Property estimation of palmitoylethanolamide and sucrose palmitate for process design from methyl palmitate

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Chemical Engineering Department of Chemical Engineering FACULTY OF ENGINEERING Chulalongkorn University Academic Year 2020 Copyright of Chulalongkorn University

การประมาณคุณสมบัติของปาล์มิโตอิลเอทาโนลาไมด์และซูโครสปาล์มิเตทสำหรับการออกแบบ กระบวนการผลิตจากเมทิลปาล์มิเตท

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเคมี ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2563 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	Property estimation of palmitoylethanolamide and
	sucrose palmitate for process design from methyl
	palmitate
Ву	Miss Janetiya Wongprathed
Field of Study	Chemical Engineering
Thesis Advisor	Assistant Professor APINAN SOOTTITANTAWAT, D.Eng.

Accepted by the FACULTY OF ENGINEERING, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master of Engineering

Dean of the FACULTY OF

ENGINEERING

(Professor SUPOT TEACHAVORASINSKUN, D.Eng.)

THESIS COMMITTEE

_____ Chairman

(Associate Professor DEACHA CHATSIRIWECH, Ph.D.)

(Assistant Professor APINAN SOOTTITANTAWAT, D.Eng.)

จุฬาลงกรณ์มหาวิทยาลย Examiner

(Assistant Professor AMORNCHAI ARPORNWICHANOP,

D.Eng.)

..... External Examiner

(Pakorn Piroonlerkgul, D.Eng.)

เจนติยา วงษ์ประเทศ : การประมาณคุณสมบัติของปาล์มิโตอิลเอทาโนลาไมด์และซูโครส ปาล์มิเตทสำหรับการออกแบบกระบวนการผลิตจากเมทิลปาล์มิเตท. (Property estimation of palmitoylethanolamide and sucrose palmitate for process design from methyl palmitate) อ.ที่ปรึกษาหลัก : ผศ. ดร.อภินันท์ สุทธิธารธวัช

เมทิลปาล์มิเตท เป็นองค์ประกอบหลักในไบโอดีเซลที่ผลิตได้จากน้ำมันปาล์ม และเป็น สารประเภทเมทิลเอสเทอร์ของกรดไขมันชนิดอิ่มตัว ซึ่งมีจุดเหลอมเหลวสูง ส่งผลให้ไบโอดีเซลมี สมบัติการไหลที่อุณหภูมิต่ำที่ไม่ดี นอกจากนี้ หากไม่มีแรงสนับสนุนจากรัฐบาล อาจมีผลต่อผล ประกอบการของธุรกิจไบโอดีเซล ด้วยเหตุผลดังกล่าว จึงทำให้ผู้ประกอบการหันมาสนใจที่จะนำไบ ้โอดีเซลไปใช้เป็นสารตั้งต้นในการผลิตสารเคมีมูลค่าเพิ่ม ในเบื้องต้นเราได้ทำการเลือกผลิตภัณฑ์ที่ ต้องการศึกษาจากการพิจารณาอัตรากำไรขั้นต้น กระบวนการผลิต ความต้องการของตลาด และ การนำไปใช้งาน สรุปได้ว่าในงานนี้เราจะทำการจำลองกระบวนการผลิตปาล์มิโตอิลเอทาโนลาไมด์ ซูโครสปาล์มิเตท และแอลเคนโซ่ตรง จากเมทิลปาล์มิเตท โดยใช้โปรแกรม Aspen Plus V11 เนื่องจากปาล์มิโตอิลเอทาโนลาไมด์ และซูโครสปาล์มิเตท ไม่มีอยู่ในฐานข้อมูลของโปรแกรม Aspen Plus ดังนั้น เราจึงต้องทำการประมาณพารามิเตอร์คุณสมบัติของสารดังกล่าวที่จำเป็นต้อง ใช้ในการจำลองกระบวนการ ซึ่งได้แก่ พารามิเตอร์ที่ใช้ในการคำนวณสมดุลมวลสารและพลังงาน ้และ พารามิเตอร์ที่ใช้ในการคำนวณสถานะอ้างอิงทางอุณหพลศาสตร์ หลังจากนั้นจะทำการ วิเคราะห์ทางเศรษฐศาสตร์ ผลการศึกษาพบว่า กระบวนการผลิตซูโครสปาล์มิเตทสามารถทำกำไร ได้มากที่สุด รองลงมาคือ กระบวนการผลิตปาล์มิโตอิลเอทาโนลาไมด์ และแอลเคนโซ่ตรง ตามลำดับ งานวิจัยนี้บ่งชี้ให้เห็นว่า การผลิตสารเคมีมูลค่าเพิ่มจากเมทิลปาล์มิเตทเป็นทางเลือกที่ น่าสนใจสำหรับโรงงานผลิตไบโอดีเซล เนื่องจากกระบวนการผลิตดังกล่าวสามารถทำกำไรได้ แม้ไม่ มีแรงสนับสนุนจากรัฐบาล

สาขาวิชา วิศวกรรมเคมี ปีการศึกษา 2563

ลายมือชื่อนิสิต
ลายมือชื่อ อ.ที่ปรึกษาหลัก

6170355021 : MAJOR CHEMICAL ENGINEERING

KEYWORD: Property estimation, Process design, Methyl palmitate
 Janetiya Wongprathed : Property estimation of palmitoylethanolamide and
 sucrose palmitate for process design from methyl palmitate. Advisor: Asst.
 Prof. APINAN SOOTTITANTAWAT, D.Eng.

Methyl palmitate is the primary component of palm oil-based biodiesel. It is a saturated fatty acid methyl ester which has a high melting point that results in low cold flow properties of biodiesel. Besides, lack of government support may affect the revenue of biodiesel business. For that reason, the producers turn attention to using biodiesel as a raw material for the production of value-added chemicals. Initially, we selected the studied products based on the gross profit margin, production process, market demand and application. This work simulated the production of palmitoylethanolamide, sucrose palmitate and normal alkanes from methyl palmitate using Aspen Plus V11. Because palmitoylethanolamide and sucrose palmitate were not available in Aspen Plus's databases, so we need to estimate the property parameters required in the process simulation, including parameters for mass and energy balance and parameters for thermodynamic reference state. Then, the economic analysis was performed. This study founded that the production of sucrose palmitate was the most profitable, followed by the production of palmitoylethanolamide and normal alkanes. This research indicated that the production of value-added chemicals from methyl palmitate was an attractive alternative to biodiesel producers because these production processes could be profitable even without government support.

Field of Study:	Chemical Engineering	Student's Signature
Academic Year:	2020	Advisor's Signature

ACKNOWLEDGEMENTS

First of all, I would like to express my deep and sincere gratitude to my thesis advisor, Asst. Prof. Dr. Apinan Soottitantawat for continuous support, valuable advice and extensive knowledge throughout my years of study.

I would also like to thank Assoc. Prof. Dr. Deacha Chatsiriwech, Asst. Prof. Dr. Amornchai Arpornwichanop and Dr. Pakorn Piroonlerkgul as the members of my thesis committee for their encouragement and insightful comments.

Furthermore, My sincere thanks also go to Prof. Dr. Suttichai Assabumrungrat, Dr.Pongtorn Charoensuppanimit and Dr.Kritchart Wongwailikhit, for their helpful advice.

I am also thankful to all members and my friends in the Center of Excellence in Particle Technology, Department of Chemical Engineering, Chulalongkorn University.

Finally, I am extremely grateful to my parents and my family for their love, care and supporting me throughout my life.

Janetiya Wongprathed

V

TABLE OF CONTENTS

	Page
	iii
ABSTRACT (THAI)	iii
	iv
ABSTRACT (ENGLISH)	iv
ACKNOWLEDGEMENTS	V
TABLE OF CONTENTS	vi
List of tables	ix
List of figures	xiv
CHAPTER 1 INTRODUCTION	1
1.1. Background and problem statement	1
1.2. Research objective	3
1.3. Scope of research	3
1.4. Expected outputs	4
CHAPTER 2 FUNDAMENTAL THEORY AND LITERATURE REVIEWS	5
2.1. Fundamentals	5
2.1.1. Biodiesel	5
2.1.2. Palmitoylethanolamide	6
2.1.3. Sucrose palmitate	7
2.1.4. Pentadecane and hexadecane	
2.1.5. Property estimation methods	10
2.2. Literature reviews	16

2.2.1. Synthesis of fatty acid amides	16
2.2.2. Synthesis of sucrose esters	17
2.2.3. Synthesis of normal alkanes (C15 and C16)	17
2.2.4. Property estimation	18
CHAPTER 3 METHODOLOGY	19
3.1. Property estimation of palmitoylethanolamide and sucrose palmitate using	10
2.2 Concentual process design	17
	24
CHAPTER 4 RESULTS AND DISCUSSION	28
4.1. Property estimation of the similar compounds	28
4.2. Property estimation of palmitoylethanolamide and sucrose palmitate	39
4.3. Conceptual process design	44
4.3.1. Process description of palmitoylethanolamide production	44
4.3.2. Process description of sucrose palmitate production	46
4.3.3. Process description of normal alkanes production	48
4.3.4. Thermodynamics model selection	50
4.3.5. Value-added chemicals production yield	52
4.4. Economic analysis	52
4.5. Comparing the results with other literature	55
4.6. Sensitivity analysis	56
CHAPTER 5 CONCLUSION	68
5.1. Conclusion	68
5.2. Recommendation	68
REFERENCES	69

APPENDIX A GROSS PROFIT MARGIN ANALYSIS	75
APPENDIX B FEED AND PRODUCT SPECIFICATIONS	78
APPENDIX C SIMPLE MASS BALANCE	82
APPENDIX D STREAM TABLE AND EQUIPMENT SUMMARY	88
APPENDIX E TOTAL PROJECT COST OF PLANT	106
APPENDIX F PROPERTY PARAMETERS OF SIMILAR COMPOUNDS	112
VITA	122

Chulalongkorn University

List of tables

Page
Table 1 Major fatty acid methyl esters composition of palm-oil based biodiesel 6
Table 2 Advantage and disadvantage of each acyl donor [20]
Table 3 Aspen Plus's built-in estimation methods for estimating critical temperature.
Table 4 Aspen Plus's built-in estimation methods for estimating critical pressure11
Table 5 Aspen Plus's built-in estimation methods for estimating critical volume 12
Table 6 Aspen Plus's built-in estimation methods for estimating standard heat of
formation12
Table 7 Aspen Plus's built-in estimation methods for estimating ideal gas heat
capacity
Table 8 Aspen Plus's built-in estimation methods for estimating vapor pressure 13
Table 9 Aspen Plus's built-in estimation methods for estimating heat of vaporization.
Table 10 Method for the temperature nondependent properties estimation [36] 18
Table 11 Similar compounds to palmitoylethanolamide and sucrose palmitate 19
Table 12 Properties of palmitoylethanolamide and sucrose palmitate [37]24
Table 13 Reaction information for the palmitoylethanolamide production process. 24
Table 14 Reaction information for the sucrose palmitate production process
Table 15 Reaction information for the normal alkanes production process25
Table 16 Cost of utilities [6]27
Table 17 Investment analysis parameters

Table 18 The best methods for estimating the properties of palmitoylethanolamide
and sucrose palmitate
Table 19 Estimated pure component constants for palmitoylethanolamide
Table 20 Estimated temperature-dependent properties for palmitoylethanolamide. 40
Table 21 Estimated pure component constants for sucrose monopalmitate
Table 22 Estimated temperature-dependent properties for sucrose monopalmitate.41
Table 23 Estimated pure component constants for sucrose dipalmitate
Table 24 Estimated temperature-dependent properties for sucrose dipalmitate 42
Table 25 Solid molar volume for palmitoylethanolamide and sucrose palmitate 43
Table 26 Estimated solid heat capacity for palmitoylethanolamide and sucrose
palmitate
Table 27 Estimated solid standard enthalpy of formation for palmitoylethanolamide
and sucrose palmitate
Table 28 The UNIFAC groups of palmitoylethanolamide
Table 29 The UNIFAC groups of sucrose monopalmitate and sucrose dipalmitate51
Table 31 Summary of the economic performances of the three processes
Table 32 The comparison of the total equipment direct cost
Table 33 Raw materials costs and products selling prices
Table 34 Gross profit margin analysis results
Table 35 Properties and specification of methyl palmitate
Table 36 Feed and product specification for the production of
palmitoylethanolamide79
Table 37 Feed and product specification for the production of sucrose palmitate80
Table 38 Feed and product specification for the production of normal alkanes 81
Table 39 Input-output structure of palmitoylethanolamide production

Table 40 Input-output structure of sucrose palmitate production	34
Table 41 Input-output structure of normal alkanes production	36
Table 42 Stream table for the production of palmitoylethanolamide	38
Table 43 Operating conditions of unit operations for palmitoylethanolamide	
production9	90
Table 44 Stream table for the production of sucrose palmitate9)3
Table 45 Operating conditions of unit operations for sucrose palmitate production. 9	96
Table 46 Stream table for the production of normal alkanes9	9
Table 47 Operating conditions of unit operations for normal alkanes production10)3
Table 48 Total project cost of palmitoylethanolamide production (USD))6
Table 49 Equipment cost of palmitoylethanolamide production (USD))7
Table 50 Total project cost of sucrose palmitate production (USD))8
Table 51 Equipment cost of sucrose palmitate production (USD))9
Table 52 Total project cost of normal alkanes production (USD)	.0
Table 53 Equipment cost of normal alkanes production (USD)	.1
Table 54 Comparison of critical temperature obtained from databanks and	
estimation	.2
Table 55 Comparison of critical pressure obtained from databanks and estimation.11	2
Table 56 Comparison of critical volume obtained from databanks and estimation. 11	.3
Table 57 Comparison of critical compressibility factor obtained from databanks and	
estimation11	.3
Table 58 Comparison of standard heat of formation obtained from databanks and	
estimation11	.3
Table 59 Coefficients for ideal gas heat capacity equation for 2-Acetamidoethanol.	
	4

Table 60 Coefficients for ideal gas heat capacity equation for 1,3-Dipalmitin114
Table 61 Coefficients for ideal gas heat capacity equation for 1,3-Dipalmitin115
Table 62 Comparison of ideal gas heat capacity of 2- Acetamidoethanol obtained
from databanks and estimation115
Table 63 Comparison of ideal gas heat capacity of Monopalmitin (b,c) obtained from
databanks and estimation
Table 64 Comparison of ideal gas heat capacity of 1,3-Dipalmitin obtained from
databanks and estimation
Table 65 Coefficients for vapor pressure equation for 2-Acetamidoethanol116
Table 66 Coefficients for vapor pressure equation for 1-Monopalmitin
Table 67 Coefficients for vapor pressure equation for 2-Monopalmitin
Table 68 Coefficients for vapor pressure equation for 1,3-Dipalmitin
Table 69 Comparison of vapor pressure of 2- Acetamidoethanol obtained from
databanks and estimation
Table 70 Comparison of vapor pressure of 1-Monopalmitin obtained from databanks
and estimation
Table 71 Comparison of vapor pressure of 2-Monopalmitin obtained from databanks
and estimationGHULALONGKORN UNIVERSITY
and estimation
and estimation
and estimation
and estimation
and estimation. CHULALONGKORN UNIVERSITY 119 Table 72 Comparison of vapor pressure of 1,3-Dipalmitin obtained from databanks and estimation. 119 Table 73 Coefficients for enthalpy of vaporization equation for 2-Acetamidoethanol. 119 Table 74 Coefficients for enthalpy of vaporization equation for 1-Monopalmitin120
and estimation

Table 77 Comparison of enthalpy of vaporization	at TB obtained from databanks and
estimation	

Chulalongkorn University

List of figures

Page
Figure 1 Reaction pathways from methyl palmitate2
Figure 2 Transesterification of triglyceride with methanol to produce biodiesel [15]5
Figure 3 Amidation of FAME with ethanolamine to produce fatty acid amide [8]7
Figure 4 Transesterification of sucrose with methyl palmitate to produce sucrose palmitate [12]
Figure 5 Applications of sucrose esters [21]9
Figure 6 Hydro-processing of triglycerides to produce normal alkanes [24]9
Figure 7 Molecular structures of 2-Acetamidoethanol (a), 1-Monopalmitin (b), 2- Monopalmitin (c) and 1,3-Dipalmitin (d)
Figure 8 User-Defined Component Wizard window
Figure 9 Molecule Editor window
Figure 10 Molecular structure window
Figure 11 Estimation window
Figure 12 Estimating critical temperature of 2- Acetamidoethanol
Figure 13 Molecular structures of palmitoylethanolamide (a), sucrose monopalmitate
(b) and sucrose dipalmitate (c)
Figure 14 Deviations of critical temperature estimation methods for 2-
Acetamidoethanol (a), 1-Monopalmitin (b), 2-Monopalmitin (c) and 1,3-Dipalmitin (d).
Figure 15 Deviations of critical pressure estimation methods for 2-Acetamidoethanol
(a), 1-Monopalmitin (b), 2-Monopalmitin (c) and 1,3-Dipalmitin (d)
Figure 16 Deviations of critical volume estimation methods for 2-Acetamidoethanol
(a), 1-Monopalmitin (b), 2-Monopalmitin (c) and 1,3-Dipalmitin (d)

Figure 17 Deviations of standard heat of formation estimation methods for 2-
Acetamidoethanol (a), 1-Monopalmitin (b), 2-Monopalmitin (c) and 1,3-Dipalmitin (d).
Figure 18 Deviations of ideal gas heat capacity estimation methods for 2-
Acetamidoethanol (a), 1-Monopalmitin (b), 2-Monopalmitin (c) and 1,3-Dipalmitin (d).
Figure 19 Deviations of vapor pressure estimation methods for 2-Acetamidoethanol
(a), 1-Monopalmitin (b), 2-Monopalmitin (c) and 1,3-Dipalmitin (d)
Figure 20 Deviations of enthalpy of vaporization (at TB) estimation methods for 2-
Acetamidoethanol (a), 1-Monopalmitin (b), 2-Monopalmitin (c) and 1,3-Dipalmitin (d).
Figure 21 Process flow diagram for the production of palmitoylethanolamide
Figure 22 Process flow diagram for the production of sucrose palmitate
Figure 23 Process flow diagram for the production of normal alkanes
Figure 24 The UNFAC groups of palmitoylethanolamide (a), sucrose monopalmitate
(b) and sucrose dipalmitate (c)
Figure 25 Product yield by 100,000 tonnes of methyl palmitate feedstock
Figure 26 The effect of methyl palmitate purchasing cost on DPV (a), DPP (b) and
DCFROR (c) for palmitoylethanolamide production
Figure 27 The effect of methyl palmitate purchasing cost on DPV (a), DPP (b) and
DCFROR (c) for sucrose palmitate production
Figure 28 The effect of methyl palmitate purchasing cost on DPV (a), DPP (b) and
DCFROR (c) for normal alkanes production
Figure 29 The effect of palmitoylethanolamide selling price on DPV (a), DPP (b) and
DCFROR (c) for palmitoylethanolamide production
Figure 30 The effect of sucrose palmitate selling price on DPV (a), DPP (b) and
DCFROR (c) for sucrose palmitate production

Figure 31 The effect of pentadecane and hexadecane selling prices on DPV (a), DPP	
(b) and DCFROR (c) for normal alkanes production	3
Figure 32 The effect of total capital investment on DPV (a), DPP (b) and DCFROR (c)	
for palmitoylethanolamide production	5
Figure 33 The effect of total capital investment on DPV (a), DPP (b) and DCFROR (c)	
for sucrose palmitate production	5
Figure 34 The effect of total capital investment on DPV (a), DPP (b) and DCFROR (c)	
for normal alkanes production	7
Figure 35 Input-output structure of palmitoylethanolamide production	2
Figure 36 Material balance for palmitoylethanolamide production	3
Figure 37 Input-output structure of sucrose palmitate production	1
Figure 38 Material balance for sucrose palmitate production	5
Figure 39 Input-output structure of normal alkanes production	5
Figure 40 Material balance for normal alkanes production	7
Sector and	

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

CHAPTER 1

INTRODUCTION

1.1. Background and problem statement

Nowadays, the world's energy consumption mostly comes from fossil fuels such as petroleum, coal and natural gas. However, population growth and industrial development cause the depletion of these non-renewable resources. Besides, the burning of fossil fuels leads to environmental impacts such as air pollution and global warming [1]. For these two reasons, it is necessary to find renewable energy sources. Biodiesel is a good alternative for substituting petroleum-based diesel because it has similar properties to petrodiesel and we can use it in diesel engines without any modifications. Moreover, it produces less polluting and greenhouse gas emissions [2].

In 2017, Thailand had 13 biodiesel producers that had a total production capacity of 6.62 million litres per day. Crude palm oil is a primary raw material for biodiesel production. From a total of 2.63 million tonnes of crude palm oil, 0.97 million were used to produce biodiesel. The profitability of biodiesel industry depends on 1) costs of raw materials (which account for 70% of total production costs), 2) biodiesel proportion in the blends 3) the government's policies and supports, and 4) profit margins [3]. The lack of government supports can negatively impact business profits. Therefore, the producers pay attention to use biodiesel as a raw material for value-added chemicals production instead of selling as fuels.

Palm oil-based biodiesel is mainly rich in methyl palmitate (44.3%) and methyl oleate (39.1%) [4]. The high amount of methyl palmitate, which is saturated fatty acid methyl esters (FAMEs), results in low cold flow properties due to its high melting point. Fractionation is one of the methods used to improve the cold flow properties of biodiesel. This method reduces saturated FAMEs concentration by cooling down to the temperature between the cloud point and pour point. After that, the formed crystals of saturated FAMEs are separated by filtration [5].

Methyl palmitate which separated from biodiesel can be used as raw material to produce value-added chemicals. Figure 1 presents the potential chemical products converted from methyl palmitate. These products are consumed in various industries such as cosmetic, food, pharmaceutical and lubricant industries. Furthermore, they are used as chemical intermediates to produce other chemicals and as solvents. Initially, we calculated the gross profit margin of each alternative, as present in Appendix A. From the analysis results, there are six processes with negative profit margins. They are butyl palmitate, cetyl alcohol, cetyl palmitate, ethyl palmitate, isopropyl palmitate, and palmitic acid. A negative value indicates that the process will not be profitable, so we did not further investigate these production processes in this work [6].

Figure 1 Reaction pathways from methyl palmitate.

However, considering the production routes of ascorbyl palmitate and retinyl palmitate, they are commercially produced through the esterification of palmitic acid with acid catalysts. Palmitic acid has a lower price and is preferable feedstock than methyl palmitate. Thus, we did not consider these two products in this study.

