

ระบบแบบทนทานสำหรับเทคโนโลยีหลักในการประมวลผลภาษาธรรมชาติภาษาไทย

นายแคน อุดมเจริญชัยกิจ

วิทยานิพนธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรดุษฎีบัณฑิต
สาขาวิชาวิศวกรรมคอมพิวเตอร ภาควิชาวิศวกรรมคอมพิวเตอร

คณะวิศวกรรมศาสตร จุฬาลงกรณมหาวิทยาลัย
ปการศึกษา 2563

ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัย

A ROBUST SYSTEM FOR CORE THAI NATURAL LANGUAGE PROCESSING

TECHNOLOGIES

Mr. Can Udomcharoenchaikit

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy Program in Computer Engineering

Department of Computer Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2020

Copyright of Chulalongkorn University

Thesis Title A ROBUST SYSTEM FOR CORE THAI NATURAL LANGUAGE

PROCESSING TECHNOLOGIES

By Mr. Can Udomcharoenchaikit

Field of Study Computer Engineering

Thesis Advisor Asst. Prof. Peerapon Vateekul, Ph.D.

Thesis Co-advisor Prachya Boonkwan, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment

of the Requirements for the Doctoral Degree

. .
Dean of the Faculty of Engineering

(Prof. Supot Teachavorasinskun, D.Eng.)

iv

THESIS COMMITTEE

. Chairman

(Prof. Boonserm Kijsirikul, Ph.D.)

. Thesis Advisor

(Asst. Prof. Peerapon Vateekul, Ph.D.)

. Thesis Co-advisor

(Prachya Boonkwan, Ph.D.)

. Examiner

(Assoc. Prof. Wirote Aroonmanakun, Ph.D.)

. Examiner

(Ekapol Chuangsuwanich, Ph.D.)

. External Examiner

(Prof. Thanaruk Theeramunkong, Ph.D.)

v

แคน อุดมเจริญชัยกิจ: ระบบแบบทนทานสำหรับเทคโนโลยีหลักในการประมวลผล
ภาษาธรรมชาติภาษาไทย. (A ROBUST SYSTEM FOR CORE THAI NATURAL

LANGUAGE PROCESSING TECHNOLOGIES) อ.ที่ปรึกษาวิทยานิพนธหลัก : ผศ.

ดร.พีรพล เวทีกูล, อ.ที่ปรึกษาวิทยานิพนธรวม : ดร.ปรัชญา บุญขวัญ 139 หนา.

เมื่อขอมูลที่เปนขอความภาษามีจำนวนมากขึ้นการสรางระบบอัจฉริยะที่
สามารถประมวลผลภาษามนุษยไดจึงมีความสำคัญมากขึ้น ระบบประมวลผลภาษา
ธรรมชาติเปนเทคโนโลยีที่ชวยใหคอมพิวเตอรใชประโยชนจากภาษาของมนุษยเพื่อ
ทำงานตาง ๆ จึงมีความจำเปนมากขึ้น โมเดลการเรียนรูเชิงลึกไดแสดงผลลัพธที่ยอด
เยี่ยมในงานพื้นฐานในการประมวลผลภาษาธรรมชาติ เชน การตัดคำ การจำแนกชนิด
ของคำ และการรูจำชื่อเฉพาะ อยางไรก็ตามในบาง สถานการณวิธีการที่เสนอเหลานี้
ไมสามารถทำงานไดดีเทาที่ควร เพื่อใหระบบประมวลผลภาษาธรรมชาติมีเสถียรภาพ
มากขึ้น เราควรแกไขปญหาที่ปรากฏขึ้นบอยครั้ง และมัอิทธิพลตอประสิทธิภาพของ
ระบบ ไดแก ปญหาการรับมือกับคำศัพทที่ไมเคยพบและคำสะกดผิด เปาหมายการ
วิจัยของวิทยานิพนธนี้คือการพัฒนาแบบระบบประมวลผลภาษาธรรมชาติที่สามารถ
จัดการกับขอความที่สะกดผิดเพื่อปรับปรุงโมเดลใหใชงานไดดีขึ้นเมื่อนำไปใชจริง
วิทยานิพนธนี้เสนอโมเดลการเรียนรูของเครื่องและการประเมินผลแบบใหมที่มุงเนน
ไปที่การเพิ่มความทนทานตอขอความที่มีการสะกดผิดรูปแบบ

วิทยานิพนธฉบับนี้เสนอกลยุทธและระบบประมวลผลภาษาธรรมชาติใหม เพื่อ
ปรับปรุงความทนทานตอคำสะกดผิด วิทยานิพนธนี้สำรวจกลยุทธการจัดการขอมูล
อินพุตที่ทำใหขอมูลอินพุตมีความหลากหลายมากขึ้น เชนการใสหนากากคำที่ไมเคย
พบ (UNK Masking) และการฝกปรปกษ (Adversarial Training) วิทยานิพนธฉบับ
นี้สำรวจวาหนวยของภาษาที่เล็กกวาคำสามารถปรับปรุงความแข็งแกรงของการฝง
คำไดอยางไร นอกจากนี้ยังตรวจสอบเทคนิคการ จำกัดความคลายคลึงกันระหวาง
ขอความเชนการใชฟงกชันการสูญเสียแบบชุดสาม (Triplet Loss) เพื่อจำกัดความ
คลายคลึงกันระหวางขอความตนฉบับกับขอความที่สะกดผิด

vi

นอกจากนี้ยังเสนอรูปแบบการประเมินแบบใหมที่เปดเผยจุดออนของระบบ
ประมวลผลภาษาธรรมชาติ โดยการใสตัวอยางปรปกษ (Adversarial Examples)

จากการพิมพผิดลงไปในชุดขอมูลสำหรับทดสอบ แผนการประเมินแบบปรปกษ
(Adversarial Evaluation) ที่ไดเสนอในวิทยานิพนธฉบับนี้แสดงใหเห็นวาแบบจำลอง
การเรียนรูเชิงลึกในปจจุบันไมทนทานเมื่อเจอขอมูลที่สะกดผิดและยังแสดงใหเห็นวา
กลยุทธและสถาปตยกรรมระบบประมวลผลภาษาธรรมชาติของเราสามารถปรับปรุง
ประสิทธิภาพไดเมื่อเจอขอความที่มีการสะกดผิด

ภาควิชา วิศวกรรมคอมพิวเตอร ลายมือชื่อนิสิต

สาขาวิชา วิศวกรรมคอมพิวเตอร ลายมือชื่ออ.ที่ปรึกษาหลัก

ปการศึกษา 2563 ลายมือชื่อ.ที่ปรึกษารวม

vii

5971402521: MAJOR COMPUTER ENGINEERING

KEYWORDS: NATURAL LANGUAGE PROCESSING / ADVERSARIAL EXAMPLES /

DEEP LEARNING

CAN UDOMCHAROENCHAIKIT : A ROBUST SYSTEM FOR CORE THAI NAT-

URAL LANGUAGE PROCESSING TECHNOLOGIES. ADVISOR : ASST. PROF. PEER-

APON VATEEKUL, Ph.D., THESIS CO-ADVISOR : PRACHYA BOONKWAN, Ph.D., 139

pp.

As the amount of unstructured textual data grows, it becomes increasingly im-

portant to build an intelligent system that can process it. Natural Language Processing

(NLP) is a technology that allows a computer to exploit human languages to perform

tasks. Deep learning models have shown excellent results across fundamental tasks in

NLP, such as word segmentation, part-of-speech tagging, and named-entity recogni-

tion. However, in many situations, these proposed methods fail to perform well. For an

NLP system to be robust, it must address issues such as out-of-vocabulary and spelling-

mistakes. This thesis’s research goal is to develop NLP models that can handle mal-

formed texts to improve their real-world setting usability. In this thesis, I propose novel

models and evaluations that focus on robustness against malformed texts.

This dissertation proposes multiple novel training strategies and architectures to

improve the robustness against malformed texts. This thesis explores input data ma-

nipulation strategies that diversify training data, such as UNK masking and adversarial

training. It explores how sub-lexical information can improve the robustness of word

embeddings. Furthermore, it examines similarity constraint techniques, such as triplet

loss, which constraint the similarity between the original texts and the parallel perturbed

texts.

I also propose alternative evaluation schemes that reveal the weaknesses of NLP

systems by introducing typographical adversarial examples to the test sets. Our adver-

viii

sarial evaluation schemes show that current deep learning models are not robust against

misspelled inputs, and they also show that our proposed training strategies and archi-

tectures can improve the performance over malformed texts.

Department: Computer Engineering Student’s Signature .

Field of Study: Computer Engineering Advisor’s Signature .

Academic Year: 2020 Co-advisor’s Signature

ix

Acknowledgements

This dissertation is dedicated to those special humans who believe in me. I am

grateful for my family and friends, who are an important part of my life. Those who lift

me up when I am down. Those who never let me give up. Those who reminded me of

the importance of being resilient.

I acknowledge the support of the Thailand Graduate Institute of Science and Tech-

nology (TGIST) for the generous funding throughout the years. I would like to thank my

two advisors Peerapon Vateekul and Prachya Boonkwan, as well as the thesis commit-

tee, Boonserm Kijsirikul, Wirote Aroonmanakun, Ekapol Chuangsuwanich, and Tha-

naruk Theeramunkong, for their insightful suggestions.

CONTENTS

Page

Abstract (Thai) . v

Abstract (English) . vii

Acknowledgements . ix

Contents . x

List of Tables . xii

List of Figures . xv

1 Introduction . 1

1.1 Overview . 1

1.2 Aims and Objectives . 3

1.3 Scope of Work . 3

1.4 Contributions . 4

1.5 Publications . 5

2 Background . 7

2.1 Characteristics of Thai language . 7

2.2 Sequence Processing with Statistical Sequential Models 11

2.3 Vector Embeddings . 15

2.4 Adversarial Examples . 18

3 Literature Review . 24

3.1 Current State of Sequential Tagging Models 24

3.2 Thai Natural Language Processing . 25

3.3 Behavioral Analyses: The Rise of Challenge Sets 32

xi
Page

3.4 Adversarial Robustness for NLP . 34

3.5 Concluding Remarks . 37

4 Robust Word Representations and Black-box Adversarial Evaluation for

Thai . 38

4.1 Introduction . 38

4.2 Adversarial Evaluation . 40

4.3 Model Architecture . 44

4.4 Experiments . 51

4.5 Conclusions . 69

5 Adversarial Training and White-box Adversarial Evaluation 72

5.1 Introduction . 72

5.2 Methodology . 75

5.3 Experiments . 86

5.4 Experimental Results . 89

5.5 Error Analysis . 93

5.6 Real-World Data . 96

5.7 Conclusions . 98

6 Conclusions . 100

References . 104

Apppendix A Supplementary Material of Chapter 4 121

A.1 Text samples from the perturbed BEST2010 test set (stress level = 10) . 121

A.2 Examples of predictions on perturbed inputs 122

LIST OF TABLES

Table Page

3.1 The accuracy of two dictionary-based systems vs. percentage of unknown

words (Theeramunkong and Usanavasin, 2001) 27

4.1 Data Statistics. † - number of unique words after pruning low-frequency

words. We only included words that appear more than two times in the

vocabulary; we replaced low-frequency words with “UNK" tokens. 53

4.2 Perturbed Test Sets . 53

4.3 List of models experimented in this research 56

4.4 Micro F-1 scores between BiLSTM-U and the weak baseline model BiL-

STM reveal the effect of UNK masking technique. Value in bracket denotes

standard deviation across three runs with different random seeds. ∗ - weak

baseline . 57

4.5 F-1 scores between attacut-sc-u and the baseline word segmentation model

attacut-sc reveal the effect of UNK masking on word-segmentation task. . . 58

4.6 Micro F-1 scores between BiLSTM-U and BiLSTM-U-B. Value in bracket

denotes standard deviation across three runs with different random seeds. . 59

4.7 Micro F-1 scores between BiLSTM-U-B and BiLSTM-U-BC. Value in

bracket denotes standard deviation across three runs with different random

seeds. 60

4.8 Micro F-1 scores between BiLSTM-U-B, BiLSTM-U-BA, and BiLSTM-

U-BA-clp. Value in bracket denotes standard deviation across three runs

with different random seeds. 61

4.9 Micro F-1 scores between models with self-attention mechanism. Value in

bracket denotes standard deviation across three runs with different random

seeds. 62

xiii
Page

4.10 Micro F-1 scores of all models on 2 Thai Corpora: BEST2010 and OR-

CHID. Value in bracket denotes standard deviation across three runs with

different random seeds. ∗ - weak baseline, † - strong baseline 65

4.11 Error rate % of each perturbation of each model tested on different noise

levels. Value in bracket denotes standard deviation across three runs with

different random seeds. Bolded text denotes the lowest error rate among

each type of perturbation. Red text denotes the highest error rate among

each type of perturbation. 70

5.1 The typographical errors for creating adversarial examples. * Note that

capitalization error is not applicable to writing systems without capitalization. 76

5.2 Data statistics of the English CoNLL2003 corpus and the Thai ORCHID

corpus. (training set/validation set/test set) 89

5.3 F1 scores and theirs standard deviations on the English CONLL2003 and

the Thai ORCHID corpora. We averaged the scores across three runs with

different random seeds, and calculated their standard deviations. A bolded

number refers to the best F-1 score for each task in each test set. 91

5.4 Average cosine similarity scores between clean-perturbed pairs and clean-

random pairs. We averaged the cosine similarity scores and their standard

deviations across three runs with different random seeds. We want the

similarity between each clean-random pair to be high, and the similarity

between each clean-random pair to be low. † - This shows a difference

between the average cosine similarity scores of clean-perturbed pairs and

clean-random pairs for each model. 94

xiv
Page

5.5 Error rates and their standard deviations of models on different typograph-

ical errors. We calculate the error rates at word-level only. We excluded

words with “O” (non-named entities, or non-syntactic chunks) as their

ground truth from the calculation. ‡ - “Clean” refers to unperturbed words,

these are words that are shorter than 4 characters. We do not alter words

that are shorter than 4 characters to ensure that the perturbed words are

intelligible to humans. † - Thai has no capitalization. 97

5.6 The F1-scores of the models trained on the ORCHID dataset and evaluated

on the Twitter-41 dataset . 98

6.1 Comparison of all adversarial attacks in this thesis: the black-box attack

does not have access to the model’s parameters, while the white-box attack

has a full-access to the model’s parameters. 102

6.2 Comparison of models in chapter 4 and 5 103

A.1 Examples of part-of-speech predictions of a Thai sentence in each scenario,

as discussed in section 4.4.4. This table focuses on the observed word รูสึก,

but it also shows the prediction of surrounding words. Red text denotes

incorrect prediction. 123

LIST OF FIGURES

Figure Page

1.1 Thesis Overview . 5

2.1 A many-to-many recurrent network. (a) a cyclic circuit RNN diagram (b)

The same RNN network can be unfolded to reveal a computational graph

that passes information forward through time. 14

2.2 {x′ : fhuman(x) = fhuman (x′)} a set of all possible adversarial examples

such that humans would give the same label to both original and perturbed

examples . 21

3.1 The dynamic deep network for joint word segmentation and POS tagging

tasks (Boonkwan and Supnithi, 2017) . 31

3.2 Variational LSTM-CRF model for Thai Named-Entity Recognition 31

4.1 Thai adversarial examples based on 4 types of typographical errors 43

4.2 Backoff Representation . 45

4.3 Backoff Representation with self-attention mechanism 46

4.4 Backoff Representation with untied bidirectional self-attention mechanism . 48

4.5 Multi-task Bidirectional LSTM Model Architecture 51

4.6 The visualization of an untied-directional self-attention mechanism 63

4.7 Average inference speed of BiLSTM-ELMo and our proposed models mea-

sured as execution time (in seconds with an NVIDIA’s GeForce GTX 1080,

we repeated each execution for 5 times to get its average inference speed)

using timeit, the standard python library for measuring execution time. . . 66

4.8 Examples of the Thai sentence in various scenarios. The observed word is

“to feel”. The blue color denotes the observed word without perturbation.

The pink color denotes the observed word with perturbation. The red color

denotes perturbed contextual words. 67

xvi
Page

5.1 Real samples collected from the CoNLL2003 test set with predictions from

the baseline model (ELMo enhanced BiLSTM-CRF): (a) unperturbed orig-

inal text, (b) black-box perturbation, and (c) gradient-based white-box per-

turbation. Blue texts and boxes refer to correct predictions. Red texts and

boxes refer to incorrect predictions. 80

5.2 An example of a triplet from the CoNLL2003 corpus. With triplet loss

as a part of training objective, we want the distance between a clean text

sequence and its perturbed pair to be closer than the distance between a

clean text sequence and a random text sequence as illustrated in this figure. 83

5.3 The AT-P framework for training robust neural networks against typograph-

ical adversarial examples. It combines adversarial training with the pair

similarity loss. 84

5.4 Our AT-T framework for training robust neural networks against typograph-

ical adversarial examples. It incorporates adversarial training with the

triplet loss. 85

A.1 A snapshot from the word correction exercise with 6 text samples with their

solutions along with its English translation 121

Chapter I

INTRODUCTION

1.1 Overview

Natural Language Processing (NLP) is an important technology that bridges the

gap between computers and humans. Humans communicate through natural languages;

therefore, we need technology to process humans’ complex language utterances. Many

computer applications, from web search to language translation, rely on NLP as their

core technology. This thesis aims to develop NLP systems that can robustly process the

Thai language with out-of-distribution inputs. In particular, inputs with malformed or

misspelled texts in order to process multiple fundamental language tasks for the Thai

language.

Thai NLP is a challenging research problem due to the characteristic of the Thai

language. Thai is an isolating language with a very low morpheme per word ratio with

no inflection or derivation; therefore, Thai compensates for the lack of inflection by

allowing words with higher complexity to be built from multiple morphemes. However,

this relaxation causes ambiguity from the morphological level to the pragmatical level.

For example, at the morphological level, the Thai writing system does not have explicit

word boundaries, which makes word segmentation–a task that seems to be trivial in

many languages–a challenging task for the Thai language. The lack of explicit word

boundaries contributes to ambiguity in word segmentation task; for instance, there are

two ways to segment “ตากลม”: “ตา|กลม-round eyes” and “ตาก|ลม-to be exposed to the

wind”.

In modern NLP research, researchers have employed deep learning techniques,

2

and they have obtained very high performance across various NLP tasks without rely-

ing on handcrafted features. Since deep learning can learn multiple levels of features or

representations from raw input automatically, we no longer have to rely on a tedious fea-

ture engineering process to obtain state-of-the-art performance. There are many NLP

literature and applications with promising results on standard test sets. However, in

many situations, their proposed methods fail to perform well. For an NLP system to

be robust, it must be able to address issues such as out-of-vocabulary, spelling-mistake,

etc. The majority of language representations in previous work are word-level repre-

sentations. Although word-level representation can provide a strong semantic represen-

tation, it is too rigid to handle scenarios where out-of-vocabulary and malformed words

are present. This thesis seeks to improve two common shortcomings in current NLP

literature:

1. Model/Training Strategy: since the standard evaluation paradigm often does

not include non-standard text samples, researchers often train models without

thinking consciously about non-standard text samples that may occur in the real-

world. Here we develop training methods that aim to enhance the accuracy of the

model on non-standard textual inputs.

2. Evaluation: the standard paradigm for evaluation estimates the performance by

using train-validation splits that often do not contain enough out-of-distribution

data in the test set. It overlooks common cases in real-world settings, such as

spelling errors, which causes the accuracy to be overestimated. An alternative

evaluation framework is needed to capture a wider range of phenomena. This

thesis draws inspiration from challenge set evaluation and adversarial evaluation.

It includes test sets that test the behavior of models on non-standard textual inputs.

This thesis proposes robust deep learning approaches to Thai NLP as well as eval-

uation frameworks to benchmark them. In this research, we develop learning models to

3

improve the robustness against misspelled texts. Our evaluation frameworks are based

on spelling errors, which also cause out-of-vocabulary (OOV) words and rare words.

This thesis focuses on the core sequential labeling tasks for Thai NLP, such as tok-

enization, part-of-speech tagging, and named-entity recognition because they are the

building blocks for other downstream NLP applications.

1.2 Aims and Objectives

This research’s main objective is to build and evaluate NLP models that are robust

against spelling errors. This dissertation aims to provide methods that can improve

the robustness of the three core Thai NLP applications (word segmentation, part-of-

speech (POS) tagging, and named-entity recognition (NER)). It explores alternative

evaluation approaches that can reveal the weaknesses of the NLP systems and then

uses this knowledge to design learning methods that enhance the robustness of the NLP

models.

1.3 Scope of Work

Following tasks will be undertaken as a part of the proposed research:

1. Develop neural network architectures for three core Thai NLP applications: word

segmentation, POS tagging, and NER

2. Develop neural network architectures for sequential tagging systems that are ro-

bust against spelling mistakes

3. Evaluate the performance of the proposed neural network architectures on mis-

spelled words.

4

1.4 Contributions

Fig. 1.1 shows a visual overview of this thesis. The main contributions of this

thesis can be found in chapter 4 and chapter 5. Both chapters evaluate the robustness of

sequential tagging systems using typographical adversarial examples. Chapter 4 intro-

duces black-box adversarial examples for Thai language. The results from this chapter

show that NLP models are not robust against small spelling perturbations. Chapter 5

extends the results from chapter 4 to build stronger adversarial examples; it emphasizes

on white-box adversarial examples. Both chapters also introduce different techniques

that can be used to improve the robustness of the models over typographical adversarial

examples. Chapter 5 applies black-box adversarial examples introduced in chapter 4

for adversarial training. The list of main contributions are as follows:

• Black-box Adversarial Evaluation Scheme for Thai NLP tasks based on known

Thai spelling errors (Chapter 4)

• UNK Masking: A training data perturbation technique that improves the robust-

ness of the sequential tagging models (Chapter 4)

• Hidden State Initialization with Affixation Enbeddings: A hidden state initial-

ization method with linguistic knowledge (Chapter 4)

• Untied-directional Self-Attention: A self-attention mechanism that increases

the interpretability of the neural networks (Chapter 4)

• White-box Adversarial Evaluation Scheme for Sequential tagging tasks (Chap-

ter 5)

• A training framework for robust sequential taggers that combines adversarial

training with triplet loss. (Chapter 5)

5

Untied-Directional Attention

Robust Representations

UNK MaskingChapter 4

Chapter 4

Black-box Adversarial Examples

Adversarial Evaluation

White-box Adversarial ExamplesChapter 5

Chapter 4

Adversarial Training

Triplet Loss

Adversarial Training

Chapter 5

Chapter 5

Figure1.1: Thesis Overview

1.5 Publications

1. Udomcharoenchaikit, C., Boonkwan, P. and Vateekul, P., 2020. Towards Im-

proving the Robustness of Sequential Labeling Models Against Typographi-

cal Adversarial Examples Using Triplet Loss. Natural Language Engineering

(NLE)[Under Review]

2. Udomcharoenchaikit, C., Boonkwan, P. and Vateekul, P., 2020. Adversarial

Evaluation of Robust Neural Sequential Tagging Methods for Thai Language.

ACM Transactions on Asian and Low-Resource Language Information Process-

ing (TALLIP), 19(4), pp.1-25.

3. Jettakul, A., Thamjarat, C., Liaowongphuthorn, K., Udomcharoenchaikit, C.,

Vateekul, P. and Boonkwan, P., 2018, July. A comparative study on various deep

learning techniques for Thai NLP lexical and syntactic tasks on noisy data. In

2018 15th International Joint Conference on Computer Science and Software En-

gineering (JCSSE) (pp. 1-6). IEEE.

