory”. Xilinx devices provide 9-bit RAM blocks which makes it very

efficient to construct program memory by simply grouping 2 block RAMs next to each

other (2 × 9bit = 18bit). Lattice devices do not provide 9-bit wide block RAMs,

therefore forcing designer to construct an 18-bit wide block RAM using other

combinations. Lattice iCe40LP1K has 16 Memory Block of type RAM4k. Each 4k

memory block can be used in a variety of depths and widths such as: “256x16 (4K)”,

“512x8 (4K)”, “1024x4 (4K)”, “2048x2 (4K)” [228].

Instead of 4KB, we construct a 2KB program memory by grouping 9 instances of

SB RAM2048x2 primitive (9 × 2bit = 18bit) and leave the rest memory blocks to

synthesis tool to infer. Due to this change in program memory structure a new tool is

developed in C++ language which receives PicoBlaze program in. hex format, and

outputs a .vhd file as PicoBlaze program memory which can be directly imported into

project without any modification. The tool takes advantage of INIT 0 (to INIT F)

directives to set values for Lattice RAM RAM4K primitives to initialize the memory

block.

These initial values are read from .hex file and inserted into 9 separate instances of

SB RAM2048x2 in a .vhd file. The complete C++ source code of this tool is provided

in Appendix D. Referring to Table 25 Zipi8 uses 11 of 16 block RAMs available. 9 uses

of SB RAM2048x2 is directly instantiated in program memory module, 1 use of SB

RAM256x16 is inferred to map “stack”, and 1 use of SB_RAM256x16 is to map

“spm_with_output_reg”.

 238

Synplify Pro is unable to map block memory in “two_banks_of_16_gp_reg”. The

reason is that the RAM block there mimics the behavior of Xilinx primitives which

allows “Synchronous Write, Asynchronous Read, with separate read/write address

bus”. Listing 39 shows this different VHDL implementation of RAM block which has

a subtle difference with Listing 33.

8.3. Limitation
In this thesis a new method is proposed for reverse engineering the locked firm-cores

that their FPGA primitive list is available to soft-core.

One of the major limitations of the method is its reliance on manual inspection of

primitive names to extract logical relationship between signal names and modules. If

the manufacturer renames the meaningful names attached to the primitive instances,

then the transformation needs more effort to take place.

Another limitation is the manual conversion process. The proposed method has

the potential to be fully automated. The work needs a good amount of labor work for

one engineer to spend time and write a one-to-one conversion of each primitive to its

VHDL equivalent code. This is tedious and therefore left unfinished. This unfinished

work can be recognized as a limitation as huge and complex designs will need a lot of

time to be converted.

The future work can address this issue by automating the process.

-- General ram module defined in ram.vhd file

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

 entity ram_rw is

 generic (DATA_WIDTH : positive; ADDRESS_WIDTH : positive);

 port (

 WCLK : in std_logic;

 WE : in std_logic;

 DI : in std_logic_vector

 (DATA_WIDTH-1 downto 0);

 ADDR_RD : in std_logic_vector

 (ADDRESS_WIDTH-1 downto 0);

 ADDR_WR : in std_logic_vector

 (ADDRESS_WIDTH-1 downto 0);

 DO : out std_logic_vector

 (DATA_WIDTH-1 downto 0)

);

 end ram_rw;

 architecture Behavioral of ram32m_rw is

 type ram_type is array ((2**ADDR_RD'length) - 1 downto 0) of

std_logic_vector(DI'range);

 signal ram_s_RD_WR : ram_type :=(others=> (others=>'0'));

 begin

 -- Synchronous write, asynchronous read with

 -- sepaarte R/W

 RamProc: process(WCLK) begin

 if rising_edge(WCLK) then

 if WE = '1' then

 ram_s_RD_WR(to_integer(unsigned(ADDR_WR))) <= DI;

 end if;

 end if;

 end process RamProc;

 DO <= ram_s_RD_WR(to_integer(unsigned(ADDR_RD)));

end Behavioral;

Listing 39: General VHDL Implementation of RAM32M Primitive with Separate R/W.

 239

8.4. Result
In this chapter a systematic method is presented to port firm-core designs to soft-core.

This opens the opportunity to re-target vendor-dependent FPGA designs to other

platforms. The proof of concept is based on porting Xilinx PicoBlaze macro to a soft-

core design called “Zipi8’, and then synthesize, and map it to a Lattice FPGA device.

This new macro is fully compatible with PicoBlaze and is gone through rigorous

verification method to ensure its integrity. The method presented in this chapter

improves flexibility in expense of FPGA resources. PicoBlaze core is highly optimized

for Xilinx devices and consumes only 123 LUTs, 76 registers, and 25 MUXes, while

Zipi8 on the same device consumes 139 LUTs (4.9 % increase), 66 registers, and

no MUXes. On a Lattice device the LUT count For Zipi8 is 382 (three folds) due to

lack of 5/6-input LUT primitives.

The design is synthesized and implemented on ZCU104 board using on Vivado

v2020.1 (64-bit) at ambient temperature 2525.7ºC junction temperature 25.7ºC,

thermal margin 74.3ºC total on-chip power is reported 0.729W with 0.114W dynamic

(Zipi8 + PicoBlaze + two program memories + verification circuitry) and 0.615W

device static. PicoBlaze and Zipi8 both report dynamic power consumption of 0.003W

(3mW).

The work presented in this chapter can be used to reverse engineering any design

which its FPGA primitive information is exposed.

The Project files and related documents with the following content can be found at

the GitHub website:

• Appendix_A: Full Xilinx PicoBlaze Schematic.

• Appendix_B: Zipi8 project for Vivado 2018.3.

• Appendix_C: zipi8_on_lattice project for Lattice iCEcube2 version

2017.08.27940.

• Appendix_D: C++ program that converts picoblaze .hex file to .vhd file

supported by Lattice Ice40 devices.

https://github.com/ehsan-ali-th/firmcore_to_softcore_appendices

https://github.com/ehsan-ali-th/firmcore_to_softcore_appendices

 240

9. DAP-Zipi8: Deterministic Real-Time Embedded System
Microprocessor without Branch and Load Delay Based on
PicoBlaze Architecture

9.1. Introduction
In previous section a soft-core was successfully derived from firm-core Xilinx

PicoBlaze. In this section we try to improve the core performance with the adaptive

architecture as a distant goal in mind.

Real-time embedded systems (RTES) require deterministic bounded responses to

events. Advanced techniques such as pipelining, and branch prediction improve

microprocessor performance in expense of determinism. In this paper, a new

deterministic RTES capable processor architecture, without load and branch delays is

proposed to achieve a uniformly timed instruction set architecture (ISA).

The deterministic ISA is achieved by utilizing two address buses in conjunction

with dual port block RAMs which are common in commercial FPGAs. A carefully

timed synchronous circuit and simultaneous fetching of two instructions per clock cycle

removes mandatory branch and load delays and produces a uniform one clock cycle per

instruction architecture.

To demonstrate the concept, a soft-core named DAP-Zipi8, is derived from Xilinx

PicoBlaze firm-core. The new processor improves performance by reducing the original

clock per instruction (CPI) of PicoBlaze from 2 to 1 in expense of extra logic, which

increases the critical path of the original design.

This results in reduction of the maximum clock speed, from 357.509 MHz to

224.022 MHz. Merging gain in CPI with loss in the maximum clock frequency still

yields an increase in overall performance in terms of Million Instructions Per Second

(MIPS) from 178.76 MIPS to 224 MIPS (25.31% increase). Improved performance and

determinism of the DAP-Zipi8 make it a viable choice for hard RTES applications.

This section focuses upon central processing units for real-time embedded systems

(RTES). Most of available processors in market are not designed specifically for the

hard RTES [229]. Advanced performance improvement techniques such as pipelining,

branch prediction unit (BPU), floating point unit (FPU), cache, memory management

unit (MMU), frequency scaling, shared bus, etc. sacrifice determinism and introduce

timing anomalies [229-231] which increases the complexity of static timing analyses

[232, 233].

Consider the case of a pipeline stall, where an instruction must take 𝑛 extra stall

cycles where 𝑛 depends on pipeline depth. Wrong predictions of BPU force the

processor to discard speculatively fetched instructions, incurring delay (which equals

to the number of stages between fetch and execute stage [234]).

The FPU performance depends on implementation and input operands. For

example, a subnormal input can increase the execution time by two orders of magnitude

[235]. A cache miss requires an access to upper memory layers which imposes much

longer delay. Accessing a memory page that is not mapped into virtual address space

causes a page-fault in MMU, forcing a load page from disk, incurring delay. The

frequency scaling and shared buses exhibit similar non-deterministic delays. There is a

misconception that fast computing equals real-time computing. Rather than being fast,

the most important property of RTES is predictability [236].

 241

All phenome mentioned above are sources of indeterminism. They add complexity

to static analysis tools, and have negative impact on worst-case execution time analysis

(WCET) which determines the bounded response time of an RTES.

Although achieving acceptable WCET analysis is still possible in the presence of

those advanced techniques (through end-to-end testing, static analysis, and

measurement-based analysis [237]), but achieving better WCET when some features

(e.g., when caches are present [229]) are still an open problem. Therefore, designers

tend to use simple CPUs such as RISC with less of those performance improving

features for hard real-time systems. RISC architecture has a major advantage for real-

time systems as the average instruction execution time is shorter than that of CISC. This

leads to shorter interrupt latency and thus shorter response times [238].

One of the major neglected sources of indeterminism is indeterministic

performance of instruction-set architecture (ISA) of most processors, which is due to

variable execution time of instructions. For example, most branch instructions require

more clock cycles if taken than if not. The ARM11 needs one clock cycle for untaken,

but three clock cycles for taken branches[239] In PowerPC 755 a simple addition may

take between 3 to 321 cycles [240] due to its non-compositional architecture [241] that

produces domino effect.

For most 4-, 8-, and 16-bit, non-pipelined microarchitectures without caches, one

could simply sum up the execution times of individual instructions to obtain the exact

execution cycle of a sequence of instructions [242, 243]. This is only valid if the ISA

of microarchitectures are deterministic. In this context determinism means the exact

number of clock cycles for all instructions, and this number should not depend on

previous states of the machine.

In this section a new processor design is proposed. Its ISA achieves a single clock

cycle for all instructions. It has neither load nor branch delay. With its deterministic

nature, it is most suitable for hard RTES applications.

Proof of concept is demonstrated by modifying the Xilinx PicoBlaze firm-core.

The result is uniform instruction timing even when it comes to execute conditional

branches, or to resolve register dependency interlocks. The novelty is upon elimination

of the load and branch delays with a carefully timed synchronous circuit, using two

address buses and dual port memory primitives in FPGAs.

Preliminary definitions and related work are presented after this section. Next, a

brief overview of PicoBlaze architecture is mentioned, and the technique to transform

PicoBlaze to the modifiable soft-core (named Zipi8) as discussed in previous sections

is employed which makes architectural customization possible.

Then the Zipi8 is modified to achieve CPI = 1. The work in this step contains two

main contributions:

1. A new processor architecture that uses two address buses to eliminate load and

branch delay and achieve deterministic ISA.

2. DAP-Zipi8: A new PicoBlaze compatible soft-core with uniform CPI = 1 and

overall performance improved by 25.31% in comparison with the original

PicoBlaze.

Finally, verification process is discussed, and the work is concluded by discussing

resource utilization comparison of DAP-Zipi8 versus PicoBlaze.

 242

9.2. Implementation

9.2.1. Definitions

Fig. 108: A model of sensors and actuators in embedded systems [244].

 The real-time systems (RTS) are computing systems that must react within precise

time constraints to events in the environment [245]. We can categorize RTS into three

groups [246]: (1) Hard RTS: Imposes strict timing requirements, with fatal

consequences if temporal demands do not meet. (2) Soft RTS: Sets coarse temporal

requirements, without catastrophic consequences if several deadlines miss. (3) Firm

RTS: Sets fine grain temporal requirements, without fatal consequences in case of

infrequent deadline misses. Embedded systems are computing systems with tightly

coupled hardware and software integration, that are designed to perform a dedicated

function[247]. The reactive nature of embedded system is show in Fig. 108.

A reactive system must respond to events in the environment within defined time

constraints. What makes it more difficult to respond within a bounded time frame is

that external events may be aperiodic and unpredictable [244]. Hard real-time

embedded systems (RTES) refer to those embedded systems which require real-time

behavior with zero tolerance for a missed deadline [247]. The software part of a RTS is

an application that runs either in stand-alone mode (bare-metal) or scheduled as a task

on a real-time operating system (RTOS). The hardware part includes one or more

central processing units (CPU), memory elements, input/output (I/O) devices with

interrupt mechanism to provide deterministic bounded responses to external events.

The timing anomaly refers to a situation where a local worst-case does not entail

the global worst-case. For instance, a cache miss (the local worst-case) may result in a

shorter execution time, than a cache hit, because of scheduling effects [231]. The

domino effect is a severe special case of timing anomaly that causes the difference in

execution time of the same program starting in two different hardware states to become

arbitrarily high [241].

One of the metrics of microprocessor performance is the average number of Clock

cycles Per Instruction (CPI). Given a sample program with 𝑝 instructions, the

instruction count 𝑛𝑖 for each instruction type 𝑖 , and the clocks needed to execute

instruction type 𝑐𝑖, CPI is defined as 𝐶𝑃𝐼 =
∑ 𝑛𝑖𝑖 𝑐𝑖

𝑝
 . The CPI, in conjunction with

processor clock rate can be used to determine the time needed to execute a program

[248].

The classic 8051 CPU requires 12 cycles per instruction (CPI=12) [249], PIC16

takes 4 cycles (CPI=4) [250], and Xilinx PicoBlaze takes 2 clock cycles per instructions

(CPI=2) [152] uniformly. Later many CPUs are optimized such that most instructions

 243

have CPI=1, but a few of them still require more than one cycles, hence uniformity in

instruction timing vanishes.

The implementation of processor-based design can be done via two mediums: 1)

Microcontroller Unit (MCU), or 2) Field-Programmable Gate Array (FPGA). We

exclude Application-Specific Integrated Circuit (ASIC) approach due to its high Non-

Recurring Engineering (NRE) cost, and its impracticality for low volume production

[167].

An FPGA chip includes input/output (I/O) blocks, and the core programmable

fabric [168]. FPGAs are being used extensively to cover a broad range of digital

applications from simple ‘glue logic” [169], and hardware accelerators to very powerful

system-on-chip (SoC) platforms[170]. The 8-bit architecture is the cornerstone of

MCUs used in designing embedded systems [175].

FPGAs have higher level of flexibility than MCUs by providing a programmable

logic (PL) fabric [251]. For example, FPGAs allow designers to change a product after

release, by upgrading its firmware[179]. The drawback of FPGA’s flexibility is that it

uses approximately 20 to 35 times more area, has a speed roughly 3 to 4 times slower,

and consumes roughly 10 times as much dynamic power[180]. There are also occasions

that FPGAs can outperform MCUs by implementing applications kernels in PL and

integrate them with soft-cores [252] to take advantage of inherent parallelism of FPGA

devices in an optimal way [182].

Meanwhile FPGAs can host intellectual property (IP) CPU cores with capacity to

add custom instructions (e.g., Nios-II[253]). IP cores come in three flavors [183]: 1)

Soft-core: Written in HDL language without extensive optimization for the FPGA

target architecture 2) Firm-core: Written in HDL implementations but have been

optimized for a target FPGA architecture, and 3) Hard-core: Fixed-function gate-level

IP within the FPGA fabric.

One of the important applications of IP cores is in safety-critical real-time

embedded systems where designer can take advantage of deterministic timing [185,

254-256]. The Xilinx PicoBlaze is a firm-core with uniform CPI = 2 which results in a

deterministic ISA performance [152]. Additionally, it is an industry-level core with

enough users to find and fix its potential bugs. Unfortunately, the behavioral-level HDL

source code is not available. It is highly optimized for Xilinx primitives which makes

it very compact, but impractical to modify or implement on non-Xilinx devices.

9.2.2. Performance versus Determinism
Three factors contribute to system performance include [257]:

1. No. of instructions required to perform a task (𝐼).
2. No. of clock cycles required per instruction (𝐶𝑃𝐼).
3. The period of a clock cycle (𝑇).

Both RISC and CISC attempt to minimize 𝑇. For CISC the emphasize is on

minimizing 𝐼 by providing powerful instructions. This results in an increase of 𝐶𝑃𝐼. For

RISC, the goal is to minimize 𝐶𝑃𝐼, and to bring the 𝐶𝑃𝐼 as close as possible to 1 [257,

258].

To achieve 𝐶𝑃𝐼 = 1, RISC processors resort to pipelining technique. The major

problem with pipelined architecture is that if instruction B in the pipeline has data

dependency with instruction A, then the pipeline must be stalled until instruction A

passes the execution stage. This delay is called load delay. Most RISC processors are

 244

Fig. 109: Branch and Load Delay Concept versus Branch and Load Delay Slots.

designed to possess the load delay of one clock cycle (introducing a load delay

slot [257]) but are short to eliminate it entirely.

Another similar case applies to conditional branch instructions. They depend on

flags set by previous instructions. Therefore, the pipeline must be stalled to let previous

instructions finish and then the decision whether the branch must be taken or not, can

be made. We call this hold up time as branch delay. Another issue is that a taken branch

invalidates the next immediate fetched instruction in pipeline and forces a flush. There

are two solution to this: 1) Insert a NOP instruction after each branch instruction. 2)

Always execute the instruction after branch even if branch is taken (delayed branch

[257]). This instruction slot that gets executed without the effect of previous

instructions is called branch delay slot. For the sake of clarity all these concepts are

concisely depicted in Fig. 109.

Aside from advances in fabrication, the common way to speed up the clock is to

chop the pipeline into many stages (Deep pipeline) [259]. Modern processors departed

from classic 5-stage pipeline and went up to 50 stages [260, 261]. But when power was

considered [262] the dynamic and leakage power per latch made an optimal pipeline

depth to be around 14 to 20[263]. As the number of pipeline stages increases, the stalls

become more costly. To minimize stalls several techniques such as branch prediction

were introduced which worsen determinism of microarchitecture. For example, the core

i7 pipeline with 14 stages imposes a cost of extra 17 clock cycles when a branch

misprediction occurs [263].

The search for RTES microprocessor yields no definite results as all modern

processors have deviated from simple architectures and have added performance

improving features. In practice designers choose a very high performance

indeterministic processor to meet the WCET requirement. Even processors such as

ARM Cortex-R series which are advertised as real-time processors carry the inherent

indeterminism discussed earlier. For example, Cortex-R4 branch instruction may take

1, 8, or 9 clock cycles based on correct/incorrect dynamic prediction unit [264]. What

differentiates them from general purpose processors is tightly coupled memories with

error correction code (ECC), redundant lock-step configuration with logic for fault

 245

detection, low latency deterministic interrupt system that allows multi-cycle

instructions to be interruptible and avoid cache misses in memory management units.

By considering the above established facts we suggest that there might be situations

where a hard RTES may gain more from a low-power, non-pipelined, non-cache

microprocessor that enjoys a deterministic ISA than a high-performance processor with

pipeline, cache, indeterministic ISA. This is all since for RTES, predictability is more

important than performance. In this paper we solely advocate this possibility and pass

the burden of RTES processor performance comparison to other researchers in the field.

9.2.3. Related Work
Simple architectures such as binary decision machine (BDM) [265] can achieve CPI =

1, because it does not have branch instructions [266]. BDMs for complex tasks that

support limited number of instructions working on data path, plus ‘call’ and ‘return’

instructions to support subprograms, are also proposed. Although they achieve a RISC-

like behavior with CPI = 1, but still lack conditional branches [267]. Non-pipelined

single-cycle processors are widely used in academia for teaching processor architecture

(such as MIPS and RISC-V single-cycle [248], [268]). Although their CPI is 1, but their

Table 26: RISC Solutions to Load and Branch Delays.

Processor Load Delay Branch Delay

IBM 801 Locks register, can be optimized by compiler

[269]

Branch with Execute (BWE) [269]

*

RISC I Load & Store, always take 2 cycles [258] Delayed Jump [258] †

SPARC-V8 Load-use interlock stalls the pipeline [270] Annulling Delayed Branches [270]

‡

SPARC-V9 Like SPARC-V8 but 64-bit version Annulled Delayed Branches [271] ‡

MIPS-I Delayed Loads with mandatory Load Delay

Slot [272]

Delayed Branch with Branch Delay

Slot [272]

MIPS-II Removes mandatory Load Delay Slot, in case

of violation extra real cycles will be added

[273]

Branch-Likely [272] §

MIPS32 Interlock by Load Delay stalls the pipeline

[274]

Branch-Likely, Compact Branches

[275]||

ARM7TDMI

(3-stages)

All loads take at least constant 3 cycles [276,

277]

All branches take at least constant 3

cycles [276, 277]

ARM9TDMI

(5-stages)

Load-use interlock incur 1 extra cycle if

following instruction uses loaded word [278]

All cases take 3 cycles [276, 278]

ARM11 (8-

stages)

Takes 1 to 5 clock cycles due to Register

Interlocks [239]

Dynamic Branch

Prediction/Folding [239] ¶

SiFive E31

(RISC-V)

All loads have 3 cycle result latency [279] Branch Predictor with 1 cycle

latency, misprediction incur extra 3

cycles [279]

PowerPC

750 CL

Out-of-Order Load/Store Unit with 2 or 3

cycles latency

Static/Dynamic Branch

Prediction/Folding ∗∗

* Executes the instruction in branch delay slot even if branch is taken. 60% of instructions can be converted to execute form

 by compiler.

 246

† Delayed Jumps are for every branch with compiler optimization to either insert a NOP after each branch or a safe instruction.
‡ If branch is taken always execute instruction in delay slot, if not taken then check the annul bit: if it is 1, annul the instruction

 in slot, if it is 0 then execute it. Using annul bit compiled code contains less than 5% NOP.

§ Branch-Likely is like Annulling/Annulled Delayed Branches.
|| Prior to release 6: has Branch Delay and uses Branch-Likely. Release 6: No Delay slot and uses Compact Branches which have

 Forbidden Slot instead. Adjacent control transfer instructions (CTI) introduce performance penalty.

¶ An untaken branch requires 1 cycle, and a taken branch requires 3 or more cycles.

∗∗ Branch instruction gets folded if taken (needs no cycle) and 1 idle cycle will be added on Branch Target Instruction Cache

 (BTIC) miss. Pipeline gets flushed on branch misprediction (takes 3 cycles or more).

clock period is very long, which makes them inefficient [248]. This forces techniques

such as pipelining to be used to shorten the clock period. A pipelined processor can

only achieve CPI = 1 (an idealized goal) if all instructions are independent [280].

Table 26 lists several pipelined RISC processors, and the solution that each has

adapted to deal with load and branch delays. The picks are based on historical

importance: The IBM 801 resulted in PowerPC [281], Berkeley RISC-1 contributed to

SPARC [282], and Stanford RISC developed into MIPS [226]. The ARM and RISC-V

are also recent notable architectures. All these processors have non-uniform instruction

timing which contributes to indeterminism. The effect amplifies when performance

Table 27: PicoBlaze Instruction Bit-Fields [152].
Opcode (6-bit) Operands (12-bit)

6-bit always aaa 12-bit address (000-FFF)

 kk 8-bit constant (00-FF

 pp 8-bit port ID (00-FF)

 p 4-bit port ID (0-F)

 ss 8-bit scratch pad location (00-FF)

 x 4-bit register within bank (s0-sF)

 y 4-bit register within bank (s0-sF)

improving techniques such as cache, dynamic branch prediction or branch folding are

present. For example, in PowerPC 750 CL the timing for branch instruction is highly

irregular and is based on [283]:

• Whether the branch is taken

• Whether instructions in the target stream are in the Branch Target Instruction

Cache (BTIC)

• Whether the target instruction stream is in the cache

• Whether the branch is predicted

• Whether the prediction is correct

This shows extreme level of indeterminism which ultimately makes calculation of

WCET more complex. There are also unconventional works for achieving a CPI of 1

such as CoolRISC [284, 285] which uses Double-Latch clocking scheme with two non-

overlapping clocks to eliminate load and branch delays. The pitfalls of this approach

are: 1) Incompatibility with optimization algorithms embedded in electronic design

automation (EDA) tools. 2) No FPGA primitive support to implement the design. 3)

Accessing memory after MUL instruction needs 2 cycles, interrupt and events have

delay in some cases. 4) Difficulty to reach high clock speeds (e.g., 60 MIPS needs 120

MHz oscillator).

 247

9.2.4. The PicoBlaze Firm-Core

9.2.4.1. Overview
KCPSM6, an upgraded version of (K)constant Coded Programmable State Machine 3

(KCPSM3) [204], is the technical name of Xilinx PicoBlaze. It is an 8-bit firm-core

with 32 general purpose 8-bit registers arranged in two banks. All instructions have 18-

bit width and execute in 2 clock cycles [152]. The instruction fields divided into a 6-bit

opcode (55 out of 64 instructions are utilized), and 12-bit for operands as shown in

Table 2. Its architecture overview is shown in Figure 3. Its program memory can go up

to 4KB and it has a Scratch Pad Memory (SPM) for temporary data storage with the

maximum size of 256 bytes. Also, it has a stack with the depth of 30, and 256 I/O ports.

The operands field accommodates one or a mixture of the following values: “aaa,

kk, pp, p, ss, x, y” as shown in Table 27. For example, the “JUMP aaa” instruction is

encoded to ‘22aaa’ hex value, 22 is the opcode and aaa is the 12-bit jump target

address, or “LOAD sX, sY” is encoded to ‘00xy0’, 00 is the opcode and 4-bit x is

destination register, and 4-bit y is source register. PicoBlaze has three flags: Carry (C),

Zero (Z), and Interrupt Enable (IE). There is an interrupt pin which forces the processor

to execute code resides in Interrupt Service Routine (ISR) (address location

predefined), and a sleep pin for freezing all operations [152].

9.2.4.2. PicoBlaze Source-Code Analysis
The PicoBlaze core is provided in both VHDL and Verilog languages. We choose

VHDL over Verilog based on personal preferences and taking the advantage of having

a very strongly typed language model into account. FPGA primitives are the basic

building blocks of a design. They perform dedicated functions in the device, implement

standards for I/O pin and their names are standard [220]. The first step in source code

analysis is to scan the code for all primitives used in the design. The list of all primitives

used in PicoBlaze is as follow: “LUT6, LUT6_2, FD, FDR, FDRE, XORCY, MUXCY,

RAM32M, RAM256X1S”.

The second step is to study FPGA manufacturer library guide to retrieve the

detailed functionality of each primitive, and then write a VHDL implementation of it

accordingly to obtain a platform independent design [205]. In this case, the “Xilinx 7

Series FPGA Libraries Guide” [221] provides the detailed behavior of each primitive.

Previous sections provided the equivalent vendor-independent VHDL code for each

primitive.

As seen in Fig. 110, the de-assertion of reset signal puts the processor into run state.

In this state the processor waits for the first rising-edge clock, which triggers a fetch

instruction from location 0x000 of program memory. The fetch makes the ‘Instruction

Path’ bus to hold valid data (In our example, it is the first instruction: LOAD s0, 05).

The instruction bus is connected to flip-flops in ‘Decoders’, ‘State Machine & Control’,

‘Flags’, and ‘Program Counter’ modules.

When the second clock occurs, the instruction is decoded (sx_addr is set to 0 to

select register s0, and 05 constant value is held on instruction[7:0] marked as kk field);

 248

Fig. 110: PicoBlaze Instruction Cycle.

next state of machine is calculated; flags are set, and finally program counter (PC) is

incremented by 1. In clock cycle #3 the instruction at location 0x001 is fetched, and at

the same time the result of ALU is written back into register, which results s0 to hold a

value of 05.

Next clock fetches instruction at location 1 (LOAD s1, 04). Similarly decode and

execute happens in next clock cycle which sets sx_addr to 1 and prompts second ALU

operand (kk) to hold a constant 04. Next clock cycle writes back the result into register

bank, which sets s1 to be 04, and at the same time fetches the next instruction (JUMP

subprogram_at_01c). Next cycle the JUMP instruction is decoded and instead of ‘pc +

1’, the pc is set to value 0x01C which is the jump target location. Next cycle, the

instruction at location 0x01C of program memory (ADD s1, s0) is fetched. Then, the

ADD instruction is decoded, and the ALU needs some time for calculation. The result

is ready before the next clock edge, when it will be written back into the register s1,

and so on.

Each PicoBlaze instruction takes exactly two clock cycles (CPI = 2) which makes

its ISA performance deterministic. This turns PicoBlaze into a suitable candidate for

safety-critical real-time embedded systems [185]. In the next section we propose a new

design which achieves CPI = 1.

 249

Fig. 111: Description of Dual Fetch mechanism and how it allows conditional branch

instructions to take 1 cycle whether taken or not taken.

9.2.5. Zipi8 With CPI = 1
We first explain the general mechanism and overall concept on the proposed technique

on how to improve CPI from 2 to 1 without getting bogged down into details. We then

apply the discussed principle to the Xilinx PicoBlaze as a case study.

9.2.5.1. Branch And Load Delay Elimination
Fig. 111 describes how simultaneous fetching of two instructions per clock cycle

eliminates branch delay. Assuming instructions placed in memory location 0, 1, 2, 3, ...

are inst_0, inst_1, inst_2, inst_3 then inst_0 and inst_1 are fetched in first clock cycle,

inst_1 and inst_2 in second cycle and so on. If an instruction is a conditional jump to

memory location x then we name it as jump@x.

In Fig. 111 based on assumption that second instruction is a conditional jump

inst_0 and jump@x is fetched in first cycle. Decoding both instructions determines

whether the conditional jump must be taken or not taken. If the branch is not taken, then

1 cycle is needed to fetch jump@x and it will be considered as a no operation (NOP)

instruction. If branch must be taken then instead of fetching jump@x instruction, the

instruction at location x will be fetched (inst_x) again by spending only 1 clock cycle.

The term Dual Fetch should not be confused with Dual Issue feature that exists in

some modern processors such as ARM Cortex-R. The Dual Fetch technique proposed

in this paper fetches two instructions at one clock cycle and uses the second fetch for

the sole purpose of removing branch and load delays which ultimately yields a uniform

CPI = 1. The Dual Issue refers to fetching two instructions at each clock cycle and

issuing them to the next stage of pipeline to achieve CPI = 0.5 without a guarantee on

CPI uniformity.

 250

Fig. 112: Description of Dual Fetch mechanism and how it facilitates data

dependency related load delay elimination.

Fig. 113: Original PicoBlaze VS a 2-stage pipeline VS the Proposed Method. Assuming

instruction 2 is a conditional branch to location 9 and it is taken.

In Fig. 113 the behavior of original PicoBlaze v. a 2-stage pipeline v. our proposed

method is shown. FDx stands for Fetch/Decode, and EWx stands for Execute and Write

Back for instruction number x. TAx means instruction located at target address x, and

EWTAx means execution and write back of TAx.

Fig. 112 shows the normal flow of fetching process versus a Dual Fetch

mechanism which leads to complete elimination of delays related to data dependency

among two consecutive instructions. If inst_1 depends on inst_0’s result then a forward

path will provide the calculated result from inst_0 to be used in inst_1.

After analyzing the internal architecture of PicoBlaze we can see that two clock

cycles per instructions is necessary. At the first clock cycle an instruction from location

address pointed by the pc is fetched. A second cycle is required to decode and execute.

The write back happens at the same as the next fetch. This second cycle is mandatory

for conditional jumps, ‘return’, or ‘call@(sY, sY)’ instructions, because next pc value

depends on other signals such as zero/carry flags, stack, or register content. Therefore,

the design opted for two

 251

clocks per instruction: one clock to “fetch and write back”, another one to “decode,

execute, and calculate next pc”. This yields uniform ISA with CPI = 2 for all

instructions. The search for reducing the CPI while keeping the ISA uniformity intact

motivated the work proposed in next section.

9.2.5.2. Zipi8 Modifications to Achieve CPI = 1
First the BRAM that implements the program memory must be dual-port with the

following settings:

• Memory Type = “True Dual Port RAM”

• Primitives output Register = “Unchecked”

Apart from address, and instruction, two more signals address2, and instruction2

are added to fetch an extra instruction every rising edge of the clock. The original design

updates the pc signal every two cycles based on control signal t_state(1) which is

toggled every cycle. By removing the t_state(1) signal we let pc value be updated every

clock cycle. Next step is to remove all D flip-flops (FDs) which take part in construction

of 2-stage pipeline. All modifications applied to all 16 modules of Zipi8 core are listed

in Table 28.

After applying the changes, we nearly achieve a single-cycle fetch, decode, and

execution. But the new design fails to calculate the correct next pc value if the state

Table 28: Zipi8 Modifications for change CPI to 1.
Module No. Modification

(1), (2), (4), (5), (8),

(11), (12)

Remove the FDs to make it combinatorial.

(3), (6), (9), (10), (14) It is already combinatorial and needs no change.

(7) Remove the t_state(1) signal in flipflops_R_CE_process so pc can be

updated on every clock cycle.

(13) The stack_memory signal comes from a clocked dual port BRAM.

(15) It is clocked. Change to dual port BRAMs, Set WE of BRAMs to always ’1’

instead of register_enable.

(16) Remove the FDs, and directly connect stack_memory to return_vector to

make it combinatorial.

Wrapper Set bram_enable to constant high.

 252

Fig. 114: Zipi8 Instruction Fetch Failure Elaboration after Modifications to Achieve

IPC = 1, and before Adding Prediction Circuit.

machine deviates from the normal flow: “next_pc <= pc + 1”. Fig. 114 elaborates the

failure. For example, the instruction at memory location 002 is a conditional jump to

target memory address ‘x’. The processor fetches inst0 and inst1 from memory location

000, and 001, without any problem. The pc becomes 002, and the next clock cycle

jump@x instruction is fetched. As the design still needs two clock cycles to calculate

the right pc value, the jump target address value propagates to pc late by one clock

cycle, and therefore instruction after conditional jump (inst3) which should not be

reached by the processor, is fetched wrongly. This is the inherent problem of the branch

instructions which we already discussed in “Related Work” Section.

9.2.5.3. Adding Dual Address-Bus Prediction to Zipi8
The main idea behind dual address-bus prediction (DAP) circuit is to fetch two

instructions per clock cycle by using dual port program memory block. This allows the

circuit to predict the next value of pc correctly by decoding the first fetched instruction

 253

Fig. 115: Zipi8 Schematic with Added Prediction Signals Highlighted by blue color.

in one clock cycle, and then use the decoded signals in execution step in next cycle.

The schematic provided in Fig. 115 shows those Zipi8 modules which must be

modified to accommodate dual DAP circuit (added signals are in blue color). The most

important added signals in Fig. 115, are instruction2 and address2 which are connected

to second port of external program memory BRAM. The address2 signal (derived by

pc2) holds the address of second instruction that always being fetched in parallel with

the current instruction (derived by pc). Both pc and pc2 are generated by ‘Program

Counter’ module.

The second most important modification is the conversion of RAM32M primitives

to dual port instances (modules 16 and 13). This provides stack memory addressing of

two locations, and two registers accessing at a single clock cycle through PORTA and

PORTB simultaneously. This is mandatory for prediction of target address of

instructions such as ‘return’ (using PORTB of stack memory) or ‘call@(sX, sY)’ (using

PORTB of register bank memory).

The sx_addrB, and sy_addrB are connected to PORTB of register memory BRAM

which makes simultaneous access of 2 out of 32 registers possible through PORTA and

B. The sxB and syB are register memory BRAM outputs at PORTB. The push_stack2

and pop_stack2, alongside with pc2 signal are added to the PORTB of BRAM used in

‘Stack’ module. These signals assist the prediction of correct stack pointer value and

 254

Fig. 116: Program Counter Module with Prediction Circuit Added.

consequently the ‘Stack’ module could set the correct ‘stack_memory’ value, and

other necessary outputs.

Next is the addition of internal_reset_delayed signal to ‘State Machine’ module.

As it is shown in Fig. 114 this signal goes low one clock cycle earlier than internal_reset

signal. That provides one extra clock cycle to the ‘Program Counter’ module for

predicting pc2 value. The carry_flag_value and zero_flag_value are simply the next

values of carry_flag and zero_flag signals calculated based on execution of current

instruction.

These are ‘Flags’ module’s internal signals needed to be routed out of the module

to be used in ‘Program Counter’ for prediction. In original design ‘Register Bank

Control’ module is responsible to produce sx_addr and sy_addr and depends on

sx_addr4_value which is produced by ‘State Machine’ module.

The reuse of ‘Register Bank Control’ and moving it into ‘Program Counter’

module is to generate sx_addr[4]. The core of prediction mechanism is inside ‘Program

Counter’ module which will be discussed in next section.

9.2.5.3.1. Program Counter Module Modification
In original PicoBlaze the ‘Program Counter’ module is responsible for determining the

value of next pc in each clock cycle. Fig. 116 depicts the internal structure of modified

‘Program Counter’ module. The analysis of PicoBlaze shows that the ‘Program

Counter’ module receives:

1. pc (current state)

2. register_vector

3. pc_vector

4. pc_mode (current inputs)

all as inputs and calculates pc_value as output which then is clocked to pc. This

constructs a simple Mealy state machine which the output depends on inputs and

 255

current state of machine and identifies the 4 necessary signals that must be present to

calculate the next pc (pc_value).

At the center of Fig. 116 we have the combinational logic (A) which receives pc,

register_vector, pc_vector, pc_mode, and generates pc_value which is next value of pc.

This block is combinational and in original design consist of LUT6, MUX, and

XOR primitives. The exact duplication of this block is named combinational logic (B)

and is there to generate pc2_value.

The inputs to combinational logic (B) are derived from exact duplication of ‘(16)

12- bit Address generation’, and ‘(3) Decoding for program counter and stack’

modules. Instead of instruction, sx, sy, carry_flag, and zero_flag signals, the

instruction2, sxB, syB, carry_flag_value, and zero_flag_value signals drive their inputs.

This produces pc2_value signal which is the potential guessed value for the next pc.

We define three modes based on two fetched instructions A and B, and then discuss

the details of how the final value of pc is calculated:

1. ‘Normal’ mode: Both Instructions A and B do not modify the pc register. Both

are not jump, call, or return instructions.

2. ‘Guessed Value is Used’ mode: Instruction A does not, but instruction B

modifies pc register.

3. ‘Illegal’ mode: Both instructions A and B modify pc register.

In original design the pc_value (the next state of pc) is directly connected to the

‘pc_fd’ flip-flop. We modify the design by adding the ‘pc_mux’ multiplexer before the

‘pc_fd’ flip-flop which selects the correct predicted pc_value based on three signals:

1. internal_reset

2. guessed_value_used

3. pc2_mode

ordered by higher to lower priority. If internal_reset is high, regardless of other

selectors the pc will be set to zero (processor reset). If internal_reset is low then

processor is in running mode, and the guessed_value_used will be checked. When

guessed_value_used is high, it means the processor is in ‘Guessed Value is Used’ mode

which indicates current instruction A has modified pc, and consequently the guessed

value is used already, therefore next instruction resides in ‘pc + 1’ location.

Note that it is illegal to have two consecutive instructions which both modify the

pc. Therefore, if the current instruction has modified the pc, the assumption is that the

next one will not, so simply an increment pc by 1 is needed. When guessed_value_used

is low, it means the processor is in ‘Normal’ mode which indicates current instruction

does not modify the pc register. Next step is to investigate the next instruction which

has already been fetched and decoded.

The value ‘001’ for pc2_mode indicates that the next instruction will not modify

the pc and therefore pc_value is the next value of pc. The value ‘011’ for pc2_mode

indicates that the next instruction is ‘return’ instruction, therefore pc_value must be

discarded and instead the return address fetched from stack (pc2_value) in advance

must be used as next value of pc. The value ‘110’ for pc2_mode indicates that the next

instruction is a ‘call@(sX, SY)’ instruction and the next value of pc must be

concatenation of xS, xY registers content which are fetched from register bank in

advance and placed on pc2_value signal. The ‘pc2_mux’, and ‘pc2_rst_mux’ select the

next value for pc2. If internal_reset_delayed is high (processor reset) then pc2 will be

 256

Fig. 117: Stack Module with Prediction Circuit Added.

set to zero, otherwise the next value of pc2 will be either pc2_value (Normal mode)

or pc2_value + 1 (Not Normal mode).

The last module needs to be discussed is ‘Register Bank Control’ which outputs

sx_addr[4]. As shown in Fig. 116 sx_addr[4] along with shadow_bank, and

instruction2 set the sx_addrB and sy_addrB. These two signals carry the address of

register bank BRAM PORTB as shown in Fig. 115.

9.2.5.3.2. Stack Module Modification
In original PicoBlaze design the ‘Stack’ module is responsible for producing zero_flag,

carry_flag, bank, special_bit signals alongside of stack_memory signal as can be seen

in Table 26.

They depend on push_stack, and pop_stack input signals which are set by decoding

circuitry. The current value of internal signal stack_pointer drives the ADDRA port of

BRAMs used as stack memory. The memory content which stack_pointer points to,

holds the return value address.

For example, if the processor executes a ‘return’ instruction then a pop_stack signal

will be asserted which prompts the ‘Stack’ module to decrement stack_pointer by one.

This will put the memory content of stack_pointer - 1 on stack memory output bus

which in turn recovers the flags, bank, and pc register values. When a ‘call’ instruction

gets executed, the push_stack signal is asserted which prompts stack_pointer to be

incremented by one, next WE signal will be set to high for saving the current flags and

pc value into stack memory.

The modification of original design starts by enabling dual port option for BRAMs

used as stack memory. The push_stack, and pop_stack inputs must be removed as they

 257

are produced one clock cycle late (PicoBlaze uses two clock cycles, and these two

signals are used in second clock). These two input signals are replaced by push_stack2,

and pop_stack2 signals which are produced by prediction circuitry in advance. They

detect whether the current instruction is a ‘return’ which prompts a pop or is a ‘call’

which prompts a push from or into stack memory, respectively.

Next step is the removal of all LUT, MUX, XOR, and FD primitives and

redesigning of the ‘Stack’ module to accommodate prediction circuitry which is shown

in Fig. 117. The stack_pointer is connected to ADDRA port, and a series of MUXs

decide whether the pointer must be incremented or decremented based on values of

push_stack2, and pop_stack2. The stack_pointer is connected to ADDRB port and

always points to stack_pointer - 1 location.

This makes the content of memory locations at stack_pointer and stack_pointer - 1

available at any given clock cycle through signals names stack_memory1 (memory

content on ADDRA) and stack_memory2 (memory content on ADDRB). The two

MUXs with pop_stack2 as their selectors decide the final value of flag, bank, and

stack_memory signals. Note that the WE pin of both BRAMs are permanently pulled

up which forces a write on every clock cycle at memory location pointed by ADDRA

value.

With addition of circuit mentioned above, the processor constantly writes the

current pc value, and flags status into stack memory at every clock cycle (constant

push). At the same time, it constantly reads two locations from stack memory pointed

by stack pointer and stack pointer subtracted by 1. The prediction circuit tells the

processor to actually pop stack (decrement stack pointer by 1 and use the output of

PORTB to recover pc value and flags through pop_stack2 signal) or continue normal

operation (stack pointer will be intact, and output of PORTA will be used). In case of a

push, the processor just needs to increment the pointer by one (triggered by

push_stack2) as the write to stack is performed on every clock cycle regardless of

push_stack2 signal assertion.

9.2.5.4. Resource and Power Utilization
Table 29 compares the resource utilization of our proposed DAP-Zipi8 with CPI=1

versus Zipi8 with CPI=2 and the original PicoBlaze.

Referring to Table 29 the highest maximum clock frequency attained on Xilinx

Zynq UltraScale+ MPSoC ZCU104 Evaluation Kit is 369.041 MHz which belongs to

the original Xilinx PicoBlaze. The conversion of firm-core PicoBlaze to soft-core Zipi8

is essential if we want to unlock the design and modify it. The converted soft-core

named Zipi8 can achieve a maximum frequency of 357.509 MHz (= 2.86% decrease)

and an increase in LUT count from 122 to 157 (28.69% increase). This is the cost we

must pay to convert the firm-core to soft-core. The Dual Fetch technique explained in

section VII in conjunction with dual port memory and addition of dual-address buy

prediction circuitry (section VII-C) yields a new processor that we named DAPZipi8

with 305 LUT count (94.27% increase in respect to Zipi8) and maximum frequency of

224.022 MHz on ZCU104 board.

 258

Table 29: PicoBlaze vs Zipi8 vs DAP-Zipi8 Resource Utilization and Maximum Clock

Frequency on Xilinx ZCU104 Development Board.

Core Max Freq. (MHz) LUTs Regs. Carry8 F7

Mux

F8

Mux

PicoBlaze (KCPSM6) 369.041 122 74 7 16 8

Zipi8 (CPI=2) 357.509 157 74 0 16 8

DAP-Zipi8 (CPI=1) 224.022 305 49 2 16 8

Table 30: PicoBlaze vs Zipi8 vs DAP-Zipi8 Power Utilization on Xilinx ZCU104

Development Board.

Core Power @ 100 MHz @ Max Freq.

PicoBlaze (KCPSM6) 3 mW 12 mW

Zipi8 (CPI=2) 4 mW 14 mW

DAP-Zipi8 (CPI=1) 8 mW 20 mW

Fig. 118: Performance vs Resource Utilization.