The remaining products are considered in terms of application and market demand. Palmitoylethanolamide (PEA) is used as a wetting agent and foam booster in cosmetics and personal care products. High purity PEA can be used as a pain killer and anti-inflammatory agent [7]. Moreover, it is used as a corrosion inhibitor and lubricant additive. Global demand for alkanolamides is 90,000 ton per year [8]. Sucrose palmitate can be used as an emulsifier, emollient and skin conditioning agent in cosmetics, food additive, fruit preservation and stabilizer for drug delivery system. Global demand for sucrose esters is 15,000 ton per year [9]. Pentadecane and hexadecane are used as feedstocks for other chemicals production, solvents and phase change material (PCM) for thermal energy storage applications [10].

Based on the above considerations, the promising chemicals produced from methyl palmitate are palmitoylethanolamide, sucrose palmitate and normal alkanes. Thus, this work proposed the conceptual process design of these chemicals production processes using Aspen Plus V11. Unfortunately, palmitoylethanolamide and sucrose palmitate are not available in Aspen database. Consequently, we needed to study the suitable property estimation methods to assess their properties. After that, process simulation and economic analysis were performed to find the optimal processing route to produce value-added chemicals from methyl palmitate.

1.2. Research objective

หาลงกรณ์มหาวิทยาลัย

This work aimed to perform property estimation of palmitoylethanolamide and sucrose palmitate including the conceptual process design of value-added chemicals production, which are palmitoylethanolamide, sucrose palmitate and normal alkanes (C15 and C16), from methyl palmitate.

1.3. Scope of research

- 1.3.1. Estimate the properties of palmitoylethanolamide and sucrose palmitate using property estimation methods available in Aspen Plus V11.
- 1.3.2. Perform conceptual process design of palmitoylethanolamide production using Aspen Plus V11 based on the work of Wang et al. [11]. The conversion of PEA

was 100% under reaction conditions of 20:1 molar ratio of monoethanolamine to methyl palmitate, 60 °C reaction temperature, 3%wt sodium methoxide as a catalyst and 1.5 h reaction time.

- 1.3.3. Perform conceptual process design of sucrose palmitate production using Aspen Plus V11 based on the work of Gutierrez et al. [12]. The optimal sucrose esters content was 22.86%wt under reaction conditions of 2.5:1 molar ratio of methyl palmitate to sucrose, 136 °C reaction temperature, 0.334 bar reaction pressure, 5%wt potassium carbonate as a catalyst, 16.15%wt sucrose ester as a surfactant and 3.92 h reaction time.
- 1.3.4. Perform conceptual process design of normal alkanes production using Aspen Plus V11 based on the work of Yan et al. [13]. The optimal yield of pentadecane and hexadecane were 70.0% and 28.3% under reaction conditions of 220 °C reaction temperature, 10 bar reaction pressure, 3%wt Mo-Ni@PSi and 2.5 h reaction time.
- 1.3.5. Compare economic performance between the three production processes in terms of discounted present value (DPV), discounted payback period (DPP) and discounted cash flow rate of return (DCFROR).

Design basis

- The feedstock is methyl palmitate with 100,000 tonnes per year.
- The desired purities of chemical products are ≥98%wt.
- The design pressure is specified as 10% of maximum operating pressure, and the design temperature is typically plus 30 °C.

1.4. Expected outputs

Property parameters estimated by Aspen Plus's built-in estimation methods were expected. After that, these parameters were used to perform the conceptual process design for palmitoylethanolamide, sucrose palmitate and normal alkanes production processes from methyl palmitate.

CHAPTER 2

FUNDAMENTAL THEORY AND LITERATURE REVIEWS

2.1. Fundamentals

2.1.1. Biodiesel

Biodiesel is commonly produced by transesterification of vegetable oils, animal fats or waste cooking oils with methanol in the presence of a catalyst, as illustrated in Figure 2. The mixture of fatty acid methyl esters (biodiesel) is obtained with glycerol as a by-product. Biodiesel has many advantages compared to petrodiesel such as sulphur-free, low emissions, high cetane number and high lubricity [14].

Table 1 presents the major FAMEs composition of biodiesel obtained from crude palm oil. It contains high amounts of saturated FAMEs which have high melting points. Saturated FAMEs tend to solidify at low temperature. These solid crystals clog the fuel lines, filters and injectors, resulting in fuel starvation and operational problems in vehicle engines. According to the work of Dunn [16], biodiesel has poor cold flow properties when saturated FAMEs is more than 20%wt. Cold flow properties can be improved by adding chemical additives such as pour point depressants and crystalline wax modifiers, blending with petrodiesel or biodiesel with high unsaturated or shorter-chain FAMEs, using the longer chain (C_3 to C_8) or branched alcohols instead of methanol in transesterification process, reducing total saturated FAMEs by fractionation such as winterization, solvent fractionation and vacuum distillation [17].

Composition	Melting point (°C) [18]	Percentage of total FAME [4]
Methyl palmitate (16:0)	28.5	44.3%
Methyl stearate (18:0)	37.7	5.0%
Methyl oleate (18:1)	-20.2	39.1%
Methyl linoleate (18:2)	-43.1	10.1%

 Table 1 Major fatty acid methyl esters composition of palm-oil based biodiesel.

Biodiesel can directly be used as transportation fuel, fuel for power generation, heating oil, solvent, lubricity additive, fuel additive, pesticide and fertilizer carriers [19]. Besides, individual methyl ester can be used to produce other chemical products.

2.1.2. Palmitoylethanolamide

Palmitoylethanolamide is one of the fatty acid amides produced via amidation of acyl donors with monoethanolamine in the presence of a base catalyst (typically sodium methoxide). The feasible acyl donors are free fatty acids, fatty acid methyl esters, fatty acid chlorides, triglyceride oils and fatty acid vinyl esters. The comparison between each acyl donor is presented in Table 2.

Acyl donor	Advantage	Disadvantage
Free fatty acids	- Commercially available	- High amount of by-
		product impurities
Fatty acid methyl esters	- Higher yield than FAs	
	- Commercially available	
Fatty acid chlorides	- Most effective	- Most expensive
		- Corrosive and toxic
Triglyceride oils	- Safe and cheap	- Not suitable for medicinal
	- No ion pairs formed	use
Fatty acid vinyl esters	- Effective	- Less available

Table 2 Advantage and disadvantage of each acyl donor [20].

In this work, fatty acid methyl ester is used as raw material for fatty acid amide synthesis. The reaction takes place at around 100 °C and 4 kPa or less using sodium methoxide as a catalyst. Vacuum pressure is used to remove the produced methanol [8]. Figure 3 illustrates the reaction scheme of the fatty acid amide synthesis.

$$R \xrightarrow{O} HN^{-CH_2CH_2OH} = R^{O} R^{-CH_2CH_2OH} + H_2O/CH_3OH$$

Figure 3 Amidation of FAME with ethanolamine to produce fatty acid amide [8]. (methyl palmitate: $R = C_{15}H_{31}$, monoethanolamine: X = H)

2.1.3. Sucrose palmitate

Sucrose palmitate is non-ionic surfactant obtained from reacting sucrose with acyl donors such as free fatty acids, fatty acid methyl esters and fatty acid chlorides. According to sucrose chemical structure, it has the three primary hydroxyl groups (6, 1' and 6') and five secondary hydroxyl groups. Consequently, sucrose monoesters up to sucrose octa-esters can be produced. Most commercial products contain at least 80%wt of sucrose monoesters and diesters [12].

In general, sucrose esters are produced by transesterification of sucrose with fatty acid methyl esters using a base catalyst (typically potassium carbonate). Direct esterification of sucrose with fatty acids is impractical because a base catalyst can promote the neutralization of fatty acids, resulting in reactant depletion and low yield [9]. Sucrose palmitate synthesised by transesterification process is shown in Figure 4.

Considering the nature of raw materials, sucrose is highly polar solid and methyl palmitate is highly non-polar liquid. Thus, the reactants are immiscible with each other. There are many routes to improve the compatibility between reactants. The first is the solvent process, dimethylformamide (DMF) or dimethyl sulfoxide (DMSO) are used to dissolve the two reactants, resulting in a homogeneous mixture. The disadvantages of this route are the high amount of solvent required (60%wt) and high energy required to remove a solvent from the product. The second route is the solvent-free process,

surfactants, such as alkaline soaps, multivalent fatty acid soaps, sucrose esters, monoand diacyl-glycerol esters, are used to disperse sucrose in methyl palmitate. In this route, the amount of used surfactant is 1-30%wt [12].

Figure 4 Transesterification of sucrose with methyl palmitate to produce sucrose

palmitate [12].

Sucrose esters have a wide range of applications depending on the degree of substitution, as presented in Figure 5. Hydrophilic-lipophilic balance (HLB) is calculated by multiplying the ratio of molecular weight of hydrophilic groups to the molecular weight of the whole molecule by 20. Accordingly, sucrose esters with high monoesters possess high HLB value or vice versa [21].

2.1.4. Pentadecane and hexadecane

Green diesel is consists of saturated hydrocarbons with 15 to 18 carbon atoms, including pentadecane and hexadecane. Normal alkanes are obtained from hydroprocessing of fatty acids, fatty acid esters and triglyceride oils. The reaction takes place at mild temperatures between 280 °C and 450 °C and pressure of 1–5 MPa. The mostly used catalysts are Ni-Mo, Co-Mo and Ni-W on the alumina (Al_2O_3) support [22].

Figure 5 Applications of sucrose esters [21].

When fatty acid esters and triglyceride oils are used as feedstocks, the C=C double bonds are saturated by hydrogenation. Then, they are hydrogenated to fatty acids [23]. Finally, the oxygens are removed by deoxygenation, and normal alkanes are obtained. This reaction consists of three pathways: (1) Decarboxylation (DCO₂) and (2) Decarbonylation (DCO) and Hydrodeoxygenation (HDO), as shown in Figure 6.

Figure 6 Hydro-processing of triglycerides to produce normal alkanes [24].

DCO and DCO_2 pathways yield the normal alkanes with one less carbon atom than the starting fatty acids, whereas the HDO pathway yields the normal alkanes with the same carbon atom.

2.1.5. Property estimation methods

Property estimation methods are used to estimate the missing properties of compounds which are not available in literature, online database and simulator databanks. The estimation methods help to reduce the time-consuming and costs of experimental measurements. The property parameters used in process simulation are divided into two parts [25].

- Parameter requirements for mass and energy balance simulations: molecular weight (MW), ideal gas heat capacity (CPIG), vapor pressure (PL) and heat of vaporization (DHVL)
- Parameter requirements for thermodynamic reference state: critical temperature (TC), critical pressure (PC), critical volume (VC), critical compressibility factor (ZC) and standard heat of formation (DHFORM)

In Aspen Plus software, the minimum information required to estimate property parameters is the normal boiling point, molecular weight and molecular structure. Aspen Plus's built-in estimation methods and their equation for each property are summarized in Table 3 to 9. For compressibility factor (ZC), it calculated by definition, as shown in Equation 1.

P_c

V

=

$$Z_{c} = \frac{P_{c}V_{c}}{RT_{c}}$$
(1)

Where:

R = Universal gas constant

= Critical volume

Critical pressure

 $T_c = Critical temperature$

Method	Information require	Equation	Average relative error (%)	Reference
(1) Joback	Structure, TB	$T_{c} (K) = T_{b} \left[0.584 + 0.965 \Sigma N_{i} \cdot T_{c_{i}} - \left(\Sigma N_{i} \cdot T_{c_{i}} \right)^{2} \right]^{-1}$	0.8 (NC = 400)	[25], [26]
(2) Lydersen	Structure, TB	$T_{c} (K) = T_{b} \left[0.567 + \Sigma N_{i} \cdot T_{c_{i}} - \left(\Sigma N_{i} \cdot T_{c_{i}} \right)^{2} \right]^{-1}$	2 – 5	[25], [27]
(3) Ambrose	Structure, TB	$T_{c}(K) = T_{b} \left[1 + \left(1.242 + \Sigma N_{i} \cdot T_{c_{i}} \right)^{-1} \right]$	0.7 (NC = 400)	[25], [28]
(4) Fedors	Structure	T_{c} (K) = 535 log($\Sigma N_{i} \cdot T_{c_{i}}$)	4 (NC = 199)	[25], [28]
(5) Simple	MW, TB	T_c (K) = b + m log (MW)	2.3 (NC = 200)	[25], [29]
(6) Gani	Structure	$T_{c} (K) = 181.128 \ln \left[\Sigma N_{1,i} \cdot T_{c_{1,i}} + W\Sigma N_{2,i} \cdot T_{c_{2,i}} \right]$	0.85 (NC = 400)	[25], [28]
Fable 4 Asper	ר Plus's built-in estimatic	on methods for estimating critical pressure.		
Method	Information required	Equation	Average relative error (%)	Reference
(1) Joback	Structure	$P_{c} (bar) = \left[0.113 + 0.0032N_{atoms} - \Sigma N_{i} \cdot P_{c_{i}} \right]^{-2}$	5.2 (NC = 390)	[25], [26]
(2) Lydersen	Structure, MW	$P_{c} (bar) = MW \left[0.34 + \Sigma N_{i} \cdot P_{c_{i}} \right]^{-2}$	4	[25], [27]
(3) Ambrose	Structure, MW	$P_{c} (bar) = MW \left[0.339 + \Sigma N_{i} \cdot P_{c_{i}} \right]^{-2}$	4.6 (NC = 390)	[25], [28]
(4) Gani	Structure	$P_{c} (bar) = \left[\Sigma N_{1,i} \cdot P_{c_{1,i}} + W \Sigma N_{2,i} \cdot P_{c_{2,i}} + 0.10022 \right]^{-2} + 1.3705$	2.89 (NC = 390)	[25], [28]

Table 5 Aspen	Plus's built-in estimation I	methods for estimating critical volume.		
Method	Information required	Equation	Average relative error (%)	Reference
(1) Joback	Structure	V_c (cc/mol) = 17.5 + $\Sigma N_i \cdot V_{c_i}$	2.3 (NC = 310)	[25], [26]
(2) Lydersen	Structure	V_c (cc/mol) = 40 + $\Sigma N_i \cdot V_{c_i}$	4	[25], [27]
(3) Ambrose	Structure	V_c (cc/mol) = 40 + $\Sigma N_i \cdot V_{c_i}$	2.8 (NC = 310)	[25], [28]
(4) Riedel	TB, TC, PC	$V_{c} (cc/mol) = \frac{RT_{c}}{P_{c}} \left[3.72 + 0.26(\alpha - 7.0) \right]^{-1}$	ı	[30]
(5) Fedors	Structure	V_c (cc/mol) = $\Sigma N_i \cdot V_q$	4 (NC = 310)	[25], [30]
(6) Gani	Structure	V_{c} (cc/mol) = -0.00435 + $\left[\Sigma N_{1,i} \cdot V_{c_{1,i}} + W \Sigma N_{2,i} \cdot V_{c_{2,i}} \right]$	1.79 (NC = 310)	[25], [28]
l able o Aspen	Plus's duilt-in estimation I	methods for estimating standard heat of formation.		
Method	Information required	Equation	Average error (kJ/mol)	Reference
(1) Benson	Structure	ΔH_{f}^{s} (kJ/mol) = $\Sigma N_{f} \cdot \Delta H_{fi}^{s}$	3.7	[25], [26]
(2) Joback	Structure	ΔH_{fi}° (kJ/mol) = 68.29 + $\Sigma N_{i} \cdot \Delta H_{fi}^{\circ}$	8.9	[25], [26]
(3) BensonR8	Structure	ΔH_{f}^{s} (kJ/mol) = $\Sigma N_{f} \cdot \Delta H_{fi}^{s}$	ı	[26]
(4) Gani	Structure	$\Delta H_{f_{1,j}}^{\circ} (kJ/mol) = 10.835 + \left[\Sigma N_{1,j} \cdot \Delta H_{f_{1,j}}^{\circ} + W \Sigma N_{2,j} \cdot \Delta H_{f_{2,j}}^{\circ} \right]$	3.71	[25], [26]

Table 7 Asp∈	en Plus's built-in es	cimation methods for estimating ideal gas heat capacity.		
Method	Information	Equation	Average relative error	Reference
	required		(%)	
(1) Benson	Structure	$C_{p}^{\circ}(T)\left(\frac{J}{mol\cdot K}\right) = \Sigma N_{i} \cdot C_{p,i}^{\circ}$	1.1% (NC = 27)	[25], [26]
(2) Joback	Structure	$\begin{split} C_{p}^{\circ}(T)\left(\frac{J}{mol'\cdot K}\right) &= \left\{ \Sigma N_{i}\cdot C_{pA,i} - 37.93 \right\} + \left\{ \Sigma N_{i}\cdot C_{pB,i} + 0.201 \right\} T \\ &+ \left\{ \Sigma N_{i}\cdot C_{pC,i} - 3.91E-04 \right\} T^{2} + \left\{ \Sigma N_{i}\cdot C_{pD,i} + 2.06E-07 \right\} T^{3} \end{split}$	1.4% (NC = 28)	[25], [26]
(3) BensonR	8 Structure	$C_{p}^{\circ}(T)\left(\frac{J}{mol\cdot K}\right) = \Sigma N_{i} \cdot C_{p,i}^{\circ}$	I	[26]
Table 8 Asp€	en Plus's built-in est	cimation methods for estimating vapor pressure.		
Method	Information required	Equation	Average relative error (%)	Reference
(1) Riedel	TB, TC, PC	$ln(P_L)$ (bar) = A - B/T _r + Cln(T _r) + DT _r ⁶		[26]
(2) Li-Ma	Structure, TB	$P_{L} = 101.325 lnT_{b} \left[b_{1} + b_{2} \Sigma N_{i} \cdot P_{L, i} + b_{3} \left(\Sigma N_{i} \cdot P_{L, i} \right)^{2} + b_{4} \left(\Sigma N_{i} \cdot P_{L, i} \right)^{3} \right]$] ⁻¹ 0.61% (NC = 28)	[26]

Method	Information require	Equation	Average relative error (%)	Reference
(1) Definition	TC, PC, PL	$\Delta H_{U298}(kJ/mol) = (1.99) \frac{T_2 T_1}{(T_2 - T_1)} 2.30 \log \frac{P_2}{P_1}$	1.8% (NC = 94)	[26]
(2) Vetere	MW, TB	$\Delta H_{u298}(kJ/mol) = RT_{b} \left(A + BlnT_{b} + \frac{CT_{b}^{1.72}}{M} \right)$	1.6%	[25], [26]
(3) Gani	Structure	$\Delta H_{U298}(kJ/mol) = 6.829 + \Sigma N_{1,i} \cdot h_{U1,i} + W\Sigma N_{2,i} \cdot h_{U2,i}$		[26]
(4) Ducros	Structure	$\Delta H_{U298}(kJ/mol) = \Sigma N_{1,i} \cdot h_{U,i}$	ı	[31]
(5) Li-Ma	Structure, TB	$\Delta H_{U298}(kJ/mol) = \sum N_{1,i} \cdot h_{U,i} \left(\frac{1 \cdot T_r}{1 \cdot T_{br}} \right)^q$	1.05% (NC = 400)	[26], [32]

For temperature-dependent properties, the estimation results are presented in terms of coefficients of the equations as follows.

Aspen Ideal Gas Heat Capacity Polynomial (CPIG)

$$C_{p}^{*,ig} = C_{1i} + C_{2i}T + C_{3i}T^{2} + C_{4i}T^{3} + C_{5i}T^{4} + C_{6i}T^{5} \qquad \text{for } C_{7i} \le T \le C_{8i}$$
$$C_{p}^{*,ig} = C_{9i} + C_{10i}T^{C_{11i}} \qquad \text{for } T < C_{7i} \qquad (2)$$

Extended Antoine Equation (PL)

$$\ln p_{i}^{*,l} = C_{1i} + \frac{C_{2i}}{T + C_{3i}} + C_{4i}T + C_{5i}lnT + C_{6i}T^{C_{7i}} \qquad \text{for } C_{8i} \le T \le C_{9i}$$
(3)

Watson heat of vaporization equation (DHVL)

$$\Delta_{vap} H_{i}^{*}(T) = \Delta_{vap} H_{i}^{*}(T_{1}) \left(\frac{1 - T/T_{ci}}{1 - T_{1}/T_{ci}} \right)^{a_{i} + b_{i}(1 - T/T_{ci})} \quad \text{for } T > T_{min} \quad (4)$$

Where: $C_{1i} = \Delta_{vap} H_i^*(T)$, $C_{2i} = T_1$, $C_{3i} = a_i$, $C_{4i} = b_i$ and $C_{5i} = T_{min}$

จุฬาลงกรณมหาวิทยาลัย Chill al ongkorn University

2.2. Literature reviews

2.2.1. Synthesis of fatty acid amides

In 2012, Wang et al. studied the synthesis of palmitoylethanolamide (PEA) using vinyl palmitate as acyl donor. The results showed that 3% sodium methoxide exhibit the highest catalytic activity with the 98% yield of PEA at temperature 60 °C with 1: 20 molar ratio of vinyl palmitate to monoethanolamine for 1.5 h. After that, the reaction product was washed with water to remove excess ethanolamine [11].

In the following year, they used methyl linoleate as acyl donor to synthesize of linoleoyl ethanolamide (LEA). 97.2% yield of LEA was obtained when the optimal conditions were: 1:10 molar ratio of methyl linoleate to monoethanolamine, 15 μ L, 5.4 mol·L-1 sodium methoxide in methanol, 30 °C temperature and 1 h reaction time. This study provides a higher yield and conversion than the work of Platina et al [33]. which used linoleic acid as acyl donor. The lower effectiveness when using FAs due to the formation of ion pairs with ethanolamine [20].

In 2016, they investigated the amidation of sunflower oil (87.5% oleic acid) with monoethanolamine in a solvent and solvent-free system. The reactions were carried out using 1:10 molar ratio of sunflower oil to monoethanolamine and 1%wt of sodium methoxide at 250 rpm for 3 h. The used solvents were hexane, ethane, acetone and 1:1 (v/v) of hexane/ethanol. Among these solvents, the mixed hexane/ethanol solvent provided the highest yield (90.1%) while 57.6% yield of fatty acid amide was obtained in a solvent-free system. Then, the effect of solvent volume, catalyst amount and reaction time were considered. 90.2% yield of fatty acid amide and 91.8% conversion were obtained at 1 mL solvent volume, 1.5% catalyst concentration and 4 h reaction time. The reaction product was a mixture of fatty acid amides, so it was not suitable for medicinal purposes. Finally, crystallization was used to purify the product and then high-purities of oleoyl ethanolamide (OEA) with 70.3% yield was achieved [34].