6

4. Udomcharoenchaikit, C., Vateekul, P. and Boonkwan, P., 2017, August. Thai

named-entity recognition using variational long short-term memory with condi-

tional random field. In The Joint International Symposium on Artificial Intelli-

gence and Natural Language Processing (pp. 82-92). Springer, Cham

Chapter II

BACKGROUND

2.1 Characteristics of Thai language

Thai is an isolating language, and its word order is SVO (Minegishi, 2011). There

is no inflectional morphology in the Thai language to encode grammatical information

such as number and tense. Thai Part-of-Speech does not inflect; instead, it uses addi-

tional words or morphemes to convey such information. Orthographically, Thai has no

word boundary. Also, Thai has no inflectional morphology; therefore, Thai sentences

can be ambiguous both temporally and aspectually (Koenig and Muansuwan, 2005).

Thai has derivational morphology. Thai can form a complex word through affix-

ation (Iwasaki etal., 2005). Through affixation, a complex word can be formed using a

root and an affix. Usually, a root is a free morpheme; and an affix is a bound morpheme.

In this research, we use this linguistics knowledge to initialize the hidden state of the

character-to-word (C2W) model. The rest of this section discusses Thai affixation and

examples of affixes, as mentioned in Iwasaki etal. (2005).

2.1.1 Prefixes

Prefix is a type of affix that precedes a root of a complex word. Prefixes can be cat-

egorized into modifying, classifying, noun-forming, adjective-forming, and adverbial-

forming prefixes (Iwasaki etal., 2005):

• มหา- /mahaǎ/ ‘great’ - a modifying prefix

8

มหาวิทยาลัย /mahaǎ-wìttayalai/ ‘university’ < วิทยาลัย /wìttayalai/ ‘col-

lege’

• นัก- /nák/ - a classifying prefix that indicates that the noun concept belongs to a

person class.

นักเรียน /nák-rian/ ‘student’ < เรียน /rian/ ‘to study’

• การ- /kaan-/ - a noun-forming prefix which forms an activity noun with a verbal

root.

การสอน /kaan-sˇn/ ‘teaching’ < สอน /sˇn/ ‘to teach’

• ชาง- ‘having a characteristic of’ /chǎa/ - an adjective-forming prefixes

ชางคุย /chǎa-khuy/ ‘chatty’ < คุย /khuy/ ‘to chat’

• อยาง- ‘in a manner that’ /chǎa/ - an adverbial-forming prefix which is placed

before an adjective to produce an adverbial word. An English affix equivalent of

this affix would be ‘-ly’.

2.1.2 Suffixes

Suffix is a type of affix that appears after a root of a complex word. In Thai,

suffixes are used to form abstract or sophisticated words and they are less common than

prefixes (Iwasaki etal., 2005):

• -กร /kn/ ‘agent’

อาชญากร /áatchayaa-kn/ ‘criminal’ < อาชญา /’aatchayaa/ ‘crime’

9

2.1.3 What Is a Word?

Haspelmath (2011) suggests that there are four word-defining definitions: ortho-

graphic, phonological, semantic, and morphosyntactic.

• Orthographic definition: There are many languages in which their orthogra-

phies use spaces between words, especially languages based on the Greek, Latin,

and Cyrillic alphabets. However, there are many languages without word spacing,

such as Chinese, Japanese, Sanskrit, and Thai.

• Phonological definition: There is phonological criteria for delimiting a word;

for example, words can have one main stress.

• Semantic definition: A word is a unit that has a reference to a meaning or a se-

mantic concept. However, a single semantic idea can span across multiple words.

• Morphosyntactic definition: Words are building blocks for sentences; hence,

we can apply morphosyntactic criteria to identify words.

In recent research, the Thai word segmentation standard is based on the idea of

minimal integrity unit. Minimal integrity unit is a word segmentation standard pro-

posed by Aroonmanakun (2007). Previously, the disagreement on what is considered

a word makes it difficult to compare the results from multiple word segmentation sys-

tems. Aroonmanakun (2007) argues that Thai word segmentation systems should give

us two types of word:

1. Simple word: A word with one morpheme (e.g.ด-ี‘good’, สะพาน-‘bridge’, etc.)

2. True compound word: A word with two or more morphemes in which its meaning

is immensely different to the sum of its morphemes. (e.g.หายใจ-‘to breathe’ ,

10

หาย-‘to be lost’+ใจ-‘heart’)

The major source of the disagreement comes from long compound words; this

minimalist approach can ease the disagreement on Thai word segmentation by seg-

menting each compound word that is not firmly bound into multiple words or minimal

integrity units. In addition, these minimal integrity units can be then combined into a

larger linguistic unit later on for applications that rely on larger linguistic units such

as machine translation. In modern Thai corpora, such as BEST (Kosawat etal., 2009),

words are segmented based on this idea of minimal integrity unit.

2.1.4 Errors in Thai Texual Data

Haruechaiyasak and Kongthon (2013) and Kriengket etal. (2017) extensively

studied errors that occurred in Thai textual data. Kriengket etal. (2017) found that

the errors during the word segmentation process can be divided into three categories:

cognitive, unintentional, and intentional. Cognitive errors are resulted from past cog-

nition, misunderstanding, and illiteracy of users. Cognitive errors can be divided into

two categories: illiteracy and various transliteration (Kriengket etal., 2017). Uninten-

tional errors are caused by careless typing, it is a well-studied topic in the area of word

editing and optical character recognition (OCR). There are three types of unintentional

typographical errors (Haruechaiyasak and Kongthon, 2013):

1. Insertion: e.g. ขาสว (ขาว = rice)

2. Deletion: e.g. หนตาง (หนาตาง = window)

3. Transposition: e.g. ทำงนา (ทำงาน = to work)

Kriengket etal. (2017) found that there are three types of intentional errors:

11

1. Transformation: errors from intentionally changing some elements of the entry

words

2. Insertion: errors from repeating the last character or the word to emphasize the

feeling

3. Onomatopoeia: words that are created to imitate sounds and noises.

2.2 Sequence Processing with Statistical Sequential Models

Human languages are sequential. Every utterance depends on previous utterances

to build up a context. Therefore, many NLP models are based upon sequential informa-

tion. In this section, we will discuss sequential models used in NLP.

2.2.1 Temporal Probablilistic Graphical Models

Probabilistic graphical models are a graph-based framework where a graph en-

codes the conditional dependency between variables. One type of probabilistic graph-

ical models is temporal model which is suitable for a system that evolves over time.

This section introduces 2 well-known probabilistic temporal models in NLP applica-

tions: Hidden Markov Model (HMM) and Conditional Random Fields (CRFs).

HMM is widely used in a wide range of applications for sequential modeling.

HMM is composed of two probabilistic components: the transition model that repre-

sents the transition from one state to the next state over time, and the observation model

that represents the likelihood of different observations. Given a sequence of inputs,

HMM computes a joint probability distribution over possible sequences of target labels

and choose the label sequence with the highest probability (Rabiner, 1989).

12

Conditional Random Fields (CRFs) are a framework for creating probabilistic

graphical models that can be used to predict sequences of target labels from sequences

of input samples (Lafferty etal., 2001a). CRFs learn the context from neighboring sam-

ples to form a predictive model. The strength of probabilistic graphical models, in-

cluding CRFs, lies in their ability to infer information from multiple interdependent

variables. In linear-chain CRFs, the outputs are linked together to form a linear chain.

Linear-chain CRFs, for a task such as NER, are composed of two main factors: one fac-

tor represents the dependency between output labels, and another factor that represents

the dependency between an output and its input features. The probability distribution,

which can be represented by CRFs, has the form (Koller and Friedman, 2009):

P (Y|X) =
1

Z (X)
P̃ (Y,X)

where P̃ (Y,X) =
∏k−1

i=1 ϕ (Yi,Yi+1)
∏k

i=1 ϕ (Yi,Xi) and Z (X) =∑
Y P̃ (Y,X)

The main difference between HMM and CRFs is that CRFs are discriminative

models that are trained to maximize the conditional probability instead of the joint prob-

ability of observation and state sequences (Ponomareva etal., 2007).

2.2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a type of neural networks that are de-

signed to process sequential data (Williams and Hinton, 1986), they are very common

in deep learning based NLP applications. Goodfellow etal. (2016) shows that RNNs

can be expressed as follows:

ht = f
(
ht−1, xt ; θ

)
(2.1)

Where h represents the state; x represents the input; t represents the timestep, and θ

represents the weight parameters for the activation function “f ”. RNN considers all

13

(a) RNN (b) Unfolded RNN

Figure2.1: A many-to-many recurrent network. (a) a cyclic circuit RNN diagram (b)
The same RNN network can be unfolded to reveal a computational graph that passes
information forward through time.

the previous history by compressing them into a vector. It compresses all the history

by maintaining a state vector ht which is a function of the previous state vector ht−1

and the input xt . Recurrent Neural Networks can be constructed in various ways, but

the core recurrence component which passes information forward through time must be

included. Fig. 2.1 shows a many-to-many RNN diagram–for n timesteps input data–

which is very common for word and character tagging applications. This figure shows

the unrolled computational graph which we can use the backpropagation algorithm to

calculate the gradient. Parameters of the RNNs are shared across time steps and the

derivatives are accumulated across time. This variation of backpropagation is called

backpropagation through time (BPTT).

It is important to mention that RNNs have a tendency to suffer from vanishing

and exploding gradient, because the gradient is passed back through many time steps.

Exploding gradient is trivial to solve by using a gradient clipping technique which clips

the gradient once it exceeds a certain threshold. Two common gradient clipping tech-

niques are norm clipping (Pascanu etal., 2013) and element-wise clipping (Mikolov

etal., 2012).

14

Norm clipping:

∇̃ ←

c
∥∇∥∇ if ∥∇∥ ≥ c

∇ otherwise
(2.2)

Element-wise clipping:

∇̃i ← min {c, |∇i |} × sign (∇i) ,∀i (2.3)

LSTM is one of Recurrent Neural Network (RNN) variants. As the temporal

span between dependencies grows, traditional RNNs become increasingly inefficient in

term of representing such dependencies. This problem is also known as the problem of

long-term dependencies (Bengio etal., 1994). LSTM architecture is designed to over-

come this issue by incorporating a new structure called memory cell. LSTM adds or

removes information to a memory cell by using gates to control changes to a memory

cell. Therefore, LSTM is able to allow the constant error to flow through memory cells

bridging long-term dependencies together (Hochreiter and Schmidhuber, 1997). The

mathematical equations for LSTM are as follows:

it = σ (wi [ht−1, xt] + bi)

f t = σ
(
w f [ht−1, xt] + b f

)
ot = σ (wo [ht−1, xt] + bo)

c̃t = tanh (wc [ht−1, xt] + bc)

ct = f t ∗ ct−1 + it ∗ c̃t

ht = ot ∗ tanh
(
ct
)

(2.4)

There are three gates in the LSTM architecture: input gate it , forget gate f t , and

output gate ot . These gates along with the candidate cell state c̃t are used to calculate

the cell state ct and the hidden state vector ht . LSTM also alleviates the gradient van-

ishing problem by using memory cell to avoid the multiplicative effect from the BPTT

algorithm, by allowing information to flow through memory cells additively. Recent

15

research in NLP technologies such as NER has shown that LSTM can be the main

component for a neural NLP system (Chiu and Nichols, 2016; Lample etal., 2016a).

2.3 Vector Embeddings

In this research, our representational techniques are based on distributional meth-

ods in which the word representation is calculated from the distribution of words around

it. This idea is dated back to 1957 when J.R. Firth (1957) argued that words that occur

near each other are likely to have similar meanings through his famous statement “You

shall know a word by the company it keeps”. The technique of this sort often represents

a word as a vector of numbers. In the era of deep learning, a word vector is often dense

(as opposed to sparse, where most of the elements are zero.) and often has smaller di-

mension comparing to the traditional representation methods. In this section, we will

focus on word representation techniques used in deep learning. We also examine the

use of such techniques at subword level.

2.3.1 Word Representation

It is very common in deep learning for NLP to have a word embedding layer as

its core component. A word embedding layer encodes the discrete word indexes into

a high-dimensional continuous vector space. Word Embedding is a group of natural

language processing techniques, which is capable of learning high-quality word rep-

resentations in a geometric space. Techniques such as Continuous Bag-of-Words and

Skip-Gram have shown to provide the state-of-the-art performance in representing syn-

tactic and semantic meaning (Mikolov etal., 2013a). The parameters of these word

representations can also be used as pretrained weights for other deep learning-based

NLP applications. The pretrained weights such as GloVe (Pennington etal., 2014) and

16

FasText (Joulin etal., 2016) are freely available in multiple languages, and they have

been employed in many NLP applications.

2.3.2 Robust Representation for Out-Of-Vocabulary Words

Most of word-based NLP systems can recognize only words that exist in some

predefined finite word dictionaries or corpora. Word-based NLP models often use

“UNK” as a token that represents an unknown word. Hence, the expressivity of these

models is limited to words in their training corpora. Another approach to this problem

is to use subwords instead of words to represent an input text, this approach provides

more flexibility and allows us to deal with a wider range of input text. The core idea of

this approach is that word embeddings can be composed from character embeddings.

This allows us to generate embedding for unknown words. Compositionality is the key

property of embedding technique which allows us to create a larger linguistic unit form

smaller linguistic units. In Mikolov et al. (2013b), the authors illustrate this property by

using simple element-wise addition to combine two word vectors to form a phrase vec-

tor. For example, a phrase vector is formed by composing two word vectors, “Vietnam”

and “capital”, in this experiment the authors get the phrase vector that is close to the

word vector for “Hanoi”. This concept of composing smaller linguistic units to form a

larger unit can also be applied to sublexical units as well.

Ling etal. (2015) proposed the character to word (C2W) compositional model

based on bidirectional LSTM, this character-based model can be used to form a word

representation from just characters. Ling etal. (2015) found that the C2W model can be

used in NLP tasks such as language modeling and POS tagging, while still maintain a

comparable performance to other state-of-the-art models.

17

Luong etal. (2013) observed that, in deep learning for NLP, words are often re-

garded as independent entities without any connection to their morphological structures.

To consider morphological information into a deep learning model, Luong etal. (2013)

proposed that the vector representations for morphologically complex words can be

built from their morphemes. Luong etal. (2013) found that this technique is more ro-

bust to rare and out-of-vocabulary (OOV) words.

Unfortunately, Thai is not a morphologically rich language. Instead of using a

morpheme-based representation, It is also possible to use compositional technique to

combine syllable vectors or other subword vectors together to form a word vector rep-

resentation. Since there is neither inflection nor derivation in Thai, Chunwijitra etal.

(2016) proposed a syllable-based unit called pseudo-morpheme to be used as a sub-

word unit. Furthermore, Chormai etal. (2019) uses syllable embeddings to improve the

performance of a word segmentation model.

2.3.3 Contextual Representation

Instead of using static word embeddings, we can also allow word embeddings to

change dynamically based on their context. Contextual word representations, such as

ELMo (Peters etal., 2018) and BERT (Devlin etal., 2019), are internal states of neural

networks trained with a variant of language model objective on a large text corpus.

These internal states change according to both linguistic context and syntax. Using

contextual representations has been shown to improve the performances of NLP systems

on almost every NLP task. Contextual word representations address the problem of

polysemous words and the context-dependent nature of human language.

18

2.4 Adversarial Examples

The accuracy of a well-trained model can be degraded with a small perturbation

to an input. Inputs that are intentionally designed to reduce a well-trained model’s

performance are called “adversarial examples”. Adversarial examples can reveal how

weak our current machine learning models are. Small perturbation to an input can cause

a large drop in performance (Szegedy etal., 2014; Goodfellow etal., 2015). If x′ is an

adversarial example of an input x for a model fθ (x). The goal of an adversarial example

can be defined with the following equations:

fθ(x) , fθ (x′)

fhuman(x) = fhuman (x′)
(2.5)

The key idea is that a machine learning model, fθ(x), should classify different labels

for x and x′. While a human, fhuman(x), should classify x and x′ with the same label.

Here we show an example of how an adversarial example is created. A classifier

is usually trained to optimize the parameters θ to minimize loss over a training set of

size N:

min
θ

1

N

N∑
i=1

ℓ (fθ (xi) , yi) (2.6)

In deep learning, this can be solved by using a gradient descent optimization algo-

rithm. We can compute the gradient of the loss function with respect to the parameters

θ; then we can update the parameters θ by taking a step proportional to the gradient:

θ := θ − α
N

N∑
i=1

∇θℓ (fθ (xi) , yi) (2.7)

The gradient ∇θℓ (fθ (xi) , yi) can be computed efficiently via back-propagation.

It also tells us how the adjustment in each θ will affect the loss score. It is important to

note that we can also compute the gradient of the loss function with respect to the input

19

xi: ∇xiℓ (fθ (xi) , yi) . This shows how changes to the input xi will affect the loss score.

Here we can formulate an adversarial example generation problem as an optimization

problem:

max
x′
ℓ (fθ(x′), y) (2.8)

Where x′ is an adversarial example. We cannot optimize over x′ directly without

defining a constraint because this will allow us to have x′, which is completely different

from x, and this will defeat the purpose of creating an adversarial example. We need

to ensure that an adversarial example x′ is similar to the original example x. In com-

puter vision, these adversarial examples are often indistinguishable from the original

examples that they appear to be identical (Szegedy etal., 2014; Goodfellow etal., 2015).

In NLP, inputs are not continuous; textual data are discrete. Any perturbation to dis-

crete data is noticeable. The mainstream methods of adversarial examples are based on

LP-space (e.g. L∞, L2, L1, etc.):

{
x′ : ∥x′ − x∥p ≤ ϵ

}
(2.9)

Here we provide an example of how we generate an adversarial example. Fast

Gradient Sign Method (FGSM) is one of the first white-box adversarial attack methods

introduced to the machine learning community (Szegedy etal., 2014; Goodfellow etal.,

2015). Firstly, we can formulate an optimization problem to find a perturbation δ that

would maximize the loss function:

max
∥δ∥∞≤ϵ

ℓ (hθ(x + δ), y) (2.10)

We define an adversarial example as follows:

x′ = x + δ (2.11)

20

In order to maximize the loss function, we update δ in the same direction as its

gradient:

δ := δ + α∇δℓ (hθ(x + δ), y) (2.12)

We also seek to constraint the magnitude of perturbation to keep perturbation im-

perceptible by using the L∞ norm; therefore, the perturbation is defined by the following

set:

{δ : ∥δ∥∞ ≤ ϵ } (2.13)

For L∞ norm, we can easily find the projection of δ to the norm ball by clipping

the values of δ to be within the range [−ϵ, ϵ] :

δ := clip(δ, [−ϵ, ϵ]) (2.14)

If the step-size α is large enough, then each element of δ can either be −ϵ or ϵ

depending on the sign of the corresponding element in the gradient. Hence, we can

express it as:

δ := ϵ · sign (∇δℓ (hθ(x + δ), y)) (2.15)

Figure2.2: {x′ : fhuman(x) = fhuman (x′)} a set of all possible adversarial examples such
that humans would give the same label to both original and perturbed examples

Fig. 2.2 shows a set of all adversarial examples where humans would give the

same label. It shows that here are non-LP methods as well. It categorizes adversarial

21

examples into three categories: (i) LP adversarial examples, (ii) imperceptible adver-

sarial examples, (iii) perceptible adversarial examples. LP adversarial examples are

subsets of imperceptible adversarial examples.

Non-LP imperceptible adversarial examples include Wasserstein adversarial ex-

amples (Wong etal., 2019), which cover standard image manipulations (e.g., translation,

rotation, and scaling). If we were to shift an image one pixel to the right, the distance

between the original and the perturbed images is much smaller with Wasserstein dis-

tance than LP distance.

There are threat models where changes are perceptible to human eyes; for ex-

ample, we can apply an adversarial patch to an image where a part of an image is

completely masked with the patch (Brown etal., 2017). Hence, we can also apply this

idea to NLP, where we allow perceptible adversarial examples.

Adversarial examples can also be categorized based on how they are generated.

The equation 2.8 shows that we need access to the models’ parameters to generate an

adversarial example. We call this a white-box adversarial example because we have full

knowledge of the models’ parameters. The other paradigm is to generate an adversarial

example without any knowledge of the model’s parameters. An adversarial example

generated using this paradigm is called a black-box adversarial example.

2.4.1 Adversarial Training

One of the simplest ways of training a model that is robust to adversarial ex-

amples is adversarial training. Adversarial training implicitly augments training data

with adversarial examples. The adversarial training procedure minimizes error when

the training examples are perturbed by an adversary. Also, adversarial training gives a

regularization effect (Goodfellow etal., 2015).

Chapter III

LITERATURE REVIEW

The recent NLP research trend has shown that deep learning approaches have

attained high performance across various NLP tasks. In In contrast to traditional ma-

chine learning methods, deep learning approaches are not dependent on domain-specific

handcrafted features and external resources. These handcrafted features and resources

are expensive and laborious to create; deep learning reduces the need for such features

and resources by automatically learning features from its network. Despite its success,

neural networks are brittle. Even small changes to an input can induce misclassifica-

tion. One of the key issues is that most NLP systems are trained and evaluated on clean

formal texts. They ignore the possibility of unknown words and misspelled words.

This chapter focuses on sequential taggers. We discuss sequential tagging techniques

for NLP applications and also review the past development of these applications in the

context of Thai NLP. Then we discuss why current training and evaluation procedures

do not lead to robust NLP systems. Finally, we explore the current progress in building

robust NLP systems.

3.1 Current State of Sequential Tagging Models

Before the deep learning era, most sequential tagging models are linear statisti-

cal models such as Hidden Markov Models (HMM) and Conditional Random Fields

(CRF) (Lafferty etal., 2001b; Nguyen and Guo, 2007; Ratinov and Roth, 2009). These

sequential labeling models are heavily dependent on task-specific resources and hand-

crafted features to improve their performances. It is important to highlight that these

task-specific resources and features are costly to develop and often do not apply to other

23

tasks (Ma and Xia, 2014). In recent years, deep learning techniques have been success-

fully applied to linguistic sequence labeling tasks without having to rely on hand-crafted

features. Current top-performing approaches often use BiLSTM-CRF as a core com-

ponent in their architectures (Akbik etal., 2018; Peters etal., 2018; Straková etal., 2019;

Xin etal., 2018). Transformer-based models such as Bidirectional Encoder Representa-

tions from Transformers (BERT) also achieve high performances score across multiple

sequential labeling datasets (Devlin etal., 2019; Heinzerling and Strube, 2019). Other

top-performing approaches use differentiable neural architecture search (NAS) to find

an optimal architecture for a sequential tagging task (Jiang etal., 2019).

These deep learning architectures all have one thing in common. They were de-

signed and benchmarked using clean test sets. Therefore, we do not know whether they

are robust when presented with malformed texts.

3.2 Thai Natural Language Processing

Building a Thai NLP application is not a simple task; one must handle the Thai

language’s ambiguity and its unique characteristics. This section examines the past de-

velopment of Thai NLP research on the three core technologies: word segmentation,

POS tagging, and Named-Entity Recognition (NER). In addition, this section also dis-

cusses the implementation of deep learning models on Thai NLP tasks.

3.2.1 Word Segmentation

Word segmentation or word tokenization is one of the most fundamental tasks

in Natural Language Processing. It is the first language processing step in many NLP

pipelines. In many languages, word segmentation is seen as a trivial task. However, the

24

Table3.1: The accuracy of two dictionary-based systems vs. percentage of unknown
words (Theeramunkong and Usanavasin, 2001)

Unknown word (%)
Accuracy (%)

Maximum Matching Longest Matching
0 97.24 97.03
5 95.92 95.63
10 93.12 92.23
15 89.99 87.97
20 86.21 82.60
25 78.40 74.41
30 68.07 64.52
35 69.23 62.21
40 61.53 57.21
45 57.33 54.84
50 54.01 48.67

lack of explicit word boundary in the Thai language causes word segmentation to be

considered challenging.

