สมรรถนะด้านโครงสร้างของทางวิ่งยกระดับในเส้นทางรถไฟความเร็วสูง ไทย-จีน

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมโยธา ภาควิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2563 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย Structural Performance of Typical Viaduct for Thai-China Highspeed Railway

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Civil Engineering Department of Civil Engineering FACULTY OF ENGINEERING Chulalongkorn University Academic Year 2020 Copyright of Chulalongkorn University

หัวข้อวิทยานิพนธ์	สมรรถนะด้านโครงสร้างของทางวิ่งยกระดับในเส้นทาง
	รถไฟความเร็วสูง ไทย-จีน
โดย	นายศรัณย์ เรื่องศรี
สาขาวิชา	วิศวกรรมโยธา
อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก	ศาสตราจารย์ ดร.ทศพล ปิ่นแก้ว

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็นส่วนหนึ่ง ของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต

	คณบดีคณะวิศวกรรมศาสตร์
(ศาสตราจารย์ ดร.สุพจน์ เตชวรสินสกุล)	
คณะกรรมการสอบวิทยานิพนธ์	
	ประธานกรรมการ
(รองศาสตราจารย์ ดร.พิชชา จองวิวัฒสกุล)	
	อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก
(ศาสตราจารย์ ดร.ทศพล ปิ่นแก้ว)	<u></u>
	กรรมการภายนอกมหาวิทยาลัย
(รองศาสตราจารย์ ดร.นคร ภู่วโรดม)	
Chulalongkorn Unive	RSITY

ศรัณย์ เรื่องศรี : สมรรถนะด้านโครงสร้างของทางวิ่งยกระดับในเส้นทางรถไฟความเร็ว สูง ไทย-จีน. (Structural Performance of Typical Viaduct for Thai-China Highspeed Railway) อ.ที่ปรึกษาหลัก : ศ. ดร.ทศพล ปิ่นแก้ว

ปัจจุบันประเทศไทยได้เริ่มโครงการรถไฟความเร็วสูงสายแรกขึ้น เพื่อเป็นยุทธศาสตร์ใน การพัฒนาประเทศและภูมิภาค แต่เนื่องจากโครงการรถไฟความเร็วสูงยังเป็นสิ่งใหม่ ดังนั้นการ ออกแบบโครงสร้างทางวิ่งยกระดับในโครงการจึงอาศัยวิศวกรชาวจีน ซึ่งอ้างอิงตามมาตรฐานของ ประเทศจีน อย่างไรก็ดีเนื่องจากการก่อสร้างนั้นดำเนินการโดยผู้รับเหมาไทยที่ยังอาจขาด ประสบการณ์ จึงกำหนดให้มีการทดสอบสมรรถนะโครงสร้างทางวิ่งยกระดับขนาดจริงก่อนการ ก่อสร้างจริง โดยใช้เกณฑ์ของประเทศจีนในการทดสอบและประเมินระดับความปลอดภัย ผลการ ก่อสร้างจริง โดยใช้เกณฑ์ของประเทศจีนในการทดสอบและประเมินระดับความปลอดภัย ผลการ ก่อสร้างจริง โดยใช้เกณฑ์ของประเทศจีนในการทดสอบและประเมินระดับความปลอดภัย ผลการ ทดสอบสมรรถนะโครงสร้างทางวิ่งยกระดับพบว่าโครงสร้างที่ออกแบบนั้นมีความอนุรักษ์สูง ประกอบกับโครงการมีระยะทางที่ยาวมากถึง 600 กิโลเมตร จึงเกิดแนวคิดที่จะนำผลการทดสอบที่ ได้นี้มาใช้ประโยชน์ในการปรับปรุงให้ได้โครงสร้างทางวิ่งที่ประหยัดขึ้น งานวิจัยฉบับนี้จึงมุ่งเน้นการ สร้างแบบจำลองคอมพิวเตอร์ของโครงสร้างทางวิ่งยกระดับซึ่งปรับเทียบพฤติกรรมกับผลการ ทดสอบโครงสร้างจริง แล้วจึงนำไปลองปรับลดปริมาณคอนกรีตและปริมาณลวดอัดแรงที่ใช้เพื่อให้ มีความประหยัด แต่โครงสร้างยังคงมีสมรรถนะตามเกณฑ์มาตรฐานของประเทศจีน ซึ่งผล การศึกษาที่ได้แสดงให้เห็นว่าการปรับเปลี่ยนคุณสมบัติของหน้าตัดโครงสร้างทางวิ่งยกระดับที่ เหมาะสม จะสามารถลดต้นทุนค่าก่อสร้างได้เกือบ 10,000 ล้านบาท โดยยังคงความปลอดภัยและ ประสิทธิภาพในการใช้งานได้เพียงพอตามมาตรฐานกรออกแบบของประเทศจีน