2.2.2. Synthesis of sucrose esters

In 2018, Gutierrez et al. studied the transesterification of sucrose with methyl palmitate for sucrose palmitate production. Various surfactants were used to enhance the compatibility of reactants. Experiments were carried out using 2.5:1 molar ratio of methyl palmitate to sucrose and 5%wt potassium carbonate as a catalyst at 33.4 kPa with a stirring speed of 700 rpm. The used surfactants were potassium palmitate (watersoluble, HLB = 20), glycerol monostearate (oil-soluble, HLB = 4) and sucrose ester (water-soluble, HLB = 15). They found that high HLB surfactants provided the final product with a high proportion of sucrose monoesters. Nevertheless, the surfactant removal process was not needed when using sucrose ester as a surfactant. In this case, the 22.86 %wt of sucrose esters (52.50%wt of monoesters in total SE) with 43.09% conversion of methyl palmitate were obtained at 409 K, 16.15%wt surfactant and 3.92 h reaction time [12].

In 2019, Chen et al. synthesized sucrose esters by transesterification of sucrose and methyl stearate in solvent-free process. The results showed that 88.2% yield of sucrose esters (selectivity: 10.4% mono, 27.1% di, 62.5% tri) and 91.4% conversion of methyl stearate were obtained when performed milling pretreatment before reaction. Reaction conditions were fixed as 1:2:0.15:0.22 molar ratio of sucrose: methyl stearate: potassium carbonate: potassium stearate (surfactant), 135 °C reaction temperature, 0.5 kPa reaction pressure, 3 h reaction time and 500 rpm stirring rate [35].

2.2.3. Synthesis of normal alkanes (C15 and C16)

In 2017, Yan et al. investigated the catalytic deoxygenation process of methyl palmitate over molybdenum oxide doping nickel phyllosilicate catalyst. 10%wt Methyl palmitate in hexane with excess hydrogen was fed into the reactor which was operated at 220 °C and 10 bar for 2.5 h. The results showed that 3% Mo-Ni@PSi provided full conversion of methyl palmitate with 70.0% yield of pentadecane and 28.3% yield of hexadecane. They reported that no CO_2 was detected in the gas-phase product; therefore, decarboxylation did not occur under this condition [13].

2.2.4. Property estimation

In 2019, Sousa et al. evaluated the temperature nondependent properties of 16 fatty acids (C_8 to C_{24}) which are components of biomasses. Estimation methods for each property are presented in Table 10.

Property	Methods
Normal boiling point	(1) Joback and Reid, (2) Constantinou and Gani, (3) Marrero-
51	Marejon and Pardillo-Fontdevila, (4) Marrero and Gani, (5)
	Nannoolal et al.
Normal melting point	(1) Joback and Reid, (2) Constantinou and Gani, (3) Marrero
51	and Gani
Critical parameter	(1) Joback and Reid, (2) Constantinou and Gani, (3) Wilson
	and Jasperson, (4) Marrero-Marejon and Pardillo-Fontdevila
(TC, PC and VC)	, (4) Marrero and Gani, (5) Nannoolal et al.
Acentric factor	(1) Pitzer et al., (2) Lee and Kesler, (3) Watanasiri et al., (4)
	Ambrose and Walton, (5) Chen et al., (6) Constantinou et
	al.

Table 10 Method for the temperature nondependent properties estimation [36].

The estimated parameters obtained from different estimation methods were compared with the values from the NIST database. From the results, the bold methods in Table 10 provide the minimum average absolute relative deviation, which means that they are the most accurate estimation methods for each property.

Chulalongkorn University

CHAPTER 3

METHODOLOGY

3.1. Property estimation of palmitoylethanolamide and sucrose palmitate using Aspen Plus's built-in estimation methods

Task 1A: Searching for compounds which chemically similar to palmitoylethanolamide, sucrose monopalmitate and sucrose dipalmitate

Due to the lack of properties data of palmitoylethanolamide and sucrose palmitate in experimental and literature data, we could not examine the accuracy of estimation results. Thus, we needed to find similar compounds having experimental properties data to find out which estimation method provides estimation results close to the experimental data. Table 11 presents similar compounds to the three estimating compounds, and Figure 7 presents their molecular structures.

Estimating compound	Similar compound	Formula	M.W.	NBP (°C)
(1) Palmitoylethanolamide	2-Acetamidoethanol	C ₄ H ₉ NO ₂	103.12	296.09
(2) Sucrose monopalmitate	1-Monopalmitin	C ₁₉ H ₃₈ O ₄	330.51	421.20
	2-Monopalmitin	C ₁₉ H ₃₈ O ₄	330.51	426.17
(3) Sucrose dipalmitate	1,3-Dipalmitin	$C_{35}H_{68}O_5$	568.92	543.66

Table 11 Similar compounds to palmitoylethanolamide and sucrose palmitate.

Task 2A: Property parameters estimation of similar compounds using Aspen Plus's built-in estimation methods

In "Components" | "Specifications" | "Selection" tab, clicked on the "User Defined" button. The "User-Defined Component Wizard" window would show up as Figure 8. First, we entered the component ID and selected the type of component as the conventional type. Next, we entered the molecular structure, molecular weight and normal boiling point from Table 11. For molecular structure, we could draw the structures by ourselves or import .mol file from online databases such as ChemSpider, NIST, SciFinderⁿ, etc., as shown in Figure 9. After that, the added components would
show up under "Molecular Structure" folder. Went to the "Structure and Functional Group" tab and clicked on "Calculate Bonds" button, as shown in Figure 10.

Figure 7 Molecular structures of 2-Acetamidoethanol (a), 1-Monopalmitin (b),

2-Monopalmitin (c) and 1,3-Dipalmitin (d).

user-Defined Component Wizard	X Ser-Defined Component Wizard	(
r-Defined Component Wizard	Basic data for conventional compon	nent
Welcome to the User-Defined Component Wizard, the quickest way to enter proper component. This wizard will lead you through the steps to enter the required physic user-define component based on its type. omponent ID: 2-ACETAM Type: Conventional • Alias Type: Conventional • Required properties for conventional components include Molecular weight, normal boiling point, molecular structure, vapor pressure and ide	ties for user-defined tal properties for the Enter molecular structure Define molecule by its const Define molecule by its const Enter available property data Molecular weight: Normal boiling point: Specific gravity at 60 deg. F: Ideal gas enthalpy of formation Ideal gas fibbs energy of form	Alias Molecular structure is extivity 296.09 103.12 re: cal/mol
lick Nexts to continue or Finish to account the component and wit		

Figure 8 User-Defined Component Wizard window.

Figure 10 Molecular structure window.

Then, we switched the run mode to "Estimation". In "Estimation" | "Input" | "Setup" tab, we chose "Estimate only the selected parameters" option and selected "Pure component scalar parameters" and "Pure component temperature-dependent property correlation parameters" in the check box. For "Pure component" and "T-Dependent" tabs, selected similar compound and all Aspen Plus's built-in estimation methods for each property parameter, as discussed in Chapter 2. Finally, clicked run the property estimation. The estimation results would display on the "Estimation" | "Results" tab sheet. Figure 11 and 12 show the example of estimating the critical temperature of 2-Acetamidoethanol.

Figure 12 Estimating critical temperature of 2- Acetamidoethanol.

Task 3A: Comparing the estimation results to the experimental data of each property

In this work, we compared the estimation results to the property parameters retrieved from databanks available in the Aspen Physical Property System. NIST-TRC Databank was used for 2-Acetamidoethanol and 1,3-Dipalmitin. Meanwhile, BIODIESEL databank was used for Monopalmitin. We compared the accuracy of each estimation method in terms of the absolute deviation (AD) and the absolute relative deviation (ARD) [36] as defined in equation (5) and (6). The estimation methods with the lowest AD and ARD values for each property would be used to estimate property parameters of palmitoylethanolamide and sucrose palmitate.

.

Task 4A: Property parameters estimation of palmitoylethanolamide and sucrose palmitate

We estimated the property parameters using the best estimation methods from task 3A by the procedure as for task 2A. The minimum required information such as molecular structure, molecular weight and normal boiling point are presented in Figure 13 and Table 12. Lastly, the estimated parameters were used for the simulation of palmitoylethanolamide and sucrose palmitate production processes.

Figure 13 Molecular structures of palmitoylethanolamide (a), sucrose monopalmitate (b) and sucrose dipalmitate (c).

Estimating compound	Formula	M.W.	NBP (°C)	Reference
(1) Palmitoylethanolamide	$C_{15}H_{37}NO_2$	299.4919	461.5±28.0	ChemSpider
(2) Sucrose monopalmitate	$C_{28}H_{52}O_{12}$	580.7053	744.9±60.0	ChemSpider
(3) Sucrose dipalmitate	C ₄₄ H ₈₂ O ₁₃	819.1273	863.2±65.0	ChemSpider

Table 12 Properties of palmitoylethanolamide and sucrose palmitate [37].

3.2. Conceptual process design

Task 1B: Data collection

The objective of task 1B was to define feed and product specifications such as purity, price and storage condition. Appendix B presents feed and product properties and specifications for the three production processes.

Moreover, reaction information was collected, such as the molar ratio of reactants, temperature, pressure, catalyst, solvent, reaction time, main reaction, side reaction, conversion and yield. The specifications of the reactor units were based on reaction information obtained from open literature, as presented in Table 13 – 15.

 Table 13 Reaction information for the palmitoylethanolamide production process.

Operating condition	Wang et al. [11]
Reaction	Amidation of methyl palmitate with monoethanolamine
Catalyst	3%wt sodium methoxide
Molar ratio of reactants	20: 1 of monoethanolamine to methyl palmitate
Temperature	60 ℃
Pressure	Atmospheric pressure
Reaction time	1.5 h
Conversion	100% conversion of methyl palmitate
Reaction pathway	$MP + MEA \longrightarrow PEA + MeOH$

Operating condition	Gutierrez et al. [12]
Reaction	Transesterification of methyl palmitate with sucrose
Catalyst	5%wt potassium carbonate
Surfactant	16.15%wt sucrose palmitate
Molar ratio of reactants	2.5: 1 of methyl palmitate to sucrose
Temperature	136 ℃
Pressure	0.334 bar
Reaction time	3.92 h
Conversion	43.09% conversion of methyl palmitate
Yield	22.86%wt of sucrose palmitate (52.50% Mono-SE)
Reaction pathway	Sucrose + MP \rightarrow Mono-SE + MeOH
	Mono-SE + MP \rightarrow Di-SE + MeOH
	A CONTRACTOR OF

 Table 14 Reaction information for the sucrose palmitate production process.

Table 15 Reaction	information	for the	normal	alkanes	production	process.
				N.P.J		

Operating condition	Yan et al. [13]
Reaction	Deoxygenation of methyl palmitate with hydrogen
Catalyst	3% Mo-Ni@PSi
Molar ratio of reactants	14: 1 of hydrogen to methyl palmitate [38]
Temperature	220 °C
Pressure	10 bar
Reaction time	2.5 h
Conversion	100% conversion of methyl palmitate
Yield	70.0% wt of pentadecane and 28.3% of hexadecane
Reaction pathway	$MP + H_2 \longrightarrow Palmitic acid + CH_4$
	Palmitic acid + $H_2 \rightarrow$ Hexadecanal + H_2O
	Hexadecanal \rightarrow Pentadecane + CO
	Hexadecanal + $H_2 \rightarrow$ Hexadecanol
	Hexadecanol + $H_2 \rightarrow$ Hexadecane + H_2O

Task 2B: Simple mass balance

The objective of task 2B was to perform an input-output structure and block flow diagram, which is composed of the reactor feed preparation system, reactor system, phase separation system and separation system. Besides, calculate a mass balance for all streams, including recycle streams, as shown in Appendix C.

Task 3B: Process flowsheet generation

The objective of task 3B was to define all unit operations in each system and their operating conditions such as temperature, pressure, reaction conversion and separation factor.

Task 4B: Process simulation

The objective of task 4B was to perform a simulation of the three production processes using Aspen Plus V11 software based on the information from the previous steps. The most appropriate property methods for each simulation were considered using the decision trees by Eric C. Carlson [39]. Lastly, we obtained the base case design with stream tables.

Task 5B: Equipment sizing and costing

จุฬาลงกรณมหาวัทยาลย

The objective of task 5B was to perform equipment sizing and costing for the major equipment using Aspen Plus Process Economic Analyzer. First, we matched the equipment type with each unit operation in the flowsheet. After that, we clicked on "Evaluate Project" button to continue the sizing and costing calculations.

Task 6B: Economic analysis

The objective of task 6B was to evaluate economic profitability using Aspen Plus Process Economic Analyzer. In this work, we compared the three production processes in terms of discounted present value (DPV), discounted payback period (DPP) and discounted cash-flow rate of return (DCFROR). Moreover, we studied the sensitivity analysis by varying methyl palmitate purchasing cost, products selling prices and total project cost. Table 16 and 17 provide the cost of utilities and the main parameters used for the economic analysis.

Table	16	Cost	of	utilities	[6].
-------	----	------	----	-----------	------

Utility	Description	Cost (USD) for unit	Unit
Cooling tower water	inlet temperature = 35 °C	0.378	GJ
	outlet temperature = 50 °C		
Refrigerated water	inlet temperature = 5 °C	4.77	GJ
	outlet temperature = 15 °C		
Glycol solution	available at -13.7 °C	8.49	GJ
Low-pressure steam	5 barg, 160 °C	4.54	GJ
High-pressure steam	41 barg, 254 °C	5.66	GJ
Dowtherm	available at 400 °C	13.88	GJ
Electricity	-//562	0.0674	kWh
Air supply	3.3 barg (50 psig)	0.005	std m ³
Process water	1/3 cost of potable water	0.177	tonne

Table 17 Investment analysis parameters.

Parameter	Value
Project lifetime	20 years
Number of week per year	52 weeks
Tax rate	40%
Interest rate/Desired rate of return	20%
Working capital	5% of fixed capital investment
Operating charge	25% of operating labor costs
Plant overhead	50% of operating labor and maintenance costs
General and administrative costs	8% of subtotal operating costs

CHAPTER 4 RESULTS AND DISCUSSION

This chapter presents the results and interpretation of the results obtained from property estimation and conceptual process design of the three production processes. The contents are divided into six sections, as follows.

4.1. Property estimation of the similar compounds

In this section, we summarized the comparison between the estimation results and the data retrieved from Aspen databanks. Figure 14 – 20 present in terms of the absolute deviation (AD) and the absolute relative deviation (ARD). Meanwhile, the property parameters obtained from estimation methods are presented in Appendix F.

4.1.1. Critical temperature (TC)

From Figure 14 (a), the critical temperature of 2-Acetamidoethanol could not be estimated using GANI method because of missing group contribution values for some functional groups. In terms of deviations, Joback method provided less error than other methods for 2-Acetamidoethanol and Monopalmitin, as shown in Figure 14 (a), (b) and (c). Joback, Lydersen, Ambrose and Gani methods had similar accuracy (0.7 – 1.5%) [40]. All of the methods, except Gani method, used molecular structure and normal boiling point as input information. Whereas, Gani method used only molecular structure. The second-order groups account for the effect of neighboring atoms that make it has higher accuracy. However, Joback method was recommended for the broadest range of compounds except for silicon groups because it easiest to use [26].

For 1,3-Dipalmitin compound, Fedors method showed the least deviation with 4.68% ARD, as shown in Figure 14 (d). This result is consistent with the work of Yener [41], who reported that Fedors and Ambrose methods provided the most accurate estimated results for long-chain lipids, especially for triglycerides.

Figure 14 Deviations of critical temperature estimation methods for 2-Acetamidoethanol (a), 1-Monopalmitin (b), 2-Monopalmitin (c) and 1,3-Dipalmitin (d).

4.1.2. Critical pressure (PC)

Likewise, Gani method could not be used to predict the critical pressure of 2-Acetamidoethanol. As shown in Figure 15, Joback method gave the lowest deviations for 2-Acetamidoethanol and 1,3-Dipalmitin. Meanwhile, Gani method provided the best results for Monopalmitin. Tahami et al. [42] reported that Joback method and Gani methods presented the similar %AARD for nitrogen compounds (23.40%, 18.13%) and esters (5.46%, 5.11%). We thought that these two methods could be used to estimate the critical pressure because the deviations were not significant differences.

Figure 15 Deviations of critical pressure estimation methods for 2-Acetamidoethanol (a), 1-Monopalmitin (b), 2-Monopalmitin (c) and 1,3-Dipalmitin (d).

4.1.3. Critical volume (VC)

Reidel method required normal boiling point, critical temperature and critical pressure for critical volume estimation. We used the critical temperature estimated from Joback method for 2-Acetamidoethanol and Monopalmitin and Fedors method for 1,3-Dipalmitin. Meanwhile, we used critical pressure estimated from Joback method for 2-Acetamidoethanol and 1,3-Dipalmitin and Gani method for Monopalmitin. These selected methods were the methods giving the lowest deviations for each property. However, Riedel method gave the most considerable deviations for all compounds, as shown in Figure 16. This might happen because the Riedel method was recommended for hydrocarbon only [25].

CHULALONGKORN UNIVERSITY

As the same reason, Gani method also could not be used to estimate the critical volume of 2-Acetamidoethanol. The results showed that Fedors, Joback and Lydersen methods provided the lowest deviations for 2-Acetamidoethanol, Mono-palmitin and 1,3-Dipalmitin, respectively. Sastri et al. [43] reported that these three methods gave a similar average absolute deviation (3.6 - 3.8%) for non-hydrocarbons. Whereas, Ambrose method provided less accuracy compared to Joback method.

Figure 16 Deviations of critical volume estimation methods for 2-Acetamidoethanol (a), 1-Monopalmitin (b), 2-Monopalmitin (c) and 1,3-Dipalmitin (d).

4.1.4. Standard heat of formation (DHFORM)

As shown in Figure 17 (b) and (c), Benson and BensonR8 gave the lowest deviations for 1-Monopalmitin and 2-Monopalmitin. We would consider in term of the sum of squares of absolute deviation to compare these two methods. The result showed that BensonR8 provided the lower SSE, so we used this method for sucrose monopalmitate estimation. In Figure 17 (d), BensonR8 was the most accurate method for 1,3-Dipalmitin. For 2-Acetamidoethanol, the deviations from Benson and BensonR8 methods were equal. Therefore, we chose BensonR8 method like other compounds for further estimating. These estimation results were the same as described in [25], that Benson and BensonR8 methods gave higher accuracies than Joback and Gani methods.

Figure 17 Deviations of standard heat of formation estimation methods for 2-Acetamidoethanol (a), 1-Monopalmitin (b), 2-Monopalmitin (c) and 1,3-Dipalmitin (d).

4.1.5. Ideal gas heat capacity (CPIG)

From Figure 18, the results of ideal gas heat capacity estimation are presented at various temperatures (300, 500 and 1,000 K). We would compare each method in term of the sum of squares of absolute deviation. The results showed that the Joback method gave the least SSE for 2-Acetamidoethanol and 1,3-Dipalmitin. On the contrary, Benson method provided the least SSE for Monopalmitin. However, these methods could be used to predict ideal gas heat capacity because they gave similar accurate results (1.1 – 1.4% ARD) [25].

Figure 18 Deviations of ideal gas heat capacity estimation methods for 2-Acetamidoethanol (a), 1-Monopalmitin (b), 2-Monopalmitin (c) and 1,3-Dipalmitin (d).

4.1.6. Vapor pressure (PL)

Riedel method required normal boiling point, critical temperature and critical pressure for vapor pressure estimation. The values of these critical properties were obtained from the same methods as described in 4.1.3. From Figure 19, Riedel method provided lower deviations for all components at 0.9 of critical temperature and critical temperature.

These results were the same as in the work of Vlad et al [44]. They reported that Riedel method presented the more accurate vapor pressure than Li-Ma method for methyl oleate (Ester) when the normal boiling point was known.

4.1.7. Enthalpy of vaporization (DHVL)

Enthalpy of vaporization can be calculated by definition, as presented in Table 9. The values of critical temperature and critical pressure were obtained from the same methods used in Riedel method as described in 4.1.3. For vapor pressure, we used the values estimated from the Riedel method for all compounds.

From Figure 20, The definition method gave the lowest deviations for all compounds. Whereas, Ducros method could not be used to estimate this property parameter for 2-Acetamidoethanol because of missing group contribution values for some functional groups.

Figure 20 Deviations of enthalpy of vaporization (at TB) estimation methods for 2-Acetamidoethanol (a), 1-Monopalmitin (b), 2-Monopalmitin (c) and 1,3-Dipalmitin (d).

From the results, we would select the best estimation methods with the lowest AD and ARD values for estimating the properties of palmitoylethanolamide and sucrose palmitate. Table 18 summarizes the most appropriate method for each property and each compound.

Table 18 The best methods for estimating the properties of palmitoylethanolamideand sucrose palmitate.

Property name	Parameter	PEA	MONO-SE	DI-SE
Critical temperature	ТС	Joback	Joback	Fedors
Critical pressure	PC	Joback	Gani	Joback
Critical volume	VC	Fedors	Joback	Lydersen
Standard heat of formation	DHFORM	BensonR8	BensonR8	BensonR8
Ideal gas heat capacity	CPIG	Joback	Benson	Joback
Vapor pressure	PL	Riedel	Riedel	Riedel
Enthalpy of vaporization	DHVL	Definition	Definition	Definition

4.2. Property estimation of palmitoylethanolamide and sucrose palmitate

4.2.1. Palmitoylethanolamide

From Table 18, we used these property methods to estimate each property parameter. Table 19 and 20 present estimated pure component constants and temperature-dependent properties for palmitoylethanolamide.

Table 19 Estimated pure co	mponent constants for	palmitoylethanolamide.
----------------------------	-----------------------	------------------------

Property name	Estimation method	Estimated value	Unit
Critical temperature	Joback	900	К
Critical pressure	Joback	1.296E+06	N/sqm
Critical volume	Fedors	1.076	cum/kmol
Standard heat of formation	Benson	-6.990E+08	J/kmol

Parameter	Ideal gas heat	Vapor	Enthalpy of
	capacity	pressure	vaporization
Estimation method	Joback	Riedel	Definition
C _{1i}	-2,034	147	7.943E+07
C _{2i}	1,796	-21,390	735
C _{3i}	-1.016	0	0.404
C _{4i}	2.143E-04	0	-0.948
C _{5i}	0	-16.1	735
C _{6i}	0	1.242E-18	-
C _{7i}	280	6	-
C _{8i}	1,100	735	-
C _{9i}	36,029	900	-
C _{10i}	83.2		-
C _{11i}	1.5	//// <u>-</u>	-
Temperature unit	K	К	К
Property unit	J/(kmol·K)	N/sqm	J/kmol
		1650	

 Table 20 Estimated temperature-dependent properties for palmitoylethanolamide.

4.2.2. Sucrose monopalmitate

From Table 18, we could not use GANI method to estimate the critical pressure of sucrose monopalmitate because of missing group contribution values for some functional groups. Thus, we replaced it with the Joback method, which had the second smallest AD and ARD values. Table 21 and 22 present estimated pure component constants and temperature-dependent properties for sucrose monopalmitate.