Although DAP-Zipi8 critical path has increased which dictates a lower maximum

frequency, but the CPI has improved from 2 to 1 (50%). If we measure the processor

performance in terms of Million Instructions Per Second (MIPS) then for Zipi8 (CPI=2)

we have:
𝑀𝑎𝑥 𝑓𝑟𝑒𝑞

𝐶𝑃𝐼
 =

357.509𝑀𝐻𝑧

2
= 178.75 MIPS while for DAP-Zipi8 we have:

𝑀𝑎𝑥 𝑓𝑟𝑒𝑞

𝐶𝑃𝐼
=
224𝑀𝐻𝑧

1
 = 224 MIPS.

 259

The DAP-Zipi8 processor show a performance boost from 178.75 MIPS to 224

MIPS (25.31% increase) as shown in Fig. 118. The power consumption was measured

using Xilinx Vivado v2019.2 ‘Power Report’ facility for all three cores at 100 MHz

clock frequency and at the maximum clock frequency achievable for the cores. The

power utilization result is shown in Table 30 which shows a 42.86% power increase

(against 25.31% performance gain) in DAP-Zipi8 when running the cores at maximum

frequency.

9.2.5.5. Verification
Three verification methods have been employed to ensure the correctness of the DAP-

Zipi8 and its compatibility with the PicoBlaze:

9.2.5.5.1. Isolated Instruction Execution
To verify instruction functionality, the effect of individual execution of every

instruction on the machine state (registers, flags, scratch pad memory content) is

examined. Each instruction is employed in a tiny test program, then its execution result

is verified by examining the simulation waveform. Note that comparison method

mentioned in Section 8.2.3.4 cannot be used here as DAP-Zipi8 is cycle-incompatible

with PicoBlaze. After thorough examination of waveforms, the functionality

correctness of all instructions is verified.

9.2.5.5.2. Math Library Execution

Fig. 119: Xilinx ZCU104 Development Board Hardware Setup for DAP-Zipi8

Verification using a Math Library.

To verify conditional jumps, call, return, and stack mechanism, both cores execute

a sequence of complicated instructions, then the results are compared. We exploit the

IEEE754 64-bit Floating-Point Arithmetic Library for 8-bit Soft-Core Processors [165]

which has enough complexity to expose bugs, if any. The library uses 8-bit registers

and scratch pad memory to perform 64-bit normal/subnormal floating point (FP)

operations. These operations use carry and zero flags extensively and are extremely

sensitive to any miscalculation.

Fig. 119 shows the hardware setup used to verify DAPZipi8. The Xilinx ZCU104

development board has a Zynq Ultrascale+ chip which hosts a hard-core ARM Cortex-

A53 processor. The ARM core can perform IEEE-754 64-bit FP arithmetic natively.

We use the core to calculate an FP operation and save the operation and its operands in

a dual port shared BRAM. DAP-Zipi8 is also connected to this dual port BRAM and

its reset pin is controlled by the ARM processor. After reset signal asserted by the ARM

core, the DAP-Zipi8 reads the requested FP operation and operands, it then calls the

 260

associated routine to perform the requested operation. The result produced by DAP-

zipi8 then is saved into BRAM and an interrupt signal is sent back to ARM core to

signal an end of the operation. The ARM core then fetches the result produced by DAP-

zipi8 and simply compares it with its own result and prints a message when a result

mismatch occurs. We found no mismatches and that ensures the correctness of

conditional/unconditional branch instructions, and subroutine mechanism.

9.2.5.5.3. Random Instruction Execution from A Pool

Fig. 120: Classes for Random PicoBlaze Instruction Generator.

A C++ program is written by the authors to generate randomly a series of PicoBlaze

instructions. Fig. 120 shows the C++ classes used in the program. The generated

instructions are passed to both cores (PicoBlaze and DAP-Zipi8) for execution. After

the completion of simulation (with random instructions loaded into BRAM program

memory) the final state of both cores is compared. The existence of any discrepancy in

register content and status flags of the cores indicates a bug. Results obtained in this

step reinforces the correctness and compatibility of the design.

9.3. Limitation
The limitation of work is around this fact that two consecutive conditional branches is

an invalid case of the design. It can be easily avoided by compiler through defining a

pass that checks for branch instructions next to each other and then insert a NOP

instruction between them.

Unfortunately, this limitation cannot be fixed in a future work scenario as the

limitation is the manifestation of engineering trade-off in microprocessor design and

cannot be avoided without losing performance in other areas.

 261

9.4. Result
In this paper a new method is proposed to remove the branch and load delays which let

designers achieve a processor with CPI = 1. The proposed method is applied on Xilinx

PicoBlaze (CPI = 2) to obtain a new processor called DAP-Zipi8. The DAP-Zipi8

exhibits a performance boost from 178.75 MIPS to 224 MIPS (25.31%).

It uses two address buses to predict branch targets and eliminates load and branch

delays. The improved performance trades off with LUT count increment of 94.27%

(LUT increases from 157 to 305). Two consecutive conditional branches is the only

invalid case of the design which can be easily avoided by compiler. The higher

performance and deterministic ISA make DAP-Zipi8 a good candidate for hard RTES

as WCET can be easily and accurately calculated.

The DAP-Zipi8 Vivado 2020.1 project source code can be found at the GitHub

website:

https://github.com/ehsan-ali-th/DAPZipi8Appendices/tree/main/zipi8_1ipc

https://github.com/ehsan-ali-th/DAPZipi8Appendices/tree/main/zipi8_1ipc

 262

10. ARM Cortex-M0 Implementation in VHDL
10.1. Introduction

Fig. 121: Cortex-M0 Functional Block Diagram [99].

To shift to a modern architecture the base architectural core is switched from Xilinx

PicoBlaze to ARM Cortex-M0. Unfortunately, ARM cores are not available in public

domain (even for academic purposes). This motivated us to implement Cortex-M0 from

scratch in VHDL language as this is considered as the edge of technology on our side.

This section provides the details of ARM Cortex-M0 VHDL implementation.

The ARM Cortex-M0 implements the ARMv6-M architecture. It has a three-stage

pipeline, and a single AHB Lite interface [286]. It is a configurable, multistage, 32-bit

RISC processor. It has an AMBA AHB-Lite interface and includes an NVIC

component. It also has optional hardware debug functionality [99]. The functional block

diagram of Cortex-M0 is shown in Fig. 121.

10.2. Implementation

10.2.1. Cortex-M0 Overview
ARM Cortex is categorized into three classes:

1. Cortex-A: High performance

2. Cortex-M: Low power, low cost

3. Cortex-R: real-time applications.

We pick Cortex-M class because they are the simplest of all ARM cores used in

MCUs. The Cortex-M0 is the smallest core in Cortex-M category, and it is the core that

we will implement in this paper. Table 31 compares Cortex-M0 versus few other cores

which reside in Cortex-M class. Table 31 also clarifies technical terms around ARM

Table 31: ARM CORTEX-M0 VERSUS M0+, M1, AND M3

ARM Core Cortex M0 Cortex M0+ Cortex M1 Cortex M3

ARM architecture ARMv6M ARMv6M ARMv6M ARMv7M

Pipeline 3 stages 2 stages 3 stages 3 stages

Thumb-1 Most Most Most All

 263

Fig. 122: Cortex-M0 3-stage Pipeline.

cores. The ARM architecture adapted in Cortex-M0 is ARMv6-M [287], the core has

3 stages and a single Advanced High-performance (AHB) Lite interface [286].

Cortex-M0 implements the following instructions:

• All 16-bit Thumb-1 instructions from ARMv7 M except CBZ, CBNZ, IT.

• The 32-bit Thumb-2 instructions BL, DMB, DSB, ISB, MRS, MSR.

10.2.1.1. Pipeline Stages in Cortex-M0
Fig. 122 shows the three pipeline stages in Cortex-M0: (1) Fetch (2) Decode and (3)

Execute. The first step in implementation of the processor core is to get this 3-stage

pipeline in place.

10.2.1.2. Instruction Set
Considering all instruction formats and variations, ARM Cortex-m0 has seventy 16-

bit and six 32-bit instructions. We categorize all instructions into five groups:

1. Arithmetic: Move, Add, Subtract, Multiply, Shift, Rotate, Extend.

2. Logic: AND, XOR, OR, Bit clear, Move NOT, AND test.

3. Memory: Store, Load, Push, Pop.

4. Flow control: Compare, Branch.

5. Hint and Barriers.

The processor implements the ARMv6-M Thumb instruction set, including

several 32-bit instructions that use Thumb-2 technology. The ARMv6-M instruction

set comprises [99]:

• All the 16-bit Thumb instructions from ARMv7-M excluding CBZ, CBNZ

and IT.

• The 32-bit Thumb instructions BL, DMB, DSB, ISB, MRS and MSR.

Fig. 123: Cortex-M0 32-bit instruction encoding [288].

 264

Fig. 124: Cortex-M0 32-bit instruction branch encoding [288].

Fig. 125: Cortex-M0 32-bit Miscellaneous control instructions [288].

Table 32: Cortex-M0 32-bit instructions op1 [288].

op1 op Instruction class

x1 x UNDEFINED

10 1 Branch and miscellaneous control instructions

10 0 UNDEFINED

Table 33: Cortex-M0 32-bit branch and miscellaneous control instructions [288].

op2 op1 Instruction Comment

0x0 011100x Move to Special Register MSR (register)

0x0 0111011 - Miscellaneous control instructions

0x0 011111x Move from Special Register MRS

010 1111111 Permanently UNDEFINED UDF

1x1 - Branch with Link BL

10.2.2. Cortex-M0 32-bit instructions
ARM Cortex-M0 32-bit Thumb (16-bit) instruction encoding follows the bit fields

shown in Fig. 123. The branch instructions follow the bit fields encoding shown in Fig.

124. The recognized values for “op” and “op1” bit fields are shown in Table 32. Fig.

125 shows the 32-bit instructions encoding and Table 33 lists the 32-bit branch and

miscellaneous control instructions. Table 34 shows the Cortex-M0 32-bit miscellaneous

control instructions. After knowing the bit fields, we summarize all Cortex-M0

instructions and list it in Table 35.

Table 34: Cortex-M0 32-bit miscellaneous control instructions [288].

op Instruction Comment

0100 Data Synchronization Barrier DSB

0101 Data Memory Barrier DMB

0110 Instruction Synchronization Barrier ISB

 265

Table 35: Cortex-M0 Instruction Set Summary.

Operation Description Assembler Cycles

Move 8-bit immediate MOVS Rd, #<imm> 1

 Lo to Lo MOVS Rd, Rm 1

 Any to Any MOV Rd, Rm 1

 Any to PC MOV PC, Rm 3

Add 3-bit immediate ADDS Rd, Rn, #<imm> 1

 All registers Lo ADDS Rd, Rn, Rm 1

 Any to Any ADD Rd, Rd, Rm 1

 Any to PC ADD PC, PC, Rm 3

 8-bit immediate ADDS Rd, Rd, #<imm> 1

 With carry ADCS Rd, Rd, Rm 1

 Immediate to SP ADD SP, SP, #<imm> 1

 Form address from SP ADD Rd, SP, #<imm> 1

 Form address from PC ADR Rd, <label> 1

Subtract Lo and Lo SUBS Rd, Rn, Rm 1

 3-bit immediate SUBS Rd, Rn, #<imm> 1

 8-bit immediate SUBS Rd, Rd, #<imm> 1

 With carry SBCS Rd, Rd, Rm 1

 Immediate from SP SUB SP, SP, #<imm> 1

Subtract Negate RSBS Rd, Rn, #0 1

Multiply Multiply MULS Rd, Rm, Rd 1 or 32a

Compare Compare CMP Rn, Rm 1

 Negative CMN Rn, Rm 1

 Immediate CMP Rn, #<imm> 1

Logical AND ANDS Rd, Rd, Rm 1

 Exclusive OR EORS Rd, Rd, Rm 1

 OR ORRS Rd, Rd, Rm 1

 Bit clear BICS Rd, Rd, Rm 1

 Move NOT MVNS Rd, Rm 1

 AND test TST Rn, Rm 1

Shift Logical shift left by immediate LSLS Rd, Rm, #<shift> 1

 Logical shift left by register LSLS Rd, Rd, Rs 1

 Logical shift right by immediate LSRS Rd, Rm, #<shift> 1

 Logical shift right by register LSRS Rd, Rd, Rs 1

 Arithmetic shift right ASRS Rd, Rm, #<shift> 1

 Arithmetic shift right by register ASRS Rd, Rd, Rs 1

Rotate Rotate right by register RORS Rd, Rd, Rs 1

Load Word, immediate offset LDR Rd, [Rn, #<imm>] 2

 Halfword, immediate offset LDRH Rd, [Rn, #<imm>] 2

 Byte, immediate offset LDRB Rd, [Rn, #<imm>] 2

 Word, register offset LDR Rd, [Rn, Rm] 2

 Halfword, register offset LDRH Rd, [Rn, Rm] 2

 Signed halfword, register offset LDRSH Rd, [Rn, Rm] 2

 Byte, register offset LDRB Rd, [Rn, Rm] 2

Load Signed byte, register offset LDRSB Rd, [Rn, Rm] 2

 PC-relative LDR Rd, <label> 2

 SP-relative LDR Rd, [SP, #<imm>] 2

 Multiple, excluding base LDM Rn!, <loreglist> 1+N b

 266

 Multiple, including base LDM Rn, <loreglist> 1+N b

Store Word, immediate offset STR Rd, [Rn, #<imm>] 2

 Halfword, immediate offset STRH Rd, [Rn, #<imm>] 2

 Byte, immediate offset STRB Rd, [Rn, #<imm>] 2

 Word, register offset STR Rd, [Rn, Rm] 2

 Halfword, register offset STRH Rd, [Rn, Rm] 2

 Byte, register offset STRB Rd, [Rn, Rm] 2

 SP-relative STR Rd, [SP, #<imm>] 2

 Multiple STM Rn!, {<loreglist>} 1+N b

Push Push PUSH {<loreglist>} 1+N b

 Push with link register PUSH {<loreglist>, LR} 1+N b

Pop Pop POP <loreglist> 1+N

 Pop and return POP <loreglist>, PC 4+N c

Branch Conditional B<cc> <label> 1 or 3d

 Unconditional B <label> 3

 With link BL <label> 4

 With exchange BX Rm 3

 With link and exchange BLX Rm 3

Extend Signed halfword to word SXTH Rd, Rm 1

 Signed byte to word SXTB Rd, Rm 1

 Unsigned halfword UXTH Rd, Rm 1

Extend Unsigned byte UXTB Rd, Rm 1

Reverse Bytes in word REV Rd, Rm 1

 Bytes in both halfwords REV16 Rd, Rm 1

 Signed bottom half word REVSH Rd, Rm 1

State change Supervisor Call SVC #<imm> - e

 Disable interrupts CPSID i 1

 Enable interrupts CPSIE i 1

 Read special register MRS Rd, <specreg> 4

 Write special register MSR <specreg>, Rn 4

 Breakpoint BKPT #<imm> - e

Hint Send event SEV 1

 Wait for interrupt WFE 2 f

 Wait for interrupt WFI 2 f

 Yield YIELD g 1

 No operation NOP 1

Barriers Instruction synchronization ISB 4

 Data memory DMB 4

 Data synchronization DSB 4
a Depends on multiplier implementation.

b N is the number of elements.

c N is the number of elements in the stack-pop list including PC and assumes load

or store does not generate a HardFault exception.

d 3 if taken, 1 if not taken.

e Cycle count depends on core and debug configuration.
f Excludes time spent waiting for an interrupt or event.

g Executes as NOP.

 267

Fig. 126: Cortex-M0/Mo+/M1 Instructions [289].

Fig. 127: Cortex Binary Upwards Compatibility.

Fig. 126 shows all Cortex-M0 instruction in a box set. This set can be compared to

Cortex-M3 and M4 and M4 with FPU. As we can see in Fig. 127 Cortex-M0 is a subset

of other versions. The other Cortex cores basically are the same except they support

more instructions. An increase in instructions simply increase the core size, power

consumption and complexity.

 268

Fig. 128: Cortex-M0 Instructions Cycle Timing [290].

Fig. 129: Cortex-M Instruction Set [289].

Fig. 128 shows the instruction cycle timing for Cortex-M0. The table is crucial to

be used as reference for instruction implementation when cycle accuracy must be

achieved. Fig. 129 categorizes the Cortex-M instructions.

Each Thumb instruction is either a single 16-bit halfword in that stream, or a 32-

bit instruction consisting of two consecutive halfwords in that stream.

If bits [15:11] of the halfword being decoded take any of the following values, the

halfword is the first halfword of a 32-bit instruction:

• 0b11101

• 0b11110

 269

• 0b11111

Otherwise, the halfword is a 16-bit instruction [288]. In my implementation only

0b11110 occurs.

10.2.3. Registers
Status register bit description are listed below:

• APSR: Application Program Status Register. [31-30-29-28] = [N-Z-C-V].

Contains the Negative, Zero, Carry and Overflow flags from the ALU

• IPSR: Interrupt Program Status Register. [5-4-3-2-1-0] = Exception Number.

• EPSR: Execution Program Status Register. [24] = [T]. Thumb code is executed.

• xPSR: APSR + IPSR + EPSR

• IEPSR: IPSR + EPSR

Table 36: Cortex-M0 General Purpose Registers.

Register Description

r0 to r4 General

r5 to r11 General

r12 Scratch register

r13/sp Stack Pointer

r14/lr Link Register

r15/pc Program Counter

Table 36 list the Cortex-M0 registers with their names.

10.2.4. Cortex-M0 Instructions Encoding
Table 37 lists the 16-bit Thumb instruction encoding grouping. Based on this

grouping and the behavior of each instruction all instructions are grouped and marked

with different colors as shown in Table 40.

Table 37: 16-bit Thumb instruction encoding grouping.

opcode Instruction or instruction class

00xxxx Shift (immediate), add, subtract, move, and compare

010000 Data processing

010001 Special data instructions and branch and exchange

01001x Load from Literal Pool, see LDR (literal)

0101xx Load/store single data item

011xxx

100xxx

10100x Generate PC-relative address, see ADR

10101x Generate SP-relative address, see ADD (SP plus immediate)

 270

1011xx Miscellaneous 16-bit instructions

11000x Store multiple registers, see STM / STMIA / STMEA

11001x Load multiple registers, see LDM / LDMIA / LDMFD

1101xx Conditional branch, and supervisor call

11100x Unconditional Branch

10.2.5. Discovering Cortex-M0 PC Register Behavior
The actual behavior of Cortex-M0 when ADD PC, PC, Rm instruction is executed using

IAR Development tool is shown in Table 38 and Table 39 when the instruction is placed

on odd and even memory location.

Table 38: ADD PC, PC, Rm Analysis on Cortex-Mo Hardware captured using IAR

Development tool. (PC value at ADD instruction is = 0x4A)

Rm 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D

New PC 0x4E 0x50 0x50 0x52 0x52 0x54 0x54 0x56 0x56 0x58 0x58 0x5A 0x5A

Rm 0E 0F 10 11 12 13 14

New PC 0x5C 0x5C 0x5E 0x5E 0x60 0x60 0x62

Table 39: ADD PC, PC, Rm Analysis on Cortex-Mo Hardware captured using IAR

Development tool. (C value at ADD instruction is = 0x48)

 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D

New

PC
0x4C 0x4E 0x4E 0x50 0x50 0x52 0x52 0x54 0x54 0x56 0x56 0x58 0x58

Rm 0E 0F 10 11 12 13 14

New

PC
0x5A 0x5A 0x5C 0x5C 0x5E 0x5E 0x60

After careful analysis, the emerging pattern leads us to the following formula:

Formula:

New PC = (current instruction memory location + Rm + 2) AND 0xFFFE

 271

Table 40: Cortex-M0 Instruction Set Encoding 1/3 [289].

 272

Table 40: Cortex-M0 Instruction Set Encoding 2/3 [289].

 273

Table 40: Cortex-M0 Instruction Set Encoding 3/3 [289].

Fig. 130: 3-stage Pipeline in Cortex-M0 processor [286].

 274

Fig. 131: Cortex-M0 Interfaces [291].

Fig. 132: AHB-Lite Block Diagram [292].

10.2.6. Pipeline stages in the Cortex-M0 processor
Cortex-M0 has a 3-stage pipeline: 1) Fetch 2) Decode 3) Execute as shown in Fig. 130.

10.2.7. Interfaces
Fig. 131 shows Cortex-M0 Interfaces to the world outside.

10.2.7.1. AMBA AHB-Lite Interface
The most common Advanced Microcontroller Bus Architecture (AMBA) Advanced

High-performance Bus (AHB)-Lite slaves are internal memory devices, external

memory interfaces, and high bandwidth peripherals [292]. Fig. 132 shows a single

master AHB-Lite system design with one AHB-Lite master and three AHB-Lite slaves.

The main components of an AHB-Lite system are [292]:

• Master: An AHB-Lite master provides address and control information to

initiate read and write operations.

• Slave: An AHB-Lite slave responds to transfers initiated by masters in the

system. The slave uses the HSELx select signal from the decoder to control

when it responds to a bus transfer.

• Decoder: This component decodes the address of each transfer and provides a

select signal for the slave that is involved in the transfer. It also provides a

control signal to the multiplexor.

 275

• Multiplexor: A slave-to-master multiplexor is required to multiplex the read

data bus and response signals from the slaves to the master. The decoder

provides control for the multiplexor.

10.2.8. Memory Model
Technically, the memory devices connected to the processor can be any size and can be

different width. For example, the memory devices can be 8-bit, 16-bit, or 64-bit

memory, but that would require additional hardware to bridge between different bus

sizes.

Typically, 32-bit on-chip memories are used to keep the design’s complexity at

minimum [293]. The size of the code region (0x00000000 - 0x1FFFFFFF) is 512 MB.

It is primarily used to store program code, including the initial exception vector table

at address 0x00000000 which is a part of the program image. The SRAM region

(0x20000000 - e0x3FFFFFFF) is the located in the next 512 MB of the memory map.

It is primarily used to store data, including stack. It can also be used to store program

codes. For example, in some cases you might want to copy program codes from slow

external memory to the SRAM and execute it from there. Despite the name given to

this region is called “SRAM,” the actual memory devices being used could be SRAM,

SDRAM or other types or read/write memory. The RAM region (0x60000000e -

0x9FFFFFFF) consists of two 512 MB blocks, which results in total of 1 GB space.

Both 512 MB memory blocks are primarily used to stored data, and in most cases the

RAM region can be used as a 1 GB continuous memory space. The RAM region can

also be used for program code execution.

The only differences between the two halves of the RAM region are the memory

attributes, which might cause differences in caching behavior if a system level cache

(level-2 cache) is used. The internal Private Peripheral Bus (PPB) memory space

(0xE0000000e - 0xE00FFFFF) is allocated for peripherals inside the processor, such as

the interrupt controller Vectored Interrupt Controller (NVIC), as well as the debug

components.

The internal PPB memory space is 1 MB in size, and program execution is not

allowed in this memory range. Within the PPB memory range, a special range of

memory is defined as the System Control Space (SCS). The SCS address is from

0xE000E000 to 0xE000EFFF. It contains the interrupt control registers, system control

registers, debug control registers, etc. The NVIC registers are part of the SCS memory

space. The SCS also contains an optional timer called the SysTick. We use Flash

memory (for program code) and internal SRAM (for data), but in FPGA we can define

both types of memory using BRAMs.

Fig. 133 shows system bus and Fig. 134 provides the Cortex-M0 memory map.

 276

Fig. 133: Cortex-M0 System Bus [293].

Fig. 134: Cortex-M0 Memory Map [293].

 277

Table 41: Cortex-M0 Load and Store Instructions [288].

Data type Load Store

32-bit word LDR STR

16-bit halfword - STRH

16-bit unsigned halfword LDRH -

16-bit signed halfword LDRSH -

8-bit byte - STRB

8-bit unsigned byte LDRB -

8-bit signed byte LDRSB -

10.2.9. Load and Store
Table 41 shows the Cortex-M0 load and store instructions.

10.2.10. LDR Instruction
In Cortex-m0 Load/Store instructions takes two cycles. The following are the steps

needed to execute those instructions:

1. Fetch a 32-bit instruction from memory: HRDATA = [InstA-InstB].

2. current instruction will be InstA (state = m EXEC INSTA)

3. If InstaA = LDR then set, use PC value to high. (This signal indicates that

LDR will be using HADDR to access memory in next clock cycle)

4. next cycle, current instruction will be set to InstB. (state = m EXEC INSTB)

5. use PC value will move to use PC.

a. All accesses below 0xE0000000 or above 0xF0000000 appear as AHB-

Lite transactions on the AHB-Lite master port of the processor.

b. Accesses in the range 0xE0000000 to 0xEFFFFFFF are handled within

the processor and do not appear on the AHB-Lite master port of the

processor.

The processor supports only word size accesses in the range 0xE0000000 -

0xEFFFFFFF [289].

Things must be done after an LDR instruction is fetched:

1. access mem = TRUE => refetch = TRUE, next state, refetch = FALSE, next

state = “s_DATA_MEM_ACCESS”

2. In “s_DATA_MEM_ACCESS”, put on HADDR the target read address by

setting “haddr_ctrl” to TRUE.

a. CASE A: LDR is in INSTB: next instruction is normal: Previous value of

“haddr_Ctrl” to enable “disable_fetch”.

b. CASE B: LDR is in INSTA: next instruction is normal.

10.2.11. Memory Access in Cortex-M0 (ARM-v6-M)

• Offset addressing: The offset value is added to or subtracted from an

address obtained from the base register. The result is used as the address for

the memory access. The base register is unaltered. The assembly language

 278

Table 42: Cortex-M0 Memory Map Usage [289].

Address range Code Data Device

0xF0000000 - 0xFFFFFFFF No No Yes

0xE0000000 - 0xEFFFFFFF No No No a

0xA0000000 - 0xDFFFFFFF No No Yes

0x60000000 - 0x9FFFFFFF Yes Yes No

0x40000000 - 0x5FFFFFFF No No Yes

0x20000000 - 0x3FFFFFFF Yes Yes No

0x00000000 - 0x1FFFFFFF Yes Yes No

 a Space reserved for Cortex-M0 NVIC and debug components

syntax for this mode is: [< 𝑖𝑚𝑚3 >,< 𝑖𝑚𝑚8 >] where < 𝑅𝑛 > is the base

register and< 𝑜𝑓𝑓𝑠𝑒𝑡 > can be either an immediate constant, such as <
𝑖𝑚𝑚3 > or < 𝑖𝑚𝑚8 >, or an index register < 𝑅𝑚 > [287].

ARMv6-M does not support exclusive access to memory.

10.2.12. Alignment Support
ARMv6-M always generates a fault when an unaligned access occurs. Writes to the PC

are restricted[289]. Table 42 shows the Cortex-M0 Memory Map Usage.

10.2.13. Cortex-M0 Multiplier
The MULS instruction provides a 32-bit × 32-bit multiply that yields the least-

significant 32-bits. The processor can implement MULS in one of two ways [289]:

• as a fast single-cycle array

• as a 32-cycle iterative multiplier.

The iterative multiplier has no impact on interrupt response time because the

processor abandons multiplication operations to take any pending interrupt.

10.2.14. Cortex-M0 Instruction Execution
When two 16-bit instructions A and B are sitting next to each other where A is aligned

and B is not, then the “hrdata_program_value” signal must be updated when B is

fetched.

Each Cortex-M0 instruction can have two locations in program memory:

• Aligned: “PC_execute(1)” = 0

• Non-aligned: “PC_execute(1)” = 1

If a multi cycle instruction is aligned (Position A): then its second cycle must update

the “hrdata_program_value” signal unconditionally. If a multi-cycle instruction is not

aligned (Position B): then its second cycle must update the “hrdata_program_value”

signal conditionally.

• If the instruction before it (at position A) is single cycle, then update the

“hrdata_program_value” signal.

• If the instruction before it (at position A) is multi cycle, then do not update

the “hrdata_program_value” signal. It has been already updated by that

multi cycle instruction.

 279

Table 43: Cortex-M0 Instruction Condition Codes [289].

Cond. Mnemonic Extension Meaning Condition flags

0000 EQ Equal Z == 1

0001 NE Not equal Z == 0

0010 CS Carry set C == 1

0011 CC Carry clear C == 0

0100 MI Minus, negative N == 1

0101 PL Plus, positive or zero N == 0

0110 VS Overflow V == 1

0111 VC No overflow V == 0

1000 HI Unsigned higher C == 1 and Z == 0

1001 LS Unsigned lower or same C == 0 or Z == 1

1010 GE Signed greater than or equal N == V

1011 LT Signed less than N != V

1100 GT Signed greater than Z == 0 and N == V

1101 LE Signed less than or equal Z == 1 or N != V

1110 None (AL) Always (unconditional) Any

There must be a signal stating if instruction at position A is single cycle or multi

cycle. In normal the “hrdata_program_value” gets updated when “PC(1)” =

“PC_execute(1)” = 1 or in other word when current value of PC is unaligned (not a

multiple of 4).

For STM, the “hrdata_program_value” gets updated on the second cycle of STM

if STM is aligned PC_execute(1) = 0.

10.2.15. Instruction Condition Codes
Table 43 shows the Cortex-M0 instruction condition codes.

10.2.16. Branch Steps
The branch steps in Cortex-M0 implementation are:

1 . Set “PC_value” to target branch address

2 . Conditional branch has an imm8 value.

 The relationship to calculate the target “PC_value” is:

(current “PC_value”) + [(signed(imm8) * 2) + 4]

If branch is not taken (condition is not met) then the branch acts like a NOP

instruction and will take 1 cycle. If branch is taken (condition is met) then the branch

takes 3 cycles.

The branch instruction itself can be in Pos A or Pos B. The target branch also can

be to a Pos A or Pos B location. The position of branch instruction does not matter

because if it is taken then the PC must be updated.

 280

Two possibilities: Either the target branch is odd or even.

10.2.17. Operating Modes
An M-profile processor supports two operating modes [289]:

• Thread mode: Is entered on Reset and can be entered as a result of an exception

return.

• Handler mode: Is entered because of an exception. The processor must be in

Handler mode to issue an exception return.

If an ARMv6-M system does not implement the Unprivileged/Privileged

Extension, all execution is privileged. Privileged execution has access to all resources.

10.2.18. Privileged and Unprivileged Execution
In ARMv7-M, software can run either at privileged or unprivileged level. In systems

implemented with the ARMv6-M base architecture, all software runs at privileged level

[289].

Thread mode is the fundamental mode for application execution in ARMv6-M and

is selected on reset. Thread mode can raise a supervisor call using the SVC instruction,

generating a supervisor call exception, SVCall.

Alternatively, if running privileged, Thread mode can handle system access and

control directly [289]. All exceptions execute in Handler mode. SVCall handlers

manage resources, such as interaction with peripherals, memory allocation and

management of software stacks, on behalf of the application.

In ARMv6-M implementations that include the Unprivileged/Privileged Extension:

• execution in Handler mode is always privileged.

• execution in Thread mode can be privileged or unprivileged, depending on

the value of CONTROL.nPRIV.

10.2.19. Exception Numbers
Table 44 shows Cortex-M0 Exception Numbers.

10.2.20. The Vector Table
Table 45 shows Cortex-M0 Vector table format.

 281

Table 44: Cortex-M0 Exception Numbers [289].

Exception number Exception

1 Reset

2 NMI

3 HardFault

4-10 Reserved

11 SVCall

12-13 Reserved

14 PendSV

15 SysTick, optional

16 External Interrupt (0)

... ...

16 + N External Interrupt (N)

Table 45: Cortex-M0 Vector table format [289].

Word offset in table Description, for all pointer address values

0 SP main. This is the reset value of the Main stack pointer.

1 Exception using that Exception Number.

Table 46: Cortex-M0 Special Registers and their SYSm value [289].

Special register Contents SYSm value

APSR The flags from previous instructions. 0 = 0b00000:000

IAPSR A composite of IPSR and APSR. 1 = 0b00000:001

EAPSR A composite of EPSR and APSR. 2 = 0b00000:010

XPSR A composite of all three PSR registers. 3 = 0b00000:011

IPSR The Interrupt status register. 5 = 0b00000:101

EPSR The execution status register. 6 = 0b00000:110

IEPSR A composite of IPSR and EPSR. 7 = 0b00000:111

MSP The Main Stack pointer. 8 = 0b00001:000

PSP The Process Stack pointer. 9 = 0b00001:001

PRIMASK Register to mask out configurable exceptions. 16 = 0b00010:000

CONTROL The CONTROL register. 20 = 0b00010:100

10.2.21. SVC instruction
After SVC execution, the processor reads the 0x2C location from memory and jump to

it. This location contains the SC handler. The stack contains: r0, r1, r2, r3, r12 (Scratch

Register), r14 (Link register), the return address and xPSR.

 282

Fig. 135: Cortex-M0 Implementation Overview Schematic.

Table 46 shows Cortex-M0 special registers and their SYSm value.

10.2.22. ARM Cortex-M0 Implementation Overview Schematic
Fig. 135 shows the overview (extremely simplified) schematic of involved modules in

our ARM Cortex-M0 implementation. The full schematic is complex, and its overview

is shown in Fig. 136. The schematic is not readable, and it is provided here to give a

rough impression of the involved complexity. The high-resolution schematic is

provided in Appendix E in both .dia format and .eps.

In Fig. 135 Cortex-M0 and its interface to memory blocks via Bus Master is shown.

After putting the core into reset state the PC is set to 0 and the fetch cycle starts (The

detail of bootstrapping is a bit different, for example, before fetching an instruction

from location 0 of memory, processor reads the first 4 byte of vector table to set Stack

Pointer and spends several cycles to initialize the state machine).

It takes 3 cycle for the pipeline to be filled and turn the result of the first instruction

effective. In Fig. 135 red blocks refer to flip-flops or modules which contain flop-flops

(registers) inside them. These modules are synchronized with clk signal and effectively

construct the 3-stage pipeline. The gray modules are pure combinational or in the case

of memory blocks are asynchronous read. These modules do not receive clk signal and

therefore have been placed between vertical yellow lines which mark the boundaries of

pipeline stages. It is extremely important not to insert any flip-flops between the dashed

red lines (a common mistake by students) as it obviously increases the pipeline stages.

10.2.23. ARM Cortex-M0 Implementation Verification
In the absence of official support from ARM we are compelled to develop our own

verification tools. The full schematic of to verify the VHDL-based Cortex-M0 a sample

complex program (the details of this program will be provided in later sections) is

written in C language and then a compiler translates it to machine code. The generated

 283

machine language binary is stored in a hex file according to the Executable and

Linkable Format (ELF) standard and matches our machine endianness. This file is

identical to the original Cortex-M0 executable format and should be recognized and

executed by any Cortex-M0 machine. The executable file then is passed to IAR

Embedded Workbench for ARM simulator [294].

The simulator has a very interesting Trace option that outputs the opcode of every

machine instructions and its effect on registers and memory. A C++ program is

developed to process the trace output and generate a data file (trace.trc) that contains

the record of each instruction and a screenshot of register content after each instruction

execution. Another C++ program is developed to convert the original ELF file to COE

format which can be stored into Block Memory Generator in Xilinx Vivado as a BRAM

init file to initialize the program memory. The Vivado simulator opens the trace file and

reads its records, it then simulates the execution of the program on the Cortex-M0 core

under test. The outcome of each instruction is compared to data records from trace file

and simulation halts upon any discrepancy.

The exact result obtained from execution of a program with around 967000

machine instructions validates the correctness of our Cortex-M0 implementation. Fig.

137 shows the whole verification process flowchart.

Fig. 136: ARM Cortex-M0 Overview of the full Schematic – Red vertical lines mark

the pipeline stages. (High Resolution version provided in Appendix E).

 284

Fig. 137: Verification process of VHDL-based Cortex-M0 using IAR Embedded

Workbench for ARM and Vivado Xilinx simulators.

 285

10.2.24. Turning ARM Cortex-M0 Implementation into Laboratory Modules for
Graduate Engineering Students

10.2.24.1. Related Work on Microprocessor Laboratory Courses
MC68000 educational board [275] is used in New Jersey Institute of Technology
Computer Systems Laboratory [276] as of 2001 and update to adapt ARM architecture
by using FRDM-KL25Z board which is a low cost MCU board based on ARM Cortex-
M0+ core [277].

In a more recent laboratory (2017) Intel Galileo board is used in University Putra
of Malaysia [278] to teach IA-32 instruction sets. Motorola M6800 Microprocessor is
used in Arizona State University in Embedded-System Laboratory[279].

The 8085 Microprocessor Trainers such as CMM-8085-1 model are extensively
used in microprocessor labs in universities and engineering colleges in India [295].
Sharif university [296] and University of Toronto[297] use soft processor NIOS II on
Altera DE2 Development and Education FPGA board to teach microprocessor and
assembly language laboratory courses.

10.2.24.2. Implementation Steps with Laboratory Modularization in Mind
In this section we list the titles and description of each lab module and its educational
purpose.

1. Getting to know the ARM Cortex-M0, ARMv6 architecture: This module covers
the details of processor such as number of pipeline stages, instruction set, general
purpose registers: R0-R7, PC, LR, SP registers, etc.

2. Memory Access via AHB Lite Interface: Xilinx BRAM instantiation, Bus
Master module design, AMBA AHB interface details, and then successful read
of 32-bit data from memory per clock.

3. Pipeline implementation: Construction of decoder module, core_state, executer
and register bank (R0-R7). At this stage all instructions are considered 16-bit,
therefore each fetch brings in two instructions. Register bank has 2-read ports
and 1-write port. Simple Reset signal introduced here.

4. ALU instructions implementation: Expansion of decoder and executor module
to recognize ALU instructions such as ADDS. Introduction of instruction bit
fields, addressing modes, immediate values, register addressing, and creation of
status_flag module. ALU instructions now can change machine flags. For
example, a SUBS instruction might set the Z flag. Students must be able to
extract information on instruction from ARM Cortex-Mo Technical Reference.

5. Logic instructions implementation: Students will get familiarized with logic
operations such ANDS, ORS by simply expanding decoder and executor module
and taking care of flag status register.

6. Multiplication implementation: MULS instruction provides a 32-bit by 32-bit
multiplication with a 32-bit result (not a 64-bit result). Introduction to fast single
cycle array, and 32-cycle iterative multiplier [99].

7. Pipeline invalidation and flushing: Implementation of MOV PC, RM instruction
which alters PC value and behaves like a branch instruction. Students learns how
to flush the pipeline by invalidating the upcoming execution cycles.

8. Load and Store instructions: LDR, LDM, STR, STM implementation.
Introduction to multicycle instructions. Zero extension concept. Register bank
upgrade to 3-read ports and 1-write port.

 286

9. Push and Pop instructions: Stack BRAM memory addition, Cortex-M0 Memory
organization, Addition of SP main and process registers to register bank.

10. Branch instructions implementation: Introduction to branching by simply
updating PC and invalidating the pipeline. Introduction to 32-bit instructions.
Major decoder module rework to co-run 16-bit Thumb instructions with 32-bit
ones. BL instruction implementation.

11. Sign extension, and byte reverse instructions: SXTH, SXTB, REV, REV16, etc.

12. Supervisor Call: SVC instruction and introduction to exceptions, vector table and
OS interrupt routines, Thumb mode, etc.

13. 32-bit instructions: Moving data between special registers and memory by
implementing MRS, MSR, etc., full implementation of register bank.

14. Hint and Barriers: implementation of CPS, BKPT, SEV, WFI, etc. and
introduction to Hint and barriers concepts and multi-core architectures.

`

10.3. Limitation
The limitation of the ARM Cortex-M0 implementation proposed in this section is that

the design as a prototype is not optimized for neither power consumption nor area.

Signals, registers, and logic gates are used without taking optimization in mind.

This is due to sheer amount of complexity which prevented us from putting any

emphasize on optimization. The priority was to get the system working properly and

not in the most efficient way possible. The integrity and reliability factor has higher

priority which makes the proposed implementation not the most optimized version.

10.4. Result
A VHDL implementation of ARM Cortex-M0 has been proposed alongside of the

implementation steps packed into modules to construct a full semester (5-months)

microprocessor laboratory course. The core is synthesized using Vivado 2019.2 on

Zynq UltraScale+ MPSoC ZCU104 Evaluation Kit which yielded a utilization of 3198

LUTs and 843 registers.

The implementation is fully compatible with ARM Cortex-M0. It is a cycle

accurate implementation of Cortex-M0, and all instructions names, their effect and all

processor pin names are the same.

Any ARM implementation cannot be released publicly due to strict copyright

restriction imposed by ARM; therefore, we could not upload the VHDL implementation

source code of work presented in this section into GitHub website.

The interested readers can send direct emails to ehssan.aali@gmail.com and a copy

of Vivado project can be shared upon receiving the request.

mailto:ehssan.aali@gmail.com

 287

11. Adaptive Microprocessor with Miniature Accelerator using
LLVM Infrastructure and FPGA: The Case of ARM Cortex-M0

11.1. Introduction
In previous sections we went through the design, implementation, improvement of five

different processors: Laser, PicoBlaze, Zipi8, DAP-Zipi8 and Cortex-M0. We also went

through the details of LLVM compiler infrastructure and backend development. The

point that we are currently standing now is the right spot to establish the goal of this

thesis which is to propose an adaptive microprocessor architecture.

We initially again go through an extensive literature review. This time with more

knowledge depth of the topic to dig out all notable related works. Next, we dwell on

benchmarking, FFT algorithm and related topics in more detail and finally propose the

miniature accelerator architecture that is the corner stone of our proposed adaptive

system.

11.2. Implementation

11.2.1. General Literature Review
Let us first see what a manmade machine can do and cannot do. First, we define an

algorithm with the help of Turing Machine (TM). An algorithm is what a Turing

Machine implements. A TM is an idealized computer, because the amounts of time and

tape memory that can be used are unbounded [298]. According to Church-Turing thesis

a problem can be solved by an algorithm if and only if it can be solved by a Turing

Machine. It is not a theorem. It cannot be proved: that is why it is called a thesis [298].

Turing machines can compute any function normally considered

computable [299]. Any machine capable of performing any computation that can be

performed on a Turing machine is called Turing equivalent [300]. Two types of

programming languages exist:

1. Imperative: Which can be used to write imperative programs. They consist of

commands for the computer to perform. Imperative programming focuses on

describing how a program operates.

2. Declarative: which focuses on what the program should accomplish without

specifying how the program should achieve the result. Any imperative

language which implements iteration and recursion can be used to form a

Turing equivalent machine. Therefore, a program written in C/C++, Java, etc.

are all Turing equivalent, and can be used to solve any computable problem.

11.2.1.1. Computation Models
First, we explore the important models of computation as listed below:

• Circuits execute straight-line programs, programs containing only assignment

statements. Thus, they have no loops or branches [301]. (They may have loops

if the number of times a loop is executed is fixed.)

• Finite-State Machines (FSM) is a machine with memory. It has current state,

next state, a trigger to initialize a transition from current state to next state.

• Random-Access Machine RAM is modeled as a pair of interconnected finite-

state machines, one a central processing unit (CPU) and the other a random-

 288

access memory. The CPU executes the fetch-and-execute cycle in which it

repeatedly reads an instruction from the random-access memory and executes

it[301].

• Pushdown Automaton is finite memory with stack [299].

• Turing machine is a machine consisting of a control unit (an FSM) and a tape

unit that has a potentially infinite linear array of cells each containing letters

from an alphabet that can be read and written by a tape head directed by the

control unit [301].

• µ-recursive Functions are closely related to primitive recursive functions

which are class of functions defined by 3 types of initial functions and two

combining rules. It is shown that the µ-recursive functions are precisely the

functions that can be computed by Turing machines.

• λ-calculus consists of a set of objects called λ terms and some rules for

manipulating them. The λ-calculus has had a profound impact on computing.

One can see the basic principles of the λ-calculus at work in the functional

programming language LISP and its more modern offspring SCHEME and

DYLAN [299].

We can implement the abstract Turing machine model by replacing its tape and

head with a ‘register’, and we name it register machine.

There are four subclasses of register machine:

1. Counter machine: Harvard architecture, no indirect addressing.

2. Pointer machine: Harvard architecture, blend of counter machine and RAM.

3. Random-access machine (RAM): Harvard architecture, a counter machine with

indirect addressing and instruction set.

4. Random-access stored-program machine (RASP): An example of von

Neumann architecture. But unlike a computer, the model is idealized with

effectively infinite registers.

In next section we will discuss the von Neumann architecture which used to

perform general purpose computing. We then investigate the other end of spectrum

which is application specific computing and the blends in between.

11.2.1.2. Processor Classification

11.2.1.2.1. General Purpose Computing
In 1945, the mathematician John Von Neumann demonstrated in a study of computation

that a computer could have a simple, fixed structure, able to execute any kind of

computation, given a properly programmed control, without the need for hardware

modification. The general structure of a VN machine as shown in Fig. 138 [302].

In general, the execution of an instruction on a VN computer can be done in five

cycles:

1. Instruction Read (IR)

2. Decoding (D)

3. Read Operands (R)

4. Execute (EX)

5. Write Result (W)

In each of those five cycles, only the part of the hardware involved in the

computation is activated. The rest remains idle. Instruction Level Parallelism (ILP) is a

 289

•

Fig. 138: The Von Neumann Computer architecture.

transparent way to optimize the hardware utilization as well as the performance of

programs by activating idle parts by having many different cycles executing together.