There are two main approaches for Thai word segmentation: dictionary-based and

statistical-based. The early works on Thai word segmentation are based on dictionary-

based approach. Poowarawan (1986) proposed a dictionary-based approach to Thai

word segmentation using the longest matching algorithm. Sornlertlamvanich (1993) in-

troduced another dictionary-based approach using the maximum matching algorithm;

this approach generates all possible word segmentation results for a sentence, then it se-

lects the results with the fewest words. However, these two dictionary-based approaches

have been proved to be inferior to statistical-based algorithms such as conditional ran-

dom fields (CRFs) (Haruechaiyasak etal., 2008). In addition, Theeramunkong and Us-

anavasin (2001) found that these dictionary-based approaches perform very poorly on

unknown words as shown in table 3.1.

There are many statistical-based approaches to Thai word segmentation such as

25

trigram Markov model (Asanee and Chalathip, 1997), decision trees (Theeramunkong

and Usanavasin, 2001), syllable collocation (Aroonmanakun, 2002), conditional ran-

dom fields (Kruengkrai etal., 2006), etc. Theeramunkong and Usanavasin (2001) found

that dictionary-based approaches do not perform well if the dictionary is not adequate

enough because it will lead to a large number of unknown words. Aroonmanakun

(2002) argues that dictionary is still a crucial component for defining a word. Aroon-

manakun (2002) found that word segmentation can also be done by first segmenting

a text into syllables and then merging syllables into words based on their collocation

strength. This approach relies on a dictionary to determine whether a sequence of syl-

lables could be a word, using a dictionary can greatly reduce the number of possible

sequences of syllables. However, Aroonmanakun (2002) also found that the perfor-

mance of this approach drops drastically when there are many unknown words.

3.2.2 Part-Of-Speech Tagging

Part-Of-Speech (POS) is a category in which a word is classified to according

to its grammatical function in a sentence. Part-Of-Speech Tagging is one of the fun-

damental tasks in NLP. It is a building block for NLP applications such as homonym

disambiguation, information extraction, etc.

One of the most important corpora for building Thai POS tagger is ORCHID

(Sornlertlamvanich etal., 1998). ORCHID is the first large Thai Part-Of-Speech tagged

corpus which is also freely available for researchers. In addition to the ORCHID corpus,

Sornlertlamvanich et al. (1998) also proposed a unified probabilistic trigram model for

simultaneous word segmenting and POS tagging. As mentioned in section 3.2.1, the

writing system for Thai language has no explicit word boundary indicators. Therefore,

there are Thai POS tagging systems that are designed as morphological analyzers that

can detect both word boundary and POS for each word. Kruengkrai et al. (2006)

26

proposed a Conditional Random Field framework for Thai morphological analysis. This

framework allows word segmentation and POS tagging to be done simultaneously.

Boonkwan et al. (2013) found that Support Vector Machines (SVMs) and Con-

ditional Random Fields (CRFs) models can be improved by statistically retagging am-

biguous POS tags using locally trained tagger which only focuses on POS tags with

high ambiguity. Note that in this experiment, Boonkwan et al. (2013) assumed that the

words in the corpus are perfectly segmented.

3.2.3 Named-Entity Recognition

Named-Entity Recognition (NER), a task of locating and identifying named enti-

ties into pre-defined categories, is essential to many downstream NLP applications. In

previous research, NER systems often rely on handcrafted resources such as gazetteers,

etc. These resources are expensive to create. They require a large amount of work

from linguists and domain experts. Many difficulties in Thai NER are caused by the

characteristics of Thai language. Thai orthography does not have any special character

that segregates named-entity from other word types. For example, in English orthog-

raphy, the first letter of an named-entity is an uppercase letter. It is harder to define

word boundary in Thai due to the lack of delimiter between words in Thai orthogra-

phy. In addition, a named-entity in Thai can be very long and can be composed of

multiple morphemes. e.g.“คณะกรรมการกิจการกระจายเสียง กิจการโทรทัศน และกิจการ
โทรคมนาคมแหงชาติ” (National Broadcasting and Telecommunications Commission).

Despite many challenges, Thai language also contains clue words for named-entity such

as “องคกร” (organization), “สำนักงาน” (office), “นาย” (mister), etc. Therefore, Thai

NER is more dependent on external resources provided by linguists and specialists.

During 2000’s, there were multiple works focusing on Thai named-entity recog-

27

nition using machine learning approach such as Maximum Entropy (ME) (Chanlekha

and Kawtrakul, 2004), Support Vector Machine (SVM) (Suwanno etal., 2007), Con-

ditional Random Fields (CRFs) (Tirasaroj and Aroonmanakun, 2009) (Tirasaroj and

Aroonmanakun, 2011), etc. They rely on specialized knowledge resources to perform

NER task. Tirasaroj and Aroonmanakun (2009) proposed a Thai NER system using

CRFs, in their work they employed domain-specific resources such as dictionaries with

entity names and keyword list for each type of named entities. In section 3.2.4, we

will introduce you to deep learning literature for Thai NLP; The NLP systems in these

works can perform relatively well without domain-specific resources.

3.2.4 Deep Learning in Thai Natural Language Processing

The rise of deep learning has led to breakthroughs in many areas. In Thai NLP,

open-source projects, such as CutKum (Treeratpituk, 2017) and DeepCut (Kittinaradorn

etal., 2017), have brought attention to deep learning for Thai NLP. The DeepCut word

segmentation library by Kittinaradorn et al. (2017) has obtained f1-score of 98.1 by

using convolution neural networks (CNN) without any domain-specific resource such

as a dictionary. Chormai etal. (2019) introduce AttaCut–a dilated CNN model with

syllable embeddings. It has shown to be 5.6 times faster than DeepCut. Limkonchotiwat

etal. (2020) further enhances DeepCut and AttaCut for domain adaptation by using a

stacked ensemble learning method.

In recent research, Boonkwan and Supnithi (2017) proposed a bidirectional gated

recurrent neural networks model for joint word segmentation and POS tagging. This

model does not separate word segmentation and POS tagging into two steps but it is

a unified model that learn these two tasks simultaneously. Boonkwan and Supnithi

(2017) argue that information for POS level also helps constrain word segmentation.

Without using any domain-specific features other than words, characters, and character

28

Figure3.1: The dynamic deep network for joint word segmentation and POS tagging
tasks (Boonkwan and Supnithi, 2017)

n-grams; this model has obtained high f1-score on both word segmentation and POS

tagging tasks on the ORCHID corpus. In addition, they also found that their model can

also cope with the out-of-vocabulary (OOV) issue.

In the domain of Thai NER, Udomcharoenchaikit etal. (2017) proposed a deep

learning model that combines LSTM with a CRF output layer and a variational

inference-based dropout as shown in figure 3.2. This model can be used to train a

high-quality NER system without resorting on domain-specific resources.

3.3 Behavioral Analyses: The Rise of Challenge Sets

Most test sets in the standard evaluation procedure aim to benchmark system per-

formance in the average case. While the average-case evaluation is popular, it rewards

models that perform well on frequent cases and overlooks cases that may not occur

frequently. These cases represent weaknesses that the current NLP systems are facing.

29

Figure3.2: Variational LSTM-CRF model for Thai Named-Entity Recognition

We can design test sets that allow us to measure the performance on specific cases

systematically. An evaluation framework with test sets that focus on specific linguistic

phenomena or “challenge sets” have been introduced to the NLP community for a long

time (King and Falkedal, 1990; Lehmann etal., 1996). Lehmann etal. (1996) show the

four main key properties of this alternative evaluation framework: (i) systematicity,

(ii) control over data, (iii) inclusion of negative data, and (iv) exhaustivity. A recent

revival of “challenge sets” is due to the fact that current evaluation schemes start to lose

their effectiveness as the NLP systems continue to improve. The standard average-case

evaluation scheme does not reveal the models’ performance on specific phenomena,

making it harder to diagnose and improve performance.

Recent research uses challenge sets to benchmark the performance of NLP sys-

tems on specific linguistics phenomena. Sennrich (2017) introduce a challenge set with

contrastive translation pair. Each pair includes a correct reference translation and its

30

parallel contrastive version, which is perturbed to induce translation error. They bench-

mark the NMT systems by measuring how many times they assign a higher score to an

original translation than a contrastive translation. They select linguistic phenomena that

are known to be hard for English-German NMT systems: (i) noun phrase agreement,

(ii) subject-verb agreement, (iii) separable verb particle, (iv) polarity, and (v) transliter-

ation. Linzen etal. (2016) focus only on subject-verb agreement to test whether LSTMs

can learn syntax-sensitive dependencies. Burlot and Yvon (2017) introduce a machine

translation challenge set to test morphological competence of NMT systems. Burlot

and Yvon (2017) benchmark the robustness of NMT systems when presented with mor-

phological alterations. Robustness to typos is another capability that researchers design

challenge sets to benchmark (Belinkov and Bisk, 2018; Rychalska etal., 2019). They

show that high-performance models are not robust against spelling errors. Character

perturbations such as swap, substitution, deletion, and insertion are used to generate

test samples for their challenge sets.

There are also works that cover a large number of linguistic phenomena. Bur-

chardt etal. (2017) introduce a test suite with 120 linguistic phenomena to analyze the

strengths and weaknesses of NMT systems. Ribeiro etal. (2020) introduce “CheckList”

–a task-agnostic evaluation framework for NLP systems. CheckList can generate a large

number of diverse test cases, including negation, synonyms, antonyms, typos, ability to

handle logic, etc.

We can also construct challenge sets automatically. One of the frameworks for

automatically constructing a challenge set is adversarial examples. In the next section,

we discuss recent research in adversarial examples for NLP and techniques to improve

the robustness on adversarial examples.

31

3.4 Adversarial Robustness for NLP

Previous literature on adversarial examples has exposed brittleness in machine

learning systems by showing that subtle changes to the input can lead to failures in

prediction outcomes (Szegedy etal., 2014; Goodfellow etal., 2015). While adversar-

ial examples are more common in computer vision, there is a growing literature on

adversarial examples in the NLP domain. For instance, Miyato etal. (2017) construct

adversarial examples by using perturbation on continuous word embeddings instead of

discrete textual inputs. A problem with this approach is that it ignores the discrete

nature of textual data.

In order to apply perturbation to the textual input, Jia and Liang (2017) evaluate

the robustness of question-answering systems by adding a generated sentence to distract

systems without changing the correct answer. Gao etal. (2018) introduce a black-box

attack for text classifiers by injecting small misspelling errors into a text sequence. Be-

linkov and Bisk (2018) reveal weaknesses of character-based neural machine translation

(NMT) models by evaluating them on malformed texts. Belinkov and Bisk (2018) use

rule-based synthetic spelling errors and natural spelling errors to evaluate the model.

Ebrahimi etal. (2018) investigate white-box adversarial examples; they trick a character-

level model by generating adversarial examples by choosing character-edit operations,

such as deletion, insertion, and substitution (“flip”), based on the gradients of the target

model. Michel etal. (2019) enforce constraints on adversarial examples so that they

are meaning-preserving on the source side. Wallace etal. (2019) propose input-agnostic

universal adversarial triggers with white-box access to a model’s parameters. It studies

adversarial attacks to help analyze and diagnose NLP systems. Furthermore, Gardner

etal. (2020) propose a new evaluation paradigm by creating contrast sets. A contrast

set consists of test instances that are manually perturbed by domain experts to change

their gold labels. This contrasts with adversarial examples, where inputs are perturbed

32

to change the model’s decisions, but their gold labels do not change.

To overcome these weaknesses, previous literature shows that NLP systems with

subword-level or character-level embeddings can generalize to out-of-vocabulary words

(Ling etal., 2015; Sennrich etal., 2016). Moreover, subword embeddings and character-

level embeddings can help avoid filling up word-level embeddings with a large number

of vocabulary. However, NLP systems with subword-level or character-level embed-

dings are often trained on clean data, and their performance drops drastically when they

encounter misspelled words (Belinkov and Bisk, 2018). Piktus etal. (2019) alleviate

this issue by training subword embeddings to be robust against typographical errors by

adding the spell correction loss function to the FastText (Bojanowski etal., 2017) loss

function, which allows misspelled data to be incorporated. They benchmark the ro-

bustness of their models on malformed texts by perturbing words in the test set. Their

perturbations are based on spelling errors collected from a search engine’s query logs,

which are only publicly available in English. This is not applicable to other languages

without such resources. Instead, Belinkov and Bisk (2018) artificially inject a training

set with misspelled variants of each word. This technique of increasing robustness by

training on noisy data is called adversarial training.

Adversarial training (Goodfellow etal., 2015) is a standard method for improv-

ing robustness against adversarial examples. It improves the robustness of a model

by training on both unperturbed original examples and perturbed examples. Liu etal.

(2020) improve robustness by including noisy sentences in the training process and

using loss function to constraint the similarity between clean and perturbed representa-

tions. For sequential tagging tasks, Yasunaga etal. (2018) improve the BiLSTM-CRF

model’s robustness on infrequent and unseen words using adversarial training method.

They generate adversarial examples by adding small perturbation to continuous word

embeddings. Pruthi etal. (2019) overcome adversarial misspellings on text classification

33

tasks by using a word recognition model. Liu etal. (2020) use character embeddings,

the adversarial training method, and similarity constraint to improve robustness against

character-level adversarial examples on text classification tasks.

Previous literature on robust sequential taggers focuses on improving the per-

formance of sequential taggers on out-of-distribution texts. They rely on adversarial

training methods to improve their models’ robustness by perturbing the embeddings in

continuous space instead of perturbing the input texts (Yasunaga etal., 2018; Zhou etal.,

2019). Yasunaga etal. (2018) conduct part-of-speech tagging experiments on multiple

languages on the Pen Treebank WSJ corpus (English) and the Universal Dependencies

dataset (27 languages). Yasunaga etal. (2018) find that adversarial training improves

overall accuracy. Also, adversarial training alleviates over-fitting in low resource lan-

guages, and it also increases part-of-speech tagging accuracy for infrequent and unseen

words. Yasunaga etal. (2018) benchmark the robustness of the models on rare and un-

seen words. Zhou etal. (2019) focus on NER task. They address the data imbalance

issue by incorporating label statistics to the CRF loss and combine it with focal loss.

Zhou etal. (2019) benchmark the robustness of the models on user-generated data. Bo-

dapati etal. (2019) improve robustness to capitalization errors in NER by using data

augmentation. Their data augmentation technique augments the training set with sen-

tences with all upper-cased characters and sentences with all lower-case characters.

This allows a model to learn to exploit or ignore orthographic information depending

on the contextual information.

3.5 Concluding Remarks

The review of literature in this chapter has mainly concentrated on statistical

methods in NLP. This chapter illustrates the development of Thai NLP research and the

34

limitations of traditional machine learning methods in Thai NLP, such as the reliance

on handcrafted features. Deep learning approaches have been shown to overcome the

limitation of traditional machine learning methods and have obtained state-of-the-art re-

sults. It also identifies the lack of focus on robustness in the current training and testing

paradigm. It then reviews the current research on behavioral analyses that proposes al-

ternative evaluation frameworks for benchmarking various linguistics capabilities of the

NLP systems. Finally, it discusses the current progress to improve and benchmark the

robustness of sequential tagging tasks. Thus this chapter provides a basis for developing

robust deep learning models for NLP tasks for this dissertation.

Chapter IV

ROBUST WORD REPRESENTATIONS AND

BLACK-BOX ADVERSARIAL EVALUATION FOR

THAI

4.1 Introduction

This chapter is a slightly modified version of “Adversarial Evaluation of Robust

Neural Sequential Tagging Methods for Thai Language” published in the ACM Trans-

actions on Asian and Low-Resource Language Information Processing.

Tagging sequences of labels to sequences of inputs is a ubiquitous task in NLP.

Tasks such as part-of-speech (POS) tagging, named-entity recognition (NER), and shal-

low parsing are examples of sequence labeling tasks. In low-resource settings, these

tasks can provide important syntactic clues for downstream applications.

In recent years, recurrent neural models such as long-short term memory (LSTM)

(Hochreiter and Schmidhuber, 1997) have been the core component of many sequential

tagging applications. These neural models have reached state-of-the-art performance

and outperformed the conventional models without relying on external domain knowl-

edge (Huang etal., 2015). Despite promising results on clean formal texts annotated by

domain experts, most literature does not evaluate their models’ robustness on texts that

are informally written, which contain a more substantial amount of unknown words and

misspelled words.

Standard sequential taggers fail to perform well on non-standard text such as

microblogs with an error rate up to ten times higher than on a standard text such as

36

newswire (Derczynski etal., 2013). Microblogs (e.g., Twitter) are known to contain a

higher number of unknown and misspelled words (Ritter etal., 2011). For an NLP sys-

tem to be robust, it must be able to address issues such as out-of-vocabulary (OOV) and

spelling mistakes.

One way to curtail the performance drop is to train the model on a new training set

from a new domain, but it is very laborious to create a new corpus. Another approach

is lexical normalization – an additional preprocessing step to produce a more standard

text input. Lexical normalization often requires language-specific resources.

We introduce a new adversarial evaluation scheme for the Thai language, in which

we create adversarial samples based on unintentional mistakes. We propose a train-

ing strategy and a neural representation technique that are robust against OOV words.

The proposed method does not require a large amount of external language-specific

resources other than a list of affixations.

The contributions of this chapter are as follows:

1. Adversarial Evaluation: We propose an adversarial evaluation scheme for Thai

to evaluate models’ robustness against unintentional typological errors (section

4.2). We compare our proposed methods against two baseline models: Bidirec-

tional LSTM (BiLSTM) and BiLSTM with Embeddings from Language Models

(BiLSTM-ELMo).

2. UNK Masking: We introduce a training data perturbation technique which sig-

nificantly improves the robustness of the neural networks (section 4.3.2).

3. Condition Initialization with Affixation Embeddings: We investigate an initial

hidden state initialization strategy with linguistic knowledge (section 4.3.1).

4. Untied-directional Self-Attention: We propose an untied-directional self-

37

attention mechanism that increases the interpretability of the neural networks

(section 4.3.1).

4.2 Adversarial Evaluation

There are many NLP literature and applications with promising results on stan-

dard test sets. However, in many situations, their proposed methods fail to perform

well. For an NLP system to be robust, it must be able to address issues such as Out-

Of-Vocabulary (OOV) and spelling-mistake. In this chapter, we propose an adversarial

evaluation scheme for Thai. To determine whether existing models are robust against

OOV words and spelling-mistake, we introduce adversaries by altering the test samples’

characters.

4.2.1 Thai Spelling Error

Kriengket etal. (2017) investigate spelling mistakes in Thai by analyzing fre-

quently unmatched search queries on LEXiTRON, a popular online English-Thai dic-

tionary. They have classified the errors found on LEXiTRON into three categories:

cognitive errors, intentional errors, and unintentional errors.

• Cognitive errors are caused by ignorance of correct spelling knowledge.

• Intentional errors are deliberate misspellings or non-standard spellings of words

with an intent to intensify meaning, emotion, or to express informal speech pat-

terns.

• Unintentional errors are caused by carelessness. They can be categorized into two

subtypes: typing mistakes and typographical errors.

38

– typing mistakes: this type of error occurs when pressing wrong nearby keys

on a keyboard or misusing a keyboard (e.g., using a wrong input language,

pressing the ‘shift’ key accidentally).

– typographical errors: this type of error is caused by carelessness when typ-

ing. The three typographical errors subtypes are insertion, deletion, and

transposition.

* insertion error: additional characters are added to the word.

* deletion error: characters are missing from the word.

* transposition error: characters are typed in the wrong order.

Kriengket etal. (2017) found that cognitive errors (59.7%) are the most common,

followed by unintentional errors (33.5%), and intentional errors (6.8%).

4.2.2 Thai Adversarial Sample Generation

Character-level adversarial examples from previous work in English (Ebrahimi

etal., 2018; Belinkov and Bisk, 2018) do not have language-specific constraints. In this

work, we introduce a rule-based adversarial example generator based on known Thai

spelling errors. We generate unintentional errors mentioned in work done by Kriengket

etal. (2017) to produce adversarial samples. Unintentional error is the second most fre-

quent incorrect spelling error; it consists of 33.5% of an overall error on LEXiTRON,

according to Kriengket etal. (2017). Carelessness, rather than users’ illiteracy, causes

unintentional errors. An unintentional typographical error is easily simulated using

character edit operations, such as deletion and transposition. Typographical errors con-

sist of 47.1% of all unintentional errors. In our adversarial evaluation scheme, Algo-

rithm 1 generates four types of unintentional typographical errors as follows:

39

deletion error 1: (removeChar) remove the last character of the word if the word has

more than two characters.

deletion error 2: (removeTone) remove all tonal characters.

transposition error 1: (swapChar) swap the last two characters of the word if the

word has more than two characters and one of the last two characters is a conso-

nant.

transposition error 2: (moveTone) move the first tonal character one position toward

the left.

Algorithm1:Thai adversarial sample generator
Data: input word
Result: adversarial word
initialization;
r←− sample a number between 0 and 1 from a uniform distribution;
if r<stressRate then

if No tonal character then
word←− randomly select between removeChar and swapChar;

else
word←− randomly select between all adversarial choices;

Fig. 4.1 shows possible adversarial examples generated for the adversarial evaluation

scheme. Character-level adversarial examples often do not alter a text’s meaning, while

word-level alterations are more likely to change the meaning of a text (Ebrahimi etal.,

2018). Human readers are likely to correctly inferred the meaning of a text after a small

number of character alterations (Rawlinson, 1976). To further test whether humans can

correctly infer textual samples from our adversarial evaluation scheme, we sampled 100

text samples from one of the perturbed BEST 2010 test sets, and we asked 3 participants

to correct them. Some of the perturbed text samples can be found in Appendix A.1.

The scores of 98, 96, and 100 were scored respectively by each participant. Therefore,

this evaluation scheme can be used to evaluate the robustness of our models against

adversarial attacks.

40

Figure4.1: Thai adversarial examples based on 4 types of typographical errors

4.3 Model Architecture

We introduce a model that exploits character-level information to improve its ro-

bustness against OOV words, and we also include a common linguistic characteristic,

derivational affixation, which is found across multiple isolating languages to experiment

whether it can improve the performance of our model. We introduce BiLSTM-U-BCAD

and its implementation details in this section. We first discuss the input representations,

then we cover each component of the model architecture.

4.3.1 Input Representation

This research experiment with a standard word representation that does not in-

clude character-level information and several variations of backoff representation to

enhance input representation with character-level information.

Word Representation

All deep learning models for NLP tasks have a word embeddings layer as its core

component. A word embedding layer maps each discrete word index to its correspond-

ing word vector. Each word is represented by a vector wi ∈ IRdw . Word representations

are connected to the loss function, which is used to adjust the parameters of the model;

41

Figure4.2: Backoff Representation

these parameters are optimized through back-propagation

We assign a special dummy token (UNK) to represent words that do not occur in

the training corpus and words that appear less than or equal to two times in the training

corpus. We can lose valuable information by mapping these words to the UNK token. In

the following section, we discuss a representation method to enhance rare and unknown

words’ representativeness.

Backoff Representation

Fig. 4.2 shows the backoff input representation of this model. The backoff repre-

sentation is a concatenation between word representation and character-to-word repre-

sentation. This is the input representation that is fed into the core Bi-LSTM component;

we can define the input representation as:

ŵ = wi ⊕ wc2w,i

We use the character-to-word (C2W) compositional model based on bidirectional

LSTM proposed by Ling etal. (2015) to create the character-to-word representation.

42

Figure4.3: Backoff Representation with self-attention mechanism

When the model encounters an unknown word, it still has the information from the

character sequence to represent a word.

Backoff Representation with self-attention mechanism

We also experiment with a self-attention mechanism to focus on a specific

sequence of characters to create character-to-word representations. In order to create a

character-to-word compositional component, a character sequence of a word is fed into

a separate Bi-LSTM component. Each character is represented by a vector ci ∈ IRdc .

The hidden dimension of the Bi-LSTM component is dc2w for each direction. After

all the characters are processed by the Bi-LSTM component, the last LSTM cells

output of each direction are concatenated together to obtain a character-to-word vector

representation wc2w,i ∈ IR2dc2w .