จุฬาลงกรณีมหาวิทยาลัย Chulalongkorn University

สาขาวิชา วิศวกรรมโยธา ปีการศึกษา 2563

ลายมือชื่อร่	วิสิต
ลายมือชื่อ	อ.ที่ปรึกษาหลัก

6270272221 : MAJOR CIVIL ENGINEERING

KEYWORD: High-speed railway, Full-scale load test, Viaduct testing, Structural performance

Sarun Ruangsee : Structural Performance of Typical Viaduct for Thai-China Highspeed Railway. Advisor: Prof. TOSPOL PINKAEW, Ph.D.

Nowadays, Thailand has initiated the first high speed rail (HSR) project as a development strategy of the country and the region. Since HSR project is new to Thailand, the design of the viaduct structures is done by Chinese engineers according to Chinese standard. However, these viaduct structures shall be constructed by Thai contractors who are inexperienced, the full span load test of typical viaduct under Chinese testing protocol and acceptance criteria is required before the actual construction. The test results indicate that the existing design is rather conservative. With almost 600 km of project route, the viaduct optimization from the obtained test results is considered. This research focuses on a computer modeling of a viaduct structure which is accurately calibrated from tested data. Then the quantities of concrete and prestress tendons are minimized while the structural performances are kept above the Chinese standard. The results from this study reveal that an appropriate modification of viaduct cross-sectional properties can reduce the project cost of almost 10,000 million baht while the safety and serviceability are sufficiently maintained according to Chinese design standards.

Field of Study: Civil Engineering Academic Year: 2020 Student's Signature Advisor's Signature

กิตติกรรมประกาศ

ผู้เขียนวิทยานิพนธ์ขอกราบขอบพระคุณ ศาสตราจารย์ ดร.ทศพล ปิ่นแก้ว อาจารย์ที่ปรึกษา วิทยานิพนธ์ที่ให้ความกรุณาเป็นที่ปรึกษาแนะนำแนวและการแก้ปัญหาที่เกิดขึ้นตลอดการทำ วิทยานิพนธ์ฉบับนี้

ขอกราบขอบพระคุณ รองศาสตราจารย์ ดร.พิชชา จองวิวัฒสกุล ประธานกรรมการการสอบ วิทยานิพนธ์ และรองศาสตราจารย์ ดร.นคร ภูวโรดม กรรมการสอบวิทยานิพนธ์ ที่ให้ความกรุณาเสนอ แนวทางอันเป็นประโยชน์ในการปรับปรุงแก้ไขและปรับปรุงวิทยานิพนธ์ฉบับนี้ให้มีความถูกต้องและ สมบูรณ์มากยิ่งขึ้น

ขอขอบคุณ ดร.ธีระชัย ดีสมสุข นายณัฐดนัย อมรปฏิเวธ นายสมเกียรติ สีหะวงษ์ นายปัณณ ธร ศิริวัฒน์เวชกุล นายอภิรนันท์ บุราคร นายวรากร อิ่มรักษา และนายณรงค์ชัย ปักษา คณะผู้ ปฏิบัติการทดสอบภาคสนาม แก้ไขปัญหา และทำให้การทดสอบภาคสนามสำเร็จลุล่วงเป็นอย่างดี สุดท้ายนี้ข้าพเจ้าขอกราบขอบพระคุณ บิดา มารดา ที่ให้ความอุปการะและเป็นกำลังให้แก่ ข้าพเจ้าทำให้วิทยาพนธ์ฉบับนี้สำเร็จลุล่วงเป็นอย่างดี