The main advantage of the VN computing paradigm is its flexibility because it can

be used to program almost all existing algorithms. However, each algorithm can be

implemented on a VN computer only if it is coded according to the VN rules. We say

in this case that the algorithm must adapt itself to the hardware. Also because of the

temporal use of the same hardware for a wide variety of applications, VN computation

is often characterized as temporal computation.

With the fact that all algorithms must be sequentially programmed to run on a VN

computer, many algorithms cannot be executed with their potential best performance.

Algorithms that usually perform the same set of inherent parallel operations on a huge

set of data are not good candidates for implementation on a VN machine [302].

11.2.1.2.2. Domain-Specific Processors
A domain-specific processor is a processor tailored for a class of algorithms. Digital

Signal Processor (DSP) belong to the most used domain-specific processors. A DSP is

a specialized processor used to speed-up computation of repetitive, numerically

intensive tasks in signal processing areas. The most often cited feature of the DSPs is

their ability to perform one or more multiply accumulate (MAC) operations in single

cycle [302].

11.2.1.2.3. Application-Specific Processors
Although DSPs incorporate a degree of application-specific features such as MAC and

data width optimization, they still incorporate the VN approach and, therefore, remain

sequential machines. Their performance is limited. If a processor must be used for only

one application, which is known and fixed in advance, then the processing unit could

be designed and optimized for that application. In this case, we say that the hardware

adapts itself to the application.

A processor designed for only one application is called an Application-Specific

Instruction set Processor (ASIP). In an ASIP, the instruction cycles (IR, D, EX, W) are

eliminated. ASIPs are usually implemented as single chips called Application-Specific

Integrated Circuit (ASIC) [302].

Spatial Computing: ASIPs use a spatial approach to implement only one

application. The functional units needed for the computation of all parts of the

 290

application must be available on the surface of the final processor. This kind of

computation is called Spatial Computing [302].

11.2.1.3. Flexibility vs Performance
We can identify two main factors to characterize processors: flexibility and

performance. The VN computers are very flexible while ASIPs bring highest

performance. If we consider two scales, one for the performance and the other for the

flexibility, then the VN computers can be placed at one end and the ASIPs at the other

end as illustrated in Fig. 139 [302].

 Ideally, we would like to have the flexibility of the General-Purpose Processor

(GPP) and the performance of the ASIP in the same device. We would like to have a

device able ‘to adapt to the application’ on the fly. We call such a hardware device a

reconfigurable hardware or reconfigurable device or Reconfigurable Processing Unit

(RPU).

Fig. 139: Flexibility vs performance of processor classes.

11.2.1.4. Reconfigurable Computation

11.2.1.4.1. History
Reconfigurable computing is a computer architecture combining some of the flexibility

of software with the high performance of hardware by processing with very flexible

high speed computing fabrics like field-programmable gate arrays (FPGAs). The

principal difference when compared to using ordinary microprocessors is the ability to

make substantial changes to the datapath itself in addition to the control flow. On the

other hand, the main difference from custom hardware, i.e., application-specific

integrated circuits (ASICs) are the possibility to adapt the hardware during runtime by

“loading” a new circuit on the reconfigurable fabric [303].

The concept of reconfigurable computing has existed since the 1960s, when Gerald

Estrin’s paper proposed the concept of a computer made of a standard processor and an

array of “reconfigurable” hardware [304, 305]. The main processor would control the

 291

behavior of the reconfigurable hardware. The latter would then be tailored to perform

a specific task, such as image processing or pattern matching, as quickly as a dedicated

piece of hardware. Once the task was done, the hardware could be adjusted to do some

other task. This resulted in a hybrid computer structure combining the flexibility of

software with the speed of hardware [303].

In the 1980s and 1990s there was a renaissance in this area of research with many

proposed reconfigurable architectures developed in industry and academia [302] such

as: PAM [306], Copacobana, Matrix, GARP [307], Elixent, NGEN, Polyp [308],

MereGen [309], PACT XPP, Silicon Hive, Montium, Pleiades, Morphosys, and

PiCoGA [310].

Such designs were feasible due to the constant progress of silicon technology that

let complex designs be implemented on one chip. Some of the these massively

Fig. 140: Comparison of different platforms used for implementing digital

applications[311].

parallel reconfigurable computers were built primarily for special subdomains such

as molecular evolution, neural or image processing. The world’s first commercial

reconfigurable computer, the Algotronix CHS2X4, was completed in 1991. It was not

a commercial success but was promising enough that Xilinx (the inventor of the Field-

Programmable Gate Array, FPGA) bought the technology and hired the Algotronix

staff. Later machines enabled first demonstrations of scientific principles, such as the

spontaneous spatial self-organization of genetic coding with MereGen [312]. In

reconfigurable computing we also can categorize devices based on performance versus

flexibility as shown in Fig. 140 [311].

The flexibility and reprogrammability of FPGAs leads to lower Non-Recurring

Engineering (NRE) cost and faster time to market than more customized approaches

such as Application Specific Integrated Circuit (ASIC) design. There are devices that

lie in between FPGAs and ASICs. These devices are termed as Structured ASICs.

Structured-ASICs can cut the NRE cost of ASICs by more than 90% while

speeding up significantly their time to market [313]. Structured-ASICs contain array of

optimized elements which implement a desired functionality by making changes to few

upper mask layers [311]. An Application Specific Inflexible FPGA (ASIF) [314], on

the other hand, comprises of optimized logic and routing resources like Structured-

ASIC but retains enough flexibility to implement a set of pre-determined applications

that operate at mutually exclusive times.

Contrary to Structured-ASIC which is basically a modified form of ASIC, and

which can implement only one application, an ASIF is a modified form of an FPGA,

and it can implement a set of application for whom it is designed. However, unlike

FPGAs that are generalized in nature, an ASIF contains more customized logic and

 292

routing resources, and it has only enough flexibility that is required to implement a

predetermined set of applications [311].

11.2.1.4.2. Theories
There are two ways that a machine can compute a problem:

1. Instruction-Stream based: (Software) which are machines based on Von

Neumann architecture.

2. Data-Stream based: (Flowware) which are machines based on Systolic array

such as Hartenstein’s Xputer.

Table 47: Nick Tredennick’s Paradigm Classification Scheme.

 Resources Algorithms Programming Source

Early Historic

Computers:

Fixed Fixed None

Von Neumann

Computer:

Fixed Variable Software (instruction

streams)

Reconfigurable

Computing Systems:
Variable Variable

Configware (configuration)

Flowware (data streams)

• Tredennick’s Classification: The fundamental model of the reconfigurable

computing machine paradigm, the data-stream-based anti-machine is well

illustrated by the differences to other machine paradigms that were introduced

earlier, as shown by Nick Tredennick’s following classification scheme of

computing paradigms as shown in Table 47 [303].

• Systolic Array: A systolic system is a network of processors which

rhythmically compute and pass data through the system. Physiologists use the

work ’systole’ to refer to the rhythmically recurrent contraction of the heart and

arteries which pulses blood through the body. In a systolic computing system,

the function of a processor is analogous to that of the heart. Every processor

regularly pumps data in and out, each time performing some short computation,

so that a regular flow of data is kept up in the network. Many basic matrix

computations can be pipelined elegantly and efficiently on systolic networks

having an array structure [12].

• Hartenstein’s Xputer: Computer scientist Reiner Hartenstein describes

reconfigurable computing in terms of an anti-machine that, according to him,

represents a fundamental paradigm shift away from the more conventional von

Neumann machine [315, 316]. Hartenstein calls it Reconfigurable Computing

Paradox, that software-to-configware (software-to-FPGA) migration results in

reported speed-up factors of up to more than four orders of magnitude, as well

as a reduction in electricity consumption by up to almost four orders of

magnitude although the technological parameters of FPGAs are behind the

Gordon Moore curve by about four orders of magnitude, and the clock

 293

frequency is substantially lower than that of microprocessors. This paradox is

partly explained by the Von Neumann syndrome. The Xputer architecture is

data-stream-based and is the counterpart of the instruction-based von Neumann

computer architecture. Instead of sequencing the instructions, the Xputer used

to sequence data, thus exploiting the regularity in the data dependencies of some

class of applications like in image processing, where a repetitive processing is

performed on a large amount of data [302]. It consists of a reconfigurable

datapath array (rDPA) organized as a two-dimensional array of ALUs (rDPU)

[317]. Hartenstein defines the terminologies Morphware, Configware, and

Flowware in respect to a VN hardware and software concepts as shown in Table

48 [318]. VN processor programming is supported by compilers, whereas

traditional accelerator development has been and is done with electronic design

automation (EDA), tools [319].

The contemporary common model of computing systems is the cooperation of the

(micro)processor and its accelerator(s), including an interface between both, as shown

in Fig. 141 [318].

If we replace the accelerator with data-stream-based reconfigurable

(morphware) we obtain a new general model of embedded computers as shown in Fig.

142 [318].

Table 48: Hartenstein Terminologies[319].

Platform Program

source

Machine

paradigm

 Hardware (Not

programmable)
(None)

Morphware Fine grain

morphware

Configware

Coarse grain

morphware

(Data-stream-

based)

Configware &

Flowware

Anti-Machine

Hard-wired

processor

Data-stream-based

computing

Flowware

Instruction-stream-

based computing

Software Von Neumann

 294

Fig. 141: The common model of computer systems [318].

Fig. 142: Morphware based traditional embedded computing design flow [318].

11.2.1.4.3. Definitions
• Reconfigurable Computing: For a given application, at a given time, the

spatial structure of the device will be modified such as to use the best computing

approach to speed up that application. If a new application must be computed, the

device structure will be modified again to match the new application.

• Configuration, Reconfiguration: Configuration respectively reconfiguration

is the process of changing the structure of a reconfigurable device at star-up-time

respectively at run-time.

• Fine-grained reconfigurable devices: Hardware devices, whose functionality

can be modified on a very low level of granularity. They operate on a data path of

one single bit width.

11.2.1.5. Applications of Reconfigurable Computing

11.2.1.5.1. High-performance Computing
High-Performance Reconfigurable Computing (HPRC) is a computer architecture

combining reconfigurable computing-based accelerators like field-programmable gate

array with CPUs or multi-core processors [303].

 295

The increase of logic in an FPGA has enabled larger and more complex algorithms

to be programmed into the FPGA. The attachment of such an FPGA to a modern CPU

over a high-speed bus, like PCI express, has enabled the configurable logic to act more

like a coprocessor rather than a peripheral. This has brought reconfigurable computing

into the high-performance computing sphere [303].

Furthermore, by replicating an algorithm on an FPGA or the use of a multiplicity

of FPGAs has enabled reconfigurable SIMD systems to be produced where several

computational devices can concurrently operate on different data, which is highly

parallel computing [303].

Enabled by the large increase in fabrication de- vice capacity, high-end

reconfigurable architectures can also deliver impressive performance by virtue of

exploiting massive amounts of concurrency, as these architectures can leverage

parallelism at several levels (operation, basic block, loop, function, etc.), and support

multiple flows of control [317]. Several applications areas such as security (encryption)

and image/signal processing have highlighted the true potential of configurable

architectures in the high-performance arena [320].

11.2.1.5.2. Custom Computing Machines
The ability to be reconfigured as specific hardware structures, such as highly parallel

data-paths or supporting custom arithmetic formats, makes reconfigurable architectures

a prime vehicle for custom computing machines [317].

11.2.1.5.3. Fast Prototyping and Emulation Systems
Reconfigurable devices are ideal vehicles for deployment scenarios where the

computational needs cannot or are not fully defined at design time [317].

11.2.1.5.4. Submicron and Nanoscale Computing Systems
In promising new computing technologies, such as nanoscale computing systems,

where failure/defect rates are non-negligible, reconfiguration is seen as a key technique

for dealing with defective resources and transient faults [317].

11.2.1.6. Partial Re-configuration
Partial re-configuration is the process of changing a portion of reconfigurable hardware

circuitry while the other part is still running/operating. Field programmable gate arrays

are often used as a support to partial reconfiguration. Electronic hardware, like

software, can be designed modularly, by creating subcomponents and then higher-level

components to instantiate them. In many cases it is useful to be able to swap out one or

several of these subcomponents while the FPGA is still operating. Normally,

reconfiguring an FPGA requires it to be held in reset while an external controller

reloads a design onto it.

Partial reconfiguration allows for critical parts of the design to continue operating

while a controller either on the FPGA or somewhere else., as it loads a partial design

into a reconfigurable module. Partial reconfiguration also can be used to save space for

multiple designs by only storing the partial designs that change between designs.

A common example for when partial reconfiguration would be useful is the case

of a communication device. If the device is controlling multiple connections, some of

which require encryption, it would be useful to be able to load different encryption

 296

cores without bringing the whole controller down. From the functionality of the design,

partial reconfiguration can be divided into two groups [321]:

• dynamic partial reconfiguration also known as an active partial

reconfiguration - permits to change the part of the device while the rest of an

FPGA is still running.

• static partial reconfiguration the device is not active during the

reconfiguration process. While the partial data is sent into the FPGA, the rest

of the device is stopped (in the shutdown mode) and brought up after the

configuration is completed.

11.2.1.7. Granularity
The granularity of the reconfigurable logic is defined as the size of the smallest

functional unit (configurable logic block, CLB) that is addressed by the mapping tools.

High granularity, which can also be known as fine-grained, often implies a greater

flexibility when implementing algorithms into the hardware. However, there is a

penalty associated with this in terms of increased power, area and delay due to greater

quantity of routing required per computation. Fine-grained architectures work at the

bit-level manipulation level; whilst coarse grained processing elements (reconfigurable

datapath unit, rDPU) are better optimized for standard data path applications. One of

the drawbacks of coarse-grained architectures are that they tend to lose some of their

utilization and performance if they need to perform smaller computations than their

granularity provides, for example for a one bit add on a four-bit wide functional unit

would waste three bits. This problem can be solved by having a coarse grain array

(reconfigurable datapath array, rDPA) and a FPGA on the same chip.

Coarse-grained architectures (rDPA) are intended for the implementation for

algorithms needing word-width data paths (rDPU). As their functional blocks are

optimized for large computations and typically comprise word wide arithmetic logic

units (ALU), they will perform these computations more quickly and with more power

efficiency than a set of interconnected smaller functional units; this is due to the

connecting wires being shorter, resulting in less wire capacitance and hence faster and

lower power designs.

A potential undesirable consequence of having larger computational blocks is that

when the size of operands may not match the algorithm an inefficient utilization of

resources can result. Often the type of applications to be run are known in advance

allowing the logic, memory, and routing resources to be tailored to enhance the

performance of the device whilst still providing a certain level of flexibility for future

adaptation. Examples of this are domain specific arrays aimed at gaining better

performance in terms of power, area, throughput than their more generic finer grained

FPGA cousins by reducing their flexibility [303].

11.2.1.8. Rate of Reconfiguration
Configuration of these reconfigurable systems can happen at deployment time, between

execution phases or during execution. In a typical reconfigurable system, a bit stream

is used to program the device at deployment time. Fine grained systems by their own

nature require greater configuration time than more coarse-grained architectures due to

more elements needing to be addressed and programmed.

 297

Therefore, more coarse-grained architectures gain from potential lower energy

requirements, as less information is transferred and utilized. Intuitively, the slower the

rate of reconfiguration the smaller the energy consumption as the associated energy cost

of reconfiguration are amortized over a longer period. Partial re-configuration aims to

allow part of the device to be reprogrammed while another part is still performing active

computation. Partial reconfiguration allows smaller reconfigurable bit streams thus not

wasting energy on transmitting redundant information in the bit stream. Compression

of the bit stream is possible but careful analysis is to be carried out to ensure that the

energy saved by using smaller bit streams is not outweighed by the computation needed

to decompress the data [303].

11.2.1.9. Host Coupling
Often the reconfigurable array is used as a processing accelerator attached to a host

processor. The level of coupling determines the type of data transfers, latency, power,

throughput, and overheads involved when utilizing the reconfigurable logic. Some of

the most intuitive designs use a peripheral bus to provide a coprocessor like

arrangement for the reconfigurable array.

However, there have also been implementations where the reconfigurable fabric is

much closer to the processor, some are even implemented into the data path, utilizing

the processor registers. The job of the host processor is to perform the control functions,

configure the logic, schedule data and to provide external interfacing [303].

11.2.1.10. Routing/Interconnects
The flexibility in reconfigurable devices mainly comes from their routing interconnect.

One style of inter\connect made popular by FPGAs vendors, Xilinx and Altera are the

island style layout, where blocks are arranged in an array with vertical and horizontal

routing. A layout with inadequate routing may suffer from poor flexibility and resource

utilization, therefore providing limited performance. If too much interconnect is

provided this requires more transistors than necessary and thus more silicon area, longer

wires and more power consumption [303].

11.2.1.11. Benefits
On software to FPGA migrations a dazzling array of publications from a wide variety

application areas reports speed-up factors between 1 and 4 orders of magnitude and

promises to reduce the electricity bill by at least an order of magnitude[302].

11.2.2. Preliminary Literature on Adaptive Processor

11.2.2.1. High-Performance Reconfigurable Computing (HPRC)
High-performance reconfigurable computers (HPRCs) are based on conventional

processors and field programmable gate arrays (FPGAs) [322]. HPRCs are parallel

computing systems that contain multiple microprocessors and multiple FPGAs. In

current settings, the design uses FPGAs as coprocessors that are deployed to execute

the small portion of the application that takes most of the time under the 10-90 rule, the

10 percent of code that takes 90 percent of the execution time. FPGAs can certainly

accomplish this when computations lend themselves to implementation in hardware,

 298

subject to the limitations of the current FPGA chip architectures and the overall system

data transfer constraints [322].

Trident compiler is for floating point algorithms written in C, producing circuits in

reconfigurable logic that exploit the parallelism available in the input description [323].

11.2.2.2. FPGA Technologies
The technology defines how the different blocks (logic blocks, interconnect,

input/output) are physically realized. Basically, two major technologies exist: antifuse

and memory based. Whereas the antifuse paradigm is limited to the realization of

interconnections, the memory-based paradigm is used for the computation as well as

the interconnections. In the memory-based category, we can list the SRAM the

EEPROM, and the Flash based FPGAs [302].

11.2.2.3. Applications of C to HDL
C to HDL techniques is most applied to applications that have unacceptably high

execution times on existing general-purpose supercomputer architectures. Examples

include Bioinformatics, Computational fluid dynamics (CFD), financial processing,

and oil and gas survey data analysis [324].

11.2.2.4. Field Programmable Gate array (FPGA)

11.2.2.4.1. Vivado

11.2.2.4.1.1. Hierarchical Design
Hierarchical Design (HD) flows enable you to partition a design into smaller, more

manageable modules to be processed independently. In the Vivado ® Design Suite,

these flows are based on the ability to implement a partitioned module out-of-context

(OOC) from the rest of the design. The following is a list of the current methodologies

in the Vivado Design Suite [325].

The following is a list of the current methodologies in the Vivado Design Suite:

• Module Analysis: It analyze the module independent of the rest of the design

to determine resource utilization and perform timing analysis. No wrapper or

dummy logic is required; just synthesize, optimize, place, and route the module

on its own. Perform resource usage analysis, inspect timing reports, and

examine placement results just as you would for a full design. The Module

Analysis flow implements a partitioned module or IP core out-of-context of the

top level of the design. The module is implemented in a specific part/package

combination, and with a fixed location in the device. I/O buffers, global clocks

and other chip-level resources are not inserted but can be instantiated within

the module. The OOC implementation results can be saved as a design

checkpoint (DCP) file.

• Module Reuse: This flow reuses placed and routed modules from the Module

Analysis flow within a top-level design, locking down validated results. Users

can iterate on a specific section of a design, achieving timing closure and other

specific goals, then reuse those exact results while turning their attention to

other parts of the design. Reuse of out-of-context modules requires knowledge

of where the module pins and interface logic have been placed so that the

connecting logic can be floorplanned accordingly. The preservation level of the

 299

imported OOC module can be selected, allowing for minor placement and

routing changes if desired. This flow does not yet support moving or replicating

the OOC implementation results to other areas of a device, or to a different

device.

o Bottom-Up Reuse: Using this methodology, the OOC implementation is

done with little to no knowledge of the top-level design in which it is

reused, and the OOC results drive the top-level implementation. This

approach enables you to build a verified module (such as a piece of IP)

through place and route for reuse in one or more top level designs. In this

flow, the top-level design details are not known, so you must supply the

context constraints. These define the physical location for the module,

placement details for the module I/O, definitions of clock sources, timing

requirements for paths in and out of the module, and information about

unused I/O.

o Top-Down Reuse: Using this methodology, the top-level design and

floorplan create the OOC implementation constraints, and the top-level

design drives the OOC implementation. This approach enables a Team

Design methodology, enabling parallel synthesis and implementation of

one or more modules within the design. Team members can implement

their portions of a design independently, reusing their exact results in the

assembled design. In this flow, the top-level design details (pinout,

floorplan, and timing requirements) are known, and are used to guide the

OOC implementation. This allows for OOC module pin constraints, top-

level input/output timing requirements, and boundary optimization

constraints to all be created from the top-level design. All these flows

result in overall run time reduction by enabling the tools to implement only

one module of the design, instead of the whole design [325].

11.2.2.4.2. Debugging FPGA
Joint Test Action Group (JTAG) is an industry standard for verifying designs and

testing printed circuit boards after manufacture. It specifies the use of a dedicated debug

port implementing a serial communications interface for low-overhead access without

requiring direct external access to the system address and data buses.

JTAG allows device programmer hardware to transfer data into internal non-

volatile device memory (e.g., CPLDs, and FPGAs).

11.2.2.4.3. Joint Test Action Group (JTAG)
A JTAG interface is a special interface added to a chip as shown in Fig. 143.

The connector pins are:

1. TDI (Test Data In)

2. TDO (Test Data Out)

3. TCK (Test Clock)

4. TMS (Test Mode Select)

5. TRST (Test Reset) optional.

 300

Fig. 143: Daisy-chained JTAG (IEEE 1149.1).

Table 49: PetaLinux Design Flow Overview [326].

Hardware Platform Creation Vivado

1 Create PetaLinux Project petalinux-create -t project

2 Initialize PetaLinux Project petalinux-config –get-hw-description

3 Configure System-Level Options petalinux-config

4 Create User Components petalinux-create -t COMPONENT

5 Configure the Linux Kernel petalinux-config -c kernel

6 Configure the Root Filesystem petalinux-config -c rootfs

7 Build the System petalinux-build

8 Deploy the System petalinux-package

9 Test the System petalinux-boot

11.2.2.4.4. PetaLinux on ZynqMP
To fully understand the Linux operating system installation on a Zynq Ultrascale+

device we must discuss several components that are requires to boot the system into

Linux [326]: PetaLinux has following components:

1. Yocto Extensible SDK for arm and aarch64

2. Minimal downloads

3. XSCT and tool chains

4. PetaLinux CLI tools

Steps to prepare PetaLinux is shown in Table 49 [326].

First, we need to create a Hardware Platform with following components [326]:

1. External memory controller with at least 64 MB of memory (required)

2. UART for serial console (required)

3. Non-volatile memory (optional), for example, QSPI Flash and SD/MMC

4. Ethernet (optional, essential for network access)

 301

Fig. 144: ZynqMP Boot Flow [326].

Fig. 145: ZynqMP Detailed Boot Flow Example [326].

 302

The platform management unit (PMU) and configuration security unit (CSU) manage

and perform the multi-staged booting process, we can boot the device in either secure

or non-secure mode [327].

Boot process stages:

1. Pre-configuration stage: The PMU primarily controls pre-configuration stage

that executes PMU ROM to setup the system. The PMU handles all the

processes related to reset and wake-up.

2. Configuration stage: This stage is responsible for loading the first-stage boot

loader (FSBL) code for the PS into the on-chip RAM (OCM). It supports both

secure and non-secure boot modes. Through the boot header, we can execute

FSBL on the Cortex-R5 processor or the Cortex-A53 processor. In the Cortex-

R5 processor, lockstep is also supported.

3. Post-configuration stage: After FSBL execution starts, the Zynq UltraScale+

MPSoC device enters the post configuration stage.

The non-secure boot procedure is shown in Fig. 144. We can also see the detailed

boot flow example in Fig. 145 [326].

Below are commands to construct PetaLinux for ZynqMP:

This step generates a device tree DTB file, a first stage bootloader (if selected), U-

Boot, the Linux kernel, and a root filesystem image. Finally, it generates the necessary

boot images [119].

And then:

11.2.2.4.5. FPGA Terminologies

11.2.2.4.5.1. Logic Cell
1. Multiplexer based logic cells (e.g., Actel FPGAs)

2. Memory based logic cells (e.g., Xilinx FPGAs) cell is also called look-up table

(LUT) (memory is the LUT).

a. Configurable Logic Blocks (CLB)

11.2.2.5. Hardware Purchase

11.2.2.5.1. Partial Reconfiguration
Partial Reconfiguration is the ability to dynamically modify blocks of logic by

downloading partial bit files while the remaining logic continues to operate without

interruption. Partial Reconfiguration is now included at no additional cost within

Vivado Design Suite HLx System and Design Editions. The Partial Reconfiguration

feature is also available for purchase for WebPack additions, at a new lower cost.

$ petalinux-create --type project --template zynqMP --name zcu104
$ petalinux-config --get-hw-

description=/home/esi/workspace/Vivado_2018.2/zcu104/petalinux_hw/petalinux_hw.sdk

$ petalinux-build

$ cd images/linux/

$ petalinux-package --boot --fsbl ./zynqmp_fsbl.elf –fpga ../../../../Vivado_2018.2/zcu104/petalinux_hw/

petalinux_hw.runs/impl_1/system_wrapper.bit --pmufw ./pmufw.elf --u-boot --force

 303

11.2.2.5.2. Device Support
Most 7 series and Zynq-7000 devices support Partial Reconfiguration, with the only

exceptions being the smallest devices within these families. UltraScale support is

complete, with all devices supported through bitstream generation in the current Vivado

Design Suite version.

UltraScale represents a new breakthrough in Partial Reconfiguration technology,

enabling reconfiguration of nearly all FPGA resource types, including I/O, Gigabit

Transceivers, and clocking networks. The Zynq-7000 devices with a single-core

processor (Z-7007S, Z-7012S, Z-7014S) are not supported [328].

Place and route and bitstream generation is enabled for all production devices

except the VU440. Access to this device is available upon request [328].

Partial reconfiguration software is not free. One must purchase Vivado HL

System/Design Edition or purchase the module from Xilinx local vendor for WebPack

edition. The WebPack edition supports the following Zynq devices listed in Table 50.

Table 50: Devices supported in WebPack edition.

Family Category

Zynq Zynq-7000 SoC Device: XC7Z010, XC7Z015, XC7Z020, XC7Z030,

XC7Z007S, XC7Z012S, and XC7Z014S

Zynq

UltraScale +

MPSoC

UltraScale MPSoC: XCZU2EG, XCZU2CG, XCZU3EG, XCZU3CG,

XCZU4EG, XCZU4CG, XCZU4EV, XCZU5EG, XCZU5CG, XCZU5EV,

XCZU7EV, XCZU7EG, and XCZU7CG

11.2.2.5.3. Lattice Ice40
We tried to develop an experimental idea to achieve the conversion of a complex Xilinx

Spartan6 design to Lattice Ice40 based on pure primitive conversion.

We can categorize the main primitives used in Lattice FPGAs based on the latest

LATTICE ICE Technology Library [329] into 7 groups:

1. Register: Variations of D Flip-Flops.

2. Combinational Logic: LUT4 and Carry Logic.

3. Block RAM: 4096-bits with 16-bit data width dual ported synchronous

RAM.

4. IO

5. Global buffer

6. PLL

7. Hard Macros: dedicated device specific primitives.

11.2.2.5.4. Spartan-6
Spartan-6 primitives [330] are more complex. Its design elements are divided into two

main categories:

11.2.2.5.4.1. Macros:
Used to instantiate primitives that are complex to instantiate by just using the

primitives.

 304

1. Block RAM Support: Single/Dual port RAM/ROM blocks.

2. DSP48 block support:

a. Adder/Multiplier/Accumulator

b. Adder/Subtractor

c. Loadable Counter

d. Multiplier/Accumulator

e. Multiplier

Fig. 146: XDL Designs [331].

11.2.2.5.4.2. Primitives: Components native to the targeted FPGA. Data-
width varies:

1. Advanced: Memory Control Block, PCI Express.

2. Arithmetic Functions: DSP48A1.

3. Clock: Variation of Global Clock Buffer. PLL, Digital Clock Manage.

4. Config/BSCAN

5. I/O: I/O Buffers

6. RAM/ROM: a/synchronous 18Kb or 9Kb RAM/ROM memories.

7. Registers/Latches

8. Slice/CLB: LUT1/2/3/4/5/6, 2-to-1 MUX, 16-Bit Shift Register, and Carry

Logic.

We initially synthesize PicoBlaze with its UART RX/TX modules for the smallest

Spartan-6 device which is xc6slx4-3csg225 with balanced design goal.

11.2.2.5.5. Xilinx Design Language (XDL)
XDL is a human-readable ASCII format compatible with the more widely used NCD

(Netlist Circuit Description). XDL and NCD file are both native Xilinx netlist formats

for describing and representing FPGA designs.

HDL → NCD, XDL → Bit File.

XDL can represent designs in following states, as shown in Fig. 146:

• Mapped (unplaced and unrouted)

• Partially placed and unrouted

• Partially placed and routed

• Fully placed and unrouted

• Contain hard macros and instances of hard macros

• A hard macro definition

 305

The NCD files (generated by Xilinx ISE) can be converted to XDL files and vice-

versa with internal commands in ISE.

11.2.2.5.6. RapidSmith
The BYU RapidSmith [332] project is a set of tools and APIs written in Java that aim

to provide academics with an easy-to-use platform to try out experimental ideas and

algorithms on modern Xilinx FPGAs.

Fig. 147: Conceptual diagram of the Xilinx ISE and RapidSmith flow [333].

RapidSmith is based on the Xilinx Design Language (XDL) which provides a

human-readable file format equivalent to the Xilinx proprietary Netlist Circuit

Description (NCD). With RapidSmith, researchers can import XDL/NCD, manipulate,

place, route, and export designs among a variety of design transformations. The

RapidSmith project makes an excellent test bed to try out new ideas and algorithms for

FPGA CAD research as code can quickly be written to take advantage of the APIs

available. The Xilinx ISE tools provide an xdl executable that allows conversion of

NCD files to and from XDL which can then be parsed, manipulated, and exported using

RapidSmith.

The xdl executable also creates special device files which are huge in size but

contain useful detailed device data. RapidSmith takes care of all the parsing and

detailed FPGA part information that can be cumbersome to use alleviating the need to

build such parsing tools by the researcher. RapidSmith creates special part files from

these device files created by the ISE tools which can then be used by RapidSmith for

design manipulation. This project provides researchers the ability to leverage all the

XDL work previously done and avoid duplicate work. This will enable researchers to

have more time to focus on what matters most: their research of new ideas and

algorithms [332].

The conceptual diagram of the Xilinx ISE and RapidSmith flow is shown in Fig.

147.

 306

11.2.2.6. Adaptive Microprocessor Related Works and Literature Review
Reconfiguration of hardware can be implemented either on a hard-wired processor or

on the acceleration part. To solve any computable problem, we first must come up with

an algorithm. There are two types of algorithms [334]:

1. Traditional serial algorithms

2. Parallel algorithms.

Most of code piled up in last four decades is written for VN machines, there are

serial in nature and most programmers who wrote those codes were thinking in serial

mentality. There are two ways to improve the current condition:

1. To identify the parallelizable parts of a code which is written in serial

automatically and run it in parallel on multiple cores.

2. To change the serial programming mentality to parallel programming.

Topics to probe:

• FPGAs with PCIe used for high parallel computing.

• Introduction to Parallel Computing with OpenCL™ Programs on FPGAs

[335].

• Parallel Programming Platforms adding RAM configuration into FPGA

devices in order of. Maybe we can find a way to minimize/optimize.

A very important keyword to find closely related works is “adaptive

microprocessors”. The following section provides the detail of research conducted

using the keyword.

Processor Reconfiguration through Instruction Set Metamorphosis (PRISM) [336,

337]: One characteristic common to nearly all applications which are computationally-

intensive is that they tend to spend most of their execution time within a small kernel

of the executable code. Efforts to improve the performance of such applications are best

spent on these kernels instead of rarely executed sections. In the solution proposed here,

the kernels are divided into one or more complex instructions that are executed directly

by hardware. Unlike the microcoded solutions of the past, however, the hardware to

execute these instructions is reconfigurable [337].

Basically, C code compiled by GCC, some C functions synthesized into FPGA, a

processor is interfaces with an FPGA through Armstrong Expansion bus. The specific

instructions are synthesized and fixed at compiled time. Garp [307] provides a

microprocessor and a reconfigurable array on the same die. It is a MIPS processor with

a reconfigurable array and is like DISC [338]. Extra instructions are added to MIPS to

load/store data from main memory to reconfigurable part. configuration of

reconfigurable array is also done by MIPS. Multiple operations define sin rows of array

and then a counter is set to nonzero value and data get copied into reconfigurable part.

The RC array is used to accelerate additions and variable shifters. Each raw of GARP

equals to a conventional ALU. RC have direct memory access to main memory. For

software there are files that can be loaded into C arrays for configuring RC rows. the

MIPS assembler is modified to host the new instructions. The hardware implementation

does not exist, and they use a simulator.

Dehon’s dynamically programmable gate array (DPGA) [339]solves the problem

of configuration time, which is one of the main bottlenecks of early FPGAs by quickly

switching among preloaded configurations.

Therefore, redundant look-up tables are used to broadcast configurations in a local

area on a cycle-by-cycle basis, thus allowing a clockwise reconfiguration of the FPGAs

 307

[302]. Identifying computationally intensive code and replace it by hardware has the

following barriers [336]:

• Identifying the location of the code

• Programmers need hardware-design expertise

• Needs another language (HDL)

The compiler in Processor Reconfiguration through Instruction Set Metamorphosis

(PRISM) first identifies the computationally intensive portions of code and offers

programmers a list of synthesizable candidates. The programmer then manually

chooses the functions. Then a hardware image for each function is generated.

A Motorola 68010 processor is coupled with FPGA boards. In less than a second

FPGAs are configured, and it takes 48 to 72 processor clock cycles to move data out to

FPGA and get the result back to processor [336]. The bottleneck is data movement

between processor and FPGA. Other limitations of PRISM are:

• No support for global variables.

• Size of arguments and return values limited to 32-bit.

• No Floating-Point support.

• Do-While and Switch cases are not supported.

Fig. 148: Semantic Graph [340].

Table 51: IR using Tuples [340].

(JUMP, L2) goto L2

(LABEL, L1) L1:

(SHR, 3, x, t0) t0 := 3 >> x

(DIV, y, t0, t1) t1 := y / t0

(COPY, t1, x) x := t1

(JZ, y, L3) if y == 0 goto L3

(SUB, x, 3, t2) t2 := x - 3

(PRINT, t2) print t2

(LABEL, L3) L3:

(LABEL, L2) L2:

 308

(MUL, 4, y, t4) t4 := 4 * y

(LT, x, t4, t5) x := t4 < t5

(JNZ, t5, L1) if t5 != 0 goto L1

11.2.2.7. Adaptive Execution of LLVM IR Exploration
An intermediate representation is a representation of a program “between” the source

and target machine. A good IR is one that is independent of the source languages and

target machines.

IRs are used for machine independent optimization and translation. Any language

targeting a virtual machine or portable-code machine can be considered an intermediate

language.

Types of Intermediate Representations:

1. Structured (graph or tree-based)

2. Flat, tuple-based, generally three-address code (quadruples)

3. Flat, stack-based

4. Any combination of the above three

For example, the C code in Listing 41 can be converted to those types of IR. Fig.

148 shows the semantic graph and Table 51 shows the tuples and Listing 40: IR Stack

Code. shows the stack code.

while (x < 4 * y) {

x = y / 3 >> x;

if (y)

print x - 3;

}

Listing 41: Sample C code for IR.

 goto L2
L1:

 load y

 load_constant 3
 load x

 shr

 div
 store x

 load y

 jump_if_zero L3
 load x

 load_constant 3

 sub
 print

L3:

L2:
 load x

 load_constant 4

 load y
 mul

 less_than

 jump_if_not_zero L1

Listing 40: IR Stack Code.

 309

11.2.2.7.1. List of IRs
• GNU RTL: The intermediate language for the many source and target

languages of the GNU Compiler Collection.

• Diana: Descriptive Intermediate Attributed Notation for Ada. No longer used

by major Ada compilers.

• PCODE: The intermediate language of early Pascal compilers. Stack based.

Responsible for wide adoption of Pascal in the 1970s.

• Java Virtual Machine: Another virtual machine specification. Almost all Java

compilers use this format. So do nearly all Scala, Ceylon, Kotlin, and Groovy

compilers. Hundreds of other languages use it as well. JVM code can be

interpreted, run on specialized hardware, or jitted.

• Squid

• CIL: Common Intermediate Language. Languages in Microsoft’s .NET

framework (such as C+, VB.NET, etc.) compile to CIL, which is then assembled

into bytecode.

• C: It is widely available and the whole backend is already done within the C

compiler.

• C–: Kind of like using C, but C– is designed explicitly to be an intermediate

language, and even includes a run-time interface to make it easier to do garbage

collection and exception handling. Seems to be defunct.

• LLVM: Much more than just a VM.

• SIL: The Swift Intermediate Language. Here is a nice presentation on SIL.

• asm.js: A low-level subset of JavaScript.

• Web Assembly: An efficient and fast stack-based virtual machine.

LLVM IR is based on Static Single Assignment (SSA). SSA is a property of

an IR which requires that each variable is assigned exactly once, and every variable

is defined before it is used. There are many benefits in optimization by using SSA

(such as constant propagation [341]).

Neville and others investigated the Static Energy Consumption analysis of

LLVM IR programs [342]. Two methods are provided:

1. Mapping the LLVM IR to target ISA (XMOX xCore) and then sum energy

consumption per instruction.

2. Attributing energy consumption directly to LLVM IR.

There are two major programming paradigms:

1. Imperative: The programmer instructs the machine how to change its state.

2. Declarative: The programmer merely declares properties of the desired

result, but not how to compute it.

Some thoughts to ponder: Do we have another possible programming paradigms

which has been neglected completely? There is a problem to be solved. Computation

finds the answer to the problem. Why do we need to tell the computation the steps

needed to solve a problem?

11.2.2.8. Zipi8 IPC Improvement: Dual Memory Port Approach Review

11.2.2.8.1. RISC History
IBM 801 was developed in 1975 as an emulator for System/360 code [269]. Two

academic projects:

1. “A VLSI RISC” at University of California Berkeley [343]

 310

2. “VLSI Processor Architecture” [344] at Stanford University has more

influence on RISC architecture than IBM 801.

• The IBM 801 (1975) resulted in:

o Superscalar POWER architecture (1990)

o PowerPC 600 family (1991)

o POWER8 (2014)

• The Berkeley RISC-1 project (1981) resulted in:

o SPARC v8 (1987)

o SPARC v9 (1994)

o SPARC 64 XII (2017)

• The Stanford RISC project (1982) resulted in:

o MIPS-1 (1986)

o MIPS-5 (1996)

o MIPS32/MIPS64 Release 6 (2014)

• Advanced RISC Machine Ltd. formed (1990) and resulted in:

o ARM7 (1993)

o ARM11 (2002-2005)

o Cortex (2011-2019)

David Patterson in his 1981 paper [258] defines the characteristics of a RISC

processor:

1. Execute one instruction per cycle.

2. All instructions are the same size.

3. Only load and store instructions access memory; the rest operate between

registers.

4. Support high-level languages (HLL).

11.2.2.8.2. Delayed Load and Delayed Branch Problem
Varied instruction length in CISC processors makes pipelining difficult to implement

and less efficient and the logic required is very complex [257]. In a nonpipelined

processor each instruction executes to completion before the next one begins; this

makes instruction execution rate simply inverse of average instruction execution

time[257]. A pipelined processor executes several instructions concurrently, thus even

each instructions needs four cycle to execute the overall rate at which instructions are

executed can be one clock per cycle. If the data needed in a instruction is not available

the pipeline must be stalled. Most RISC processor reduce this stall to one cycle which

is called load delay slot [257].

Branches have similar problem, until the branch condition is evaluated the

processor does not know whether to execute next instruction or the jump to branch

target address. Most RISC processors use a delayed branch (This method is called

branch with execute in IBM 802 minicomputer [269, 345]) which means the first

instruction after branch is always executed even if the branch is taken. Compiler creates

code that deals with the situation efficiently by placing a NOP instruction after every

branch. Its optimizer then replaces the NOP instruction with a safe instruction, one that

is OK to execute whether the branch is taken or not [346].

A good compiler can fill-in 70% of those cycles which amounts to an up to 15%

performance improvement [258]. In the later generations of superscalar RISC machines

 311

(which execute more than one instruction in the pipeline cycle) ranch with execute

instruction has been abandoned in favor of Brand Prediction [258, 347].

11.2.2.8.3. RISV Solutions to Delayed Load and Delayed Branch Problem
One of the criteria of RISC processors is to execute one instruction per cycle (CPI=1)

[257]. To achieve this RISC processors resort to several techniques such as:

“Pipelining, Delayed Branches, Annulled Delayed Branches, Compiler optimizations,

etc.”. The delayed load which happened when there is a data dependency between two

consecutive instructions or delayed branch problem must be tackled to achieve CPI = 1.

In this section we will investigate all solutions hired by different RISC processors.

Table 52 shows the solutions adopted in famous RISC architectures.

Table 52: RISC Solutions to Load and Branch Delays.

Processor Load Delay Branch Delay

IBM 801 Compiler to put instruction in

between.

BRANCH WITH EXECUTE (can cover

60% of program [269])

RISC I Load & Store takes 2 cycles

[258].

Delayed Jump for every branch with

compiler optimization [258].

SPARC v8 “Load-use interlock” stalls the

pipeline [270].

Annulling Delayed Branches [270].

(Executes the delay instruction only if

branch is taken)

SPARC v9 Like v8 (64-bit version). Annulled Delayed Branches [271].

MIPS-I Mandatory load delay slot

[272].

Branch Delay Slot [272].

MIPS-II Removes mandatory load delay

slot, in case of violation extra

real cycles will be added [273].

Branch-Likely [272] Similar to annulled

Delayed Branches.

MIPS32 Load Delay [274]. Delayed Branch Slot, Branch Likely,

adjacent CTIs introduce performance

penalty [146]

ARM7TDMI

(3-stages)

All loads have an unconditional

1 cycle stall (3-cycles) [276].

Takes 3 cycles [275].

ARM9TDMI

(5-stages)

All single loads have a 1 cycle

interlock if used immediately

after load. (1-cycle) [276].

3 cycles in all cases [278].

ARM11

(8-stages)

Load/store parallelism (1 or 2

cycles) [239].

Dynamic branch prediction/folding: an

untaken branch requires one cycle, and a

taken branch requires three or more cycles

[239].

RISC-V One cycle mandatory stall [348]. RV32I do not have architecturally visible

delay slots, it has no branch flags [349].

Stalls on wrong branch prediction [348].

 312

Table 53: Sparc Control Transfer Characteristics [271].

Instruction

Group

Address

From

Delayed Taken Annul

bit

New

PC

New

nPC

Bcc PC-relative Yes Yes 0 nPC EA

Bcc PC-relative Yes No 0 nPC nPC + 4

Bcc PC-relative Yes Yes 1 nPC EA

Bcc PC-relative Yes No 1 nPC + 4 nPC + 8

The delayed branch technique always executed one instruction after (named delay

instruction) the conditional branch regardless of branch is taken or not taken. The

annulled delayed branch is based on introducing a second program counter. A control-

transfer instruction functions by changing the value of the next program counter (nPC)

or by changing the value of both the program counter (PC) and the next program counter

(nPC). When only the next program counter, nPC, is changed, the effect of the transfer

of control is delayed by one instruction. Some control transfer instructions (branches)

can optionally annul, that is, not execute, the instruction in the delay slot, depending

upon whether the transfer is taken or not taken [271].

Table 53 shows how annulled delayed branch in Sparc v9 works. The Bcc

instruction is a conditional branch which has an annulled bit. In all cases the instruction

is delayed. If branch is taken, then regardless of annulled bit the next PC value will be

nPC which is PC + 4. But is branch is not taken then the next PC value depends on

annulled bit. If it is 1 then the delayed instruction will be annulled, and the PC value

will be nPC + 4. If it is 0 then the delayed instruction will be dispatched, and the PC

value will be nPC.

The Branch-Likely instruction that got introduced in MIPS-II nullifies the branch

delay slot instruction when the branch is not taken by preventing its write-backstage

from happening [272] and only executed the branch delay slot if the jump is taken.

Effective pipelining technique demands instructions with uniform lengths and

execution times. When there is a true data dependency between two consecutive

instructions then the pipelined need to be stalled. One solution to prevent that from

happening is to design the compiler to insert NOP instructions between them.

11.2.2.8.4. List of RISC processors:
Below is the list of RISC processors:

1. IBM 801: Uses BRANCH WITH EXECUTE. This is like delayed branch in

the RISC computer [269].

2. RISC I

3. RISC II

4. RISC Blue

5. RISC Gold

6. MIPS

 313

7. Pyramid

8. SPARC

9. Power

10. PowerPC

11. RISC I

12. Alpha

11.2.2.9. Zipi8 Modifications to Achieve IPC = 1 Review
First, we change the BRAM that implements the main memory to be a dual port with

the following settings:

• Memory Type: “True Dual Port RAM”.

