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ABST RACT (ENGLISH) # # 6070371021 : MAJOR CHEMICAL ENGINEERING 
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dynamic optimization of vanadium redox flow battery. Advisor: Asst. Prof. 

Dr. AMORNCHAI ARPORNWICHANOP, D.Eng. 

  

The performance improvement of a vanadium redox flow battery (VRFB) 

was focused on this study. The two objectives of this study were (1) to investigate 

the effect of the operating temperatures of the Atmospheric Pressure Plasma jets 

(APPJs) process on the energy efficiency of the VRFB and (2) to determine the 

optimal electrolyte flow rate of the VRFB by solving a dynamic optimization based 

on a neural network model of the VRFB. The APPJs graphite felt electrode 

treatment temperature providing the highest energy efficiency of the VRFB was 

550°C, explained by the Energy Dispersive X-ray Spectrometry (EDX) and X-ray 

photoelectron spectroscopy (XPS) results. The EDX results indicated that the 

electrode treated with APPJs at 550°C had a high percentage of the oxygen atom, 

and XPS results illustrated the highest C=O functional group on the surface of 

APPJs at 550°C electrode comparing to the APPJs at other temperatures and 

sulfuric treatment. Moreover, the wettability of the electrode with APPJs treatment 

at all temperatures was higher improved than that with a sulfuric acid treatment and 

an untreated one. However, the electrode treatment did not visibly change the 

surface of the electrode, as shown in Scanning Electron Microscopy (SEM) results. 

In the second part of this study, an optimization of the electrolyte flow rate based on 

a neural network (NN) model of the VRFB was investigated. The NN was 

separately trained between the charging and discharging process using a nonlinear 

autoregressive with external input (NARX) model. The training and testing results 

indicated a high accuracy of the NN model. Under the optimal electrolyte flow rate 

obtained by solving the NN based-optimization, the VRFB  provided a high system 

efficiency (SE) due to reducing the concentration overpotential. It demonstrated 

that the NN model could replace the theoretical model used in the dynamic 

optimization, even though the performance of the VRFB under the optimal 

electrolyte flow rate obtained from the NN-based optimization is slightly lower than 

that from the theoretical model-based optimization. 
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CHAPTER 1  

INTRODUCTION 

 

1.1  Background 

 Conventional electricity production is based on the combustion of fossil fuels 

that releases CO2 to the environment and causes a global warming problem. Due to 

environmental concerns, the use of renewable energy plays an important role in the 

generation of electricity. However, renewable energy is intermittent and discontinue. 

Energy storage can be used to solve this major problem, stabilizing a power output. 

Among the various types of energy storages, a vanadium redox flow battery (VRFB) 

is considered to be the most suitable for large-scale energy storage due to its high 

efficiency and low cost per kilowatt (Zhao et al., 2017). The advantages of the VRFB 

include its high flexibility, long-life cycle, and tolerance for deep discharge. In 

principle, the VRFB stores electrical energy via redox reactions in the electrolyte 

solution, which is circulated through the electrode by a pump and kept outside the 

battery. By contrast, other types of batteries, such as Lithium-ion batteries, store 

energy inside electrodes that involve the ion transfer. Therefore, the power rating of a 

VRFB can be obtained from the number of battery cells and the capacity is 

determined by the electrolyte volume and redox-active chemical species 

concentrations. However, the main problem of VRFB is caused by the imbalance of 

redox species in catholyte and anolyte, that results in the decrease of battery 

efficiency.  

 To date, many researchers have developed various components of the VRFB, 

including the electrolyte solution (Nguyen et al., 2016), types of the membrane 

(Bengui et al., 2018), flow field pattern (Kumar & Jayanti, 2016), and electrode 

material (Kabtamu et al., 2018), to increase battery performance. Since the redox 

reactions occur at the surface of the electrode, the development of the electrode is a 

key factor to improve battery performance. The electrode performance can be 

improved via an electrode treatment processing such as heat treatment, acid treatment, 

and plasma treatment. Acid treatment is a widely used method for the graphite felt 
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electrode in the VRFB system. Xiao-gang et al. (2007) studied the efficiency of the 

VRFB using the electrode with an acid treatment and found battery efficiency 

enhancement. Dixon et al. (2016) also reported that battery performance increased 

when the electrode treated with heat and plasma was used. These two treatment 

methods did not increase the surface area and there was no weight loss. However, the 

VRFB with plasma treatment showed better efficiency than that with heat treatment 

due to less charging time and capacity loss. Moreover, the electrode treated with 

atmospheric pressure plasma jets (APPJs) studied by Chen et al. (2015). They showed 

the energy efficiency improved from 70% (untreated) to 82% (treated with APPJs) as 

the increased C-O and C=O functional groups. However, the optimal temperature of 

the APPJs process that provides higher efficiency of the electrode was not reported. 

 Atmospheric pressure plasma jets are generally operated under atmospheric 

pressure. Plasma technology is a clean technology because of using less water and 

chemicals. The jet allows for the generation of stable plasmas, thus the APPJs are 

applied to several fields such as biomaterial sterilization and treatment (Bartis et al., 

2013), coating thin film (Hossain et al., 2019), rapid sintering of nanoporous TiO2 

(Chang et al., 2014; Chang et al., 2013), surface modification and cleaning (Chiang et 

al., 2010; Homola et al., 2012), and electrode treatment (Chen et al., 2015). 

 Since the vanadium redox flow battery (VRFB) is a type of flow battery, the 

electrolyte flow rate is key to the process. It affects the stack and electrolyte 

temperature as the flow rate reduction causes the stack and electrolyte temperature to 

increase(Tang et al., 2012). The electron transfer coefficient is increased by increasing 

the electrolyte flow rate and temperature (Kim & Park, 2019). Although, the high 

electrolyte flow rate is good with some parameters, the too high flow rate may have 

some disadvantages, such as high pump energy consumption. Therefore, the 

electrolyte flow rate should be optimized to provide high battery efficiency. Tang et 

al. (2014) studied battery performance under constant and variable electrolyte flow 

rates. The variable flow rate of the electrolyte can more improve the trend of 

coulombic efficiency, energy efficiency, discharge capacity, and system efficiency 

than using the constant flow rate strategy. The high flow factor could improve the 

VRFB performance due to a decrease in the concentration overpotential; however, 
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using the higher electrolyte flow rate will increase the large power loss of the pump 

that affects the system efficiency. Jirabovornwisut et al. (2020) studied the electrolyte 

flow rate optimization with minimizing charging energy and maximizing discharging 

energy by the nonlinear programming optimization. The flow rate nonlinear 

programming optimization showed the enhanced system efficiency than the variable 

flow rate because the variable flow rate required more cycle time and the battery 

voltage sharply increased and decreased in the early and middle stages affect to 

battery power. Accordingly, an optimization process is a suitable method for 

enhancing the system efficiency of the vanadium redox flow battery. 

 Neural network (NN) is artificial intelligence (AI) that works like the human 

brain neuron, based on training, remembering, and analyzing in the way that it had 

trained. Because the neural network can effectively solve complex mathematical 

models and get more accurate and precise answers. The neural network recently plays 

an important role in predicting various situations and applying to a wide range of 

applications such as agriculture (Saengsawang, 2016), geography, economics 

(Grekousis, 2019), and energy and technology (Ruiz et al., 2019; Wu et al., 2018). 

Even though the mathematical model is absent. The NN is considered as a black block 

model can be trained with experimental results. The backpropagation neural network 

model was used to predict the stack voltage and current of the commercial proton 

exchange membrane (PEM) fuel cell system using the laboratory data for training in 

the research of Saengrung et al. (2007). The battery temperature also is an important 

parameter in battery life degradation, safety, and performance. Hasan et al. (2020) 

estimated the battery temperature by using the Non-linear Autoregressive Exogenous 

(NARX) neural network that collecting each seasonable temperature data as a training 

data set and this model shown the better performance compared to the universal 

model. There are many other studies using NN in the battery field; however, there is a 

little amount of research that uses a NN to estimate parameters for the operation of 

vanadium redox flow batteries. 

 In this study, the effect of operating temperatures of the APPJs process on the 

VRFB energy efficiency is investigated. Furthermore, a comparison of the VRFB 

performance using sulfuric and APPJs electrode treatments is made. The surface 
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morphology of the graphite felt electrode with un-treated, acid treatment, and APPJs 

treatment is reported. Besides, an optimal flow rate of the VRFB electrolyte 

determined by using a neural network is focused on this work. 

 

1.2 Objective 

 1.2.1 To investigate the effect of the operating temperatures of the APPJs 

process on the energy efficiency of the VRFB. 

 1.2.2 To determine the optimal electrolyte flow rate of the VRFB by solving a 

dynamic optimization based on a neural network model. 

 

1.3 Scope of research 

 1.3.1 Prepare electrodes treated with APPJs at different temperatures (450C, 

550C, and 650C) and conventional sulfuric acid (H2SO4). 

 1.3.2 Characterize the treated electrodes using Scanning Electron Microscopy 

(SEM) and X-ray photoelectron spectroscopy (XPS) to determine the surface 

morphology and the functional group on the surface. 

1.3.3 Assembly the VRFB cell and determine the battery performance (the 

coulombic, voltage, energy efficiencies and discharge capacity) using the treated 

electrode. The lower and upper cut-off voltages are 0.7 and 1.71 V, respectively. 

 1.3.4 Develop the VRFB model for simulation and validate this model with 

the best experiment result.  

 1.3.5 Train, validate, and test the VRFB neural network model in which 

separating the charge and discharge model.  