Table 21 Estimated pure component constants for sucrose monopalr	nitate.
--	---------

Property name	Estimation method	Estimated value	Unit
Critical temperature	Joback	2,014	К
Critical pressure	Joback	1.045E+06	N/sqm
Critical volume	Joback	1.688	cum/kmol
Standard heat of formation	BensonR8	-2.485E+09	J/kmol

Parameter	Ideal gas heat	Vapor	Enthalpy of
	capacity	pressure	vaporization
Estimation method	Benson	Riedel	Definition
C _{1i}	-86,421	-18.6	1.327E+07
C _{2i}	3,453	1,059	1,018
C _{3i}	-2.33	0	0.294
C _{4i}	5.931E-04	0	-2.642
C _{5i}	0	4.20	407
C _{6i}	0	-2.190E-22	-
C _{7i}	280	6	-
C _{8i}	1,100	1,018	-
C _{9i}	36,029	2,014	-
C _{10i}	144	- %	-
C _{11i}	1.5	//// <i>a</i> -	-
Temperature unit	K	К	К
Property unit	J/(kmol·K)	N/sqm	J/kmol
		(5)	

 Table 22 Estimated temperature-dependent properties for sucrose monopalmitate.

4.2.3. Sucrose dipalmitate

Likewise, the property parameters of palmitoylethanolamide were predicted by the best estimation methods, as presented in Table 18. Table 23 and 24 present estimated pure component constants and temperature-dependent properties for sucrose dipalmitate.

Table 23 Estimated	pure component	constants for sucrose	dipalmitate.
--------------------	----------------	-----------------------	--------------

Property name	Estimation method	Estimated value	Unit
Critical temperature	Joback	1,083	К
Critical pressure	Joback	4.496E+05	N/sqm
Critical volume	Joback	2.558	cum/kmol
Standard heat of formation	BensonR8	-2.982E+09	J/kmol

Parameter	Ideal gas heat	Vapor	Enthalpy of
	capacity	pressure	vaporization
Estimation method	Joback	Riedel	Definition
C _{1i}	-28,909	-724	3.850E-07
C _{2i}	4,569	1.1325E+05	758
C _{3i}	-2.577	0	0.081
C _{4i}	5.345E-04	0	2.096
C _{5i}	0	91	303
C _{6i}	0	-1.795E-18	-
C _{7i}	280	6	-
C _{8i}	1,100	758	-
C _{9i}	36,029	1,083	-
C _{10i}	219		-
C _{11i}	1.5		-
Temperature unit	K	К	К
Property unit	J/(kmol·K)	N/sqm	J/kmol
	0		

 Table 24 Estimated temperature-dependent properties for sucrose dipalmitate.

4.2.4. Solid-phase

Palmitoylethanolamide and sucrose palmitate remained in the solid phase at the end of processes. Thus, the simulations would require solid property parameters such as solid molar volume (VS), solid heat capacity (CPS) and solid standard enthalpy of formation (DHSFRM). Since Aspen Plus has no estimation method for solid molar volume, we would retrieve the data from the ChemSpider database, as shown in Table 25. For solid heat capacity and solid standard enthalpy of formation, only the Mostafa method is available for predicting these values. Table 26 and 27 present the solid properties estimated by Mostafa method.

Compound	Solid molar volume	Unit	Reference
Palmitoylethanolamide	329.0	cc/mol	ChemSpider
Sucrose monopalmitate	456.3	cc/mol	ChemSpider
Sucrose dipalmitate	717.9	cc/mol	ChemSpider

 Table 25 Solid molar volume for palmitoylethanolamide and sucrose palmitate.

Table 26 Estimated solid heat capacity for palmitoylethanolamide and sucrosepalmitate.

Parameter	PEA	MONO-SE	DI-SE
Estimation method	Mostafa	Mostafa	Mostafa
C _{1i}	4.082E+05	8.494E+05	1.167E+06
C _{2i}	1,061	1,459	2,324
C _{3i}	-0.057	-0.067	-0.113
C _{4i}	0,20,2	0	0
C _{5i}	-1.179E+10	-2.440E+10	-3.315E+10
C _{6i}	0	0	0
C _{7i}	280	280	280
C _{8i}	1,100	1,100	1,100
Temperature unit	K	К	К
Property unit	J/kmol	ng J/kmol	J/kmol

CHULALONGKORN UNIVERSITY

Table 27 Estimated solid standard enthalpy of formation for palmitoylethanolamideand sucrose palmitate.

Compound	Estimation method	Estimated value	Unit
Palmitoylethanolamide	Mostafa	-5.437E+08	J/kmol
Sucrose monopalmitate	Mostafa	-4.060E+09	J/kmol
Sucrose dipalmitate	Mostafa	-4.149E+09	J/kmol

4.3. Conceptual process design

4.3.1. Process description of palmitoylethanolamide production

Process flow diagram for the production of palmitoylethanolamide is shown in Figure 21. Fresh methyl palmitate (Stream 1) with a feed rate of 100,000 tonnes per year is mixed with fresh stream and recycle stream of monoethanolamine (Stream 2 and 4) in a liquid mixing tank (D-101). The temperature of the liquid mixture is adjusted to reaction temperature in a heat exchanger (E-101) before sent to the reactor (R-201). The operating conditions of the reactor are presented in Table 13. Next, the reactor effluent is sent to a vacuum distillation column (C-301) to remove the methanol byproduct. The liquid bottom stream is mixed with the fresh water in a liquid mixing tank (D-401). The aqueous stream containing the desired product is cooled to a temperature of 6 °C through a heat exchanger (E-401) before sent to a crystallizer (CR-401). In the crystallizer, palmitoylethanolamide is converted from a liquid state to a solid-state. After that, the solid is isolated from the liquid by a filter (F-401). The liquid stream containing monoethanolamine and water is passed through a pump (P-401) and sent to a distillation column (D-401). The distillate product stream, which consists of water, is removed from the process. Meanwhile, monoethanolamine in the bottom stream is delivered to a pressure reducing valve (V-101) and recycled back to the mixing tank. Because some of the liquids remain in the solid stream, a dryer (DR-401) is used to evaporate these liquid compounds. Finally, we obtained 112,995 tonnes per year of 98%wt palmitoylethanolamide (Stream 21). Stream table of the process and summary of unit operating conditions are summarized in Appendix D.

4.3.2. Process description of sucrose palmitate production

Process flow diagram for the production of sucrose palmitate is presented in Figure 22. 100,000 tonnes per year of methyl palmitate (Stream 1) are fed into a liquid mixing tank (D-101), which it is mixed with sucrose, sucrose palmitate (surfactant) and the recycled methyl palmitate (Stream 2, 3 and 5). This liquid mixture is sent to a pressure reducing valve (V-101) and a heat exchanger (E-101) to bring it to reaction pressure and temperature before entering a reactor (R-201). The operating conditions of the reactor are presented in Table 14. The outlet stream of the reactor is delivered to a flash drum (D-301) to remove methanol vapor. Then, the liquid effluent from D-301 is adjusted to room pressure and temperature by passing a pump (P-301) and a heat exchanger (E-301). For the product purification, this step is divided into 3 substeps. (1) Methyl palmitate separation: Ethyl acetate, which is used to extract the unreacted methyl palmitate, is mixed with the stream 13 in a mixing tank (D-401). After that, the solid and liquid are separated from each other by a filter (F-401). The liquid stream containing the unreacted methyl palmitate and ethyl acetate is sent to a distillation column (C-401). These two compounds are separated and then recycled to D-101 and D-403, respectively. Meanwhile, the solid stream is sent to the evaporator (EV-401) to vaporize the remaining ethyl acetate. The ethyl acetate vapor is condensed in a condenser (E-404) and then mixed with the ethyl acetate from C-401 in a mixing tank (D-402) before it recycles back to D-401. The solid is then cooled to the room temperature in a heat exchanger (E-405) and sent to the next sub-steps. (2) Sucrose separation: Water is added to dissolve the unreacted sucrose, and the additional sucrose is used to decrease the solubility of sucrose palmitate in water. Water, sucrose and the solid are mixed in a mixing tank (D-404). The aqueous solution is removed from the process by a filter (F-402). Next, the solid stream containing the desired product is delivered to (3) the drying process to remove the remaining water by a dryer (DR-401). Finally, we obtained 164,510 tonnes per year of 98%wt sucrose palmitate (Stream 34). These products consisted of sucrose monopalmitate and sucrose dipalmitate. Stream table of the process and summary of unit operating conditions are summarized in Appendix D.

4.3.3. Process description of normal alkanes production

Figure 23 present the process flow diagram for the production of normal alkanes. Methyl palmitate with a feed rate of 100,000 tonnes/year (Stream 4) and recycled hexadecanol and palmitic acid (Stream 6) is fed to a liquid mixing tank (D-101). The liquid mixture is flowed through a pump (P-101) to increase the pressure as required in the reactor. Meanwhile, the hydrogen feed (Stream 1) is passed through a pressure reducing valve (V-101). The gas and liquid streams are mixed and then heated in a heat exchanger (E-101) before sent to the reactor (R-201). The operating conditions of the reactor are presented in Table 15. The reaction product stream is cooled in a heat exchanger (E-301) and then delivered to flash drum (D-301 and D-302) to separate the gas phase from the liquid phase. After that, the gaseous stream consisting mainly of the unreacted hydrogen is split into two streams: purge and recycle streams. The Purge stream is removed from the process to avoid an accumulation of by-products (CO and CH₄), whereas the remaining stream is recycled back to the front end of this process. The two liquid streams from the flash drums are mixed in a mixing tank (D-303) and followed by a decanter (D-404) to remove water. The liquid mixture stream is then passed through a pressure reducing valve (V-401) and sent to a distillation column (C-401) equipped with a partial condenser. The vapor distillate stream, which consists of light gases (H_2 , CO and CH_4), is removed from the process. The bottom product stream is delivered to the next distillation column (D-402). This column separates the desired products from hexadecanol and palmitic acid. These unreacted intermediates are recycled back to D-101 through a pressure reducing valve (V-102). The distillate product is delivered to a pump (P-401) and then sent to a final distillation column (C-403). Purified pentadecane and hexadecane streams are adjusted to the storage conditions via pressure-reducing valves (V-402 and V-403) and heat exchangers (E-407 and E-408). Finally, we obtained 55,448 and 24,612 tonnes per year of 99%wt pentadecane (Stream 31) and hexadecane (Stream 33), respectively. Stream table of the process and summary of unit operating conditions are summarized in Appendix D.

4.3.4. Thermodynamics model selection

For the production of palmitoylethanolamide and sucrose palmitate, these processes contain some of the polar compounds, and no electrolytes are presented. According to the decision trees by Eric C. Carlson [39], activity coefficient models are preferred for these low-pressure systems. Since palmitoylethanolamide and sucrose palmitate are non-databank components, binary parameters are not available. Thus, we chose the UNIFAC method for these process simulations. The UNIFAC method uses the group contributions to predict the interaction parameters; hence we needed to add the group contributions of these products, as follows.

Figure 24 The UNFAC groups of palmitoylethanolamide (a), sucrose monopalmitate (b) and sucrose dipalmitate (c).

Group	Group number	Number of occurrences
CH2	1010	15
CH3	1015	1
ОН (Р)	1200	1
CONHCH2	3560	1

Table 28 The UNIFAC groups of palmitoylethanolamide.

Table 29 The UNIFAC groups of sucrose monopalmitate and sucrose dipalmitate.

Group	Group number	Number of occurrences		
dioup		Sucrose monopalmitate	Sucrose dipalmitate	
С	1000		1	
СН	1005	5	5	
CH2	1010	15	27	
CH3	1015		2	
OH (P)	1200	Cleaned and A	6	
CH2CO	1400	- I - D	2	
CH-O	1605	3	3	
CH2O	1610	กรณ์แหาวิทยาลัย	2	

For the production of normal alkanes, this simulation contains some of the polar compounds, and no electrolytes are presented. All components in this system are available in Aspen Plus, so they have the binary parameters in the databanks. According to the decision tree, we chose the PENG-ROB as the property method for the high-pressure (≥10 bar) unit operations and the NRTL method for the remaining units. Moreover, Henry parameters are required because the supercritical gases (H₂, CO, and CH_4) are presented in this simulation.

4.3.5. Value-added chemicals production yield

The feed rate of methyl palmitate was set equal to 100,000 tonnes per year for each process. Figure 25 presents the comparison of product yield from the three processes. The results showed that the sucrose palmitate production gave the highest product yield, followed by palmitoylethanolamide and normal alkanes, respectively. Considering the selling prices of products, even the price of sucrose palmitate was lower than palmitoylethanolamide and hexadecane, the total annual product sales of the sucrose palmitate production were still highest.

Figure 25 Product yield by 100,000 tonnes of methyl palmitate feedstock.

4.4. Economic analysis

Table 30 summarized the sales and expenses for each process. Considering the total project cost, palmitoylethanolamide production is the most expensive process. This was caused by the high costs of crystallizer (CR-401), distillation column (C-401), and reboiler (E-403), as shown in Appendix E. These unit operations were larger than in other processes because of much higher inlet mass flow rates. Moreover, the total annual utilities cost of this process also higher than others. The cost of high-pressure steam influenced this cost because of the high energy consumption required in a reboiler (E-403). Even though palmitoylethanolamide's selling price was the highest,

this process had lower sales and higher expenses than the production of sucrose palmitate. This meant that the production of palmitoylethanolamide was not as economically attractive as sucrose palmitate production.

On the contrary, the production of normal alkanes was the cheapest process. This process had the lowest total equipment purchasing cost, although it had more equipment than other processes. The solvent did not present in this process that might cause smaller sizes of unit operations. Besides, this reduced the total annual raw material cost. Unfortunately, this alternative produced less amount of the primary product than other processes. The selling price of pentadecane was also the cheapest. When considering in terms of the annual profit, this process provided the lowest value.

For the production of sucrose palmitate, this alternative provided the most considerable sales with 370 million USD. In contrast, it had the second-largest total capital investment and total annual operating costs. Table 31 shows that sucrose palmitate production was the optimal alternative in terms of the highest discounted present value (DPV), lowest discounted payback period (DPP), and highest discounted cash-flow rate of return (DCFROR). The second and third attractive processes were the production of palmitoylethanolamide and normal alkanes, respectively.

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

-			
Item	Palmitoylethanolamide	Sucrose palmitate	Normal alkanes
Gross profit margin (USD)	170,000,000	220,000,000	41,000,000
Total annual product sales (USD)	339,000,000	370,000,000	185,000,000
Total equipment purchasing cost (USD)	7,820,000	3,680,000	3,340,000
Total equipment direct cost (USD)	15,500,000	10,200,000	7,070,000
Escalated project cost (USD)	37,200,000	28,000,000	21,500,000
Working capital (USD)	1,860,000	1,400,000	1,080,000
Total capital investment, TCI (USD)	39,100,000	29,400,000	22,600,000
Total annual raw material cost (USD)	172,000,000	186,000,000	144,000,000
Total annual operating labor cost (USD)	1,080,000	1,240,000	920,000
Total annual maintenance cost (USD)	479,000	239,000	321,000
Total annual utilities cost (USD)	46,700,000	21,800,000	4,630,000
Total annual operating charges (USD)	270,000	310,000	230,000
Total annual plant overhead (USD)	780,000	740,000	621,000
Total annual general and administrative costs (USD)	17,700,000	27,000,000	12,100,000
Total annual operating costs (USD)	239,000,000	237,000,000	163,000,000

Summary of sales and expenses for the three processes.

54

Indicator	Palmitoylethanolamide	Sucrose palmitate	Normal alkanes
DPV (USD)	327,000,000	451,000,000	64,600,000
DPP (year)	3.10	2.97	7.15
DCFROR (%)	87.96	96.47	35.13

 Table 30 Summary of the economic performances of the three processes.

4.5. Comparing the results with other literature

For the production of normal alkanes, we compared the economic analysis results with other literature. For example, we compared the total equipment direct cost with the work of Kantama et al. [45]. They studied the production of hydrogenated renewable diesel from palm fatty acid distillate (PFAD) with the feed rate of 17,250 tonnes/yr. The unit operation of their process also similar to our work. However, the feed rate was not equal to our work, so we should use the cost curve method, as presented in equation 7. The comparison of total equipment direct cost is shown in Table 32. We found that these values are similar.

$$\frac{\text{Cost A}}{\text{Cost B}} = \left(\frac{\text{Size A}}{\text{Size B}}\right)^{0.6}$$
(7)

จุฬาลงกรณ์มหาวิทยาลัย

Table 31 The	e comparison	of the total	equipment	direct cost.

	Our work	Kantama et al.
Total equipment direct cost (USD)	7,070,000	8,950,000
4.6. Sensitivity analysis

In this work, a sensitivity analysis was conducted to study the effects of three variables such as methyl palmitate purchasing cost, products selling prices and total project cost. The results were compared in terms of DPV, DPP and DCFROR.

4.6.1. Effect of variation of methyl palmitate purchasing cost

According to biodiesel prices reported by the Ministry of Energy of Thailand, the biodiesel price for the last 5 years was in the range of 19.32 to 42.10 bath/litre. This meant that it varied from -32% to 48% of the average price. Therefore, we studied the change of methyl palmitate purchasing cost between -50% to 50% of the original value (700 to 2,100 USD/tonne).

Figure 26 to 28 present the effect of methyl palmitate purchasing cost for the three production processes. The NPV value decreased by 46 – 51 million USD per 10% increased in methyl palmitate cost for palmitoylethanolamide and sucrose palmitate production processes. Meanwhile, the DPP values were less than 10 years, and the DCFROR values were more than 20% at the highest cost of methyl palmitate. This meant that these processes still kept profitable even if methyl palmitate purchasing cost would change from the original value.

For the production of normal alkanes, at methyl palmitate cost above 1,540 USD (10%), the NPV value would become negative. This process could not recover the total investment costs within 20 years. The results showed that this alternative was the most sensitive for the variation of the methyl palmitate purchasing cost.

Figure 26 The effect of methyl palmitate purchasing cost on DPV (a), DPP (b) and DCFROR (c) for palmitoylethanolamide production.

Figure 27 The effect of methyl palmitate purchasing cost on DPV (a), DPP (b) and DCFROR (c) for sucrose palmitate production.

Figure 28 The effect of methyl palmitate purchasing cost on DPV (a), DPP (b) and DCFROR (c) for normal alkanes production.

4.6.2. Effect of variation of product selling prices

Likewise, we studied the change of product selling price between -50% to 50% of the original value. Figure 29 shows the effect of the palmitoylethanolamide selling price between 1,500 and 4,500 USD/tonne. When the product selling price was less than or equal to 2,100 USD/tonne (-30%), this process would provide negative NPV, and the DPP value was beyond the project lifetime. As shown in Figure 30 to 31, the prices of products changed from 1,125 to 3,375 USD/tonne for sucrose palmitate, 1,000 to 3,000 USD/tonne for pentadecane and 1,500 to 4,500 USD/tonne for hexadecane. The sucrose palmitate selling prices were required more than 1,350 USD/tonne (-40%) to make this alternative feasible. Meanwhile, normal alkanes production required product selling prices of pentadecane and hexadecane greater than or equal to 1,800 and 2,700 USD/tonne (-10%). The results showed that sucrose palmitate production could be profitable at the lowest of product selling price among other processes.

Figure 29 The effect of palmitoylethanolamide selling price on DPV (a), DPP (b) and DCFROR (c) for palmitoylethanolamide production.

Figure 30 The effect of sucrose palmitate selling price on DPV (a), DPP (b) and DCFROR (c) for sucrose palmitate production.

Figure 31 The effect of pentadecane and hexadecane selling prices on DPV (a), DPP (b) and DCFROR (c) for normal alkanes production.

4.6.3. Effect of variation of fixed capital investment (FCI)

According to the cost estimation method, it has an error of $\pm 35\%$. Therefore, we studied the change of fixed capital investment between -35% to 35% of the original value. Figure 32 to 34 presents the effect of fixed capital investment on the economic indicators for the palmitoylethanolamide, sucrose palmitate and normal alkanes production processes. The NPV values decreased by 1 – 4, 2, and 1 million USD per 10% increased in fixed capital investment for the three processes. Whereas, the DPP values increased by 0.02 – 0.09, 0.03, and 0.14 - 0.15 years. The DCFROR value

decreased by 1 - 5%, 1 – 3%, and 0.4 – 0.8%, respectively. However, these processes still kept profitable. We could see that the change in fixed capital investment between -35% and 35% had less impact than the cost of raw material and products for all processes.

Figure 32 The effect of total capital investment on DPV (a), DPP (b) and DCFROR (c)

UHULALONGKORN UNIVERSITY

Figure 33 The effect of total capital investment on DPV (a), DPP (b) and DCFROR (c)

Figure 34 The effect of total capital investment on DPV (a), DPP (b) and DCFROR (c)

for normal alkanes production

CHAPTER 5 CONCLUSION

5.1. Conclusion

In this work, we presented an alternative for using methyl palmitate as a raw material to produce the value-added chemicals instead of selling as a biofuel. These chemicals were palmitoylethanolamide, sucrose palmitate and normal alkanes. Firstly, we estimated property parameters of palmitoylethanolamide and sucrose palmitate, which were not available in Aspen Plus V11. We chose the most accurate Aspen Plus's built-in estimation methods based on the results of property estimation of structurally similar compounds to our chemicals. They were 2-Acetamidoethanol, 1-Monopalmitin, 2-Monopalmitin and 1,3-Dipalmitin, which had experimental properties. The expected estimation results of palmitoylethanolamide and sucrose palmitate were further used in the process simulation step. Next, the three production processes were simulated using Aspen Plus V11. We specified the methyl palmitate feed rate of 100,000 tonnes /year for all processes. The simulation results reported that the production rates were 112,995 tonnes/year, 164,510 tonnes/year and 80,060 tonnes/year for the production of palmitoylethanolamide, sucrose palmitate and normal alkanes, respectively. Finally, we performed an economic analysis of each process using Aspen Process Economic Analyzer. The results presented that the production of sucrose palmitate was the best alternative with the higher NPV, higher DCFROR and lower DPV values. Besides, this process was the least sensitive alternative to the changes in methyl palmitate cost and product selling price.

5.2. Recommendation

- 5.2.1. The more structurally similar compounds can provide more accuracy of the estimation property parameters.
- 5.2.2. Vary the operating conditions of solid handling equipment to find the optimal conditions for each process.
- 5.2.3. Compare the three production processes in terms of energy consumption and carbon dioxide emissions.