• Primitives output Register: unchecked.

Table 54: Zipi8 Modifications for change IPC to 1.

Module

No.

Name Modification

(1) Arithmetic and Logic

Operations

Remove the FDs and make it pure combinatorial.

(2) Decoding for ALU Remove the FDs and make it pure combinatorial.

(3) Decoding for Program Counter

and stack

It is pure combinatorial and needs no change.

(4) Decoding for strobes and

enables

Remove the FDs and make it pure combinatorial.

(5) Flags Remove the FDs and make it pure combinatorial.

(6) Mux outputs from ALU

functions, SPM, and input ports

no change is needed, it is pure combinational.

(7) Program Counter Remove the t_state(1) signal in clock process so

“pc” can be updated every clock cycle.

(8) Register Bank control Remove the FDs and make it pure combinatorial.

(9) Selection of Second operands to

ALU and port ID

no change needed; it is pure combinational.

(10) Selection of out port Value No change is needed. It is pure combinational.

(11) Shift and Rotate Operations Remove the FDs and make it pure combinatorial.

(12) Scratchpad Memory and Output

Register

Remove the FDs.

(13) Stack “stack_memory” signal comes from a clocked

BRAM.

(14) State Machine No change is needed.

(15) Two Banks of 16 General

Purpose Registers

It has clocked BRAMs, Set WE of BRAMs to

always ’1’ instead of ‘register enable’.

(16) 12-bit Address Generation Remove the FDs, and directly connect “stack

memory” to “return vector” to make it pure

combinatorial.

Zipi8 Zipi8 Set “bram_enable” to constant high.

 314

Then we introduce “address2” signal which will drive the second port of BRAM

to fetch the second instruction.

The next point of focus is the “pc” signal. The original design updates the “pc”

signal every two cycles. We need to change it to one cycle by removing the “t_state(1)”

signal which just toggles every clock cycle, so “pc” can be updated every clock cycle.

Table 54 lists the changes to achieve IPC = 1 on Zipi_8. With above modifications

we can achieve execution of normal instructions per one single cycle, but jumps, and

calls will fail. We then convert ram.vhd and ram32m_behav.vhd to use dual port

memory blocks. Next is to predict the next PC value. To do so we must delay the

“internal_reset” signal by one cycle.

Table 55: Stack Signals Analysis

t_state(1)

WE

t_state(2) pop_stack push_stack stack_pointer Output =

stack_pointer_value

(0) 0 0 0 0 00 01

(1) 0 1 0 0 00 01

(2) 1 0 0 0 01 00

11.2.2.9.1. DAP-Zipi8 Stack
The original stack mechanism does not work for IPC = 1 situation. First, we must

reverse engineer the stack mechanism used in PicoBlaze:

Every two clock cycles PC value changes. The “stack_pointer” signal decides

which address location in stack memory to read/write. Its value is initially ”0x00000”.

The “t state(1)” is connected to WE pin of stack RAM blocks. So it will only write

when “t_state(1)” is asserted. The “stack_pointer_value” signal updates the

“stack_pointer” every clock cycle. The “stack_pointer_value” is generated by a

combinational circuit with “pop_stack”, “push_stack”, “t_state[2:1]”, and

“stack_pointer” as its inputs.

If normal instructions are running the stack mechanism alternates between step (0)

and step (1) in Table 55.

At step (1) “WE” is high and therefore the PC value is stored in Stack BRAM

location which stack pointer is aiming at (location 01).

Speculation:

• If “t_state(2)” is high then “stack_pointer_value” = “stack_pointer” + 1.

• If “t_state(2)” is low then “stack_pointer_value” = “stack_pointer” - 1.

• If push stack is high, then “stack_pointer_value” = “stack_pointer” + 1 + 1.

• If push stack is low, then “stack_pointer_value” = “stack_pointer” - 1 + 1.

• If pop stack is high, then “stack_pointer_value” = “stack_pointer” + 1 - 1.

• If pop stack is low, then “stack_pointer_value” = “stack_pointer” - 1 - 1.

• When “WE” is high the current PC value is saves into location 01.

• If “push_stack” is high and “WE” is high the current PC value is saves into

location 01, and “stack_pointer_value” = “stack_pointer” + 1.

 315

• If pop stack is high the “stack_memory” = [“stack_pointer” - 1], and

“stack_pointer_value” = “stack_pointer” - 1.

11.2.2.10. Review Recap
Any imperative language which implements iteration and recursion can be used to form

a Turing equivalent machine. Therefore, a program written in C/C++, Java, etc. are all

Turing equivalent, and can be used to solve any computable problem.

In 1945, John Von Neumann showed that a computer could have a simple, fixed

structure, able to execute any kind of computation, without the need for hardware

modification [302]. The general structure of a Von Neumann (VN) machine as shown

in Fig. 138. The VN architecture is the cornerstone of general-purpose computing and

demands adaptation of algorithm to hardware. The temporal use of the same hardware

for a wide variety of applications, is often characterized as temporal computation. With

the fact that all algorithms must be sequentially programmed to run on a VN computer,

many algorithms cannot be executed with their potential best performance. Algorithms

that usually perform the same set of inherent parallel operations on a huge set of data

are not good candidates for implementation on a VN machine [302].

In general, the execution of an instruction on a VN computer can be done in five

cycles:

1 Instruction Read (IR)

2 Decoding (D)

3 Read Operands (R)

4 Execute (EX)

5 Write Result (W)

Fig. 149: Flexibility vs performance of processor classes.

A processor designed for only one application is called an Application-Specific

Instruction set Processor (ASIP). In an ASIP, the instruction cycles (IR, D, EX, W) are

eliminated and the Functional Units (FU) needed for the computation of all parts of the

 316

application is available and operates in parallel. This kind of computation is called

spatial computing [302].

11.2.2.10.1. Flexibility vs Performance – Reconfigurable Hardware
We can identify two main factors to characterize processors: flexibility and

performance. The VN computers are very flexible while ASIP bring highest

performance as illustrated in Fig. 149. Ideally, we would like to have the flexibility of

the General-Purpose Processor (GPP) and the performance of the ASIP in the same

device. We would like to have a device able to adapt to the application on the fly. We

call such a hardware device a reconfigurable hardware or Reconfigurable Processing

Unit (RPU). This chapter focuses on RC architectures and proposes a new methodology

to take advantage of both worlds of GPP and ASIP.

The idea of incorporating some means of adaptation into a computer has been

around for almost if the digital computer itself [350]. FPGAs are beginning to be used

to accelerate computation, rather than merely for testing and verifying logic circuits

[351, 352].

Today, FPGAs are coupled with host processor(s) and used for scientific

applications [353]. Early stages of a dynamic instruction set started in 1960s and 1970s

by having a variable control store and generating custom micro-code for each

application [350]. Later, general purpose processor was equipped with special

instructions that were implemented on tightly coupled reconfigurable FPGAs. The

selection of special instruction could be done by examining e.g., C source code and then

implement the complex function into a machine instruction.

For example, if the code calls a Hamming function frequently then the compiler

would reconfigure the FPGA to implement that Hamming function between two

arguments in hardware and produce a specific instruction to call the hardware routine.

The PRISM project [336] is an example of such an approach which provides a

combination of a configuration compiler which produces a hardware image and a

software image; both can be reconfigured to provide special instructions. The WASMII

project focuses on data-driven computation and tries to implement large circuits on

FPGAs by introducing virtual hardware which is the technique of swapping the FPGA’s

RAM configurations through a multiplexer to cover very large hardware circuits [354].

The DISC processor implements special instruction in the instruction set as an

independent circuit module. The individual instruction modules are paged onto the

hardware in a demand-driven manner as dictated by the application program. Hardware

limitations are eliminated by replacing unused instruction modules with usable

instructions at run-time [338].

In a poster published in 2003, Shigeyuki proposed an adaptive processor which has

the concept of the logical object consists of information sets, result data and status. An

object ID (a tag) is assigned to each logical object for identification. By addressing of

object ID, the logical object is loaded from main memory into physical object(s) which

is prefabricated hardware. Application program is partitioned into two parts, set of

logical object and instruction stream. Object specifies an operation. The detail of

operation is specified by the static and dynamic configuration data. Instruction consists

of processing object’s ID field, two referenced object’s ID fields for binomial model,

and dynamic configuration data. There is no opcode, and instruction decoder and its

pipeline stage are not necessary. The pipeline has three stages: (1) Request (2)

 317

Acquirement (3) Release. A stream processing and its coarser data granularity datapath

alongside an adaptive processor architecture were proposed [355].

He also proposes an application-specific pipelined stream processing [356]. After

few years Cache Architecture for Configurable Hardware Engine (CACHE) [351]

which is a refined version of earlier work is proposed that tackles three major

workloads:

1. the processor and application design workload

2. runtime resource management and scheduling workload

3. reconfiguration workload

It is basically a reconfigurable vector processor. His proposed CACHE is basically

a vector processor consist of working-sets stacked as object arrays in a cache like

manner. Each dataset is a computation resource consist of set of a hardware resource

(physical object) and software resource (logical object). Request, acquirement, and

release are performed on object arrays to perform the computation in parallel. A cycle-

accurate simulator written in C language to evaluate CACHE performance. The

complex design introduces overhead and among three applications: FIR filter, dot

product, and matrix-vector multiplication only FIR filter shows slight performance

improvement and for other two applications it takes hundreds of cycles for

configuration. Additionally, the comparison is against only one processor (LPDSP32)

which is not high performance (174 CoreMark [357]).

In 1995, Michael and Brad developed a Dynamic Instruction Set Computer (DISC)

that supports demand-driven modification of its instruction set. Implemented with

partially reconfigurable FPGAs, DISC treats instructions as removable modules paged

in and out through partial reconfiguration as demanded by the executing program.

Instructions occupy FPGA resources only when needed and FPGA resources can be

reused to implement an arbitrary number of performance-enhancing application-

specific instructions. DISC further enhances the functional density of FPGAs by

physically relocating instruction modules to available FPGA space [338].

In a 2012 paper, Michael, Diana, Carsten, Joerg, and Jurgen, introduced a novel

methodology to adapt the micro-architecture of a processor at run-time. The goal is to

tailor the internal architecture to the requirements of an application and the data to be

processed. The latter parameter is normally not known at design time. This leads to the

development of more general-purpose processors which are capable to handle the data

to be processed in any case. With the novel approach which keeps the micro-

architecture of a processor flexible, the processor can start as a general-purpose device

and end up with a specific parametrization, comparable with application specific

processor architectures. No tangible work is presented, but merely a road map [338].

Shigeyuki proposed a new computation model called CACHE (Cache Architecture

for Configurable Hardware Engine) which lets autonomous reconfiguration to be

performed within a working-set of application datapaths. It does not require a dedicated

host processor and its software to harness the reconfiguration. The processor

architecture is different from traditional computing model and its microprocessor

architecture [351].

There is a closed research project led by Dr. Ir. Stephan Wong which aims to design

Dynamically adaptive processors at TUDelft. The ρ-VEX processor adapts itself to

programs by splitting or merging cores. Efficient execution of any workload can be

achieved without wasting resources resulting in improved energy efficiency. The

 318

underlying processor organization allows for dynamic re-routing of (parallel) program

instructions. Consequently, a single design can execute one program fast or multiple

programs in parallel. It is still in prototyping stage and no working version has released

yet [358].

11.2.3. Adaptive Processor Related Work Recap
The concept of reconfigurable computing has existed since the 1960s, when Gerald

Estrin's paper proposed the concept of a computer made of a standard processor and an

array of "reconfigurable" hardware [304, 305]. The main processor would control the

behavior of the reconfigurable hardware. The latter would then be tailored to perform

a specific task, such as image processing or pattern matching, as quickly as a dedicated

piece of hardware. In the 1980s and 1990s there was an awakening in this area of

research with many reconfigurable architectures developed. Programmable Active

Memories (PAM) [306] is a uniform array of identical cells all connected in the same

repetitive fashion. Garp: A MIPS Processor with a Reconfigurable Coprocessor has

several instructions added to MIPS to reconfigure RC arrays [307]. Garp is hypothetical

and an actual processor was never developed. Instead, a simulator is used to execute

DES, image dithering, and sorting.

 Additionally, Garp RC part must be designed by hardware experts and

assembly stubs needs to be written to link RC arrays to a C program. NGEN [359],

POLYP [360] and MereGen [361] are massively parallel reconfigurable computers

based on hundreds of FPGAs coupled with SRAMs and are particularly suited for

subdomains that can be formulated in a parallel and systolic manner such a molecular

evolution. These systems deviate from conventional sequential programming and

offer a custom run-time environment which allows hardware designers reconfigure

circuits and implement evolutionary algorithms.

Early stages of a dynamic instruction set started in 1960s and 1970s by having a

variable control store and generating custom micro-code for each application [350].

Later, general purpose processor was equipped with special instructions that were

implemented on tightly coupled reconfigurable FPGAs. The selection of special

instruction could be done by examining e.g., C language source code and then

implement the complex function into a machine instruction.

For example, if the code calls a Hamming function frequently then the compiler

would reconfigure the FPGA to implement that Hamming function between two

arguments in hardware and produce a specific instruction to call the hardware routine.

The PRISM [336] project is an example of such an approach which provides a

combination of a configuration compiler which produces a hardware image and a

software image; both can be reconfigured to provide special instructions.

Michael, et al. [362] introduce a novel methodology to adapt the micro-

architecture of a processor at run-time. The goal is to tailor the internal architecture to

the requirements of an application and the data to be processed. The latter parameter is

normally not known at design time. This leads to the development of more general-

purpose processors which are capable to handle the data to be processed in any case.

With the novel approach which keeps the micro-architecture of a processor flexible, the

processor can start as a general-purpose device and end up with a specific

parametrization, comparable with application specific processor architectures. No

tangible work is presented, but merely a road map.

 319

XiRisc [363] is a Very Large Instruction Word (VLIW) processor with

reconfigurable instruction set. It categorizes a processor coupled with an RC into 1)

Loosely coupled architectures (coprocessor model): to extract a computation-intensive

coarse-grained task loosely interacting with the remaining application parts. 2) Tightly

coupled architectures (functional-unit model): for fine-grained tasks strongly

interacting with the processor execution flow. It has tightly coupled hardwired

functional units that can be reconfigured by special machine instructions which

designer needs to implement using a Hardware Description Language (HDL).

The WASMII [354] project focuses on data-driven computation and tries to

implement large circuits on FPGAs by introducing virtual hardware which is the

technique of swapping the FPGA's RAM configurations through a multiplexer to cover

very large hardware circuits.

The Dynamic Instruction Set Computer (DISC) [364] processor implements

special instruction in the instruction set as an independent circuit module. The

individual instruction modules are paged onto the hardware in a demand-driven manner

as dictated by the application program. Hardware limitations are eliminated by

replacing unused instruction modules with usable instructions at run-time.

Fig. 150: 1) Traditional embedded computing with hardware accelerator(s) versus 2)

Morphware based embedded computing design flow [364].

Instructions occupy FPGA resources only when needed and FPGA resources can

be reused to implement an arbitrary number of performance-enhancing application-

specific instructions.

Hartenstein argues against VN machine and proposes data-stream-driven

computing instead of VN paradigm that is instruction-stream-driven. A morphware

(instead of software) gives the opportunity to replace hardwired accelerators by RAM-

based reconfigurable accelerators, so that application-specific silicon can be avoided

[316]. Fig. 3 shows a morphware based system that contains two RAMs. One RAM

holds program memory and is accessed during run-time while the other one contains

configware and is accessed before run-time. The configware can act as expansion of

 320

instructions set that employs hardware accelerators. As can be seen in Fig. 3 to improve

performance, two hardware components must be designed per application: 1)

Acceleration interface 2) Acceleration hardware. The challenge is that hardware design

needs expertise and only a few implementers of algorithms (programmers) have that

knowledge. In contrast, traditional software development requires just the knowledge

of a high-level programming language and is proven to be easy to acquire even without

an academic degree in computer science.

There are works in data-stream-driven computing to achieve an adaptive processor.

Shigeyuki [355] proposes a reconfigurable processor that tackles three major

workloads:

1 . the processor and application design workload

2 . runtime resource management and scheduling workload

3 . reconfiguration workload

His proposed Cache Architecture for Configurable Hardware Engine (CACHE) is

basically a vector processor consist of working-sets stacked as object arrays in a cache

like manner. Each data-set is a computation resource consist of set of a hardware

resource (physical object) and software resource (logical object). Request, acquirement,

and release are performed on object arrays to perform the computation in parallel. A

cycle-accurate simulator written in C language to evaluate CACHE performance. The

complex design introduces overhead and among three applications: FIR filter, dot-

product, and matrix-vector multiplication only FIR filter shows slight performance

improvement and for other two applications it takes hundreds of cycles for

configuration. Also, the comparison is against only one processor (LPDSP32) which is

not high performance (174 CoreMark) [365].

The CHIMAERA [366] introduces a reconfigurable functional unit (RFU) into a

superscalar out-of-order processor pipeline with a GCC-based C compiler that maps

groups of instructions to RFUs. It supports a 9-input/1-output instruction model and

uses profiling to identify candidate function for optimization. While the execution can

be stalled during configuration loading, an average of 21% performance improvement

is claimed. One drawback is that the MIPS ISA must be extended to support RFU

operations (RFUOPs). It also needs compiler rework to produce RFUs.

The MOLEN [367] Polymorphic Processor introduces a GPP (PowerPC) next to

an RP. Instructions are issued to either processor by an arbiter and an exchange register

is used to pass arguments between both processors. The processors cannot execute

instructions in parallel and cooperate sequentially due to lack of compiler support. It

uses the SUIF 2 Compiler System for backend and Harvard Machine SUIF for frontend.

Six instructions are added to an academic level ISA named πISA to reconfigure

hardware. Via profiling the most frequent function of the MPEG-2 application is

identified and converted to hardware manually with claim of improvement up to 300

times.

The ρ-VEX [368] is a VLIW processor in research stage and is based on the VEX

ISA. It is well-suited for highly parallel DSP programs. The architecture paradigm is

based on MOLEN architecture. The instruction streams are fed either to GPP or RP.

The RP has a fixed (eight) number of pipelanes (each has pipeline of its own).

Instruction-Level Parallelism (ILP) is achieved in compile time. Instructions can be

executed in parallel up to the number of available pipelanes. It behaves like a multi-

core processor and provides thread-level parallelism (TLP) by having a reconfigurable

 321

interconnect that can be configured as a single 8-issue, two 4-issue or four 2-issue

modes. A 15% improvement in schedulability over a heterogeneous multi-core

platform is reported.

11.2.4. Motivation And Methodology

11.2.4.1. Motivation
After mentioning notable related work and studying the proposed architectures and

paradigms, their shortcomings can be summarized as follows:

1 . Majority of reconfigurable processors in the literature try to improve parallel

algorithms but do not consider all other algorithms (such as sequential ones).

2 . To implement an algorithm or optimize its performance there is at least one

part of the system that needs to be converted to hardware. This conversion

requires hardware design expertise which is lacked in most programmers. This

has prevented RP to become widespread.

3 . Majority of works are based on either custom ISA (e.g., DISC or πISA) or

academic-level ISAs (e.g., MIPS). Some use more notable architectures such

as PowerPC but almost none have utilized industry-level architectures such as

Intel or ARM.

4 . Majority of proposed architectures modify ISA, compiler, processor, and

executable binary format. This breaks backward compatibility and legacy-

code support which consequently prevents the work to become mainstream.

5 . The architectures proposed in literature have high complexity level which

ultimately does not convince designers to adapt their computational systems

in that direction. Meanwhile, high-level complexity increases development

time and debugging effort.

The above listed drawbacks motivated us to come up with a computational

paradigm that minimizes the mentioned disadvantages. Our contributions can be listed

as follows:

1 . We propose an architecture based on miniature accelerators that can optimize

all algorithms implementable on a Turing equivalent machine.

2 . It exploits reconfigurable circuits to gain performance while retaining legacy

code and backward compatibility.

3 . It adapts a well-known industry-level architecture: ARM v6-M Architecture

[287] employed by Cortex-M0 [369].

No ISA modification is performed, and no special instructions are added, therefore,

the machine code produces by our proposed system can be executed on original core

without miniature accelerators enabled.

11.2.4.2. Methodology
Our proposed system consists of three major components:

1 . Main Processor: ARM v6-M Cortex-M0.

2 . Compiler: LLVM Infrastructure [11].

3 . Reconfigurable Circuits: FPGA, VHDL code.

The first step is to implement the industry-level Cortex-M0 core as its Register-

Transfer-Level (RTL) HDL code is not publicly available. This step is necessary as

tailoring a processor to become adaptive requires detailed knowledge of its ISA and

precise awareness about the core internal behavior.

 322

Next step is to select an industry-level compiler to facilitate analyzing and

modification of machine code generation passes. After having a verified core and

supported compiler then adaptive part is developed. It adds miniature accelerator

mechanism to the original core to boost the core performance.

11.2.5. Benchmarking

11.2.5.1. Overview
Benchmarking is a way to measure performance of a computer system. More

specifically, benchmark is a program used to quantitatively evaluate computer hardware

and software resources [104]. We need to benchmark processors to accurately assess

and compare their key metrics which are [105]:

1) DSP speed

2) Memory efficiency

3) Energy efficiency

4) Cost-performance

We have several methods for benchmarking:

1) Simplified metrics: e.g., MIPS (Millions of Instructions Per Second), MOPS

(millions of operations per second), MMACS (Millions of Multiply-Accumulates per

Second), MFLOP (Millions of Floating-point Operations Per Second).

2) Full DSP applications: e.g., v.90 modem, GSM-EFR transcoder, Viterbi

encoder/decoder.

3) DSP algorithm "kernel" benchmarks: e.g., Matrix product, Convolution, FIR

filter, FFT, IIR filters.

Simplified metrics such as MIPS and MFLOP are frequently used as shorthand for

processor speed. But the following comparison of two DSP processor instructions

shows that these kinds of metrics are inaccurate: The "DSP16410: A0=A0+P0+P1

P0=Xh*Yh P1=Xl*Yl Y=*R0++ X=*PT0++” instruction does not do the same amount

of work as "TMS320C6414: ADD A0,A3,A0” instruction.

DSP Algorithm Kernels are code fragments extracted from real DSP programs.

Kernels are believed to be responsible for most of the execution time. They have small

code size and long execution time. They consist of small loops which perform number

crunching, bit processing etc. [105].

11.2.5.2. Synthetic Benchmarks
The synthetic benchmarks are artificial programs that are constructed to try to match

the characteristics of a large set of programs. Whetstone (floating-point) and Dhrystone

[108] (integer) are the most popular synthetic benchmarks.

The Embedded Microprocessor Benchmark Consortium (EEMBC) [110] is a non-

profit industry-standard consortium which effectively has replaced Dhrystone. The suit

has various benchmarks such as CoreMark for single-core, FPMark for multi-core

processors, ADASMark for heterogeneous computing, ULPMarK for Internet of

Things and Ultra-Low-Power devices, etc.

 The benchmarks of basic DSP algorithms usually are written in assembly. The

first reason is that the purpose of benchmarking is to measure the quality of the

assembly instruction set; by nature, the benchmarking should be in assembly language.

The second reason is that most DSP assembly programs are relatively simple and can

be managed by programmers. The third reason is that effectiveness of programs written

 323

in high-level language is very much dependent on the compiler [110, 370]. BDTI

(Berkeley Design Technologies Incorporation) always supplies benchmarks based on

hand-written assembly code while EEMBC uses C code.

There are other common benchmarks such as Linked Data Benchmark Council

(LDBC) [371]. Standard Performance Evaluation Corporation (SPEC) [372] that has

two benchmarks:

1 . SPECint for benchmarking of CPU integer processing

2 . SPECfp to test the floating-point performance of a computer.

Transaction Processing Performance Council (TPC) [373]: for transaction

processing and database benchmarks, etc.

 324

Among all types of benchmarks, we choose DSP algorithm kernels, and among all

kernels we choose Fast-Fourier Transform (FFT). Listing 1 Shows the C language

recursive implementation of FFT algorithm. The _start function is the program entry

point.

Note that although the C code in Listing 42 seems simple but the required 32-bit

floating-point arithmetic, sine and cosine math functions, and recursion prompts the

compiler to generate a series of machine codes that demand execution of approximately

one million ARM cortex-M0 instructions. The code is used as the primary input

algorithm for benchmarking our proposed architecture against the original processor

performance.

Listing 42: C language recursive implementation of FFT.

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#define points 8 /* for 2^8 = 256 points */

#define N (1<<points) /* N-point FFT */

typedef float real;

typedef struct{real Re; real Im;} complex;

#ifndef PI

define PI 3.14159265358979323846264338327950288

#endif

void fft (complex *wave, int n, complex *tmp) {

 if(n>1) { /* return if n =< 0 */

 int k,m; complex z, w, *vo, *ve;

 ve = tmp; vo = tmp+n/2;

 for(k=0; k<n/2; k++) {

 ve[k] = wave[2*k];

 vo[k] = wave[2*k+1];

 }

 fft (ve, n/2, wave); // FFT on even-indexed elements of wave[]

 fft (vo, n/2, wave); // FFT on odd-indexed elements of wave[]

 for (m=0; m<n/2; m++) {

 w.Re = cos(2*PI*m/(double)n);

 w.Im = -sin(2*PI*m/(double)n);

 z.Re = w.Re*vo[m].Re - w.Im*vo[m].Im; /* Re(w*vo[m]) */

 z.Im = w.Re*vo[m].Im + w.Im*vo[m].Re; /* Im(w*vo[m]) */

 wave[m].Re = ve[m].Re + z.Re;

 wave[m].Im = ve[m].Im + z.Im;

 wave[m+n/2].Re = ve[m].Re - z.Re;

 wave[m+n/2].Im = ve[m].Im - z.Im;

 }

 }

 return;

}

// Program entry point.

int _start() {

 complex wave[N], scratch[N]; int k;

 /* Fill wave[] with a sine wave of known frequency */

 for (k=0; k<N; k++) {

 wave[k].Re = 0.125*cos(2*PI*k/(double)N);

 wave[k].Im = 0.125*sin(2*PI*k/(double)N);

 }

 fft (wave, N, scratch); // Perform FFT, wave will have the result.

 return 0;

}

 325

11.2.6. LLVM Adaptive Backend Pass
In previous section the general overview of LLVM backend pipeline was presented and

shown how a designer can have full control over all aspects of machine code generation

from instruction selection down to the last step which is ELF file output. In this section

a new pass is introduced that receives the generated machine code and analyzes it

according to the following rules:

1. The C function that needs acceleration to be added on must be specified. In

this case it is the fft() function.

2. The mapping of fft() function in ELF file (after linking step) is determined. In

this case it is the instructions located at memory locations 0x40 to 0x192.

Fig. 151: Reconfigurable modules generated by LLVM backend: 1)

RC_PC_sensitivity 2) m0_PC_OP 3) RC.

3. The pair depth is a variable that determines the number of instructions in an

instruction pair. In this case a pair depth equal to 2 is set.

4. An instruction pair can be any sequence of consecutive instructions that has

no data dependency either based on registers or machine state.

5. An instruction pair must discontinue if it reaches a branch instruction

regardless of the branch will be taken or not.

6. Two types of instruction pairs are defined: A) Those that produce result and

end with a branch instruction (a branch happens whenever the PC register is

modified; therefore, a POP or PUSH instruction can be considered as a branch

if they alter the PC) B) Those that produce only result and contain no branch

instruction.

7. The pair must produce only one data and alter only one register.

8. The most frequent pair is defined as a pair of instructions that has the highest

number of occurrence in the body of selected function for acceleration.

It is possible to find the most frequent pair of instructions in each series of machine

instructions using established pattern recognition theory, heuristic algorithms, or even

 326

brute force. Using a heuristic algorithms for a pair depth = 2 the adaptive pass finds

the [MOV, BL] pair as the most frequent pair which is a Type B instruction pair. The

pass then extracts the memory address location of each [MOV, BL] and generates the

first reconfigurable VHDL module called RC_PC_sensivity as shown in Fig. 151.

This is a combinatorial module which receives PC value as input and generates the

invoke_accelerator signal as output. The RC_PC_sensivity module simply asserts the

invoke_accelerator signal whenever the current value of PC points to an instruction

pair [MOV, BL].

The second reconfigurable VHDL module generated by the adaptive pass is

m0_PC_OP. This module is a combinatorial module which receives PC value as input

Fig. 152: Waveforms of a typical branch operation to location 0x40 (takes 5 cycles)

compared with single-port acceleration mode (takes 1 extra cycle) versus dual-port

acceleration invocation (take no extra cycle). The branch instruction is at location

0x8A, instruction pair is [i88, i8A] and branch target is 0x40.

and outputs the operands value of both MOV and BL instructions located at the memory

location pointed by PC.

With the above RC circuits the task for miniature accelerator becomes trivial:

Every clock cycle that invoke_accelerator is high, the instruction pointed by current PC

should not be fetched. Instead, for type A instruction pairs, instruction at instruction

pair target address, and for type B instruction pairs, instruction at PC+size (instruction

 327

pair) must be fetched. Doing so forces the processor to artificially jump over the entire

instruction pair as shown in Fig. 152.

Removing the instruction pair on the fly is the cornerstone of our proposed

miniature accelerator architecture. But instructions removal without considering their

effect on the processor is illegal. Recall that for both type A and B instruction pairs a

result is assumed. This result is the effect of instruction execution which can be a new

value that must be saved in a register (instructions that do not modify registers but alter

the machine state also fall in this category, e.g., compare instruction that might set/unset

the Zero Flag register).

Note that the pair depth can be increased if the result of that specific instruction

remains one. This limitation is related to this fact that it is unfeasible to perform two

writes on processor register bank in a single clock cycle. Therefore, if an instruction

pair is formed and removed (to be executed in parallel with next instruction in pipeline)

then final effect of all its instructions must update only one register. The result that

comes out of an instruction pair is stored in accelerator_reg_data signal, and the

register number that must be updated with this data is stored in accelerator_reg_target

signal as shown in Fig. 151.

Fig. 153: Dual-port program memory interface controlled by invoke_accelerator and

pair_type, Type A = an instruction pair without branch, Type B = an instruction pair

with branch.

11.2.7. Adaptive Processor Using Miniature Accelerators
In this section initially a series of observations that justify the approach taken in our

proposed architecture is provided. Previous section describes how an LLVM backend

pass generates three RC modules. The complete integration of these RC components

with ARM Cortex-M0 is also presented in this section. Additionally, complete design

flow for the proposed architecture that required no hardware knowledge on the side of

end users is discussed.

 328

11.2.7.1. Observations
Upon careful examination of most proposed reconfigurable processors mentioned in

literature, it is concluded that all attempts to execute large number of instructions in

parallel fails due to register dependency, or machine state dependency that results in an

increase in critical path of pipeline.

A compiler generates a sequence of instructions based on constructs that appear in

frontend. These constructs are fixed and repeated across the whole program (e.g., if-

else or loop constructs) which generates fixed machine instructions pair (e.g., if

statement will always get converted to [compare registers/set flag/branch based on flag

status] instruction pair). If a program is not handwritten in assembly language, then it

is guaranteed that it contains patterns of repetitive instruction pairs.

The conversion of complete functions (e.g., Hamming function or FFT function,

or matrix multiplication) to hardware requires manual work of hardware designers. This

prevents adaptation of hardware accelerator to become mainstream in general-purpose

programming (e.g., in undergraduate programming courses or in industry with rapid

application development (RAD) as the most important factor). In contrast, simple

instruction pairs can be converted to hardware automatically.

11.2.7.2. Retaining Backward Compatibility
One of the major reasons that prevents proposed academic architectures to enter the

mainstream programming world is their incompatibility with the current systems. The

existence of already written programs and libraries (legacy software) and their

dependency on hardware specification introduce a strong inertia against any positive

modification to software or hardware. Therefore, if an architecture hopes to enter the

mainstream, it must consider the backward compatibility.

To achieve backward compatibility the original Cortex-M0 as shown in Fig. 135 is

implemented in VHDL language. This part is a soft-core, but it is` considered as a

hardened-core and any modification to it is prohibited. Then RC components are

instantiated and connected to the original Cortex-M0 under a condition controlled by a

generic VHDL keyword. The USE_ACCELERATOR is a Boolean generic and is

defined to allow user to easily turn the accelerator on/off. When USE_ACCELERATOR

is false then conditional code generation removes all RC components and turn the core

to a standard ARM Cortex-M0. When USE_ACCELERATOR is set to true then RC

components are instantiated and are connected to the original core. All changes are

internal to the processor core and are hidden from application layer.

In conclusion, an operating system, or a bare-metal program cannot detect if

processor is running in normal or accelerated mode and in both cases the same standard

Cortex-M0 facilities are exposed to software.

11.2.7.3. Pipeline Flush to Bypass Instruction Pair via Dual-Port Memory Block
RAMs

The invoke_accelerator signal as introduced before when activated, forced the

PC_value (the next value of PC) to deviate from normal operation which is an

increment by 2 every clock cycle. The goal is to jump over an instruction pair or in

other words to flush the pipeline and load it with the instruction after the pair or the

instruction located at pair branch target.

 329

For an 𝑛-stage pipeline the penalty for a flush is 𝑛 cycles [374]. Therefore, a flush

upon assertion of the invoke_accelerator signal costs 3 cycles. A successful removal

of an instruction pair in case of [MOV, BL] saves 5 cycles. Performing simple math

shows that if normal flushing upon acceleration is adopted then only 2 cycles is

preserved which defeats the purpose of gaining significant performance improvement,

thus, a different approach must be taken.

In [375] a technique is proposed that uses dual-port memory block RAM (DP-

BRAM) to fetch two memory locations instead of one per clock cycle to eliminate

pipeline stalls. Adopting the technique, the program memory BRAM is converted to

dual-port (64-bit) from single-port (32-bit). The second port is used to fetch either

acceleration target branch address or PC + instruction pair size as shown in Fig. 151.

Using a DP-BRAM on the exact clock cycle that invoke_accelerator signal goes

high the proper instruction from memory is fetched simultaneously with current

instruction fetch. The fetched instruction then is stored and used in next cycle which

results in elimination of pipeline flush penalty (see Fig. 153).

Fig. 152 shows three set of waveforms. The first one on the top shows the typical

branch execution. The branch instruction is located at memory address 0x8A and the

branch target is 0x40. The PC_value updates the PC signal every clock cycle. The PC

value is placed on address bus of AHB Lite interface (HADDR). The memory read

occurs on rising edge of clock. The read value from memory is placed on

hrdata_program_value and then placed on hrdata_program with one clock cycle delay.

The reason behind this is the registers placed between read memory (fetch) and

decoding circuitry (decode) to form a 3-stage pipeline. The Cortex-M0 prefetched two

16-bit instructions (placed on hrdata_program). The current_instruction holds the

value of current instruction which is either the first 16-bit or the second one which is

controlled by PC[1] bit. Instead of placing a specific instruction an iXX pattern is used,

for example, i86 means an arbitrary instruction at memory location 86. The FETCH,

DECODE, EXECUTE waveforms are not real signals. They are depicted to assist

tracking the pipeline stages. For example, the f86 means fetch of instruction at memory

location 86, the d86 means decode, and the e86 refers to execution of instruction at

location 86 and so on.

The next cycle after execution of e8A (which is a branch instruction) the PC_value

and PC signals deviate from normal increment by 2 operation (PC <= PC_value + 2)

and are set to new values. The PC is set to target address of branch (0x40) and PC_value

is set target address plus two (0x42). This deviation is marked in blue color, and red

arrows indicate the execution point which initiates it. The already fetched and decoded

instructions in pipeline must be discarded by the disable_executor signal as a branch

invalidates them.

Fig. 152 clearly shows that a pipeline flush takes 3 cycles to complete, and the

discarded stages are marked in red. The invoke_accelerator signal is set to high which

the first instruction in an instruction pair is hit by PC.

In Fig. 152, the second waveform shows an example of an instruction pair sitting

at memory location [0x88, 0x8A]. When PC is 0x88 the invoke_accelerator signal

initiates a deviation from normal PC <= PC_value + 2 operation and sets the PC to

target branch address (0x40) and PC_value to target branch address plus two.

 330

Fig. 154: Delayed Write mechanism that allows sinking in the generated

acceleration output (accelerator_reg_data) in register bank.

The problem is that this deviation occurs in next clock cycle, therefore, Cortex-M0

places the value 0x88 on address bus and the first instruction of pair is fetched and

placed in the pipeline. The goal is to remove both instructions at 0x88 and 0x8A.

The scenario shown here successfully removes 0x8A but fails to remove 0x88.

One solution is to initiate the acceleration (to set invoke_accelerator signal) one

clock cycle earlier by checking the PC_value instead of PC for value 0x88. The

problem with this approach is that it is not guaranteed to have PC_value = 0x88 at all

circumstances.

For example, a direct branch to 0x88 or a POP PC that pops 0x88 value into PC

bypasses the PC_value and directly changes PC. These cases do not set PC_value to

0x88 and consequently acceleration invocation fails. The ignoring of one clock cycle

delay as shown in second waveform of Fig. 152 defeats the purpose of our proposed

miniature acceleration which relies on removing one or two instruction to save one or

two clock cycles, therefore a workaround must be found.

The third waveform in Fig. 152 shows how the sample instruction pair at location

[0x88, 0x8A] can be successfully removed from pipeline without any penalty using

dual-port program memory. When PC reaches the value 0x88 the invoke_accelerator

signal is set which consequently places the target address branch (0x40) on second port

of block RAM. It also sets PC to target address plus two (0x42) and PC_value to target

address plus four (0x44). The fetched instruction at location 0x40 is on second address

bus (HRDATAB). A multiplexer controlled by invoke_accelerator signal then gets this

fetched instruction and places it on hrdata_program_value instead of its standard drive

which comes from the first port of block RAM. The third waveform in Fig. 152 clearly

shows how instruction pair [0x88, 0x8A] is removed from pipeline with 0 cycle penalty

(Pay attention to instruction execution sequence: e86, e40, e42, e44, etc.).

Successful removal of a type A pair saves 2 cycles and a type B pair 5 cycles (3

cycles flush penalty is also eliminated). But instructions removal without taking their

effect is illegal, therefore, next section provides the execution details of instruction

pairs in parallel with other instructions.

 331

11.2.8. Parallel Execution of Removed Instruction Pairs
The RC component in Fig. 151 outputs two signals:

1. accelerator_reg_data

2. accelerator_reg_target

Note that one of the constraint on mining the pairs is that the pair must only produce

one data and alter only one register. The accelerator_reg_data stores the calculate data

and accelerator_reg_target stores the register number that the data must be saved into.

It is obvious that there cannot be two simultaneous write in register bank.

Therefore, if two operations are performed in parallel then their result cannot be

simultaneously written back to processor registers.

To solve this problem a delayed write approach is proposed. Assuming two data

are generated and must be written on register 1 and 2. The processor first writes on

register 1 and then advances to next cycle, it then checks the WE signal of register bank

to see if there is any operation that needs to write into register bank. If the WE signal is

low then it means the register bank is free for writing and the value of register 2 (pointed

by accelerator_reg_target value) will be updated, otherwise the processor holds back

until a free time slot is available.

Meanwhile, during the hold back period if any upcoming instructions perform a

read from register bank, the processor checks if the read is from register 2 and then

instead of providing the outdated register 2 value from register bank, it uses the new

value (the one stored on accelerator_reg_data signal).

Fig. 154 shows the waveform of actual series of instructions that reside at memory

location 0x82 to 0x8A. The instruction pair [0x88, ox8A] which is [MOV r2, r5, BL

0x40] is removed from instruction stream. The miniature accelerator result is available

in parallel with LDR r5, [SP, #0A] and is stored on accelerator_reg_data.

The accelerator_reg_needs_update is set to high indicating that the accelerator

result is available but still has not written into register bank. The processor then waits

for an available free cycle to write the register value back. When the

accelerator_reg_invoke_WE_possible is high the write back into register bank is

permitted and the result of miniature accelerator (32-bit value 0x20001EAC read from

stack memory) is written into R2 register.

If the pair is type A, then the acceleration process ends here as

accelerator_reg_state follows the states:

1. DEACTIVE

2. WRITE_DATA

3. WRITE_DONE

but if the pair is type B (contains branch) then the accelerator_reg_state follows:

1. DEACTIVE

2. WRITE_DATA

3. WRITE_LR

4. WRITE_DONE

as upon branch the return address must be stored in LR register which demands a

second write into register bank. If the processor cannot find a free slot to update the LR

register, it holds the updated value on accelerator_reg_LR and uses it instead of register

bank LR until a free slot is found.

The final issue that must be solved is prevention of placing two consecutive

instruction pairs. If such a case happens then while processor is in hold back period, the

 332

accelerator_reg_data holds data that has not been sunk into register bank and therefore,

another pair cannot be executed. Two mechanisms have been employed to prevent such

a scenario:

1. In LLVM backend, at the time of selecting pairs a simple check is placed to

statistically check the distance between pairs. There must be at least one

instruction between pairs that does not write into register bank. 100% success

in assembling such a scenario can be easily achieved.

2. The statistical (compilation-time) analysis to ensure distance between pairs is

not enough as dynamic (run-time) behavior of program cannot be predicted,

e.g., arbitrary spaghetti-like branches might form a situation where a type B

pair branches to another pair. Therefore, a simple state is added to processor

such that if invocation of two consecutive invoke_accelerator signal is

detected the processor introduces a one cycle delay to let the previous pair’s

accelerator_reg_data to sink in and become free to hold the result of the next

pair.

11.2.9. LLVM Compilation for ARM Cortex-M0 Baremetal
Current LLVM version is 10.0.0. We first get LLVM source code by issuing the

following command in Windows:

We then build the setup the LLVM with Visual Studio and enable Clang: To build

with Visual Studio:

To build with Ninja (recommended):

and then issue the following command to build the LLVM:

To see the list of registered (installed) targets:

$ git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

$ cmake -DCMAKE_BUILD_TYPE="Debug" -DBUILD_SHARED_LIBS=ON -

LLVM_TARGETS_TO_BUILD="x86;arm;armeb" -DLLVM_OPTIMIZED_TABLEGEN=ON -

DLLVM_ENABLE_PROJECTS="clang;clang-tools-extra;libc;libcxx;libcxxabi;lld;lldb" -G

"Visual Studio 16 2019" -A Win32 -Thost=x64 ../llvm

$ cmake -DCMAKE_CROSSCOMPILING=True -DCMAKE_BUILD_TYPE=Debug -

DBUILD_SHARED_LIBS=ON -DCLANG_ENABLE_STATIC_ANALYZER=OFF -

DCLANG_ENABLE_ARCMT=OFF -DLLVM_ENABLE_DOXYGEN=OFF -

DLLVM_TARGETS_TO_BUILD="X86;ARM" -DLLVM_OPTIMIZED_TABLEGEN=ON -

DLLVM_ENABLE_PROJECTS="clang;clang-tools-

extra;libcxx;libcxxabi;libunwind;lldb;compiler-rt;lld" -G Ninja ../llvm

$ ninja & ninja install

$ llc --version

$ clang -print-targets

 333

To see the list of available CPUs for each target:

Listing 43: FFT Cooley-Tukey Algorithm in C++.

11.2.10. FFT in C++
We write an FFT algorithm as shown in Listing 43 in C++ and compile and link

it by issuing:

To cross-compile for ARM using LLVM we need:

1. A libc. Good choices for that for baremetal are: newlib or musl.

2. Builtins. In LLVM, that is provided in the compiler-rt module.

3. For C++ we need 3 things:

a. abi library like LLVM libcxxabi. There are also libsupc++, and libcxxrt.

b. An unwinder like LLVM libunwind.