 1.3.6 Formulate a dynamic optimization problem using the developed neural 

network model to determine an optimal electrolyte flow rate of the VRFB, providing 

minimize total charging power and maximize total discharging power. 
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CHAPTER 2  

THEORY AND LITERATURE REVIEWS 

 

2.1  Theory 

2.1.1 Vanadium redox flow battery (VRFB) 

 VRFB is one of the energy storages for renewable energy. The prominent 

point of VRFB is the separation of power rating and capacity. The power rating can 

be determined by the number of cells stack and the battery capacity can determine by 

the electrolyte volume or the active vanadium species in the electrolyte. The 

electrolyte consists of the different oxidation states of vanadium ion which are 

V2+/V3+ in a negative electrolyte (anolyte) and V4+/V5+ (VO2+/VO2
+) in a positive 

electrolyte (catholyte). The reactions of VRFB occurred at the electrodes are follow 

as: 

 

Positive half-cell:   

 VO2+ + H2O                  VO2
+ + 2H+ + e             Ep

0 = 1.004 V.       (2.1) 

Negative half-cell:   

 V3+ + e-                 V2+       En
0 = -0.255 V.      (2.2) 

 

 For the oxidation-reduction reactions in the charging process, V4+ (VO2+) is 

converted to V5+ (VO2
+) in the positive half-cell, and the electron will transfer to the 

negative half-cell by the external circuit, causing V3+ is converted to V2+, respectively. 

Meanwhile, the proton or hydrogen ion (H+) will diffuse across the membrane 

between the positive and negative half-cell. The discharging process alternates with 

the charging process that the V2+ is converted to V3+ by oxidation process and an 

electron transferred making V5+ (VO2
+) convert to V4+ (VO2+) in the reduction 

reaction occurring the negative and positive half-cell, respectively. Figure 2.1 shows 

the schematic and mechanism of VRFB. 

charge 

discharge 

charge 

discharge 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 6 

 

 

Figure 2.1 Schematic and mechanism of redox reaction in the VRFB system. 

2.1.1.1 Overpotential 

  The overpotential is the difference between the open-circuit voltage 

(theoretical voltage) and the actual cell voltage. Consequently, the battery needs the 

more applied voltage to charge the battery, and less discharged voltage is provided by 

the battery. The overpotential contains three parts as activation overpotential, ohmic 

overpotential or ohmic loss, and concentration overpotential. The energy loss due to 

the slowness of the electrochemical reactions at the cathodic and anodic electrodes is 

called activation overpotential. It is a measure of the activity of electrodes and 

represents the energy required for the electrochemical reactions which is the 

activation energy of redox reactions. The ohmic loss is the electrical potential that 

compensates for the electrical resistance of each part of the cell. The concentration 

overpotential refers to the equilibrium potential difference across a diffusion layer 

given a particular electrode reaction and density. It is used to describe the distribution 

of the electrolyte in the cell occurring in the diffusion layers by mass diffusion 

process at the electrolyte/electrode interface. The concentration loss is affected by the 

electrolyte flow rate, particularly at high and low states of charge. When the active 

species concentration in the electrolyte is low, the mass transfer rate of the active 
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species ions to the electrode surface is unable to keep up with the transfer of electrons 

across the electrode/electrolyte interface. 

2.1.2 Atmospheric pressure plasma jets (APPJs) 

 Plasma jet is a plasma generated by gas that is forced to flow through the 

nozzle electrode, which has an electric field and high frequency. The gas is formed 

into plasma and is pushed out by the gas pressure from the supply. A plasma with a 

diameter of 1-2 mm, called a plasma jet can operate at atmospheric pressure (APPJ) 

(Baral et al., 2012; Nehra et al.; Schutze et al., 1998). The APPJ can improve or 

modify the surface of many materials without affecting the material properties 

(Teschke et al., 2005). The atmospheric pressure plasma jet process illustrates in 

Figure 2.2. 

 

Figure 2.2 The atmospheric pressure plasma jet process. 

2.1.3 Artificial Neural Network 

 Artificial Neuron Network (ANN) is a branch of artificial intelligence (AI), 

which has the same structure and function as the brain of an organism. It can respond 

to the input data according to the learning rule after the network has learned. The 

neural network has been imitated from the work of the human brain. The human brain 

can be called a computer that has self-adaptive, non-linear, and works parallel to 
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supervise the working management of neurons in the brain. The brain consists of a 

basic processor called a neuron. The human brain has many amounts of the neuron 

(about 1011), and there are neural networks made up of three important parts: the 

dendrite, the cell body (soma) and the axon, as shown in Figure 2.3. Dendrite is the 

part of the neuron cell that extends around the cell. A neuron has many dendrite 

branches, which act as a nerve signal receptor to the cell body or soma. The cell body 

is the address of the nucleus and various cell organelle. It is responsible for 

synthesizing nerve signals and sending them to the axon. The axon is a nerve fiber 

that carries nerve signals from the cell body. One neuron will have only one axon, 

which is a longitudinal cell extension that acts as a nerve signal out of the cell 

(Wannaphong, 2016). 

 

Figure 2.3 The structure of a neuron (Flagg, 2013). 

 Node is simulating the behavior of a neuron in the neural network. Within the 

node has a function to set the output signal called the transfer function, which acts as 

a process in the cell. Each network consists of nodes connected as layers, which have 

different functions. Figure 2.4 shows the neural network schematic. The neural 

network consists of 5 elements as follows (Techology, 2016): 

  1. Input data (xi) is numeric data. If it is qualitative data, it must be 

converted into a quantitative form which is acceptable to the neural network. 

         2. Weights (wi) are derived from the learning of artificial neural 

networks. Weights are an important component of the neural network system 
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identifying the relationship between the input data. The trial and error method is used 

to make the conclusion of each relationship and keep it as a pattern or pattern of 

experience for network learning. 

  3. Summation function (S) is responsible for combining the weight (wi) 

and the input (xi) to summarize the relationship between the input data, waiting for the 

conversion of information in the next layer as in Eq.2.3. 

    
1

n

i i

i

S p w
=

=                           (2.3) 

  4. Transfer function or activation function is the part that combines 

numerical values from the neural output and then decides whether to send the output 

signal in any form. The transfer function can be linear or nonlinear. The selection of 

the transfer function depends on the nature of the system that uses the neural network 

to apply. The transfer functions have many typical applications detailed in Table 2.1. 

The log-sigmoid transfer function is the most commonly used due to the continuous 

value of the output allowance. 

  5. Output data (yi) is the actual result of the learning process of 

artificial neural networks. 
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Figure 2.4 The artificial neural network schematic ("Diagram of an artificial neural 

network," 2013). 

Table 2.1 The artificial neural network transfer functions (Techology, 2016). 

Transfer function Equation 
MATLAB 

function 
Function graph 

Hard limit  

transfer function 

1 0
( )

0 0

if x
f x

if x


= 


 hardlim 

 

Symmetrical hard 

limit transfer 

function 

1 0
( )

1 0

if x
f x

if x


= 

− 
 hardlims 
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Linear transfer 

function 
( )f x x=  purelin 

 

Positive linear  

transfer function 

0 0
( )

0

if x
f x

x if x


= 


 poslin 

 

Log-sigmoid  

transfer function 

1
( )

1 x
f x

e−
=

+
 logsig 

 

Hyperbolic tangent 

sigmoid transfer 

function 

( )
x x

x x

e e
f x

e e

−

−

−
=

+
 tansig 

 

 

2.1.3.1 Network architecture 

  Classification of artificial neural network structures according to the 

direction of motion of the signal can be divided into two categories: feedforward 

network and feedback network. 

  A feedforward network is an architecture that has data transmission 

only in one direction from the input to output, and the nodes in the same layer are not 

connected. A feedforward network consists of an input layer, hidden layers, and an 

output layer. A feedforward network can be divided into two types: single-layer and 

multilayer depend on a hidden layer, shown in Figure 2.5. The output of a neural 

network is an input of the same network is called a feedback network. A feedback 

structure appears in many applications; such as an optimization problem solver 

(Zhang, 2000).   
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(a)     (b)  

Figure 2.5 The feedforward network structure (a) single-layer network and (b) 

multilayer network with one hidden layer. 

2.1.3.2 Backpropagation algorithm 

  The properties of artificial neural networks are the ability to learn from 

the samples by trying to calculate the relationship between inputs and results. This 

learning begins with the initial weight and deviation (bias). The results from the initial 

values are compared with actual results. Different values are used to adjust the weight 

and bias by the trial-and-error method until the results are close or match actual 

results. The final weight and bias values will be used to predict the results from the 

new data. 

  Backpropagation is a process commonly used to adjust the weight and 

bias, which consists of two signals: the function signals and the error signals. The 

function signals are the information or results of each unit sent to the network. The 

error signals or error function is the difference between the result of the calculation 

and the actual result that is returned to the neural network to adjust the weight and 

bias. 

  There are several methods for adjusting the weight and bias such as 

Gradient Descent, Descent with Gradient Descent with Rate, Gradient Descent with 

Momentum, Resilient, Bayesian Regularization, and Levenberg-Marquardt, etc. 

Levenberg-Marquardt (LMS) is a suitable training algorithm for troubleshooting 

estimation type problems. In addition, it is the fastest way to adjust the value (Demuth 

& Beale, 1992-2004). 
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2.1.3.3 Nonlinear Autoregressive Exogenous (NARX) 

  Nonlinear Autoregressive Exogenous (NARX) is a type of neural 

network that uses time series on external input data in the learning of the neural 

network which can feedback information that increases the learning accuracy of the 

neural network. NARX networks can learn to predict one time series from given past 

values of the same time series, the feedback input, and another time series to predict 

future data precisely. The NARX model is usually used in nonlinear dynamic systems 

(The MathWorks, 2020). An example of NARX model diagram is shown in Figure 

2.6. 

 

Figure 2.6 An example of NARX model diagram (The MathWorks, 2020). 

2.1.4 Optimization 

 Optimization is a mathematical process that results in quantitative results. 

Since the result will be the number or value of the number of the specified problem;  

the problems chosen for optimization are in the form of a mathematical model. The 

general purpose of optimization is to find the maximum or minimum value of the 

objective function and to find the value of the objective function under the constraints. 

Therefore, the important thing for optimization is to define the objective function and 

constraints for finding the minimum or maximum values. 
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2.1.4.1 Design variable 

  Design variable is a numerical input that is allowed to change during 

the design optimization to achieve the most appropriate solution. The design variable 

is defined to describe the characteristics of the system like temperature, concentration, 

size, and flow rate. Defining the design variables must choose the correct variable in 

the problem of a system. 