ศรัณย์ เรื่องศรี

สารบัญ

	หน้า
	. ମ
บทคัดย่อภาษาไทย	. ମ
	१
บทคัดย่อภาษาอังกฤษ	१
กิตติกรรมประกาศ	. จ
สารบัญ	. ົີ
สารบัญตาราง	. मु
สารบัญรป	ଲ ଭା
ับทที่ 1 บทนำ	. 1
1 1 ที่มาและความสำคัญ	. 1
1.2 วัตกประสงค์ของการวิจัย	2
1.2 ลูกลูแตตตอ เการวิวัย	. Z
1.4 cho Surger 24 25	. Z
1.4 ประเยชนทเดรบ	.3
1.5 แผนการดำเนินงาน	. 3
บทที่ 2 งานวิจัยและทฤษฎีที่เกี่ยวข้อง	. 4
2.1 งานวิจัยที่เกี่ยวข้อง	. 4
2.1.1 งานวิจัยที่เกี่ยวข้องกับพฤติกรรมและการทดสอบโครงสร้างสะพาน	. 4
2.1.2 งานวิจัยที่เกี่ยวข้องกับการปรับปรุงแบบจำลอง	12
2.1.3 งานวิจัยที่เกี่ยวข้องกับการปรับปรุงหน้าตัดโครงสร้าง	18
2.2 ทฤษฎีที่เกี่ยวของกับงานวิจัย	23
บทที่ 3 การทดสอบสมรรถนะทางวิ่งยกระดับ	28

3.1 คุณสะ	มบัติของทางวิ่งยกระดับที่ใช้ในการทดสอบ	. 28
3.2 การใ	ห้แรงกระทำแก่โครงสร้างทางวิ่งยกระดับ	. 29
3.3 การท	เดสอบเชิงพลวัต	. 33
3.4 การท	เดสอบเชิงสถิต	. 33
3.4.1	การให้แรงกระทำเชิงสถิตแก่โครงสร้างทางวิ่งยกระดับ	. 34
3.4.2	2 การทดสอบถึงภาระกระทำ 1.20 เท่าของค่าน้ำหนักบรรทุกออกแบบ	. 37
3.4.3	5 การทดสอบถึงภาระกระทำ 1.60 เท่าของค่าน้ำหนักบรรทุกออกแบบ	. 38
3.4.4	l การทดสอบถึงภาระกระทำ 2.00 เท่าของค่าน้ำหนักบรรทุกออกแบบ	. 39
3.4.5	การทดสอบแรงเฉือน	. 40
3.5 การต	รวจวัดผลตอบสนอง	. 42
3.6 เกณฑ	ก์การทดสอบโครงสร้างทางวิ่งยกระดับ	. 48
3.6.1	เกณฑ์การทดสอบเชิงพลวัต	. 48
3.6.2	2 เกณฑ์การทดสอบเชิงสถิต (การทดสอบแรงดัด)	. 48
	3.6.2.1 เกณฑ์การแอ่นตัว	. 49
	3.6.2.2 เกณฑ์มุมหมุนที่ฐานรองรับ	. 49
	3.6.2.3 เกณฑ์ความเค้น	. 49
	3.6.2.4 เกณฑ์รอยร้าว	. 50
	3.6.2.5 เกณฑ์ขีดจำกัดของโครงสร้าง	. 50
3.6.3	5 เกณฑ์การทดสอบเชิงสถิต (การทดสอบแรงเฉือน)	. 51
	3.6.3.1 เกณฑ์รอยร้าว	. 51
	3.6.3.2 เกณฑ์ความเค้น	.51
	3.6.3.3 เกณฑ์การทรุดตัวที่ฐานรองรับ	. 51
บทที่ 4	ผลการทดสอบสมรรถนะโครงสร้างทางวิ่งยกระดับ	. 52
4.1 การท	เดสอบสมรรถนะโครงสร้างจริงในภาคสนาม	. 52