$ llc -march=arm -mattr=help

// Filename : fft.cpp

// Author : Ehsan Ali

// Last Date Modified: 28-June-2020

#include <complex>

#include <iostream>

#include <valarray>

const double PI = 3.141592653589793238460;

typedef std::complex<double> Complex;

typedef std::valarray<Complex> CArray;

void fft(CArray& x);

int main()

{

 Complex test[1024];

 // Filling the array

 for (int i = 0; i < 1024; i = i + 1) {

 // sin (x), x must be in radian.

 if (i >= 250 && i <= 750) {

 Complex a(i, 5);

 test[i] = a;

 }

 else {

 Complex a(i, 0);

 test[i] = a;

 }

 }

 CArray data(test, 1024);

 // forward fft

 fft(data);

 return 0;

}

void fft(CArray& x)

{

 // DFT

 unsigned int N = x.size(), k = N, n;

 double thetaT = 3.14159265358979323846264338328L / N;

 Complex phiT = Complex(cos(thetaT), -sin(thetaT)), T;

 while (k > 1)

 {

 n = k;

 k >>= 1;

 phiT = phiT * phiT;

 T = 1.0L;

 for (unsigned int l = 0; l < k; l++)

 {

 for (unsigned int a = l; a < N; a += n)

 {

 unsigned int b = a + k;

 Complex t = x[a] - x[b];

 x[a] += x[b];

 x[b] = t * T;

 }

 T *= phiT;

 }

 }

 // Decimate

 unsigned int m = (unsigned int)log2(N);

 for (unsigned int a = 0; a < N; a++)

 {

 unsigned int b = a;

 // Reverse bits

 b = (((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1));

 b = (((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2));

 b = (((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4));

 b = (((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8));

Listing 43: FFT Cooley-Tukey Algorithm in C++.

void fft(CArray& x)

{

 // DFT

 unsigned int N = x.size(), k = N, n;

 double thetaT = 3.14159265358979323846264338328L / N;

 Complex phiT = Complex(cos(thetaT), -sin(thetaT)), T;

 while (k > 1)

 {

 n = k;

 k >>= 1;

 phiT = phiT * phiT;

 T = 1.0L;

 for (unsigned int l = 0; l < k; l++)

 {

 for (unsigned int a = l; a < N; a += n)

 {

 unsigned int b = a + k;

 Complex t = x[a] - x[b];

 x[a] += x[b];

 x[b] = t * T;

 }

 T *= phiT;

 }

 }

 // Decimate

 unsigned int m = (unsigned int)log2(N);

 for (unsigned int a = 0; a < N; a++)

 {

 unsigned int b = a;

 // Reverse bits

 b = (((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1));

 b = (((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2));

 b = (((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4));

 b = (((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8));

 b = ((b >> 16) | (b << 16)) >> (32 - m);

 if (b > a)

 {

 Complex t = x[a];

 x[a] = x[b];

 x[b] = t;

 }

 }

}

$ clang -lm -lstdc++ fft.cpp -o fft

 334

c. A C++ standard library like LLVM libcxx. For compiling LLVM we can

look into the project’s configuration options using:

A home brew formula exists at : https://github.com/eblot/homebrew-armeabi To

get a C compiler for Cortex-M0 we first build LLVM itself:

We then build newlib (Some patched need to be applied):

After that we build compiler-rt:

The above steps provide us libclang_rt.builtins-armv6m.a and libc.a in

/home/esi/arm-none-eabi/armv6m_none-eabi/lib.

cmake -G Ninja ../llvm -DCMAKE_BUILD_TYPE=Debug -DLLVM_ENABLE_PROJECTS="clang;clang-tools-

extra;lld;lldb" -DLLVM_ENABLE_SPHINX=False -DLLVM_INCLUDE_TESTS=False -

DLLVM_TARGET_ARCH=ARM -DLLVM_TARGETS_TO_BUILD=ARM -DLLVM_INSTALL_UTILS=ON -
DLLVM_DEFAULT_TARGET_TRIPLE=arm-none-eabi -DCMAKE_CROSSCOMPILING=ON -

DLLDB_USE_SYSTEM_DEBUGSERVER=ON -DCMAKE_INSTALL_PREFIX=/home/esi/arm-none-eabi -

DBUILD_SHARED_LIBS=ON -DLLVM_BUILD_DOCS=OFF -DLLVM_ENABLE_BINDINGS=OFF -
DLLVM_ENABLE_DOXYGEN=OFF

CC_FOR_TARGET=/home/esi/arm-none-eabi/bin/clang AR_FOR_TARGET=/home/esi/arm-none-eabi/bin/llvm-ar

NM_FOR_TARGET=/home/esi/arm-none-eabi/bin/llvm-nm RANLIB_FOR_TARGET=/home/esi/arm-none-eabi/bin/llvm-

ranlib READELF_FOR_TARGET=/home/esi/arm-none-eabi/bin/llvm-readelf CFLAGS_FOR_TARGET="--
target=armv6m-none-eabi -mcpu=cortex-m0 -mthumb -mabi=aapcs -fshort-enums -mfloat-abi=soft -g -Os -ffunction-

sections -fdata-sections -fno-stack-protector -fvisibility=hidden -Wno-unused-command-line-argument"

AS_FOR_TARGET=/home/esi/arm-none-eabi/bin/clang ../configure --host=x86_64-linux-gnu --build=x86_64-linux-gnu --
target=armv6m-none-eabi --prefix=/home/esi/arm-none-eabi --disable-newlib-supplied-syscalls --disable-newlib-fvwrite-in-

streamio --disable-newlib-fseek-optimization --disable-newlib-wide-orient --enable-newlib-nano-malloc --disable-newlib-

unbuf-stream-opt --enable-lite-exit --enable-newlib-global-atexit --disable-newlib-nano-formatted-io --disable-newlib-
fvwrite-in-streamio --enable-newlib-io-c99-formats --enable-newlib-io-float --disable-newlib-io-long-double --disable-nls

$ make \& make -j1 install;

cmake -G Ninja ../compiler-rt -DCMAKE_INSTALL_PREFIX=/home/esi/arm-none-eabi/armv6m-none-eabi -

DCMAKE_TRY_COMPILE_TARGET_TYPE=STATIC_LIBRARY -DCMAKE_SYSTEM_PROCESSOR=arm -

DCMAKE_SYSTEM_NAME=Generic -DCMAKE_CROSSCOMPILING=ON -
DCMAKE_CXX_COMPILER_FORCED=TRUE -DCMAKE_BUILD_TYPE=Debug -

DCMAKE_C_COMPILER=/home/esi/arm-none-eabi/bin/clang -DCMAKE_CXX_COMPILER=/home/esi/arm-none-

eabi/bin/clang++ -DCMAKE_LINKER=/home/esi/arm-none-eabi/bin/clang -DCMAKE_AR=/home/esi/arm-none-
eabi/bin/llvm-ar -DCMAKE_RANLIB=/home/esi/arm-none-eabi/bin/llvm-ranlib -

DCMAKE_C_COMPILER_TARGET=armv6m-none-eabi -DCMAKE_ASM_COMPILER_TARGET=armv6m-none-eabi

-DCMAKE_SYSROOT=/home/esi/arm-none-eabi/armv6m-none-eabi/ -DCMAKE_SYSROOT_LINK=/home/esi/arm-
none-eabi/armv6m-none-eabi/ -DCMAKE_C_FLAGS="--target=armv6m-none-eabi -mcpu=cortex-m0 -mthumb -

mabi=aapcs -fshort-enums -mfloat-abi=soft -g -Os -ffunction-sections -fdata-sections -fno-stack-protector -

fvisibility=hidden -Wno-unused-command-line-argument" -DCMAKE_ASM_FLAGS="--target=armv6m-none-eabi -
mcpu=cortex-m0 -mthumb -mabi=aapcs -fshort-enums -mfloat-abi=soft -g -Os -ffunction-sections -fdata-sections -fno-

stack-protector -fvisibility=hidden -Wno-unused-command-line-argument" -DCMAKE_CXX_FLAGS="--target=armv6m-

none-eabi -mcpu=cortex-m0 -mthumb -mabi=aapcs -fshort-enums -mfloat-abi=soft -g -Os -ffunction-sections -fdata-
sections -fno-stack-protector -fvisibility=hidden -Wno-unused-command-line-argument" -

DCMAKE_EXE_LINKER_FLAGS=-L/home/esi/arm-none-eabi/lib -DLLVM_CONFIG_PATH=/home/esi/arm-none-

eabi/bin/llvm-config -DLLVM_DEFAULT_TARGET_TRIPLE=armv6m-none-eabi -
DLLVM_TARGETS_TO_BUILD=ARM -DLLVM_ENABLE_PIC=OFF -DCOMPILER_RT_OS_DIR=baremetal -

DCOMPILER_RT_BUILD_BUILTINS=ON -DCOMPILER_RT_BUILD_SANITIZERS=OFF -

DCOMPILER_RT_BUILD_XRAY=OFF -DCOMPILER_RT_BUILD_LIBFUZZER=OFF -
DCOMPILER_RT_BUILD_PROFILE=OFF -DCOMPILER_RT_BAREMETAL_BUILD=ON -

DCOMPILER_RT_DEFAULT_TARGET_ONLY=ON -DCOMPILER_RT_INCLUDE_TESTS=OFF -

DCOMPILER_RT_USE_LIBCXX=ON -DUNIX=1

$ cmake -LAH | awk '{if(f)print} /-- Cache values/{f=1}'
$ ccmake ../lvm

https://github.com/eblot/homebrew-armeabi

 335

When we compile files for Cortex-M0 we must set /home/esi/arm-none-

eabi/armv6m-none-eabi as the sysroot. We now can compile C programs for ARM

Cortex-M0 by issuing:

 We then compile libcxx:

cmake -G Ninja ../libcxx -DCMAKE_INSTALL_PREFIX=/home/esi/arm-none-eabi/armv6m-none-eabi -
DCMAKE_TRY_COMPILE_TARGET_TYPE=STATIC_LIBRARY -DCMAKE_SYSTEM_PROCESSOR=arm -

DCMAKE_SYSTEM_NAME=Generic -DCMAKE_CROSSCOMPILING=ON -

DCMAKE_CXX_COMPILER_FORCED=TRUE -DCMAKE_BUILD_TYPE=Debug -
DCMAKE_C_COMPILER=/home/esi/arm-none-eabi/bin/clang -DCMAKE_CXX_COMPILER=/home/esi/arm-none-

eabi/bin/clang++ -DCMAKE_LINKER=/home/esi/arm-none-eabi/bin/clang -

DCMAKE_C_COMPILER_AR=/home/esi/arm-none-eabi/bin/llvm-ar -
DCMAKE_C_COMPILER_RANLIB=/home/esi/arm-none-eabi/bin/llvm-ranlib -

DCMAKE_CXX_COMPILER_AR=/home/esi/arm-none-eabi/bin/llvm-ar -

DCMAKE_CXX_COMPILER_RANLIB=/home/esi/arm-none-eabi/bin/llvm-ranlib -
DCMAKE_C_COMPILER_TARGET=armv6m-none-eabi -DCMAKE_CXX_COMPILER_TARGET=armv6m-none-eabi

-DCMAKE_SYSROOT=/home/esi/arm-none-eabi/armv6m-none-eabi/ -DCMAKE_SYSROOT_LINK=/home/esi/arm-

none-eabi/armv6m-none-eabi/ -DCMAKE_C_FLAGS="--target=armv6m-none-eabi -mcpu=cortex-m0 -mthumb -
mabi=aapcs -fshort-enums -mfloat-abi=soft -g -Os -ffunction-sections -fdata-sections -fno-stack-protector -

fvisibility=hidden -fno-use-cxa-atexit -Wno-unused-command-line-argument -D_LIBUNWIND_IS_BAREMETAL=1 -

D_GNU_SOURCE=1 -D_POSIX_TIMERS=1 -D_LIBCPP_HAS_NO_LIBRARY_ALIGNED_ALLOCATION -
I/home/esi/arm-none-eabi/armv6m-none-eabi/include" -DCMAKE_CXX_FLAGS="--target=armv6m-none-eabi -

mcpu=cortex-m0 -mthumb -mabi=aapcs -fshort-enums -mfloat-abi=soft -g -Os -ffunction-sections -fdata-sections -fno-

stack-protector -fvisibility=hidden -fno-use-cxa-atexit -Wno-unused-command-line-argument -
D_LIBUNWIND_IS_BAREMETAL=1 -D_GNU_SOURCE=1 -D_POSIX_TIMERS=1 -

D_LIBCPP_HAS_NO_LIBRARY_ALIGNED_ALLOCATION -I/home/esi/arm-none-eabi/armv6m-none-eabi/include" -

DCMAKE_EXE_LINKER_FLAGS="-L/home/esi/arm-none-eabi/armv6m-none-eabi/lib/" -
DLLVM_CONFIG_PATH=/home/esi/arm-none-eabi/bin/llvm-config -DLLVM_TARGETS_TO_BUILD=ARM -

DLLVM_ENABLE_PIC=OFF -DLIBCXX_ENABLE_ASSERTIONS=OFF -DLIBCXX_ENABLE_SHARED=OFF -

DLIBCXX_ENABLE_FILESYSTEM=OFF -DLIBCXX_ENABLE_THREADS=OFF -
DLIBCXX_ENABLE_MONOTONIC_CLOCK=OFF -DLIBCXX_ENABLE_ABI_LINKER_SCRIPT=OFF -

DLIBCXX_ENABLE_EXPERIMENTAL_LIBRARY=ON -DLIBCXX_INCLUDE_TESTS=OFF -
DLIBCXX_INCLUDE_BENCHMARKS=OFF -DLIBCXX_USE_COMPILER_RT=ON -

DLIBCXX_CXX_ABI=libcxxabi -DLIBCXX_CXX_ABI_INCLUDE_PATHS=/home/esi/workspace/llvm-

project/libcxxabi/include -DLIBCXXABI_ENABLE_STATIC_UNWINDER=ON -
DLIBCXXABI_USE_LLVM_UNWINDER=ON -DUNIX=1 -DLIBCXX_TARGET_TRIPLE=armv6m-none-eabi -
DLIBCXX_SYSROOT=/home/esi/arm-none-eabi/armv6m-none-eabi

/home/esi/arm-none-eabi/bin/clang fft.c --sysroot=/home/esi/arm-none-eabi/armv6m-none-eabi --target=armv6m-

none-eabi -mcpu=cortex-m0 -mthumb -mabi=aapcs -fshort-enums -mfloat-abi=soft -g -Os -ffunction-sections -fdata-
sections -fno-stack-protector -fvisibility=hidden -Wno-unused-command-line-argument -L/home/esi/arm-none-

eabi/armv6m-none-eabi/lib -o fft

 336

then we compile libunwind:

Then we compile libcxxabi:

We finally compile fft.c:

cmake -G Ninja ../libcxxabi -DCMAKE_INSTALL_PREFIX=/home/esi/arm-none-eabi/armv6m-none-eabi -

DCMAKE_TRY_COMPILE_TARGET_TYPE=STATIC_LIBRARY -DCMAKE_SYSTEM_PROCESSOR=arm -
DCMAKE_SYSTEM_NAME=Generic -DCMAKE_CROSSCOMPILING=ON -

DCMAKE_CXX_COMPILER_FORCED=TRUE -DCMAKE_BUILD_TYPE=Debug -

DCMAKE_C_COMPILER=/home/esi/arm-none-eabi/bin/clang -DCMAKE_CXX_COMPILER=/home/esi/arm-none-
eabi/bin/clang++ -DCMAKE_LINKER=/home/esi/arm-none-eabi/bin/clang -DCMAKE_AR=/home/esi/arm-none-

eabi/bin/llvm-ar -DCMAKE_RANLIB=/home/esi/arm-none-eabi/bin/llvm-ranlib -

DCMAKE_C_COMPILER_TARGET=armv6m-none-eabi -DCMAKE_CXX_COMPILER_TARGET=armv6m-none-eabi
-DCMAKE_SYSROOT=/home/esi/arm-none-eabi/armv6m-none-eabi/ -DCMAKE_SYSROOT_LINK=/home/esi/arm-

none-eabi/armv6m-none-eabi/ -DCMAKE_C_FLAGS="--target=armv6m-none-eabi -mcpu=cortex-m0 -mthumb -

mabi=aapcs -fshort-enums -mfloat-abi=soft -g -Os -ffunction-sections -fdata-sections -fno-stack-protector -
fvisibility=hidden -fno-use-cxa-atexit -Wno-unused-command-line-argument -D_LIBUNWIND_IS_BAREMETAL=1 -

D_GNU_SOURCE=1 -D_POSIX_TIMERS=1 -D_LIBCPP_HAS_NO_LIBRARY_ALIGNED_ALLOCATION -
I/home/esi/arm-none-eabi/armv6m-none-eabi/include" -DCMAKE_CXX_FLAGS="--target=armv6m-none-eabi -

mcpu=cortex-m0 -mthumb -mabi=aapcs -fshort-enums -mfloat-abi=soft -g -Os -ffunction-sections -fdata-sections -fno-

stack-protector -fvisibility=hidden -fno-use-cxa-atexit -Wno-unused-command-line-argument -
D_LIBUNWIND_IS_BAREMETAL=1 -D_GNU_SOURCE=1 -D_POSIX_TIMERS=1 -

D_LIBCPP_HAS_NO_LIBRARY_ALIGNED_ALLOCATION -I/home/esi/arm-none-eabi/armv6m-none-eabi/include" -

DCMAKE_EXE_LINKER_FLAGS="-L/home/esi/arm-none-eabi/armv6m-none-eabi/lib/" -
DLLVM_CONFIG_PATH=/home/esi/arm-none-eabi/bin/llvm-config -DLLVM_ENABLE_PIC=OFF -

DLIBCXXABI_ENABLE_ASSERTIONS=OFF -DLIBCXXABI_ENABLE_STATIC_UNWINDER=ON -

DLIBCXXABI_USE_COMPILER_RT=ON -DLIBCXXABI_ENABLE_THREADS=OFF -
DLIBCXXABI_ENABLE_SHARED=OFF -DLIBCXXABI_BAREMETAL=ON -

DLIBCXXABI_USE_LLVM_UNWINDER=ON -DLIBCXXABI_SILENT_TERMINATE=ON -

DLIBCXXABI_INCLUDE_TESTS=OFF -DLIBCXXABI_LIBCXX_SRC_DIRS=/home/esi/workspace/llvm-
project/libcxx -DLIBCXXABI_LIBUNWIND_LINK_FLAGS="-L/home/esi/arm-none-eabi/armv6m-none-eabi/lib" -

DLIBCXXABI_LIBCXX_PATH=/home/esi/workspace/llvm-project/libcxx -

DLIBCXXABI_LIBCXX_INCLUDES=/home/esi/arm-none-eabi/armv6m-none-eabi/include/c++/v1 -DUNIX=1 -
DLIBCXXABI_SYSROOT=/home/esi/arm-none-eabi/armv6m-none-eabi -DLIBCXXABI_TARGET_TRIPLE=armv6m-

none-eabi -DLIBCXXABI_LIBUNWIND_PATH=/home/esi/arm-none-eabi/armv6m-none-eabi/lib

/home/esi/arm-none-eabi/bin/clang fft.c --sysroot=/home/esi/arm-none-eabi/armv6m-none-eabi --target=armv6m-

none-eabi -mcpu=cortex-m0 -mthumb -mabi=aapcs -fshort-enums -mfloat-abi=soft -g -Os -ffunction-sections -fdata-

sections -fno-stack-protector -fvisibility=hidden -Wno-unused-command-line-argument -L/home/esi/arm-none-
eabi/armv6m-none-eabi/lib

cmake -G Ninja ../libunwind -DCMAKE_INSTALL_PREFIX=/home/esi/arm-none-eabi/armv6m-none-eabi -

DCMAKE_TRY_COMPILE_TARGET_TYPE=STATIC_LIBRARY -DCMAKE_SYSTEM_PROCESSOR=arm -
DCMAKE_SYSTEM_NAME=Generic -DCMAKE_CROSSCOMPILING=ON -

DCMAKE_CXX_COMPILER_FORCED=TRUE -DCMAKE_BUILD_TYPE=Debug -

DCMAKE_C_COMPILER=/home/esi/arm-none-eabi/bin/clang -DCMAKE_CXX_COMPILER=/home/esi/arm-none-
eabi/bin/clang++ -DCMAKE_LINKER=/home/esi/arm-none-eabi/bin/clang -DCMAKE_AR=/home/esi/arm-none-

eabi/bin/llvm-ar -DCMAKE_RANLIB=/home/esi/arm-none-eabi/bin/llvm-ranlib -

DCMAKE_C_COMPILER_TARGET=armv6m-none-eabi -DCMAKE_CXX_COMPILER_TARGET=armv6m-none-eabi
-DCMAKE_SYSROOT=/home/esi/arm-none-eabi/armv6m-none-eabi/ -DCMAKE_SYSROOT_LINK=/home/esi/arm-

none-eabi/armv6m-none-eabi/ -DCMAKE_C_FLAGS="--target=armv6m-none-eabi -mcpu=cortex-m0 -mthumb -

mabi=aapcs -fshort-enums -mfloat-abi=soft -g -Os -ffunction-sections -fdata-sections -fno-stack-protector -
fvisibility=hidden -fno-use-cxa-atexit -Wno-unused-command-line-argument -D_LIBUNWIND_IS_BAREMETAL=1 -

D_GNU_SOURCE=1 -D_POSIX_TIMERS=1 -D_LIBCPP_HAS_NO_LIBRARY_ALIGNED_ALLOCATION -
I/home/esi/arm-none-eabi/armv6m-none-eabi/include -D_LIBCPP_HAS_NO_THREADS=1" -

DCMAKE_CXX_FLAGS="--target=armv6m-none-eabi -mcpu=cortex-m0 -mthumb -mabi=aapcs -fshort-enums -mfloat-

abi=soft -g -Os -ffunction-sections -fdata-sections -fno-stack-protector -fvisibility=hidden -fno-use-cxa-atexit -Wno-unused-
command-line-argument -D_LIBUNWIND_IS_BAREMETAL=1 -D_GNU_SOURCE=1 -D_POSIX_TIMERS=1 -

D_LIBCPP_HAS_NO_LIBRARY_ALIGNED_ALLOCATION -I/home/esi/arm-none-eabi/armv6m-none-eabi/include -

D_LIBCPP_HAS_NO_THREADS=1" -DCMAKE_EXE_LINKER_FLAGS="-L/home/esi/arm-none-eabi/armv6m-none-
eabi/lib/" -DLLVM_CONFIG_PATH=/home/esi/arm-none-eabi/bin/llvm-config -DLLVM_ENABLE_PIC=OFF -

DLIBUNWIND_ENABLE_ASSERTIONS=OFF -DLIBUNWIND_ENABLE_PEDANTIC=ON -

DLIBUNWIND_ENABLE_SHARED=OFF -DLIBUNWIND_ENABLE_THREADS=OFF -
DLLVM_ENABLE_LIBCXX=TRUE -DUNIX=1

 337

Table 56: LLVM representation versus program form [376].

Program Form LLVM representation

Source Code -

AST Front-end

LLVM IR Machine Independent Optimization

Selection DAG Instruction Selection

LLVM MIR Machine Optimization

MC Machine Code Emission

Object File -

11.2.11. LLVM Pass
LLVM representation versus program form is shown in Table 56 [376].

We try to add a pass after “DeadMachineInstrElim”. There are several types of

passes:

• The ModulePass class: Our pass uses the entire program as a unit, referring

to function bodies in no predictable order, or adding and removing functions.

Because nothing is known about the behavior of ModulePass subclasses, no

optimization can be done for their execution.

• The FunctionPass class: In contrast to ModulePass subclasses,

FunctionPass subclasses do have a predictable, local behavior that can be

expected by the system. All FunctionPass execute on each function in the

program independent of all the other functions in the program.

FunctionPasses do not require that they be executed in a particular order, and

FunctionPasses do not modify external functions.

• The CallGraphSCCPass class: when our pass needs to traverse the program

bottom-up on the call graph (callees before callers).

• The LoopPass class: All LoopPass execute on each loop in the function

independent of all the other loops in the function. LoopPass processes loops

in loop nest order such that outer most loop is processed last.

• The RegionPass class: RegionPass is similar to LoopPass but executes on

each single-entry single-exit region in the function. RegionPass processes

regions in nested order such that the outer most region is processed last.

We want a Machine Function Pass.

The machine independent passes (front-end) are invoked by opt command and

machine dependent (backend) passes are invoked by llc command [377].

The llc command compiles LLVM source inputs into assembly language for a

specified architecture:

$ llc -view-sched-dags simple_arth.ll

 338

We can get .ll file by issuing:

We then can get the assembly file by issuing:

we can get the machine code by:

This also gives us the assembly code but with more assembly directions.

To see the disassembly of .s file:

To see MCInst in .s file pass -asm-show-inst to llc, and to see the binary encoding

pass -show-mc-encoding.

I tried Machine Function Pass in the backend but the MachineInstr instances at that

step do not have a one-to-one relationship with the final emitted assembly instructions.

Therefore, we must work on MCInstr instead of MachineInstr instances.

ARMAsmPrinter class is responsible for lowering MachineInstr to MCInstr. The

relationship in LLVM classes is as following:

ARMAsmPrinter inherited from AsmPrinter class which is a

MachineFunctionPass. It overrides runOn-MachineFunction() and emitInstruction(),

and emit...() functions. ARMAsmPrinter::runOnMachineFunction() is called when we

issue command utilities that use MC layer service such as llc.

The stack call to reach this function is shown in Table 57.

Table 57: ARMAsmPrinter::runOnMachineFunction Call Stack.

Depth Function File:line

#0 llvm::ARMAsmPrinter::runOnMachineFunction

()

lib/Target/ARM/ARMAsmPrinter.cpp:1

17

#1 llvm::MachineFunctionPass::runOnFunction () lib/CodeGen/MachineFunctionPass.cpp:

73

#2 llvm::FPPassManager::runOnFunction () lib/IR/LegacyPassManager.cpp:1587

#3 llvm::FPPassManager::runOnModule () lib/IR/LegacyPassManager.cpp:1629

$ /home/esi/arm-none-eabi/bin/clang main.c -S -emit-llvm --sysroot=/home/esi/arm-none-eabi/armv6m-none-eabi --

target=armv6m-none-eabi -mcpu=cortex-m0 -mthumb -mabi=aapcs -fshort-enums -mfloat-abi=soft -g -Os -ffunction-

sections -fdata-sections -fno-stack-protector -fvisibility=hidden -Wno-unused-command-line-argument -Ttext 0x40 -
L/home/esi/arm-none-eabi/armv6m-none-eabi/lib -o simple_arth.ll

$ llvm-as simple_arth.ll -o simple_arth.bc
$ llc simple_arth.bc -o simple_arth.s

$ llvm-objdump -d simple_arth.o

$ /home/esi/arm-none-eabi/bin/clang main.c -S -masm=arm --sysroot=/home/esi/arm-none-eabi/armv6m-none-eabi

--target=armv6m-none-eabi -mcpu=cortex-m0 -mthumb -mabi=aapcs -fshort-enums -mfloat-abi=soft -g -Os -ffunction-

sections -fdata-sections -fno-stack-protector -fvisibility=hidden -Wno-unused-command-line-argument -Ttext 0x40 -
L/home/esi/arm-none-eabi/armv6m-none-eabi/lib -o simple_arth.s

$ llvm-mc --triple=armv6m-none-eabi -assemble -show-encoding simple_arth.s

 339

#4 (anonymous-namespace)

 ::MPPassManager::runOnModule ()

lib/IR/LegacyPassManager.cpp:1698

#5 llvm::legacy::PassManagerImpl::run () lib/IR/LegacyPassManager.cpp:614

#6 llvm::legacy::PassManager::run () lib/IR/LegacyPassManager.cpp:1824

#7 compileModule () tools/llc/llc.cpp:650

#8 main () tools/llc/llc.cpp:360

We must find out how LLVM registers ARMAsmPrinter pass. In

llvm/lib/Target/ARM/ARMAsm-Printer.cpp there is a block that registers ASMPrinter

passes:

ARMAsmPrinter is a late pass itself. The attempt to generate a similar pass that can

be executed after ARMAsmPrinter failed. Therefore, we will use the ARMAsmPrinter

itself to output opcodes of functions.

ARMAsmPrinter::emitInstruction(const MachineInstr *MI) does output a one-to-

one output. At this point the complete list of opcodes is available.

11.2.12. Periodic Pattern Mining (PPM)
We have two types of mining:

1 . Ordered Pattern Mining (OPM)

2 . Sequential Pattern Mining (SPM).

If a processor has 𝑛 bit assigned for opcode, we then have maximum of 2𝑛 unique

distinguishable opcodes. The opcodes are saved into memory and fetched either one by

one or a chunk of m instructions at a time.

Assuming at memory location 𝑘 a random instruction A is stored. The probability

of a specific opcode in memory location 𝑘 and the consecutive location 𝑘 + 1 are all
1

2𝑛
 .

The assumption that an opcode can appear randomly anywhere in a list of opcodes

and the processor must support this situation was the basis of all processors designed

since the inspection of microprocessor. The ability of a processor to support all

instructions is overkill and waste of resources. The support of executing a list of

instructions in any possible sequence is the second overkill feature which introduces

unnecessary overheads.

A program with 𝑙 number of instructions out of possible 2𝑛 wastes 2𝑛 − 𝑙 slots.

We can detect this situation, but the problem is that we cannot efficiently take advantage

of it as the current processor designs have a fixed opcode. Additionally, any attempt to

reduce the opcode bit size depends on the program utilization of instructions. If the

utilization exceeds the 2𝑛 − 𝑙 only by one instruction, then the opcode field cannot be

shrunk.

extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmPrinter() {

RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget());

RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget());

RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget());

RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget());

}

 340

The above discussion shifts the focus on another adaptation process which is based

on this observation that instructions usually do not appear next to each randomly and

without any patterns. LLVM Compiler lowers some IR instructions to a series of

machine instructions instead of a single specific instruction. This patterns emerge solely

based on the compiler behavior. Meanwhile, other patters might emerge based on the

way programmers write their C code, or the nature of C language constructs themselves.

In this section, we try to detect those expected patterns in a list of instructions. We

try to develop an algorithm that receives a list of ARM-Cortex M0 opcodes and

analyzes it. We will use the established periodic pattern mining field to detects those

patterns in a sequence of instructions.

11.2.13. Cortex-M0 Free Opcode Slots
Table 58 shows how opcodes are distributed in respect with the most 6-bit allocated for

instruction encoding. Row number 40 to 44 are available, and we can use them to host

our potential adapted instructors if we choose to go for adaptive instruction insertion

approach.

Table 58: Cortex-M0 Opcodes [156].

No. Opcode Instruction

0 0 0 0 0 0 0 MOVS, LSLS

1 0 0 0 0 0 1

2 0 0 0 0 1 0 LSRS, ASRS

3 0 0 0 0 1 1 LSRS

4 0 0 0 1 0 0

5 0 0 0 1 0 1

6 0 0 0 1 1 0 ADDS, SUBS

7 0 0 0 1 1 1 ADDS, SUBS

8 0 0 1 0 0 0 MOVS

9 0 0 1 0 0 1 MOVS

10 0 0 1 0 1 0 CMP

11 0 0 1 0 1 1 CMP

12 0 0 1 1 0 0 ADD

13 0 0 1 1 0 1 ADD

14 0 0 1 1 1 0 SUB

15 0 0 1 1 1 1 SUB

16 0 1 0 0 0 0 ADCS, SBCS, RSBS,

MULS, CMP, CMN, ANDS,

EORS, ORRS, BICS, MVNS,

TST, LSLS, LSRS, ASRS,

RORS

17 0 1 0 0 0 1 MOV, ADD, BX, BLX

18 0 1 0 0 1 0

19 0 1 0 0 1 1

20 0 1 0 1 0 0 STR, STRH

21 0 1 0 1 0 1 STR, STRH, STRB

22 0 1 0 1 1 0 LDRH

23 0 1 0 1 1 1 LDRSH, LDRB

 341

24 0 1 1 0 0 0 STR

25 0 1 1 0 0 1 STR

26 0 1 1 0 1 0 LDR

27 0 1 1 0 1 1 LDR

28 0 1 1 1 0 0 STRB

29 0 1 1 1 0 1 STRB

30 0 1 1 1 1 0 LDRB

31 0 1 1 1 1 1 LDRB

32 1 0 0 0 0 0 STRH

33 1 0 0 0 0 1 STRH

34 1 0 0 0 1 0 LDRH, LDR

35 1 0 0 0 1 1 LDRH

36 1 0 0 1 0 0 STR

37 1 0 0 1 0 1 STR

38 1 0 0 1 1 0

39 1 0 0 1 1 1

40 1 0 1 0 0 0

41 1 0 1 0 0 1

42 1 0 1 0 1 0

43 1 0 1 0 1 1

44 1 0 1 1 0 0 SXTH, SXTB,

UXTH, UXTB

45 1 0 1 1 0 1 PUSH, CPS

46 1 0 1 1 1 0 REV, REV16,

REVSH

47 1 0 1 1 1 1 POP, BKPT, SEV,

WFI, YIELD, NOP

48 1 1 0 0 0 0 STM

49 1 1 0 0 0 1 STM

50 1 1 0 0 1 0 LDM

51 1 1 0 0 1 1 LDM

52 1 1 0 1 0 0 B, BL

53 1 1 0 1 0 1 B, BL

54 1 1 0 1 1 0 B, BL

55 1 1 0 1 1 1 B, BL, SVC

56 1 1 1 0 0 0 B

57 1 1 1 0 0 1 B

58 1 1 1 0 1 0

59 1 1 1 0 1 1

60 1 1 1 1 0 0 BL, MRS, MSR,

ISB, DMB, DSB

61 1 1 1 1 0 1 BL

62 1 1 1 1 1 0 B, BL

63 1 1 1 1 1 1 B, BL

 342

To get the data section we issue:

The LLVM ARM backend only gives us control on the sources we compile,

those sources (e.g., libraries) that are compiled already will not go through MCStreamer

which deprives us from running analysis on them. Therefore, we need to first generate

ELF file and then use LLVM disassembler to get MCInst instances and then run our

own analysis. If we only want to compile fft.c and do not link it with other libraries, we

can issue:

To link the fft.o with math and built-in libraries we can issue:

To see the starting point of an executable ELF file we can issue:

The instruction produced by compiler for FFT algorithm are shown in Table 59.

Table 59: Instructions used in FFT algorithm

No. Instruction

#0 push

#1 add

#2 sub

#3 cmp

#4 bge

#5 b

#6 str

#7 lsrs

#8 adds

#9 lsls

#10 bne

#11 ldr

#12 mov

#13 ldm

#14 stm

#15 subs

#16 bl

#17 beq

#18 movs

#19 pop

$ llvm-objdump --section=.rodata --full-contents fft.o

$ /home/esi/arm-none-eabi/bin/clang -c fft.c --sysroot=/home/esi/arm-none-eabi/armv6m-none-eabi --
target=armv6m-none-eabi -mcpu=cortex-m0 -mthumb -mabi=aapcs -fshort-enums -mfloat-abi=soft -Os -ffunction-sections

-fdata-sections -fno-stack-protector -fvisibility=default -Wno-unused-command-line-argument -Ttext 0x40 -o fft.o

$ /home/esi/arm-none-eabi/bin/ld.lld -lm -lc -lclang_rt.builtins-armv6m -L/home/esi/arm-none-eabi/armv6m-none-
eabi/lib fft.o -Ttext 0x40 -o fft_full.o

$ llvm-objdump -f fft.o

 343

11.2.14. Cortex-M0 Reset Process
The Cortex-M0 reset process is stated below:

• First PC will be set to 0x0000_0000 and fetches the first 4 bytes from

memory. The content of these bytes is SP main value.

• Then the reset handler address will be read from 0x0000_0004 and its value is

loaded into PC.

• Then the processor jumps to reset handler routine.

Then we use our LLVM tools to generate object files the default starting point is

0x0002_0415 which can be seen by issuing “$ llvm-objdump -f fft full.o”.

We need to be able to set the starting point of start function which is the entry

point of program. We can do this by passing “-Ttext addr” to clang.

We use “-Ttext 0x40” to set the text section starting point to 0x40. This does not

mean that the reset handler routine address also must be 0.

By issuing “$ llvm-objdump -f fft full.o” we can see that the starting point for

sample FFT algorithm is 0x0000_0155 which is due to placing the start function after

local function in main.c at 0x0000_0195 address. Therefore, we need to manually set

reset handler routine to 0x0000_0195:

11.2.15. IAR Execution of fft_full.o .ELF File
First, we need to define the vector table which is placed at memory location 0x00 to

0x40 in vector_def.s file as shown in Listing 44.

$ /home/esi/arm-none-eabi/bin/clang fft.c --sysroot=/home/esi/arm-none-eabi/armv6m-none-eabi --target=armv6m-

none-eabi -mcpu=cortex-m0 -mthumb -mabi=aapcs -fshort-enums -mfloat-abi=soft -Os -ffunction-sections -fdata-sections -

fno-stack-protector -fvisibility=default -Wno-unused-command-line-argument -Ttext 0x40 -L/home/esi/arm-none-

eabi/armv6m-none-eabi/lib -o fft_full.o

 344

Then we need to create a linker script file ‘linker script.txt’:

Then we need to compile fft.c and vector_def.s together with clang and generate

an absolute .ELF file:

Then we create a new “externally built executable” project. Add fft_full.out to the

project. Then set the following project options:

• General Options - Processor Variant = Cortex-M0

• Linker - “Linker Configuration File”: Check Override Default, save the

following configuration setting in fft.icf file.

o CSTACK = 0x1F00

o PROC STAKC = 0x1F00

o IROM1 = 0x00000000 to 0x0007FFFF

o IRAM1 = 0x20000000 to 0x2000FFFF

o Entry symbol = start

• Debugger - Driver = Simulator, and Run to = _start

At this point we can simulate the .ELF file generated by LLVM. To get the input

file for opcode analysis program we issue:

 .global _start
.section ".vector_table"

.thumb

__vt:
.word 0x20007FFF

.word _start

.word 0

.word 0

.word 0

.word 0

.word 0

.word 0

.word 0

.word 0

.word 0

.word 0x54

.word 0

.word 0

.word 0

.word 0

.end

Listing 44: Cortex-M0 Vector Table.

ENTRY(_start)

SECTIONS

{
. = 0x0;

.text : { *(.vector_table) *(.text.*) }

. = 0x20000;

.rodata : { *(.rodata.*) }

}

$ home/esi/arm-none-eabi/bin/clang fft.c vector_table.s --sysroot=/home/esi/arm-none-eabi/armv6m-none-eabi --

target=armv6m-none-eabi -mcpu=cortex-m0 -mthumb -mlittle-endian -mabi=aapcs -fshort-enums -mfloat-abi=soft -Os -
ffunction-sections -fdata-sections -fno-stack-protector -fvisibility=default -Wno-unused-command-line-argument -fno-

exceptions -fno-unwind-tables -L/home/esi/arm-none-eabi/armv6m-none-eabi/lib -T linker_script.txt -o fft_full.out

 345

We need to extract the .ARM.exidx and .rodata data sections:

We then feed the opcodes.dat to opcode_analysis program:

The opcode_analysis program generates three files:

1. program.coe

2. RC_accel_mem.vhd

3. RC_PC_sensivity.vhd

Next step is to initialize the program memory BRAM with program.coe. Then we

run the IAR simulator to execute the fft_full.out and set a breakpoint at the fft function

address. During the program execution in IAR simulator we can have Trace option on

and then save the trace output into trace.txt. The trace.txt then is fed as input to trace

trimmer program which gives the trace.trc. We then use trace.trc to compare it against

our implementation of Cortex-M0 to verify the instruction sequence.

11.2.16. Adaptive Modules Added to Cortex-M0
Two outputs of op_analysis program is:

• RC_PC_sensivity.vhd

• RC_accel mem.vhd

The RC_PC_sensivity is instantiated inside bus matrix module. It checks the

memory address bus and if a specific address that has the starting point of an instruction

pattern detected, then it triggers the invoke_accelerator_singal.

The most frequent pair found is (MOV, BL) pair.

RC_accel_mem.vhd module, which we need to instantiate inside bus matrix

module.

11.2.17. Accelerator Operation
After the frequent pair is identified then a list of memory locations that host the pair is

generated in RC_PC_sensivity.vhd file as shown in Listing 45.

For example, the (MOV, BL) instruction pair is the most frequent pair in FFT

function. The MOV instruction operands must be saved in a separate memory module

and the instruction itself must be removed from the instruction sequence. The saved

operands are automatically generated and saved in m0_PC_OP.vhd file as shown in

Listing 45.

The starting memory address location 𝑚 of a pair can be aligned (𝑚 ∶ 𝑛 ∈
 𝕎,𝑚 = 𝑛 ∗ 4) or not aligned (𝑚 ∶ 𝑛 ∈ 𝕎,𝑚 = (𝑛 ∗ 4) + 2). This is important

as the modification of Cortex-M0 fetching phase should take it into account.

$ lvm-objdump -d fft_full.out > opcodes.dat

$ llvm-objdump -s --section=.ARM.exidx fft_full.out > exidx.dat
$ llvm-objdump -s --section=.rodata fft_full.out > rodata.dat

$./opcode_analysis opcodes.dat

 346

The proposed Cortex-m0 implementation fetches 32-bit and execute either two 16-

bit instruction or a 32-bit based on the opcode of the first fetched instruction.

11.3. Miniature Accelerator Verification
After adding the miniature acceleration feature to Cortex-M0 the C code in Listing 42

is executed. The exact same verification as shown in Fig. 137 must be performed. The

Vivado simulation emits instructions to be compared again trace.trc file. This step

validates that the sequence of instructions is identical to the original Cortex-M0 core.

Next is verification of instructions execution effect. This step takes a snapshot of

register content and flag status before any acceleration invocation and compares it with

the original version. The identical registers and flags values points to the correctness of

the proposed design.

11.4. The Future Work: Maximizing the MA Performance
The work presented in this section demonstrates the feasibility of miniature acceleration

idea. It is shown that an opportunity to improve performance arises when two or three

instructions are paired and executed in parallel with their previous instruction. The idea

simply takes advantage of free available cycles that processor does not write into

register bank. Next issue is the analysis of knowing how often instruction pairs can

occur.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity RC_PC_sensivity is

 Port (

 HADDR : in std_logic_vector(31 downto 0);

 invoke_accelerator : out std_logic

);

end RC_PC_sensivity;

architecture Behavioral of RC_PC_sensivity is

begin

invoke_accelerator_p: process(HADDR) begin

 case HADDR is

 when

 x"00000088" |

 x"00000092" |

 x"000000a4" |

 x"000000cc" |

 x"000000da" |

 x"000000fc" |

 x"00000110" |

 x"0000011c" |

 x"0000013a" |

 x"00000152" |

 x"00000178" |

 x"00000182"

 => invoke_accelerator <= '1';

 when others => invoke_accelerator <= '0';

 end case;

end process;

end Behavioral;

Listing 45: RC_PC_sensivity.vhd

 347

When the density of instruction pairs is low then one free slot between them is

guaranteed as all instruction grouped in Table 1 that has more than 1 cycle offer a free

slot (e.g., LDR takes one cycle to fetch data from memory – the free slot – and takes

second cycle to store the fetch data in a register). 39 out of 77 (50.65%) implemented

ARMv6 instructions contains at least one free slot. In current form the distance between

instruction pairs is about 10 instructions in average which gives the probability of

around 5 free slots placed between pairs.

The future work is to maximize the number of feasible instruction pairs and take

advantage of all free slots by minimizing the distance between pair as much as possible.

This is merely an optimization problem which we leave as future work.

11.5. Performance Evaluation
The function under optimization is fft() with the size of 340 bytes (located at 0x40-

0x192). Assuming 16-bit instructions they are roughly 170 instructions in this function.

The 12 pairs of [MOV, BL] are located at 0x88, 0x092, 0xA4, 0xCC, 0xDA, 0xFC,

0x110, 0x11C, 0x13A, 0x152, 0x178, 0x182. Therefore, 170 instructions are reduced

to 170 – (12× 2) = 146 instructions which is 14.12% decrease.

Next section provides the details of procedures involved in proposed miniature

accelerator architecture such as LLVM passes and compilation and FFT algorithm.

11.6. Limitations
The final contribution of this thesis is a proposed architecture based on RC circuits that

allows a processor (in this case ARM Cortex-M0) to adapt itself to an application (in

this case FFT algorithm) through introducing miniature hardware accelerators.

The limitation of the design is that, as a prototype it is not optimized for neither

power consumption nor area. Signals, registers, and logic gates are used without taking

optimization in mind. This is due to sheer amount of complexity which prevented us

from putting any emphasize on optimization. The priority was to get the system

working properly and not in the most efficient way.

Another limitation is when miniature accelerators (MAs) are so close to each other

that there is no free clock cycle for processor to sink in the result generated from MAs.

The future work is to optimize the design in terms of area and power consumption

and to investigate the point where system saturates (MAs get so close to each other that

prevents sink in process) and cannot be improved further by adding more MAs.

Another limitation is the ARM license which prohibits any implementation of

ARM architectures without a license or publishing an implementation in public domain.

That is why the implementation is not uploaded to the GitHub website.

11.7. Result
A reconfigurable miniature accelerator architecture based on Cortex-M0 processor is

proposed. The design uses LLVM backend to analyze the executable machine code and

detects the most frequent pair and replaces it with hardware which runs in parallel. A

14.12% decrease in instruction count of the famous FFT function is achieved. The

work deliberately ignores performance metrics such as power consumption or

maximum achievable core clock frequency as the work solely tries to demonstrate the

feasibility of the architecture and not building the most optimized version of the design.

 348

The proposed architecture retains software backward compatibility and opens a

chapter in designing adaptive processors that can improve their performance by

replacing a series of instructions with an RC component on the fly without a need for a

hardware designer interference.

 349

12. Conclusion
In this section we conclude the work presented in both parts of this research. We first

summarize the work done regarding “data center research”, and then move on to

“adaptive processor research” part. After conclusions and establishing a roadmap, we

will focus on possible related future work.

12.1. Processor Improvement Conclusion
At first, the knowledge on design of modern processors was expanded. To learn the

architecture of a processor, the Laser which is a 16-bit RISC processor was designed

and written in VHDL using behavioral approach. Designing processors is a trivial task,

and a more challenging obstacle is to develop supporting software for the processor

such as assembler, a C compiler, debugger, etc.

Consequently, we had to expand our research scope to different available industry-

level compiler infrastructures. There are only two of such systems:

1. GCC

2. LLVM

We wrote a backend for the Laser processor using LLVM Compiler infrastructure

and published a conference paper associated to the work. The published paper has the

title “A guideline for rapid development of assembler to target tailor-made

microprocessors” and is included in Appendix F.