2.1.4.2 Objective function 

  The objective function, a mathematical equation, consists of a design 

variable used to find the value of the variable at the maximum or minimum point of 

the objective function. The objective function can be written following: 

 Static optimization:  ( , )y f x u=                (2.4) 

 Dynamic optimization: ( ( ), ( ))J F x t u t=                        (2.5) 

  The objective function of static optimization consists of the 

independent variable (x) and the dependent variable (y) calculated by the relationship 

of the function (f(x)) as shown in Eq. 2.4. The functional (J) is defined as an objective 

function of dynamic optimization, which depends on the function x(t) as shown in Eq. 

2.5. 

2.1.4.3 Constraints 

  In general, the constraints are divided into two types: external 

constraints and internal constraints. External constraints are limitations of the system 

that is apart from the control of designers. In contrast, internal constraints are 

constrained by system designers. The general form of constraints is as follows: 

 Static optimization:  min maxx x x       

     min maxu u u                            (2.6) 
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 Dynamic optimization: min max( )x x t x       

     min max( )u u t u                            (2.7) 

  The constraints will be consistent with the variables in the objective 

function. When the constraints of the function are changed, the answer given by the 

objective function will also change. Therefore, the values obtained from the objective 

function must be consistent with the constraints. The constraints are classified by 

equation signs as equality constraints (=), and the inequality constraints (, ). 

2.1.5 Characterization 

2.1.5.1 Scanning Electron Microscopy (SEM) 

  Scanning Electron Microscope (SEM) is an electron microscope. 

Visualization is done by measuring the electrons reflected from the surface of the 

sample being surveyed. The image obtained from this SEM machine is a 3-

dimensional image, therefore is used to study morphology and detail of the surface 

characteristics of the sample. It is commonly used to examine the surface appearance 

of the sample, check the crystal alignment with the electron diffraction receiving 

system of the scattering, and check the sample changes from the pull. The Energy 

Dispersive X-ray Spectrometry (EDS or EDX) is also an X-ray detector in SEM 

which can analyze various elements contained in the sample (Materials Innovation 

Center, 2019). 

2.1.5.2 X-ray photoelectron spectroscopy (XPS) 

  XPS technique, also known as Electron Spectroscopy for Chemical 

Analysis (ESCA), is a technique that uses soft X-ray for stimulation of 

photoelectrons. It can use to analyze the binding energy of the innermost electrons 

(core electron) because the energy value is the specific value of the atom in each 

element and depends on the chemical status of that atom The XPS analysis technique 

can identify the type and chemical status of the element that means the surface area of 

the substance to be analyzed (Synchrotron Thailand Central Lab, 2019). 
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2.2 Literature reviews 

2.2.1 Vanadium redox flow battery performance 

 In recent years, VRFB is used as energy storage for renewable energy because 

it has many advantages over other types of battery; high flexibility, low cost per 

kilowatt for long term operation, long live cycle, and high depth of discharge. 

However, this battery is still necessary to be developed to be achieve high efficiency. 

The development can be 1) internal battery resistance reduction, 2) increase in energy 

density by increasing the concentration of vanadium ions, 3) selection and 

development of materials for half-cell and half-cell baffles, 4) selection and 

development of materials for making containers, and 5) electrode development, etc. 

Those are used to assemble batteries to obtain low cost and high-performance. 

However, the general method for electrode development is the electrode treatment 

that is the management of the functional group on the electrode surface and it 

enhances the wettability of an electrode. In January 1992, the graphite felt electrodes 

treated with sulfuric acid and mixed of sulfuric and nitric acid were performed by Sun 

and Skyllas-Kazacos (Sun & Skyllas-Kazacos, 1992a). They found that acid 

concentration in the treatment process inversely with cell resistance. The cell 

resistance affects VRFB performance in terms of the ohmic overpotential of the actual 

cell voltage. The decrease of ohmic losses leads to the charge voltage reduction and 

the discharge voltage increase, resulting in the battery efficiency enhancement. In 

addition, voltage and coulombic efficiency were improved by treated graphite felt 

electrodes with thermal treatment (Sun & Skyllas-Kazacos, 1992b). Kim et al. (2011) 

improved battery efficiency by the electrode treatment technique using the mild 

oxidation, oxygen plasma, and Gamma-ray irradiation treatment and compared with 

an untreated electrode. Mild oxidation was operated by heat treatment in a furnace at 

300-600 C for 5 hours under the atmosphere. Oxygen plasma is carried out by an 

inductively coupled radio frequency plasma fabrication reactor. Gamma-ray is a 

formality of the electromagnetic radiations of high frequency to produce functional 

groups on the surface of the matter. As a result, the battery using the electrode treated 

with mild oxidation at 500 C provided the highest energy efficiency. Figure 2.7 

denotes that the mild oxidation and plasma treatment gives much higher voltage and 
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energy efficiency than the untreated electrode and gamma-ray electrode which relates 

to the increasing of C-O and C=O functional groups. 

 

Figure 2.7 The energy efficiency of the battery using untreated electrode, mild 

oxidation, oxygen plasma, and gamma-ray treatment method  (Kim et al., 2011). 

 Chen et al. (2015) studied the atmospheric pressure plasma jets (APPJs) 

treatment on graphite felt electrodes that the treated graphite felts significantly 

improved the energy efficiency and discharge capacity of the VRFB as shown in 

Figure 2.8. The oxygen functional group in the graphite felt improves the wettability 

of the graphite resulting in, better electrolyte penetration into the graphite felt 

electrode and the electrochemical activity improvement on the electrode. This 

consequently increases the VRFB energy efficiencies. The experimental results 

demonstrated that APPJ is a rapid, cost-effective, and potentially scalable technique 

for the surface modification of graphite felts used in VRFBs.  
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Figure 2.8 Cell voltage improvement of the battery which uses untreated and APPJs 

treated electrodes (Chen et al., 2015). 

 Besides, Dixon et al. (2016) studied the comparison of plasma and general 

method of electrode treatment such as, heat treatment on two types of the electrode;  

rayon and polyacrylonitrile (PAN). The plasma treatment demonstrated the superior 

support of the PAN electrode compared to the heat treatment. The plasma treatment 

improves the electrochemical activity from the increase of the oxygen functional 

group; however, the heat treatment shows a little oxygen functional group on the 

surface and the electrode surface area unchanged. Figure 2.9 demonstrates the 

efficiency and discharge capacity of the electrode treated with plasma were higher 

than those of the heat treatment method due to the low percentage of capacity loss and 

high coulombic and energy efficiency. Therefore, the oxygen plasma treatment 

process could play a major role especially for the activation of PAN-based felts. 

Although the APPJs was shown as an interesting method for the graphite felt 

treatment, the optimal temperature for the APPJs process has not been reported in 

previous research to consider the highest VRFB energy efficiency. 
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Figure 2.9 The comparison of battery efficiencies between battery using heat and 

plasma electrode treatments a) discharge capacity and capacity loss b) coulombic and 

energy efficiency (Dixon et al., 2016). 

2.2.1 Operation of vanadium redox flow battery 

 Unlike conventional batteries, VRFB's energy rating and power rating are 

independent. The energy rating of the VRFB system depends on the concentration and 

volume of electrolyte, whereas the number of cell stacks determines the power rating 

of VRFB. The VRFB system consists of two electrolyte tanks which filled the V2+/ 

V3+ and V4+/ V5+ in sulfuric acid, a cell stack, and two electric pumps. During the 

charge/discharge operation, the positive and negative electrolytes are transferred into 

the cell stack for redox reaction by two electric pumps, in which the energy is stored 

and released by changing the oxidation state of vanadium ions. The redox reaction 

will occur at the surface of a porous electrode. The uniform distribution of electrolyte 

in the porous electrode is important causing the efficient reaction. Several previous 

studies focused on developing the material such as the electrolyte flow field material 

to improve battery performance. Xu Zhao and Leung (2013) investigated the three-

dimensional model to study the flow field design. The electrolyte with the flow field  

improved distribution and the overpotential decreased with the increase of the flow 

rate, which tends to improve battery performance.  Kuma and Jayanti (2016) studied 

the effect of three patterns of the flow field on VRFB performance. The different flow 

field patterns provide the different directions of the electrolyte through the porous 

electrode that affects the permeability. Since VRFB is a flow battery, it is undeniable 

that the electrolyte flow rate can enhance battery efficiency. Ma et al. (2012) showed 
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the effect of the electrolyte flow rate on battery performance. The electrolyte flow rate 

increase causes discharge capacity and battery efficiency increase as shown in Figure 

2.10. However, the system efficiency of VRFB decreased because the higher 

electrolyte flow rate consumes the higher pump energy demonstrated in Figure 2.11. 

 

Figure 2.10 Energy efficiency, system efficiency, and discharge capacity at different 

flow rates (Ma et al., 2012). 

 

Figure 2.11 Pump power consumptions under various flow rates (Binyu et al., 2013). 

 The high system efficiency requires considering cell stack power generation 

and pump power consumption. The pump power consumption is affected via the 

electrolyte flow rate as shown above. Therefore, flow rate optimization is a reasonable 

method to improve battery system efficiency. Tang et al. (2014) proposed the 

mathematical model to study the pressure drop and flow rate optimization in VRFB. 
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The high electrolyte flow rate influences reduce concentration overpotential at a high 

state of charge and high state of discharge, but the pump loss is high too. They 

presented the flow rate optimization that is variable electrolyte flow rate to solve this 

problem. Figure 2.12-2.13 illustrates the variable flow rate provides higher discharge 

time due to low concentration loss and requires lower pump energy than the constant 

flow rate. Since the optimizer must compensate for the dilution of active species 

concentration and for reducing the concentration overpotential, the electrolyte flow 

rate will be high at the end of charge and discharge make to high pump power 

consumption as Figure 2.13. Wang et al.   (2018)  studied the dynamic control 

strategy to find the optimal electrolyte flow rate for VRFB system using the 

optimization algorithm. The minimizing of total power losses was used as the 

objective function, resulting from the overpotentials, ohmic drops, and power pump 

consumption, and find the flow factor based on Faraday's law. Hence, they ensured 

that the control strategy can improve system energy efficiency. Jirabovornwisut et al. 