Bi-directional LSTM is the core component of many state-of-the-art NLP models;

43

however, it is known that sequential recency is not the right inductive bias for NLP tasks;

therefore additional mechanisms such as attention mechanism are included to create a

direct connection back in time. Lin etal. (2017) propose a self-attention mechanism for

extracting an interpretable sentence embedding from a variable length sentence. The

self-attention mechanism is placed on top of the bidirectional LSTM (Lin etal., 2017):

−→
ht =

−−−−−→
LST M

(
wt ,
−−−→
ht−1

)
(4.1)

←−
ht =

←−−−−−
LST M

(
wt ,
←−−−
ht−1

)
(4.2)

where each
−→
ht and

←−
ht are concatenated together to obtain a hidden state:

H = (h1,h2, · · · hn) (4.3)

Then the self-attention mechanism takes the whole LSTM states H as input, and outputs

a vector of attention scores a:

a = softmax
(
ws2 tanh

(
Ws1HT

))
(4.4)

Where the shape of a weight matrix Ws1 and a weight vector ws2 are not dependent on

the length of the input. Therefore, this self-attention mechanism is able to encode a

variable length input into a fixed size embedding.

Backoff Representation with untied bidirectional self-attention mechanism

In this research, we apply self-attention mechanism to attend on a part of the

character sequence instead of sentence. In addition, we also propose an untied bidirec-

tional self-attention mechanism to focus on a specific sequence of characters to create

character-to-word representations.

An untied bidirectional self-attention mechanism has two separated self-attention

mechanisms for the forward LSTM hidden states and the backward LSTM hidden

44

Figure4.4: Backoff Representation with untied bidirectional self-attention mechanism

states:
−→
H =

(−→
h1,
−→
h2, · · ·

−→
hn

)
(4.5)

←−
H =

(←−
h1,
←−
h2, · · ·

←−
hn

)
(4.6)

←−a = softmax
(
←−−ws2 tanh

(
←−−
Ws1
←−−
HT

))
(4.7)

−→a = softmax
(
−−→ws2 tanh

(
−−→
Ws1
−−→
HT

))
(4.8)

Where −→a and←−a represent a vector of attention scores for the the forward LSTM hidden

states and a vector of attention scores for the backward LSTM hidden state, respectively.

The intuition behind this attention mechanism is that the forward component can

capture the LSTM output after it processed a certain length of characters to form a repre-

sentation for the first few characters to mimic a representation of prefix. The backward

component relies on the same intuition, but for attending on a suffix. Fig. 4.4 shows an

untied bidirectional self-attention mechanism as a C2W component of a backoff repre-

sentation.

45

Affixation Representation and Conditional Initialization Weng etal. (2017) pro-

pose that instead of initializing the initial hidden state of RNN to be a zero vector, they

replace the zero vector with word prediction mechanism to control the values of the ini-

tial state. In this research, we replace the initial zero vector with affixation embeddings

to include linguistics knowledge into our neural networks.

Affixation Embeddings only contains two vectors one for words with an affix,

and another vector for words without affix. We only use these vector to replace the

initial hidden state of LSTM for character-to-word (C2W) component. The following

is the list of Thai affixes used in this research:

• การ- /kaan-/ - a noun-forming prefix which forms an activity noun with a verbal

root.

• ความ- /khwaam-/ - a noun-forming prefix which forms an abstract from an ad-

jectival or verbal root.

• นัก- /nák/ - a classifying prefix that indicates that the noun concept belongs to a

person class.

• ผู- /phū-/ - a classifying prefix that indicates that the noun concept belongs to a

person class.

• ไอ- /ai/ - a classifying prefix that indicates that the noun concept belongs to a

male class.

• -กร ‘agent’ /kn/ - a suffix

• ที่- /thi-/- a noun-forming prefix

• อยาง- ‘in a manner that’ /chǎa/ - an adverbial-forming prefix

• แบบ- /baaep/ - an adverbial forming prefix

46

Figure4.5: Multi-task Bidirectional LSTM Model Architecture

• โดย- /dooy-/ - an adverbial forming prefix

• นา- ‘inducing to’ /nǎa-/ - an adjective forming prefix

These affixes often appear next to the root of a complex noun word. They are a

strong indication of a noun part-of-speech class. This list of affixes can also be aug-

mented with more affixes.

4.3.2 Model Architecture

Long Short Term Memory (LSTM): LSTM (Hochreiter and Schmidhuber, 1997)

is a deep learning model that is capable of learning long sequential data. Bidirectional

architecture, which connects forward and backward layers increases, the amount of

input information for the output layer. When two hidden layers of opposite directions

are connected together, the output layer can adopt information from both previous and

future time-steps. The forward LSTM hidden output
−→
h and the backward LSTM hidden

output
←−
h are merged together by concatenation. The forward and backward hidden

outputs,
−→
h and

←−
h , are both of size dh dimensions. The concatenated hidden output has

2dh dimensions.

47

UNK Masking: We propose a novel technique to improve the robustness of our mod-

els. Unlike Word Dropout (Iyyer etal., 2015), UNK Masking does not exclude the

selected words entirely. Usually, during the training phase, rare words are dealt with by

assigning a special “UNK" token to represent all words that appear less than N times in

the training set. Hence, for models with C2W representation, the models need to learn

to infer from the input character sequence for rare words. In order to cover more cases

than just rare words, we randomly mask 10% of all input words with UNK tokens to

enrich the representativeness of UNK and augment the number of unique inputs during

the training phase.

Multi-task: Our model is capable of generating outputs for multiple tasks without

losing significant accuracy. We combine losses from n tasks in the following fashion:

L (total_loss) =
n∑

i=1

L (task (i)) (4.9)

4.4 Experiments

In order to study the effectiveness of our methods, series of experiments are con-

ducted by adding one more component incrementally to the model at a time. List

of models experimented in this research are shown in Table 4.3. Experiments were

conducted on 2 Thai corpora. In this section, we discuss the training method and the

datasets used in this research. Then we discuss the results of the experiments.

4.4.1 Training

For all cases, we set the dimension for each component as follows: 100 for char-

acter embeddings, 128 for word embeddings, 128 for affixation embeddings (64 for

48

each direction), and 64 hidden dimensions for each direction of the LSTM. We update

the learnable parameters by calculating the gradients from the negative log likelihood

loss score using the back propagation algorithm, we use Adam (Kingma and Ba, 2015)

with the learning rate of 0.001 to optimize the parameters. For each model, we train for

40 epochs and select the set of parameters of an epoch that gives the best performance

on the validation set. When gradient clipping is applied, the maximum norm threshold

of the gradients is set to 50.

The implementation details of BiLSTM-ELMo, the strong baseline, is as follows:

we use a modified version of small ELMo model1 where the LSTM hidden size is

reduced from 1024 to 512 dimensions, and the output size is reduced from 128 to 64

dimensions (for each direction) to make this experiment feasible on our machine and

make the embedding size comparable to other models. Two sets of parameters are

pretrained separately on each corpus for 40 epochs. We do not finetune the parameters

of ELMo during the training phase.

4.4.2 Datasets

We demonstrate the effectiveness of our proposed methods by experimenting on

two Thai corpora. We use a fully annotated version of BEST2010, and ORCHID. Table

5.2 shows the details of corpora used in this chapter.

Table 4.2 shows number of tokens for each type of errors in the perturbed test

sets. Stress level refers to the percentage of “stressRate” as shown in algorithm 1. Note

that there are tokens that contain no perturbation when the stress level is at 100, be-

cause we do not perturb tokens that are numbers or non-Thai characters (e.g. white
1The original configuration for the small ELMo model can be found in the following link: https:

//allennlp.org/elmo. The configuration of the modified version can be found in the following link:
https://github.com/c4n/elmo_th.

https://allennlp.org/elmo
https://allennlp.org/elmo
https://github.com/c4n/elmo_th

49

Table4.1: Data Statistics. † - number of unique words after pruning low-frequency
words. We only included words that appear more than two times in the vocabulary; we
replaced low-frequency words with “UNK" tokens.

BEST2010

of text files # of words # of vocab. # of vocab. (>2)† # of char. avg. char/word
train 4976 2,814,970 54,351 18,928 11,685,975 4.15
val 264 132,612 - - 545,685 4.11
test 249 227,472 - - 929,064 4.08

ORCHID

train 132 269,707 14,459 4,801 1,167,359 4.33
val 15 27,733 - - 119,848 4.32
test 17 45,193 - - 198,420 4.39

Table4.2: Perturbed Test Sets

BEST2010

stress level no perturbation removeChar swapChar removeTone moveTone
level=20 233,688 18,896 16,344 427 426
level=40 197,545 37,538 32,978 874 846
level=60 161,358 56,405 49,534 1,227 1,257
level=80 125,422 75,087 65,996 1,646 1,630
level=100 89,592 93,659 82,471 2,033 2,026

ORCHID

level=20 39,320 3,066 2,615 91 101
level=40 33,550 5,986 5,266 202 189
level=60 27,690 9,036 7,891 299 277
level=80 21,703 12,100 10,629 394 367
level=100 15,997 15,139 13,087 484 486

space, punctuation mark). Furthermore, adversarial sample generation functions for

“removeChar" and “swapChar" do not perturb a token unless it has more than two char-

acters. “swapChar" does not perturb a token unless one of the last two characters is a

consonant.

50

BEST2010

Benchmark for Enhancing the Standard of Thai language processing, also known

as BEST2010, was a competition held by National Electronics and Computer Tech-

nology Center (NECTEC) in 2010 to find the best Thai word segmentation algorithm.

NECTEC also released a dataset for the competitors which contains word segmentation

boundaries and location of each named-entity. The full version of this dataset also con-

tains a predefined category of each named entity as well as a POS tag for each word.

The full version of BEST 2010 dataset can be obtained from NECTEC for research

purposes. No sentence boundary is provided in this corpus.

• Task 1: Part-of-Speech Tagging

• Task 2: Named Entity Recognition

ORCHID

ORCHID is a Thai part-of-speech tagged corpus developed by researchers from

National Electronics and Computer Technology Center (NECTEC) in Thailand and

Communications Research Laboratory (CRL) in Japan (Sornlertlamvanich etal., 1998).

Unlike BEST2010, text in ORCHID is separated into sentences manually guided by

our their own standard of sentence structuring. Unlike BEST2010, the texts in OR-

CHID only contain technical papers appeared in the the proceedings of the National

Electronics and Computer Technology Center (NECTEC) annual conferences. Since

ORCHID is only annotated with POS tags; in order to make multi-task model archi-

tecture possible to train on ORCHID, we add an auxiliary task –content and function

words classification.

51

Table4.3: List of models experimented in this research

Abbreviation Description

BiLSTM Bidirectional Long Short-Term Memory (Weak Baseline)
+ELMo BiLSTM with ELMo (Strong Baseline)
+U BiLSTM with UNK masking
+U-B BiLSTM-U with backoff representation
+U-BC BiLSTM-U-B with conditional initialization
+U-BA BiLSTM-U-B with self-attention mechanism
+U-BCA BiLSTM-U-BC with self-attention mechanism
+U-BCAD BiLSTM-U-BC with untied directional self-attention mechanism
+clp Gradient clipping

• Task 1: Part-of-Speech Tagging

• Task 2: content vs function word classification (Auxiliary task). Content words

are words that contain semantic meaning, while function words are words that

contain structural meaning (Fries, 1952). Annotations for these two classes can be

easily obtained by converting Part-of-Speech labels to content word and function

word labels.

It is important to note that the ORCHID project is built upon a multi-lingual ma-

chine translation project. Therefore, it has a different word segmentation standard,

while BEST2010’s word segmentation standard is based on a minimalist approach

(Aroonmanakun etal., 2007).

For example, ศูนยเทคโนโลยีอิเล็กทรอนิกสและคอมพิวเตอรแหงชาติ (National

Electronics and Computer Technology Center) is a single word on ORCHID corpus,

while it is segmented into 7 words on BEST2010 corpus: ศูนย (center) เทคโนโลยี
(technology) อิเล็กทรอนิกส (electronics) และ (and) คอมพิวเตอร (computer) แหง (of)

ชาติ (nation).

52

Table4.4: Micro F-1 scores between BiLSTM-U and the weak baseline model BiL-
STM reveal the effect of UNK masking technique. Value in bracket denotes standard
deviation across three runs with different random seeds. ∗ - weak baseline

Stress Level

Model 0 20 40 60 80 100

Corpus: BEST2010 Task: POS

BiLSTM∗ 94.83 (0.02) 85.39 (0.11) 75.19 (0.25) 63.64 (1.25) 50.71 (3.23) 36.25 (5.48)
+U 95.01 (0.03) 87.55 (0.08) 79.01 (0.1) 68.97 (0.14) 57.39 (0.21) 43.08 (0.55)

Corpus: BEST2010 Task: NER

BiLSTM∗ 81.04 (0.3) 70.54 (0.52) 56.63 (1.98) 40.0 (4.46) 24.68 (5.35) 13.72 (4.07)
+U 82.05 (0.19) 75.54 (0.31) 67.03 (0.44) 56.47 (0.3) 42.74 (0.55) 26.38 (1.28)

Corpus: ORCHID Task: POS

BiLSTM∗ 94.01 (0.18) 86.88 (0.19) 79.48 (0.07) 71.82 (0.22) 62.79 (0.77) 52.4 (2.1)
+U 93.68 (0.23) 87.54 (0.2) 80.47 (0.39) 72.36 (0.42) 62.83 (0.64) 52.12 (0.7)

4.4.3 Results

This section presents the experimental results of several techniques performed

on multiple noisy test sets to measure the impact of adversarial noise on the sequential

taggers. The experiments are conducted on 2 corpora mentioned in the previous section.

In this chapter, we use BiLSTM architecture shown in figure 4.5 with normal word

embeddings layer with no enhancement as a weak baseline. For a strong baseline, we

enhance the BiLSTM architecture with ELMo representation. Table 4.10 summarizes

the experimental results for this chapter. Micro F-1 scores are averaged across three

runs with different random seed.

UNK Masking

To investigate the effects of UNK masking (BiLSTM-U), we compared it with

the weak baseline (BiLSTM). We found that, on the BEST2010 corpus, UNK masking

contributes to significant improvement in robustness against adversarial samples when

53

compared to the weak baseline –BiLSTM. Not only that, UNK Masking can improve

the performance of the model when there are adversarial samples; the results in Ta-

ble 4.4 have shown that this technique can improve overall performance on BEST2010

corpus. On BEST2010 corpus, BiLSTM-U outperformed the weak baseline BiLSTM

even when there were no adversarial samples as well. At the maximum stress level,

BiLSTM-U improved the F1-score from 36.25 to 43.08 on the POS tagging task and

from 13.72 to 26.38 on the NER task on BEST2010 corpus. This shows that, on the

BEST2010 corpus, our UNK Masking technique can also improve robustness without

relying on subword level information. Furthermore, BiLSTM-U yielded smaller stan-

dard deviations when there are adversarial examples.

On the ORCHID corpus, BiLSTM-U slightly improved the F1-scores of the POS

tagging task when the stress levels were 20, 40, 60, and 80. When the stress level

was 100, UNK masking did not improve the average F-1 score. However, its standard

deviation was much lower.

One of the advantages of including more UNK tokens during the training phase is

that the word vector of UNK token is trained to handle different types of words instead

of just rare words that appear less than two times in the training set. Another advantage

is that the C2W component is trained to handle more variety of “UNK" inputs.

In addition, UNK masking also improves the robustness of Thai word segmenta-

tion task. Table 4.5 shows that UNK masking can improve the robustness of AttaCut-SC

(Chormai etal., 2019). AttaCut-SC is a CNN-based word segmentation model that takes

the concatenation of character and syllable embeddings as input. We use UNK masking

technique to mask out syllable inputs with UNK tokens.

54

Table4.5: F-1 scores between attacut-sc-u and the baseline word segmentation model
attacut-sc reveal the effect of UNK masking on word-segmentation task.

Stress Level

Model 0 20 40 60 80 100

Corpus: BEST2010 (Free) Task: Word Segmentation

AttaCut-SC 93.26 85.19 75.13 63.95 52.06 38.70
AttaCut-SC-U 91.80 84.87 76.88 68.73 59.89 50.84

Table4.6: Micro F-1 scores between BiLSTM-U and BiLSTM-U-B. Value in bracket
denotes standard deviation across three runs with different random seeds.

Stress Level

Model 0 20 40 60 80 100

Corpus: BEST2010 Task: POS

+U 95.01 (0.03) 87.55 (0.08) 79.01 (0.1) 68.97 (0.14) 57.39 (0.21) 43.08 (0.55)
+U-B 95.19 (0.03) 87.4 (0.02) 78.99 (0.17) 69.72 (0.34) 59.67 (0.65) 48.0 (1.1)

Corpus: BEST2010 Task: NER

+U 82.05 (0.19) 75.54 (0.31) 67.03 (0.44) 56.47 (0.3) 42.74 (0.55) 26.38 (1.28)
+U-B 82.29 (0.24) 75.86 (0.11) 67.87 (0.48) 56.96 (1.33) 44.25 (2.65) 29.91 (3.18)

Corpus: ORCHID Task: POS

+U 93.68 (0.23) 87.54 (0.2) 80.47 (0.39) 72.36 (0.42) 62.83 (0.64) 52.12 (0.7)
+U-B 94.89 (0.1) 90.35 (0.14) 85.6 (0.15) 80.66 (0.18) 75.17 (0.3) 69.61 (0.3)

Backoff Representation

To investigate the effects of backoff representation, we added the backoff compo-

nent to the BiLSTM-U model. By comparing BiLSTM-U-B to BiLSTM-U, we found

that backoff representation can give us better overall performance as well as better ro-

bustness against adversarial samples. As shown in Table 4.6, BiLSTM-U-B improved

overall performance in most cases except the POS tagging task on BEST2010 corpus

when the stress level was at 20 and 40, where BiLSTM-U-B yielded very close results

to BiLSTM. We found that on both corpora, BiLSTM-U-B outperformed BiLSTM-U

when there were no adversarial samples at all. When there were no adversarial exam-

ples, BiLSTM-U-B improved the F1-score from 95.01 to 95.19 on the POS tagging

55

Table4.7: Micro F-1 scores between BiLSTM-U-B and BiLSTM-U-BC. Value in
bracket denotes standard deviation across three runs with different random seeds.

Stress Level

Model 0 20 40 60 80 100

Corpus: BEST2010 Task: POS

+U-B 95.19 (0.03) 87.4 (0.02) 78.99 (0.17) 69.72 (0.34) 59.67 (0.65) 48.0 (1.1)
+U-BC 95.15 (0.09) 87.02 (0.04) 78.23 (0.1) 68.74 (0.27) 58.59 (0.39) 47.18 (0.5)

Corpus: BEST2010 Task: NER

+U-B 82.29 (0.24) 75.86 (0.11) 67.87 (0.48) 56.96 (1.33) 44.25 (2.65) 29.91 (3.18)
+U-BC 82.37 (0.17) 75.72 (0.33) 67.56 (0.71) 57.22 (0.95) 45.41 (0.74) 31.98 (0.81)

Corpus: ORCHID Task: POS

+U-B 94.89 (0.1) 90.35 (0.14) 85.6 (0.15) 80.66 (0.18) 75.17 (0.3) 69.61 (0.3)
+U-BC 95.03 (0.12) 89.94 (0.13) 84.58 (0.24) 79.0 (0.43) 72.34 (0.82) 65.78 (1.32)

task and from 82.05 to 82.29 on NER task on BEST2010 corpus. On the ORCHID

corpus, BiLSTM-U-B improved the F1-score of the POS tagging task from 93.68 to

94.89. When the adversarial stress level was at the maximum level, BiLSTM-U-B out-

performed BiLSTM-U on all corpora. On BEST2010 corpus, BiLSTM-U-B improved

the F1-score from 45.13 to 47.09 on the POS tagging task and from 26.38 to 29.91 on

the NER task. On the ORCHID corpus, BiLSTM-U-B improved the F1-score of the

POS tagging task from 52.12 to 69.61. The results suggest that subword level informa-

tion can make sequential taggers more robust.

Conditional Initialization with Affixation Embeddings

In this section, we investigate the effects of the condition initialization component

on the backoff representation component (BiLSTM-U-B vs. BiLSTM-U-BC). The ini-

tial hidden state of LSTM can be a placeholder for a set of learnable parameters; we can

also use it as a placeholder for affixation embeddings vector to include more linguistics

knowledge into our model. Table 4.7 shows that hidden state condition initialization can

only improve the performance of the NER task on BEST2010 corpus when the stress

56

Table4.8: Micro F-1 scores between BiLSTM-U-B, BiLSTM-U-BA, and BiLSTM-U-
BA-clp. Value in bracket denotes standard deviation across three runs with different
random seeds.

Stress Level

Model 0 20 40 60 80 100

Corpus: BEST2010 Task: POS

+U-B 95.19 (0.03) 87.4 (0.02) 78.99 (0.17) 69.72 (0.34) 59.67 (0.65) 48.0 (1.1)
+U-BA 95.15 (0.04) 87.06 (0.06) 78.45 (0.04) 69.15 (0.11) 59.06 (0.26) 47.72 (0.79)
+U-BA-clp 95.24 (0.03) 87.06 (0.03) 78.18 (0.09) 68.42 (0.22) 57.64 (0.51) 45.17 (1.1)

Corpus: BEST2010 Task: NER

+U-B 82.29 (0.24) 75.86 (0.11) 67.87 (0.48) 56.96 (1.33) 44.25 (2.65) 29.91 (3.18)
+U-BA 82.27 (0.16) 75.54 (0.19) 67.08 (0.36) 56.67 (1.04) 44.39 (1.77) 30.27 (2.6)
+U-BA-clp 82.34 (0.22) 75.31 (0.03) 66.4 (0.25) 54.89 (0.25) 41.28 (0.44) 26.19 (0.75)

Corpus: ORCHID Task: POS

+U-B 94.89 (0.1) 90.35 (0.14) 85.6 (0.15) 80.66 (0.18) 75.17 (0.3) 69.61 (0.3)
+U-BA 94.69 (0.1) 88.9 (0.07) 82.91 (0.3) 76.7 (0.53) 69.77 (0.82) 62.89 (0.97)
+U-BA-clp 94.89 (0.12) 90.3 (0.17) 85.35 (0.33) 80.11 (0.21) 74.0 (0.53) 67.69 (0.87)

level is 60 or higher. When the stress level was 0, BiLSTM-U-BC slightly improved the

F-1 scores of the NER task on BEST 2010 from 82.29 to 82.37 and on ORCHID corpus

from 94.89 to 95.03. In other cases, BiLSTM-U-BC has shown no improvement.

Self-Attention Mechanisms

In this section, we observe the effects of various self-attention mechanisms on

the backoff component. First, we compare BiLSTM-U-B with BiLSTM-U-BA and

BiLSTM-U-BA-clp to see the effects of self-attention mechanism and gradient clipping

on the backoff component. Then we compare all models with self-attention mechanisms

against each other.

Table 4.8 compares BiLSTM-U-B with BiLSTM-U-BA and BiLSTM-U-BA-clp

by adding the combination of attention mechanism along with gradient clipping on the

BiLSTM-U-B model. BiLSTM-U-BA and BiLSTM-U-BA-clp did not yield significant

57

improvement over Thai adversarial test sets. Across all adversarial test sets, BiLSTM-

U-BA only yielded a small increase in performance on the NER task on BEST2010

corpus when the stress levels were 80 and 100. When stress level was 0, BiLSTM-U-

BA-clp slightly improved the F-1 scores on BEST 2010 corpus from 95.19 to 95.24 on

the POS tagging task, and 82.29 to 82.34 on the NER task.

Table 4.9 shows the experimental results of models with a self-attention mecha-

nism. We compared BiLSTM-U-BA with other models with a self-attention mechanism

to test whether their additional components contribute to improvement in robustness.