After gaining solid knowledge on processor and compiler concepts, we picked the

task of improving the efficiency of a real industry level processor. PicoBlaze was the

target processor. It is an 8-bit firm-core microprocessor designed by Xilinx. Using the

floating-point arithmetic is one of the ways to benchmark processors. PicoBlaze has no

instruction to perform floating point arithmetic and therefore we designed a 64- bit

floating point library using 8-bit assembly language of PicoBlaze. There is an

associated publication with the title: “Implementation and Verification of IEEE-754

64-bit Floating-Point Arithmetic Library for 8-bit Soft-Core Processors”. During

the development of the library, we created a mixture of techniques and scripts to ease

the development of complex projects on PicoBlaze. That led us to another journal paper

with title: “Improved Development Cycle for 8-bit FPGA-Based Soft-Macros

Targeting Complex Algorithms” submitted to Chulalongkorn Engineering Journal

and is awaiting result. Next, we recognized the fact that to improve the PicoBlaze we

have no way but to reverse engineer the core and document every signal and its purpose.

We introduced a new technique which can be used to convert firm-core designs to soft-

core. We used it to create a PicoBlaze compatible core, and we named it “Zipi8”.

In contrast to PicoBlaze which can only be implemented on Xilinx devices the

Zipi8 is synthesize-able on all FPGAs. The associated journal paper with the title:

“Modular Transformation of Embedded Systems from Firm-cores to Soft-cores.”

Is published in International Journal of Embedded Systems.

After that step, we improved the performance of PicoBlaze by 100%. The core

originally needs two clock cycles per instruction (IPC=0.5). By adding a prediction

circuitry and carefully timed synchronous circuits we improved the Zipi8 core to

achieve CPI = 1. The associated paper with title: “Deterministic Real-Time

Embedded Processor without Branch and Load Delay Based on PicoBlaze

 350

Table 60:Comprehensive comparison of all implemented processors in this thesis.

Processor Laser PicoBlaze Zipi8 DAP-Zipi8 ARM

Cortex-M0

Proposed

Implementation

of Cortex-M0

Architecture custom KCPSM6 KCPSM6 KCPSM6 ARMv6-M ARMv6-M

Instruction

Set

Laser PicoBlaze
(KCPSM6)

PicoBlaze
(KCPSM6)

PicoBlaze
(KCPSM6)

Thumb-1
Thumb-2

Thumb-1
Thumb-2

Instruction

Size

16-bit 18-bit 18-bit 18-bit 16-/32-bit 16-/32-bit

Memory

Interface

Xilinx Block
RAM Port

Interface

Xilinx Block
RAM Port

Interface

Xilinx Block
RAM Port

Interface

Xilinx Block
RAM Port

Interface

AHB-Lite
Interface a

 AHB-Lite
Interface a

Pipeline Not pipelined Not

pipelined

Not

pipelined

Not

pipelined

3-stage 3-stage

CPI Fixed 2 cycles Fixed 2

cycles

Fixed 2

cycles

Fixed 1

cycles

Variable, 1 up

to 32 cycles.

Variable, 1 up to

32 cycles.

FPGA

Resource

Utilization

LUT 1647 122 157 305 N.A. b 3198

Reg. 473 74 74 49 N.A. b 843

F7Mux 223 16 16 16 N.A. b 76

F8 Mux 32 8 8 8 N.A. b 11

HDL VHDL Verilog

/VHDL

VHDL VHDL N.A. b VHDL

HDL Source

Level

Soft-core firm-core Soft-core Soft-core N.A. b Soft-core

FP support None None None None None None

Addressing

Mode

Support

-PC-relative

(11-bits) c

-PC-relative

(11-bits) c

-Direct

Addressing
-Indirect

Addressing

-Direct

Addressing
-Indirect

Addressing

-Direct

Addressing
-Indirect

Addressing

-Register

-PC
-Relative

-Immediate

-Indexed

-Register

-PC
-Relative

-Immediate

-Indexed

Caller-Callee

Convention

The first 2

arguments pass

through R8 and
R9. • The return

value is in

RETVAL
register

Call/Return

stack, up to

31 levels
deep

Call/Return

stack, up to

31 levels
deep

Call/Return

stack, up to

31 levels
deep

The Stack

Pointer/The

Link Register.
Support full-

descending, a

fixed size or be
dynamically

extendable

The Stack

Pointer/The Link

Register. Support
full-descending, a

fixed size or be

dynamically
extendable

Number of

Instruction

Operands

3:

destination,
source, target

2:

target=destin
ation, source

2:

target=destin
ation, source

2:

target=destin
ation, source

3:

destination(Rd),
first(Rn)

second(Rm)

operands

3:

destination(Rd),
first(Rn)

second(Rm)

operands

Number of

Instructions

32 55 55 55 70 (Thumb-1) +

6(Thumb-2)

70 (Thumb-1) + 6

(Thumb-2)

Interrupt

Support

No Yes (worst-

case 5 clock
cycles)

Yes (worst-

case 5 clock
cycles)

Yes (worst-

case 3 clock
cycles)

Interrupt (up to

32) and
exceptions

Interrupt (up to

32) and
exceptions

Flags Zero, Carry,

Overflow

Zero, Carry Zero, Carry Zero, Carry Negative, Zero,

Carry,
Overflow

Negative, Zero,

Carry, Overflow

Stack One Dedicated

Stack Pointer

Automatic

31-Location

Call/Return

Stack

Automatic

31-Location

Call/Return

Stack

Automatic

31-Location

Call/Return

Stack

Two stacks, the

main stack, and

the process

stack

Two stacks, the

main stack, and

the process stack

ISE

Architecture

Load-Store Load-Store Load-Store Load-Store Load-Store Load-Store

Endianness -Big Endian Not specified

(supports

both big- and
little-endian)

Not specified

(supports

both big- and
little-endian)

Not specified

(supports

both big- and
little-endian)

-Byte-invariant

Big-endian

-Little-endian

-Byte-invariant

Big-endian

-Little-endian

Opcode

Length

5-bit 6-bit 6-bit 6-bit 6-bit/11-bit d 6-bit/11-bit d

Number of

User-Visible

Registers

Nineteen:
(Sixteen G.P. +

four Special

Reg.) (Word-
width)

Two banks of
sixteen

registers

(byte-width)

Two banks of
sixteen

registers

(byte-width)

Two banks of
sixteen

registers

(byte-width)

Thirteen G.P.
32-bit registers

(R0-R12),

SP(R13),
LR(R14),

PC(R15)

Thirteen G.P. 32-
bit registers, (R0-

R12) SP(R13),

LR(R14),
PC(R15)

 351

Maximum

Memory

Support

64KB 4KB 4KB+4KB e 4KB+4KB e 4GB 4GB

Data

/Program

Memory

Von Neumann

Architecture

Harvard

Architecture

Harvard

Architecture

Harvard

Architecture

Von Neumann

Architecture

Von Neumann

Architecture

Assembler None Xilinx

PicoBlaze
Assembler

Xilinx

PicoBlaze
Assembler

Xilinx

PicoBlaze
Assembler

LLVM Backend LLVM Backend

High-Level

Language

Compiler

None Officially not

available

Officially not

available

Officially not

available

LLVM, GCC LLVM, GCC

a Advanced High-performance.

b Not available publicly. Cortex-M0 HDL source code is not available.

c 2k away from PC.
d 16-bit Thumb-1 has 6-bit, and 32-bit Thum-2 has 11-bit opcode.

e Via memory address generator circuitry and proposed custom library.

Architecture” is submitted to the IEEE Transactions on Very Large Scale Integration

(VLSI) Systems and awaiting review.

Final stage of our work focused on developing an adaptive processor. We shifted

from 8-bit PicoBlaze to 32-bit- Cortex-M0 as we perceived that reviewers have

negative bias towards 8-bit architectures. We had to completely implement ARM

Cortex-M0 as the ARM never assisted us by providing an RTL source code of their

core. The conference paper “VHDL Implementation of ARM Cortex-M0

Laboratory for Graduate Engineering Students” is the result of that work.

We coined the term “miniature accelerators” which are equivalent RC circuits that

execute a pair of instruction, and their result is injected and used inside a pipeline. The

paper “Adaptive Microprocessor with Miniature Accelerator using LLVM

Infrastructure and FPGA: The Case of ARM Cortex-M0” is awaiting review.

Table 60 provides a comprehensive comparison of all implemented processors in

this thesis.

To conclude: the work presented in this thesis is thoroughly peer reviewed by

publishing 7 research articles: 3 local conferences, and 1 international journal

(published), 3 international journal papers (under-review).

12.2. Publications
Below is the URLs to all the publications:

1. A guideline for rapid development of assembler to target tailor-made

microprocessors: https://ieeexplore.ieee.org/document/8619960

2. Implementation and Verification of IEEE-754 64-bit Floating-Point

Arithmetic Library for 8-bit Soft-Core Processors:

https://ieeexplore.ieee.org/document/9077411

3. Improved Development Cycle for 8-bit FPGA-Based Soft-Macros Targeting

Complex Algorithms.

4. Modular Transformation of Embedded Systems from Firm-cores to Soft-

cores: https://www.inderscience.com/info/inarticle.php?artid=116113

5. Deterministic Real-Time Embedded Processor without Branch and Load

Delay Based on PicoBlaze Architecture.

6. VHDL Implementation of ARM Cortex-M0 Laboratory for Graduate

Engineering Students: https://ieeexplore.ieee.org/document/9332721

https://ieeexplore.ieee.org/document/8619960
https://ieeexplore.ieee.org/document/9077411
https://www.inderscience.com/info/inarticle.php?artid=116113
https://ieeexplore.ieee.org/document/9332721

 352

7. Adaptive Microprocessor with Miniature Accelerator using LLVM

Infrastructure and FPGA: The Case of ARM Cortex-M0.

12.3. Projects
All the projects are uploaded to GitHub website (except ARM Cortex-M0

implementation that requires a license from Arm Limited (or its affiliates). Below are

the links to the projects associated to this thesis:

1. 16-bit Laser processor: https://github.com/ehsan-ali-th/laser

2. Firm-core to soft-core conversion of PicoBlaze: https://github.com/ehsan-ali-

th/firmcore_to_softcore_appendices

3. Vivado 2018.3 project to produce Zynq Ultrascale+ hardware platform for

implementing IEEE 754 Double precision on 8-bit soft processor PicoBlaze:

https://github.com/ehsan-ali-th/Vivado_picoBlaze_FP

4. Software implementation of IEEE-754 Double-Precision arithmetic on Xilinx

PicoBlaze. Fidex IDE has been used to develop and simulate the project:

https://github.com/ehsan-ali-th/fp_on_picoblaze

5. Improved Development Cycle for 8-bit FPGA-Based Soft-Macros Targeting

Complex Algorithms: https://github.com/ehsan-ali-th/picoblaze_dev

6. The DAP-Zipi8 Vivado 2020.1 project source code can be found at the GitHub

website: https://github.com/ehsan-ali-

th/DAPZipi8Appendices/tree/main/zipi8_1ipc

12.4. Future Work
Adaptive processors could be described as complex reconfigurable digital circuit on

modern FPGAs which are able to change their internal architecture based on some

defined external factors. This will enable the processor to change itself to execute a

specific program faster than a rigid general-purpose processor which has a fixed design

and is implemented on silicon forever and therefore its internal design cannot be

changed.

The future work can be in several areas. Based on the miniature accelerator

architecture proposed here one can focus on very interesting outcome of this

technology, that is we can have data centers able to be reconfigured to respond to

different workloads based on the program they run frequently.

Future projects can be defined on measuring the performance boost and feasibility

of implementing the miniature accelerator architecture in data centers and measure the

gained performance versus other factors such as conserved power.

A more detailed future work is on optimization of miniature accelerator which

allows to find the maximum number of pairs with minimum distance through novel

algorithms. Also increasing the pair size (depth of 3, 4, 5, … instructions) and

investigating the feasibility of its conversion to miniature accelerator is possible.

Factors such as rapid increase in probability of having data or state dependency and the

increase in difficulty-level to stay within original processor critical path when

converted miniature hardware accelerator cannot be parallelized could be investigated.

Another future work can be defined as feasibility assessment of implementing

miniature accelerator architecture on CISC processors such as Intel architecture.

Another potential area of improvement is optimization of instruction pair

conversion to hardware through completely automated algorithms.

https://github.com/ehsan-ali-th/laser
https://github.com/ehsan-ali-th/firmcore_to_softcore_appendices
https://github.com/ehsan-ali-th/firmcore_to_softcore_appendices
https://github.com/ehsan-ali-th/Vivado_picoBlaze_FP
https://github.com/ehsan-ali-th/fp_on_picoblaze
https://github.com/ehsan-ali-th/picoblaze_dev
https://github.com/ehsan-ali-th/DAPZipi8Appendices/tree/main/zipi8_1ipc
https://github.com/ehsan-ali-th/DAPZipi8Appendices/tree/main/zipi8_1ipc

 353

13. Appendices
13.1. Appendix A – Full KCPSM6 Schematic (High Resolution)
full_Zipi8_schematic.eps: This file is an Encapsulated PostScript (using Pango fonts)

with extension .eps. It contains complete and detailed schematic of Zipi8 processor.

Open it with Gnu Image Manipulation Program (Gimp), then set `Resolution' option to

500 from `Import from PostScript' window. For better resolution you can increase the

value to 1000 or more.

URL: https://github.com/ehsan-ali-

th/Ehsan_Ali_PhD_thesis_appendices/tree/main/Appendix_A

13.2. Appendix B – Zipi8 RTL VHDL Source Code
Folder content:

• zipi8_rtl folder: Contains Zipi8 Vivado 2018.3 project.

• zipi8_rtl/zipi8_rtl.srcs/sources_1/new contains Zipi8 modules.

• ipi8_rtl/zipi8_rtl.srcs/sources_1/imports/new/zipi8.vhd contains Zipi8 main

top module Zipi8 is a PicoBlaze compatible soft-core processors developed in

Electrical Engineering Department of Chulalongkorn University of Thailand.

This Vivado project contains the Zipi8 source code plus the verification mechanism

employed as a simulation module called ̀ test_zipi8'. The project targets Xilinx ZCU104

board but can be easily changed to any other Xilinx device or board.

To use Zipi8 in your project just import all VHDL files in

zipi8_rtl/zipi8_rtl.srcs/sources_1/new and

zipi8_rtl/zipi8_rtl.srcs/sources_1/imports/new/zipi8.vhd file to your project.

URL: https://github.com/ehsan-ali-

th/Ehsan_Ali_PhD_thesis_appendices/tree/main/Appendix_B

13.3. Appendix C – Zipi8 on Lattice FPGA iCEcube2 Project Source Code
Folder content:

• zipi8_on_lattice: contains Lattice iCEcube2 version 2017.08.27940 project

Zipi8 is a PicoBlaze compatible soft-core processors developed in Electrical

Engineering Department of Chulalongkorn University of Thailand.

Open zipi8_sbt.project file in zipi8_on_lattice folder by Lattice iCEcube2

program. Set the synthesizer to `Synplify Pro' (This project is tested with Synplify Pro

L-2016.09L+ice40, Build 077R, Dec 2 2016). Synthesize and program your Lattice

device.

URL: https://github.com/ehsan-ali-

th/Ehsan_Ali_PhD_thesis_appendices/tree/main/Appendix_C

13.4. Appendix D – C++ Tools Source Code
Folder content:

• hex2vhd_lattice.cpp : C++ program that converts PicoBlaze .hex file to .vhd

file supported by Lattice Ice40 devices. It is used to synthesize Zipi8 on Lattice

devices.

• pBlaze_prog.hex : Sample .hex file

• pBlaze_prog.vhd : Sample .vhd file (output ff program)

https://github.com/ehsan-ali-th/Ehsan_Ali_PhD_thesis_appendices/tree/main/Appendix_A
https://github.com/ehsan-ali-th/Ehsan_Ali_PhD_thesis_appendices/tree/main/Appendix_A
https://github.com/ehsan-ali-th/Ehsan_Ali_PhD_thesis_appendices/tree/main/Appendix_B
https://github.com/ehsan-ali-th/Ehsan_Ali_PhD_thesis_appendices/tree/main/Appendix_B
https://github.com/ehsan-ali-th/Ehsan_Ali_PhD_thesis_appendices/tree/main/Appendix_C
https://github.com/ehsan-ali-th/Ehsan_Ali_PhD_thesis_appendices/tree/main/Appendix_C

 354

Zipi8 is a PicoBlaze compatible soft-core processors developed in Electrical

Engineering Department of Chulalongkorn University of Thailand.

Under Linux compile:

$ g++ -o hex2vhd hex2vhd_lattice.cpp

Then run:

$ /hex2vhd pBlaze_prog.hex

The pBlaze_prog.vhd will be generated. Add this the .vhd file to your Zipi8

project which will instantiate Zipi8 program memory block.

URL: https://github.com/ehsan-ali-

th/Ehsan_Ali_PhD_thesis_appendices/tree/main/Appendix_D

13.5. Appendix E – Cortex-M0 Implementation Schematic
Folder content:

• cortex_m0_v3.dia : This file is the Cortex-M0 implementation schematic

drawn in "Dia Diagram Editor". Download the program from http://dia-

installer.de/index.html.en and then you can open/edit .dia files.

• cortex_m0_v3.eps: This file is an Encapsulated PostScript (using Pango fonts)

with extension .eps. It contains complete and detailed schematic of Zipi8

processor. Open it with Gnu Image Manipulation Program (Gimp), then set

`Resolution' option to 20000 from `Import from PostScript' window. For better

resolution you can increase the value to 50000 or more.

URL: https://github.com/ehsan-ali-

th/Ehsan_Ali_PhD_thesis_appendices/tree/main/Appendix_E

13.6. Appendix F – Publications
All publications are attached to this Appendix and sorted by the year of publication.

https://github.com/ehsan-ali-th/Ehsan_Ali_PhD_thesis_appendices/tree/main/Appendix_D
https://github.com/ehsan-ali-th/Ehsan_Ali_PhD_thesis_appendices/tree/main/Appendix_D
http://dia-installer.de/index.html.en
http://dia-installer.de/index.html.en
https://github.com/ehsan-ali-th/Ehsan_Ali_PhD_thesis_appendices/tree/main/Appendix_E
https://github.com/ehsan-ali-th/Ehsan_Ali_PhD_thesis_appendices/tree/main/Appendix_E

 355

13.6.1. A guideline for rapid development of assembler to target tailor-made
microprocessors

 356

 357

 358

 359

13.6.2. Implementation and Verification of IEEE-754 64-bit Floating-Point Arithmetic
Library for 8-bit Soft-Core Processors

 360

 361

 362

 363

 364

13.6.3. Improved Development Cycle for 8-bit FPGA-Based Soft-Macros Targeting
Complex Algorithms

 365

 366

 367

 368

 369

 370

 371

 372

 373

 374

 375

 376

 377

 378

 379

13.6.4. Modular Transformation of Embedded Systems from Firm-cores to Soft-cores

 380

 381

 382

 383

 384

 385

 386

 387

 388

 389

 390

 391

 392

 393

 394

 395

 396

 397

 398

 399

 400

 401

 402

 403

 404

 405

 406

 407

 408

 409

13.6.5. Deterministic Real-Time Embedded Processor without Branch and Load Delay
Based on PicoBlaze Architecture

 410

 411

 412

 413

13.6.6. VHDL Implementation of ARM Cortex-M0 Laboratory for Graduate
Engineering Students

 414

 415

 416

 417

13.6.7. Adaptive Microprocessor with Miniature Accelerator using LLVM
Infrastructure and FPGA: The Case of ARM Cortex-M0

 418

 419

 420

 421

 422

 423

 424

 425

 426

 427

 428

 429

 430

REFE REN CES

REFERENCES

[1] STMicroelectronics. "STM32 32-bit Arm Cortex MCUs."

https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-

cortex-mcus.html (accessed 29 August, 2021).

[2] P. Bose, "EIC's Message: General-purpose versus application-specific

processors," vol. 24, pp. 5-5, May 2004.

[3] G. E. Moore, "Cramming more components onto integrated circuits, Reprinted

from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.," IEEE Solid-

State Circuits Society Newsletter, vol. 11, pp. 33-35, 9 2006.

[4] R. Sharp and A. Mycroft, "A Higher-Level Language for Hardware Synthesis,"

in Correct Hardware Design and Verification Methods, Berlin, T. Margaria and

T. Melham, Eds., 2001: Springer Berlin Heidelberg, pp. 228-243.

[5] M. Makni, M. Baklouti, S. Niar, M. W. Jmal, and M. Abid, "A comparison and

performance evaluation of FPGA soft-cores for embedded multi-core systems,"

in 2016 11th International Design Test Symposium (IDT), 2016, pp. 154-159.

[6] W. Wójcik and J. Długopolski, "FPGA-BASED MULTI-CORE PROCESSOR,"

Computer Science, vol. 14, p. 459, 2013.

[7] P. M. Mouna Baklouti, Jean-Luc Dekeyser, Mohamed Abid, "FPGA-based

many-core System-on-Chip design," Embedded Hardware Design (MICPRO),

Elsevier, p. 38, 2015.

[8] "The OpenMP API specification for parallel programming," (accessed May 25,

2018).

[9] "CUDA Zone," (accessed May 25, 2018).

[10] "Parallel Computing Toolbox," (accessed May 25, 2018).

[11] "The LLVM Compiler Infrastructure," (accessed May 25, 2018).

[12] C. E. L. H. T. Kung, Systolic Arrays for (VLSI). 1978.

[13] C. Gartenberg. "The world's smallest transistor is 1nm long, physics be

damned." https://www.theverge.com/circuitbreaker/2016/10/6/13187820/one-

nanometer-transistor-berkeley-lab-moores-law (accessed 11, July, 2021).

[14] A. Shilov. "TSMC Update: 2nm in Development, 3nm and 4nm on Track for

2022." https://www.anandtech.com/show/16639/tsmc-update-2nm-in-

development-3nm-4nm-on-track-for-2022 (accessed 11, July, 2021).

[15] R. P. Weicker, "Dhrystone: A Synthetic Systems Programming Benchmark,"

Commun. ACM, vol. 27, pp. 1013-1030, 10 1984.

[16] "EMBC- Coremark, Industry-Standard Benchmarks for Embedded Systems,"

(accessed May 27, 2018).

[17] "SPEC's Benchmarks." https://www.spec.org/benchmarks.html (accessed 1 June,

2021).

[18] "How a Data Center Works."

http://www.sapdatacenter.com/article/data_center_functionality (accessed 4,

April, 2016).

[19] "Blade Server." https://en.wikipedia.org/wiki/Blade_server (accessed 4, April,

2016).

[20] "HPE BladeSystem c7000 Enclosure - Overview."

https://support.hpe.com/hpesc/public/docDisplay?docId=emr_na-c00804295-22

(accessed 20 August, 2021).

https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.theverge.com/circuitbreaker/2016/10/6/13187820/one-nanometer-transistor-berkeley-lab-moores-law
https://www.theverge.com/circuitbreaker/2016/10/6/13187820/one-nanometer-transistor-berkeley-lab-moores-law
https://www.anandtech.com/show/16639/tsmc-update-2nm-in-development-3nm-4nm-on-track-for-2022
https://www.anandtech.com/show/16639/tsmc-update-2nm-in-development-3nm-4nm-on-track-for-2022
https://www.spec.org/benchmarks.html
http://www.sapdatacenter.com/article/data_center_functionality
https://en.wikipedia.org/wiki/Blade_server
https://support.hpe.com/hpesc/public/docDisplay?docId=emr_na-c00804295-22

 432

[21] "Data Center Storage Evolution." https://www.siemon.com/us/white_papers/14-

07-29-data-center-storage-evolution.asp (accessed 4, April, 2016).

[22] "Data Center Architecture Overview."

http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infr

a2_5/DCInfra_1.html (accessed 5, April, 2016).

[23] G.-C.-S.-I.-S.-r. Winston, Energy Efficient Servers Blueprints for Data Center

Optimization. Apress, 2015.

[24] J. M. Yang Liu, "DCNSim: A Data Center Network Simulator," Distributed

Computing Systems Workshops (ICDCSW), 2013 IEEE 33rd International

Conference, pp. 214-219, 2013.

[25] "Research papers using ns-3." https://www.nsnam.org/overview/publications/

(accessed 30, June, 2016).

[26] "CloudSim: A Framework for Modeling and Simulation of Cloud Computing

Infrastructures and Services." http://www.cloudbus.org/cloudsim/ (accessed 28,

June, 2016).

[27] "Too Hot for Humans, But Google Servers Keep Humming."

http://www.datacenterknowledge.com/archives/2012/03/23/too-hot-for-humans-

but-google-servers-keep-humming/ (accessed 24, June, 2016).

[28] "Data center cooling advancements let you leave your jacket at home."

http://www.techrepublic.com/article/data-center-cooling-advancements-let-you-

leave-your-jacket-at-home/ (accessed 25, March, 2017).

[29] N. a. S. El-Sayed, Ioan A. and Amvrosiadis, George and Hwang, Andy A. and

Schroeder, Bianca, "Temperature Management in Data Centers: Why Some

(Might) Like It Hot," SIGMETRICS Perform. Eval. Rev., vol. 40, pp. 163-174,

2012.

[30] "Seagate hard-drive specifications."

http://www.seagate.com/docs/pdf/datasheet/disc/ds_barracuda_7200_10.pdf

(accessed 26, June, 2016).

[31] "Micron DDR3 SDRAM." https://www.micron.com/products/dram/ddr3-sdram

(accessed 25, June, 2016).

[32] "Iceland looks to serve the world."

http://news.bbc.co.uk/2/hi/programmes/click_online/8297237.stm (accessed 28,

June, 2016).

[33] "Dell offers 64-bit ARM microserver proof-of-concept for hyperscale on the

heels of Open Compute Summit momentum."

http://en.community.dell.com/dell-

blogs/dell4enterprise/b/dell4enterprise/archive/2014/02/04/dell-offers-64-bit-

arm-microserver-proof-of-concept-for-hyperscale-on-the-heels-of-open-

compute-summit-momentum (accessed 29, June, 2016).

[34] "AMD's 64-bit ARM server chip Seattle finally flies the coop ... but where will it

call home?" http://www.theregister.co.uk/2016/01/14/amd_arm_seattle_launch/

(accessed 29, June, 2016).

[35] K. E. a. G. F. J. a. A. S. Fleischer, "A review of data center cooling technology,

operating conditions and the corresponding low-grade waste heat recovery

opportunities," Renewable and Sustainable Energy Reviews, vol. 31, pp. 622-

638, 2014.

https://www.siemon.com/us/white_papers/14-07-29-data-center-storage-evolution.asp
https://www.siemon.com/us/white_papers/14-07-29-data-center-storage-evolution.asp
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_1.html
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_1.html
https://www.nsnam.org/overview/publications/
http://www.cloudbus.org/cloudsim/
http://www.datacenterknowledge.com/archives/2012/03/23/too-hot-for-humans-but-google-servers-keep-humming/
http://www.datacenterknowledge.com/archives/2012/03/23/too-hot-for-humans-but-google-servers-keep-humming/
http://www.techrepublic.com/article/data-center-cooling-advancements-let-you-leave-your-jacket-at-home/
http://www.techrepublic.com/article/data-center-cooling-advancements-let-you-leave-your-jacket-at-home/
http://www.seagate.com/docs/pdf/datasheet/disc/ds_barracuda_7200_10.pdf
https://www.micron.com/products/dram/ddr3-sdram
http://news.bbc.co.uk/2/hi/programmes/click_online/8297237.stm
http://en.community.dell.com/dell-blogs/dell4enterprise/b/dell4enterprise/archive/2014/02/04/dell-offers-64-bit-arm-microserver-proof-of-concept-for-hyperscale-on-the-heels-of-open-compute-summit-momentum
http://en.community.dell.com/dell-blogs/dell4enterprise/b/dell4enterprise/archive/2014/02/04/dell-offers-64-bit-arm-microserver-proof-of-concept-for-hyperscale-on-the-heels-of-open-compute-summit-momentum
http://en.community.dell.com/dell-blogs/dell4enterprise/b/dell4enterprise/archive/2014/02/04/dell-offers-64-bit-arm-microserver-proof-of-concept-for-hyperscale-on-the-heels-of-open-compute-summit-momentum
http://en.community.dell.com/dell-blogs/dell4enterprise/b/dell4enterprise/archive/2014/02/04/dell-offers-64-bit-arm-microserver-proof-of-concept-for-hyperscale-on-the-heels-of-open-compute-summit-momentum
http://www.theregister.co.uk/2016/01/14/amd_arm_seattle_launch/

 433

[36] J. B. M. a. J. A. O. a. J. R. Thome, "On-chip two-phase cooling of datacenters:

Cooling system and energy recovery evaluation," Applied Thermal Engineering,

vol. 41, pp. 36-51, 2012.

[37] M. I. a. M. D. a. P. P. a. V. K. a. B. K. a. D. G. a. M. S. a. M. G. a. R. S. Chainer,

"Server liquid cooling with chiller-less data center design to enable significant

energy savings," in 2012 28th Annual IEEE Semiconductor Thermal

Measurement and Management Symposium (SEMI-THERM), 2012, pp. 212-223.

[38] A. C. a. G. Primiceri, "Cooling Systems in Data Centers: State of Art and

Emerging Technologies," Energy Procedia, vol. 83, pp. 484-493, 2015.

[39] "White Paper: Energy Logic: Reducing Data Center Energy Consumption by

Creating Savings that Cascade Across Systems." [Online]. Available:

http://web.engr.oregonstate.edu/~qassimy/index_files/Final_ECE570_ASP_2012

_Project_Report.pdf

[40] "The Windcatchers of Persia." http://www.kuriositas.com/2012/06/windcatchers-

of-persia.html (accessed 4, July, 2016).

[41] "WHITE PAPER 47 JAPAN DATA CENTER REGIONAL

CONSIDERATIONS."

https://www.thegreengrid.org/~/media/WhitePapers/WP47Japan%20Data%20Ce

nter%20Regional%20ConsiderationsEnglish.pdf?lang=en (accessed 30, June,

2016).

[42] "Best Practices Guide for Energy-Efficient Data Center Design."

https://hightech.lbl.gov/benchmarking-guides/data.html (accessed 30, June,

2016).

[43] "Data Center Efficiency: The Benefits of RCI & RTI."

http://www.rfcode.com/data-driven-data-center/bid/232990/Data-Center-

Efficiency-The-Benefits-of-RCI-RTI-Part-1-of-3 (accessed 30, June, 2016).

[44] D. a. W. Meisner, Thomas F., "Does Low-power Design Imply Energy

Efficiency for Data Centers?," Proceedings of the 17th IEEE/ACM International

Symposium on Low-power Electronics and Design, pp. 109-114, 2011.

[45] Y. a. L. Zhao, Shen and Hu, Shaohan and Wang, Hongwei and Yao, Shuochao

and Shao, Huajie and Abdelzaher, Tarek, "An Experimental Evaluation of

Datacenter Workloads on Low-power Embedded Micro Servers," Proc. VLDB

Endow., vol. 9, pp. 696-707, 2016.

[46] T. Evans, "The Different Technologies for Cooling Data Centers - White Paper

59," Schneider Electric – Data Center Science Center, 2010.

[47] "A beginner's guide to data center cooling systems."

http://www.geistglobal.com/news/beginners-guide-data-center-cooling-systems

(accessed 5, December, 2016).

[48] "Basic Refrigeration Cycle."

https://www.swtc.edu/ag_power/air_conditioning/lecture/basic_cycle.htm

(accessed 4, December, 2016).

[49] "A Look at Data Center Cooling Technologies."

https://journal.uptimeinstitute.com/a-look-at-data-center-cooling-technologies/

(accessed 5, December, 2016).

[50] "Data Center Power and Cooling." Cisco.

https://www.cisco.com/c/en/us/solutions/collateral/data-center-

http://web.engr.oregonstate.edu/~qassimy/index_files/Final_ECE570_ASP_2012_Project_Report.pdf
http://web.engr.oregonstate.edu/~qassimy/index_files/Final_ECE570_ASP_2012_Project_Report.pdf
http://www.kuriositas.com/2012/06/windcatchers-of-persia.html
http://www.kuriositas.com/2012/06/windcatchers-of-persia.html
https://www.thegreengrid.org/~/media/WhitePapers/WP47Japan%20Data%20Center%20Regional%20ConsiderationsEnglish.pdf?lang=en
https://www.thegreengrid.org/~/media/WhitePapers/WP47Japan%20Data%20Center%20Regional%20ConsiderationsEnglish.pdf?lang=en
https://hightech.lbl.gov/benchmarking-guides/data.html
http://www.rfcode.com/data-driven-data-center/bid/232990/Data-Center-Efficiency-The-Benefits-of-RCI-RTI-Part-1-of-3
http://www.rfcode.com/data-driven-data-center/bid/232990/Data-Center-Efficiency-The-Benefits-of-RCI-RTI-Part-1-of-3
http://www.geistglobal.com/news/beginners-guide-data-center-cooling-systems
https://www.swtc.edu/ag_power/air_conditioning/lecture/basic_cycle.htm
https://journal.uptimeinstitute.com/a-look-at-data-center-cooling-technologies/
https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/unified-computing/white_paper_c11-680202.html

 434

virtualization/unified-computing/white_paper_c11-680202.html (accessed 17,

July, 2016).

[51] "Chiller." https://en.wikipedia.org/wiki/Chiller (accessed 30, July, 2016).

[52] "Everything you wanted to know about glycol."

http://www.probrewer.com/library/refrigeration/everything-you-wanted-to-

know-about-glycol/ (accessed 4, December, 2016).

[53] "Cooling Towers and Dry Coolers." http://surna.com/cooling-towers-and-dry-

coolers/ (accessed.

[54] "CRAC vs CRAH." http://www.dchuddle.com/2011/crac-v-crah/ (accessed 3,

December, 2016).

[55] "Operating expense." https://en.wikipedia.org/wiki/Operating_expense (accessed

8, June, 2016).

[56] "Rise of Direct Liquid Cooling in Data Centers Likely Inevitable."

http://www.datacenterknowledge.com/archives/2014/12/09/rise-direct-liquid-

cooling-data-centers-likely-inevitable/ (accessed 7, December, 2016).

[57] "Ice X: Intel and SGI test full-immersion cooling for servers."

http://www.computerworld.com/article/2488035/data-center/ice-x--intel-and-sgi-

test-full-immersion-cooling-for-servers.html (accessed 7, December, 2016).

[58] "Facebook throws servers on their back in HOT TUBS of OIL."

http://www.theregister.co.uk/2013/10/14/facebook_liquid_cooling/ (accessed 7,

December, 2016).

[59] "The CarnotJet System." http://www.grcooling.com (accessed 6, December,

2016).

[60] "Direct Contact Liquid Cooling." http://www.coolitsystems.com/index.php/data-

center.html (accessed 6, December, 2016).

[61] "Aspen Systems Liquid Cooled Server." http://www.asetek.com/data-

center/data-center-oems/aspen/aspen-systems-liquid-cooled-server/ (accessed 7,

December, 2016).

[62] "Server immersion cooling."

https://en.wikipedia.org/wiki/Server_immersion_cooling (accessed 7, December,

2016).

[63] "What’s Stopping Liquid Cooling?" http://www.datacenterjournal.com/whats-

stopping-liquid-cooling/ (accessed 7, December, 2016).

[64] J. Koomey, "Growth in data center electricity use 2005 to 2010," A report by

Analytical Press, completed at the request of The New York Times 9, 2011.

[65] H. Z. a. S. S. a. H. X. a. H. Z. a. C. Tian, "Free cooling of data centers: A

review," Renewable and Sustainable Energy Reviews, vol. 35, pp. 171-182,

2014.

[66] "Half of data centres are now using natural cooling."

https://www.theguardian.com/sustainable-business/data-centres-natural-cooling

(accessed 9, March, 2017).

[67] R. McFarlane. "Using free cooling in the data center."

http://searchdatacenter.techtarget.com/podcast/Using-free-cooling-in-the-data-

center (accessed 9, March, 2017).

[68] J. C. a. T. L. a. B. S. Kim, "Viability of datacenter cooling systems for energy

efficiency in temperate or subtropical regions: Case study," Energy and

Buildings, vol. 55, pp. 189-197, Energy and Buildings.

https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/unified-computing/white_paper_c11-680202.html
https://en.wikipedia.org/wiki/Chiller
http://www.probrewer.com/library/refrigeration/everything-you-wanted-to-know-about-glycol/
http://www.probrewer.com/library/refrigeration/everything-you-wanted-to-know-about-glycol/
http://surna.com/cooling-towers-and-dry-coolers/
http://surna.com/cooling-towers-and-dry-coolers/
http://www.dchuddle.com/2011/crac-v-crah/
https://en.wikipedia.org/wiki/Operating_expense
http://www.datacenterknowledge.com/archives/2014/12/09/rise-direct-liquid-cooling-data-centers-likely-inevitable/
http://www.datacenterknowledge.com/archives/2014/12/09/rise-direct-liquid-cooling-data-centers-likely-inevitable/
http://www.computerworld.com/article/2488035/data-center/ice-x--intel-and-sgi-test-full-immersion-cooling-for-servers.html
http://www.computerworld.com/article/2488035/data-center/ice-x--intel-and-sgi-test-full-immersion-cooling-for-servers.html
http://www.theregister.co.uk/2013/10/14/facebook_liquid_cooling/
http://www.grcooling.com/
http://www.coolitsystems.com/index.php/data-center.html
http://www.coolitsystems.com/index.php/data-center.html
http://www.asetek.com/data-center/data-center-oems/aspen/aspen-systems-liquid-cooled-server/
http://www.asetek.com/data-center/data-center-oems/aspen/aspen-systems-liquid-cooled-server/
https://en.wikipedia.org/wiki/Server_immersion_cooling
http://www.datacenterjournal.com/whats-stopping-liquid-cooling/
http://www.datacenterjournal.com/whats-stopping-liquid-cooling/
https://www.theguardian.com/sustainable-business/data-centres-natural-cooling
http://searchdatacenter.techtarget.com/podcast/Using-free-cooling-in-the-data-center
http://searchdatacenter.techtarget.com/podcast/Using-free-cooling-in-the-data-center

 435

[69] R. A. D. "Yahoo! Compute Coop (YCC): A Next-Generation Passive Cooling

Design for Data Centers."

https://digital.library.unt.edu/ark:/67531/metadc829687/ (accessed 3, July,

2021).

[70] "Vertiv Uses Machine Learning to Automate Data Center Cooling."

http://www.datacenterknowledge.com/archives/2017/01/30/vertiv-automates-

data-center-cooling-with-machine-learning/ (accessed 25, March, 2017).

[71] "How Can You Test and Optimize Data Center Cooling with CFD?"

https://www.simscale.com/blog/2016/09/data-center-cooling/ (accessed 25,

March, 2017).

[72] "Google uses DeepMind AI to cut data center energy bills."

http://www.theverge.com/2016/7/21/12246258/google-deepmind-ai-data-center-

cooling (accessed 25, March, 2017).

[73] "Data Center Cooling Idea Makes Waves."

https://blog.equinix.com/blog/2016/04/15/data-center-cooling-idea-makes-

waves/ (accessed 25, March, 2017).

[74] "Data center cooling and efficiency: thinking outside the box."

http://www.datacenterdynamics.com/content-tracks/power-cooling/data-center-

cooling-and-efficiency-thinking-outside-the-box/96046.fullarticle (accessed 25,

March, 2017).

[75] "Data Center Physical Security Checklist." https://www.sans.org/reading-

room/whitepapers/awareness/data-center-physical-security-checklist-416

(accessed 21, September, 2016).

[76] "Applied Micro Chases Xeons With X-Gene 3 And NUMA."

http://www.nextplatform.com/2015/11/18/applied-micro-chases-xeons-with-x-

gene-3-and-numa/ (accessed 20, July, 2016).

[77] "Investigating Cavium's ThunderX: The First ARM Server SoC With Ambition."

http://www.anandtech.com/show/10353/investigating-cavium-thunderx-48-arm-

cores (accessed 21, July, 2016).

[78] "Applied Micro X-Gene (64-bit ARM) vs Intel Xeon (64-bit x86) Performance

and Power Usage." http://www.cnx-software.com/2014/10/26/applied-micro-x-

gene-64-bit-arm-vs-intel-xeon-64-bit-x86-performance-and-power-usage/

(accessed 17, September, 2016).

[79] "HPC Performance & Power Usage Comparison – Intel Xeon E3 vs Intel Atom

C2720 vs Applied Micro X-Gene 1 vs IBM Power 8." http://www.cnx-

software.com/2015/04/14/server-performance-power-usage-comparison-intel-

xeon-e3-vs-intel-atom-c2720-vs-applied-micro-x-gene-1-vs-ibm-power-8/

(accessed 17, September, 2016).

[80] "Intel Xeon D-1541 vs E7-8893 v2." http://www.cpu-

world.com/Compare/266/Intel_Xeon_D_D-1541_vs_Intel_Xeon_E7-

8893_v2.html (accessed 17, September, 2016).

[81] "1U Mini-ITX 9.84 inch Deep Rackmount Chassis."

http://www.plinkusa.net/webitx102.htm (accessed 28, July, 2016).

[82] "BB-ITX96 V2 Blade Computing System for Mini-ITX."

http://www.buildablade.com/bb-itx96.htm (accessed 28, July, 2016).

[83] "WiredSystem 5U blade chassis." http://www.wiredsystems.com/blog/5u-blade-

chassis/ (accessed 28, July, 2016).

https://digital.library.unt.edu/ark:/67531/metadc829687/
http://www.datacenterknowledge.com/archives/2017/01/30/vertiv-automates-data-center-cooling-with-machine-learning/
http://www.datacenterknowledge.com/archives/2017/01/30/vertiv-automates-data-center-cooling-with-machine-learning/
https://www.simscale.com/blog/2016/09/data-center-cooling/
http://www.theverge.com/2016/7/21/12246258/google-deepmind-ai-data-center-cooling
http://www.theverge.com/2016/7/21/12246258/google-deepmind-ai-data-center-cooling
https://blog.equinix.com/blog/2016/04/15/data-center-cooling-idea-makes-waves/
https://blog.equinix.com/blog/2016/04/15/data-center-cooling-idea-makes-waves/
http://www.datacenterdynamics.com/content-tracks/power-cooling/data-center-cooling-and-efficiency-thinking-outside-the-box/96046.fullarticle
http://www.datacenterdynamics.com/content-tracks/power-cooling/data-center-cooling-and-efficiency-thinking-outside-the-box/96046.fullarticle
https://www.sans.org/reading-room/whitepapers/awareness/data-center-physical-security-checklist-416
https://www.sans.org/reading-room/whitepapers/awareness/data-center-physical-security-checklist-416
http://www.nextplatform.com/2015/11/18/applied-micro-chases-xeons-with-x-gene-3-and-numa/
http://www.nextplatform.com/2015/11/18/applied-micro-chases-xeons-with-x-gene-3-and-numa/
http://www.anandtech.com/show/10353/investigating-cavium-thunderx-48-arm-cores
http://www.anandtech.com/show/10353/investigating-cavium-thunderx-48-arm-cores
http://www.cnx-software.com/2014/10/26/applied-micro-x-gene-64-bit-arm-vs-intel-xeon-64-bit-x86-performance-and-power-usage/
http://www.cnx-software.com/2014/10/26/applied-micro-x-gene-64-bit-arm-vs-intel-xeon-64-bit-x86-performance-and-power-usage/
http://www.cnx-software.com/2015/04/14/server-performance-power-usage-comparison-intel-xeon-e3-vs-intel-atom-c2720-vs-applied-micro-x-gene-1-vs-ibm-power-8/
http://www.cnx-software.com/2015/04/14/server-performance-power-usage-comparison-intel-xeon-e3-vs-intel-atom-c2720-vs-applied-micro-x-gene-1-vs-ibm-power-8/
http://www.cnx-software.com/2015/04/14/server-performance-power-usage-comparison-intel-xeon-e3-vs-intel-atom-c2720-vs-applied-micro-x-gene-1-vs-ibm-power-8/
http://www.cpu-world.com/Compare/266/Intel_Xeon_D_D-1541_vs_Intel_Xeon_E7-8893_v2.html
http://www.cpu-world.com/Compare/266/Intel_Xeon_D_D-1541_vs_Intel_Xeon_E7-8893_v2.html
http://www.cpu-world.com/Compare/266/Intel_Xeon_D_D-1541_vs_Intel_Xeon_E7-8893_v2.html
http://www.plinkusa.net/webitx102.htm
http://www.buildablade.com/bb-itx96.htm
http://www.wiredsystems.com/blog/5u-blade-chassis/
http://www.wiredsystems.com/blog/5u-blade-chassis/

 436

[84] "Google uncloaks once-secret server." http://www.cnet.com/news/google-

uncloaks-once-secret-server-10209580/ (accessed 29, July, 2016).

[85] J. Collins. "Data center cooling has evolved, so should design."

http://www.datacenterdynamics.com/content-tracks/power-cooling/data-center-

cooling-has-evolved-so-should-design/73863.fullarticle (accessed 9, March,

2017).

[86] "List of CPU architectures."

https://en.wikipedia.org/wiki/List_of_CPU_architectures (accessed 8, August,

2017).

[87] "Instruction set architecture."

https://en.wikipedia.org/wiki/Instruction_set_architecture (accessed 8, August,

2017).

[88] "Instruction Set Design."

https://cseweb.ucsd.edu/classes/wi10/cse240a/Slides/08_ISA.pdf (accessed 22,

April, 2016).

[89] "CS470 - Instruction set design - Chapter 3."

http://www.cs.iit.edu/~virgil/cs470/Book/chapter3.pdf (accessed 22, April,

2016).