4.1.1 ข้อมูลในการทดสอบเชิงพลวัต52
4.1.2 ข้อมูลในการทดสอบเชิงสถิต56
4.1.2.1 การจัดการข้อมูลจากตัวตรวจจับการเคลื่อนที่ (Displacement sensor) 58
4.1.2.2 การจัดการข้อมูลจากตัวตรวจจับความลาดเอียง (Inclinometer)59
4.1.2.3 การจัดการข้อมูลจากตัวตรวจจับความเครียด (Strain gauge)61
4.2 ผลการทดสอบสมรรถนะโครงสร้างทางวิ่งยกระดับ
4.2.1 ผลการทดสอบเชิงพลวัต
4.2.2 ผลการทดสอบเชิงสถิต
4.2.2.1 ผลการทดสอบถึงภาระกระทำ 1.20 เท่าของน้ำหนักบรรทุกออกแบบ 64
4.2.2.1.1 ค่าการแอ่นตัวของโครงสร้างและการทรุดตัวของฐานรองรับ64
4.2.2.1.2 ค่ามุมหมุนที่ฐานรองรับ
4.2.2.1.3 ค่าความเครียดและค่าความเค้น
4.2.2.1.4 รอยร้าวที่เกิดขึ้นในการทดสอบ
4.2.2.2 ผลการทดสอบถึงภาระกระทำ 1.60 เท่าของน้ำหนักบรรทุกออกแบบ 70
4.2.2.2.1 ค่าการแอ่นตัวของโครงสร้างและการทรุดตัวของฐานรองรับ70
4.2.2.2.2 ค่ามุมหมุนที่ฐานรองรับ
4.2.2.2.3 ค่าความเครียดและค่าความเค้น
4.2.2.2.4 รอยร้าวที่เกิดขึ้นในการทดสอบ
4.2.2.3 ผลการทดสอบถึงภาระกระทำ 2.00 เท่าของน้ำหนักบรรทุกออกแบบ80
4.2.2.3.1 ค่าการแอ่นตัวของโครงสร้างและการทรุดตัวของฐานรองรับ80
4.2.2.3.2 ค่ามุมหมุนที่ฐานรองรับ
4.2.2.3.3 ค่าความเครียดและค่าความเค้น
4.2.2.3.4 รอยร้าวที่เกิดขึ้นในการทดสอบ
4.2.2.4 ผลการทดสอบแรงเฉือน87

	4.2.2.4.1 ค่าการแอ่นตัวของโครงสร้างและการทรุดตัวของฐานรองรับ	87
	4.2.2.4.2 ค่ามุมหมุนที่ฐานรองรับ	87
	4.2.2.4.3 ค่าความเครียดและค่าความเค้น	88
	4.2.2.4.4 รอยร้าวที่เกิดขึ้นในการทดสอบ	90
4.3 สรุปผลก	การทดสอบโครงสร้างทางวิ่งยกระดับ	90
4.3.1 ส	รุปผลการทดสอบเชิงพลวัต	90
4.3.2 ส	รรุปผลการทดสอบเชิงสถิต	91
4	.3.2.1 สรุปผลการทดสอบแรงดัด	91
	4.3.2.1.1 การแอ่นตัวของโครงสร้าง	91
	4.3.2.1.2 เกณฑ์มุมหมุนที่ฐานรองรับ	91
	4.3.2.1.3 เกณฑ์ความเค้น	92
	4.3.2.1.4 เกณฑ์รอยร้าว	92
	4.3.2.1.5 อัตราส่วนความปลอดภัยของการทดสอบแรงดัด	92
4	.3.2.2 สรุปผลการทดสอบแรงเฉือน	93
	4.3.2.2.1 เกณฑ์รอยร้าว	93
	4.3.2.2.2 เกณฑ์ความเค้น	93
	6.3.2.2.3 เกณฑ์การทรุดตัวที่ฐานรองรับ	94
	4.3.2.2.4 อัตราส่วนความปลอดภัยของการทดสอบแรงเฉือน	94
บทที่ 5 ก	การปรับปรุงแบบจำลองด้วยผลการทดสอบสมรรถนะโครงสร้าง	95
5.1 แบบจำส	ลองเบื้องต้น	95
5.1.1 ລ້	กษณะทางกายภายของแบบจำลองเบื้องต้น	95
5.1.2 ନ୍	ุณสมบัติของวัสดุ (Material properties)	98
5.1.3 แ	รงกระทำที่ใช้ในแบบจำลองโครงสร้างเบื้องต้น	98
5	5.1.3.1 แรงกระทำจากน้ำหนักโครงสร้าง	98