REFERENCES

Chulalongkorn University

- Borugadda, V.B. and V.V. Goud, *Biodiesel production from renewable feedstocks: Status and opportunities.* Renewable and Sustainable Energy Reviews, 2012. 16(7): p. 4763-4784.
- Ali, J. and A. Semwal, *Biodiesel as an Alternative Fuel for Diesel Engine–An Overview.* International Journal of Applied Engineering Research, 2014. 9(10): p. 1159-1168.
- 3. Tunpaiboon, N., *Thailand industry outlook 2018-20: Biodiesel.* Krungsri Research, 2018: p. 1-5.
- 4. Pannilawithana, N.A. and H. Pathirana, *A green method to produce biodiesel from palm olein oil.* Journal of Oil Palm Research, 2017. **29**(2): p. 267-277.
- Edith, O., R.B. Janius, and R. Yunus, Factors affecting the cold flow behaviour of biodiesel and methods for improvement—a review. Pertanika J. Sci. Technol, 2012. 20(1): p. 1-14.
- 6. Turton, R., et al., *Analysis, synthesis and design of chemical processes*. 2008: Pearson Education.
- Keppel Hesselink, J., Chronic Pain and the Use of Palmitoylethanolamide.
 Austin J Neurol Disord Epilepsy, 2018. 5(2): p. 1042.
- 8. Adlercreutz, D., et al., *Alkanolamide biosurfactants: Techno-economic evaluation of biocatalytic versus chemical production.* Industrial Biotechnology, 2010. **6**(4): p. 204-211.
- 9. Gutiérrez Sánchez, M.F., *Sucrose esters production in a solvent-free reaction system by transesterification of sucrose and fatty acid methyl esters.* Ingeniería Química, 2018.
- 10. Vakhshouri, A.R., *Paraffin as Phase Change Material*, in *Paraffin-an Overview*.2019, IntechOpen.
- Wang, X., T. Wang, and X. Wang, An improved method for synthesis of Nstearoyl and N-palmitoylethanolamine. Journal of the American Oil Chemists' Society, 2012. 89(7): p. 1305-1313.
- 12. Gutiérrez, M.F., et al., *Kinetics of the transesterification of methyl palmitate and sucrose using surfactants.* Chemical Engineering Journal, 2018. **347**: p. 877-888.

- 13. Yan, L., et al., Molybdenum modified nickel phyllosilicates as a high performance bifunctional catalyst for deoxygenation of methyl palmitate to alkanes under mild conditions. Green Chemistry, 2017. **19**(19): p. 4600-4609.
- 14. Mishra, V.K. and R. Goswami, *A review of production, properties and advantages of biodiesel.* Biofuels, 2018. **9**(2): p. 273-289.
- 15. Ivana, L., et al., Solid Acids as Catalysts for Biodiesel Synthesis. 2016. p. 21-136.
- 16. Dunn, R.O., Cold flow properties of biodiesel: A guide to getting an accurate analysis. Biofuels, 2015. **6**(1-2): p. 115-128.
- Sia, C.B., et al., Evaluation on biodiesel cold flow properties, oxidative stability and enhancement strategies: A review. Biocatalysis and Agricultural Biotechnology, 2020. 24: p. 101514.
- Sierra-Cantor, J.F. and C.A. Guerrero-Fajardo, Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: a review.
 Renewable and Sustainable Energy Reviews, 2017. 72: p. 774-790.
- Kanthavelkumaran, N. and P. Seenikannan, *Recent trends and applications of bio diesel*. International Journal of Engineering Research and Applications, 2012.
 2(6): p. 197-203.
- Wang, X., et al., Synthesis of linoleoyl ethanolamide. Journal of oleo science, 2013. 62(6): p. 427-433.
- 21. Pyo, S.-H., et al., *Sugar Esters*, in *Biobased Surfactants*. 2019, Elsevier. p. 325-363.
- 22. Douvartzides, S.L., et al., Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines. Energies, 2019. **12**(5): p. 809.
- 23. Gosselink, R.W., et al., *Reaction pathways for the deoxygenation of vegetable oils and related model compounds.* ChemSusChem, 2013. **6**(9): p. 1576-1594.
- Sonthalia, A. and N. Kumar, *Hydroprocessed vegetable oil as a fuel for transportation sector: A review.* Journal of the Energy Institute, 2019. 92(1): p. 1-17.
- 25. Aspen Technology, Aspen Plus User Guide version 10.2. 2000, Cambridge, USA.

- 26. Poling, B.E., J.M. Prausnitz, and J.P. O'connell, *The properties of gases and liquids*. Vol. 5. 2001: Mcgraw-hill New York.
- 27. Valderrama, J. and P. Robles, *Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids.* Industrial & Engineering Chemistry Research, 2007. **46**(4): p. 1338-1344.
- Olivares-Carrillo, P., et al., Estimation of critical properties of reaction mixtures obtained in different reaction conditions during the synthesis of biodiesel with supercritical methanol from soybean oil. Chemical Engineering Journal, 2014.
 241: p. 418-432.
- Fisher, C.H., Calculation of critical temperatures from the number of carbons in organic molecules. Journal of the American Oil Chemists' Society, 1990. 67(2):
 p. 101-102.
- 30. Vetere, A., *An empirical method for evaluating critical molar volumes.* AIChE Journal, 1976. **22**(5): p. 950-952.
- 31. Kolská, Z., V. Růžicka, and R. Gani, Estimation of the enthalpy of vaporization and the entropy of vaporization for pure organic compounds at 298.15 K and at normal boiling temperature by a group contribution method. Industrial & engineering chemistry research, 2005. **44**(22): p. 8436-8454.
- 32. Li, P., et al., Estimations of enthalpies of vaporization of pure compounds at different temperatures by a corresponding-states group-contribution method. Fluid phase equilibria, 1997. **137**(1-2): p. 63-74.
- Plastina, P., et al., Selective synthesis of unsaturated N-acylethanolamines by lipase-catalyzed N-acylation of ethanolamine with unsaturated fatty acids.
 Letters in Organic Chemistry, 2009. 6(6): p. 444-447.
- Wang, X., et al., Scalable synthesis of oleoyl ethanolamide by chemical amidation in a mixed solvent. Journal of the American Oil Chemists' Society, 2016. 93(1): p. 125-131.
- 35. Chen, J., et al., Efficient Solvent-Free Synthesis of Sucrose Esters via Sand-Milling Pretreatment on Solid-Liquid Mixtures. Journal of Surfactants and Detergents, 2019. 22(6): p. 1515-1520.

- 36. Sousa, A.M., et al., *Fatty Acid Content in Biomasses: State-of-the-Art and Novel Physical Property Estimation Methods.* International Journal of Chemical Engineering, 2019. **2019**.
- Royal Society of Chemistry. *Chemicals properties*. [cited 2019, November 8];
 Available from: <u>https://www.chemspider.com/</u>.
- Srifa, A., et al., Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/γ-Al2O3 catalyst. Bioresource technology, 2014. 158:
 p. 81-90.
- Carlson, E.C., Don't Gamble With Physical Properties For Simulations. Chemical Engineering Progress, 1996. 92: p. 35-46.
- 40. Lyman, W., *Estimation of physical properties.* Environmental Exposure from Chemicals, 1985. **1**.
- 41. Yener, M.E., *Estimation of lipid properties related to supercritical fluid extraction.* International Journal of Food Properties, 2001. **4**(1): p. 45-57.
- 42. Tahami, S., K. Movagharnejad, and H. Ghasemitabar, *Estimation of the critical constants of organic compounds via a new group contribution method*. Fluid Phase Equilibria, 2019. **494**: p. 45-60.
- 43. Sastri, S., S. Mohanty, and K. Rao, *A new method for predicting critical volumes of organic compounds.* Fluid phase equilibria, 1997. **129**(1-2): p. 49-59.
- 44. Vlad, E., et al., *Design of biodiesel production process from rapeseed oil*. Revista de Chimie, 2010. **61**(595-603): p. 7.
- 45. Kantama, A., et al., *Techno-economic assessment of a heat-integrated process* for hydrogenated renewable diesel production from palm fatty acid distillate.
 Biomass and Bioenergy, 2015. 83: p. 448-459.
- 46. Echemi. *Weekly Chemicals Prices List*. 2019 [cited 2019, November 29]; Available from: <u>https://www.echemi.com/weekly-price-list.html</u>.
- 47. Alibaba-Group. *Chemicals prices*. 2019 [cited 2019, November 29]; Available from: <u>https://www.alibaba.com/</u>.
- Guidechem. Chemicals prices. 2019 [cited 2019, November 29]; Available from: <u>https://www.guidechem.com/</u>.

- 49. Martinez-Hernandez, E., et al., Process simulation and techno-economic analysis of bio-jet fuel and green diesel production—Minimum selling prices.
 Chemical Engineering Research and Design, 2019. 146: p. 60-70.
- 50. Parekh, B., *Dewatering of fine coal and refuse slurries-problems and possibilities.* Procedia Earth and Planetary Science, 2009. **1**(1): p. 621-626.
- 51. Arun, S.M., *Handbook of Industrial Drying*. Vol. Fourth edition. 2015, Boca Raton: CRC Press.
- 52. Prokesch, M. and G. Graber, *Selection and Sizing of Concentrate Drying, Handling, and Storage Equipment.* Mineral processing Plant Design, and Control: Proceedings, Colorado, 2002: p. 1463.

CHULALONGKORN UNIVERSITY

APPENDIX A

GROSS PROFIT MARGIN ANALYSIS

Assumption

- The amount of methyl palmitate (feedstock) is 1 tonne.
- Process conversion (x) = 1
- No capital costs, utility costs, and operating costs have been considered.
- By-products are classified as non-valuable products.

Gross profit margin is obtained by subtracting the raw materials costs from revenue products [6]. Table 33 presents raw materials costs and products selling prices. The gross profit margin for each alternative process is given in Table 34.

Chemicals	CAS No.	Prices (USD/tonne)	Reference
Ascorbic acid	50-81-7	4,800	[46]
Ascorbyl palmitate	137-66-6	5,000	[47]
Butanol	71-36-3	781	[46]
Butyl palmitate	111-06-8	1,000	[48]
Cetyl alcohol	36653-82-4	วิทยาลัย 1,200	[47]
Cetyl palmitate	540-10-3	1,000	[48]
Ethanol	64-175-5	1,028	[46]
Ethyl palmitate	628-97-7	1,000	[47]
Hexadecane	544-76-3	3,000	[47]
Hydrogen	1333-74-0	2,000	[49]
Isopropanol	67-63-0	1,208	[46]
Isopropyl palmitate	142-91-6	1,500	[47]
Methanol	67-56-1	287	[46]
Methyl palmitate	112-39-0	1,400	[47]
Monoethanolamine	141-43-5	1,000	[47]
Palmitic acid	57-10-3	1,200	[47]

Table 32 Raw materials costs and products selling prices

Chemicals	CAS No.	Prices (USD/tonne)	Reference
Palmitoylethanolamide	544-31-0	3,000	[47]
Pentadecane	629-62-9	2,000	[47]
Retinol	68-26-8	1,990	[47]
Retinyl palmitate	79-81-2	2,550	[47]
Sucrose	57-50-1	370	[9]
Sucrose palmitate	26446-38-8	2,250	[9]

Table 33 Raw materials costs and products selling prices (cont.)

Example Gross profit margin for ascorbyl palmitate production process

Reaction	Methyl palmitate +	Ascorbic acid —	→ Ascorbyl palmita	ite + Methanol
MW	270.45	176.12	414.53	32.04
Mole stoi	1		1	1
Mass stoi	270.45	176.12	414.53	32.04
Feed (tonne)	1	$\frac{1}{270.45} \times 176.12$	$=\frac{1}{270.45} \times 414.53$	$=\frac{1}{270.45} \times 32.04$
	Q	= 0.651	= 1.533	= 0.118
Gross profit ma	argin = (1.533 tonne)(5,000 USD/tonr	ne) – (1 tonne)(1,40	0 USD/tonne)
	- (0.651 ton	ne)(4,800 USD/tc	onne)	

Gross profit margin = 3,138 USD GKORN UNIVERSITY

		77
Table 33 Gross profit margin	analysis results.	
Chemical product	Reaction	Margin (USD)
(1) Ascorbyl palmitate	Methyl palmitate + Ascorbic acid \rightarrow Ascorbyl palmitate + Methanol	+ 3,138
(2) Sucrose palmitate	Methyl palmitate + Sucrose> Sucrose palmitate + Methanol	+ 2,963
(3) Palmitoylethanolamide	Methyl palmitate + Monoethanolamine $ ightarrow$ Palmitoylethanolamine + Methanol	+ 1,696
(4) Retinyl palmitate	Methyl palmitate + Retinol> Retinyl palmitate	+ 1,441
(5) Hexadecane	Methyl palmitate + Hydrogen> Palmitic acid + Methane	+ 1,052
	Palmitic acid + Hydrogen → Hexadecanal + Water Hexadecanal + Hydrogen → Cetyl alcohol	
	Cetyl alcohol + Hydrogen> Hexadecane + Water	
(6) Pentadecane	Methyl palmitate + Hydrogen> Palmitic acid + Methane	+ 141
	Palmitic acid + Hydrogen> Hexadecanal + Water	
	Hexadecanal 🕕 Pentadecane + carbon monoxide	
(7) Isopropyl palmitate	Methyl palmitate + Isopropanol> Isopropyl palmitate + Methanol	- 13
(8) Palmitic acid	Methyl palmitate + Hydrogen> Palmitic acid + Methane	- 227
(9) Cetyl alcohol	Same as Equation (1) – (3) of Hexadecane	- 369
(10) Ethyl palmitate	Methyl palmitate + Ethanol> Ethyl palmitate + Methanol	- 523
(11) Cetyl palmitate	Methyl palmitate + Cetyl alcohol \longrightarrow Cetyl palmitate + Methanol	- 1,264
(12) Butyl palmitate	Methyl palmitate + 1-Butanol> Butyl palmitate + Methanol	- 1,614

APPENDIX B

FEED AND PRODUCT SPECIFICATIONS

 Table 34 Properties and specification of methyl palmitate

Property	Methyl palmitate		
Physical and chemical properties			
Chemical formula	$C_{17}H_{34}O_2$		
Molecular weight	270.456		
Appearance	Light yellow clear liquid		
Odor	Wax-like		
Melting point	29.9 °C		
Boiling point	324.55 ℃		
Vapor pressure	1.49E-04 Torr at 25 ℃		
Density	0.852 g/cm ³		
Solubility	Insoluble in water		
Storage	35 ℃, 1 atm		
Cost	1,400 USD/tonne		
NFPA Classification	1 Health: 0		
ລາະລວງດຽວໂມນາວີ	• Flammability: 1		
	Instability: 0		
GHULALONGKORN Umr	Specific hazard: N/A		

Table 35 Feed and product specification f	or the production	n of palmitoylethanolamide.	
Property		Monoethanolamine	Palmitoylethanolamide
Physical and chemical properties			
Chemical formula		C_2H_7NO	C ₁₈ H ₃₇ NO ₂
Molecular weight		61.084	299.4919
Appearance		Colorless liquid	White/off-white solid (Fine powder)
Odor	м. -	Ammonia-like	Odorless
Melting point	โลง	10.5 °C	98.5 °C
Boiling point	<i>ส</i> ัง เกา	170 °C	461.5±28.0 °C
Vapor pressure	รณ์	0.458 Torr at 25 °C	1.87E-10 Torr at 25 °C
Density	ั เ ัมา	1.018 g/cm ³	0.910±0.06 g/cm ³
Solubility	สาร์	Soluble in water	Poorly soluble in water
Storage	ว้าย	20 °C, 1 atm	- 20 °C, 1 atm
Cost	มาล้	1,000 USD/tonne	3,000 USD/tonne
NFPA Classification) (1)	Health: 3	Health: 0
		Flammability: 2	Flammability: 1
		Instability: 0	Instability: 0
		Specific hazard: N/A	Specific hazard: N/A

Property	Sucrose	Sucrose monopalmitate	Sucrose dipalmitate
Physical and chemical			
properties	$C_{12}H_{22}O_{11}$	$C_{28}H_{52}O_{12}$	$C_{44}H_{82}O_{13}$
Chemical formula	342.3	580.7053	819.1141
Molecular weight	Mhite solid	White/off-white solid	White/off-white solid
Appearance	Odorless	Odorless	Odorless
Odor	186 °C	45 - 65 °C	45 - 65 °C
Melting point	477.85 °C	744.9±60.0 °C	863.2±65.0 °C
Boiline point	1.79E-22 Torr at 25 °C	0.0±5.6 mmHg at 25 °C	0.0±0.6 mmHg at 25 °C
Vapor pressure	1.5805 g/cm	1.3±0.1 g/cm ³	1.1±0.1 g/cm ³
Density	Soluble in water	Partly soluble	Partly soluble
Solubility	้าย		
Storage	23 °C, 1 atm	35 °C, 1 atm	35 °C, 1 atm
Cost	370 USD/tonne	2,250 USD/tonne	2,250 USD/tonne
NFPA Classification	Health: 0	Health: 0	Health: 0
	Flammability: 1	Flammability: 0	Flammability: C
	Instability: 0	Instability: 0	Instability: 0
	Specific hazard: N/A	Specific hazard: N/A	Specific hazard: N

Property	Hydrogen	Pentadecane	Hexadecane
Physical and chemical			
properties	H	C ₁₅ H ₃₂	$C_{16}H_{34}$
Chemical formula	2.016	212.419	226.446
Molecular weight	Colorless gas	Colorless liquid	Colorless liquid
Appearance	Odorless	Mild waxy	Odorless
Odor	- 259.2 °C	9.92 °C	18.16 °C
Melting point	- 252.76 °C	270.69 °C	286.86 °C
Boiling point	50 50	0.0112 Torr at 25 °C	4.52E-03 Torr at 25 °C
Vapor pressure	0.089 g/cm ³	0.7687 g/cm ³	0.7734 g/cm ³
Density	Poorly soluble in water	Insoluble in water	Insoluble in water
Solubility	ine		
Storage	35 °C, 2000 psia	35 °C, 1 atm	35 °C, 1 atm
Cost	2,000 USD/tonne	2,000 USD/tonne	3,000 USD/tonne
NFPA Classification	Health: 0	Health: 2	Health: 3
	Flammability: 4	Flammability: 1	Flammability: 1
	Instability: 0	Instability: 0	Instability: 0
	Specific hazard: N/A	Specific hazard: N/A	Specific hazard: N/

APPENDIX C

SIMPLE MASS BALANCE

C.1. Palmitoylethanolamide production

 Table 38 Input-output structure of palmitoylethanolamide production.

Component	Classification	Destination code	NBP (°C)	
Methanol	Gas Byproduct	Vent	64.7	(1)
Monoethanolamine	Liquid Reactant	Recycle	170.0	
Methyl palmitate	Liquid Reactant	7	324.6	
Palmitoylethanolamide	Solid Product	Primary product	461.5	(2)

* Methyl palmitate is completely consumed.

Figure 35 Input-output structure of palmitoylethanolamide production.

<u>Design basis</u>

- Methyl palmitate feed rate of 100,000 tonnes/year
- Reaction conversion: x = 1 (Reaction pathway as in Table 13)
- Process conversion: x = 1
- No excess of the reactant at process inlet
- Calculation basis 12,500 kg/h of methyl palmitate (S1)

Figure 36 Material balance for palmitoylethanolamide production.

Table 39 Input-output structure	of sucrose	palmitate	production.
---------------------------------	------------	-----------	-------------

Component	Classification	Destination code	NBP (°C)	
Methanol	Gas Byproduct	Vent	64.7	(1)
Methyl palmitate	Liquid Reactant	Recycle	324.6	
Sucrose	Solid Reactant	Waste	477.9	(2)
Sucrose monopalmitate	Solid Product/	Primary product	744.9	
	Surfactant			(2)
Sucrose dipalmitate	Solid Product/	Primary product	863.2	(3)
	Surfactant			
_				
Methyl palmitate				
1				
Sucrose		(1) Vent (Methanol)	
Sucrose palmitate	Proces	S (3) Primar	y product	
(Surfactant)		(Sucros	se palmitate)	
1 Alexandre		(2) Waste	(Sucrose)	→

Figure 37 Input-output structure of sucrose palmitate production.

Design basis CHULALONGKORN UNIVERSITY

- Methyl palmitate feed rate of 100,000 tonnes/year
- Reaction conversion: $x_1 = 0.3098$, $x_2 = 0.1755$

(Reaction pathway as in Table 14)

- Process conversion: $x_1 = 1$
- No excess of the reactant at process inlet
- Calculation basis 12,500 kg/h of methyl palmitate (S1)

C.3. Normal alkanes production

 Table 40 Input-output structure of normal alkanes production.

Component	Classification	Destination code	NBP (°C)	
Hydrogen	Gas Reactant	Recycle and purge	-252.8	
Carbon monoxide	Gas Byproduct	Recycle and purge	-191.5	(1)
Methane	Gas Byproduct	Recycle and purge	-161.5	
Water	Liquid Byproduct	Waste	100.0	(2)
Pentadecane	Liquid Product	Primary product 1	270.7	(3)
Hexadecane	Liquid Product	Primary product 2	286.9	(4)
Hexadecanal	Liquid Reactant		320.6	
Methyl palmitate	Liquid Reactant		324.6	
Hexadecanol	Liquid Reactant	Recycle	324.9	
Palmitic acid	Liquid Reactant	Recycle	350.0	

* Hexadecanal and methyl palmitate are completely consumed.

Figure 39 Input-output structure of normal alkanes production.

Design basis

- Methyl palmitate feed rate of 100,000 tonnes/year
- Reaction conversion: $x_1 = 1$, $x_2 = 0.9915$, $x_3 = 0.706$, $X_4 = 0.294$, $X_5 = 0.9708$

(Reaction pathway as in Table 15)

- Process conversion: $x_1 = 1$
- 10% excess hydrogen at process inlet
- Calculation basis 12,500 kg/h of methyl palmitate (S1)

Figure 40 Material balance for normal alkanes production.