[90] "Microprocessor Design/Instruction Set Architectures."

https://en.wikibooks.org/wiki/Microprocessor_Design/Instruction_Set_Architect

ures (accessed 8, August, 2017).

[91] "LLVM The architecture of Open Source Applications."

http://www.aosabook.org/en/llvm.html (accessed 12, December, 2016).

[92] M. a. S. Pandey, Suyog, LLVM Cookbook. Packt Publishing Ltd.}, 2015.

[93] R. A. Bruno Cardoso Lopes, Getting Started with LLVM Core Libraries. Packt

Publishing Ltd., 2014.

[94] "LLVM Language Reference Manual." http://llvm.org/docs/LangRef.html

(accessed 12, December, 2016).

[95] "The LLVM Target-Independent Code Generator."

http://llvm.org/docs/CodeGenerator.html (accessed 13, December, 2016).

[96] "Writing an LLVM Backend."

http://llvm.org/docs/WritingAnLLVMBackend.html (accessed 14, December,

2016).

[97] "Life of an instruction in LLVM." http://blog.llvm.org/2012/11/life-of-

instruction-in-llvm.html (accessed 22, June, 2017).

[98] "Intro to the LLVM MC Project." http://blog.llvm.org/2010/04/intro-to-llvm-mc-

project.html (accessed 28, February, 2018).

[99] "Cortex-M0 TM Revision: r0p0 Technical Reference Manual."

[100] J. L. a. P. Hennessy, David A., Computer Architecture, Fifth Edition: A

Quantitative Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., 2011.

[101] "Understanding the Stack."

https://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Mips/stack.html

(accessed 23, July, 2017).

[102] "Memory Editor Overview."

https://www.xilinx.com/itp/xilinx10/isehelp/cgn_r_memory_editor_overview.ht

m (accessed 10, June, 2017).

http://www.cnet.com/news/google-uncloaks-once-secret-server-10209580/
http://www.cnet.com/news/google-uncloaks-once-secret-server-10209580/
http://www.datacenterdynamics.com/content-tracks/power-cooling/data-center-cooling-has-evolved-so-should-design/73863.fullarticle
http://www.datacenterdynamics.com/content-tracks/power-cooling/data-center-cooling-has-evolved-so-should-design/73863.fullarticle
https://en.wikipedia.org/wiki/List_of_CPU_architectures
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://cseweb.ucsd.edu/classes/wi10/cse240a/Slides/08_ISA.pdf
http://www.cs.iit.edu/~virgil/cs470/Book/chapter3.pdf
https://en.wikibooks.org/wiki/Microprocessor_Design/Instruction_Set_Architectures
https://en.wikibooks.org/wiki/Microprocessor_Design/Instruction_Set_Architectures
http://www.aosabook.org/en/llvm.html
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/CodeGenerator.html
http://llvm.org/docs/WritingAnLLVMBackend.html
http://blog.llvm.org/2012/11/life-of-instruction-in-llvm.html
http://blog.llvm.org/2012/11/life-of-instruction-in-llvm.html
http://blog.llvm.org/2010/04/intro-to-llvm-mc-project.html
http://blog.llvm.org/2010/04/intro-to-llvm-mc-project.html
https://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Mips/stack.html
https://www.xilinx.com/itp/xilinx10/isehelp/cgn_r_memory_editor_overview.htm
https://www.xilinx.com/itp/xilinx10/isehelp/cgn_r_memory_editor_overview.htm

 437

[103] "Review of Flip Flop Setup and Hold Time."

http://web.engr.oregonstate.edu/~traylor/ece474/beamer_lectures/tsu_and_th.pdf

(accessed 08, June, 2018).

[104] E. K. M. Genutis, O.Olsen, "Benchmarking in DSP," DSP

Laborotatory*Communication Department, Aalborg University, vol. 39, no. 2,

2001.

[105] "DSP Benchmark Resultsfor the Latest Processors(Workshop 427)."

[106] "Berkeley Design Technology Inc." https://www.bdti.com/ (accessed 2,

September, 2018).

[107] "CoreMark FAQ." https://www.eembc.org/coremark/faq.php (accessed 15,

April, 2018).

[108] R. P. Weicker, "Dhrystone benchmark: rationale for version 2 and measurement

rules," ACM SIGPLAN Notices, vol. 23, pp. 49-62, 1988.

[109] "MCU Performance-Benchmarking." http://electronicsmaker.com/mcu-

performance-benchmarking (accessed 13, April, 2018).

[110] J. A. a. C. Poovey, Thomas M. and Levy, Markus and Gal-On, Shay, "A

Benchmark Characterization of the EEMBC Benchmark Suite," IEEE Micro,

vol. 29, no. 5, pp. 18-29, 2009.

[111] D. Liu, "Embedded DSP Processor Design: Application Specific Instruction Set

Processors," 2008.

[112] "An Intuitive Guide To Exponential Functions and e."

https://betterexplained.com/articles/an-intuitive-guide-to-exponential-functions-

e/ (accessed 5, September, 2018).

[113] "An Interactive Guide To The Fourier Transform."

https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-

transform/ (accessed 8, September, 2018).

[114] T. H. a. L. Cormen, Charles E. and Rivest, Ronald L. and Stein, Clifford,

Introduction to Algorithms, Third Edition. The MIT Press, 2009.

[115] G. Strang, "Wavelets," American Scientist, vol. 82, no. 3, pp. 250-255, 1994.

[116] B. M. Baas, "{A Low-Power, High-Performance, 1024-Point FFT Processor,"

IEEE Journal of Solid-State Circuits, vol. 34, no. 3, 1999.

[117] S. G. J. a. M. Frigo, "A Modified Split-Radix FFT With Fewer Arithmetic

Operations," IEEE Transactions on Signal Processing, vol. 55, no. 1, pp. 111-

119, 2007.

[118] M. F. a. S. G. Johnson, "FFTW: an adaptive software architecture for the FFT,"

Proceedings of the 1998 IEEE International Conference on Acoustics, Speech

and Signal Processing, ICASSP '98 (Cat. No.98CH36181), vol. 3, pp. 1381-

1384, 1998.

[119] S. Roberts, "Lecture 7 - The Discrete Fourier Transform," {Oxford Robots

Lecture, pp. 82-96, 2003.

[120] "Cooley–Tukey FFT algorithm."

https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm}

(accessed 19, September, 2018).

[121] "Pipelined FFT/IFFT 256 points (Fast Fourier Transform) IP Core User

Manual."

{https://opencores.org/websvn/filedetails?repname=pipelined_fft_256&path=%2

Fpipelined_fft_256%2Ftrunk%2FDOC%2Ffft256_um.pdf (accessed.

http://web.engr.oregonstate.edu/~traylor/ece474/beamer_lectures/tsu_and_th.pdf
https://www.bdti.com/
https://www.eembc.org/coremark/faq.php
http://electronicsmaker.com/mcu-performance-benchmarking
http://electronicsmaker.com/mcu-performance-benchmarking
https://betterexplained.com/articles/an-intuitive-guide-to-exponential-functions-e/
https://betterexplained.com/articles/an-intuitive-guide-to-exponential-functions-e/
https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/
https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/
https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
https://opencores.org/websvn/filedetails?repname=pipelined_fft_256&path=%2Fpipelined_fft_256%2Ftrunk%2FDOC%2Ffft256_um.pdf
https://opencores.org/websvn/filedetails?repname=pipelined_fft_256&path=%2Fpipelined_fft_256%2Ftrunk%2FDOC%2Ffft256_um.pdf

 438

[122] J. W. C. a. J. W. Tukey, "n Algorithm for the Machine Calculation of Complex

Fourier Series," Mathematics of Computation, vol. 19, no. 90, pp. 297-301,

1965.

[123] "Live variable analysis." https://en.wikipedia.org/wiki/Live_variable_analysis

(accessed 17, February, 2018).

[124] J. Sykora, LLVM-Based C Compiler for the PicoBlaze Processor Technical

Report. Institute of Information Theory and Automation of the ASCR Pod

Vodarenskou vezi 4, CZ-182 08, Prague 8.

[125] "Position-independent code." https://en.wikipedia.org/wiki/Position-

independent_code (accessed 12, February, 2018).

[126] "Program Relocation."

https://www.cs.uaf.edu/2000/fall/cs301/notes/Chapter10/node10.html (accessed

20, January, 2018).

[127] "Study of ELF loading and relocs."

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html (accessed

27, February, 2018).

[128] "Relocation (computing)." https://en.wikipedia.org/wiki/Relocation_(computing)

(accessed 30, January, 2018).

[129] J. Bennett, Howto: Implementing LLVM Integrated Assembler. 2012.

[130] "Computer Science from the Bottom Up." {http://www.bottomupcs.com/}

(accessed 24, February, 2018).

[131] "Executable and Linkable Format."

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format (accessed 1,

August, 2017).

[132] "Tool Interface Standard (TIS) Executable and Linking Format (ELF)

Specification Version 1.2." https://refspecs.linuxbase.org/elf/elf.pdf (accessed

2021.

[133] "The ELF Object File Format: Introduction."

http://www.linuxjournal.com/article/1059 (accessed 5, February, 2018).

[134] "Tutorial: Creating an LLVM Toolchain for the Cpu0 Architecture."

http://jonathan2251.github.io/lbt/index.html (accessed 5, March, 2018).

[135] "TableGen Language Reference."

https://releases.llvm.org/10.0.0/docs/TableGen/LangRef.html (accessed 5 Aug,

2021).

[136] "Gartner - Market Share Analysis: Microcontroller Revenue, Worldwide."

https://www.gartner.com/doc/3293617/market-share-analysis-microcontroller-

revenue (accessed 3, April, 2019).

[137] "ordor Intelligence - 8-bit microcontroller Market - Segmented by End-user

Industry (aerospace \& defense, automotive, industrial), and Region-Growth,

Trends and Forecasts." https://www.mordorintelligence.com/industry-reports/8-

bit-microcontroller-market-industry (accessed 16, March, 2018).

[138] "Allied Market Research - Microcontroller Market Expected to Reach \$15.7

Billion, Globally by 2022." https://www.alliedmarketresearch.com/press-

release/microcontrollers-market.html (accessed.

[139] "11 Myths About 8-Bit Microcontrollers, Wayne Freeman, Campaign Manager,

MCU8 Business Unit, Microchip Technology Inc."

https://en.wikipedia.org/wiki/Live_variable_analysis
https://en.wikipedia.org/wiki/Position-independent_code
https://en.wikipedia.org/wiki/Position-independent_code
https://www.cs.uaf.edu/2000/fall/cs301/notes/Chapter10/node10.html
http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html
https://en.wikipedia.org/wiki/Relocation_(computing
http://www.bottomupcs.com/
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://refspecs.linuxbase.org/elf/elf.pdf
http://www.linuxjournal.com/article/1059
http://jonathan2251.github.io/lbt/index.html
https://releases.llvm.org/10.0.0/docs/TableGen/LangRef.html
https://www.gartner.com/doc/3293617/market-share-analysis-microcontroller-revenue
https://www.gartner.com/doc/3293617/market-share-analysis-microcontroller-revenue
https://www.mordorintelligence.com/industry-reports/8-bit-microcontroller-market-industry
https://www.mordorintelligence.com/industry-reports/8-bit-microcontroller-market-industry
https://www.alliedmarketresearch.com/press-release/microcontrollers-market.html
https://www.alliedmarketresearch.com/press-release/microcontrollers-market.html

 439

https://www.electronicdesign.com/microcontrollers/11-myths-about-8-bit-

microcontrollers (accessed 20, March, 2018).

[140] "Fujitsu - Application Ideas for 8-bit Low-Pin-Count Microcontrollers."

http://www.fujitsu.com/downloads/MICRO/fma/formpdf/LPC-TB_071009.pdf

(accessed 12, March, 2019).

[141] "Microchip - Parametric search." Microchip - Parametric search (accessed 12,

March, 2019).

[142] M. C. a. J. H. a. C. A. a. P. T. P. T. a. E. S. a. E. Gvozdev, "A Software

Implementation of the IEEE 754R Decimal Floating-Point Arithmetic Using the

Binary Encoding Format," IEEE Transactions on Computers, vol. 58, no. 2, pp.

148-162, 2009.

[143] "Xilinx - Performance and Resource Utilization for Floating-point v7.1."

https://www.xilinx.com/support/documentation/ip_documentation/ru/floating-

point.html (accessed 19, March, 2019).

[144] "Xilinx LogiCORE IP Floating-Point Operator v7.0Product GuideVivado

Design Suite PG060." (accessed 20, March, 2018).

[145] C.-P. J. Jean-Michel Muller - Nicolas Brunie - Florent de Dinechin, Handbook of

Floating-Point Arithmetic. Springer, 2018.

[146] A. Castillo Atoche, J. Castillo, and V. Sanchez, "Real time TCP/IP control of

modular production systems with FPGAs," Journal of Applied Research and

Technology, 12/17 2014, doi: 10.22201/icat.16656423.2007.5.01.535.

[147] T.-H. Kim, "Design and Implementation of a State-Driven Operating System for

Highly Reconfigurable Sensor Networks," International Journal of Distributed

Sensor Networks, vol. 2013, 08/19 2013, doi: 10.1155/2013/659518.

[148] N. Shirazi, A. Walters, and P. Athanas, "Quantitative analysis of floating point

arithmetic on FPGA based custom computing machines," in Proceedings IEEE

Symposium on FPGAs for Custom Computing Machines, 19-21 April 1995 1995,

pp. 155-162, doi: 10.1109/FPGA.1995.477421.

[149] P. Belanovic and M. Leeser, A Library of Parameterized Floating-point Modules

And Their Use. 2002.

[150] X. Fang and M. Leeser, "Open-Source Variable-Precision Floating-Point Library

for Major Commercial FPGAs," ACM Trans. Reconfigurable Technol. Syst., vol.

9, no. 3, p. Article 20, 2016, doi: 10.1145/2851507.

[151] C. Bertin et al., "A floating-point library for integer processors," Proceedings of

SPIE - The International Society for Optical Engineering, vol. 5559, 10/01 2004,

doi: 10.1117/12.557168.

[152] K. Chapman. "PicoBlaze for Spartan-6, Virtex-6, 7-Series, Zynq and UltraScale

Devices (KCPSM6) - Release 9."

https://www.eng.auburn.edu/~nelsovp/courses/elec4200/PicoBlaze/kcpsm6.pdf

(accessed 16, March, 2019).

[153] Xilinx. "ISE design suite." https://www.xilinx.com/products/design-tools/ise-

design-suite.html (accessed.

[154] "Vivado Design Suite - HLx Editions." https://www.xilinx.com/products/design-

tools/vivado.html (accessed 12, September, 2019).

[155] "ISE Tutorial: Using Xilinx ChipScope Pro ILA Core with Project Navigator to

Debug FPGA Applications (v14.5)." Xilinx.

https://www.electronicdesign.com/microcontrollers/11-myths-about-8-bit-microcontrollers
https://www.electronicdesign.com/microcontrollers/11-myths-about-8-bit-microcontrollers
http://www.fujitsu.com/downloads/MICRO/fma/formpdf/LPC-TB
https://www.xilinx.com/support/documentation/ip
https://www.eng.auburn.edu/~nelsovp/courses/elec4200/PicoBlaze/kcpsm6.pdf
https://www.xilinx.com/products/design-tools/ise-design-suite.html
https://www.xilinx.com/products/design-tools/ise-design-suite.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html

 440

https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug750.p

df (accessed 13, July, 2021).

[156] "Zynq UltraScale+ MPSoC ZCU104 Evaluation Kit." Xilinx.

https://www.xilinx.com/products/boards-and-kits/zcu104.html (accessed 13.

July, 2021).

[157] "Open PicoBlaze Assembler." https://kevinpt.github.io/opbasm/ (accessed 6

August, 2021).

[158] "Embedded World - Fidex IDE." Fautronix GmbH.

https://www.fautronix.com/en/en-fidex (accessed 4, March, 2021).

[159] "Sed, a stream editor." https://www.gnu.org/software/sed/manual/sed.html

(accessed 4, March, 2021).

[160] B. a. Thacker, S.W.Doebling and Hemez, Francois and Anderson, Mark and

Pepin, J.E. and Rodriguez, Edward, "Concepts of Model Verification and

Validation," 2004.

[161] "Guide for the Verification and Validation of Computational Fluid Dynamics

Simulations (AIAA G-077-1998 (2002))," 2014.

[162] P. K. Kambiz, Verification of Computer Codes in Computational Science and

Engineering. Chapman and Hall/CRC 2002.

[163] "Floating Point." ARM. https://developer.arm.com/architectures/instruction-

sets/floating-point (accessed 14, July, 2021).

[164] S.-L. a. L. Tsao, S.-Y, "Performance Evaluation of Inter-Processor

Communication for an Embedded Heterogeneous Multi-Core Processor,"

Journal of Information Science and Engineering, vol. 28, pp. 537-554, 2012.

[165] E. Ali and W. Pora, "Implementation and Verification of IEEE-754 64-bit

Floating-Point Arithmetic Library for 8-bit Soft-Core Processors," in 2020 8th

International Electrical Engineering Congress (iEECON), 4-6 March 2020

2020, pp. 1-4, doi: 10.1109/iEECON48109.2020.229455.

[166] R. Morse, Mazor, and Pohiman, "Intel Microprocessors–8008 to 8086,"

Computer, vol. 13, no. 10, pp. 42–60, 1980.

[167] P. Zhang, "CHAPTER 6 - Programmable-logic and application-specific

integrated circuits (PLASIC)," in Advanced Industrial Control Technology:

William Andrew Publishing, 2010, pp. 215-253.

[168] D. Chen, J. Cong, and P. Pan, "FPGA Design Automation: A Survey," FPGA

Design Automation: A Survey , now, 2006.

[169] B. Fawcett, "FPGAs as reconfigurable processing elements," IEEE Circuits and

Devices Magazine, vol. 12, no. 2, pp. 8-10, 1996, doi: 10.1109/101.485906.

[170] J. J. Rodriguez-Andina, Valdés, María, J. Moure, Maria, "Advanced Features

and Industrial Applications of FPGAs - A Review," IEEE Transactions on

Industrial Informatics, vol. 11, pp. 1-1, 2015.

[171] O. G. S. Anvar, P. Kestener, H. Le Provost and I. Mandjavidze, "FPGA-based

system-on-chip designs for real-time applications in particle physics," IEEE

Transactions on Nuclear Science, vol. 53, no. 3, pp. 682-687, 2006.

[172] P. H. A. Zanikopoulos, H. Hegt and A. van Roermund, "A flexible ADC

approach for mixed-signal SoC platforms," IEEE International Symposium on

Circuits and Systems, vol. 5, pp. 4839-4842, 2005.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug750.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug750.pdf
https://www.xilinx.com/products/boards-and-kits/zcu104.html
https://kevinpt.github.io/opbasm/
https://www.fautronix.com/en/en-fidex
https://www.gnu.org/software/sed/manual/sed.html
https://developer.arm.com/architectures/instruction-sets/floating-point
https://developer.arm.com/architectures/instruction-sets/floating-point

 441

[173] V. B. S. Ahmad, I. Ganusov, V. Kathail, V. Rajagopalan and R. Wittig, "A 16-

nm Multiprocessing System-on-Chip Field-Programmable Gate Array Platform,"

IEEE Micro, vol. 36, no. 2, pp. 48-62, 2016.

[174] D. C. Muhammad Ali Mazidi, Rolin McKinlay, PIC Microcontroller and

Embedded Systems: Using Assembly and C for PIC18. MicroDigital, 2016.

[175] J. G. Muhammad Ali Mazidi, Rolin D. McKinlay, The 8051 Microcontroller and

Embedded Systems using Assembly and C. Prentice Hall, 2007.

[176] Y. Yang, "Implementation of a colorful RGB-LED light source with an 8-bit

microcontrolle," IEEE Conference on Industrial Electronics and Applications,

pp. 1951-1956, 2010.

[177] I. C. C. . Hsu, C. . Lin, and C. . Hsu, "Self-regulating fuzzy control for forward

DC-DC converters using an 8-bit microcontroller," IET Power Electronics 2, 1,

pp. 1-12, 2009.

[178] D. H. a. R. M. Nelms, "Peak current-mode control for a boost converter using an

8-bit microcontroller," IEEE 34th Annual Conference on Power Electronics

Specialist, vol. 2, pp. 938–943, 2003.

[179] D. M. e. al., "Firmware upgrade in xTCA systems," 18th IEEE-NPSS Real Time

Conference, pp. 1-8, 2012.

[180] I. K. a. J. Rose, "Measuring the Gap Between FPGAs and ASICs," IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 26, no. 2, pp. 203–215, 2007.

[181] R. Lysecky and F. Vahid, "A study of the speedups and competitiveness of

FPGA soft processor cores using dynamic hardware/software partitioning," in

Design, Automation and Test in Europe, 2005, pp. 18-23 Vol. 1.

[182] J. Teubner and L. Woods, Data Processing on FPGAs. Morgan & Claypool,

2013.

[183] B. F. H. C. Cofer, "Chapter 14 - Embedded Processing Cores," in Embedded

Technology, Rapid System Prototyping with FPGAs, 2006, pp. 185-209.

[184] R. A. e. al., "Performance and advantages of a soft-core based parallel

architecture for energy peak detection in the calorimeter Level 0 trigger for the

NA62 experiment at CERN," in Journal of Instrumentation, 2017.

[185] J. L. D. Romeo, I. Hogan and J. C. Squire, "An Introduction to Soft-Core

Processors and a Biomedical Application," IEEE Potentials, vol. 37, no. 2, pp.

13-18, 2018.

[186] M. Amiri, F. M. Siddiqui, C. Kelly, R. Woods, K. Rafferty, and B. Bardak,

"FPGA-Based Soft-Core Processors for Image Processing Applications,"

Journal of Signal Processing Systems, vol. 87, no. 1, pp. 139-156, 2017/04/01

2017, doi: 10.1007/s11265-016-1185-7.

[187] M. B. a. M. Abid, "Multi-Softcore Architecture on FPGA,” International Journal

of Reconfigurable Computing," 2014.

[188] "Xilinx - PicoBlaze 8-bit Microcontroller."

https://www.xilinx.com/products/intellectual-property/picoblaze.html (accessed

10, December, 2017).

[189] "Lattice Mico8 Open, Free Soft Microcontroller."

http://www.latticesemi.com/Products/

DesignSoftwareAndIP/IntellectualProperty/IPCore/IPCores02/Mico8.aspx

(accessed 20, January, 2019).

https://www.xilinx.com/products/intellectual-property/picoblaze.html
http://www.latticesemi.com/Products/

 442

[190] "Navre AVR clone (8-bit RISC)." https://opencores.org/projects/navre (accessed

20, January, 2019).

[191] "OpenCores - pAVR." https://opencores.org/projects/pavr (accessed 20, January,

2019).

[192] " MicroCore Labs - MCL86, MCL51, and MCL65."

http://www.microcorelabs.com/home.html (accessed 20, January, 2019).

[193] A. Z. Julen Gomez-Cornejo, Unai Bidarte, Jaime Jimenez, and Uli Kretzschmar,

"Interface Tasks Oriented 8-bit Soft-core Processor," Proceedings of the Annual

FPGA Conference (FPGAworld ’12), 2012.

[194] C. Ortega-Sanchez, "MiniMIPS: An 8-Bit MIPS in an FPGA for Educational

Purposes," in International Conference on Reconfigurable Computing and

FPGAs, 2011, pp. 152–157.

[195] W. S. R. Fernando Martinez Santa, and Fernando Rivera Sánchez, "8-bit softcore

microprocessor with dual accumulator designed to be used in FPGA," in

Tecnura 22, vol. 04, 2018, pp. 40–50.

[196] "GitHub.com - PauloBlaze." https://github.com/krabo0om/pauloBlaze (accessed

5, September, 2018).

[197] O. Ahmed. "Latest FPGAs in the market. COEN 6501 - Digital Design and

Synthesis."

http://users.encs.concordia.ca/~asim/COEN_6501/Lecture_Notes/FPGA%20Rep

ort.pdf (accessed 23, November, 2019).

[198] "V8-uRISC 8-bit RISC Microprocessor." Product Specification, VAutomation,

Inc. http://ebook.pldworld.com/_semiconductors/Xilinx/AppLINX%20CD-

ROM/Rev.7%20(Q3-1998)/docs/wcd0002a/wcd02aaa.pdf (accessed 23,

November, 2019).

[199] "ARC International Completes Integration of Three Subsidiaries Into One

Company." https://www.design-reuse.com/news/3409/arc-international-

integration-subsidiaries-into-one-company.html (accessed 23, November, 2019).

[200] K. I. Hays. "‘OpenCores project’ - Open8 uRISC."

https://opencores.org/projects/open8_urisc (accessed 20, November, 2019).

[201] J. Wharton. "An Introduction to the Intel MCS-51 Single-Chip Microcomputer

Family, Application Note AP-69." Intel Corporation.

https://drive.google.com/uc?export=download&id=0B9rh9tVI0J5mZTFmZjRjZ

TItNDQ0Yy00MDFlLTgzZTgtM2I3MzVkMTliNTFl (accessed.

[202] T. Jamil, "RISC versus CISC," IEEE Potentials, vol. 14, no. 3, pp. 13-16, 1995,

doi: 10.1109/45.464688.

[203] R. R. d. J, A. Ordaz-Moreno, J. A. Vite-frias, and A. Garcia-Perez, "8-bit CISC

Microprocessor Core for Teaching Applications in the Digital Systems

Laboratory," in 2006 IEEE International Conference on Reconfigurable

Computing and FPGA's (ReConFig 2006), 20-22 Sept. 2006 2006, pp. 1-5, doi:

10.1109/RECONF.2006.307782.

[204] K. Chapman, " Rev.7, KCPSM3 8-bit Micro Controller for Spartan-3, Virtex-II

and Virtex-IIPRO."

[205] F. Merchant, S. Pujari, and P. Manish, "Platform Independent 8-bit Soft-core for

SoPC," Lecture Notes in Engineering and Computer Science, vol. 2175, 03/01

2009.

https://opencores.org/projects/navre
https://opencores.org/projects/pavr
http://www.microcorelabs.com/home.html
https://github.com/krabo0om/pauloBlaze
http://users.encs.concordia.ca/~asim/COEN_6501/Lecture_Notes/FPGA%20Report.pdf
http://users.encs.concordia.ca/~asim/COEN_6501/Lecture_Notes/FPGA%20Report.pdf
http://ebook.pldworld.com/_semiconductors/Xilinx/AppLINX%20CD-ROM/Rev.7%20(Q3-1998)/docs/wcd0002a/wcd02aaa.pdf
http://ebook.pldworld.com/_semiconductors/Xilinx/AppLINX%20CD-ROM/Rev.7%20(Q3-1998)/docs/wcd0002a/wcd02aaa.pdf
https://www.design-reuse.com/news/3409/arc-international-integration-subsidiaries-into-one-company.html
https://www.design-reuse.com/news/3409/arc-international-integration-subsidiaries-into-one-company.html
https://opencores.org/projects/open8_urisc
https://drive.google.com/uc?export=download&id=0B9rh9tVI0J5mZTFmZjRjZTItNDQ0Yy00MDFlLTgzZTgtM2I3MzVkMTliNTFl
https://drive.google.com/uc?export=download&id=0B9rh9tVI0J5mZTFmZjRjZTItNDQ0Yy00MDFlLTgzZTgtM2I3MzVkMTliNTFl

 443

[206] P. B. Kocik. "PacoBlaze." http://bleyer.org/pacoblaze/ (accessed 27, November,

2019).

[207] D. A.-T. e. al., "A PicoBlaze-Based Embedded System for Monitoring

Applications," International Conference on Electrical, Communications, and

Computers, pp. 173–177, 2009.

[208] V. N. Ivanov, "Using a PicoBlaze Processor to Traffic Light Control," Cybern.

Inf. Technol, vol. 15, no. 5, pp. 131–139, 2015.

[209] a. Zaykov, "MIMD Implementation with PicoBlaze Microprocessor Using MPI

Functions," Proceedings of the 2007 International Conference on Computer

Systems and Technologies (CompSysTech ’07), 2007.

[210] V. Mandala, "A Study of Multiprocessor Systems using the Picoblaze 8-bit

Microcontroller Implemented on Field Programmable Gate Arrays," Electrical

Engineering Theses, 2011.

[211] R. Mattson, "Evaluation of PicoBlaze and implementation of a network interface

on a FPGA," Institutionen för systemteknik, 2004.

[212] S. S. L. Claudiu, and B. Cristian, "Smart sensor implemented with PicoBlaze

multi-processors technology," IEEE 18th International Symposium for Design

and Technology in Electronic Packaging (SIITME), pp. 241–245, 2012.

[213] S. M. B. a. P. G. Chilveri, "Implementation of Wireless Sensor Network Using

Microblaze and Picoblaze Processors," Fourth International Conference on

Communication Systems and Network Technologies, pp. 1059–1064, 2014.

[214] S. P. H. Pham, and S. J. Piestrak, "Low-overhead fault-tolerance technique for a

dynamically reconfigurable softcore processor," IEEE Trans. Comput., vol. 62,

no. 6, pp. 1179–1192, 2013.

[215] M. N. H. a. M. Benaissa, "Embedded Software Design of Scalable Low-Area

Elliptic-Curve Cryptography," IEEE Embedded Systems Letters, pp. 42–45,

2009.

[216] T. G. a. M. Benaissa, "Very small FPGA application-specific instruction

processor for AES," IEEE Transactions on Circuits and Systems, vol. 53, no. 7,

pp. 1477–1486, 2006.

[217] D. J. Smith, "VHDL and Verilog compared and contrasted-plus modeled

example written in VHDL, Verilog and C," 33rd Design Automation Conference

Proceedings, pp. 771-776, 1996.

[218] "IEEE Standard VHDL Language Reference Manual," IEEE Std 1076-2008

(Revision of IEEE Std 1076-2002), pp. 1-626, 2009.

[219] "IEEE Standard for Verilog Hardware Description Language," IEEE Std 1364-

2005 (Revision of IEEE Std 1364-2001), pp. 1-590, 2006.

[220] "AN 307: Intel FPGA Design Flow for Xilinx Users, Updated for Intel Quartus

Prime Design Suite: 17.1." (accessed 10, March, 2018).

[221] "Xilinx 7 Series FPGA Libraries Guide for Schematic Designs - UG799 (v

13.2)." [Online]. Available:

https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/7series_

scm.pdf

[222] "Espresso Source Code."

https://ptolemy.berkeley.edu/projects/embedded/pubs/downloads/

espresso/index.htm (accessed 12, April, 2019).

http://bleyer.org/pacoblaze/
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/7series_scm.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/7series_scm.pdf
https://ptolemy.berkeley.edu/projects/embedded/pubs/downloads/

 444

[223] "A modern (2017) compilable re-host of the Espresso heuristic logic minimizer."

https://github.com/galengold/espresso-logic (accessed 12, April, 2019).

[224] "SiliconBlue ICE Technology Library Version 2.3." (accessed.

[225] J. Nurmi, Processor Design - System-On-Chip Computing for ASICs and

FPGAs. Springer Netherlands, 2007.

[226] S. B. Furber, VLSI RISC Architecture and Organization. CRC Press, 1989.

[227] S. W. D. en H. Thacker, Francois M. Hemez, Mark C. Anderson, Jason E. Pepin,

and Edward A. Rodriguez, "Concepts of Model Verification and Validation,"

2004.

[228] "Lattice Semiconductor. iCE40 LP/HX Family Data Sheet. DS1040 Version

3.4." http://www.latticesemi.com/~/media/LatticeSemi/

Documents/DataSheets/iCE/iCE40LPHXFamilyDataSheet.pdf (accessed 16,

March, 2018).

[229] V.-A. Paun, B. Monsuez, and P. Baufreton, "On the Determinism of Multi-core

Processors," OpenAccess Series in Informatics, vol. 31, 07/15 2013, doi:

10.4230/OASIcs.FSFMA.2013.32.

[230] R. Wilhelm et al., "The worst-case execution-time problem—overview of

methods and survey of tools," ACM Trans. Embed. Comput. Syst., vol. 7, no. 3,

p. Article 36, 2008, doi: 10.1145/1347375.1347389.

[231] J. Reineke et al., A Definition and Classification of Timing Anomalies. 2006.

[232] G. Gebhard, "Timing Anomalies Reloaded," in WCET, 2010.

[233] C. Berg, "PLRU Cache Domino Effects," in WCET, 2006.

[234] M. VORBACH, "ARCHITECTURE DE PROCESSEUR AVANCÉE," US

Patent Appl. WO/2016/100142, 2016. [Online]. Available:

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2016100142

[235] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and H. Shacham,

"On Subnormal Floating Point and Abnormal Timing," in 2015 IEEE

Symposium on Security and Privacy, 17-21 May 2015 2015, pp. 623-639, doi:

10.1109/SP.2015.44.

[236] J. A. Stankovic, "Misconceptions about real-time computing: a serious problem

for next-generation systems," Computer, vol. 21, no. 10, pp. 10-19, 1988, doi:

10.1109/2.7053.

[237] A. Marref and G. Bernat, "Predicated Worst-Case Execution-Time Analysis,"

Berlin, Heidelberg, 2009: Springer Berlin Heidelberg, in Reliable Software

Technologies – Ada-Europe 2009, pp. 134-148.

[238] S. J. O. Phillip A. Laplante, Real-Time Systems Design and Analysis: Tools for

the Practitioner, 4th Edition ed. Wiley-IEEE Press, 2011.

[239] "ARM11 MPCore Processor Technical Reference Manual (Revision: r1p0),"

ARM DDI 0360E, 2000.

[240] S. Vaas, P. Ulbrich, M. Reichenbach, and D. Fey, "The best of both: High-

performance anc deterministic real-time executive by application-specific multi-

core SoCs," in 2017 Conference on Design and Architectures for Signal and

Image Processing (DASIP), 27-29 Sept. 2017 2017, pp. 1-6, doi:

10.1109/DASIP.2017.8122107.

[241] D. Kästner et al., "Timing Validation of Automotive Software," Berlin,

Heidelberg, 2008: Springer Berlin Heidelberg, in Leveraging Applications of

Formal Methods, Verification and Validation, pp. 93-107.

https://github.com/galengold/espresso-logic
http://www.latticesemi.com/~/media/LatticeSemi/
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2016100142

 445

[242] P. Axer et al., "Building timing predictable embedded systems," ACM Trans.

Embed. Comput. Syst., vol. 13, no. 4, p. Article 82, 2014, doi: 10.1145/2560033.

[243] J. Engblom, A. Ermedahl, M. Sjödin, J. Gustafsson, and H. Hansson, "Worst-

case execution-time analysis for embedded real-time systems," STTT, vol. 4, pp.

437-455, 08/01 2003, doi: 10.1007/s100090100054.

[244] R. Oshana, "Overview of embedded systems and real-time systems," in DSP

Software Development Techniques for Embedded and Real-Time Systems, no. A

volume in Embedded Technology): Elsevier, 2006.

[245] G. Buttazzo, "Predictable Scheduling Algorithms and Applications (Real-Time

Systems Series)," in Hard Real-Time Computing Systems, 3rd ed. (Real-Time

Systems Series. New York Dordrecht Heidelberg London: Springer, 2011.

[246] B. Srinivasan, S. Pather, R. Hill, F. Ansari, and D. Niehaus, "A firm real-time

system implementation using commercial off-the-shelf hardware and free

software," in Proceedings. Fourth IEEE Real-Time Technology and Applications

Symposium (Cat. No.98TB100245), 5-5 June 1998 1998, pp. 112-119, doi:

10.1109/RTTAS.1998.683194.

[247] C. Y. Qing Li, Real-Time Concepts for Embedded Systems, 1st ed. Hawthorne,

CA, U.S.A: CRC Press, 2003.

[248] D. A. P. a. J. L. Hennessy, Computer Organization and Design Fifth Edition:

The Hardware/Software Interface, 5th ed. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 2013.

[249] B. F. D. Lee, Single Cycle 8051 Core-AT89LP Family of High Performance &

Low Power Flash Microcontrollers. 2325 Orchard Parkway San Jose, CA

95131: Atmel Corporation, 2011.

[250] M. P. Bates, PIC Microcontrollers : An Introduction to Microelectronics.

Elsevier Science, 2011.

[251] J. G. Tong, I. D. L. Anderson, and M. Khalid, "Soft-Core Processors for

Embedded Systems," 2006 International Conference on Microelectronics, pp.

170-173, 2006.

[252] R. L. a. F. Vahid, "A study of the speedups and competitiveness of FPGA soft

processor cores using dynamic hardware/software partitioning," Design,

Automation and Test vol. 1, pp. 18-23, 2005.

[253] V. Adhangale and R. Daruwala, "Design and Implementation of Soft core

Processor on FPGA based on Avalon Bus and SOPC Technology," International

Journal of Computer Applications, vol. 63, pp. 5-10, 02/01 2013, doi:

10.5120/10548-4956.

[254] J. Wang, Real-Time Embedded Systems, 1st ed. Wiley Publishing, 2014.

[255] W. Abdelfatah, J. Georgy, U. Iqbal, and A. Noureldin, "FPGA-based real-time

embedded system for RISS/GPS integrated navigation," Sensors (Basel,

Switzerland), vol. 12, pp. 115-47, 01/01 2012, doi: 10.3390/s120100115.

[256] F. Fons, M. Fons, E. Cantó, and M. López, "Real-time embedded systems

powered by FPGA dynamic partial self-reconfiguration: a case study oriented to

biometric recognition applications," Journal of Real-Time Image Processing,

vol. 8, no. 3, pp. 229-251, 2013/09/01 2013, doi: 10.1007/s11554-010-0186-1.

[257] M. Slater, "A Guide to RISC Microprocessors," 1992.

 446

[258] D. A. a. S. Patterson, Carlo H., "RISC I: A Reduced Instruction Set VLSI

Computer," Proceedings of the 8th Annual Symposium on Computer

Architecture, pp. 443-457, 1981.

[259] D. M. H. a. S. L. Harris, Digital Design and Computer Architecture, 2nd ed. 225

Wyman Street, Waltham, MA 02451, USA: Elsewier, 2013.

[260] E. Sprangle and D. Carmean, "Increasing processor performance by

implementing deeper pipelines," SIGARCH Comput. Archit. News, vol. 30, no.

2, pp. 25–34, 2002, doi: 10.1145/545214.545219.

[261] M. S. Hrishikesh, N. P. Jouppi, K. I. Farkas, D. Burger, S. W. Keckler, and P.

Shivakumar, "The optimal logic depth per pipeline stage is 6 to 8 FO4 inverter

delays," in Proceedings 29th Annual International Symposium on Computer

Architecture, 25-29 May 2002 2002, pp. 14-24, doi:

10.1109/ISCA.2002.1003558.

[262] A. Hartstein and T. R. Puzak, "Optimum power/performance pipeline depth," in

Proceedings. 36th Annual IEEE/ACM International Symposium on

Microarchitecture, 2003. MICRO-36., 5-5 Dec. 2003 2003, pp. 117-125, doi:

10.1109/MICRO.2003.1253188.

[263] D. A. P. a. J. L. Hennessy, Computer Organization and Design RISC-V Edition:

The Hardware Software Interface, 1st ed. San Francisco,CA, USA: Morgan

Kaufmann Publishers Inc., 2017.

[264] "Cortex-R4 and Cortex-R4F Technical Reference Manual - Revision: r1p4."

ARM Limited. . https://developer.arm.com/documentation/ddi0363/g (accessed

15, July, 2021).

[265] R. Boute, "The binary decision machine as programmable controller,"

Euromicro Newsletter, vol. 2, pp. 16-22, 1976.

[266] J. M. Wolfgang Nebel, Low Power Design in Deep Submicron Electronics (Nato

ASI Subseries E:). Springer US, 1997.

[267] C. Piguet, "Binary-decision and RISC-like machines for semicustom design,"

Microprocess. Microsyst., vol. 14, no. 4, pp. 231–239, 1990, doi: 10.1016/0141-

9331(90)90083-8.

[268] D. K. Dennis et al., "Single cycle RISC-V micro architecture processor and its

FPGA prototype," in 2017 7th International Symposium on Embedded

Computing and System Design (ISED), 18-20 Dec. 2017 2017, pp. 1-5, doi:

10.1109/ISED.2017.8303926.

[269] G. Radin, "The 801 Minicomputer," SIGARCH Comput. Archit. News, vol. 10,

no. 2, pp. 39-47, 1982.

[270] B. J. Catanzaro, "The SPARC Technical Papers," 1991.

[271] I. SPARC International, CORPORATE, "The SPARC Architecture Manual

(Version 9)," 1994.

[272] D. Sweetman, See MIPS Run. San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc., 1999.

[273] C. Price, MIPS IV Instruction Set - Revision 3.2. MIPS Technologies, Inc, 1995.

[274] MIPS, "MIPS32® M4K™ Processor CoreSoftware User’s Manual - Revision

02.03." [Online]. Available: https://s3-eu-west-1.amazonaws.com/downloads-

mips/documents/MD00249-2B-M4K-SUM-02.03.pdf

[275] MIPS, "MIPS® Architecture For Programmers Volume I-A: Introduction to the

MIPS32® Architecture Revision 6.01." [Online]. Available: https://s3-eu-west-

https://developer.arm.com/documentation/ddi0363/g
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00249-2B-M4K-SUM-02.03.pdf
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00249-2B-M4K-SUM-02.03.pdf
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00082-2B-MIPS32INT-AFP-06.01.pdf

 447

1.amazonaws.com/downloads-mips/documents/MD00082-2B-MIPS32INT-

AFP-06.01.pdf

[276] A. a. S. Sloss, Dominic and Wright, Chris, "ARM System Developer's Guide:

Designing and Optimizing System Software," 2004.

[277] "ARM7TDMI - Technical Reference Manual - Revision: r4p1." ARM Limited.

https://developer.arm.com/documentation/ddi0210/c/ (accessed.

[278] "ARM9TDMI Technical Reference Manual - ARM DDI 0180A," 2000.

[279] "SiFive E31 Manual v19.05." SiFive, Inc.

https://sifive.cdn.prismic.io/sifive%2Fc89f6e5a-cf9e-44c3-a3db-

04420702dcc1_sifive+e31+manual+v19.08.pdf (accessed 15, July, 2021).

[280] M. H. L. John Paul Shen, Modern Processor Design: Fundamentals of

Superscalar Processors, 1st ed. Waveland Press, Inc., 2013, p. 642.

[281] S. Heath, Microprocessor Architectures - RISC, CISC and DSP, 2nd ed.

Newnes, 1995, p. 400.

[282] A. B. Tucker, Computer Science Handbook, 2nd ed. Chapman and Hall/CRC, p.

2752

[283] "IBM PowerPC 750CL RISC Microprocessor User’s Manual." International

Business Machines Corporation, IBM Systems and Technology Group.

https://fail0verflow.com/media/files/ppc_750cl.pdf (accessed 6 August, 2021).

[284] C. Arm, J.-M. Masgonty, and C. Piguet, Double-Latch Clocking Scheme for

Low-Power I.P. Cores. 2000, pp. 217-224.

[285] C. Piguet et al., "Low-power design of 8-b embedded CoolRisc microcontroller

cores," IEEE Journal of Solid-State Circuits, vol. 32, no. 7, pp. 1067-1078,

1997, doi: 10.1109/4.597297.

[286] "ARM Cortex-M Programming Guide to Memory Barrier Instructions TM

Application Note 321."

[287] ARMv6-M Architecture Reference Manual - ARM DDI 0419E (ID070218),

2021. [Online]. Available:

https://developer.arm.com/documentation/ddi0419/latest/ Accessed on: 29 May,

2021.

[288] "ARM v6-M Architecture Reference Manual." [Online]. Available:

https://static.docs.arm.com/ddi0419/d/DDI0419D_armv6m_arm.pdf

[289] "ARM® Cortex®-M0+ Instructions." [Online]. Available:

https://microchipdeveloper.com/32arm:m0-instructions

[290] J. Bung, "ARM Cortex-M0 DesignStart Processor and v6-M Architecture."

[Online]. Available:

http://www.sase.com.ar/2012/files/2012/09/M0_v6M_Q312.pdf

[291] P. I. M. y. F. Baglivo, Cortex-M0 Implementation on a Xilinx FPGA.

Laboratorio de Sistemas Embebidos Facultad de Ingeniería - UBA Buenos

Aires, Argentina.

[292] "AMBA 3 AHB-Lite Protocol® v1.0 Specification."

[293] J. Yiu, The Definitive Guide to Arm® Cortex®-M0 and Cortex-M0+ Processors.

Newnes, 2015.

[294] "IAR Embedded Workbench for Arm."

https://www.iar.com/products/architectures/arm/iar-embedded-workbench-for-

arm/ (accessed 30 May, 2021).

https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00082-2B-MIPS32INT-AFP-06.01.pdf
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00082-2B-MIPS32INT-AFP-06.01.pdf
https://developer.arm.com/documentation/ddi0210/c/
https://sifive.cdn.prismic.io/sifive%2Fc89f6e5a-cf9e-44c3-a3db-04420702dcc1_sifive+e31+manual+v19.08.pdf
https://sifive.cdn.prismic.io/sifive%2Fc89f6e5a-cf9e-44c3-a3db-04420702dcc1_sifive+e31+manual+v19.08.pdf
https://fail0verflow.com/media/files/ppc_750cl.pdf
https://developer.arm.com/documentation/ddi0419/latest/
https://static.docs.arm.com/ddi0419/d/DDI0419D
https://microchipdeveloper.com/32arm:m0-instructions
http://www.sase.com.ar/2012/files/2012/09/M0
https://www.iar.com/products/architectures/arm/iar-embedded-workbench-for-arm/
https://www.iar.com/products/architectures/arm/iar-embedded-workbench-for-arm/

 448

[295] "MICROPROCESSORS LAB MANUAL." MUFFAKHAM JAH COLLEGE

OF ENGINEERING AND TECHNOLOGY (Affiliated to Osmania University)

- INFORMATION TECHNOLOGY DEPARTMENT.

http://mjcollege.ac.in/images/labmannuals/MICROPROCESSORLABMANUA

LBIT281.pdf (accessed 4, July, 2020).