5.1.3.2 แรงกระทำจากเส้นลวดอัดแรง	99
5.1.3.3 แรงกระทำจากน้ำหนักบรรทุกจรเคลื่อนที่	
5.1.3.4 แรงกระทำในการทดสอบเชิงสถิต	99
5.2 ผลการวิเคราะห์โครงสร้างแบบจำลองเบื้องต้น	100
5.2.1 ผลการวิเคราะห์เชิงพลวัต	100
5.2.2 ผลการวิเคราะห์เชิงสถิต	100
5.3 การปรับปรุงแบบจำลองเบื้องต้น	101
5.3.1 การเลือกผลตอบสนองสมรรถนะโครงสร้างเพื่อใช้ปรับปรุงแบบจำลอง	101
5.3.2 การวิเคราะห์และเลือกข้อมูลผลการทดสอบเชิงสถิต	102
5.3.2.1 การเลือกข้อมูลการแอ่นตัว	103
5.3.2.2 การเลือกข้อมูลการทรุดตัวของฐานรองรับ	103
5.3.2.3 การเลือกข้อมูลมุมหมุนที่ฐานรองรับ	104
5.3.2.4 การเลือกข้อมูลความเครียดดึง	105
5.3.2.5 การเลือกข้อมูลความเครียดอัด	106
5.3.3 สรุปผลการเลือกข้อมูลเพื่อนำมาปรับปรุงแบบจำลอง	107
5.3.3.1 ข้อมูลที่ใช้ในการปรับปรุงค่า Modulus of Elasticity ของคอนกรีต	107
5.3.3.2 ข้อมูลที่ใช้ในการปรับคุณสมบัติของฐานรองรับ	108
5.3.4 การปรับปรุงค่า Modulus of Elasticity ของคอนกรีต	108
5.3.5 การปรับคุณสมบัติของฐานรองรับ	111
5.4 ผลการวิเคราะห์โครงสร้างที่ผ่านการปรับปรุงแล้ว	111
5.4.1 ผลวิเคราะห์โครงสร้างเชิงพลวัต	111
5.4.2 ผลวิเคราะห์โครงสร้างเชิงสถิต	112
5.5 สรุปผลการปรับปรุงแบบจำลองเบื้องต้น	113
บทที่ 6 การปรับปรุงหน้าตัดโครงสร้างเพื่อความคุ้มค่าในการก่อสร้าง	114

6.1 วัตถุประสงค์ในการปรับปรุงหน้าตัด	114
6.2 ขอบเขตและข้อจำกัดในการปรับปรุงความคุ้มค่า	114
6.3 กระบวนการปรับปรุงและผลการปรับปรุงความคุ้มค่าในการออกแบบ	115
6.4 การประเมินต้นทุนค่าก่อสร้างที่ประหยัดได้	122
6.5 สรุปผลการปรับปรุงหน้าตัดโครงสร้างเพื่อความคุ้มค่าในการก่อสร้าง	125
บทที่ 7 สรุปผลการวิจัย	126
บรรณานุกรม	129
ภาคผนวก ก ผลการทดสอบคอนกรีตที่ใช้ในโครงสร้างทางวิ่งยกระดับ	134
ภาคผนวก ข ผลการทดสอบโครงสร้างภาคสนาม	135
ภาคผนวก ค ราคาค่าวัสดุที่ใช้ในงานวิจัย	148
ภาคผนวก ง ผลการวิเคราะห์โครงสร้างจากผู้ออกแบบโครงสร้างเดิม	149
ประวัติผู้เขียน	150
V (Transa Committy V	