ŧ

APPENDIX D

STREAM TABLE AND EQUIPMENT SUMMARY

D.1. Palmitoylethanolamide production

Table 41 Stream table for the	production of	palmitoylethanolamide.
---------------------------------------	---------------	------------------------

Stream number	1	2	3	4	5	6
Temperature (°C)	35.0	20.0	192.4	169.5	162.8	60.0
Pressure (bar)	1.01	1.01	2.00	1.01	1.01	1.01
Vapor mole fraction	0.0	0.0	0.0	0.10	0.0	0.0
Total flow (kg/h)	12,500	3,954	52,533	52,533	68,987	68,987
Total flow (kmol/h)	46.22	64.74	860.89	860.89	971.84	971.84
Component flowrates (kmol/h)					
Methanol	0.0	0.0	0.0	0.0	0.0	0.0
Water	0.0	0.0	1.26	1.26	1.26	1.26
Monoethanolamine	0.0	64.74	859.63	859.63	924.37	924.37
Methyl palmitate	46.22	0.0	0.0	0.0	46.22	46.22
Palmitoylethanolamide	0.0	0.0	0.0	0.0	0.0	0.0
Air	0.0	0.0	0.0	0.0	0.0	0.0
Stream number	7	8	9	10	11	12
0.00	100.000	01919207	140.1	140.2	25.0	E C O
Temperature (°C)	60.0	23.2	140.1	140.Z	55.0	0.00
Temperature (°C) Pressure (bar)	60.0 1.01	23.2 0.15	0.35	140.2 1.01	1.01	1.01
Temperature (°C) Pressure (bar) Vapor mole fraction	60.0 1.01 G 0.0	23.2 0.15 0.0	0.0	140.2 TY1.01 0.0	1.01 0.0	1.01 0.0
Temperature (°C) Pressure (bar) Vapor mole fraction Total flow (kg/h)	60.0 1.01 0.0 68,987	23.2 0.15 0.0 1,507	0.0 07,480	140.2 TY1.01 0.0 67,480	1.01 0.0 231,172	1.01 0.0 298,652
Temperature (°C) Pressure (bar) Vapor mole fraction Total flow (kg/h) Total flow (kmol/h)	60.0 1.01 0.0 68,987 971.84	23.2 0.15 0.0 1,507 47.47	0.0 0.0 67,480 924.38	140.2 TY1.01 0.0 67,480 924.38	1.01 0.0 231,172 12,832	1.01 0.0 298,652 13,756
Temperature (°C) Pressure (bar) Vapor mole fraction Total flow (kg/h) Total flow (kmol/h) Component flowrates (60.0 1.01 0.0 68,987 971.84 kmol/h)	23.2 0.15 0.0 1,507 47.47	0.0 67,480 924.38	140.2 TY1.01 0.0 67,480 924.38	1.01 0.0 231,172 12,832	1.01 0.0 298,652 13,756
Temperature (°C) Pressure (bar) Vapor mole fraction Total flow (kg/h) Total flow (kmol/h) Component flowrates (Methanol	60.0 1.01 0.0 68,987 971.84 kmol/h) 46.22	23.2 0.15 0.0 1,507 47.47 46.17	0.0 0.0 67,480 924.38 0.0	140.2 TY1.01 0.0 67,480 924.38 0.0	1.01 0.0 231,172 12,832 0.0	1.01 0.0 298,652 13,756 0.0
Temperature (°C) Pressure (bar) Vapor mole fraction Total flow (kg/h) Total flow (kmol/h) Component flowrates (Methanol Water	60.0 1.01 0.0 68,987 971.84 kmol/h) 46.22 1.26	23.2 0.15 0.0 1,507 47.47 46.17 1.21	0.0 0.0 67,480 924.38 0.0 0.05	140.2 TY1.01 0.0 67,480 924.38 0.0 0.05	1.01 0.0 231,172 12,832 0.0 12,832	1.01 0.0 298,652 13,756 0.0 12,832
Temperature (°C) Pressure (bar) Vapor mole fraction Total flow (kg/h) Total flow (kmol/h) Component flowrates (Methanol Water Monoethanolamine	60.0 1.01 0.0 68,987 971.84 kmol/h) 46.22 1.26 878.15	23.2 0.15 0.0 1,507 47.47 46.17 1.21 0.09	0.0 0.0 67,480 924.38 0.0 0.05 878.06	140.2 TY1.01 0.0 67,480 924.38 0.0 0.05 878.06	1.01 0.0 231,172 12,832 0.0 12,832 0.0	1.01 0.0 298,652 13,756 0.0 12,832 878.06
Temperature (°C) Pressure (bar) Vapor mole fraction Total flow (kg/h) Total flow (kmol/h) Component flowrates (Methanol Water Monoethanolamine Methyl palmitate	60.0 1.01 0.0 68,987 971.84 kmol/h) 46.22 1.26 878.15 0.0	23.2 0.15 0.0 1,507 47.47 46.17 1.21 0.09 0.0	0.0 0.0 67,480 924.38 0.0 0.05 878.06 0.0	140.2 TY1.01 0.0 67,480 924.38 0.0 0.05 878.06 0.0	1.01 0.0 231,172 12,832 0.0 12,832 0.0 0.0	1.01 0.0 298,652 13,756 0.0 12,832 878.06 0.0
Temperature (°C) Pressure (bar) Vapor mole fraction Total flow (kg/h) Total flow (kmol/h) Component flowrates (Methanol Water Monoethanolamine Methyl palmitate Palmitoylethanolamide	60.0 1.01 0.0 68,987 971.84 kmol/h) 46.22 1.26 878.15 0.0 46.22	23.2 0.15 0.0 1,507 47.47 46.17 1.21 0.09 0.0 0.0	0.0 0.0 67,480 924.38 0.0 0.05 878.06 0.0 46.22	140.2 TY1.01 0.0 67,480 924.38 0.0 0.05 878.06 0.0 46.22	1.01 0.0 231,172 12,832 0.0 12,832 0.0 0.0 0.0 0.0	1.01 0.0 298,652 13,756 0.0 12,832 878.06 0.0 46.22

Stream number	13	14	15	16	17	18
Temperature (°C)	6.0	6.0	6.0	6.0	6.0	111.4
Pressure (bar)	1.01	1.01	1.01	1.01	2.00	1.50
Vapor mole fraction	0.0	0.0	0.0	0.00	0.0	0.0
Total flow (kg/h)	298,652	298,652	19,794	278,858	278,858	226,326
Total flow (kmol/h)	13,756	13,756	332.74	13,424	13,424	12,563
Component flowrates ((kmol/h)					
Methanol	0.05	0.05	0.0	0.05	0.05	0.05
Water	12,832	12,832	268.17	12,564	12,564	12,563
Monoethanolamine	878.06	878.06	18.35	859.71	859.71	0.09
Methyl palmitate	0.0	0.0	0.0	0.0	0.0	0.0
Palmitoylethanolamide	46.22	46.22	46.22	0.0	0.0	0.0
Air	0.0	0.0	0.0	0.0	0.0	0.0
Stream number	19	20	21	22		
Temperature (°C)	35.0	300.0	125.0	125.0		
Pressure (bar)	1.01	1.01	1.01	1.01		
Vapor mole fraction	1.0	1.0	0.0	1.00		
Total flow (kg/h)	100,164	100,164	14,124	105,834		
Total flow (kmol/h)	3,460	3,460	50.84	3,742		
Component flowrates ((kmol/h)			ITY		
Methanol	0.0	0.0	0.0	0.0		
Water	0.0	0.0	0.00	268.17		
Monoethanolamine	0.0	0.0	4.62	13.73		
Methyl palmitate	0.0	0.0	0.0	0.0		
Palmitoylethanolamide	0.0	0.0	46.22	0.0		
Air	3,460	3,460	0.0	3,460		

 Table 42 Stream table for the production of palmitoylethanolamide (cont.).

Unit	Equipment type	Model	Operating condition	Note
(1) Rea	ictor feed preparation system			
V-101	Pressure reducing valve	Valve	Outlet pressure = 1.01325 bar	
D-101	Liquid mixing tank	Mixer	Pressure drop = 0	
E-101	Floating head heat exchanger	Heater	Outlet temperature = 60 °C	- T _{outlet} = Reaction temperature based on
		-0 W1	Pressure drop = 0	the work of Wang et al. [11]
(2) Rea	ictor system	โลง		
R-201	Fixed bed reactor	RStoic	Isothermal operation	- Adiabatic temperature rise was
		ณ์	Temperature = 60 °C	more than 15% of T_{inlet} .
		มห	Pressure drop = 0	- Reactions based on the work of Wang et
		าวิ		al. [11]
		ทย		MP + MEA \rightarrow PEA + MeOH ; X _{MP} = 1
(3) Pha	ise separation system	ไ เาล้		
C-301	Distillation column	RadFrac	No. of stages = 8 , Feed stage = 4	- The number of stages and feed location
	(Total condenser)		Condenser pressure = 0.15 bar	were obtained from DSTWU model.
			Reboiler pressure = 0.35 bar	- The optimum distillate rate and molar
			Distillate rate = 47.47 kmol/h	reflux ratio were obtained from the design
			Molar reflux ratio = 3.27	spec.
P-301	Centrifugal pump	Pump	Discharge pressure = 1.01325 bar	
(4) Sep	aration system			
D-401	Liquid mixing tank	Mixer	Pressure drop = 0	

Unit	Equipment type	Model	Operating condition	Note
(4) Sepi	aration system (cont.)			
E-401	Fixed tube sheet heat	Heater	- Outlet temperature = 6 °C	T _{outlet} based on the work of Wang et al.
	exchanger		Pressure drop = 0	[11]
CR-401	Oslo growth type	Crystallizer	Temperature = 6 °C	Temperature based on the work of Wang
	crystallizer	-() ห′ UL/	Pressure drop = 0	et al. [11]
		າ ALC	Physical reaction: PEA → PEA (S)	
		งก วงเ	Solubility of PEA in water = 4.01	
		รณ์ GKC	mg/L at 20 °C	
F-401	Rotary drum filter	Filter	- Model = Solids separator	Assumption: Percent solid recovery =
		งา ² เ U	Fraction of solids to solid outlet = 1	100%
		วิท ไทเ	Liquid load of solid outlet = 0.43 -	Moisture in filter cake for rotary drum
		ยา VEI	Pressure drop = 0	filter was obtained from the work of
		ลัย RSI	Duty = 0	Parekh [50].
P-401	Centrifugal pump	Pump	Discharge pressure = 2 bar	
C-401	Distillation column	RadFrac	No. of stages = 13, Feed stage = 8	The number of stages and feed location
	(Total condenser)		Condenser pressure = 1.5 bar	were obtained from DSTWU model.
			Reboiler pressure = 2.0 bar	The optimum distillate rate and molar
			Distillate rate = 12,563 kmol/h	reflux ratio were obtained from the
			Molar reflux ratio = 0.323	design spec.
(4) Separation system (cont.) - The inlet air temperature to t E-404 Floating head heat - The inlet air temperature to t exchanger - Pressure drop = 0 - dryer was obtained from the industrial drying [51]. DR-401 Direct rotary dryer - Operation mode = Continuous - We specified the outlet air tem industrial drying [51]. DR-401 Direct rotary dryer Deration mode = Continuous - We specified the outlet air tem industrial drying [51]. DR-401 Direct rotary dryer Deration mode = Continuous - We specified the outlet air tem industrial drying [51]. DR-401 Direct rotary dryer Dryer Deration mode = Continuous - We specified the outlet air tem industrial drying [51]. DR-401 Direct rotary dryer Doeration mode = Continuous - Me specified the outlet air tem industrial drying [51]. DR-401 Direct rotary dryer Dryer type = Shortcut = 125 °C [52] and then used t Persoure drop = 0 Exit stream moisture contents: MEA = 125 %C [52] and then used t Exit stream moisture contents: MEA = 0.02 (wet basis) = 100,164 kg/h	Note			
---	--------------------------------			
E-404 Floating head heat Heater Outlet temperature = 300 °C - The inlet air temperature to the index from the				
exchanger Pressure drop = 0 dryer was obtained from the lof industrial drying [51]. DR-401 Direct rotary dryer Dryer Operation mode = Continuous - We specified the outlet air tel = 125 °C [52] and then used t spect to find the optimum interest. DR-401 Direct rotary dryer Dryer Dperation mode = Continuous - We specified the outlet air tel = 125 °C [52] and then used t spect to find the optimum interest. Exit stream moisture contents: MEA = 0.02 (wet basis) inate: = 100,164 kg/h	air temperature to the rotary			
DR-401 Direct rotary dryer Dryer Operation mode = Continuous - We specified the outlet air tel DR-401 Direct rotary dryer Dryer type = Shortcut - We specified the outlet air tel DR-401 Direct rotary dryer Dryer type = Shortcut - We specified the outlet air tel DR-401 Direct rotary dryer Dryer type = Shortcut - We specified the outlet air tel DR-401 Pressure drop = 0 - We specified the optimum inlet air tel Heat Duty = 0 - - - - Exit stream moisture contents: MEA = - - - - 0.02 (wet basis) - - - - - Inlet air flow rate = 100,164 kg/h - - -	obtained from the Handbool			
DR-401 Direct rotary dryer Dryer Operation mode = Continuous - We specified the outlet air term term term term term term and term used t Dryer Dryer Uper Shortcut = 125 °C [52] and then used t Pressure Pressure drop = 0 = 125 °C [52] and then used t Pressure Pressure drop = 0 = 125 °C [52] and then used t Pressure Pressure 0 = 125 °C [52] and then used t Pressure Pressure 0 = 125 °C [52] and then used t Pressure Pressure 0 = 125 °C [52] and then used t Pressure Pressure 0 = 125 °C [52] and then used t Pressure Pressure 0 = 125 °C [52] and then used t Pressure Pressure = 0.02 (wet basis) = 0.02 (wet basis) Inlet air flow rate = 100,164 kg/h = 100,164 kg/h = 0.02 (wet basis)	al drying [51].			
Dryer type = Shortcut = 125 °C [52] and then used t Pressure drop = 0 = 125 °C [52] and then used t Pressure drop = 0 = 125 °C [52] and then used t Heat Duty = 0 = 125 °C [52] and then used t Exit stream moisture contents: MEA = 0.02 (wet basis) Inlet air flow rate = 100,164 kg/h	ied the outlet air temperature			
Pressure drop = 0 Heat Duty = 0 Exit stream moisture contents: MEA = 0.02 (wet basis) Inlet air flow rate = 100,164 kg/h	52] and then used the design			
Heat Duty = 0 Exit stream moisture contents: MEA = 0.02 (wet basis) Inlet air flow rate = 100,164 kg/h	nd the optimum inlet air flow			
Exit stream moisture contents: MEA = 0.02 (wet basis) Inlet air flow rate = 100,164 kg/h				
= 0.02 (wet basis) Inlet air flow rate = 100,164 kg/h				
Inlet air flow rate = 100,164 kg/h				

D.2. Sucrose palmitate production

Table 43 Stream table f	for the	production	of	sucrose	palmitate.
---------------------------------	---------	------------	----	---------	------------

Stream number	1	2	3	4	5	6
Temperature (°C)	35.0	23.0	35.0	355.7	323.8	153.8
Pressure (bar)	1.01	1.01	1.01	2.00	1.01	1.01
Vapor mole fraction	0.0	0.0	0.0	0.0	0.47	0.0
Total flow (kg/h)	12,500	13,122	7,057	13,438	13,438	46,118
Total flow (kmol/h)	46.22	38.34	10.47	49.83	49.83	144.85
Component flowrates (kmol/h)		17			
Methanol	0.0	0.0	0.0	0.0	0.0	0.0
Ethyl acetate	0.0	0.0	0.0	0.20	0.20	0.20
Water	0.0	0.0	0.0	0.0	0.0	0.0
Methyl palmitate	46.22	0.0	0.0	49.62	49.62	95.84
Sucrose	0.0	38.34	0.0	0.0	0.0	38.34
Sucrose monopalmitate	0.0	0.0	6.38	0.0	0.0	6.38
Sucrose dipalmitate	0.0	0.0	4.09	0.0	0.0	4.09
Stream number	7	8	9	10	11	12
Temperature (°C)	153.8	136.0	136.0	136.0	136.0	136.0
Pressure (bar)	0.33	0.33	0.33	0.33	0.33	1.01
Vapor mole fraction	0.0	0.0	0.28	1.00	0.0	0.0
Total flow (kg/h)	46,118	46,118	46,118	1,352	44,766	44,766
Total flow (kmol/h)	144.85	144.85	144.85	40.73	104.12	104.12
Component flowrates (kmol/h)					
Methanol	0.0	0.0	41.30	40.39	0.91	0.91
Ethyl acetate	0.20	0.20	0.20	0.18	0.02	0.02
Water	0.0	0.0	0.0	0.0	0.0	0.0
Methyl palmitate	95.84	95.84	54.54	0.15	54.39	54.39
Sucrose	38.34	38.34	8.64	0.0	8.64	8.64
Sucrose monopalmitate	6.38	6.38	24.46	0.0	24.46	24.46
Sucrose dipalmitate	4.09	4.09	15.70	0.0	15.70	15.70

Stream number	13	14	15	16	17	18
Temperature (°C)	35.0	35.0	35.0	34.6	34.6	34.6
Pressure (bar)	1.01	1.01	1.01	1.01	1.01	1.01
Vapor mole fraction	0.0	0.0	0.0	0.0	0.0	0.0
Total flow (kg/h)	44,766	174	197,428	242,368	49,137	193,231
Total flow (kmol/h)	104.12	1.97	2,241	2,347	255.67	2,092
Component flowrates (k	mol/h)					
Methanol	0.91	0.0	1.02	1.92	0.17	1.75
Ethyl acetate	0.0	1.97	2,240	2,242	201.78	2,040
Water	0.0	0.0	0.0	0.0	0.0	0.0
Methyl palmitate	54.39	0.0	0.14	54.53	4.91	49.62
Sucrose	8.64	0.00	0.0	8.64	8.64	0.00
Sucrose monopalmitate	24.46	0.0	0.00	24.46	24.46	0.00
Sucrose dipalmitate	15.70	0.0	0.00	15.70	15.70	0.00
Stream number	19	20	21	22	23	24
Temperature (°C)	34.7	89.5	77.1	35.0	130.0	130.0
Pressure (bar)	2.00	1.50	1.01	1.01	1.01	1.01
Vapor mole fraction	0.0	0.0	0.1	0.0	1.00	0.0
Total flow (kg/h)	193,231	179,793	179,793	179,793	17,682	31,454
Total flow (kmol/h)	2,092	2 042	2 0 4 2	2.042	200.51	55.16
	,	2,012	2,012	_,		00.10
Component flowrates (k	mol/h)	2,012	2,012	_,		00110
Component flowrates (k Methanol	mol/h) 1.75	1.75	1.75	1.75	0.17	0.0
Component flowrates (k Methanol Ethyl acetate	mol/h) 1.75 2,040	1.75 2,040	1.75 2,040	1.75 2,040	0.17 200.19	0.0 1.58
Component flowrates (k Methanol Ethyl acetate Water	mol/h) 1.75 2,040 0.0	1.75 2,040 0.0	1.75 2,040 0.0	1.75 2,040 0.0	0.17 200.19 0.0	0.0 1.58 0.0
Component flowrates (k Methanol Ethyl acetate Water Methyl palmitate	mol/h) 1.75 2,040 0.0 49.62	1.75 2,040 0.0 0.0	1.75 2,040 0.0 0.0	1.75 2,040 0.0 0.0	0.17 200.19 0.0 0.14	0.0 1.58 0.0 4.76
Component flowrates (k Methanol Ethyl acetate Water Methyl palmitate Sucrose	mol/h) 1.75 2,040 0.0 49.62 0.0	1.75 2,040 0.0 0.0 0.0	1.75 2,040 0.0 0.0 0.0	1.75 2,040 0.0 0.0 0.0	0.17 200.19 0.0 0.14 0.0	0.0 1.58 0.0 4.76 8.64
Component flowrates (k Methanol Ethyl acetate Water Methyl palmitate Sucrose Sucrose monopalmitate	mol/h) 1.75 2,040 0.0 49.62 0.0 0.0	1.75 2,040 0.0 0.0 0.0 0.0 0.0	1.75 2,040 0.0 0.0 0.0 0.0 0.0	1.75 2,040 0.0 0.0 0.0 0.0 0.0	0.17 200.19 0.0 0.14 0.0 0.0	0.0 1.58 0.0 4.76 8.64 24.46

 Table 44 Stream table for the production of sucrose palmitate (cont.).

Stream number	25	26	27	28	29	30
Temperature (°C)	35.0	35.0	35.0	23.0	35.2	35.2
Pressure (bar)	1.01	1.01	1.01	1.01	1.01	1.01
Vapor mole fraction	0.0	0.0	0.0	0.0	0.0	0.0
Total flow (kg/h)	17,682	31,454	71,019	1,896	104,370	28,613
Total flow (kmol/h)	200.51	55.16	3,942	5.54	4,003	119.42
Component flowrates (k	mol/h)					
Methanol	0.17	0.0	0.0	0.0	0.0	0.0
Ethyl acetate	200.19	1.58	0.0	0.0	1.59	0.03
Water	0.0	0.0	3,942	0.0	3,942	78.84
Methyl palmitate	0.14	4.76	0.0	0.0	4.77	0.10
Sucrose	0.0	8.64	0.0	0.0	0.0	0.0
Sucrose monopalmitate	0.0	24.46	0.0	0.0	24.46	24.46
Sucrose dipalmitate	0.0	15.70	0.0	0.0	15.70	15.70
Stream number	31	32	33	34	35	
Temperature (°C)	35.2	35.0	300.0	125.0	125.0	
Pressure (bar)	1.01	1.01	1.01	1.01	1.01	
Vapor mole fraction	0.0	1.00	1.00	0.0	1.00	
Total flow (kg/h)	75,757	43,013	43,013	27,621	44,005	
Total flow (kmol/h)	3,883	1,486	1,486	64.46	1,541	
Component flowrates (k	mol/h)					
Methanol	0.0	0.0	0.0	0.0	0.0	
Ethyl acetate	1.56	0.0	0.0	0.0	0.03	
Water	3,863	0.0	0.0	23.92	54.93	
Methyl palmitate	4.67	0.0	0.0	0.10	0.0	
Sucrose	0.0	0.0	0.0	0.28	0.0	
Sucrose monopalmitate	0.0	0.0	0.0	24.46	0.0	
Sucrose dipalmitate	0.0	0.0	0.0	15.70	0.0	
Air	0.0	1,486	1,486	0.0	1,486	

 Table 44 Stream table for the production of sucrose palmitate (cont.).