The combination of self-attention mechanism and condition initialization (BiLSTM-U-

BCA-clp) did not give any improvement on BEST2010 adversarial test sets when stress

level was 40 or higher, and they did not yield any improvement at all on ORCHID ad-

versarial test sets. On the ORCHID corpus, gradient clipping was the only technique

that yielded an improvement of the performance on adversarial examples, while other

self-attention based models with condition initialization component (BiLSTM-U-BCA-

clp and BiLSTM-U-BCAD-clp) did not further improve the performance on adversarial

examples. Additional components contributed to the small improvements on clean test

sets on both corpora. On BEST2010, BiLSTM-U-BA-clp improved the F-1 score of

the POS tagging task from 95.15 to 95.24, and BiLSTM-U-BCA-clp improved the F-1

score of NER task from 82.27 to 82.58. On ORCHID, BiLSTM-U-BCAD-clp improved

the F-1 score from 94.69 to 94.98.

While various self-attention mechanisms presented in this chapter do not show

a significant overall improvement on the performance of the model, attention mech-

anism can provide us an interface to probe into our model and hence increases the

interpretability of our model. The plot on the top-left corner of Fig. 4.6 shows the at-

tention score over the word โรคภัยไขเจ็บ (sickness), the backward mechanism focuses

โรคภัย part of the word which means disease. While the forward part focuses on ย,

58

Table4.9: Micro F-1 scores between models with self-attention mechanism. Value in
bracket denotes standard deviation across three runs with different random seeds.

Stress Level

Model 0 20 40 60 80 100

Corpus: BEST2010 Task: POS

+U-BA 95.15 (0.04) 87.06 (0.06) 78.45 (0.04) 69.15 (0.11) 59.06 (0.26) 47.72 (0.79)
+U-BA-clp 95.24 (0.03) 87.06 (0.03) 78.18 (0.09) 68.42 (0.22) 57.64 (0.51) 45.17 (1.1)
+U-BCA-clp 95.2 (0.01) 87.09 (0.1) 78.28 (0.23) 68.8 (0.41) 58.67 (0.63) 47.24 (0.84)
+U-BCAD-clp 95.18 (0.07) 86.9 (0.04) 77.96 (0.01) 68.32 (0.02) 57.94 (0.08) 46.51 (0.62)

Corpus: BEST2010 Task: NER

+U-BA 82.27 (0.16) 75.54 (0.19) 67.08 (0.36) 56.67 (1.04) 44.39 (1.77) 30.27 (2.6)
+U-BA-clp 82.34 (0.22) 75.31 (0.03) 66.4 (0.25) 54.89 (0.25) 41.28 (0.44) 26.19 (0.75)
+U-BCA-clp 82.58 (0.22) 75.56 (0.1) 67.0 (0.39) 56.44 (0.61) 43.66 (1.8) 28.65 (4.23)
+U-BCAD-clp 82.21 (0.08) 75.12 (0.46) 66.04 (0.5) 55.02 (0.55) 42.2 (0.45) 27.32 (0.68)

Corpus: ORCHID Task: POS

+U-BA 94.69 (0.1) 88.9 (0.07) 82.91 (0.3) 76.7 (0.53) 69.77 (0.82) 62.89 (0.97)
+U-BA-clp 94.89 (0.12) 90.3 (0.17) 85.35 (0.33) 80.11 (0.21) 74.0 (0.53) 67.69 (0.87)
+U-BCA-clp 94.92 (0.03) 89.45 (0.18) 83.71 (0.61) 77.57 (0.76) 70.75 (1.16) 63.61 (1.68)
+U-BCAD-clp 94.98 (0.06) 89.76 (0.34) 84.52 (0.48) 78.85 (0.74) 72.42 (0.73) 65.99 (0.86)

which is the sixth character of the word, this shows that the forward part of the model

builds a context vector using the output from the sixth LSTM cell. Both backward and

forward components can focus on the informative part of the word. From the visualiza-

tion, one might imply that the forward component only focuses on the sixth character

of the word, but the forward component focuses on the output of the sixth LSTM cell,

which contains information from previous timesteps in it and contains no information

from the future timesteps. A context vector produced by a standard self-attention mech-

anism is a product of a concatenated vector of forward and backward LSTM outputs.

Therefore, it contains information from both directions. When interpreting whether a

self-attention mechanism is attending on the prefix or suffix of a word, it is possible

for an untied directional self-attention mechanism to produce a context vector that only

contains information from the previous timesteps.

59

Figure4.6: The visualization of an untied-directional self-attention mechanism

Strong baseline: BiLSTM-ELMo

ELMo (Peters etal., 2018) is known to be robust against unknown words by lever-

aging contextual and morphological clues. To investigate the robustness of our proposed

methods, we used ELMo to create a strong baseline (BiLSTM-ELMo) and compared

it against our proposed methods. Table 4.10 shows the results of all experiments in

this chapter, including BiLSTM-ELMo. For the POS tagging task on BEST2010 cor-

pus, BiLSTM-ELMo showed to be the most robust against adversarial examples when

the stress level was at 40 to 100, while maintaining competitive results when there

were no adversarial examples and when the stress level was 20. For the NER task on

BEST2010, the BiLSTM-ELMo model only obtained the best performance when the

stress level was at 100. On ORCHID corpus, BiLSTM-ELMo showed to be the most

robust against adversarial examples when the stress level was at 80 to 100. In this chap-

ter, BiLSTM-ELMo showed to be the most robust on all corpora when the stress level

was at 100. However, the speed of BiLSTM-ELMo was much slower than our proposed

architectures, as shown in figure 4.7. Speed is a substantial issue for an NLP system that

processes terabytes of text (e.g., online content analysis) (Al-Rfou and Skiena, 2012).

We can conclude that our proposed models are faster than BiLSTM-ELMo and can

produce a competitive result in cases where the stress level is less than or equal to 40.

60

Table4.10: Micro F-1 scores of all models on 2 Thai Corpora: BEST2010 and OR-
CHID. Value in bracket denotes standard deviation across three runs with different ran-
dom seeds. ∗ - weak baseline, † - strong baseline

Stress Level

Model 0 20 40 60 80 100

Corpus: BEST2010 Task: POS

BiLSTM∗ 94.83 (0.02) 85.39 (0.11) 75.19 (0.25) 63.64 (1.25) 50.71 (3.23) 36.25 (5.48)
+ELMo† 94.27 (0.04) 86.98 (0.1) 79.42 (0.17) 71.78 (0.15) 64.21 (0.22) 56.27 (0.32)

+U 95.01 (0.03) 87.55 (0.08) 79.01 (0.1) 68.97 (0.14) 57.39 (0.21) 43.08 (0.55)
+U-B 95.19 (0.03) 87.4 (0.02) 78.99 (0.17) 69.72 (0.34) 59.67 (0.65) 48.0 (1.1)
+U-BC 95.15 (0.09) 87.02 (0.04) 78.23 (0.1) 68.74 (0.27) 58.59 (0.39) 47.18 (0.5)
+U-BA 95.15 (0.04) 87.06 (0.06) 78.45 (0.04) 69.15 (0.11) 59.06 (0.26) 47.72 (0.79)
+U-BA-clp 95.24 (0.03) 87.06 (0.03) 78.18 (0.09) 68.42 (0.22) 57.64 (0.51) 45.17 (1.1)
+U-BCA-clp 95.2 (0.01) 87.09 (0.1) 78.28 (0.23) 68.8 (0.41) 58.67 (0.63) 47.24 (0.84)
+U-BCAD-clp 95.18 (0.07) 86.9 (0.04) 77.96 (0.01) 68.32 (0.02) 57.94 (0.08) 46.51 (0.62)

Corpus: BEST2010 Task: NER

BiLSTM∗ 81.04 (0.3) 70.54 (0.52) 56.63 (1.98) 40.0 (4.46) 24.68 (5.35) 13.72 (4.07)
+ELMo † 79.92 (0.22) 72.12 (0.26) 63.14 (0.34) 53.79 (0.38) 44.04 (0.3) 34.32 (0.27)

+U 82.05 (0.19) 75.54 (0.31) 67.03 (0.44) 56.47 (0.3) 42.74 (0.55) 26.38 (1.28)
+U-B 82.29 (0.24) 75.86 (0.11) 67.87 (0.48) 56.96 (1.33) 44.25 (2.65) 29.91 (3.18)
+U-BC 82.37 (0.17) 75.72 (0.33) 67.56 (0.71) 57.22 (0.95) 45.41 (0.74) 31.98 (0.81)
+U-BA 82.27 (0.16) 75.54 (0.19) 67.08 (0.36) 56.67 (1.04) 44.39 (1.77) 30.27 (2.6)
+U-BA-clp 82.34 (0.22) 75.31 (0.03) 66.4 (0.25) 54.89 (0.25) 41.28 (0.44) 26.19 (0.75)
+U-BCA-clp 82.58 (0.22) 75.56 (0.1) 67.0 (0.39) 56.44 (0.61) 43.66 (1.8) 28.65 (4.23)
+U-BCAD-clp 82.21 (0.08) 75.12 (0.46) 66.04 (0.5) 55.02 (0.55) 42.2 (0.45) 27.32 (0.68)

Corpus: ORCHID Task: POS

BiLSTM∗ 94.01 (0.18) 86.88 (0.19) 79.48 (0.07) 71.82 (0.22) 62.79 (0.77) 52.4 (2.1)
+ELMo † 93.37 (0.12) 89.02 (0.06) 84.82 (0.09) 80.39 (0.13) 75.95 (0.15) 71.3 (0.27)

+U 93.68 (0.23) 87.54 (0.2) 80.47 (0.39) 72.36 (0.42) 62.83 (0.64) 52.12 (0.7)
+U-B 94.89 (0.1) 90.35 (0.14) 85.6 (0.15) 80.66 (0.18) 75.17 (0.3) 69.61 (0.3)
+U-BC 95.03 (0.12) 89.94 (0.13) 84.58 (0.24) 79.0 (0.43) 72.34 (0.82) 65.78 (1.32)
+U-BA 94.69 (0.1) 88.9 (0.07) 82.91 (0.3) 76.7 (0.53) 69.77 (0.82) 62.89 (0.97)
+U-BA-clp 94.89 (0.12) 90.3 (0.17) 85.35 (0.33) 80.11 (0.21) 74.0 (0.53) 67.69 (0.87)
+U-BCA-clp 94.92 (0.03) 89.45 (0.18) 83.71 (0.61) 77.57 (0.76) 70.75 (1.16) 63.61 (1.68)
+U-BCAD-clp 94.98 (0.06) 89.76 (0.34) 84.52 (0.48) 78.85 (0.74) 72.42 (0.73) 65.99 (0.86)

61

Figure4.7: Average inference speed of BiLSTM-ELMo and our proposed models mea-
sured as execution time (in seconds with an NVIDIA’s GeForce GTX 1080, we repeated
each execution for 5 times to get its average inference speed) using timeit, the standard
python library for measuring execution time.

4.4.4 Error Analysis

In order to understand the problems caused by adversarial spelling perturbations,

we analyze the error rate of each perturbation type. Table 4.11 shows the error rate of

each model on each perturbation type across the two corpora. Error rates are averaged

across three runs with a different random seed. We only focus on the POS tagging task

in this section to make a comparison between the two corpora.

During an adversarial evaluation, there are four scenarios depending on which

word we are observing and its context. Fig. 4.8 illustrates a possible example for each

scenario.

The four scenarios are as follows:

1. observed words without perturbation in a low-noise context: at stress level

20, “no perturbation" column in Table 4.11 shows results of observed words with-

62

1) an observed word without perturbation in a low-noise context

2) an observed word with perturbation in a low-noise context

3) an observed word without perturbation in a high-noise context

4) an observed word with perturbation in a high-noise context

!น(day)|#(this)|$น(I)|!"ก(to feel)|เ&อย(be exhausted)|มาก(very)

!น|#|$น|$"ก|เ,อย|มาก

!|-|$|$"ก|เ,อย|มา

!น|#|$น|!"ก|เ,อย|มาก

!|-|$|!"ก|เ,อย|มา

removeTone(!"ก)—>$"ก

Figure4.8: Examples of the Thai sentence in various scenarios. The observed word is
“to feel”. The blue color denotes the observed word without perturbation. The pink
color denotes the observed word with perturbation. The red color denotes perturbed
contextual words.

out perturbation in a low-noise context. The differences in the error rates between

the models are within 2 percentage points across the two corpora.

2. observed words with perturbation in a low-noise context: at stress level 20,

“lastChar", “swapChar", “moveTone", and “removeTone" columns in Table 4.11

shows results of observed words with perturbation in a low-noise context. All

models not only degrade substantially when evaluated on all 4 types of perturba-

tions, but it also appears that the differences in error rates between the models are

much greater than scenario 1. On BEST2010 corpus, BiLSTM-U performed sur-

prisingly well for a model without character-level representation. It outperformed

BiLSTM-ELMo, the strong baseline, on “swapChar” and “removeTone” pertur-

bations. BiLSTM-U-B outperformed BiLSTM-ELMo on “moveTone”. On OR-

CHID test set, BiLSTM-U-B outperformed BiLSTM-ELMo on on “swapChar”,

“moveTone”, and “removeTone” perturbations. However, BiLSTM-ELMo ob-

tained the lowest error rate on “lastChar”.

3. observed words without perturbation in a high-noise context: at stress level

100, “no perturbation" column in Table 4.11 shows the results of observed words

63

without perturbation in a high-noise context. The differences in the error rates

between the models are within four percentage points across the two corpora. It

appears that error rates do not always increase with increases in stress level for

words without perturbation.

4. observed words with perturbation in a high-noise context: at stress level 100,

“lastChar", “swapChar", “moveTone", and “removeTone" columns in Table 4.11

shows results of observed words with perturbation in a high-noise context. On the

BEST2010 test set, BiLSTM-ELMo has demonstrated its robustness across all

perturbation types when the stress level is at 100. However, it only outperformed

on one perturbation type (lastChar) on the ORCHID test set when the stress level

is at 100. Note that the ORCHID corpus is much smaller than the BEST2010

corpus (2,814,970 tokens vs. 269,707 tokens). BiLSTM-ELMo is better when

training data is large. When training data is small, our proposed methods are

competitive to ELMo. On the ORCHID corpus, BiLSTM-U-B outperformed

BiLSTM-ELMo on “swapChar” and “moveTone” perturbations. BiLSTM-ELMo

obtained the lowest error rate on “lastChar” in this scenario.

By comparing scenario 1 to scenario 2, and comparing scenario 3 to scenario 4,

we can observe that error rates of observed words with perturbation are much greater

than error rates of observed words without perturbation in both low and high-noise

scenarios.

By comparing scenario 1 to scenario 3, we can observe that a higher amount of

perturbations in surrounding texts do not substantially increase the error rates of words

without perturbation. In contrast, we can compare scenario 2 to scenario 4 and observe

that the error rates increase substantially for perturbed words. We can conclude in this

adversarial evaluation scheme, the performance of all models on perturbed words de-

graded when the surrounding words are also perturbed. Appendix A.2 shows examples

64

of part-of-speech predictions of the perturbed inputs shown in Fig. 4.8.

4.5 Conclusions

In this chapter, multiple techniques are introduced to improve the overall per-

formance and the robustness of the weak baseline BiLSTM. Each technique can also

give different output for each corpus due to its differences and amount of training data.

Our techniques do not perform as well as the strong baseline BiLSTM-ELMo when the

stress level is at 100, but they give competitive results when the stress level is less or

equal to 40 while having significantly less inference time.

Our adversarial evaluation scheme has shown that the baseline BiLSTM model’s

performance drops rapidly when it is tested against adversarial samples. Our adversar-

ial evaluation scheme can give more insight into the robustness of the model against

spelling mistakes. Looking at the evaluation result without any adversarial sample, one

can assume that these techniques offer no significant improvement. E.g., the difference

between the micro F1 scores of BiLSTM-U and the baseline BiLSTM is less than 1

in all experimental setups where there are no adversarial examples. However, this gap

grows as there are more adversarial examples in the test set. Through our adversarial

evaluation scheme, we can uncover the incompetency of the weak baseline BiLSTM

model. The robustness of NLP systems can only be measured and improved with eval-

uation methods that challenge them with noisy and non-standard text examples.

It is important to note that this chapter only explores black-box adversarial exam-

ples. This chapter does not experiment with white-box adversarial examples. We can

use the knowledge of the model’s parameters to build adversarial examples designed to

maximize a loss score. In the next chapter, I will introduce a method to create white-

box adversarial examples for sequential tagging tasks. In addition, I will introduce an

65

Table4.11: Error rate % of each perturbation of each model tested on different noise
levels. Value in bracket denotes standard deviation across three runs with different ran-
dom seeds. Bolded text denotes the lowest error rate among each type of perturbation.
Red text denotes the highest error rate among each type of perturbation.

model no perturbation lastChar swapChar moveTone removeTone
Corpus: BEST2010 Task: POS Stress Level : 20

BiLSTM∗ 4.94 (0.05) 61.84 (0.41) 57.82 (0.52) 63.22 (1.6) 63.23 (2.04)
+ELMo† 5.22 (0.04) 43.28 (0.46) 53.84 (0.62) 46.71 (1.24) 54.10 (1.54)
+U 4.60 (0.02) 54.95 (0.85) 47.07 (0.78) 46.48 (2.54) 49.10 (0.54)
+U-B 4.42 (0.04) 53.09 (0.2) 48.41 (0.6) 44.44 (2.78) 49.41 (1.02)
+U-BC 4.47 (0.07) 55.37 (0.22) 50.27 (0.29) 46.64 (3.71) 49.88 (1.69)
+U-BA 4.47 (0.04) 55.10 (0.11) 49.75 (0.24) 47.97 (1.56) 52.22 (3.04)
+U-BA-clp 4.40 (0.02) 55.32 (0.22) 50.50 (0.25) 50.31 (2.6) 52.62 (0.82)
+U-BCA-clp 4.41 (0.04) 55.07 (0.85) 50.14 (0.41) 52.66 (0.36) 52.93 (0.47)
+U-BCAD-clp 4.46 (0.05) 56.27 (0.45) 50.74 (0.29) 51.72 (0.27) 53.47 (2.79)

Corpus: BEST2010 Task: POS Stress Level : 100
BiLSTM∗ 5.71 (0.5) 77.61 (5.58) 77.41 (7.89) 83.17 (7.16) 82.85 (6.59)
+ELMo† 4.22 (0.16) 47.67 (0.79) 59.07 (0.04) 54.36 (0.46) 60.30 (1.0)
+U 4.69 (0.12) 73.8 (0.95) 73.35 (1.14) 77.57 (0.99) 76.75 (1.22)
+U-B 3.84 (0.07) 64.50(1.21) 62.60 (1.7) 66.54 (2.93) 72.13 (2.6)
+U-BC 4.19 (0.34) 66.02 (0.95) 62.77 (0.34) 66.93 (4.1) 70.55 (4.53)
+U-BA 4.02 (0.43) 65.45 (0.75) 62.08 (0.89) 68.72 (1.1) 72.34 (0.84)
+U-BA-clp 4.25 (0.28) 67.83 (1.39) 65.98 (1.22) 72.05 (2.64) 75.57 (2.23)
+U-BCA-clp 4.05 (0.06) 65.73 (1.08) 62.96 (1.59) 71.08 (3.01) 72.26 (1.51)
+U-BCAD-clp 4.12 (0.14) 66.95 (0.65) 63.42 (0.93) 72.89 (1.1) 74.09 (2.15)

Corpus: ORCHID Task: POS Stress Level : 20
BiLSTM∗ 6.34 (0.23) 57.98 (0.3) 59.96 (0.45) 48.18 (0.57) 47.25 (2.2)
+ELMo† 6.76 (0.11) 30.28 (0.21) 49.89 (0.62) 38.61 (2.62) 32.97 (2.2)
+U 6.51 (0.17) 52.07 (1.25) 52.79 (0.06) 55.12 (2.06) 45.79 (1.27)
+U-B 5.15 (0.11) 40.11 (0.69) 39.97 (2.47) 29.70 (2.62) 30.40 (1.27)
+U-BC 5.13 (0.1) 43.07 (0.96) 43.53 (1.98) 33.99 (6.29) 36.63 (4.58)
+U-BA 5.48 (0.15) 49.29 (1.85) 49.02 (1.08) 34.65 (5.24) 39.56 (2.91)
+U-BA-clp 5.16 (0.1) 39.53 (1.05) 41.39 (2.39) 30.03 (6.74) 35.16 (1.1)
+U-BCA-clp 5.19 (0.05) 46.38 (1.31) 47.1 (1.24) 36.30 (1.51) 39.93 (2.77)
+U-BCAD-clp 5.17 (0.07) 44.39 (2.65) 44.56 (2.7) 34.65 (3.96) 38.46 (2.91)

Corpus: ORCHID Task: POS Stress Level : 100
BiLSTM∗ 6.49 (1.22) 71.3 (2.64) 69.32 (2.74) 62.89 (1.21) 62.6 (3.31)
+ELMo† 4.16 (0.02) 34.67 (0.51) 51.07 (0.6) 41.43 (2.06) 35.67 (1.34)
+U 4.78 (0.14) 72.23 (1.0) 70.96 (1.3) 65.71 (1.17) 69.42 (2.03)
+U-B 3.05 (0.14) 46.9 (0.8) 44.14 (1.4) 35.32 (2.06) 40.56 (2.52)
+U-BC 3.33 (0.28) 52.21 (1.8) 50.55 (2.33) 40.6 (6.51) 44.08 (2.42)
+U-BA 3.52 (0.11) 57.02 (1.68) 54.48 (1.28) 44.51 (4.24) 47.11 (0.36
+U-BA-clp 3.18 (0.2) 49.64 (0.87) 47.17 (1.67) 39.37 (9.98) 44.42 (4.47)
+U-BCA-clp 3.27 (0.26) 55.4 (2.77) 54.26 (2.2) 41.02 (2.34) 48.42 (0.63)
+U-BCAD-clp 3.2 (0.18) 52.16 (1.38) 49.97 (1.35) 39.99 (0.95) 47.59 (2.03)

66

adversarial training technique to improve the robustness of sequential tagging models.

Chapter V

ADVERSARIAL TRAINING AND WHITE-BOX

ADVERSARIAL EVALUATION

5.1 Introduction

This chapter is a slightly modified version of “Towards Improving the Robust-

ness of Sequential Labeling Models Against Typographical Adversarial Examples Us-

ing Triplet Loss” submitted to Natural Language Engineering. In contrast to the previ-

ous chapter, this chapter proposes white-box adversarial examples instead of black-box

adversarial examples. White-box adversarial examples have an advantage over black-

box adversarial examples because they can exploit the knowledge of the target model’s

parameters to approximate the worst-case perturbations.

This chapter focuses on improving the robustness of sequential labeling mod-

els using adversarial training and metric learning techniques. In NLP, there are many

sequence labeling tasks. Many NLP tasks such as part-of-speech (PoS) tagging, named-

entity recognition (NER), and chunking can be formulated as sequence labeling prob-

lems. The goal of any sequence labeling problem is to assign a categorical label to

each word or token (or even character) in a natural language sequence. Recent ad-

vancements in NLP have shown that deep learning models can be very effective se-

quence taggers. BiLSTM-CRF is one of the well-known techniques which has become

a standard method for building a sequential tagger (Huang etal., 2015; Lample etal.,

2016b). Recent works improve the accuracy of BiLSTM-CRF models by using contex-

tualized word embeddings (Peters etal., 2018; Akbik etal., 2018, 2019). These methods

have high evaluation scores across many sequence labeling tasks. However, it is com-

68

mon to only evaluate sequential taggers on clean datasets with regular textual inputs.

The models’ performances drop substantially when evaluated against malformed texts

(Udomcharoenchaikit etal., 2020). In the real-world, misspelling errors are common,

and detrimentally affect the performance of sequential labeling models. It is important

to note that most NLP models are not trained to be robust against spelling errors.