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

สารบัญตาราง

- a	~ (וש מ' מ' שי און (גר און מער) און אין אין אין אין אין אין אין אין אין אי	หน้า
ตารางท	2-1 	คาวสดุทถูกทสุดสาหรบการกอสรางเครงสรางสะพานรูบกลอง (Kaveh et al., 2016) 	21
ตารางที่	3-1	ตารางสรุปการให้ภาระกระทำแก่โครงสร้างทางวิ่งยกระดับในการทดสอบแรงดัด3	37
ตารางที่	3-2	ตารางสรุปการให้ภาระกระทำแก่โครงสร้างทางวิ่งยกระดับในการทดสอบแรงเฉือน4	11
ตารางที่	3-3	เกณฑ์ความเค้นในการทดสอบแรงดัดตามมาตรฐาน TB 10621-2014	50
ตารางที่	3-4	การเลือกผลตอบสนองเพื่อใช้พิจารณาเกณฑ์ความเค้นของโครงสร้างทางวิ่งยกระดับ.5	50
ตารางที่	3-5	เกณฑ์ความเค้นในการทดสอบแรงเฉือนตามมาตรฐาน TB 10621-20145	51
ตารางที่	4-1	วันที่ทดสอบโครงสร้างเชิงสถิต	56
ตารางที่	4-2	ผลการทดสอบเชิงพลวัต	53
ตารางที่	4-3	ผลการปรับแก้ค่าความถี่ธรรมชาติด้วยวิธีชดเชยมวล	53
ตารางที่	4-4	ค่าความเค้นจากการทดสอบถึงระดับการให้แรง 1.20 เท่าของน้ำหนักบรรทุกออกแบบ	J
			58
ตารางที่ ออกแบบ	4-5 I	ระยะห่างระหว่างจุดอ้างอิงในการทดสอบถึงระดับ 1.20 เท่าของน้ำหนักบรรทุก เ	59
ตารางที่ ออกแบบ	4-6 J	CHULALONGKOPN UNIVERSITY ตารางสรุปรอยร้าวสำคัญที่เกิดขึ้นในการทดสอบถึงระดับ 1.60 เท่าของน้ำหนักบรรทุก -	ו ז 78
ตารางที่ ออกแบบ	4-7 J	ระยะห่างระหว่างจุดอ้างอิงในการทดสอบถึงระดับ 1.60 เท่าของน้ำหนักบรรทุก -	79
ตารางที่	4-8	สรุปผลการทดสอบค่าความถี่ธรรมชาติแนวดิ่ง	91
ตารางที่	4-9	การเปรียบเทียบความเค้นจากผลทดสอบแรงดัดและเกณฑ์ความเค้น TB 10621-2014	1 92
ตารางที่	4-1	0 อัตราส่วนความปลอดภัยของการแอ่นตัวของโครงสร้างและมุมหมุนที่ฐานรองรับ 9	93
ตารางที่	4-1	1 การคำนวณค่าอัตราส่วนความปลอดภัยของค่าความเค้นค้น	93

ตารางที่ 4-12 การเทียบความเค้นจากผลทดสอบแรงเฉือนและเกณฑ์ความเค้น TB 10621-2014	.94
ตารางที่ 4-13 อัตราส่วนความปลอดภัยของการทดสอบแรงเฉือน	94
ตารางที่ 5-1 ชนิดหน้าตัดในของโครงสร้างทางวิ่งยกระดับ	97
ตารางที่ 5-2 คุณสมบัติของคอนกรีตที่ใช้ในแบบจำลองเบื้องต้น	98
ตารางที่ 5-3 รายละเอียดหน่วยแรงในเส้นลวดอัดแรง	99
ตารางที่ 5-4 แรงกระทำแบบจุดในแบบจำลองเบื้องต้น	100
ตารางที่ 5-5 ผลการวิเคราะห์ค่าความถี่ธรรมชาติแนวดิ่งจากแบบจำลองเบื้องต้น	100
ตารางที่ 5-6 ผลตอบสนองเชิงสถิตจากการวิเคราะห์โครงสร้างแบบจำลองเบื้องต้น	101
ตารางที่ 5-7 ผลตอบสนองเชิงสถิตจากผลการทดสอบถึงระดับการให้แรง 1.20 เท่าของน้ำหนัก	
บรรทุกออกแบบ	102
ตารางที่ 5-8 การเปรียบเทียบระหว่างผลตอบสนองจากการทดสอบและแบบจำลองเบื้องต้น	107
ตารางที่ 5-9 ผลตอบสนองของแบบจำลองที่ปรับปรุงแล้ว	109
ตารางที่ 5-10 ค่าความต่างระหว่างผลการทดสอบและผลตอบสนองจากแบบจำลองที่ปรับปรุงแล้	J
	110
ตารางที่ 5-11 การคำนวณค่าความแข็งของฐานรองรับ	111
ตารางที่ 5-12 ค่าความถี่ธรรมชาติแนวดิ่งจากการปรับปรุงแบบจำลอง	111
ตารางที่ 5-13 ผลการวิเคราะห์โครงสร้างจากแบบจำลองที่ผ่านการปรับปรุงแล้ว	112
ตารางที่ 5-14 ผลตอบสนองจากการทดสอบเชิงสถิตถึงระดับการให้แรง 1.20 เท่าของน้ำหนักบรร	ัทุก
ออกแบบ	112
ตารางที่ 5-15 การเปรียบเทียบผลการทดสอบและผลการวิเคราะห์โครงสร้างที่ปรับปรุงแล้ว	113
ตารางที่ 6-1 ผลการวิเคราะห์หน้าตัดบางซื่อ-ดอนเมือง	116
ตารางที่ 6-2 ผลการวิเคราะห์หน้าตัด Section A	119
ตารางที่ 6-3 ผลการวิเคราะห์หน้าตัด Section B	119
ตารางที่ 6-4 ผลการวิเคราะห์หน้าตัด Section C	120
ตารางที่ 6-5 ผลการเปรียบเทียบการวิเคราะห์จากโปรแกรม Midas Civil และ Midas FEA	120