Table 4	4 Operating conditions of unit ope	erations fo	r sucrose palmitate production.	
Unit	Equipment type	Model	Operating condition	Note
(1) Rea	actor feed preparation system			
V-101	Pressure reducing valve	Valve	Outlet pressure = 1.01325 bar	
D-101	Liquid mixing tank	Mixer	Pressure drop = 0	
V-102	Pressure reducing valve	Valve	Outlet pressure = 0.334 bar	- P _{outtet} = Reaction pressure based on
		พ		the work of Gutierrez et al. [12]
E-101	Double pipe heat exchanger	Heater	Outlet temperature = 136 °C	 T_{outlet} = Reaction temperature based on
	DNG	้ากร	Pressure drop = 0	the work of Gutierrez et al. [12]
(2) Rea	actor system	កររំន		
R-201	Fixed bed reactor	RStoic	Isothermal operation	- Adiabatic temperature rise was
		- าวิ	Temperature = 136 °C	more than 15% of T_{inlet} .
		ทย	Pressure drop = 0	 Reactions based on the work of Gutierrez
		ได้ มาส		et al. [12] ($X_{MP1} = 0.3098$, $X_{MP2} = 0.1755$)
		ลัย		SC + MP → MONO-SE + MeOH
				MONO-SE + MP → DI-SE + MeOH
(3) Phē	ase separation system			
D-301	Flash drum	Flash2	Pressure drop = 0	
			Duty = 0	
P-301	Centrifugal pump	Pump	Discharge pressure = 1.01325 bar	
E-301	Floating head heat exchanger	Heater	Outlet temperature = 35 °C	
			Pressure drop = 0	

Table 45 ()	perating conditions of uni	it operatic	ons for sucrose palmitate production (cont.).	
Unit	Equipment type	Model	Operating condition	Note
(4) Separa	ition system			
D-401	Liquid mixing tank	Mixer	Pressure drop = 0	
F-401	Rotary drum filter	Filter	Model = Solids separator	Assumption: Percent solid recovery =
			Fraction of solids to solid outlet = 1	100%
		ຈຸ	Fraction of liquid to liquid outlet = 0.91 -	Yield of methyl palmitate extraction =
			Pressure drop = 0	91% [9]
			Duty = 0	
P-401	Centrifugal pump	Pump	Discharge pressure = 2 bar	
C-401	Distillation column	RadFrac	No. of stages = 5, Feed stage = 3	The number of stages, feed location, and
	(Total condenser)	หา' ง ไ	Condenser pressure = 1.5 bar	molar reflux ratio were obtained from
			Reboiler pressure = 2.0 bar	the DSTWU model.
			Distillate rate = 2,042 kmol/h	The optimum distillate rate was obtained
			Molar reflux ratio = 1	from the design spec.
V-401	Pressure reducing	Valve	Outlet pressure = 1.01325 bar	
	valve			
E-403	Fixed tube sheet	Heater	Outlet temperature = 35 °C	
	heat exchanger		Pressure drop = 0	
EV-401	Forced circulation	Flash2	Temperature = 130 °C	The optimum temperature was obtained
	evaporator		Pressure drop = 0	from sensitivity analysis: T \ge 130 °C \rightarrow
				ETA removal > 99%

Table 45 ()	perating conditions of uni	it operatic	ons for sucrose palmitate production (cont.).	
Unit	Equipment type	Model	Operating condition	Note
(4) Separa	ition system (cont.)			
E-404	Floating head heat	Heater	Outlet temperature = 35 °C	
	exchanger		Pressure drop = 0	
D-403	Liquid mixing tank	Mixer	Pressure drop = 0	
E-405	Floating head heat	Heater	Outlet temperature = 35 °C	
	exchanger		Pressure drop = 0	
D-404	Liquid mixing tank	Mixer	Pressure drop = 0	
F-402	Rotary drum filter	Filter	Model = Solids separator	Assumption: Percent solid recovery =
			Fraction of solids to solid outlet = 1	100%
			Fraction of liquid to liquid outlet = 0.98 -	Yield of sucrose extraction = 98% [9]
			Pressure drop = 0	
			Duty = 0	
E-406	Floating head heat	Heater	Outlet temperature = 300 °C	The inlet air temperature to the rotary
	exchanger	נן 171	Pressure drop = 0	dryer was obtained from the Handbook
				of industrial drying [51].
DR-401	Direct rotary dryer	Dryer	Operation mode = Continuous	We specified the outlet air temperature
			Dryer type = Shortcut	= 125 °C [52] and then used the design
			Pressure drop = 0, Heat Duty = 0	spec to find the optimum inlet air flow
			Exit stream moisture contents: Water =	rate.
			0.0156 (wet basis)	
			Inlet air flow rate = 43,013 kg/h	

Stream number		7	ю	4	5	6	7	8	6
Temperature (°C)	35.0	38.3	20.0	35.0	371.9	334.7	42.3	42.8	20.4
Pressure (bar)	137.90	10.00	10.00	1.01	2.00	1.01	1.01	10.00	10.00
Vapor mole fraction	1.00	1.00	1.00	0.0	0.0	0.52	0.0	0.0	1.00
Total flow (kg/h)	265	265	72,485	12,500	201	201	12,701	12,701	72,750
Total flow (kmol/h)	131.46	131.46	3,918.93	46.22	0.81	0.81	47.02	47.02	4,050.39
Component flowrates	(kmol/h)			01012 0		(M)			
Hydrogen	131.46	131.46	515.15	0.0	0.0	0.0	0.0	0.0	646.61
Carbon monoxide	0.0	0.0	1,405.81	0.0	0.0	0.0	0.0	0.0	1,405.81
Methane	0.0	0.0	1,989.82	0.0	0.0	0.0	0.0	0.0	1,989.82
Water	0.0	90.0 ST	8.15	0.0	0.0	0.0	0.0	0.0	8.15
Pentadecane	0.0	0.0	0.003	0.0	0.0	0.0	0.0	0.0	0.003
Hexadecane	0.0	0.0	0.0	0.0	0.001	0.001	0.001	0.001	0.0
Hexadecanal	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Methyl palmitate	0.0	0.0	0.0	46.22	0.0	0.0	46.22	46.22	0.0
Hexadecanol	0.0	0.0	0.0	0.0	0.41	0.41	0.41	0.41	0.0
Palmitic acid	0.0	0.0	0.0	0.0	0.40	0.40	0.40	0.40	0.0

Table 45 Stream table for the production of normal alkanes.

D.3. Normal alkanes production

	_								
Stream number	10	11	12	13	14	15	16	17	18
Temperature (°C)	24.0	220.0	220.0	60.0	0.09	60.0	20.0	20.0	20.0
Pressure (bar)	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Vapor mole fraction	0.99	1.00	1.00	0.99	1.00	0.0	0.99	1.00	0.0
Total flow (kg/h)	85,451	85,451	85,451	85,451	75,204	10,248	75,204	74,138	1,066
Total flow (kmol/h)	4,097.41	4,097.41	4,116.45	4,116.45	4,066.36	50.09	4,066.36	4,008.13	58.23
Component flowrates	(kmol/h)								
Hydrogen	646.61	646.61	527.00	527.00	526.94	0.06	526.94	526.94	0.0
Carbon monoxide	1,405.81	1,405.81	1,438.44	1,438.44	1,438.07	0.37	1,438.07	1,438.07	0.001
Methane	1,989.82	1,989.82	2,036.04	2036.04	2034.79	1.25	2034.79	2034.79	0.003
Water	8.15	8.15	67.95	67.95	66.47	1.48	66.47	8.33	58.14
Pentadecane	0.003	0.003	32.63	32.63	0.08	32.56	0.076	0.003	0.073
Hexadecane	0.002	0.002	13.59	13.59	0.0	13.58	0.014	0.0	0.014
Hexadecanal	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Methyl palmitate	46.22	46.22	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Hexadecanol	0.41	0.41	0.41	0.41	0.0	0.41	0.0	0.0	0.0
Palmitic acid	0.40	0.40	0.40	0.40	0.0	0.40	0.0	0.0	0.0

Table 46 Stream table for the production of normal alkanes (cont.).

	-								
Stream number	19	20	21	22	23	24	25	26	27
Temperature (°C)	20.0	53.0	53.0	53.0	53.2	91.5	308.3	293.2	293.2
Pressure (bar)	10.00	10.00	10.00	10.00	2.00	1.50	2.00	1.50	2.00
Vapor mole fraction	1.00	0.0	0.0	0.0	0.027	1.00	0.0	0.0	0.0
Total flow (kg/h)	1,676	11,314	10,266	1,048	10,266	57	10,208	10,007	10,007
Total flow (kmol/h)	90.58	108.32	50.13	58.19	50.13	3.11	47.02	46.22	46.22
Component flowrates	(kmol/h)								
Hydrogen	11.91	0.055	0.055	0.0	0.0554	0.0554	0.0	0.0	0.0
Carbon monoxide	32.50	0.37	0.37	0.0	0.37	0.37	0.0	0.0	0.0
Methane	45.99	1.25	1.25	0.001	1.25	1.25	0.0	0.0	0.0
Water	0.19	59.62	1.43	58.19	1.43	1.43	0.001	0.001	0.001
Pentadecane	0.0	32.63	32.63	0.0	32.63	0.003	32.63	32.63	32.63
Hexadecane	0.0	13.59	13.59	0.0	13.59	0.001	13.59	13.59	13.59
Hexadecanal	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Methyl palmitate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Hexadecanol	0.0	0.41	0.41	0.0	0.41	0.0	0.41	0.0	0.0
Palmitic acid	0.0	0.40	0.40	0.0	0.40	0.0	0.40	0.0	0.0

Table 46 Stream table for the production of normal alkanes (cont.).

	-					
Stream number	28	29	30	31	32	33
Temperature (°C)	288.8	320.4	270.5	6.0	6.0	6.0
Pressure (bar)	1.50	2.00	1.01	1.01	1.01	1.01
Vapor mole fraction	0.0	0.0	0.26	0.0	0.0	0.0
Total flow (kg/h)	6,931	3,076	6,931	298,652	298,652	19,794
Total flow (kmol/h)	32.63	13.59	32.63	13,756	13,756	332.74
Component flowrates (k	NG (µ/Jour					
Hydrogen	0.0	0.0	0.0	0.0	0.0	0.0
Carbon monoxide	0.0	0.0	0.0	0.0	0.0	0.0
Methane	0.0	0.0	0.0	0.0	0.0	0.0
Water	0.001	0.0	0.001	0.001	0.0	0.0
Pentadecane	37.63 32.63	0.001	32.63	32.63	0.001	0.001
Hexadecane	0.003	13.58	0.003	0.003	13.58	13.58
Hexadecanal	0.0	0.0	0.0	0.0	0.0	0.0
Methyl palmitate	0.0	0.0	0.0	0.0	0.0	0.0
Hexadecanol	0.0	0.0	0.0	0.0	0.0	0.0
Palmitic acid	0.0	0.0	0.0	0.0	0.0	0.0

Table 46 Stream table for the production of normal alkanes (cont.).

Unit	Equipment type	Model	Operating condition	Note
(1) Rea	ctor feed preparation system			
V-101	Pressure reducing valve	Valve	Outlet pressure = 10 bar	
V-102	Pressure reducing valve	Valve	Outlet pressure = 1.01325 bar	
D-101	Liquid mixing tank	Mixer	Pressure drop = 0	
P-101	Centrifugal pump	Pump	Discharge pressure = 10 bar	P _{outlet} = Reaction pressure based on the work
		າລ		of Yan et al. [13]
E-101	U-tube heat exchanger	Heater	Outlet temperature = 220 °C -	T _{outlet} = Reaction temperature based on
		รณ์	Pressure drop = 0	the work of Yan et al. [13]
(2) Rea	ctor system	้มห		
R-201	Trickle bed reactor	RStoic	Isothermal operation	Adiabatic temperature rise was more than 15%
		ัทย	Temperature = 220 °C	of T _{inlet} .
		้า	Pressure drop = 0	Reactions based on the work of Yan et al. [13]
				MP + H ₂ → PA + MeOH; X _{MP} =1
				PA + H ₂ → Hexadecanal + Water ; X _{PA} =0.9915
				Hexadecanal → N-PEN + CO ; X _{NAL} =0.706
				Hexadecanal + H₂ → Hexadecanol ; X _{NAL} =1
				Hexadecanol + H₂ → N-HEX + Water ; X _{NOL}
				=0.9708

Unit	Equipment type	Model	Operating condition	Note
(3) Pha	se separation system			
E-301	Floating head heat	Heater	Outlet temperature = 60 °C	- The optimum temperature was obtained from
	exchanger		Pressure drop = 0	sensitivity analysis.
D-301	Flash drum	Flash2	Pressure drop = 0	
			Duty = 0	
E-302	Fixed tube sheet heat	Heater	Outlet temperature = 20 °C	The optimum temperature was obtained from
	exchanger		Pressure drop = 0	sensitivity analysis.
D-302	Flash drum	Flash2	Pressure drop = 0	
			Duty = 0	₩ <i>//</i>
D-303	Liquid mixing tank	Mixer	Pressure drop = 0	
D-304	Decanter	Decanter	Pressure drop = 0	
		ยา VEI	Duty = 0	
		ลัย RSI	Key component = Water	
(4) Sep	aration system	TY		
V-401	Pressure reducing valve	Valve	Outlet pressure = 2 bar	
C-401	Distillation column	RadFrac	No. of stages = 6	- The number of stages and feed location were
	(Partial condenser)		Feed stage = 3	obtained from the DSTWU model.
			Condenser pressure = 1.5 bar	- The optimum distillate rate and molar reflux
			Reboiler pressure = 2.0 bar	ratio were obtained from the design spec.
			Distillate rate = 3.11 kmol/h	
			Molar reflux ratio = 0.2	

Unit	Equipment type	Model	Operating condition	Note
(4) Sep	baration system (cont.)			
C-402	Distillation column	RadFrac	No. of stages = 48	- The number of stages and feed location were
	(Total condenser)		Feed stage = 27	obtained from the DSTWU model.
			Condenser pressure = 1.5 bar	- The optimum distillate rate and molar reflux
			Reboiler pressure = 2.0 bar	ratio were obtained from the design spec.
			Distillate rate = 46.22 kmol/h	
			Molar reflux ratio = 0.99	
P-401	Centrifugal pump	Pump	Discharge pressure = 2 bar	
C-403	Distillation column	RadFrac	No. of stages = 99	The number of stages and feed location were
	(Total condenser)	หา ² ง ไ	Feed stage = 55	obtained from the DSTWU model.
			Condenser pressure = 1.5 bar	- The optimum distillate rate and molar reflux
			Reboiler pressure = 2.0 bar	ratio were obtained from the design spec.
			Distillate rate = 32.63 kmol/h	
		J ITY	Molar reflux ratio = 4.84	
V-402	Pressure reducing valve	Valve	Outlet pressure = 1.01325 bar	
V-403	Pressure reducing valve	Valve	Outlet pressure = 1.01325 bar	
E-407	Floating head heat	Heater	Outlet temperature = 35 °C	
	exchanger		Pressure drop = 0	
E-408	Double pipe heat	Heater	Outlet temperature = 35 °C	
	exchanger		Pressure drop = 0	

APPENDIX E

TOTAL PROJECT COST OF PLANT

E.1. Palmitoylethanolamide production

Table 47 Total	project cost o	of palmitoylethanolamide	production (USD).

Items	Labor cost	Material cost	Total cost	Percentages
Equipment	198,000	8,060,000	8,260,000	47.1% of TDC
Piping	1,440,000	3,570,000	5,010,000	28.6% of TDC
Civil	341,000	419,000	760,000	4.3% of TDC
Steel	28,300	167,000	195,000	1.1% of TDC
Instruments	183,000	1,100,000	1,280,000	7.2% of TDC
Electrical	148,000	1,010,000	1,160,000	6.6% of TDC
Insulation	362,000	376,000	738,000	4.2% of TDC
Paint	82,200	33,700	116,000	0.7% of TDC
Total Direct Field	2,790,000	14,700,000	17,500,000	100.0% of TDC
Cost	(TDL)	(TDM)	(TDC)	
Indirect Field Cost	A	Valer B	3,380,000	121.3% of TDL
Total Field Cost	CA.	10	20,900,000	67.1% of TIC
Freight	- Call		147,000	1.0% of TDM
Freight Taxes and Permits	ุหาลงกรณ์	มหาวิทยาล ้	147,000 884,000	1.0% of TDM 5.0% of TDC
Freight Taxes and Permits Engineering and HO	ุฬาลงกรณ์ IULALONGKO	โมหาวิทยาล้ DRN UNIVERS	147,000 884,000 2,660,000	1.0% of TDM 5.0% of TDC 8.5% of TIC
Freight Taxes and Permits Engineering and HO Other Project Costs	มหาลงกรณ์ IULALONGKO	โมหาวิทยาล้ DRN UNIVERS	147,000 884,000 2,660,000 1,820,000	1.0% of TDM 5.0% of TDC 8.5% of TIC 5.8% of TIC
Freight Taxes and Permits Engineering and HO Other Project Costs Contingency	ุหาลงกรณ์ IULALONGKO	โมหาวิทยาล้ ORN UNIVERS	147,000 884,000 2,660,000 1,820,000 4,750,000	1.0% of TDM 5.0% of TDC 8.5% of TIC 5.8% of TIC 15.3% of TIC
Freight Taxes and Permits Engineering and HO Other Project Costs Contingency Total Non-Field Cost	ุหาลงกรณ์ IULALONGK	ใมหาวิทยาล้ ORN UNIVERS	147,000 884,000 2,660,000 1,820,000 4,750,000 10,300,000	1.0% of TDM 5.0% of TDC 8.5% of TIC 5.8% of TIC 15.3% of TIC 32.9% of TIC
Freight Taxes and Permits Engineering and HO Other Project Costs Contingency Total Non-Field Cost Total Project Cost	มูฬาลงกรณ์ IULALONGKO	โมหาวิทยาล้ ORN UNIVERS	147,000 884,000 2,660,000 1,820,000 4,750,000 10,300,000 31,200,000	1.0% of TDM 5.0% of TDC 8.5% of TIC 5.8% of TIC 15.3% of TIC 32.9% of TIC 177.9% of TDC
Freight Taxes and Permits Engineering and HO Other Project Costs Contingency Total Non-Field Cost Total Project Cost	หาลงกรณ์ IULALONGKO	โมหาวิทยาล้ ORN UNIVERS	147,000 884,000 1,820,000 4,750,000 10,300,000 31,200,000 (TIC)	1.0% of TDM 5.0% of TDC 8.5% of TIC 5.8% of TIC 15.3% of TIC 32.9% of TIC 177.9% of TDC
Freight Taxes and Permits Engineering and HO Other Project Costs Contingency Total Non-Field Cost Total Project Cost Adjusted Total	งหาลงกรณ์ IULALONGK	ใมหาวิทยาล้ ORN UNIVERS	147,000 884,000 1,820,000 4,750,000 10,300,000 31,200,000 (TIC) 35,500,000	1.0% of TDM 5.0% of TDC 8.5% of TIC 5.8% of TIC 15.3% of TIC 32.9% of TIC 177.9% of TDC
Freight Taxes and Permits Engineering and HO Other Project Costs Contingency Total Non-Field Cost Total Project Cost Adjusted Total Project Cost	มูฬาลงกรณ์ IULALONGK	ใมหาวิทยาล้ ORN UNIVERS	147,000 884,000 1,820,000 4,750,000 10,300,000 31,200,000 (TIC) 35,500,000	1.0% of TDM 5.0% of TDC 8.5% of TIC 5.8% of TIC 15.3% of TIC 32.9% of TIC 177.9% of TDC
Freight Taxes and Permits Engineering and HO Other Project Costs Contingency Total Non-Field Cost Total Project Cost Adjusted Total Project Cost Escalated Total	มูฬาลงกรณ์ IULALONGKO	ใมหาวิทยาล้ ORN UNIVERS	147,000 884,000 1,820,000 4,750,000 10,300,000 31,200,000 (TIC) 35,500,000 37,200,000	1.0% of TDM 5.0% of TDC 8.5% of TIC 5.8% of TIC 15.3% of TIC 32.9% of TIC 177.9% of TDC

Unit	Equipment type	Total Direct cost	Equipment cost
(1) Read	ctor feed preparation system		
D-101	Liquid mixing tank	250,000	129,000
E-101	Floating head heat exchanger	175,000	51,400
(2) Read	ctor system		
R-201	Fixed bed reactor	317,000	155,000
(3) Pha	se separation system		
C-301	Distillation column	510,000	185,000
E-301	Condenser (fixed tube sheet)	126,000	31,900
E-302	Reboiler (U-tube)	221,000	97,500
D-301	Reflux drum	82,500	12,700
P-301	Centrifugal pump	52,400	7,700
(4) Sepa	aration system		
D-401	Liquid mixing tank	389,000	228,000
E-401	Fixed tube sheet heat exchanger	613,000	351,000
CR-401	Oslo growth type crystallizer	1,950,000	1,500,000
F-401	Rotary drum filter	342,000	242,000
P-401	Centrifugal pump	76,000	13,600
C-401	Distillation column	วทยาลย _{5,710,000}	2,330,000
E-402	Condenser (fixed tube sheet)	NIVERS 539,000	309,000
E-403	Reboiler (U-tube)	3,620,000	1,990,000
D-402	Reflux drum	210,000	43,500
E-404	Floating head heat exchanger	267,000	96,400
DR-401	Direct rotary dryer	66,800	41,600

 Table 48 Equipment cost of palmitoylethanolamide production (USD).