[296] M. Shabany. "Microprocessor Systems' Laboratory." Sharif University of

Technology - Department of Electrical Engineering.

http://ee.sharif.edu/~microlab_t/index.html (accessed 4, July, 2020).

[297] "Lab 1: Part II - Introduction to DE2 and Nios II Assembly." University of

Toronto, Faculty of Applied Science & Engineering - Electrical & Computer

Engineering. http://www-ug.eecg.toronto.edu/msl/nios_labs/1/assembly.html

(accessed 4, July, 2020).

[298] I. Hodkinson, Computability, Algorithms and Complexity. Udacity, 1996.

[299] D. C. Kozen, Automata and Computability. Springer-Verlag New York, Inc.,

1997.

[300] I. Hodkinson, "Introduction,” in Computability, Algorithms, and complexity –

Course 240," pp. 1-21, 1991. [Online]. Available:

https://www.doc.ic.ac.uk/~imh/teaching/Turing_machines/240.pdf.

[301] J. E. Savage, Models of Computation: Exploring the Power of Computing.

Boston: Addison-Wesley Longman Publishing Co., Inc., 1997.

[302] C. Bobda, Introduction to Reconfigurable Computing. Springer, 2007.

[303] "Reconfigurable computing."

https://en.wikipedia.org/wiki/Reconfigurable_computing (accessed 17, April,

2018).

[304] G. Estrin, "Reconfigurable computer origins: the UCLA fixed-plus-variable

(F+V) structure computer," IEEE Annals of the History of Computing, vol. 24,

no. 4, pp. 3-9, 2002, doi: 10.1109/MAHC.2002.1114865.

[305] G. Estrin, "Organization of Computer Systems: The Fixed Plus Variable

Structure Computer," IRE-AIEE-ACM '60 (Western), pp. 33-40, 1960.

[306] D. R. P. Bertin, J. Vuillemin, "Introduction to Programmable Active Memories,"

p. 20, June 1989.

[307] J. R. Hauser and J. Wawrzynek, "Garp: a MIPS processor with a reconfigurable

coprocessor," Proceedings. The 5th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines Cat. No.97TB100186), pp. 12-21,

1997.

[308] U. Tangen and J. S. McCaskill, "Hardware evolution with a massively parallel

dynamicaly reconfigurable computer: POLYP," Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), vol. 1478, pp. 364-371, 1998.

[309] K.-H. Hoffmann, "Coupling of Biological and Electronic Systems," Proceedings

of the 2nd caesarium, 2002.

[310] F. C. a. M. T. a. A. L. a. A. C. a. R. C. a. R. Guerrieri, "A VLIW processor with

reconfigurable instruction set for embedded applications," 2003 IEEE

International Solid-State Circuits Conference, 2003. Digest of Technical Papers.

ISSCC., vol. 1, pp. 250-491, A VLIW processor with reconfigurable instruction

set for embedded applications.

http://mjcollege.ac.in/images/labmannuals/MICROPROCESSORLABMANUALBIT281.pdf
http://mjcollege.ac.in/images/labmannuals/MICROPROCESSORLABMANUALBIT281.pdf
http://ee.sharif.edu/~microlab_t/index.html
http://www-ug.eecg.toronto.edu/msl/nios_labs/1/assembly.html
https://www.doc.ic.ac.uk/~imh/teaching/Turing_machines/240.pdf
https://en.wikipedia.org/wiki/Reconfigurable_computing

 449

[311] U. a. M. Farooq, Zied and Mehrez, Habib, "Tree-Based ASIF Using

Heterogeneous Blocks," in Tree-based Heterogeneous FPGA Architectures:

Springer, 2012, pp. 153-171.

[312] R. M. Füchslin and J. S. McCaskill, "Evolutionary self-organization of cell-free

genetic coding.," Proceedings of the National Academy of Sciences of the United

States of America, vol. 98, pp. 9185-90, 2001.

[313] K.-C. Wu and Y.-W. Tsai, "Structured ASIC, Evolution or Revolution?," in

Proceedings of the 2004 International Symposium on Physical Design, New

York, NY, USA, 2004: ACM, pp. 103-106.

[314] H. P. a. Z. M. a. H. Mehrez, "ASIF: Application Specific Inflexible FPGA," in

2009 International Conference on Field-Programmable Technology, 2009, pp.

112-119.

[315] R. Hartenstein, "A decade of reconfigurable computing: A visionary

retrospective," Proceedings -Design, Automation and Test in Europe, DATE, pp.

642-649, 2001.

[316] R. Hartenstein, "Morphware and Configware," in Handbook of Nature-Inspired

and Innovative Computing, 2006, pp. 343-386.

[317] J. M. P. Cardoso and P. C. Diniz, Compilation Techniques for Reconfigurable

Architectures. 2009.

[318] A. Y. Zomaya, "Handbook of Nature-Inspired and Innovative Computing," in

Victoria: Springer, 2006.

[319] R. Bott, "The Electronic Design Automation Handbook," 2003.

[320] S. C. a. P. Athanas, "Examining the viability of FPGA supercomputing," Eurasip

Journal on Embedded Systems, vol. 2007, 2007.

[321] A. a. T. Barkalov, Larysa and Bieganowski, Jacek, "Synthesis of Compositional

Microprogram Control Unit with Extended Microinstruction Format," no. 3, pp.

3-6, 2009.

[322] D. B. a. T. E.-G. a. K. G. a. V. Kindratenko, "High-Performance Reconfigurable

Computing," IEEE Computer Society, 2007.

[323] "Trident Compiler." http://trident.sourceforge.net/ (accessed 18, December,

2019).

[324] "C to HDL." https://en.wikipedia.org/wiki/C_to_HDL (accessed 18, April,

2018).

[325] Xilinx, "Vivado Design Suite User Guide - Hierarchical Design - UG905

(v2018.2) ".

[326] Xilinx, "PetaLinux Tools Documentation Reference Guide - UG1144 (v2018.1)

".

[327] Xilinx, "Zynq UltraScale+ MPSoC Software Developer Guide - UG1137

(v8.0)."

[328] Xilinx. "Vivado Design Suite User Guide - Partial Reconfiguration - UG909

(v2018.1) " (accessed 27 April, 2018).

[329] "LATTICE ICE Technology Library, Version 3.0." (accessed 16, March, 2018).

[330] "Spartan-6 Libraries Guide for HDL Designs, UG615 (v 14.2)." (accessed 10,

September, 2018).

[331] H. Selvaraj. "ECG707 Logic Synthesis, Spring Semester 2012." (accessed 16,

March, 2019).

http://trident.sourceforge.net/
https://en.wikipedia.org/wiki/C_to_HDL

 450

[332] "RapidSmith -A Library for Low-level Manipulation of Partially Placed-and-

Routed FPGA Designs."

http://rapidsmith.sourceforge.net/doc/TechReportAndDocumentation.htm

(accessed 5, May, 2018).

[333] H. a. L. Yu, Hansol and Lee, Sangil and Kim, Youngmin and Lee, Hyung-Min,

"Recent Advances in FPGA Reverse Engineering," Electronics, vol. 7, p. 246,

2018.

[334] Z. a. C. Guo, H J, "Parallel algorithms and architectures based on pipelined

optical buses.," 10.1364/AO.34.008116, vol. 34, no. 35, 1995.

[335] "Introduction to Parallel Computing with OpenCL™ Programs on FPGAs

(OOPNCL100)."

https://www.altera.com/support/training/course/oopncl100.html (accessed 16,

March, 2018).

[336] P. M. Athanas and H. F. Silverman, "Processor reconfiguration through

instruction-set metamorphosis," Computer, vol. 26, no. 3, pp. 11-18, 1993, doi:

10.1109/2.204677.

[337] M. a. A. Wazlowski, L. and Lee, T and Smith, A and Lam, E. and Athanas, P.

and Ghosh, Soham, "PRISM-II Compiler and Architecture," November 1996.

[338] M. J. Wirthlin, Brad L. Hutchings, "A Dynamic Instruction Set Computer,"

Proceedings of the IEEE Symposium on FPGA's for Custom Computing

Machines, p. 99, 1995.

[339] A. Dehon, "DPGA-coupled microprocessors: commodity ICs for the early 21st

Century," pp. 31-39, 1994.

[340] "Intermediate Representations." https://cs.lmu.edu/~ray/notes/ir/ (accessed 12,

March, 2020).

[341] R. a. F. Cytron, Jeanne and Rosen, Barry K. and Wegman, Mark N. and Zadeck,

F. Kenneth, "Efficiently Computing Static Single Assignment Form and the

Control Dependence Graph," ACM Trans. Program. Lang. Syst., pp. 451-490,

1991.

[342] N. a. G. Grech, Kyriakos and Pallister, James and Kerrison, Steve and Morse,

Jeremy and Eder, Kerstin, "Static analysis of energy consumption for LLVM IR

programs," Proceedings of the 18th International Workshop on Software and

Compilers for Embedded Systems - SCOPES ’15, 2015.

[343] D. A. a. S. Patterson, C. H., "A VLSI RISC," Computer, vol. 15, no. 9, pp. 8-21,

1982.

[344] J. L. Hennessy, "VLSI Processor Architecture," IEEE Trans. Comput., vol. 33,

no. 12, pp. 1221-1246, 1984.

[345] M. E. Hopkins, "A Perspective on the 801/Reduced Instruction Set Computer,"

IBM Syst. J., vol. 26, no. 1, pp. 107-121, 1987.

[346] J. Warren, H. S., "Instruction Scheduling for the IBM RISC System/6000

Processor," in Instruction-level Parallel Processors: IEEE Computer Society

Press, 1995, pp. 226-233.

[347] L. a. Smith, "Branch Prediction Strategies and Branch Target Buffer Design,"

Computer, vol. 17, no. 1, pp. 6-22, 1984.

[348] "Chapter 4- The Processor." [Online]. Available:

http://algo.ing.unimo.it/people/andrea/Didattica/Architetture/SlidesPDF/Chapter

_04-RISC-V.pdf

http://rapidsmith.sourceforge.net/doc/TechReportAndDocumentation.htm
https://www.altera.com/support/training/course/oopncl100.html
https://cs.lmu.edu/~ray/notes/ir/
http://algo.ing.unimo.it/people/andrea/Didattica/Architetture/SlidesPDF/Chapter_04-RISC-V.pdf
http://algo.ing.unimo.it/people/andrea/Didattica/Architetture/SlidesPDF/Chapter_04-RISC-V.pdf

 451

[349] K. A. Andrew Waterman, "The RISC-V Instruction Set ManualVolume I:

Unprivileged ISA Document Version 20191213." [Online]. Available:

https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-

IMAFDQC/riscv-spec-20191213.pdf

[350] Rauscher and Agrawala, "Dynamic Problem-Oriented Redefinition of Computer

Architecture via Microprogramming," IEEE Transactions on Computers, vol. C-

27, no. 11, pp. 1006-1014, 1978, doi: 10.1109/TC.1978.1674990.

[351] S. Takano, "Design and Analysis of Adaptive Processor," ACM Trans.

Reconfigurable Technol. Syst., vol. 6, no. 1, pp. 1-34, 2012.

[352] J. E. V. a. P. B. a. D. R. a. M. S. a. H. H. T. a. P. Boucard, "Programmable active

memories: reconfigurable systems come of age," IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 4, no. 1, pp. 56-69, 1996.

[353] T. E.-G. a. E. E.-A. a. M. H. a. K. G. a. V. K. a. D. Buell, "The Promise of High-

Performance Reconfigurable Computing," Computer, vol. 41, no. 2, pp. 69-76,

2008.

[354] X. P. L. a. H. Amano, "WASMII: a data driven computer on a virtual hardware,"

Proceedings IEEE Workshop on FPGAs for Custom Computing Machines, pp.

33-42, 1993.

[355] S. Takano, "Adaptive Processor: A Dynamically Reconfiguration Technology

for Stream Processing," Berlin, Heidelberg, 2003: Springer Berlin Heidelberg, in

Field Programmable Logic and Application, pp. 952-955.

[356] S. Takano, "Adaptive processor: a model of stream processing," in 18th

International Parallel and Distributed Processing Symposium, 2004.

Proceedings., 2004, p. 144.

[357] "On Semiconductor - Bluetooth 5 Radio System-on-Chip (SoC) - RSL10

datasheet." https://www.onsemi.com/pdf/datasheet/rsl10-d.pdf (accessed 24,

May, 2021).

[358] "Dynamically adaptive processors." https://www.tudelft.nl/en/technology-

transfer/development-innovation/research-exhibition-projects/dynamically-

adaptive-processors/ (accessed 17, April, 2018).

[359] J. S. McCaskill, T. Maeke, U. Gemm, L. Schulte, and U. Tangen, "NGEN: A

massively parallel reconfigurable computer for biological simulation: Towards a

self-organizing computer," Berlin, Heidelberg, 1997: Springer Berlin

Heidelberg, in Evolvable Systems: From Biology to Hardware, pp. 260-276.

[360] U. Tangen and J. S. McCaskill, "Hardware evolution with a massively parallel

dynamicaly reconfigurable computer: POLYP," Berlin, Heidelberg, 1998:

Springer Berlin Heidelberg, in Evolvable Systems: From Biology to Hardware,

pp. 364-371.

[361] U. Tangen, T. Maeke, and J. S. McCaskill, "Advanced Simulation in the

Configurable Massively Parallel Hardware MereGen," Berlin, Heidelberg, 2002:

Springer Berlin Heidelberg, in Coupling of Biological and Electronic Systems,

pp. 107-118.

[362] M. Huebner, D. Goehringer, C. Tradowsky, J. Henkel, and J. Becker, "Adaptive

processor architecture - invited paper," in 2012 International Conference on

Embedded Computer Systems (SAMOS), 16-19 July 2012 2012, pp. 244-251,

doi: 10.1109/SAMOS.2012.6404181.

https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://www.onsemi.com/pdf/datasheet/rsl10-d.pdf
https://www.tudelft.nl/en/technology-transfer/development-innovation/research-exhibition-projects/dynamically-adaptive-processors/
https://www.tudelft.nl/en/technology-transfer/development-innovation/research-exhibition-projects/dynamically-adaptive-processors/
https://www.tudelft.nl/en/technology-transfer/development-innovation/research-exhibition-projects/dynamically-adaptive-processors/

 452

[363] F. Campi, M. Toma, A. Lodi, A. Cappelli, R. Canegallo, and R. Guerrieri, "A

VLIW processor with reconfigurable instruction set for embedded applications,"

in 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of

Technical Papers. ISSCC., 13-13 Feb. 2003 2003, pp. 250-491 vol.1, doi:

10.1109/ISSCC.2003.1234288.

[364] M. J. W. a. B. L. Hutchings, "A Dynamic Instruction Set Computer," in

Proceedings IEEE Symposium on FPGAs for Custom Computing Machines,

1995, pp. 99-107.

[365] Bluetooth 5 Radio System-on-Chip (SoC) - RSL10, 2021. [Online]. Available:

https://www.onsemi.com/pdf/datasheet/rsl10-d.pdf

[366] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee, "CHIMAERA: a high-

performance architecture with a tightly-coupled reconfigurable functional unit,"

in Proceedings of 27th International Symposium on Computer Architecture

(IEEE Cat. No.RS00201), 14 June 2000, pp. 225-235, doi:

10.1109/ISCA.2000.854393.

[367] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and E. M.

Panainte, "The MOLEN polymorphic processor," IEEE Transactions on

Computers, vol. 53, no. 11, pp. 1363-1375, 2004, doi: 10.1109/TC.2004.104.

[368] J. Hoozemans, J. v. Straten, and S. Wong, "Using a polymorphic VLIW

processor to improve schedulability and performance for mixed-criticality

systems," in 2017 IEEE 23rd International Conference on Embedded and Real-

Time Computing Systems and Applications (RTCSA), 16-18 Aug. 2017 2017, pp.

1-9, doi: 10.1109/RTCSA.2017.8046315.

[369] Cortex-M0 Devices Generic User Guide - ARM DUI 0497A (ID112109), 2009.

[Online]. Available: https://developer.arm.com/documentation/dui0497/latest/.

Accessed on: 29 May, 2021.

[370] D. Liu, "Evaluation of an Instruction Set," in Embedded DSP Processor Design

Application Specific Instruction Set Processors. San Francisco, CA, USA:

Morgan Kaufmann, 2008, ch. 9, pp. 357–359.

[371] R. Angles et al., "The linked data benchmark council: a graph and RDF industry

benchmarking effort," SIGMOD Rec., vol. 43, no. 1, pp. 27–31, 2014, doi:

10.1145/2627692.2627697.

[372] A. Limaye and T. Adegbija, "A Workload Characterization of the SPEC

CPU2017 Benchmark Suite," in 2018 IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS), 2-4 April 2018 2018,

pp. 149-158, doi: 10.1109/ISPASS.2018.00028.

[373] R. Nambiar, N. Wakou, F. Carman, and M. Majdalany, "Transaction Processing

Performance Council (TPC): State of the Council 2010," Berlin, Heidelberg,

2011: Springer Berlin Heidelberg, in Performance Evaluation, Measurement and

Characterization of Complex Systems, pp. 1-9.

[374] D. A. P. J. L. Hennessy, "Instruction-Level Parallelism and Its Exploitation," in

Computer Architecture A Quantitative Approach, 5th ed. no. 3.13). Burlington,

Massachusetts, USA, 2012, ch. 3, pp. 233–234.

[375] W. P. E. Ali, "Deterministic Real-Time Embedded Processor without Branch

and Load Delay Based on PicoBlaze Architecture," 2021.

https://www.onsemi.com/pdf/datasheet/rsl10-d.pdf
https://developer.arm.com/documentation/dui0497/latest/

 453

[376] M. Braun, "LLVM Machine representation." [Online]. Available:

https://llvm.org/devmtg/2017-10/slides/Braun-

Welcome%20to%20the%20Back%20End.pdf

[377] U. F. d. M. G.-D. o. C. S.-P. L. Laboratory, "WRITING LLVM PASS."

[Online]. Available:

https://homepages.dcc.ufmg.br/~fernando/classes/dcc888/ementa/slides/LLVM/

LLVM_01.pdf

https://llvm.org/devmtg/2017-10/slides/Braun-Welcome%20to%20the%20Back%20End.pdf
https://llvm.org/devmtg/2017-10/slides/Braun-Welcome%20to%20the%20Back%20End.pdf
https://homepages.dcc.ufmg.br/~fernando/classes/dcc888/ementa/slides/LLVM/LLVM_01.pdf
https://homepages.dcc.ufmg.br/~fernando/classes/dcc888/ementa/slides/LLVM/LLVM_01.pdf

VITA

VITA

NAME Ehsan Ali

DATE OF BIRTH 6 March 1983

PLACE OF BIRTH Tehran - Iran

INSTITUTIONS

ATTENDED

Assumption University of Thailand - B.Eng. in

Computer Systems

Chulalongkorn University - PhD in Electrical

Engineering

HOME ADDRESS 8/69, Indy Townhouse, Bang Bo, Samut Prakan,

10560, Thailand.

PUBLICATION 1. A guideline for rapid development of assembler to

target tailor-made microprocessors.

2. Implementation and Verification of IEEE-754 64-

bit Floating-Point Arithmetic Library for 8-bit Soft-

Core Processors.

3. Improved Development Cycle for 8-bit FPGA-

Based Soft-Macros Targeting Complex Algorithms.

4. Modular Transformation of Embedded Systems

from Firm-cores to Soft-cores.

5. Deterministic Real-Time Embedded Processor

without Branch and Load Delay Based on PicoBlaze

Architecture.

6. VHDL Implementation of ARM Cortex-M0

Laboratory for Graduate Engineering Students.

7. Adaptive Microprocessor with Miniature

Accelerator using LLVM Infrastructure and FPGA:

The Case of ARM Cortex-M0.

AWARD RECEIVED -

	ABSTRACT (THAI)
	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	1. Introduction
	1.1. Motivation
	1.2. Hypotheses
	1.3. Objectives
	1.4. Scope of Thesis
	1.5. Methodology

	2. Literature Review
	2.1. Data Centers
	2.1.1. Introduction
	2.1.2. Data Center Requirements
	2.1.2.1. Power Supply
	2.1.2.2. Cooling
	2.1.2.3. Controlled Access

	2.1.3. Data Center Types
	2.1.4. Data Center Hardware
	2.1.4.1. Computation Hardware
	2.1.4.1.1. Blade Server
	2.1.4.1.2. Blade Enclosure

	2.1.4.2. Storage Interconnection Architectures
	2.1.4.2.1. Direct Attached Storage (DAS)
	2.1.4.2.2. Network Attached Storage (NAS)
	2.1.4.2.3. Storage Area Networks (SANs)

	2.1.4.3. Storage Interconnection Technologies
	2.1.4.3.1. Fibre Channel (FC)
	2.1.4.3.2. Fibre Channel over Ethernet (FCoE)
	2.1.4.3.3. Small Computer Systems Interface (SCSI) over IP (iSCSI)

	2.1.4.4. Data Center Network (DCN)
	2.1.4.5. Data Center Design Models
	2.1.4.5.1. Three-tier DCN
	2.1.4.5.2. Fat tree DCN
	2.1.4.5.3. DCell

	2.1.5. Data Center Efficiency
	2.1.5.1. Energy Efficient Servers
	2.1.5.2. Simulators
	2.1.5.2.1. DCNSim
	2.1.5.2.2. NS2
	2.1.5.2.3. NS3
	2.1.5.2.4. Cladism
	2.1.5.2.5. Other Simulators

	2.1.5.3. Practical Ways to Reduce Power Consumption
	2.1.5.4. Hot Data Centers
	2.1.5.5. My Own Thoughts

	2.1.6. Data Center Hardware
	2.1.6.1. Blade Sever
	2.1.6.2. Blade Sever Types
	2.1.6.2.1. Cisco
	2.1.6.2.2. HP
	2.1.6.2.3. Dell
	2.1.6.2.4. Lenovo

	2.1.6.3. Sever Farm
	2.1.6.3.1. Performance Per Watt

	2.1.6.4. Server Interconnection

	2.1.7. Server Processor
	2.1.7.1. Intel
	2.1.7.2. ARM

	2.1.8. Considerations on Setting Up a Data Center
	2.1.8.1. Introduction
	2.1.8.2. Cascade Effect
	2.1.8.3. Site Location Condition
	2.1.8.4. Environmental Factors
	2.1.8.5. Technological Factors

	2.1.9. Unconventional Architectures
	2.1.10. Building Condition
	2.1.11. Metrics and Benchmarking
	2.1.11.1. Power Usage Effectiveness (PUE)
	2.1.11.2. Data Center Infrastructure Efficiency (DCIE):
	2.1.11.3. Energy Reuse Effectiveness (ERE)
	2.1.11.4. Rack Cooling Index (RCI)
	2.1.11.5. Return Temperature Index (RTI)
	2.1.11.6. Heating, Ventilation and Air-Conditioning (HVAC) System Effectiveness
	2.1.11.7. Airflow Efficiency
	2.1.11.8. Cooling System Efficiency

	2.1.12. Energy Consumption Reduction Approaches
	2.1.13. Low-Power Design versus Energy Efficiency
	2.1.14. Energy Consumption Reduction Approaches
	2.1.15. Cooling Systems
	2.1.15.1. Introduction
	2.1.15.2. Basic Refrigeration Cycle
	2.1.15.3. Cooling Architecture
	2.1.15.4. Cooling Process Types
	2.1.15.5. Space Cooling
	2.1.15.6. Heat Rejection
	2.1.15.7. Humidity and Dust
	2.1.15.8. Design Criteria
	2.1.15.9. Data Center Thermal Considerations
	2.1.15.10. Hot Aisle and Cold Aisle Layout
	2.1.15.11. Heat Removal
	2.1.15.12. Chilled Water System
	2.1.15.13. Cooling Towers vs Dry Coolers
	2.1.15.14. CRAH vs CRAC
	2.1.15.15. Pumped Refrigerant for Chilled Water Systems
	2.1.15.16. Air-Cooled System (2-Piece)
	2.1.15.17. Glycol-Cooled System
	2.1.15.18. Water-Cooled System
	2.1.15.19. Air-Cooled Self-Contained System (1-piece)
	2.1.15.20. Direct Fresh Air Evaporative Cooling System
	2.1.15.21. Indirect Air Evaporative Cooling System
	2.1.15.22. Self-Contained Roof-Top System
	2.1.15.23. Modern Energy Efficient Cooling Systems
	2.1.15.24. OPEX – CAPEX
	2.1.15.25. Legacy Cooling and the End of Raised Floor
	2.1.15.26. Modern Data Center Temperature Set Point
	2.1.15.27. Liquid Cooling
	2.1.15.28. Immersion-Cooled Systems
	2.1.15.29. Direct Contact Liquid Cooling

	2.1.16. Liquid Cooling Drawbacks
	2.1.17. Free Cooling
	2.1.18. Data Center Cooling Challenges
	2.1.19. Fine-Tuning Automation
	2.1.20. Future Ideas
	2.1.21. Cooling Conclusion
	2.1.22. Security and Reliability
	2.1.22.1. Physical Security
	2.1.22.2. Data Center Physical Security Checklist
	2.1.22.2.1. Site Location
	2.1.22.2.2. Site Perimeter
	2.1.22.2.3. Facilities
	2.1.22.2.4. Disaster Recovery
	2.1.22.2.5. People
	2.1.22.2.6. Disaster Recovery Policies

	2.1.23. Data center Processors
	2.1.23.1. Introduction
	2.1.23.2. ARM Architecture Review
	2.1.23.3. ARM Platforms
	2.1.23.4. Applied Micro
	2.1.23.5. ARM based server boards
	2.1.23.5.1. X-Gene 2 X-C2 Evaluation Kit
	2.1.23.5.2. LeMaker Cello
	2.1.23.5.3. Gigabyte MP30-AR0
	2.1.23.5.4. Gigabyte MP30-AR0
	2.1.23.5.5. ODROID-XU4

	2.1.24. ARM Review
	2.1.25. Scanning the Server Technologies
	2.1.25.1. Introduction
	2.1.25.2. Intel High-End versus Low-End

	2.1.26. Data Center Related Research Horizons
	2.1.27. Building an Ultra Power Data Center
	2.1.27.1. Server Connections
	2.1.27.2. Boards
	2.1.27.3. Server Enclosure
	2.1.27.4. Final Data Center Solution Characteristics

	2.1.28. Innovative Chulalongkorn Design

	2.2. Data Center Conclusion
	2.3. Microprocessor
	2.3.1. Introduction
	2.3.2. Processor Architectures
	2.3.2.1. Definitions
	2.3.2.2. Architecture Types

	2.3.3. Microprocessor Instruction Set
	2.3.3.1. ISE Specifications

	2.3.4. Machine Types
	2.3.4.1. Accumulator
	2.3.4.2. Stack:
	2.3.4.3. Register-Memory
	2.3.4.4. Load-Store
	2.3.4.5. Memory-Memory

	2.3.5. Instruction Length
	2.3.6. Memory Considerations
	2.3.7. Supported Operations
	2.3.8. Types of Branches
	2.3.9. Instruction Set Encoding

	2.4. LLVM Backend
	2.4.1. Terminologies
	2.4.1.1. 3-Stage of Compilation
	2.4.1.2. LLVM Backend Pipeline

	2.4.2. LLVM Assembly Language
	2.4.2.1. Introduction
	2.4.2.2. Identifiers
	2.4.2.3. High Level Structure

	2.4.3. LLVM Target Independent Code Generator
	2.4.3.1. Introduction
	2.4.3.2. The high-level design of the code generator
	2.4.3.3. TableGen Tool
	2.4.3.4. The LLVM Code Generator Classes
	2.4.3.4.1. Target Description Classes
	2.4.3.4.2. Machine code description classes

	2.4.3.5. The MC Layer
	2.4.3.6. Instruction Selection
	2.4.3.7. SelectionDAG Select Phase
	2.4.3.8. LLC DAG Related Arguments

	2.4.4. LLVM IR to Machine Code Walk Through
	2.4.5. LLVM Machine Code (MC) Components
	2.4.5.1. RET

	3. 16-bit Integer VHDL-based Laser Processor
	3.1. Introduction
	3.2. Implementation
	3.2.1. Laser Final ISE Design
	3.2.1.1. Laser Endianness
	3.2.1.2. Laser Supported Addressing Modes
	3.2.1.3. Laser Caller-Callee Convention

	3.2.2. Final Instruction Set Bits Encoding
	3.2.2.1. Instruction Description

	3.2.3. Designing the Instruction Set Implementation
	3.2.3.1. Register Number Assignment
	3.2.3.2. Stack
	3.2.3.3. Frame Pointer
	3.2.3.4. Flag Register
	3.2.3.5. Pass Method Arguments
	3.2.3.6. Arithmetic

	3.2.4. Processor Implementation
	3.2.5. Processor File Structure
	3.2.6. Simulation
	3.2.6.1. Testing Instructions
	3.2.6.1.1. MOV instruction test:
	3.2.6.1.2. SUB Instruction:

	3.2.7. FPGA Implementation
	3.2.7.1. Timing
	3.2.7.1.1. Setup and Hold Time

	3.3. Limitation
	3.4. Result

	4. Processor Performance Evaluation
	4.1. Introduction
	4.2. Implementation
	4.2.1. Benchmarking
	4.2.1.1. Benchmarking Measurements

	4.2.2. Synthetic Benchmarks
	4.2.3. EEMBC CoreMark Benchmark
	4.2.3.1. Coremark Benchmark Score Reports

	4.2.4. CoreMark for X86
	4.2.4.1. Benchmarking in Assembly

	4.2.5. 256-Point Complex Fast Fourier Transform
	4.2.5.1. e number
	4.2.5.2. Taylor series
	4.2.5.3. Euler’s Formula
	4.2.5.4. Fourier Transform
	4.2.5.5. Fast Fourier Transform
	4.2.5.5.1. Discrete Fourier Transform
	4.2.5.5.1.1. Radian

	4.2.5.6. 256-Point Complex Fast Fourier Transform
	4.2.5.7. Cooley-Turkey Algorithm
	4.2.5.8. FFT Computation Literature Review
	4.2.5.9. PicoBlaze FFT Benchmark
	4.2.5.10. 8-bit Processor Mathematics

	4.3. Result

	5. Development of an Assembler for Laser Processor based on LLVM Infrastructure
	5.1. Introduction
	5.2. LLVM Backend Development
	5.2.1. Branch Implementation
	5.2.2. Writing the LLVM Backend
	5.2.2.1. Rapid Development of an Assembler
	5.2.2.2. Add new Machine Target in Clang

	5.2.3. Target Registration
	5.2.3.1. Minimum Backend Bare-bone Files
	5.2.3.2. To Handle Return Register

	5.3. Register Allocation
	5.3.1. Live Variable Analysis

	5.4. Instructions Implementation
	5.4.1. Return Instruction
	5.4.2. Memory load/store
	5.4.3. Frame Indexes
	5.4.4. “ADD” Instruction
	5.4.5. “MUL” Instruction
	5.4.6. “DIV” Instruction
	5.4.7. Branch Instructions
	5.4.8. Unconditional Jump
	5.4.9. Global Variables
	5.4.10. Relocs
	5.4.11. Fixup

	5.5. Implementing LLVM Integrated Assembler
	5.5.1. Implementing Assembly Parser Support
	5.5.2. Function Call
	5.5.3. Laser Stack Frame

	5.6. Machine Code (MC) Framework
	5.6.1.1. AsmParser
	5.6.1.2. Object Files
	5.6.1.3. Assembly Parser
	5.6.1.4. Instruction Encoder
	5.6.1.5. Instruction Decoder
	5.6.1.6. ELF Object Writer

	5.7. Laser ELF file
	5.7.1. Executable and Linkable Format
	5.7.2. Symbols

	5.8. The Linking Process
	5.8.1. Symbols and Relocations
	5.8.2. The Global Offset Table
	5.8.3. Sections and Segments
	5.8.4. A bit more about ELF
	5.8.5. Hex File Generation

	5.9. Backend Debugging
	5.10. AsmParser
	5.11. LLD Linker
	5.12. Summary
	5.12.1. Getting The LLVM Infrastructure
	5.12.2. Frontend: C language Support by Clang (16-bit)
	5.12.3. Target registration
	5.12.4. Laser Backend Related Classes
	5.12.5. TableGen Tool
	5.12.6. Laser LLVM Backend Structure
	5.12.7. Assembler
	5.12.8. Function Call
	5.12.9. Inline Assembly
	5.12.10. Label, Jump, and Goto
	5.12.11. Linker

	5.13. Limitation
	5.14. Result

	6. IEEE-754 64-bit Floating Point Arithmetic on 8-bit Processor: PicoBlaze case
	6.1. Introduction
	6.2. Implementation
	6.2.1. IEEE-754-2008 Floating-Point Overview
	6.2.2. Main Definitions
	6.2.3. Double Precision
	6.2.4. Exponent Encoding
	6.2.5. Exception Handling
	6.2.5.1. Overflow
	6.2.5.2. Underflow

	6.2.6. The inexact exception
	6.2.7. Addition/Subtraction
	6.2.8. Multiplication
	6.2.9. Division
	6.2.10. Arithmetic Special Cases
	6.2.11. Rounding
	6.2.12. Guard, Round, and Sticky Bits
	6.2.13. Subnormal Inputs
	6.2.14. Conversion from biased to two’s complement
	6.2.15. FPGA Memory Block Requirement in PicoBlaze for FFT Algorithm

	6.3. Limitations
	6.4. Result

	7. Improved Development Cycle for 8-bit FPGA-Based Soft-Macros Targeting Complex Algorithms
	7.1. Introduction
	7.2. Implementation
	7.2.1. Related Works
	7.2.1.1. Standard Development Cycle Limitations

	7.2.2. PicoBlaze Assembler
	7.2.3. PicoBlaze Simulator
	7.2.4. Improved Development Cycle for PicoBlaze
	7.2.5. Proposed Hardware Platform
	7.2.6. Memory Block RAMs
	7.2.7. PicoBlaze Program BRAM
	7.2.8. Data Memory BRAM
	7.2.9. Proposed Software Architecture
	7.2.9.1. ARM Application Project

	7.2.10. Hex to Header File Utility
	7.2.11. Proposed Development Cycle
	7.2.12. Proposed Address Generator Circuitry
	7.2.13. Proposed Verification Mechanism
	7.2.13.1. Concepts
	7.2.13.2. Mechanism

	7.2.14. Library Usage

	7.3. Limitation
	7.4. Result

	8. Zipi8: An Industry Level 8-bit Soft-Core PicoBlaze Compatible Processor
	8.1. Introduction
	8.2. Implementation
	8.2.1. The PicoBlaze Firm-Core
	8.2.1.1. Overview
	8.2.1.2. Related Work
	8.2.1.3. PicoBlaze Applications
	8.2.1.4. PicoBlaze Source-Code Analysis
	8.2.1.5. LLVM for PicoBlaze
	8.2.1.6. Research on how to change PicoBlaze to IPC = 1

	8.2.2. Reverse Engineering of PicoBlaze
	8.2.2.1. State Machine and Control
	8.2.2.2. Program Counter
	8.2.2.3. Logic Optimization
	8.2.2.4. Primitive Conversion to Non-Vendor Specific VHDL
	8.2.2.4.1. LUT6, and LUT6 2: 6-Input Lookup Table
	8.2.2.4.2. FD: D Flip-Flop, and its variants: FDR, FDRE
	8.2.2.4.3. XORCY: XOR gate, and MUXCY: 2-to-1 Multiplexer
	8.2.2.4.4. RAM32M, RAM256X1S: Multi Port Random Access Memories (Select RAM)

	8.2.2.5. Reversed Engineered Modules

	8.2.3. Zipi8: PicoBlaze Compatible Soft-Core
	8.2.3.1. PicoBlaze Conversion Using Modular Approach
	8.2.3.2. PicoBlaze Architecture
	8.2.3.3. Zipi8 Modules’ Schematic
	8.2.3.4. Zipi8 Verification
	8.2.3.4.1. Concepts
	8.2.3.4.2. Mechanism

	8.2.4. PicoBlaze on Lattice
	8.2.4.1. Synthesis Utilization Result
	8.2.4.2. Lattice RAM Blocks
	8.2.4.3. Program Memory

	8.3. Limitation
	8.4. Result

	9. DAP-Zipi8: Deterministic Real-Time Embedded System Microprocessor without Branch and Load Delay Based on PicoBlaze Architecture
	9.1. Introduction
	9.2. Implementation
	9.2.1. Definitions
	9.2.2. Performance versus Determinism
	9.2.3. Related Work
	9.2.4. The PicoBlaze Firm-Core
	9.2.4.1. Overview
	9.2.4.2. PicoBlaze Source-Code Analysis

	9.2.5. Zipi8 With CPI = 1
	9.2.5.1. Branch And Load Delay Elimination
	9.2.5.2. Zipi8 Modifications to Achieve CPI = 1
	9.2.5.3. Adding Dual Address-Bus Prediction to Zipi8
	9.2.5.3.1. Program Counter Module Modification
	9.2.5.3.2. Stack Module Modification

	9.2.5.4. Resource and Power Utilization
	9.2.5.5. Verification
	9.2.5.5.1. Isolated Instruction Execution
	9.2.5.5.2. Math Library Execution
	9.2.5.5.3. Random Instruction Execution from A Pool

	9.3. Limitation
	9.4. Result

	10. ARM Cortex-M0 Implementation in VHDL
	10.1. Introduction
	10.2. Implementation
	10.2.1. Cortex-M0 Overview
	10.2.1.1. Pipeline Stages in Cortex-M0
	10.2.1.2. Instruction Set

	10.2.2. Cortex-M0 32-bit instructions
	10.2.3. Registers
	10.2.4. Cortex-M0 Instructions Encoding
	10.2.5. Discovering Cortex-M0 PC Register Behavior
	10.2.6. Pipeline stages in the Cortex-M0 processor
	10.2.7. Interfaces
	10.2.7.1. AMBA AHB-Lite Interface

	10.2.8. Memory Model
	10.2.9. Load and Store
	10.2.10. LDR Instruction
	10.2.11. Memory Access in Cortex-M0 (ARM-v6-M)
	10.2.12. Alignment Support
	10.2.13. Cortex-M0 Multiplier
	10.2.14. Cortex-M0 Instruction Execution
	10.2.15. Instruction Condition Codes
	10.2.16. Branch Steps
	10.2.17. Operating Modes
	10.2.18. Privileged and Unprivileged Execution
	10.2.19. Exception Numbers
	10.2.20. The Vector Table
	10.2.21. SVC instruction
	10.2.22. ARM Cortex-M0 Implementation Overview Schematic
	10.2.23. ARM Cortex-M0 Implementation Verification
	10.2.24. Turning ARM Cortex-M0 Implementation into Laboratory Modules for Graduate Engineering Students
	10.2.24.1. Related Work on Microprocessor Laboratory Courses
	10.2.24.2. Implementation Steps with Laboratory Modularization in Mind

	10.3. Limitation
	10.4. Result

	11. Adaptive Microprocessor with Miniature Accelerator using LLVM Infrastructure and FPGA: The Case of ARM Cortex-M0
	11.1. Introduction
	11.2. Implementation
	11.2.1. General Literature Review
	11.2.1.1. Computation Models
	11.2.1.2. Processor Classification
	11.2.1.2.1. General Purpose Computing
	11.2.1.2.2. Domain-Specific Processors
	11.2.1.2.3. Application-Specific Processors

	11.2.1.3. Flexibility vs Performance
	11.2.1.4. Reconfigurable Computation
	11.2.1.4.1. History
	11.2.1.4.2. Theories
	11.2.1.4.3. Definitions

	11.2.1.5. Applications of Reconfigurable Computing
	11.2.1.5.1. High-performance Computing
	11.2.1.5.2. Custom Computing Machines
	11.2.1.5.3. Fast Prototyping and Emulation Systems
	11.2.1.5.4. Submicron and Nanoscale Computing Systems

	11.2.1.6. Partial Re-configuration
	11.2.1.7. Granularity
	11.2.1.8. Rate of Reconfiguration
	11.2.1.9. Host Coupling
	11.2.1.10. Routing/Interconnects
	11.2.1.11. Benefits

	11.2.2. Preliminary Literature on Adaptive Processor
	11.2.2.1. High-Performance Reconfigurable Computing (HPRC)
	11.2.2.2. FPGA Technologies
	11.2.2.3. Applications of C to HDL
	11.2.2.4. Field Programmable Gate array (FPGA)
	11.2.2.4.1. Vivado
	11.2.2.4.1.1. Hierarchical Design

	11.2.2.4.2. Debugging FPGA
	11.2.2.4.3. Joint Test Action Group (JTAG)
	11.2.2.4.4. PetaLinux on ZynqMP
	11.2.2.4.5. FPGA Terminologies
	11.2.2.4.5.1. Logic Cell

	11.2.2.5. Hardware Purchase
	11.2.2.5.1. Partial Reconfiguration
	11.2.2.5.2. Device Support
	11.2.2.5.3. Lattice Ice40
	11.2.2.5.4. Spartan-6
	11.2.2.5.4.1. Macros:
	11.2.2.5.4.2. Primitives: Components native to the targeted FPGA. Data-width varies:

	11.2.2.5.5. Xilinx Design Language (XDL)
	11.2.2.5.6. RapidSmith

	11.2.2.6. Adaptive Microprocessor Related Works and Literature Review
	11.2.2.7. Adaptive Execution of LLVM IR Exploration
	11.2.2.7.1. List of IRs

	11.2.2.8. Zipi8 IPC Improvement: Dual Memory Port Approach Review
	11.2.2.8.1. RISC History
	11.2.2.8.2. Delayed Load and Delayed Branch Problem
	11.2.2.8.3. RISV Solutions to Delayed Load and Delayed Branch Problem
	11.2.2.8.4. List of RISC processors:

	11.2.2.9. Zipi8 Modifications to Achieve IPC = 1 Review
	11.2.2.9.1. DAP-Zipi8 Stack

	11.2.2.10. Review Recap
	11.2.2.10.1. Flexibility vs Performance – Reconfigurable Hardware

	11.2.3. Adaptive Processor Related Work Recap
	11.2.4. Motivation And Methodology
	11.2.4.1. Motivation
	11.2.4.2. Methodology

	11.2.5. Benchmarking
	11.2.5.1. Overview
	11.2.5.2. Synthetic Benchmarks

	11.2.6. LLVM Adaptive Backend Pass
	11.2.7. Adaptive Processor Using Miniature Accelerators
	11.2.7.1. Observations
	11.2.7.2. Retaining Backward Compatibility
	11.2.7.3. Pipeline Flush to Bypass Instruction Pair via Dual-Port Memory Block RAMs

	11.2.8. Parallel Execution of Removed Instruction Pairs
	11.2.9. LLVM Compilation for ARM Cortex-M0 Baremetal
	11.2.10. FFT in C++
	11.2.11. LLVM Pass
	11.2.12. Periodic Pattern Mining (PPM)
	11.2.13. Cortex-M0 Free Opcode Slots
	11.2.14. Cortex-M0 Reset Process
	11.2.15. IAR Execution of fft_full.o .ELF File
	11.2.16. Adaptive Modules Added to Cortex-M0
	11.2.17. Accelerator Operation

	11.3. Miniature Accelerator Verification
	11.4. The Future Work: Maximizing the MA Performance
	11.5. Performance Evaluation
	11.6. Limitations
	11.7. Result

	12. Conclusion
	12.1. Processor Improvement Conclusion
	12.2. Publications
	12.3. Projects
	12.4. Future Work

	13. Appendices
	13.1. Appendix A – Full KCPSM6 Schematic (High Resolution)
	13.2. Appendix B – Zipi8 RTL VHDL Source Code
	13.3. Appendix C – Zipi8 on Lattice FPGA iCEcube2 Project Source Code
	13.4. Appendix D – C++ Tools Source Code
	13.5. Appendix E – Cortex-M0 Implementation Schematic
	13.6. Appendix F – Publications
	13.6.1. A guideline for rapid development of assembler to target tailor-made microprocessors
	13.6.2. Implementation and Verification of IEEE-754 64-bit Floating-Point Arithmetic Library for 8-bit Soft-Core Processors
	13.6.3. Improved Development Cycle for 8-bit FPGA-Based Soft-Macros Targeting Complex Algorithms
	13.6.4. Modular Transformation of Embedded Systems from Firm-cores to Soft-cores
	13.6.5. Deterministic Real-Time Embedded Processor without Branch and Load Delay Based on PicoBlaze Architecture
	13.6.6. VHDL Implementation of ARM Cortex-M0 Laboratory for Graduate Engineering Students
	13.6.7. Adaptive Microprocessor with Miniature Accelerator using LLVM Infrastructure and FPGA: The Case of ARM Cortex-M0

	REFERENCES
	VITA