(2020) proposed the new electrolyte flow rate control strategy to improve system 

efficiency that minimizes the power during the charging process and maximizes the 

power during the discharging process by nonlinear optimization programming. This 

optimization considers the power of the VRFB stack and pumps power consumption. 

The proposed optimization can be used to define the optimal flow rate under 

variations in current density and state of charge. 
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Figure 2.12 Concentration overpotential of variable flow rate compared to a constant 

flow rate of the discharging process (Tang et al., 2014). 

 

Figure 2.13 Pump power consumption of variable flow rate compared to a constant 

flow rate of the discharging process (Tang et al., 2014). 
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2.2.2 Artificial neural network (ANN) 

 Neural Network (NN) is a network that works like the human brain with 

ability to be trained, learn, and memorize. Nowadays, several researchers use NN to 

predict data in many fields, such as weather forecasts, agriculture, economics, 

geography, and energy. Even though the mathematical model is absent, the NN can 

effectively solve complex mathematical models’ problem, and get accurate and 

precise answers because it is working as a black box model which can be trained with 

experimental results. For example, Abolhassani Monfared et al. (2006) performed 

the equivalent circuit parameter prediction of a lead-acid battery using Neural 

Network (NN) which the state-of-charge (SOC) is a network input. They confirm that 

the NN can perfectly predict. Lim and Kang (2018) studied the comparison of the 

conventional heat transfer model and multilayer ANN analysis of backpropagation to 

analyze the accelerated control cooling process, and the accuracy improvement of 

finish cooling temperature prediction by the ANN 3 layers is evaluated. This result 

show ANN analysis provides an accuracy that improved 2.74 times than the heat 

transfer model. It was concluded that the heat transfer model could be replaced by the 

neural network method of 3 layers (one input-layer, one hidden-layer, one output-

layer) with the trained weights for the precise control cooling. Mjalli et al. (2007) 

presented the black box neural network model (ANN) as an actual wastewater plant 

process model. NN model was trained and validated with plant scale data from a local 

wastewater treatment plant. The NN model provided accurate results. Furthermore, 

the NN has several architectures such as the Feedforward model, multilayer RNN, 

Elman RNN, and NARX ANN. Bonfitto et al. (2019) used the ANN for state-of-

charge estimation in lithium-ion batteries which had presented the comparison of the 

NN architectures. They performed the NARX model takes a little training time, gives 

a low maximum relative error, and uses small memory as shown in Figure 2.14. 

Khamis and Abdullah (2014) forecasted wheat price using the NARX model 

compared to the backpropagation model (BP). As a result, the NARX model provides 

higher R (close to 1) and lower MSE than BP that is the best prediction model.  

 In addition, the NN training algorithm is a vital role in training performance. 

Levenberg-Marquardt (LM) algorithm is regarded as the fastest, the best predictor, 
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and used small memory, guaranteed from the research of de Ramón-Fernández et al. 

(2020). They used NN to predict the power of Microbial fuel cell (MFC) and 

compared training algorithm include Quasi-Newton (QN), Levenberg-Marquardt 

(LM), and Conjugate Gradient (CG). They varied the hidden nodes from 3 to 12 

nodes and ran 100 times of each algorithm to find the best model. They found that the 

best number of the node of the LM algorithm is 8 nodes, while the QN and CG had 9 

and 11 nodes, respectively. Therefore, the LM algorithm used a small training time 

but offered the highest accuracy observed from the highest correlation coefficient (R) 

in Figure 2.15. Mohammadi et al. (2019) also found the similar results. They applied 

NN with Pyrene removal from the soil process. They operated NN training with 

different training algorithms such as Scaled Conjugate Gradient (SCG), Resilient 

Backpropagation (RP), Gradient Descent (GD), Conjugate Gradient with Powell-

Beale Restarts (CGB), and Levenberg Marquardt (LM). LM algorithm shows the 

highest correlation coefficient (R) of NN training and testing data as seen in Figure 

2.16. 
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Figure 2.14 The comparison of ANN architectures (Bonfitto et al., 2019). 
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Figure 2.15 The training correlation coefficient (R) of a) QN algorithm b) LM 

algorithm c) CG algorithm (de Ramón-Fernández et al., 2020). 

 

Figure 2.16 The comparison of different NN training algorithms (Mohammadi et al., 

2019).
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CHAPTER 3  

EXPERIMENTAL METHOD 

 

 The experiment is divided into two parts. First, the measurement of battery 

cell voltage and calculate the battery efficiency as the coulombic efficiency, voltage 

efficiency, energy efficiency, and discharge capacity. After the voltage measurement 

is completed, the electrode is brought out of the cell to analyze the characteristic of 

the electrode untreated and treated by APPJs at 450C, 550C, 650C, and H2SO4 

treatment method. 

 

3.1 Battery voltage measurement 

3.1.1 Cell component 

 The single-cell components consist of seven parts, i.e., two end plates, two 

current collectors, two flexible graphite foils, two graphite plates, two flow field 

patterns, two electrodes, and a membrane. The current collector of a VRFB is made of 

copper covered by gold as it can resist the corrosion caused by an acid electrolyte and 

is inert material to redox reactions. It is placed in the block of the flexible graphite 

foil. Next, the graphite plate is the plate of the electrolyte flowing in and out of the 

cell. The active species are uniformly distributed to an electrode via the PVC flow 

field to decrease the concentration overpotential. In this work, the graphite felt 

electrode is selected to be used in the VRFB system because of its high stability and 

surface area. The positive and negative half-cells are separated by a Nafion117 

membrane (Dupont, USA). Finally, the VRFB cell is sandwiched by two end plates 

and locked by the eight nuts. 
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Figure 3.1 Cell assembly of vanadium redox flow battery. 

3.1.2 Electrolyte preparation 

 Electrolyte solution prepared from 37.731 g. of 1.5 M VOSO4 (the VOSO4 

powder shows in Figure 3.2.) stirred with deionizing water and 29.78 g. of  

2.0 M H2SO4 at room temperature. After that, the deionized water is added into the 

mixture solution until the total volume reached 150 ml, then the initial electrolyte 

volumes are divided as positive and negative electrolytes with 100 and 50 ml, 

respectively. Before performing the experiments, nitrogen is introduced to the flask to 

prevent air oxidation. The pre-charging is an important step to prepare the oxidation 

state of vanadium ions from V4+ to be V5+ and V2+ in the positive and negative 

electrolytes, respectively. The current density for the pre-charging process is 80 

mA/cm2 with CC-CV mode. Finally, the volume of the positive and negative 

electrolytes is separated into 50 ml for each flask. 
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Figure 3.2 Vanadium sulphate (VOSO4) powder. 

3.1.3 Electrode and membrane preparation 

3.1.3.1 APPJs treatment 

  The APPJs schematic is shown in Figure 2.2. APPJs treatment is 

operated with a voltage of 275 V and the on/off duty cycle of 7/33 microsecond. The 

N2 flow rate is adjusted for various peak temperatures; 450C, 550C, and 650C. 

However, electrodes treated with APPJs are performed by outer manufacture. 

3.1.3.2 H2SO4 treatment 

  The H2SO4 electrode is prepared by soaking the (25  40  6.5 mm3) 

graphite felt electrode in 2 M of H2SO4 at 60C for 12 hours, and then the electrode is 

rinsed with deionized water. After that, the electrode is dried by squeezing. 

3.1.3.3 Membrane preparation 

  The Nafion117 membrane is cleaned with 2 M H2SO4 at 60C for 24 

hours, then rinse with deionized water. 

3.1.4 Cell assembly and pre-charge 

 After the cell stack is assembled, the cell stack is connected to the AC/DC 

battery tester (PFX2021, Kikusui Electronic, Japan) by plugging the tester electric 

wires at the current collector of the positive and negative half cells. Before performing 

the experiments, nitrogen is introduced to the flask to prevent air oxidation. The pre-

charging is an important step to prepare the oxidation state of vanadium ions from 

V4+ to be V5+ and V2+ in the positive and negative electrolytes, respectively. The 
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positive and negative electrolytes are pumped from the tanks into the cell stack and 

flow back into the tank by two diaphragm pumps (SMART Digital DDA 7.5-16AR-

PVC/V/C, Grundfos, Denmark). The electrolytes are pumped into the stack to 

oxidation-reduction reactions, then the electrolyte will recirculated into the original 

positive and negative electrolyte tank causing to decreasing of electrolyte 

concentration. The pre-charging process starts after the electrolyte is distributed in the 

cell by operating the pump without the current. The Constant Current - Constant Volt 

(CC-CV) mode with a current density of 80 mA/cm2 is used for the pre-charging 

process. The CC-CV mode has two steps. First, the battery is charged at a constant 

current that is CC mode until the battery voltage reaches the upper limit. After that, it 

switches into CV mode that charges the battery at the constant voltage at the upper 

limit, and the current decrease until reach cut-off current. Now positive and negative 

electrolytes are converted into V5+ and V2+, respectively. Finally, the volume of the 

positive and negative electrolytes is separated into 50 ml for each flask. 

3.1.5 Battery performance measurement 

 The VRFB voltage is measured and recorded every 1 second by AC/DC 

battery tester (PFX2021, Kikusui Electronic, Japan), using the constant current 

density of 40 mA/cm2 and the cut-off voltage for the upper and lower limit of 0.7 and 

1.7 V, respectively. The VRFB performances are calculated as given in Table 3.1. The 

coulombic efficiency (CE) as in Eq. 3.1 is the ratio of discharge capacity to charge 

capacity that represents the efficiency of total usable charge energy. The voltage 

efficiency (VE) indicates the ratio of the discharge voltage to the charge voltage as 

shown in Eq. 3.2. The energy efficiency (EE) is a multiple of CE and VE (Eq. 3.3) 

that represents the ratio of discharging power to charging power. Eq. 3.4 is the 

discharge capacity calculation. 