It is known that machine learning systems, state-of-the-art systems, are sensitive

to very small input perturbations. These small perturbations can cause poorer perfor-

mance. In the field of computer vision, it has been exhibited that machine learning

models often misclassify perturbed examples with differences that are indistinguish-

able to humans.(Goodfellow etal., 2015). These perturbed examples are also called

adversarial examples. Adversarial examples are more common in computer vision than

in NLP. Due to textual inputs’ discrete nature, it is almost impossible to create im-

perceptible perturbation on textual inputs. Adversarial examples in NLP are discrete

perturbations, such as typographical errors or token substitutions. NLP models are also

sensitive to these adversarial examples. Textual adversarial examples have shown to

cause detrimental effects on NLP systems such as, text classification (Ebrahimi etal.,

2018), machine translation (Belinkov and Bisk, 2018), and reading comprehension sys-

tems (Jia and Liang, 2017).

Previous works on adversarial examples for NLP mostly targets text classifica-

tion or machine translation tasks. Even though sequential tagging tasks are common in

NLP, research on adversarial examples for sequential tagging tasks is not common. Se-

quential tagging models are the building blocks for many NLP applications, especially

applications without enough data to be trained end-to-end. Error analysis on sequential

labeling tasks can provide an insight to robustness against spelling errors because every

word in sequential labeling tasks has its annotation. Therefore we can point out where

a sequential tagger has failed.

69

Previous literature improve the robustness of sequential taggers on out-of-

distribution texts. They apply adversarial training methods to enhance the robustness

of their models; they perturb the embeddings in continuous space and do not perturb

the input texts. (Yasunaga etal., 2018; Zhou etal., 2019). They define the robustness

of sequential taggers by testing them on twitter data (Zhou etal., 2019), on rare words

(Yasunaga etal., 2018) or on input texts with capitalization errors (Bodapati etal., 2019).

It is not common to include typographical errors as a benchmark for robustness. Since

spelling errors are prevalent, we should consider it for evaluating robustness.

In this chapter, we introduce a training strategy for sequential labeling models de-

signed to be robust when there are misspelled inputs. We apply triplet loss (Schroff etal.,

2015) to enforce similarity between clean texts’ encodings and their parallel perturbed

texts. A novel training strategy that combines adversarial training with triplet loss (AT-

T) is proposed. Instead of perturbing the embeddings, we perturb the discrete textual

inputs for both adversarial training and evaluation. We benchmark the robustness of

the models against typographical errors using black-box and white-box adversarial ex-

amples. We create these adversarial examples by generating spelling errors within an

input sequence. We do not assume any access to the model parameters when generating

black-box adversarial examples; while, white-box adversarial examples are generated

with full-access to the model parameters to find the set of perturbations that maximize

loss for each input sequence. Hence, we can gain an insight towards the worst-case per-

turbations to the textual inputs from the white-box adversarial examples. Here we show

that our AT-T method is more robust than the baseline training method when tested on

adversarial test sets.

In this chapter, we present two main contributions:

1. A novel training framework for sequential taggers that incorporates adversarial

training with triplet loss (AT-T) which improves the robustness over spelling er-

70

Table5.1: The typographical errors for creating adversarial examples. * Note that capi-
talization error is not applicable to writing systems without capitalization.

Typographical error Example
Insertion Thailand→ Thailaand arrow→ arrrow
Transposition Thailand→ Thailadn arrow→ arorw
Deletion Thailand→ Thailnd arrow→ arow
Substitution Thailand→ Thailxnd arrow→ arroe
Capitalization* Thailand→ tHAILAND arrow→ ARROW

rors by constraining the similarity between unperturbed textual inputs and per-

turbed textual inputs (Section 5.2.3).

2. An adversarial evaluation scheme for sequential labeling tasks in NLP that bench-

marks with both white-box and black-box adversarial examples (Section 5.2.4).

5.2 Methodology

This chapter’s main idea is that we want to build a robust model against misspelled

texts. Ideally, a robust model should perform well on both clean test sets and adversarial

test sets. This section discusses our methodology for generating adversarial examples,

our training strategies, and an adversarial evaluation scheme that evaluates our models

with multiple parallel test sets.

5.2.1 Adversarial Examples

For discrete textual inputs, one of the perturbations that we can generate is pertur-

bation at the character-level. This is more likely to maintain the meaning of the original

input in contrast to word-level perturbation. Previous research found that NLP mod-

els are not robust to character changes, while humans are much more robust to these

changes (Ebrahimi etal., 2018).

71

In this chapter, we generate adversarial examples to simulate a scenario where a

model encounters misspelled textual inputs. Table 5.1 reveals five typographical errors

used to create typographical adversarial examples. Previous research experimented with

insertion, transposition, substitution, and deletion errors (Heigold etal., 2018; Belinkov

and Bisk, 2018; Karpukhin etal., 2019). Since capitalization is an important feature to

sequential tagging tasks such as NER (Nebhi etal., 2015; Bodapati etal., 2019), we also

include capitalization error in our experiment. To generate a capitalization error, we

swap uppercase characters with lowercase characters and vice-versa. By synthetically

perturbing spellings of words within the existing datasets, we can generate new test sets

without having to collect and annotate new test sets.

We use the following constraints to generate adversarial examples are more likely

to be comprehensible to humans: we only perturb words with at least four characters.

We do not perturb the first or last letters except for transposition and capitalization

errors. For transposition error, we do not perturb the first letter. For capitalization error,

almost all perturbations do not stop humans from inferring the original text.

Black-box adversarial examples

Black-box adversarial examples are created without any knowledge about the

model’s parameters. For each word with the length of at least four characters, we sample

a perturbation type from a discrete uniform distribution. Then we generate all the pos-

sible variations within the perturbation type and constraints mentioned in the previous

section, then we sample one of perturbations from a discrete uniform distribution.

72

White-box adversarial examples

White-box adversarial examples have a full-access to the model’s parameters, it

uses this knowledge to create worst-case adversarial examples. In this work, we extend

previous literature (Ebrahimi etal., 2018; Michel etal., 2019; Wallace etal., 2019) to

generate adversarial examples with typographical errors. Given a textual input sequence

of n words X = {x1, . . . , xn}, we represent each word with its vector representation xi.

Then We start by selecting the position i∗ in the input sequence with the largest gradient

magnitude. If the word xi has at least four characters, then it satisfies our constraint then

we find an adversarial example x̂ for the word xi based on the following optimization

problem:

arg max
x̂∈C

Ltar (x0, . . . , xi−1, x̂, xi+1, . . . , xn) (5.1)

Where C is all possible misspelled variations for the word xi, and x̂ is one of the

possible perturbations. Ltar is the target loss function. For all white-box adversarial

attacks in our experiments, we use a standard loss function Ltar without any auxiliary

losses. The equation 5.1 can be approximated using the first-order approximation to

save the computational cost (Ebrahimi etal., 2018; Michel etal., 2019; Wallace etal.,

2019):

arg max
x̂∈C

[x̂ − xi]
⊤ ∇xiLtar (5.2)

Algorithm 2 shows that we do not apply any perturbation to words with the length

of less than four characters. At each iteration, we select a position in the sequence with

the largest gradient magnitude. Then we alter the word at the selected position with

the perturbation that causes the highest loss. Then we replace the word at the selected

position in the input sequence with its adversarial version. We iterate the same process

without perturbing the already altered word until every word in the input sequence is

perturbed. The final result is a perturbed text sequence (Xp).

73

Algorithm2:White-box adversarial attack
Input: Original text sequence (X)
Output: Perturbed text sequence (Xp)
(1. Initialize the list of perturbed words and fill it with indexes of words that
will not be perturbed e.g. words with less than 4 characters)
perturbed_list← ∅;
foreach word xi in the sequence X do

if |xi | < 4 characters then
perturbed_list← perturbed_list ∪{i};

end
end
(2. Each iteration, generate an adversarial example and replace the original
word with it)
while ∃i < perturbed_list do

back-propagate Ltar to get gradient ∇xiLtar;
i∗ ← arg max

i<perturbed_list
∥∇xiLtar∥2;

perturbed_list← perturbed_list ∪{i∗};
x̂∗ ← arg max

x̂∈C
[x̂ − xi]

⊤ ∇xiLtar;

X [i∗]← x̂∗;
end
Xp ← X ;
return Xp;

Figure5.1: Real samples collected from the CoNLL2003 test set with predictions from
the baseline model (ELMo enhanced BiLSTM-CRF): (a) unperturbed original text, (b)
black-box perturbation, and (c) gradient-based white-box perturbation. Blue texts and
boxes refer to correct predictions. Red texts and boxes refer to incorrect predictions.

Fig. 5.1 illustrates a text sequence collected from the CoNLL2003 test set along

with its black-box and white-box perturbed versions. Fig. 5.1 also includes predictions

from the baseline model (ELMo enhanced BiLSTM-CRF (Peters etal., 2018)) for the

NER task.

74

5.2.2 Adversarial Training

Adversarial Training (AT) is a common technique for enhancing the robustness of

deep learning models against adversarial examples. It improves the robustness against

adversarial attacks by including adversarial examples into the training set. We employ a

black-box adversarial training procedure, where we augment input sequences with their

parallel perturbed text sequences without using any access to the target neural networks’

parameters. Adversarial examples are generated using the method discussed in Section

5.2.1.

At the beginning of every iteration, black-box adversarial examples are generated

dynamically for all the training inputs in order to train the model using both clean exam-

ples and typographical adversarial examples. Therefore, data augmentation would vary

every epoch. This enhances the robustness of the model against an array of perturbed

input texts. At each training step, the loss function for adversarial training is defined as:

LAT = Lclean(θ; X , y) + γLperturbed (θ; Xp, y) (5.3)

where Lclean(θ; X , y) and Lperturbed (θ; Xp, y) represent the loss for an unper-

turbed text sequence (clean) and the loss for the perturbed text sequence, respectively.

y represents an output sequence of n predictions, where y = (y1, y2, . . . , yn). θ repre-

sents the learnable parameters. γ ∈ (0,1) is a constant weight (hyperparameter) for the

loss score of the perturbed text input. In our experiments, we used γ = 0.2.

5.2.3 Auxiliary Losses

In our experiments, we used two auxiliary losses: pair similarity loss and triplet

loss. The central idea of these losses is that we want to constraint the distance between

75

an encoded representation of an original input sequence and an encoded representation

of its perturbed pair.

A contextual encoder takes vectors of an input sequence (x1,x2, . . . ,xn) and re-

turns vectors of an output sequence (h1,h2, . . . ,hn), which represents encoded informa-

tion about the input sequence at each time-step.

We yield a fixed dimensional embedding representation of an entire text sequence

by averaging the sequence of output vectors. Hence, we can calculate the distance

between input sequences of different lengths.

s =

∑
i hi

|X | (5.4)

Where s is a fixed length encoded vector of a sequence, and |X | is a number of

words in the sequence.

s is normalized using L2 normalization. When two vectors are normalized to

unit length, the squared Euclidean distance between two vectors is proportional to their

cosine similarity score.

z =
s

max (∥ s∥2, ϵ)
(5.5)

Where ϵ is a small positive value that helps us avoid division by zero. We used ϵ =

10−12 in all of our experiments.

Pair Similarity Loss

Pair similarity loss constraints the distance between the encoded representation of

a clean input text sequence and a perturbed input text sequence.

Lpair = zc − zp22 (5.6)

76

Figure5.2: An example of a triplet from the CoNLL2003 corpus. With triplet loss as
a part of training objective, we want the distance between a clean text sequence and
its perturbed pair to be closer than the distance between a clean text sequence and a
random text sequence as illustrated in this figure.

where zc is an encoded representation of an original text sequence (clean) and zp an en-

coded representation of a perturbed text sequence. We dynamically generate a perturbed

text sequence from the clean text sequence as mentioned in section 5.2.1; therefore, per-

turbations for each text sequence are vary in each epoch.

Triplet Loss

The triplet loss from (Schroff etal., 2015) is applied as an auxiliary loss to con-

straint the distance between text sequences, so that an encoded representation of a clean

text sequence is more similar to encoded representations of its perturbed versions than

a random text sequence:

Ltriplet =
[zc − zp22 − zc − zr22 + α]+ (5.7)

where zr represents an encoded representation of a random text sequence and α repre-

sents a margin between perturbed and random text sequences. We used α = 0.2 in all

of our experiments.

In order to mine each triplet, we sample a random sequence by randomly select

a sequence from a training set, excluding the original text sequence (clean). As shown

in Fig. 5.2, we provide an example of a triplet used for training one of our models; the

distance between the clean text sequence and the perturbed text sequence are smaller

than the distance between the clean text sequence and the random text sequence.

77

In summary, there are four training objectives that we experimented with:

1. baseline:

L̃ = Lclean

2. adversarial training (AT):

L̃ = LAT

3. adversarial training + pair similarity loss (AT-P):

L̃ = LAT + Lpair

4. adversarial training + triplet loss (AT-T):

L̃ = LAT + Ltriplet

The baseline method is a standard loss value of the original corpus (clean). We

use it to train the baseline model to test whether we can improve the robustness with

other training objectives.

AT, AT-P, and AT-T are training objectives for training models that can obtain

high accuracy on clean sequential inputs and also robust against malformed texts at the

same time. The AT method includes adversarial text sequences to the model at training

time, making it more robust to adversarial examples. As shown in Fig. 5.3, the AT-

P method constraints similarity between original and adversarial inputs at the encoder

layer instead of the embedding layer. This allows us to freeze pre-trained embeddings

and save on computation time since the expensive forward pass on the frozen parts

will only be computed once for the clean inputs. Fig. 5.4 shows our proposed AT-T

framework, which combines the adversarial training technique with triplet loss.

78

Figure5.3: The AT-P framework for training robust neural networks against typograph-
ical adversarial examples. It combines adversarial training with the pair similarity loss.

Figure5.4: Our AT-T framework for training robust neural networks against typograph-
ical adversarial examples. It incorporates adversarial training with the triplet loss.

5.2.4 Adversarial Evaluation Scheme

Despite strong performances on standard evaluation schemes, current sequential

tagging systems perform poorly under adversarial evaluation. To determine whether

sequential tagging systems can handle inputs with spelling errors, we use an adversarial

evaluation scheme that contains parallel test sets with altered input texts.

Since we cannot directly evaluate the robustness of the models from the standard

test sets. Therefore, it is necessary to simulate an environment where there are typo-

graphical errors. We do this by injecting typographical errors into our test sets. We

generate typographical errors by using black-box and white-box methods discussed in

section 5.2.1 and section 5.2.1. Our adversarial evaluation scheme tests whether NLP

systems can tag text sequences that contain perturbed parallel text sequences without

changing the original labels, while it also evaluates whether our models can maintain

their performance on unperturbed texts. We propose that an evaluation scheme should

evaluate models on three parallel test sets:

1. original test set: We evaluate the models on an original test set without any

perturbation to ensure that our models can also perform well on unperturbed texts.

2. black-box adversarial test set: We alter and replace the original test set with

79

black-box adversarial examples. A test set with black-box adversarial examples

can show us the robustness of the models against typographical errors in general.

A perturbation for each word is selected without access to the model’s parameters.

3. white-box adversarial test set: We alter and replace the original test set with

gradient-based white-box adversarial examples. Instead of sampling a perturba-

tion from a discrete uniform distribution, the white-box adversarial attack method

selects an adversarial example using knowledge of the model’s parameters to

maximize the loss. Since there are multiple ways to generate an adversarial ex-

ample for each word, the white-box adversarial attack method allows us to ap-

proximate the worst perturbation.

5.3 Experiments

In this section, we discuss the experimental setup, evaluation metric, and corpora

used for training our sequence labeling models.

5.3.1 Experimental Setup

Our experiments rely on ELMo enhanced BiLSTM-CRF sequential tagger (Piktus

etal., 2019) as a baseline for comparison since it can exploit character-level information

as well as contextual information, making it suitable for dealing with malformed texts.

We follow the AllenNLP (Gardner etal., 2017) implementation of this model. The

ELMo enhanced BiLSTM-CRF sequential tagger concatenates 512-dimensional pre-

trained ELMo embeddings with 50-dimensional pre-trained GloVe embeddings and 16

dimensional CNN character embeddings to create a token representation. The CNN

character representation uses 128 convolutional filters of size three with ReLU activa-

80

tion and max-pooling. Since there is no pre-trained ELMo or GloVe for Thai language,

we trained ELMo from scratch on the ORCHID corpus. We also replaced GloVe with

randomly initialized Thai word embeddings of the same dimensional size. The token

representation is forwarded to two stacked BiLSTM layers with 200 hidden units in

each layer. The second BiLSTM layer’s output is passed to a CRF model to predict

a label for each token in the input sequence. The dropout rate between each layer is

0.5 (including dropout between the first and the second BiLSTM layer). During train-

ing, the parameters are optimized using Adam optimizer with a constant learning rate

of 0.001. The gradient norms are rescaled to have a maximum value of 5.0. The pre-

trained ELMo embeddings are not fine-tuned. We train all the models in this research

for 40 epochs and use early stopping to stop training after 10 epochs with no improve-

ment on the clean validation set. We report the averaged score across three runs with

different random seeds.

5.3.2 Evaluation Metric

For each corpus, we evaluate our models in three different test sets: clean, black-

box, white-box as discussed in section 5.2.4. We benchmark our models using F1 met-

ric:

F1 =
2 × precision × recall
(precision + recall)

(5.8)

For span labeling tasks, such as chunking and NER, a prediction is considered correct

only if it is an exact match of a corresponding span in the corpus. A span is a unit that

consists of one or more words. Part-of-Speech tagging task is not a span-based task

therefore we can calculate F1 score at word-level.

81

5.3.3 Corpora

In this chapter, we present the results obtained from four benchmarks across two

corpora: CoNLL2003 (NER, English), CoNLL2003 (chunking, English), CoNLL2003

(PoS, English), and ORCHID (PoS, Thai).

CoNLL2003 is a language-independent named entity recognition corpus (Tjong

KimSang and DeMeulder, 2003). It contains data from two European languages: En-

glish and German. Only English data is freely available for research purposes. There-

fore, we only use the English version in this study. Apart from NER annotations,

CoNLL2003 also contains part-of-speech and syntactic chunk annotations.

In addition, we also use a Thai ORCHID corpus as mentioned in section 4.4.2

because it has a similar size to CoNLL2003, and it also has part-of-speech annotation.

Since Thai has no explicit word boundary, we use gold segmentation provided by the

Thai ORCHID corpus to define our word inputs. We split 10 % of the ORCHID corpus

for testing. Then we split the remaining corpus into a training set (90 %) and a validation

set (10 %).

Table 5.2 shows the detailed statistics of the two corpora. For the CoNLL2003

corpus, the number of classes does not include the class ‘O’ for non-named entities or

non-syntactic chunks.

For each corpus, we use a separated set of characters for creating insertion and

substitution errors. For the English CoNLL2003 corpus, we use all English alphabets,

both lowercase, and uppercase. For the Thai ORCHID, we use all the Thai consonants,

the vowels, and the tonal marks.

82

Table5.2: Data statistics of the English CoNLL2003 corpus and the Thai ORCHID
corpus. (training set/validation set/test set)

CoNLL2003 ORCHID
Language English Thai
Task PoS/NER/Chunking PoS
of classes 44/4/9 47
of words 203,621/51,263/46,425 274,006/25,401/43,226
of characters 890,042/224,197/200,112 1,187,721/107,512/190,394
avg. char / word 4.4/4.4/4.3 4.3/4.2/4.4

5.4 Experimental Results

We performed experiments over three sequence labeling tasks across two lan-

guages to better understand the relative importance of our training objectives. We in-

vestigated the robustness of sequential taggers through a series of black-box and white-

box attacks. As shown in Table 5.3, the baseline method performs much worse on

white-box adversarial examples than black-box adversarial examples, indicating that

white-box attacks can generate stronger adversarial examples. This suggests that we

can select a misspelling variant that is more damaging than the others. It is important to

point out that the NER task is more sensitive to typographical errors than the chunking

and PoS tasks. For the CoNLL2003 corpus, the differences between F1 scores on black-

box and white-box test sets are much higher for the NER task. The degradation of the F1

scores–when evaluated on noisy test sets–seems to be less severe for the chunking and

PoS tasks. For the Thai ORCHID corpus, the gap between F1 scores on the black-box

and the white-box test sets are much closer than the CoNLL2003 corpus.

Comparing to the baseline, AT, AT-P, and AT-T can improve the robustness against

malformed text without degrading its performance on the clean texts. AT, AT-P, and AT-

T can all maintain competitive results on the original test sets compared to the baseline

method. The AT-T method outperforms all other methods on both black-box and white-

box test sets for span-based tasks (NER and chunking).

83

Table5.3: F1 scores and theirs standard deviations on the English CONLL2003 and the
Thai ORCHID corpora. We averaged the scores across three runs with different random
seeds, and calculated their standard deviations. A bolded number refers to the best F-1
score for each task in each test set.

original test set black-box test set white-box test set
CoNLL2003 (English,NER)

baseline 91.72 ± 0.24 55.87 ± 1.61 39.53 ± 1.69
AT 91.85 ± 0.00 83.42 ± 0.28 69.06 ± 0.51
AT-P 91.78 ± 0.07 83.74 ± 0.20 69.17 ± 3.07
AT-T 92.04 ± 0.00 83.87 ± 1.30 71.55 ± 2.42

CoNLL2003 (English,Chunking)
baseline 91.92 ± 0.11 76.48 ± 0.90 66.03 ± 0.60
AT 91.87 ± 0.07 81.62 ± 0.41 77.90 ± 0.99
AT-P 91.92 ± 0.04 86.97 ± 0.13 79.65 ± 0.57
AT-T 91.68 ± 0.08 87.37 ± 0.27 80.79 ± 1.16

CoNLL2003 (English, PoS)
baseline 95.74 ± 0.12 84.01 ± 0.42 77.31 ± 0.29
AT 95.73 ± 0.06 93.03 ± 0.04 88.79 ± 0.14
AT-P 95.65 ± 0.03 92.93 ± 0.05 88.86 ± 0.05
AT-T 95.56 ± 0.00 92.83 ± 0.09 88.64 ± 0.33

ORCHID (Thai, PoS)
baseline 93.89 ± 0.08 77.36 ± 0.31 75.55 ± 1.13
AT 94.13 ± 0.02 90.37 ± 0.26 85.44 ± 0.52
AT-P 93.89 ± 0.03 89.65 ± 0.44 83.21 ± 1.10
AT-T 93.91 ± 0.07 88.76 ± 0.65 83.19 ± 1.11

Furthermore, we also provide average cosine similarity scores between clean-

perturbed pairs (zc, zp) and clean-random pairs (zc, zp) as shown in Table 5.4. This

reveals the effectiveness of our similarity constraint techniques: pair similarity loss and

triplet loss. Ideally, we want the cosine similarity score of a clean-perturbed pair to be

high, and the cosine similarity score of a clean-random pair to be low.

5.4.1 Effects of Adversarial Training

We examined the performance of the models trained by the adversarial training

(AT) method compared to the baseline method. Table 5.3 indicates that adversarial

training is a very effective method for improving the robustness of sequential labeling

84

models against typographical adversarial examples across all tasks on both black-box

and white-box test sets. The adversarial training method also maintains competitive

results on the original test sets.

For the Thai ORCHID corpus, the AT method obtained the best scores on all test

sets. The differences between the F1 scores of black-box and white-box test sets are

lower for the PoS tagging task on the ORCHID test set than the CoNLL2003 corpus.

For the English CoNLL2003 corpus, adversarial training obtains the best result on the

black-box test set for the PoS tagging task.

Table 5.4 shows that adversarial training slightly improves the similarity between

the encoded sequence representations of clean-perturbed pairs.