Items	Labor cost	Material cost	Total cost	Percentages
Equipment	67,200	3,790,000	3,860,000	47.1% of TDC
Piping	1,510,000	2,820,000	4,330,000	28.6% of TDC
Civil	198,000	247,000	444,000	4.3% of TDC
Steel	27,400	160,000	187,000	1.1% of TDC
Instruments	196,000	1,250,000	1,450,000	7.3% of TDC
Electrical	150,000	992,000	1,140,000	6.6% of TDC
Insulation	225,000	284,000	509,000	4.2% of TDC
Paint	107,000	36,200	144,000	0.7% of TDC
Total Direct Field	2,480,000	9,580,000	12,100,000	100.0% of TDC
Cost	(TDL)	(TDM)	(TDC)	
Indirect Field Cost			2,990,000	120.9% of TDL
Total Field Cost			15,100,000	64.3% of TIC
Total Field Cost Freight			15,100,000 95,800	64.3% of TIC 1.0% of TDM
Total Field Cost Freight Taxes and Permits			15,100,000 95,800 575,000	64.3% of TIC 1.0% of TDM 4.8% of TDC
Total Field Cost Freight Taxes and Permits Engineering and HO			15,100,000 95,800 575,000 2,660,000	64.3% of TIC 1.0% of TDM 4.8% of TDC 11.4% of TIC
Total Field Cost Freight Taxes and Permits Engineering and HO Other Project Costs	จุหาลงกรณ์	มหาวิทยาล้	15,100,000 95,800 575,000 2,660,000 1,450,000	64.3% of TIC 1.0% of TDM 4.8% of TDC 11.4% of TIC 6.2% of TIC
Total Field Cost Freight Taxes and Permits Engineering and HO Other Project Costs Contingency	จุฬาลงกรณ์ HULALONGKO	มหาวิทยาล้ DRN UNIVERS	15,100,000 95,800 575,000 2,660,000 1,450,000 3,570,000	64.3% of TIC 1.0% of TDM 4.8% of TDC 11.4% of TIC 6.2% of TIC 15.3% of TIC
Total Field Cost Freight Taxes and Permits Engineering and HO Other Project Costs Contingency	จุฬาลงกรณ์ HULALONGKO	มหาวิทยาล้ INN UNIVERS	15,100,000 95,800 575,000 2,660,000 1,450,000 3,570,000 8,350,000	64.3% of TIC 1.0% of TDM 4.8% of TDC 11.4% of TIC 6.2% of TIC 15.3% of TIC 35.7% of TIC
Total Field Cost Freight Taxes and Permits Engineering and HO Other Project Costs Contingency Total Non-Field Cost Total Project Cost	จุฬาลงกรณ์ HULALONGKO	มหาวิทยาล้ INN UNIVERS	15,100,000 95,800 575,000 2,660,000 1,450,000 3,570,000 8,350,000 23,400,000	64.3% of TIC 1.0% of TDM 4.8% of TDC 11.4% of TIC 6.2% of TIC 15.3% of TIC 35.7% of TIC 194.1% of TDC
Total Field Cost Freight Taxes and Permits Engineering and HO Other Project Costs Contingency Total Non-Field Cost Total Project Cost	จุฬาลงกรณ์ HULALONGKO	มหาวิทยาล้ RN Universi	15,100,000 95,800 575,000 2,660,000 1,450,000 3,570,000 8,350,000 23,400,000 (TIC)	64.3% of TIC 1.0% of TDM 4.8% of TDC 11.4% of TIC 6.2% of TIC 15.3% of TIC 35.7% of TIC 194.1% of TDC
Total Field Cost Freight Taxes and Permits Engineering and HO Other Project Costs Contingency Total Non-Field Cost Total Project Cost Adjusted Total	จุฬาลงกรณ์ HILLALONGKO	มหาวิทยาล้ INN UNIVERS	15,100,000 95,800 575,000 2,660,000 1,450,000 3,570,000 8,350,000 8,350,000 (TIC) 26,600,000	64.3% of TIC 1.0% of TDM 4.8% of TDC 11.4% of TIC 6.2% of TIC 15.3% of TIC 35.7% of TIC 194.1% of TDC
Total Field Cost Freight Taxes and Permits Engineering and HO Other Project Costs Contingency Total Non-Field Cost Total Project Cost Adjusted Total Project Cost	จุฬาลงกรณ์ HULALONGKO	มหาวิทยาล้ SRN UNIVERS	15,100,000 95,800 575,000 2,660,000 1,450,000 3,570,000 8,350,000 23,400,000 (TIC) 26,600,000	64.3% of TIC 1.0% of TDM 4.8% of TDC 11.4% of TIC 6.2% of TIC 15.3% of TIC 35.7% of TIC 194.1% of TDC
Total Field Cost Freight Taxes and Permits Engineering and HO Other Project Costs Contingency Total Non-Field Cost Total Project Cost Adjusted Total Project Cost Escalated Total	จุฬาลงกรณ์ HULALONGKO	มหาวิทยาล้ Inn University	15,100,000 95,800 575,000 2,660,000 1,450,000 3,570,000 8,350,000 23,400,000 (TIC) 26,600,000	64.3% of TIC 1.0% of TDM 4.8% of TDC 11.4% of TIC 6.2% of TIC 15.3% of TIC 35.7% of TIC 194.1% of TDC

 Table 49 Total project cost of sucrose palmitate production (USD).

Unit	Equipment type	Total Direct cost	Equipment cost
(1) Read	ctor feed preparation system		
D-101	Liquid mixing tank	260,000	86,700
E-101	Double pipe heat exchanger	77,200	12,300
(2) Read	ctor system		
R-201	Fixed bed reactor	266,000	107,000
(3) Pha	se separation system		
D-301	Flash drum	145,000	25,000
P-301	Centrifugal pump	50,700	6,000
E-301	Floating head heat exchanger	105,000	22,000
(4) Sepa	aration system		
D-401	Liquid mixing tank	357,000	204,000
F-401	Rotary drum filter	955,000	658,000
P-401	Centrifugal pump	78,700	14,000
C-401	Distillation column	4,250,000	707,000
E-401	Condenser (fixed tube sheet)	329,000	151,000
E-402	Reboiler (floating head)	777,000	453,000
D-402	Reflux drum	232,000	48,900
E-403	Fixed tube sheet heat exchanger	วทยาลย 136,000	37,100
EV-401	Forced circulation evaporator	UNIVERSI 661,000	362,000
E-404	Floating head heat exchanger	87,500	16,700
D-403	Liquid mixing tank	336,000	200,000
E-405	Floating head heat exchanger	87,800	17,000
D-404	Liquid mixing tank	246,000	128,000
F-402	Rotary drum filter	477,000	329,000
E-406	Floating head heat exchanger	198,000	56,000
DR-401	Direct rotary dryer	66,800	41,600

 Table 50 Equipment cost of sucrose palmitate production (USD).

			(IOIT (05D).	
ltems	Labor cost	Material cost	Total cost	Percentages
Equipment	175,000	3,440,000	3,610,000	40.8% of TDC
Piping	518,000	986,000	1,500,000	17.0% of TDC
Civil	124,000	202,000	325,000	3.7% of TDC
Steel	36,300	199,000	235,000	2.7% of TDC
Instruments	226,000	1,230,000	1,460,000	16.5% of TDC
Electrical	132,000	943,000	1,080,000	12.1% of TDC
Insulation	256,000	304,000	560,000	6.3% of TDC
Paint	60,000	25,700	85,700	1.0% of TDC
Total Direct Field	1,530,000	7,330,000	8,860,000	100.0% of TDC
Cost	(TDL)	(TDM)	(TDC)	
Indirect Field Cost	3		2,060,000	135.0% of TDL
Total Field Cost			10,900,000	60.6% of TIC
Freight	N Jacob		73,300	1.0% of TDM
Taxes and Permits	0	Charles B	440,000	5.0% of TDC
Engineering and HO	C.	0	2,740,000	15.2% of TIC
Other Project Costs			1,090,000	6.1% of TIC
Contingency		เมหาวทยาล	² 2,750,000	15.3% of TIC
Total Non-Field Cost	ULALONGKO	ORN UNIVERS	7,100,000	39.4% of TIC
Total Project Cost			18,000,000	203.4% of TDC
			(TIC)	
Adjusted Total			20,500,000	
Project Cost				
Escalated Total			21,500,000	
Project Cost				

Table 51 Total project cost of normal alkanes production (USD).

Unit	Equipment type	Total Direct cost	Equipment cost
(1) Rea	ctor feed preparation system		
D-101	Liquid mixing tank	245,000	74,700
P-101	Centrifugal pump	50,200	17,400
E-101	U-tube heat exchanger	101,000	20,400
(2) Rea	ctor system		
R-201	Trickle bed reactor	238,000	71,000
(3) Pha	se separation system	2	
E-301	Floating head heat exchanger	132,000	30,300
D-301	Flash drum	141,000	32,900
E-302	Fixed tube sheet heat exchanger	99,700	21,900
D-302	Flash drum	137,000	32,900
D-303	Liquid mixing tank	185,000	75,200
D-304	Decanter	93,300	15,800
(4) Sep	aration system		
C-401	Distillation column	332,000	90,400
E-401	Condenser (double pipe)	45,700	2,600
E-402	Reboiler (floating head)	153,000	36,500
D-401	Reflux drum	100,000	15,000
C-402	Distillation column	UNIVERS 897,000	403,000
E-403	Condenser (double pipe)	81,300	11,900
E-404	Reboiler (fixed tube sheet)	153,000	37,500
D-402	Reflux drum	134,000	17,000
P-401	Centrifugal pump	38,000	4,500
C-403	Distillation column	3,130,000	2,220,000
E-405	Condenser (floating head)	76,600	13,200
E-406	Reboiler (fixed tube sheet)	186,000	45,800
D-403	Reflux drum	161,000	23,400
E-407	Floating head heat exchanger	84,600	13,200
E-408	Double pipe heat exchanger	85,400	15,000

 Table 52 Equipment cost of normal alkanes production (USD).

APPENDIX F

PROPERTY PARAMETERS OF SIMILAR COMPOUNDS

Appendix F shows the comparison of each property parameter obtained from Aspen's databanks and estimation methods. As shown in the tables below, (a), (b), (c) and (d) are 2-Acetamidoethanol, 1-Monopalmitin, 2-Monopalmitin and 1,3-Dipalmitin, respectively.

 Table 53 Comparison of critical temperature obtained from databanks and estimation.

Method	(a)	(b)	(c)	(d)
Databank	776.0	837.0	843.0	1,000.0
Joback	776.3	852.4	858.5	1,123.3
Lydersen	774.9	854.0	860.1	1,151.4
Fedors	677.9	858.6	858.6	953.2
Ambrose	824.4	867.4	873.6	944.2
Simple	836.3	976.4	983.4	1,110.9
GANI	-	802.7	787.6	856.7

* The unit of critical temperature is Kelvin (K).

Table 54 Comparison of	f critical pressur	e obtained from	databanks a	and estimation.
------------------------	--------------------	-----------------	-------------	-----------------

Method	จุ (a)าลงก	รณ์ม (b)วิทยา	เล้ย (c)	(d)
Databank	4.863E+06	1.179E+06	1.188E+06	5.009E+05
Joback	4.863E+06	1.235E+06	1.235E+06	5.009E+05
Lydersen	4.607E+06	1.340E+06	1.340E+06	7.420E+05
Ambrose	5.015E+06	1.393E+06	1.393E+06	7.463E+05
Gani	-	1.160E+06	1.173E+06	5.789E+05

* The unit of critical pressure is N/sqm.

Method	(a)	(b)	(c)	(d)
Databank	0.334	1.177	1.177	2.043
Joback	0.320	1.158	1.158	2.061
Lydersen	0.320	1.142	1.142	2.029
Ambrose	0.310	1.134	1.134	2.025
Riedel	0.286	1.309	1.301	3.601
Fedors	0.338	1.111	1.111	1.964
Gani		1.149	1.122	1.995

Table 55 Comparison of critical volume obtained from databanks and estimation.

* The unit of critical volume is cum/kmol.

 Table 56 Comparison of critical compressibility factor obtained from databanks and estimation.

Method	(a)	(b)	(c)	(d)
Databank	0.252	0.199	0.199	N/A
Definition	0.241	0.190	0.190	0.128

* Critical compressibility factor has no unit.

 Table 57 Comparison of standard heat of formation obtained from databanks and estimation.

Method	CH (a)ALONG	(OR (b) NIVER	SIT(c)	(d)
Databank	-4.171E+08	-1.070E+09	-1.067E+09	-1.567E+09
Benson	-4.182E+08	-1.066E+09	-1.066E+09	-1.558E+09
Joback	-3.372E+08	-1.063E+09	-1.063E+09	-1.558E+09
BensonR8	-4.182E+08	-1.071E+09	-1.071E+09	-1.568E+09
Gani	-4.194E+08	-1.076E+09	-1.069E+09	-1.545E+09

* The unit of standard heat of formation is J/kmol.

Parameter	Databank	Benson	Joback	BensonR8
Equation	NIST Aly-Lee	Ideal gas	heat capacity po	olynomial
C _{1i}	86,771	2,675	10,682	2,675
C _{2i}	141,461	492	466	492
C _{3i}	570	-0.295	-0.254	-0.295
C _{4i}	152,880	6.789E-05	4.766E-05	6.789E-05
C _{5i}	1,579	0	0	0
C _{6i}	0	0/0/	0	0
C _{7i}	8.31	280	280	280
C _{8i}	200	1,100	1,100	1,100
C _{9i}	1,000	36,029	36,029	36,029
C _{10i}	-	18	18	18
C _{11i}	-	1.5	1.5	1.5

 Table 58 Coefficients for ideal gas heat capacity equation for 2-Acetamidoethanol.

A strangenergy

 Table 59 Coefficients for ideal gas heat capacity equation for 1,3-Dipalmitin.

Parameter	Databank	Benson	Joback	BensonR8
Equation	NIST Aly-Lee	Ideal gas	heat capacity po	olynomial
C _{1i}	629,795	-18,485	าลัย 25,500	-18,485
C _{2i}	1.493E+06	3,428	RSIT 3,259	3,428
C _{3i}	809	-1.85	-1.72	-1.85
C _{4i}	6.145E+05	3.125E-04	3.00E-04	3.125E-04
C _{5i}	-1.064E+04	0	0	0
C _{6i}	0	0	0	0
C _{7i}	8.31	280	280	280
C _{8i}	200	1,100	1,100	1,100
C _{9i}	1,000	36,029	36,029	36,029
C _{10i}	-	164	165	164
C _{11i}	-	1.5	1.5	1.5

Parameter	Databank	Benson	Joback	BensonR8
Equation	NIST Aly-Lee	Ideal gas	heat capacity po	olynomial
C _{1i}	629,795	-18,485	25,500	-18,485
C _{2i}	1.493E+06	3,428	3,259	3,428
C _{3i}	809	-1.85	-1.72	-1.85
C _{4i}	6.145E+05	3.125E-04	3.00E-04	3.125E-04
C _{5i}	-1.064E+04	0	0	0
C _{6i}	0	0	0	0
C _{7i}	8.31	280	280	280
C _{8i}	200	1,100	1,100	1,100
C _{9i}	1,000	36,029	36,029	36,029
C _{10i}	-	164	165	164
C _{11i}	-	1.5	1.5	1.5

 Table 60 Coefficients for ideal gas heat capacity equation for 1,3-Dipalmitin.

* The unit of ideal gas heat capacity is J/(kmol·K).

The unit of temperature is Kelvin (K).

 Table 61 Comparison of ideal gas heat capacity of 2- Acetamidoethanol obtained from

 databanks and estimation.

Method	CPIG at 300 K	CPIG at 500 K	CPIG at 1,000 K
Databank	1.350E+05	1.910E+05	2.735E+05
Benson	1.255E+05	1.832E+05	2.670E+05
Joback	1.289E+05	1.861E+05	2.703E+05
BensonR8	1.255E+05	1.832E+05	2.670E+05

* The unit of ideal gas heat capacity is J/(kmol·K).

Method	CPIG at 300 K	CPIG at 500 K	CPIG at 1,000 K
Databank	4.915E+05	7.256E+05	1.057E+06
Benson	4.842E+05	7.182E+05	1.053E+06
Joback	4.850E+05	7.112E+05	1.046E+06
BensonR8	4.842E+05	7.182E+05	1.053E+06

Table 62 Comparison of ideal gas heat capacity of Monopalmitin (b,c) obtained fromdatabanks and estimation.

* The unit of ideal gas heat capacity is J/(kmol·K).

 Table 63 Comparison of ideal gas heat capacity of 1,3-Dipalmitin obtained from

 databanks and estimation.

Method	CPIG at 300 K	CPIG at 500 K	CPIG at 1,000 K
Databank	8.287E+05	1.295E+06	1.836E+06
Benson	8.522E+05	1.273E+06	1.877E+06
Joback	8.561E+05	1.261E+06	1.860E+06
BensonR8	8.522E+05	1.273E+06	1.877E+06

* The unit of ideal gas heat capacity is $J/(kmol \cdot K)$.

Table 64 Coefficients for v	apor pressure equation for 2-	Acetamidoethanol.
-----------------------------	-------------------------------	-------------------

Parameter	Databank	Riedel	Li-Ma
Equation	NIST Wagner 25	Extended	Antione
C _{1i}	-11.7	128	70.0
C _{2i}	4.87	-16,395	-9,070
C _{3i}	-10.38	0	0
C _{4i}	-5.29	0	0
C _{5i}	15.4	-13.9	-6.71
C _{6i}	776	2.681E-18	2.125E-19
C _{7i}	240	6	6
C _{8i}	776	569	569
C _{9i}	-	776	776

Parameter Databank		Riedel	Li-Ma
Equation	NIST Wagner 25	Extende	d Antione
C _{1i}	-13.8	134	-2.423E+05
C _{2i}	6.98	-18,708	1.921E+07
C _{3i}	-15.2	0	0
C _{4i}	-5.26	0	0
C _{5i}	14.0	-14.6	32,946
C _{6i}	837	1.590E-18	-8.129E-15
C _{7i}	350	6	6
C _{8i}	837	694	694
C _{9i}	-	852	852
	and the second s	1300 10 10 10 100	

 Table 65 Coefficients for vapor pressure equation for 1-Monopalmitin.

 Table 66 Coefficients for vapor pressure equation for 2-Monopalmitin.

Parameter	Databank	Riedel	Li-Ma
Equation	NIST Wagner 25	Extended	d Antione
C _{1i}	-13.8	135	-2.425E+05
C _{2i}	7.04	-18,969	1.934E+07
C _{3i}	-15.3	0	0
C _{4i}	-5.25	าวิทยาอัย	0
C _{5i}	14.0	UNIVE-14.7 TY	32,946
C _{6i}	843	1.534E-18	-7.789E-15
C _{7i}	298	6	6
C _{8i}	843	699	699
C _{9i}	-	858	858

Parameter	Databank	Riedel	Li-Ma
Equation	NIST Wagner 25	Extended	d Antione
C _{1i}	-7.73	112	72.4
C _{2i}	1.94	-17,700	-13,015
C _{3i}	-2.88	0	0
C _{4i}	-3.20	0	0
C _{5i}	13.1	-11.8	-6.71
C _{6i}	727	6.875E-19	2.434E-20
C _{7i}	71	6	6
C _{8i}	727	817	817
C _{9i}	-	953	953

 Table 67 Coefficients for vapor pressure equation for 1,3-Dipalmitin.

* The unit of vapor pressure is N/sqm.

The unit of temperature is Kelvin (K).

 Table 68 Comparison of vapor pressure of 2- Acetamidoethanol obtained from

 databanks and estimation.

Method	PL at TB	PL at 0.9*TC	PL at TC
Databank	1.019E+05	1.516E+06	4.863E+06
Riedel	1.013E+05	1.526E+06	4.863E+06
Li-Ma	1.013E+05	4.993E+05	9.219E+05

* The unit of vapor pressure is N/sqm.

Table 69 Comparison of vapor pressure of 1-Monopalmitin obtained from databanksand estimation.

Method	PL at TB	PL at 0.9*TC	PL at TC
Databank	1.013E+05	3.098E+05	1.179E+06
Riedel	1.013E+05	3.534E+05	1.160E+06
Li-Ma	1.013E+05	5.218E-33	1.805E-35

* The unit of vapor pressure is N/sqm.

Method	PL at TB	PL at 0.9*TC	PL at TC	
Databank	1.013E+05	3.109E+05	1.188E+06	
Riedel	1.013E+05	3.555E+05	1.173E+06	
Li-Ma	1.013E+05	5.218E-33	1.805E-35	

 Table 70 Comparison of vapor pressure of 2-Monopalmitin obtained from databanks

 and estimation.

* The unit of vapor pressure is N/sqm.

 Table 71 Comparison of vapor pressure of 1,3-Dipalmitin obtained from databanks and estimation.

Method	PL at TB	PL at 0.9*TC	PL at TC			
Databank	1.013E+05	2.250E+05	5.009E+05			
Riedel	1.013E+05	1.724E+05	5.009E+05			
Li-Ma	1.013E+05	1.568E+05	3.556E+05			

* The unit of vapor pressure is N/sqm.

Parameter	Databank	Definition	Vetere	Gani	Li-Ma
Equation	NIST TDE Watson		Wat	son	
C _{1i}	19.1	7.041E+07	5.723E+07	9.191E+07	6.544E+07
C _{2i}	1.71	569	569	298	569
C _{3i}	-1.54	0.402	0.380	0.380	0.460
C _{4i}	0.292	-0.580	0	0	0
C _{5i}	776	569	569	298	785
C _{6i}	4	-	-	-	-
C _{7i}	245	-	-	-	-
C _{8i}	776	-	-	-	-

Table 72 Coefficients for enthalpy of vaporization equation for 2-Acetamidoethanol.

Parameter	Databank	Definition	Vetere	Gani	Ducros	Li-Ma
Equation	NIST TDE Watson			Watson		
C _{1i}	19.3	7.036E+07	6.439E+07	1.452E+08	1.541E+08	4.330E+07
C _{2i}	1.66	694	694	298	298	694
C _{3i}	-1.46	0.409	0.380	0.380	0.380	0.327
C _{4i}	0.351	-0.869	0	0	0	0
C _{5i}	837	278	278	119	119	278
C _{6i}	4	- I		-	-	-
C _{7i}	350			> 	-	-
C _{8i}	837				-	-

 Table 73 Coefficients for enthalpy of vaporization equation for 1-Monopalmitin.

 Table 74 Coefficients for enthalpy of vaporization equation for 2-Monopalmitin.

Parameter	Databank	Definition	Vetere	Gani	Ducros	Li-Ma
Equation	NIST TDE Watson			Watson		
C _{1i}	19.3	7.128E+07	6.485E+07	1.475E+08	1.610E+08	4.363E+07
C _{2i}	1.48	699	699	298	298	699
C _{3i}	-1.18	0.409	0.380	0.380	0.380	0.327
C _{4i}	0.244	-0.875	ORN O NIV	IERSOTY	0	0
C _{5i}	843	280	280	119	119	280
C _{6i}	4	-	-	-	-	-
C _{7i}	300	-	-	-	-	-
C _{8i}	814	-	-	-	-	-

Parameter	Databank	Definition	Vetere	Gani	Ducros	Li-Ma
Equation	NIST TDE Watson			Watson		
C _{1i}	19.0	6.194E+07	7.838E+07	2.034E+08	2.261E+08	3.980E+07
C _{2i}	3.21	817	817	298	298	817
C _{3i}	-5.12	0.428	0.380	0.380	0.380	0.327
C _{4i}	2.59	-0.900	0	0	0	0
C _{5i}	1,000	327	327	119	119	327
C _{6i}	4			-	-	-
C _{7i}	345			» »	-	-
C _{8i}	1,000			- 1	-	-

Table 75 Coefficients for enthalpy of vaporization equation for 1,3-Dipalmitin.

* The unit of vapor pressure is J/kmol.

The unit of temperature is Kelvin (K).

 Table 76 Comparison of enthalpy of vaporization at TB obtained from databanks and estimation.

	E Contraction of the second se			
Method	(a)	(b)	(c)	(d)
Databank	7.244E+07	7.479E+07	7.529E+07	4.726E+07
Definition	7.041E+07	7.036E+07	7.128E+07	6.194E+07
Vetere	5.723E+07	6.439E+07	6.485E+07	7.838E+07
Gani	6.687E+07	9.014E+07	9.143E+07	1.121E+08
Ducros	-	9.563+07	9.977E+07	1.245E+08
Li-Ma	6.544E+07	0	0	0

VITA

NAME	Janetiya Wongprathed
DATE OF BIRTH	20 October 1996
PLACE OF BIRTH	Bangkok
INSTITUTIONS ATTENDED	Department of Chemical Engineering, Faculty of
	Engineering, Chulalongkorn University
HOME ADDRESS	72/602 Prapawan home 1 Soi Bung Khwang 1/1, Saen
	Saep, Min Buri, Bangkok 10510

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University