3.1.6 Graphite felt electrode characterization 

 Scanning Electron Microscopy (SEM) is used to analyze the surface 

morphology of the untreated and treated graphite felt electrodes. Moreover, the 

percentage of oxygen on electrodes is performed by Energy Dispersive X-ray 

Spectrometry (EDX) technique from SEM analysis. The percentage of C, O, N 
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elements and the amount of functional group on the electrode surface as C-O, C=O, 

and -COOH are analyzed by X-ray photoelectron spectroscopy (XPS). The electrode 

permeability is observed by dropping water on each electrode. 

Table 3.1 The equation used to determine the battery performance. 

Battery performance Equation 

Coulombic efficiency (CE) 
arg

arg

( )

( )

disch e

ch e

i t dt

i t dt




                                                   (3.1) 

Voltage efficiency (VE) 
arg

arg

( )

( )

disch e

ch e

V t dt

V t dt




                                                  (3.2) 

Energy efficiency (EE) CE×VE                                                             (3.3) 

Discharge capacity (DC) 
arg ( )disch ei t dt                                                     (3.4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32 
 

CHAPTER 4  

MODELING OF VANADIUM REDOX FLOW BATTERY 

 

4.1 Mathematical model 

4.1.1 Model assumptions 

 The model assumptions are necessary to simplify developing mathematical 

modeling. In this study, the simulations will be carried out in MATLAB software. 

 (1) The electrolyte is perfectly mixed that causes uniform concentration in all 

positions. 

 (2) The electrolyte density and viscosity are constant. 

 (3) The electrolyte volume in each half-cell and tank are constant. 

 (4) Side reactions caused by diffusion of ions across the membrane are 

instantaneous. 

 (5) The electrolyte imbalance due to the gassing side reaction is neglected. 

 (6) The anodic and cathodic transfer coefficient is equal to 0.5 due to 

symmetric electron transfer. 

 (7) Properties of an electrode (electrode thickness, poor diameter, electrode 

conductivity, and electrode surface area) are constant. 

 (8) Temperature is assumed to constant at room temperature. 

4.1.2 Mole balance 

 The cell membrane’s role is to separate negative and positive half-cell battery. 

Usually, the cell membrane is designed to allow only the proton can pass through and 

the vanadium ions are impervious. In fact, it cannot avoid or protect the vanadium ion 

transfer across the membrane completely. As a result, the battery self-discharge will 

take place that causes the loss of coulombic efficiency. The capacity loss occurs 

because of the difference in rates of ions diffusion leading to the accumulation of ions 
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in one half-cell and dilution in one half-cell. When a reaction occurs, the ions in one 

side may be depleted first resulting in decreased in battery efficiency. 

 The diffusion of V2+ and V3+ from the negative to positive half-cell will result 

in the following self-discharge reactions (Yan et al., 2016): 

2+ + + 2+

2 2V +2VO +2H 3VO +H O→                  (4.1) 

3+ + 2+

2V +VO 2VO→                    (4.2) 

2+ 2+ + 3+

2V +VO +2H 2V +H O→                  (4.3) 

 The diffusion of VO2+ and VO2
+ from positive to negative half-cell will result 

in the following self-discharge reactions (Yan et al., 2016): 

2+ 2+ + 3+

2VO +V +2H 2V +H O→                  (4.4) 

+ 2+ + 3+

2 2VO +2V +4H 3V +2H O→                  (4.5) 

+ 3+ 2+

2VO +V 2VO→                       (4.6) 

 Base on the above assumption, the cell mole balance equations are Eq. 4.7-

4.10 and the tank mole balance equations are Eq. 4.11-4.14 When Ci is vanadium ion 

concentration, Vc is cell volume, Qc is electrolyte flow rate in the cell, F is Faraday’s 

law constant, ki is diffusion coefficient, S is membrane surface area, d is membrane 

thickness, and i is current density. 

( )
2 2 2

2

2 2 2 5 42
2

cc c c

VOt cc V V VO
c V V

CdC C CV i
Q C C k S k S k S

dt F d d d

++ + +

+ += −  − − −             (4.7) 

( )
3 3 2

2

3 3 3 5 43 2
2

cc c c

VOt cc V V VO
c V V

CdC C CV i
Q C C k S k S k S

dt F d d d

++ + +

+ += −  − + +              (4.8) 

( )
2 2 2 3

2 2 4 2 33 2
2

c c c c

t cc VO VO V V
c VO VO

dC C C CV i
Q C C k S k S k S

dt F d d d

+ + + +

+ += −  − + +             (4.9) 

( ) 2 3
2 2

2 2
5 2 32

2

c c c c

VO VOt cc V V
c VO VO

dC C C CV i
Q C C k S k S k S

dt F d d d

+ + + +

+ += −  − − −           (4.10) 
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2

2 2

t

c tV
t c sV V

dC
V Q C Q C

dt

+

+ += −                (4.11) 

3

3 3

t

c tV
t c sV V

dC
V Q C Q C

dt

+

+ += −                (4.12) 

2

2 2

t

c tVO
t c sVO VO

dC
V Q C Q C

dt

+

+ += −                   (4.13) 

2

2 2

t

VO c t

t c sVO VO

dC
V Q C Q C

dt

+

+ += −                (4.14) 

4.1.3 Electrochemical model 

 The open-circuit voltage is the maximum operating voltage of the cell when it 

has no current. The open-circuit voltage is a relationship between the electrical 

potential occurring in the cell and the standard potential (E0) represented by Nernst 

Equation (Eq. 4.15) which is a different potential of the positive (Ep) and negative 

(En) electrodes that correlate with active species concentration (Ci) as shown in Eq. 

4.16 and Eq. 4.17, respectively. 

2
2

3 2

2

0 ln
V VO HOCV

p n

V VO

C C CRT
E E E E

nF C C

+ + +

+ +

 
 = − = +
 
 

  ; 0 1.259E V=           (4.15) 

3

2

0

2
ln VO

p p

VO H

CRT
E E

nF C C

+

+ +

 
 = −
 
 

     ; 
0 1.004pE V=           (4.16) 

2

3

0 ln V
n n

V

CRT
E E

nF C

+

+

 
= −  

 
 

     ; 0 0.255nE V= −           (4.17) 

 During the charge-discharge operation, the voltage loss will take place 

normally. The overpotential describes the discrepancy of equilibrium potential or 

open-circuit voltage and actual measure potential that is the voltage loss shown in Eq. 

4.18. The overpotential has 3 terms; activation overpotential ( act ), concentration 

overpotential ( con ), and ohmic loss ( ohm ) as shown in Eq. 4.19.  
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cell OCVE E = −                  (4.18) 

act con ohm   = + +                  (4.19) 

 Activation overpotential describes the kinetics of electrochemical reactions 

that are always present and most predominant at low currents. It is a regard for the 

activation energy required to initiate electron transfer which is explained by the 

Butler-Volmer equation with symmetric electron transfer assumption; the anodic (a) 

and cathodic (c) electron transfer coefficient equal to 0.5, as given in Eq. 4.20 and 

Eq. 4.21. 

1

,

0,

2
sinh

2
act p

p

RT i

nF i
 −

 
=   

 

                (4.20) 

1

,

0,

2
sinh

2
act n

n

RT i

nF i
 −

 
=   

 

                (4.21) 

when the exchange current density of anodic and cathodic is the current in the absence 

of net electrolysis and at zero overpotential are illustrated in Eq. 4.22 and Eq. 4.23, 

respectively. 

 2 2
2 2

(1 ) ( )

0,
c c

p p pVO VO VO VO
i Fk C C Fk C C

 
+ + + +

−
= =               (4.22) 

2 3 2 3

(1 ) ( )

0,
a a

n n nV V V V
i Fk C C Fk C C

 
+ + + +

−
= =               (4.23) 

 Mass transfer limitation describes by the concentration overpotential that 

relies on the concentration gradient between the bulk electrolyte solution and 

electrolyte solution at the electrode surface. It is particularly dominant at the end of 

the charge and discharge process because the concentrations of the active species for 

the redox reactions are low. The concentration loss ( con ) related to the electrolyte 

flow rate (in terms of Reynolds number) and active species concentration ( bulkC ) in 

which the loss can be determined by Eq. 4.24 for positive half-cell and Eq. 4.25 for 

negative half-cell. For the concentration bulkC , it follows Table 4.1. The mass transfer 

coefficient (
,m ik ) of the active species in the carbon fiber electrode is proposed by Eq. 
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4.26 which was reported by Khazaeli et al. (2015). It depends on the effective 

diffusion coefficient of reactant ( eff

iD ) that can be determined by Eq. 4.27, a pore 

diameter of the electrode (
fd ), and Reynolds number ( Re ). 

,

, ,

ln 1con p

m i bulk p

RT i

nF k nFC


 
= −  

 

               (4.24) 

,

, ,

ln 1con n

m i bulk n

RT i

nF k nFC


 
= −  

 

               (4.25) 

0.4

, 7 Re
eff

i
m i

f

D
k

d
=                  (4.26) 

3/2eff

i iD D=                   (4.27) 

 

Table 4.1 The using of Cbulk in the concentration loss equation. 

 Charging process Discharging process 

,bulk pC  2+VO
C  +

2VO
C  

,bulk nC  3+V
C  2+V

C  

 

 The ohmic loss ( ohm ) occurs from the electrical current flowing through the 

resistances of the cell. The ohmic loss is a function of the resistances of each cell 

component. In the flow battery, it is the summation of electrode resistance, membrane 

resistance, and electrolyte resistance as shown in Eq. 4.28. The electrolyte 

conductivity ( elec ) is the function of concentration which can be performed by Eq. 

4.29. 

e mem elec
ohm

e mem elec

d d d
i
  

 
= + + 

 
                (4.28) 
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2
2 eff

elec i i i

i

F
z D C

RT
 =                  (4.29) 

 Therefore, the cell voltage of the VRFB for the charging process is expressed 

the incorporating the Nernst equation and the overpotential for compensating the 

voltage loss as shown in Eq. 4.30. In contrast, the overpotential is subtracted from the 

open-circuit voltage of the cell voltage of the VRFB for the discharging process 

which is the actual cell voltage that can be used from the battery as shown in Eq. 4.31. 