5.4.2 Effects of Pair Similarity Loss

We investigated the performance of the models trained by the AT-P method com-

pared to the AT method. The AT-P method improves the performance by constraining

the similarity between original texts and perturbed texts. Table 5.3 shows a marginal

improvement on black-box and white-box test sets for the NER task; the improvement is

more noticeable on the chunking task. The AT-P method can also maintain competitive

results on the original test sets. The results suggest that, for span-based tasks (NER and

chunking), we can improve the robustness against typographical errors by constraining

the similarity between original and malformed text sequences. For the PoS tagging task,

the AT-P method does not improve the F1 score on the ORCHID adversarial test sets,

and it marginally improves the F-1 score by only 0.07 on CoNLL2003 white-box test

set from 88.79 (AT) to 88.86 (AT-P).

Table 5.4 shows that the pair similarity loss improves the similarity between the

encoded sequence representations of clean-perturbed pairs substantially. However, it

85

also increases the similarity between clean-random pairs for which we want to keep

low.

5.4.3 Effects of Triplet Loss

We observed the performance of the models trained by the AT-T method com-

pared to the AT and AT-P methods. Triplet loss minimizes the distance between clean

text sequence and its parallel perturbed text sequence and maximizes the distance be-

tween clean text sequence and a random perturbed text sequence. Table 5.3 indicates

that the AT-T method outperforms the AT-P method on both black-box and white-box

test sets for span-based tasks (NER and chunking) on CoNLL2003. The AT-T method

maintains competitive results on the original test sets and achieves the highest score on

the original NER dataset. However, the AT-T method does not improve the PoS task

performances on the CoNLL2003 and the ORCHID corpora on both black-box and

white-box test sets.

Regarding to the fact that both AT-P and AT-T methods did not provide a clear

improvement over the AT method, we can conclude that our sequence-level similarity

constraints can improve the performances over adversarial test sets only for the span-

based tasks. It does not improve the robustness over adversarial examples for the PoS

tagging task. Note that a span can be a large portion of the sequence; therefore, it can

benefit more from sequence-level similarity constraints.

Table 5.4 shows that triplet loss lowers the similarity between clean-random pairs.

However, it does not improve the similarity between the encoded sequence representa-

tions of clean-perturbed pairs. Nevertheless, the gaps between the similarity scores

between clean-perturbed pairs and clean-random pairs are larger with triplet loss.

86

Table5.4: Average cosine similarity scores between clean-perturbed pairs and clean-
random pairs. We averaged the cosine similarity scores and their standard deviations
across three runs with different random seeds. We want the similarity between each
clean-random pair to be high, and the similarity between each clean-random pair to
be low. † - This shows a difference between the average cosine similarity scores of
clean-perturbed pairs and clean-random pairs for each model.

clean-perturbed pair clean-random pair ∆ avg sim. †
CoNLL2003 (English,NER)

baseline 0.72 0.57 0.15
AT 0.74 0.57 0.17
AT-P 0.85 0.81 0.04
AT-T 0.70 0.29 0.41

CoNLL2003 (English, Chunking)

baseline 0.76 0.66. 0.10
AT 0.77 0.66 0.11
AT-P 0.85 0.81 0.04
AT-T 0.70 0.38 0.32

CoNLL2003 (English, PoS)

baseline 0.64 0.36 0.28
AT 0.65 0.36 0.29
AT-P 0.82 0.69 0.13
AT-T 0.64 0.25 0.39

ORCHID (Thai, PoS)

baseline 0.65 0.36 0.29
AT 0.69 0.34 0.35
AT-P 0.79 0.53 0.26
AT-T 0.72 0.32 0.40

5.5 Error Analysis

In this section, we systematically examine what types of typographical errors

are harder to predict. We analyzed the error rate of each typographical error type.

Studying typographical errors on sequential labeling task has an advantage because

we can analyze word-level errors by comparing them to their ground truths and their

typographical error types. Therefore, we can study the impact of each error type in

a test set with multiple error types. We evaluate errors with the black-box test sets

87

since we can use the same black-box test set across multiple runs and multiple tasks

within the same corpus. In addition, the error types are sampled from a discrete uniform

distribution. For the CoNLL2003 black-box test set, the proportion of each error type is

as follows: 8.9% insertion, 9.2% deletion, 9.2% transposition, 9.1% substitution, 9.1%

capitalization, and 54.5% clean. For the ORCHID black-box test set, the proportion

of each error type is as follows: 11.9% insertion, 11.7% deletion, 11.7% transposition,

11.4% substitution, and 53.3% clean. All the clean samples are words with less than

four characters which we do not consider for perturbation.

Table 5.5 shows the error rates of the models on five typographical error type.

The baseline model is trained on vanilla texts only. As shown in Table 5.5, the base-

line model is the most sensitive to all types of typographical errors on all tasks and

corpora. The baseline model is also sensitive to words without perturbation (Clean)

for span-based tasks (NER and chunking), this suggests that they were also affected by

their surrounding perturbed words. The error rate of the baseline model on words with-

out perturbation is 25.04 percent for the NER task and 6.31 percent on the chunking

task, while the error rate remains low at 2.53 and 3.30 for the part-of-speech tagging

task on the ORCHID corpus and the CoNLL2003 corpus, respectively. For the En-

glish CoNLL2003 corpus, insertion error has the highest error rates for all tasks for the

baseline model. Interestingly, substitution error has lower error rates than transposi-

tion error, which contains all the original letters for NER and chunking tasks. For the

chunking task, transposition error rates are higher than deletion error, which also alters

the length of each word. Surprisingly, capitalization error also has a high error rate even

we normalized it for word embeddings. The only difference is that the character-level

part of ELMo and the CNN character-to-word embeddings are sensitive to capital let-

ters. Therefore capitalization is still an important feature for these sequential tagging

tasks. For the English CoNLL2003 corpus, models trained with triplet loss are the most

robust for span-based tasks (NER and chunking).

88

The AT method is the most effective on the black-box test set for the Thai OR-

CHID corpus. Substitution error causes the highest error rates for all methods. This

error analysis reveals that the error rates on all typographical errors on the ORCHID

corpus are high, while our models obtained high F1 scores on the ORCHID test sets.

This is because we did not use a span-based F1 score to evaluate the ORCHID corpus

since part-of-speech tagging is not a span-based problem—a span-based evaluation is

more strict. The span-based evaluation is per span, not per token. Therefore, if there

is an incorrect prediction within a span, then that span is considered incorrect. For the

PoS tagging task, methods with additional similarity constraints (AT-P and AT-T) do

not improve or only slightly improve the robustness against typographical errors. For

span-based tasks, methods with similarity constraints (AT-P and AT-T) can enhance the

performance over typographical adversarial examples.

5.6 Real-World Data

In this section, we set up an extra experiment using a real-world dataset to

show the models’ performances on real out-of-distribution data. We collected 41

Thai-language samples with spelling errors from Twitter (Twitter-41). The Twitter-

41 dataset1 contains 965 words. 291 out of these 965 words are out-of-vocabulary

words. The number of unique words is 438. We annotated this dataset with the Univer-

sal Dependency (UD) POS tags because they can be mapped directly from ORCHID

POS tags2 Hence, we can test our models trained on the ORCHID corpus on this new

dataset. Although the dataset is very small, it can reveal the NLP systems’ weaknesses

and illustrate the importance of building robust models. Also, it shows what the lack of

diversity in data collection can lead to.
1The dataset can be downloaded from this link: https://github.com/c4n/

thai-political-tweets
2PyThaiNLP documentation contains the mapping between UD tags and ORCHID tags: https:

//www.thainlp.org/pythainlp/docs/2.0/api/tag.html

https://github.com/c4n/thai-political-tweets
https://github.com/c4n/thai-political-tweets
https://www.thainlp.org/pythainlp/docs/2.0/api/tag.html
https://www.thainlp.org/pythainlp/docs/2.0/api/tag.html

89

Table5.5: Error rates and their standard deviations of models on different typographical
errors. We calculate the error rates at word-level only. We excluded words with “O”
(non-named entities, or non-syntactic chunks) as their ground truth from the calcula-
tion. ‡ - “Clean” refers to unperturbed words, these are words that are shorter than 4
characters. We do not alter words that are shorter than 4 characters to ensure that the
perturbed words are intelligible to humans. † - Thai has no capitalization.

Insertion Deletion Transposition Substitution Capitalization Clean‡
CoNLL2003 (English,NER)

baseline 42.56 ± 1.13 41.61 ± 0.63 40.68 ± 0.38 37.98 ± 0.94 38.96 ± 3.74 25.04 ± 0.07
AT 18.00 ± 0.99 18.53 ± 0.54 18.21 ± 0.54 15.81 ± 0.15 15.00 ± 1.57 11.38 ± 0.97
AT-P 17.69 ± 1.80 17.71 ± 3.53 17.82 ± 2.26 15.98 ± 1.76 13.81 ± 5.76 12.02 ± 2.59
AT-T 18.21 ± 0.57 17.56 ± 1.70 16.88 ± 0.97 15.09 ± 1.14 12.93 ± 0.83 11.68 ± 1.00

CoNLL2003 (English, Chunking)

baseline 17.21 ± 0.94 14.39 ± 0.69 16.13 ± 1.09 15.32 ± 1.32 11.62 ± 0.62 6.31 ± 0.64
AT 7.64 ± 0.34 7.29 ± 0.16 7.64 ± 0.21 6.95 ± 0.14 5.52 ± 0.08 4.21 ± 0.08
AT-P 7.39 ± 0.29 6.57 ± 0.07 7.12 ± 0.19 6.59 ± 0.07 5.08 ± 0.07 4.16 ± 0.15
AT-T 7.18 ± 0.58 6.44 ± 0.40 7.07 ± 0.61 6.54 ± 0.17 5.18 ± 0.37 4.13 ± 0.05

CoNLL2003 (English, PoS)

baseline 34.63 ± 0.23 25.64 ± 2.06 30.76 ± 1.41 30.79 ± 1.11 39.18 ± 1.20 2.53 ± 0.08
AT 12.92 ± 0.20 12.13 ± 0.10 14.62 ± 0.28 13.25 ± 0.08 10.62 ± 0.37 2.48 ± 0.08
AT-P 12.97 ± 0.37 12.04 ± 0.19 14.10 ± 0.16 13.15 ± 0.18 10.53 ± 0.13 2.53 ± 0.00
AT-T 13.27 ± 0.53 12.17 ± 0.25 14.77 ± 0.53 13.29 ± 0.18 10.62 ± 0.59 2.61 ± 0.03

ORCHID (Thai†, PoS)

baseline 44.31 ± 0.80 42.72 ± 0.56 44.73 ± 0.84 46.91 ± 0.68 N/A 3.30 ± 0.16
AT 16.61 ± 0.81 16.89 ± 0.47 16.90 ± 0.87 20.28 ± 0.77 N/A 2.57 ± 0.03
AT-P 19.35 ± 1.80 19.75 ± 1.82 19.92 ± 1.58 23.46 ± 2.12 N/A 2.70 ± 0.02
AT-T 20.20 ± 1.81 20.47 ± 1.59 20.11 ± 1.14 24.05 ± 1.72 N/A 2.79 ± 0.06

Although it is easier to annotate with UD tags because the number of unique tags

is much lower than the ORCHID tags, the Twitter-41 dataset is very different from the

ORCHID dataset used to train the model. The ORCHID dataset contains texts from aca-

demic conference proceedings, while the Twitter-41 dataset contains mostly informal

political discussions in Thai. Therefore, the performances of the models on the Twitter

dataset are worse than the ORCHID dataset. Table 5.6 shows that our proposed methods

can improve the performance on the Twitter-41 dataset over the baseline model. Even

though the performances on the Twitter-41 dataset are much lower, our results highlight

the need to address out-of-distribution data.

90

Table5.6: The F1-scores of the models trained on the ORCHID dataset and evaluated
on the Twitter-41 dataset

Baseline AT AT-P AT-T

Twitter-41 (PoS) 67.56 68.08 68.39 69.12

5.7 Conclusions

In this chapter, we propose a novel training method (AT-T) for a sequential label-

ing model comprising adversarial training and triplet loss. We also propose an adver-

sarial evaluation scheme to conduct experiments on both original and adversarial test

sets.

We have shown that our proposed AT-T training objective, incorporating adversar-

ial training method and triplet loss, can withstand typographical adversarial examples

while maintaining high F1 scores on the original test sets. For span-based tasks (NER

and chunking), the AT-T method yields higher F1 scores than all the other methods on

both black-box and white-box adversarial test sets.

Adversarial training can strengthen the robustness of all sequential taggers against

spelling errors. Moreover, it slightly increases the similarity between the encoded se-

quence representations of clean-perturbed pairs.

Using similarity constraints, such as pair loss and triplet loss, at the sentence level

improves the performance for span-based tasks (NER and Chunking). For PoS tagging,

no substantial improvement is observed. Pair loss also increases the similarity between

clean-perturb sequence pairs substantially. However, it also increases the similarity

between clean-random pairs; and the differences between the average cosine similar-

ity scores of clean-perturbed pairs and clean-random pairs become lower. Triplet loss

widens these differences.

91

Our adversarial evaluation scheme shows the weaknesses of deep learning mod-

els on typographical errors. It approximates the worst-case scenario with white-box

attacks and approximates a general performance on malformed texts with black-box at-

tacks. The adversarial evaluation scheme also includes the performance scores on the

unperturbed test sets to ensure that we can enhance adversarial examples without de-

grading our performance in a standard-setting. The experimental results have shown

that typographical adversarial attacks can cause deterioration in the performance of se-

quential taggers. White-box adversarial examples can deteriorate the performance of

the taggers much stronger than the black-box adversarial examples. This suggests for

each sentence there is a perturbation variant that is much more effective than the others.

This work only addresses typographical adversarial examples. However, there

are many linguistics capabilities that we should consider for improving the robustness

of the model. The results on the Twitter-41 dataset have shown that there is a big gap

in performance between the artificially perturbed dataset and the real-world dataset.

Nevertheless, adversarial training and similarity constraint through metric learning are

promising research directions for improving current NLP systems’ overall robustness.

Chapter VI

CONCLUSIONS

In this dissertation, I introduced new adversarial evaluation schemes for bench-

marking the robustness of NLP systems. I showed that adversarial examples could re-

veal weaknesses, which are not shown in a standard evaluation scheme (train-validation

split) for both Thai and English. In addition, I also introduced new training methods

to improve robustness over typographical errors. I have shown improvement over three

core NLP tasks (word segmentation, part-of-speech tagging, and named-entity recogni-

tion), which are sequential tagging tasks. The benefit of experimenting on these tasks

is that we can easily analyze errors at word-level since each word is annotated (or even

character-level in a word segmentation task). Table 6.1 summarizes the adversarial at-

tacks used in this dissertation. Table 6.2 compares multiple proposed strategies for

enhancing the robustness against malformed texts.

Chapter 4 shows an adversarial evaluation scheme explicitly designed for Thai

based on known errors; furthermore, it shows various strategies to enhance the robust-

ness without augmenting adversarial examples to the training data. UNK masking has

shown to be very effective in improving the performance of sequential taggers on ad-

versarial examples. Backoff representation can further improve the robustness using

character-level information. In some cases, conditional initialization with affixation em-

beddings can also improve the performance. This shows that a linguistically motivated

design can help enhance the performance of the model. Furthermore, the untied bidi-

rectional self-attention mechanism can help improve the interpretability of the model.

Chapter 5 shows an adversarial evaluation scheme with black-box and white-box

adversarial examples; and, it also shows an adversarial training strategy along with sim-

ilarity constraint objective to improve the performance over the adversarial test sets. In

93

contrast to techniques used in chapter 4, adversarial training includes adversarial ex-

amples during the training time; it provides a large improvement for robustness against

typographical adversarial examples. Furthermore, metric learning objectives, such as

pair loss and triplet loss, help limit the distance between original and perturbed sam-

ples, further enhancing the model’s robustness.

One can argue that evaluating with malformed text alone may be insufficient to

claim robustness. However, malformed text can reveal a large performance gap be-

tween models designed to handle it and models that are not. Ribeiro etal. (2020) shows

important progress in comprehensively testing different NLP systems’ capabilities by

including a large and diverse number of test cases to their test sets. They also include

robustness to typos as one of the capabilities that they suggest to consider. This shows

that malformed text is still a necessary aspect of robustness.

In future work, I hope to experiment with more aspects of robustness beyond

malformed texts. I hope to include linguistic knowledge to create a behavioral testing

framework that covers more aspects of robustness. I also would like to build models

that are robust under this framework. One of the directions towards robustness is metric

learning, where one can train a model that learns a distance metric that keeps original

and perturbed samples close together in an embedding space. I hope that adversarial

frameworks and models in this thesis can be extended to create one coherent framework

for training and testing robust models.

94

Table6.1: Comparison of all adversarial attacks in this thesis: the black-box attack does
not have access to the model’s parameters, while the white-box attack has a full-access
to the model’s parameters.

Chapter Black-Box/White-Box Description
4 Black-Box Adversarial examples are generated using a rule-

based model that is inspired by unintentional er-
rors in Thai. The generated typographical errors
are transposition and deletion errors along with
their variants that only focus on tonal characters.

5 Black-Box Adversarial examples are generated using five
spelling errors: insertion, transposition, deletion,
substitution, and capitalization

5 White-Box Adversarial examples are generated with the
knowledge of the model’s parameters:
1. Select a word position with the largest gradi-
ent i∗ ← arg max

i<perturbed_list
∥∇xiLtar∥2

2. Pick a perturbation that would give the largest
loss
x̂∗ ← arg max

x̂∈C
[x̂ − xi]

⊤ ∇xiLtar

X [i∗]← x̂∗

3. Repeat until there are no word left to perturb.

95

Table6.2: Comparison of models in chapter 4 and 5

Chapter Model Summary
4 BiLSTM A weak baseline model
4 BiLSTM-ELMo A strong baseline model with embeddings

that is robust to spelling mistakes
4 BiLSTM-U Mask training data with UNK tokens
4 BiLSTM-U-B The additional backoff (B) component

gives the model access to character-level
information.

4 BiLSTM-U-BC The conditional initialization (C) compo-
nent initializes the LSTM hidden state
for composing character-level informa-
tion based on affixation.

4 BiLSTM-U-BA The attention (A) component combines
character-level information into a word
representation using self-attention mech-
anism.

4 BiLSTM-U-BCA A combination of all previous techniques
4 BiLSTM-U-BCAD The untied bidirectional self-attention

mechanism (D) has two separated self-
attention mechanisms for forward and
backward LSTM hidden states. This en-
hances the interpretability of the model.

5 ELMo-BiLSTM-CRF A strong and robust baseline model for se-
quential tagging tasks

5 ELMo-BiLSTM-CRF (AT) Adversarial Training (AT) presents the
model with adversarial examples during
training to improve its robustness.

5 ELMo-BiLSTM-CRF (AT-P) Pair loss (P) minimizes the similarity
between the original and perturbed se-
quences.

5 ELMo-BiLSTM-CRF (AT-T) Triplet loss (T) minimizes the similarity
between the original and perturbed se-
quences and maximizes the difference be-
tween unique textual sequences.

REFERENCES

Akbik, A., Blythe, D., and Vollgraf, R. 2018. Contextual string embeddings for

sequence labeling. In Proceedings of the 27th International Conference on

Computational Linguistics, pp. 1638–1649. Santa Fe, New Mexico, USA: As-

sociation for Computational Linguistics.

Akbik, A., Bergmann, T., and Vollgraf, R. 2019. Pooled contextualized embeddings for

named entity recognition. In Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and Short Papers), pp. 724–728.

Al-Rfou, R. and Skiena, S. 2012. Speedread: A fast named entity recognition pipeline.

In Proceedings of COLING 2012, pp. 51–66.

Aroonmanakun, W. 2002. Collocation and thai word segmentation. In Proceedings of

the 5th SNLP & 5th Oriental COCOSDA Workshop, pp. 68–75.

Aroonmanakun, W. etal. 2007. Thoughts on word and sentence segmentation in thai.

In Proceedings of the Seventh Symposium on Natural language Processing,

Pattaya, Thailand, December 13–15, pp. 85–90.

Asanee, K. and Chalathip, T. 1997. A statistical approach to thai morphological ana-

lyzer. In Fifth Workshop on Very Large Corpora.

Belinkov, Y. and Bisk, Y. 2018. Synthetic and natural noise both break neural machine

translation. In International Conference on Learning Representations.

Bengio, Y., Simard, P., and Frasconi, P. 1994. Learning long-term dependencies with

gradient descent is difficult. IEEE transactions on neural networks 5.2 (1994):

157–166.

Bodapati, S., Yun, H., and Al-Onaizan, Y. 2019. Robustness to capitalization errors

in named entity recognition. In Proceedings of the 5th Workshop on Noisy

97

User-generated Text (W-NUT 2019), pp. 237–242. Hong Kong, China: Asso-

ciation for Computational Linguistics.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. 2017. Enriching word vectors

with subword information. Transactions of the Association for Computational

Linguistics 5 (2017): 135–146.

Boonkwan, P. and Supnithi, T. 2017. Bidirectional deep learning of context representa-

tion for joint word segmentation and pos tagging. In International Conference

on Computer Science, Applied Mathematics and Applications, pp. 184–196.

Boonkwan, P., Supnithi, T., Pailai, J., and Kongkachandra, R. 2013. Gradient-descent

error correction of pos tagging. Proceedings of SNLP (2013)

Brown, T., Mane, D., Roy, A., Abadi, M., and Gilmer, J. 2017. Adversarial patch.

Burchardt, A., Macketanz, V., Dehdari, J., Heigold, G., Peter, J.-T., and Williams, P.

2017. A linguistic evaluation of rule-based, phrase-based, and neural mt en-

gines. The Prague Bulletin of Mathematical Linguistics 108.1 (2017): 159–

170.

Burlot, F. and Yvon, F. 2017. Evaluating the morphological competence of machine

translation systems. In Proceedings of the Second Conference on Machine

Translation, pp. 43–55. Copenhagen, Denmark: Association for Computa-

tional Linguistics.

Chanlekha, H. and Kawtrakul, A. 2004. Thai named entity extraction by incorporating

maximum entropy model with simple heuristic information. In Proceedings of

the IJCNLP.

Chiu, J.P. and Nichols, E. 2016. Named entity recognition with bidirectional

LSTM-CNNs. Transactions of the Association for Computational Linguistics

4 (2016): 357–370.

98

Chormai, P., Prasertsom, P., and Rutherford, A. 2019. Attacut: A fast and accurate

neural thai word segmenter. arXiv preprint arXiv:1911.07056 (2019)

Chunwijitra, V., Chotimongkol, A., and Wutiwiwatchai, C. 2016. A hybrid input-type

recurrent neural network for lvcsr language modeling. EURASIP Journal on

Audio, Speech, and Music Processing 2016.1 (Aug 2016): 15.

Derczynski, L., Ritter, A., Clark, S., and Bontcheva, K. 2013. Twitter part-of-speech

tagging for all: Overcoming sparse and noisy data. In Proceedings of the

International Conference Recent Advances in Natural Language Processing

RANLP 2013, pp. 198–206.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. 2019. BERT: Pre-training of

deep bidirectional transformers for language understanding. In Proceedings

of the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1 (Long

and Short Papers), pp. 4171–4186. Minneapolis, Minnesota: Association for

Computational Linguistics.

Ebrahimi, J., Rao, A., Lowd, D., and Dou, D. 2018. Hotflip: White-box adversarial

examples for text classification. In Proceedings of the 56th Annual Meeting of

the Association for Computational Linguistics (Volume 2: Short Papers), pp.

31–36.

Firth, J.R. 1957. A synopsis of linguistic theory, 1930-1955. Studies in linguistic

analysis (1957)

Fries, C.C. 1952. The structure of english. (1952)

Gao, J., Lanchantin, J., Soffa, M.L., and Qi, Y. 2018. Black-box generation of adver-

sarial text sequences to evade deep learning classifiers. In 2018 IEEE Security

and Privacy Workshops (SPW), pp. 50–56.