( )
2

2

3 2

2

0 ln
V VO H

cell act con ohm

V VO

C C CRT
E E

nF C C
  

+ + +

+ +

 
 = + + + +
 
 

  ; for charge         (4.30) 

( )
2

2

3 2

2

0 ln
V VO H

cell act con ohm

V VO

C C CRT
E E

nF C C
  

+ + +

+ +

 
 = + − + +
 
 

  ; for discharge         (4.31) 

4.1.4 Pump power model 

 The total pressure loss for the VRFB positive and negative sides are the 

summation of pressure loss of all components of the VRFB system as shown in Eq. 

4.32 reported by Wang et al. (2018). Where   is the electrolyte viscosity, eh  is the 

height of the electrode,   is the electrode porosity,   is the permeability of porous 

electrode, Q  is the electrolyte flowrate, and CK  is the Carman-Kozeny constant as 

Eq. 4.33. 

2e
pump pipe

e

h
P p Q Q

A




=  +                 (4.32) 

( )

2 3

2
1

ed

CK

d 


 
=

−
                 (4.33) 

 For the piping system, the pressure loss in the piping system can be divided 

into the major loss due to friction and the minor loss associated with the bends, 

valves, and fittings as expressed by Tang et al. (2014). Normally, the equation in fluid 

dynamics of pressure loss due to friction in pipes is expressed by the Darcy-Weisbach 

equation as shown in Eq. 4.34.   
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2

2

major

pipe D

L
p f

d


 =                    (4.34) 

where 
Df  is the Darcy friction factor, L  is the length of the pipe, d  is the diameter 

of the pipe,   is the density of the fluid and   is the velocity of the flow. For the 

laminar flow in pipe, the Darcy friction factor can be expressed as Eq. 4.35. 

64

Re
Df =                   (4.35) 

 In addition, the minor loss equation is illustrated in Eq. 4.36 where f  is the 

minor loss coefficient. Therefore, the total pressure losses in pipes are given by Eq. 

4.37. 

2

2

minor

pipep f


 =                   (4.36) 

major minor

pipe pipe pipep p p =  +                 (4.37) 

4.1.5 The battery performance 

 The battery performance including coulombic efficiency (CE), voltage 

efficiency (VE), energy efficiency (EE), system efficiency (SE), and discharge 

capacity (DC) can be defined from Eqs. 4.38-4.42, respectively. Table 4.2 is the 

parameters for VRFB mathematical model simulations. 

( )
( )

arg

arg

( )

( )

disch e

ch e

I t dt
CE

I t dt
=



                (4.38) 

( )
( )

arg

arg

( )

( )

disch e

ch e

V t dt
VE

V t dt
=



                (4.39) 

EE CE VE=                   (4.40) 

( )
( )

arg arg

arg arg

( ) ( ) ( )

( ) ( ) ( )

disch e disch e pump

ch e ch e pump

V t I t P t dt
SE

V t I t P t dt

−
=

+




              (4.41) 
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( )arg ( )disch eDC I t dt=                  (4.42) 

 

Table 4.2 The parameters for VRFB mathematical model simulations. 

Parameter Symbol Value Reference 

Electrode 

     - Height eh  0.04 m  

     - Width ew  0.025 m  

     - Thickness ed  0.0065 m  

     - Porosity   0.94  

     - Pore diameter fd  1.0x10-5 m  

     - Conductivity e  363 S m-1  

Membrane 

     - Thickness memd  183x10-6 m  

Electrolyte 

     - Tank volume tV  0.05 L  

     - Density   1300 kg m−3 
Khazaeli et 

al. (2015). 

     - Viscosity   0.005 Pa s 
Khazaeli et 

al. (2015). 

     - Diffusion coefficient of 

V2+/V3+ 
2 3/

V V
D D+ +  2.4 x 10-10 m2 s−1 

(Khazaeli et 

al., 2015) 

     - Diffusion coefficient of 

VO2+/VO2
+ 

2
2

/
VO VO

D D+ +  3.9x 10-10 m2 s−1 
(Khazaeli et 

al., 2015) 

Electrochemistry 

     - Standard potential for the 

V2+/V3+
 reaction 

0

nE  -0.255 V  

     - Standard potential for the 

VO2+/VO2
+

 reaction 

0

pE  1.004 V  
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     - Standard rate constant for 

the negative electrode 
0,nk  2.6 x 10-6 m s-1 

(Chen et al., 

2014) 

     - Standard rate constant for 

the positive electrode 
0, pk  6.8 x 10-7 m s−1 

(Chen et al., 

2014) 

     - Reference temperature refT  298.15 K  

     - Stack temperature stackT  298.15 K  

Other 

     - Gas constant R  8.314 J mol−1 K−1  

     - Faraday’s constant F  96,485 A s mol−1  

 

4.2 Artificial neural network modeling 

 The development of an artificial neural network (ANN) based dynamic model 

of the VRFB system is described in this part. The developed neural network is used to 

predict the cell voltage of VRFB from the electrolyte flow rate and the sampling time. 

Figure. 4.1 shows the VRFB model developed in this study. For modeling the 

nonlinear dynamic system, the nonlinear autoregressive network with exogenous 

inputs (NARX) is used. NARX model usually uses in the nonlinear dynamic problem 

that relates to time-series modeling that shows in Eq. 4.43. The standard architecture 

of NARX is the feeding back of the output to the input feedforward network. 

However, if the true output is available during the network training, it is used instead 

of feeding back the estimated output in the series-parallel architecture. The two 

advantages of this proposed architecture are the input to the feedforward network is 

more accurate and the resulting network has a pure feedforward architecture, and 

static backpropagation can be used for training. Figure. 4.2 shows the series-parallel 

architecture of the VRFB. 
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Figure 4.1 The parallel architecture of artificial neural network (ANN) based model 

of vanadium redox flow battery (VRFB). 

 

Figure 4.2 The series-parallel architecture of artificial neural network (ANN) based 

model of vanadium redox flow battery (VRFB). 

4.2.1 Collect and prepare the data 

 Before beginning the neural network design process, sample data are collected 

and prepared. The correlation between the input and output variables was performed 

as Figure. 4.3. It shows this input and output variables were a pattern which can be 

used to train the neural network. Since the neural network cannot be efficient in the 

non-pattern input and output variable, the correlation proving is necessary for using 

the variable from the experimental data that unknown its correlation. Moreover, 

selecting the training data covering the range of predicting is very important because 

the network does not have the ability to accurately extrapolate when it out of the 

training data range. Therefore, we need to make the input and target values covering 

the range that we want to predict. In this work, the random flow rate profiles in the 
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range of 1-6 L/h are prepared for use to input data. However, the cell voltage in the 

range of 1.1-1.7 V is used to output or target data. Figure. 4.4-4.6 is an example of the 

prepared flow rate profile and cell voltage profile for the neural network training. 

After the data collection, there are two steps of the preprocess before the data are used 

to train the network for better training efficiency. First, two input data are pairing and 

arranged into one matrix data. Then, the data is sequenced and divided into 3 subsets 

for training, validating, and testing into 70%, 15%, and 15%, respectively to avoid the 

overfitting problem. When the training process is completed, the postprocessing will 

be applied to convert the data to the appropriate value. The preprocessing and 

postprocessing flowchart is illustrated in Figure. 4.7. 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 , 2 ,..., , 1 , 2 ,...,y uy t f y t y t y t n u t u t u t n= − − − − − −           (4.43) 

 

Figure 4.3 The 3D plot of the correlation between input data and output data. 
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Figure 4.4 The electrolyte flow rate profile for the NN training input.  

 

 

Figure 4.5 The sampling time for the NN training input. 
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Figure 4.6 The cell voltage profile for the NN training target. 

 

 

Figure 4.7 The preprocessing and postprocessing flowchart. 

4.2.2 Network training 

 The training of the neural network is tuning the value of the weight and bias of 

the network to optimize the network performance by using mean square error (mse), 

the average square error between the network outputs ( a ) and the target outputs ( t ) 

are defined in Eq. 4.44. 

( ) ( )
2 2

1 1

1 1N N

i i i

i i

F mse e t a
N N= =

= = = −                (4.44) 

 The termination of the training process is considered by the magnitude of the 

gradient and the number of validation checks. If the goal of the magnitude of the 

gradient is 1e-5, it means when the gradient is less than 1e-5 the training process will 
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stop. The number of validation checks indicates the number of successive iterations 

the failing of validation performance. It means when the validation checks reach 6, 

the training process will stop. In addition to these two issues, the training will stop 

when the number of calculation cycles (epoch) reach the set value. The flowchart of 

Neural Network training illustrates in Figure 4.8. 

 In this study, the NARX model with time delay 2 steps was used to training 

the neural network. The Levenberg-Marquardt (trainlm) was applied to the training 

algorithm and the mean squared error (MSE) was calculated the model performance. 

The charging process and discharging process were separated training. 

4.2.3 Network prediction 

 After training the neural network model, the testing process will be conducted 

to prove the NN model accuracy before using this NN model to predict the real data 

or the required data. When the testing process goes well, this NN model will be 

recognized as an effective model with accurate predictions and then this NN model 

can be used for predictions. Before the prediction, it is necessary to prepare the input 

data form to the same training data form which is the pairing and sequencing of the 

data. Both one-step ahead and multi-step ahead prediction can be predicted by this 

NN model. 
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Figure 4.8 The flowchart of Neural Network training. 
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4.3 Optimization 

 The sequential discretization approach was applied to solve the offline 

optimization problem. This optimization was sequenced by dividing time between the 

initial time to the final time by the number of stages. The SOC 0.05 of vanadium 

concentration of 1.5 mol/L was operated as the initial vanadium concentration of the 

first stage and the last concentration of each stage (i) was used as an initial 

concentration in the next stage (i+1) that integrated into Eqs. 4.7-4.14. However, 

defining the electrolyte flow rate was necessary to calculate the vanadium 

concentration using the initial guess of the electrolyte flow rates. After that, the new 

set of the electrolyte flow rate was determined by the non-linear programming 

optimization base on the objective function. The minimum applied power (Eq. 4.45) 

and maximum discharge power (Eq. 4.46) was preferred in this objective function to 

perform the highest system efficiency (SE, Eq.4.41). Then, the objective function will 

be compared with the objective function in the previous step, and the optimization 

process will be stopped when the tolerance reaches the desired value. Therefore, the 

optimal electrolyte flow rate profile was obtained. 

0

arg
( )

min ( )

ft

ch e pump
Q t

t

J IV P dt= +                           (4.45) 

0

arg
( )

max ( )

ft

disch e pump
Q t

t

J IV P dt= −                (4.46) 

 For the optimization-based Neural Network model, the trained NN model was 

used to estimate the cell voltage instead of a mathematical model. After the 

optimization sequencing was complete, the initial guess of the electrolyte flow rate 

and time stage were paired and sequenced to use as the input of the NN model. Then, 

the trained NN model was applied to estimate the battery cell voltage. The voltage 

estimation of the next stage (i+1) was independent of the previous stage (i) that was 

different from using a concentration in the recent stage for initial in the next stage of 

the optimization-based mathematical model. The objective cost that was the minimum 

power applied (Eq. 4.45) and maximum discharged power (Eq. 4.46) was calculated 

and compared with the previous stage until reach the desired value. The new set of 
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electrolyte flow rate was returned to the optimizer. Finally, the optimal electrolyte 

flow rate for maximum system efficiency was received. The constraints of the 

optimization based on the mathematical model and the NN model illustrated in Table 

4.3. 

Table 4.3 The constraints of the optimization based on the mathematical model and 

the NN model. 

Optimization Charging process Discharging process 

Based on mathematical 

model 

( )( ), ,x f x t Q t=   

( ) ( )0 0x t x=   

L UQ Q Q    

( ) 1.7 .fV t V=   

( )( ), ,x f x t Q t=   

( ) ( )0 0x t x=   

L UQ Q Q    

( ) 1.1 .fV t V=  

Based on NN model 

 L UQ Q Q    

( ) 1.7 .fV t V=  

L UQ Q Q   

( ) 1.1 .fV t V=  

Lower (QL) – Upper (QU) 

electrolyte flow rate limit 
1-6 L/h 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

49 
 

CHAPTER 5  

RESULTS AND DISCUSSIONS 

 

 In this chapter, we divide into two parts that are the experimental part and the 

simulation part. In the experimental part, the effect of electrode treatment on 

vanadium redox flow battery performance is presented and the APPJs treatment and 

conventional treatment (acid treatment) are compared. In addition, the graphite 

characterization is analyzed by the Scanning Electron Microscopy (SEM), the Energy 

Dispersive X-ray Spectrometry (EDX), and the X-ray photoelectron spectroscopy 

(XPS). In the simulation part, the optimal flow rate of vanadium redox flow battery 

based on a neural network model is performed by MATLAB programming to take 

place the highest system efficiency as an objective function. The comparison of the 

optimization based on NN and mathematical model was conducted. 

 

5.1 Experimental result 

5.1.1 The effect of electrode treatment with different APPJ temperature on battery 

performance. 

 A single-cell vanadium redox flow battery (VRFB) which an electrolyte 

volume 50 ml, a volumetric flow rate of electrolyte 3 L/h, and a current density 40 

mA/cm2 was specified on the experimental setting. Figure 5.1 shows the comparison 

of the VRFB performance which using different electrode treatment. Atmospheric 

pressure plasma jets (APPJs) electrode treatment demonstrates a higher performance 

than sulfuric acid (H2SO4) treatment. However, the differential of the temperature of 

APPJs treatment that 450C, 550C and 650C affects the performance of VRFB. 

From Figure 5.1a, the discharge capacity of VRFB is decreasing with the number of 

cycles may be caused by the self-discharge of a battery and with the increasing of 

APPJs temperature. Consistent with Figure 5.2 that illustrates the discharge voltage of 

VRFB with difference APPJs temperature, the trends of 550C and 650C are 

suddenly dropped at the end of the discharge while the trend of 450C is gradually 
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decreased that may be caused by the effect of the concentration overpotential. 

Furthermore, since we use constant charge-discharge current density, determining of 

coulombic efficiency follow Eq. 3.1 is depending on the time of discharge. The ratio 

of discharging time and charging time in each cycle is closely, the coulombic 

efficiency does not significantly change when applying with different APPJs 

temperatures as shown in Figure 5.1b. As a result, an APPJs temperature at 550C 

provides the highest energy efficiency (EE). This result will explain in the electrode 

characterization part. 
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Figure 5.1 The performance of a vanadium redox flow battery with different 

electrode treatment; (a) Discharge capacity (b) Coulombic efficiency (c) Voltage 

efficiency and (d) Energy efficiency. 
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Figure 5.2 The discharge voltage curve of a vanadium redox flow battery with 

different APPJs temperatures. 

5.1.2 Characterization of electrode 

 From the effect of electrode treatment on VRFB performance in part 5.1.1, we 

can see that the VRFB performance is enhanced when the electrode treated. However, 

the performance is increased when using APPJs treatment instead of H2SO4 treatment. 

In this section, we will explain the cause of enhancing VRFB performance. 

5.1.2.1 Electrode morphology 

  The morphology of graphite felt electrode was conducted by a 

Scanning Electron Microscope (SEM). The surface area and the size of the electrode 

fiber which un-treated, treated with H2SO4, and treated with APPJs at different 

temperatures are shown in Figure 5.3 and Figure 5.4. From Figure 5.3, the surface 

area of electrode fibers is still smooth and no visible change after treated under 

unused and used. Moreover, the size of the electrode fibers is closely that considered 

no-change as shown in Figure 5.4. As a result, we can conclude that the electrode 

treatments are not damaging to graphite felt electrode fiber. Figure 5.5 shows the 

hydrophilicity of 6 electrodes which illustrates the electrode treatment can improve 
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the wettability. Although both of H2SO4 and APPJs treatment can improve 

wettability, APPJs treatment can better improve than H2SO4 which can be observed 

from the water permeate into the electrode or the contact angle between the water 

droplet and the electrode surface as in the research of  

(Zhang et al., 2013). For the effect of different APPJs temperature on wettability, it 

should be analyzed by contact angle tester to measure the time of permeation. Since a 

good wettability can reduce the concentration overpotential because the electrolyte 

will transfer into the electrode more easily, the efficiency of the battery is improved. 

Therefore, the VRFB which use APPJs treatment is higher performance than H2SO4 

treatment. However, the improved hydrophilicity is presumably due to the increase of 

oxygen functional groups on the electrode surface (Kil et al., 2017). 
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Figure 5.3 SEM images indicate the surface morphology of graphite felt electrodes; 

(a) un-treated (b) H2SO4 treated (c) APPJs 450C (d) APPJs 550C (e) APPJs 650C 

and (f) APPJs 550C (used). 

 

Figure 5.4 SEM images indicate the size of graphite felt electrodes fiber; (a) un-

treated (b) H2SO4 treated (c) APPJs 450C (d) APPJs 550C (e) APPJs 650C and (f) 

APPJs 550C (used). 
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Figure 5.5 The wettability of graphite felt electrodes; (a) un-treated (b) H2SO4 treated 

(c) APPJs 450C (d) APPJs 550C and (e) APPJs 650C. 

5.1.2.2 The oxygen functional group on the electrode surface area 

  The Energy-dispersive X-ray spectroscopy (EDX) result was derived 

from SEM. It uses to analyze the element or chemical characteristic of a sample. 

Table 5.1 indicated the percentage of an oxygen atom on the electrode surface area 

with H2SO4 treated and APPJs treated which the oxygen atom of the H2SO4 electrode 

and APPJs at 550C are the highest. Furthermore, we had analyzed the functional 

group on the electrode surface area by X-ray photoelectron spectroscopy (XPS) and 

the result shown in Table 5.2. It can see that the surface of APPJs at 550C electrode 

has the highest carbonyl group (C=O) while the H2SO4 electrode has the lowest. The 

increased C=O functional group on the electrode surface cause of great the chemical 

activity on the electrode surface meaning the battery performance enhance (Chen et 

al., 2015; Li et al., 2007). Therefore, the VRFB using APPJs 550C has the highest 

energy efficiency and the VRFB using H2SO4 is the least energy efficiency according 

to the performance result. On the other hand, the functional group on the surface of an 
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electrode treated with H2SO4 more transformed to the carboxyl group (O=C-O) cause 

EDX results shows a high amount of oxygen atom. 

Table 5.1 The EDX results. 

Electrode 
At% of Oxygen 

1 2 3 Avg. 

H2SO4 (unused) 2.85 2.41 2.65 2.64 

APPJs 450C (unused) 1.93 0.92 1.98 1.61 

APPJs 550C (unused) 2.36 1.60 2.72 2.23 

APPJs 650C (unused) 1.88 1.71 0.96 1.52 

 

Table 5.2 The XPS results. 

Electrode 
% of element 

C-C C=C C-O/C-N C=O O=C-O 

H2SO4 47.65 24.57 16.04 0.20 11.54 

APPJ 450C 64.67 0 22.30 7.82 5.21 

APPJ 550C 61.23 0 23.60 10.39 4.78 

APPJ 650C 61.27 0 24.48 9.00 5.25 

 

 

5.2 Simulation results 

5.2.1 Model validation 

 The reported VRFB experiment data was used to validate the developed 

mathematical model. The active area 10 cm2 of a single cell VRFB with graphite felt 

electrode was applied. The electrode was activated by Atmospheric Pressure Plasma 

Jets (APPJs) at 550C. The electrolyte solution of 50 mL in each positive and 
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negative reservoir was recirculated to the battery with a flow rate of 3 L/h by using 

two diaphragm pumps. The Nafion117 was deployed as a membrane. VRFB was 

operated by charging and discharging with a constant current at 0.4 A which the 

voltage was limited in the range of 0.7-1.7 volt. The voltage between the experiment 

and the simulation was different value but it was similarly curved. In this study, the 

charging process used the specific surface area and the standard rate constant to adjust 

the model parameters so that the model resembles an actual cell voltage from an 

experiment and the discharging process used the electrode conductivity to tune 

parameters together with the specific area and standard rate constant. Figure 5.6 

shows the VRFB charge-discharge cell voltage of the simulation result validated with 

the experiment result. The simulation results explain the experimental results quite 

well. The maximum relative error of the cell voltage between the simulation result 

and the experiment result was 2.50%. This discrepancy may be caused by an 

imbalance of the experiment in part of the gassing side reaction occurred but the 

mathematical model in this study does not have the equation to explain this 

imbalance.  
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Figure 5.6 The VRFB charge-discharge cell voltage of the simulation result 

compared with the experiment result. 