99

Gardner, M., Grus, J., Neumann, M., Tafjord, O., Dasigi, P., Liu, N.F., Peters, M.,

Schmitz, M., and Zettlemoyer, L.S. 2017. Allennlp: A deep semantic natural

language processing platform.

Gardner, M., Artzi, Y., Basmova, V., Berant, J., Bogin, B., Chen, S., Dasigi, P., Dua, D.,

Elazar, Y., Gottumukkala, A., etal. 2020. Evaluating nlp models via contrast

sets. arXiv preprint arXiv:2004.02709 (2020)

Goodfellow, I., Bengio, Y., and Courville, A. 2016. Deep Learning. MIT Press.

http://www.deeplearningbook.org.

Goodfellow, I.J., Shlens, J., and Szegedy, C. 2015. Explaining and harnessing adver-

sarial examples. In Proceedings of the International Conference on Learning

Representations (ICLR).

Haruechaiyasak, C., Kongyoung, S., and Dailey, M. 2008. A comparative study on

thai word segmentation approaches. In 2008 5th International Conference

on Electrical Engineering/Electronics, Computer, Telecommunications and

Information Technology, volume1, pp. 125–128.

Haruechaiyasak, C. and Kongthon, A. 2013. Lextoplus: A thai lexeme tokenization

and normalization tool. WSSANLP-2013 (2013): 9.

Haspelmath, M. 2011. The indeterminacy of word segmentation and the nature of

morphology and syntax. Folia linguistica 45.1 (2011): 31–80.

Heigold, G., Varanasi, S., Neumann, G., and van Genabith, J. 2018. How robust are

character-based word embeddings in tagging and MT against wrod scramlbing

or randdm nouse? In Proceedings of the 13th Conference of the Association

for Machine Translation in the Americas (Volume 1: Research Papers), pp.

68–80. Boston, MA: Association for Machine Translation in the Americas.

http://www.deeplearningbook.org

100

Heinzerling, B. and Strube, M. 2019. Sequence tagging with contextual and non-

contextual subword representations: A multilingual evaluation. In Proceedings

of the 57th Annual Meeting of the Association for Computational Linguistics,

pp. 273–291. Florence, Italy: Association for Computational Linguistics.

Hochreiter, S. and Schmidhuber, J. 1997. Long short-term memory. Neural computation

9.8 (1997): 1735–1780.

Huang, Z., Xu, W., and Yu, K. 2015. Bidirectional LSTM-CRF models for sequence

tagging. arXiv preprint arXiv:1508.01991 (2015)

Iwasaki, S., Ingkaphirom, P., and Horie, I.P. 2005. A reference grammar of Thai.

Cambridge University Press.

Iyyer, M., Manjunatha, V., Boyd-Graber, J., and DauméIII, H. 2015. Deep unordered

composition rivals syntactic methods for text classification. In Proceedings

of the 53rd Annual Meeting of the Association for Computational Linguistics

and the 7th International Joint Conference on Natural Language Processing

(Volume 1: Long Papers), volume1, pp. 1681–1691.

Jia, R. and Liang, P. 2017. Adversarial examples for evaluating reading comprehen-

sion systems. In Proceedings of the 2017 Conference on Empirical Methods

in Natural Language Processing, pp. 2021–2031. Copenhagen, Denmark: As-

sociation for Computational Linguistics.

Jiang, Y., Hu, C., Xiao, T., Zhang, C., and Zhu, J. 2019. Improved differen-

tiable architecture search for language modeling and named entity recogni-

tion. In Proceedings of the 2019 Conference on Empirical Methods in Natural

Language Processing and the 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP), pp. 3585–3590. Hong Kong, China:

Association for Computational Linguistics.

101

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. 2016. Bag of tricks for efficient

text classification. arXiv preprint arXiv:1607.01759 (2016)

Karpukhin, V., Levy, O., Eisenstein, J., and Ghazvininejad, M. 2019. Training on

synthetic noise improves robustness to natural noise in machine translation.

In Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT

2019), pp. 42–47. Hong Kong, China: Association for Computational Linguis-

tics.

King, M. and Falkedal, K. 1990. Using test suites in evaluation of machine trans-

lation systems. In COLING 1990 Volume 2: Papers presented to the 13th

International Conference on Computational Linguistics.

Kingma, D.P. and Ba, J. 2015. Adam: A method for stochastic optimization. In

Proceedings of the 3rd International Conference on Learning Representations

(ICLR 2015).

Kittinaradorn, R., Chaovavanich, K., Achakulvisut, T., and Kaewkasi, C. 2017. Deep-

cut - A Thai word tokenization library using Deep Neural Network. url-

https://github.com/rkcosmos/deepcut.

Koenig, J.-P. and Muansuwan, N. 2005. The syntax of aspect in thai. Natural Language

and Linguistic Theory 23.2 (2005): 335–380.

Koller, D. and Friedman, N. 2009. Probabilistic graphical models: principles and

techniques. MIT press.

Kosawat, K., Boriboon, M., Chootrakool, P., Chotimongkol, A., Klaithin, S., Kongy-

oung, S., Kriengket, K., Phaholphinyo, S., Purodakananda, S., Thanakulwara-

pas, T., and Wutiwiwatchai, C. 2009. Best 2009 : Thai word segmentation soft-

ware contest. In 2009 Eighth International Symposium on Natural Language

Processing, pp. 83–88.

102

Kriengket, K., Jumpathong, S., Boonkwan, P., and Supnithi, T. 2017. A cognitive and

linguistic analysis of search queries of an online dictionary: A case study of

lexitron. Artificial Intelligence and Natural Language Processing (iSAI-NLP

2017) (2017): 1.

Kruengkrai, C., Sornlertlamvanich, V., and Isahara, H. 2006. A conditional random

field framework for thai morphological analysis. In Proceedings of LREC, pp.

2419–2424.

Lafferty, J., McCallum, A., Pereira, F., etal. 2001a. Conditional random fields: Proba-

bilistic models for segmenting and labeling sequence data. In Proceedings of

the eighteenth international conference on machine learning, ICML, volume1,

pp. 282–289.

Lafferty, J.D., McCallum, A., and Pereira, F. C.N. 2001b. Conditional random

fields: Probabilistic models for segmenting and labeling sequence data. In

Proceedings of the Eighteenth International Conference on Machine Learning,

ICML ’01, p. 282289. San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc.

Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., and Dyer, C.

2016a. Neural architectures for named entity recognition. arXiv preprint

arXiv:1603.01360 (2016)

Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., and Dyer, C. 2016b.

Neural architectures for named entity recognition. In Proceedings of the

2016 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, pp. 260–270. San

Diego, California: Association for Computational Linguistics.

Lehmann, S., Oepen, S., Regnier-Prost, S., Netter, K., Lux, V., Klein, J., Falkedal,

K., Fouvry, F., Estival, D., Dauphin, E., Compagnion, H., Baur, J., Balkan,

103

L., and Arnold, D. 1996. TSNLP - test suites for natural language pro-

cessing. In COLING 1996 Volume 2: The 16th International Conference on

Computational Linguistics.

Limkonchotiwat, P., Phatthiyaphaibun, W., Sarwar, R., Chuangsuwanich, E., and Nu-

tanong, S. 2020. Domain adaptation of Thai word segmentation models us-

ing stacked ensemble. In Proceedings of the 2020 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pp. 3841–3847. Online:

Association for Computational Linguistics.

Lin, Z., Feng, M., Santos, C. N.d., Yu, M., Xiang, B., Zhou, B., and Bengio, Y. 2017. A

structured self-attentive sentence embedding. arXiv preprint arXiv:1703.03130

(2017)

Ling, W., Dyer, C., Black, A.W., Trancoso, I., Fermandez, R., Amir, S., Marujo, L., and

Luís, T. 2015. Finding function in form: Compositional character models for

open vocabulary word representation. In Proceedings of the 2015 Conference

on Empirical Methods in Natural Language Processing, pp. 1520–1530. Lis-

bon, Portugal: Association for Computational Linguistics.

Linzen, T., Dupoux, E., and Goldberg, Y. 2016. Assessing the ability of LSTMs

to learn syntax-sensitive dependencies. Transactions of the Association for

Computational Linguistics 4 (2016): 521–535.

Liu, H., Zhang, Y., Wang, Y., Lin, Z., and Chen, Y. 2020. Joint character-level word

embedding and adversarial stability training to defend adversarial text. In The

Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The

Thirty-Second Innovative Applications of Artificial Intelligence Conference,

IAAI 2020, The Tenth AAAI Symposium on Educational Advances in

Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020,

pp. 8384–8391. : AAAI Press.

104

Luong, T., Socher, R., and Manning, C.D. 2013. Better word representations with

recursive neural networks for morphology. In CoNLL, pp. 104–113.

Ma, X. and Xia, F. 2014. Unsupervised dependency parsing with transferring dis-

tribution via parallel guidance and entropy regularization. In Proceedings of

the 52nd Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pp. 1337–1348. Baltimore, Maryland: Association

for Computational Linguistics.

Michel, P., Li, X., Neubig, G., and Pino, J. 2019. On evaluation of adversar-

ial perturbations for sequence-to-sequence models. In Proceedings of the

2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1 (Long

and Short Papers), pp. 3103–3114. Minneapolis, Minnesota: Association for

Computational Linguistics.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. 2013a. Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., and Dean, J. 2013b. Distributed

representations of words and phrases and their compositionality. In Burges, C.

J.C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K.Q. (ed.),

Advances in Neural Information Processing Systems 26, pp. 3111–3119. :

Curran Associates, Inc.

Mikolov, T. etal. 2012. Statistical language models based on neural networks.

Presentation at Google, Mountain View, 2nd April 80 (2012): 26.

Minegishi, M. 2011. Description of thai as an isolating language. Social Science

Information 50.1 (2011): 62–80.

105

Miyato, T., Dai, A.M., and Goodfellow, I.J. 2017. Adversarial training methods

for semi-supervised text classification. In 5th International Conference on

Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,

Conference Track Proceedings. : OpenReview.net.

Nebhi, K., Bontcheva, K., and Gorrell, G. 2015. Restoring capitalization in #tweets. In

Proceedings of the 24th International Conference on World Wide Web, WWW

15 Companion, p. 11111115. New York, NY, USA: Association for Computing

Machinery.

Nguyen, N. and Guo, Y. 2007. Comparisons of sequence labeling algorithms and

extensions. In Proceedings of the 24th International Conference on Machine

Learning, ICML ’07, p. 681688. New York, NY, USA: Association for Com-

puting Machinery.

Pascanu, R., Mikolov, T., and Bengio, Y. 2013. On the difficulty of training recur-

rent neural networks. In Proceedings of the 30th International Conference

on International Conference on Machine Learning - Volume 28, ICML’13, p.

III1310III1318. : JMLR.org.

Pennington, J., Socher, R., and Manning, C. 2014. Glove: Global vectors for word

representation. In Proceedings of the 2014 conference on empirical methods

in natural language processing (EMNLP), pp. 1532–1543.

Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettle-

moyer, L. 2018. Deep contextualized word representations. In Proceedings

of the 2018 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1 (Long

Papers), pp. 2227–2237. New Orleans, Louisiana: Association for Computa-

tional Linguistics.

106

Piktus, A., Edizel, N.B., Bojanowski, P., Grave, E., Ferreira, R., and Silvestri,

F. 2019. Misspelling oblivious word embeddings. In Proceedings of

the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1 (Long

and Short Papers), pp. 3226–3234. Minneapolis, Minnesota: Association for

Computational Linguistics.

Ponomareva, N., Rosso, P., Pla, F., and Molina, A. 2007. Conditional random fields vs.

hidden markov models in a biomedical named entity recognition task. In Proc.

of Int. Conf. Recent Advances in Natural Language Processing, RANLP, pp.

479–483.

Poowarawan, Y. 1986. Dictionary-based thai syllable separation. In Proc. Ninth

Electronics Engineering Conference (EECON-86), Thailand, pp. 409–418.

Pruthi, D., Dhingra, B., and Lipton, Z.C. 2019. Combating adversarial misspellings

with robust word recognition. In Proceedings of the 57th Annual Meeting of

the Association for Computational Linguistics, pp. 5582–5591. Florence, Italy:

Association for Computational Linguistics.

Rabiner, L.R. 1989. A tutorial on hidden markov models and selected applications in

speech recognition. Proceedings of the IEEE 77.2 (1989): 257–286.

Ratinov, L. and Roth, D. 2009. Design challenges and misconceptions in named entity

recognition. In Proceedings of the Thirteenth Conference on Computational

Natural Language Learning (CoNLL-2009), pp. 147–155. Boulder, Colorado:

Association for Computational Linguistics.

Rawlinson, G.E. 1976. The significance of letter position in word recognition. PhD

thesis, University of Nottingham.

107

Ribeiro, M.T., Wu, T., Guestrin, C., and Singh, S. 2020. Beyond accuracy: Behavioral

testing of NLP models with CheckList. In Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics, pp. 4902–4912.

Online: Association for Computational Linguistics.

Ritter, A., Clark, S., Etzioni, O., etal. 2011. Named entity recognition in tweets: an

experimental study. In Proceedings of the conference on empirical methods in

natural language processing, pp. 1524–1534.

Rychalska, B., Basaj, D., Gosiewska, A., and Biecek, P. 2019. Models in the wild: On

corruption robustness of neural nlp systems. In Gedeon, T., Wong, K.W., and

Lee, M. (ed.), Neural Information Processing, pp. 235–247. Cham: Springer

International Publishing.

Schroff, F., Kalenichenko, D., and Philbin, J. 2015. Facenet: A unified embedding

for face recognition and clustering. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 815–823.

Sennrich, R. 2017. How grammatical is character-level neural machine transla-

tion? assessing MT quality with contrastive translation pairs. In Proceedings

of the 15th Conference of the European Chapter of the Association for

Computational Linguistics: Volume 2, Short Papers, pp. 376–382. Valencia,

Spain: Association for Computational Linguistics.

Sennrich, R., Haddow, B., and Birch, A. 2016. Neural machine translation of rare

words with subword units. In Proceedings of the 54th Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers), pp.

1715–1725. Berlin, Germany: Association for Computational Linguistics.

Sornlertlamvanich, V. 1993. Word segmentation for thai in machine translation system

(in thai). (01 1993)

108

Sornlertlamvanich, V., Takahashi, N., and Isahara, H. 1998. Thai part-of-speech tagged

corpus: Orchid. In Proceedings of the Oriental COCOSDA Workshop, pp.

131–138.

Straková, J., Straka, M., and Hajic, J. 2019. Neural architectures for nested NER

through linearization. In Proceedings of the 57th Annual Meeting of the

Association for Computational Linguistics, pp. 5326–5331. Florence, Italy:

Association for Computational Linguistics.

Suwanno, N., Suzuki, Y., and Yamazaki, H. 2007. Selecting the optimal feature sets for

Thai named entity extraction. Proceedings of ICEE-2007 & PEC 5 (2007)

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and

Fergus, R. 2014. Intriguing properties of neural networks. In International

Conference on Learning Representations.

Theeramunkong, T. and Usanavasin, S. 2001. Non-dictionary-based thai word segmen-

tation using decision trees. In Proceedings of the first international conference

on Human language technology research, pp. 1–5.

Tirasaroj, N. and Aroonmanakun, W. 2009. Thai named entity recognition based on

conditional random fields. In Natural Language Processing, 2009. SNLP’09.

Eighth International Symposium on, pp. 216–220.

Tirasaroj, N. and Aroonmanakun, W. 2011. The effect of answer patterns for supervised

named entity recognition in Thai. In PACLIC, pp. 392–399.

Tjong KimSang, E.F. and DeMeulder, F. 2003. Introduction to the CoNLL-2003 shared

task: Language-independent named entity recognition. In Proceedings of the

Seventh Conference on Natural Language Learning at HLT-NAACL 2003, pp.

142–147.

109

Treeratpituk, P. 2017. Thai Word-Segmentation with Deep Learning in Tensorflow.

urlhttps://github.com/pucktada/cutkum.

Udomcharoenchaikit, C., Vateekul, P., and Boonkwan, P. 2017. Thai named-entity

recognition using variational long short-term memory with conditional random

field. The Joint International Symposium on Artificial Intelligence and Natural

Language Processing (2017): 82–92.

Udomcharoenchaikit, C., Boonkwan, P., and Vateekul, P. 2020. Adversarial evaluation

of robust neural sequential tagging methods for thai language. ACM Trans.

Asian Low-Resour. Lang. Inf. Process. 19.4 (May 2020)

Wallace, E., Feng, S., Kandpal, N., Gardner, M., and Singh, S. 2019. Univer-

sal adversarial triggers for attacking and analyzing NLP. In Proceedings of

the 2019 Conference on Empirical Methods in Natural Language Processing

and the 9th International Joint Conference on Natural Language Processing

(EMNLP-IJCNLP), pp. 2153–2162. Hong Kong, China: Association for Com-

putational Linguistics.

Weng, R., Huang, S., Zheng, Z., DAI, X.-Y., and Jiajun, C. 2017. Neural machine

translation with word predictions. In Proceedings of the 2017 Conference on

Empirical Methods in Natural Language Processing, pp. 136–145.

Williams, D. and Hinton, G. 1986. Learning representations by back-propagating

errors. Nature 323.6088 (1986): 533–538.

Wong, E., Schmidt, F., and Kolter, Z. 2019. Wasserstein adversarial examples via pro-

jected sinkhorn iterations. In International Conference on Machine Learning,

pp. 6808–6817.

Xin, Y., Hart, E., Mahajan, V., and Ruvini, J.-D. 2018. Learning better internal structure

of words for sequence labeling. In Proceedings of the 2018 Conference on

110

Empirical Methods in Natural Language Processing, pp. 2584–2593. Brussels,

Belgium: Association for Computational Linguistics.

Yasunaga, M., Kasai, J., and Radev, D. 2018. Robust multilingual part-of-speech

tagging via adversarial training. In Proceedings of the 2018 Conference of the

North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long Papers), pp. 976–986. New

Orleans, Louisiana: Association for Computational Linguistics.

Zhou, J.T., Zhang, H., Jin, D., Peng, X., Xiao, Y., and Cao, Z. 2019. Roseq: Robust

sequence labeling. IEEE transactions on neural networks and learning systems

(2019)

Appendix I

SUPPLEMENTARY MATERIAL OF CHAPTER 4

A.1 Text samples from the perturbed BEST2010 test set (stress

level = 10)

In order to confirm that humans can understand textual samples from

our adversarial evaluation scheme, we sampled 100 text samples from the

stress level 10 perturbed BEST2010 test set to create a word correction

exercise and we asked 3 participants to correct them. Full details in-

cluding the exercise solution, the result of each participant, can be found

on https://github.com/c4n/Thai-Adversarial-Evaluation/blob/master/

survey/word_correction_exercise_results.ods

จงแกคําระหวางเครื่องหมาย * ใหเปนคําที่สะกดถูกตอง
ถาไมแนใจวาสะกดอยางไร (แตรูวาคือคําวาอะไร) สามารถดูพจนานุกรมได

หากดูไมออกวาเปนคําอะไร สามารถเวนวางได

Correct the misspelled word between the two * symbols.
If you are not sure about the spelling (but can recognize the word),
you can look it up in a dictionary. If you cannot recognize the word,

you can leave it blank.
ตัวอย่าง Example

อยาก*กัลบ*บาน กลับ want to *og* home go

text sample correction text sample correction
กับทหาร*ไยท* บริเวณ ไทย with *Thia* soldier around Thai
500 *นยา* และ นาย 500 *persosn* and persons
เจดียขนาด*เลก็* เชิง เล็ก foot of a *smlla* stupa small
ของแตล*ฝยา*ไดเจรจา ฝ่าย from each *paryt* to negotiate party
พฤหัสบดีที่*ตงา*ฝายตาง ต่าง Thursday, where *eahc* side each
ทัสมัย*แะล*มีการ และ modenr *adn* there is and

FigureA.1: A snapshot from the word correction exercise with 6 text samples with their
solutions along with its English translation

https://github.com/c4n/Thai-Adversarial-Evaluation/blob/master/survey/word_correction_exercise_results.ods
https://github.com/c4n/Thai-Adversarial-Evaluation/blob/master/survey/word_correction_exercise_results.ods

112

A.2 Examples of predictions on perturbed inputs

Table A.1 compares the outputs from four different models. Models that incorpo-

rate character-level information, BiLSTM-ELMo and BiLSTM-BCAD-clp, were more

robust even when all the surrounding words were misspelled. The four models predicted

the part-of-speech of the observed word correctly in the first three scenarios. However,

in the last scenario where the observed word was perturbed and was surrounded by mis-

spelled words, BiLSTM-ELMo and BiLSTM-BCAD-clp could predict correctly. At

the same time, models without character-level information, BiLSTM and BiLSTM-U,

failed to predict the part-of-speech of the observed word correctly. The definitions of

part-of-speech tags shown in Table A.1 are as follows:

• ADV - adverb

• DDEM - demonstrative determiner

• FWN - non-proper noun written in non-Thai script

• FXAV - adverbial prefix

• JJA - noun-modifying adjective

• NN - non-proper noun

• NR - proper noun

• P - preposition

• PPER - personal pronoun

• PU - punctuation

• VA - predicate adjective

113

TableA.1: Examples of part-of-speech predictions of a Thai sentence in each scenario,
as discussed in section 4.4.4. This table focuses on the observed word รูสึก, but it also
shows the prediction of surrounding words. Red text denotes incorrect prediction.

original sentence without perturbation

วัน นี้ ฉัน รูสึก เมื่อย มาก
Ground Truth NN DDEM PPER VV VV ADV

1) an observed word without perturbation in a low-noise context

วัน นี้ ฉัน รูสึก เมือย มาก
BiLSTM NN DDEM PPER VV VA ADV
+ELMo NN DDEM PPER VV VV ADV
+U NN DDEM PPER VV FXAV JJA
+BCAD-clp NN DDEM PPER VV VV ADV

2) an observed word with perturbation in a low-noise context

วัน นี้ ฉัน รูสึก เมือย มาก
BiLSTM NN DDEM P VV ADV ADV
+ELMo NN DDEM PPER VV ADV ADV
+U NN DDEM PPER VV FXAV JJA
+BCAD-clp NN DDEM PPER VV VV ADV

3) an observed word without perturbation in a high-noise context
วั นี ฉั รูสึก เมือย มา

BiLSTM NR NN NR VV VV VV
+ELMo NN DDEM PPER VV ADV ADV
+U NN NR PU VV VV VV
+BCAD-clp NN DDEM PPER VV VV ADV

4) an observed word with perturbation in a high-noise context
วั นี ฉั รูสึก เมือย มา

BiLSTM FWN NN NR NR VV VV
+ELMo NN DDEM PPER VV VV ADV
+U NN NR PU NR VV VV
+BCAD-clp NN DDEM PPER VV VV ADV

• VV - verb

	Contents
	List of Tables
	List of Figures
	Introduction
	Overview
	Aims and Objectives
	Scope of Work
	Contributions
	Publications

	Background
	Characteristics of Thai language
	Sequence Processing with Statistical Sequential Models
	Vector Embeddings
	Adversarial Examples

	Literature Review
	Current State of Sequential Tagging Models
	Thai Natural Language Processing
	Behavioral Analyses: The Rise of Challenge Sets
	Adversarial Robustness for NLP
	Concluding Remarks

	Robust Word Representations and Black-box Adversarial Evaluation for Thai
	Introduction
	Adversarial Evaluation
	Model Architecture
	Experiments
	Conclusions

	Adversarial Training and White-box Adversarial Evaluation
	Introduction
	Methodology
	Experiments
	Experimental Results
	Error Analysis
	Real-World Data
	Conclusions

	Conclusions
	References
	Supplementary Material of Chapter 4
	Text samples from the perturbed BEST2010 test set (stress level = 10)
	Examples of predictions on perturbed inputs