5.2.2 Artificial Neural Network results 

 The developed model was used to produce the input and target data that were 

an electrolyte flow rate, sampling time, and battery cell voltage to train Neural 

Network (NN) and test the performance of the trained NN model. The flow rate 

profile was produced by randomly in the range of 1-6 L/h at constant current density 

40 mA/cm2 under the upper and lower limit is 1.1-1.7 V, respectively.    

5.2.2.1 Training result 

  This NN training was operated by using NARX (Nonlinear 

autoregressive with external input) model with 2-time delay (i-1, i-2). Trainlm 

(Levenberg-Marquardt backpropagation) was a training function. This architecture 

had two input parameters, one hidden layer, and one output parameter. The size of 

hidden layer was ten. Dividing the training data into 3 parts; training data 70%, 

validating data 15%, and testing data 15%. The charging process was trained by 15 

epochs and stop training by a validation stop condition. The discharging process was 

trained by 35 epochs and stop training by a validation stop condition too. The 
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properties of the training NN were illustrated in Table 5.3 and Figure 5.7 shows the 

architecture of NN training. 

Table 5.3 The NN training property. 

Training property Charge training Discharge training 

Architecture 2-10-1 2-10-1 

Learning algorithm Trainlm Trainlm 

Time delay 1:2 1:2 

Number of nodes in hidden layer 10 10 

Epochs 15 35 

Training stop condition Validation stop Validation stop 

 

 

Figure 5.7 The architecture of NN training. 

5.2.2.2 Testing the NN model/Prediction of NN model 

  Since the trained NN model may not be effective to another input data 

set which means when used the new input set the NN model can't accurately predict 

the voltage, the NN model would be necessary testing with variety input data patterns. 

The NN model performance testing data set was prepared several cases by the 

mathematical model which having different conditions such as the different constant 
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flow rate, the different sampling time, and the different flow rate change patterns. 

After the testing data collected, the pairing and sequencing follow the training set 

form. Figure 5.8-5.11 and Figure 5.12-5.15 show the input profile and the testing 

results of the charging process and discharging process, respectively. For the charging 

process, the testing data used different flow rate forms include constant flow, random 

flow, ascending flow, and descending flow as shown in Figure 5.8-5.11, respectively. 

Likewise, the discharging process used the testing data for different flow rate forms 

include constant flow, random flow, ascending flow, and descending flow as shown in 

Figure 5.8-5.11, respectively. The flow rates were varied from 1 to 6 L/h. From 

Figure 5.8-5.15, we can observe that the NN cannot predict an accurate voltage during 

the first period of the charging and discharging process. Since an NN model will save 

two last training values as i-1 and i-2 to predicting the current value (i), so the 

predicting value in the first period will be low efficiency. 
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Figure 5.8 The testing data and predicting result using the constant flow rate for 

charging process. 

 

Figure 5.9 The testing data and predicting result using the random flow rate for 

charging process. 
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Figure 5.10 The testing data and predicting result using the ascending flow rate for 

charging process. 

 

Figure 5.11 The testing data and predicting result using the descending flow rate for 

charging process. 
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Figure 5.12 The testing data and predicting result using the constant flow rate for 

discharging process. 

 

Figure 5.13 The testing data and predicting result using the random flow rate for 

discharging process. 
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Figure 5.14 The testing data and predicting result using the ascending flow rate for 

discharging process. 

 

Figure 5.15 The testing data and predicting result using the descending flow rate for 

discharging process. 

5.2.3 Optimization based Neural Network model 

 The dynamic optimization based on the Neural Network (NN) model to 

maximize system efficiency was performed in this study. The NN model was acted as 

a state predictor instead of the mathematical model to calculate or predict cell voltage 
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in the optimization process by using the electrolyte flow rate (Q) and stage time (t) as 

an input. As a reason, the optimization base on NN was comfortable to use than the 

optimization base on the model because the mathematical model must be specified 

many parameters causing the complicated.  

 The optimization was operated under the constant current density and constant 

battery temperature. The upper and lower voltage of 1.7 and 1.1 V were defined for 

boundary conditions. After the optimization process completely, the optimal flow rate 

profile was derived and carried to use in the battery that was simulated by the 

mathematical model. The comparison with pristine based optimization was proposed 

and compared the effect of optimal flow rate and constant flow rate.  

 Figures 5.16 and 5.17 were the optimal electrolyte flow rate from the dynamic 

optimization based on the mathematical model and the NN model, respectively. These 

optimal flow rates were similar trends. At first, the active vanadium ions in the 

electrolyte tanks were full, and after the charge battery, the active vanadium ions were 

decreased. At the early and middle process, the active vanadium ions still high 

causing the inflow of electrolyte into the stack each time, there will be a high amount 

of active species. Therefore, it was not necessary to have frequent or a large amount 

of electrolyte inflow to reduce the power consumption of the pump. On the other 

hand, the active vanadium ions concentration was decreased to a very low, 

electrolytes were speedy pumped into the stack to increase the recirculate of active 

species into the stack cause to the high energy pump consumption at the end of the 

process. 

 The dynamic optimization based on NN was compared to the dynamic 

optimization based on mathematical model. Figure 5.18 demonstrates the battery 

voltage of NN based optimization and mathematical model based. The strength blue 

line and the dash red line were the voltage of battery using optimal flow rate based on 

NN and mathematical, respectively. We observed that the NN based optimization was 

similarly trend to pristine based optimization. However, the optimal flow from 

mathematical based optimization provided the lower charging time and higher 

discharging time than the NN based optimization make to slightly higher system 

efficiency than NN. The system efficiency of NN based and mathematical based 
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optimization were 80.85% and 80.91%, respectively. Normally, the simulation model 

would have the deviation from prototype and in this study, the mathematical model 

was used for generating data to train the NN, thus the mathematical model was a 

prototype model and NN was a simulation model. As a result, an efficiency of optimal 

flow rate from NN based optimization was lower than mathematical model-based 

optimization. 

 

Figure 5.16 An optimal electrolyte flow rate of charging process simulated by 

optimization based on a mathematical model. 
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Figure 5.17 An optimal electrolyte flow rate of charging process simulated by 

optimization based on neural network model. 

 

Figure 5.18 Battery voltage of the battery which uses optimal electrolyte flow rate 

from NN based and mathematical based optimization. 

 The optimal flow rate was enhancing the battery efficiency by adjustment the 

flow rate to suit for active species concentration for preventing the concentration loss. 

Especially at high state-of-charge (SOC), the active species in an electrolyte will be 

quite reduced thus, the electrolyte flow rate should be increased to expand opportunity 
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for active species flow into the cell stack and increase the quantity of active species 

diffuse in the active area causing to the decreased concentration overpotential. Figure 

5.19 shows the concentration overpotential of battery using optimal flow rate from 

NN and constant flow rate at 3 L/h (the flow rate that experiment uses). We can 

observe that the concentration loss was constant at the early to middle SOC and 

rapidly rising at the end SOC. However, the concentration loss of an optimal flow rate 

was lower than constant flow rate which causing the increase discharge capacity. 

 

Figure 5.19 The concentration overpotential of the battery using optimal flow rate 

and constant flow rate. 
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CHAPTER 6  

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

 The first objective of this study is to investigate the effect of the operating 

temperatures of the Atmospheric Pressure Plasma Jets (APPJs) process on the energy 

efficiency of the vanadium redox flow battery (VRFB). An experiment was operated 

at constant current density and electrolyte flow rate using a battery that uses graphite 

felt electrodes treated by APPJs with various temperatures of 450C, 550C, and 

650C. The electrode treated with APPJs at 550C shows the best energy efficiency 

(over 83%). The characterization of the electrode was examined the Energy 

Dispersive X-ray Spectrometry (EDX), and the X-ray photoelectron spectroscopy 

(XPS). EDX showed that the APPJs electrode at 550C has a high percentage of 

oxygen atom corresponding to the XPS result that showed the APPJs electrode at 

550C have the highest C=O functional group affected the highest energy efficiency. 

Apart from that, the effectiveness of APPJs electrode treatments was compared to 

untreated and sulfuric acid treatment. Although, all electrode treatments can improve 

the wettability, APPJs treatment method provides good performance than untreated 

and sulfuric acid treatment. In addition, every electrode treatment does not affect the 

surface of electrodes as illustrated in SEM results. 

 The second objective is to determine the optimal electrolyte flow rate of 

VRFB by solving a dynamic optimization based on a neural network model. The 

mathematical model was simulated and validated base on an experiment result that the 

battery using APPJs at 550C treatment because it was the highest energy efficiency. 

The simulated battery was operated for generate data for neural network training and 

testing. The NN structure was two input nodes, one hidden layer with ten nodes, and 

one output node (2-1-1). The electrolyte flow rate and sampling time were used to 

input, and battery voltage was output. The NN network was structed by Nonlinear 

Autoregressive Exogenous (NARX) model and NN was trained by Levenberg-
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Marquardt (LM) algorithm. NN was behaved to the VRFB and can predicted battery 

voltage accurately except the early of charge and discharge prediction. Trained NN 

model was used to dynamic optimization process. The optimization based on the 

neural network can provides higher system efficiency of vanadium redox flow battery 

that minimum charging power and maximum discharging power as objective 

functions. 

 

6.2 Recommendations 

 - Since VRFB has many parameters that affect battery performance, NN could 

be an important role and has the ability to predict other parameters such as state-of-

charge, battery temperature, and current density. Interestingly, the NN model that can 

be predict various parameters simultaneously. 

 - Normally, the current of battery operation is not stable causing some 

parameters are swing. The real-time optimization is a good benefit to the control 

system. The real-time or online optimization necessary use the online estimator, thus, 

the NN should be online trained. 
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