ตารางที่ 6-6 การคำนวณราคาลวดอัดแรงในหน้าตัดดั้งเดิม (Original Section)	123
ตารางที่ 6-7 การคำนวณราคาลวดอัดแรงในหน้าตัด Bangsue-Donmuang Scaled-section	123
ตารางที่ 6-8 การคำนวณราคาลวดอัดแรงในหน้าตัด Section B2	123
ตารางที่ 6-9 การคำนวณราคาลวดอัดแรงในหน้าตัด Section C4	124
ตารางที่ 6-10 การสรุปราคาค่าลวดอัดแรงในหน้าตัดประเภทต่าง ๆ	124
ตารางที่ 6-11 การคำนวณราคาคอนกรีตที่ใช้ในหน้าตัดประเภทต่าง ๆ	124
ตารางที่ 6-12 การสรุปราคาทั้งหมดจากคอนกรีตและลวดแรงที่ใช้ในหน้าตัดประเภทต่าง ๆ	124

Chulalongkorn University

สารบัญรูป

หน้	'n
รูปที่ 2-1 รอยต่อระหว่างชิ้นส่วนก่อนเกิดการวิบัติ (Takebayashi et al., 1994)	
รูปที่ 2-2 การเปรียบเทียบค่าการแอ่นตัวของสะพานทดสอบ McClure and West (1984)	
รูปที่ 2-3 คานคอนกรีตอัดแรงประกอบรูปกล่อง (Yuan et al., 2013)	
รูปที่ 2-4 ความสัมพันธ์ระหว่างการแอ่นตัวและความเครียดอัด (Saibabu et al., 2013)	
รูปที่ 2-5 การเปรียบเทียบค่า DAF จากผลการทดสอบและค่า DAF ที่แนะนำโดยมาตรฐาน	
Eurocode (Bacinskas et al., 2013)	
รูปที่ 2-6 แบบจำลองการให้แรงกระทำในการทดสอบสมรรถนะโครงสร้าง (Bagge et al., 2014) 9	
รูปที่ 2-7 ความสัมพันธ์ระหว่างตัวคูณแรงกระแทกและความเร็วรถบรรทุก (Deng and Cai, 2010)	
รูปที่ 2-8 ผลการวิเคราะห์ค่าความถี่ธรรมชาติจากสัญญาณความเร่ง (Ghindea et al., 2019) 11	
รูปที่ 2-9 ความสัมพันธ์ระหว่างความถี่ธรรมชาติและมุมเอียงโครงสร้างทดสอบ (He et al., 2012) 11	
รูปที่ 2-10 การกระแทกจากรถบรรทุกเพื่อเหนี่ยวนำให้เกิดพฤติกรรมเชิงพลวัติ (Gatti, 2019) 12	
รูปที่ 2-11 สะพานโครงสร้างเหล็กช่วงพาดยาว 39 m ที่ใช้งานวิจัย (Park et al., 2017)	
รูปที่ 2-12 ค่าความถี่ธรรมชาติก่อนและหลังการปรับปรุงแบบจำลอง (Malveiro et al., 2018) 15	
รูปที่ 2-13 สะพาน Brivio ประเทศอิตาลี (Ferrari et al., 2019)	
รูปที่ 2-14 แบบจำลองสะพานรถไฟ Guadalquivir ประเทศสเปน (Tran-Ngoc et al., 2020) 17	
รูปที่ 2-15 สะพาน Yingzhou ประเทศจีน (Cheng and Song, 2021) 18	
รูปที่ 2-16 ตัวแปรที่ใช้ในการกำหนดมิติหน้าตัดสำหรับการออกแบหน้าตัด (Kaveh et al., 2016) 21	
รูปที่ 2-17 หน้าตัดสะพานคอนกรีตที่ใช้คานรองรับแบบ T-girder (Nour et al., 2021)	
รูปที่ 2-18 แบบจำลองโครงสร้างทางวิ่งยกระดับ23	
รูปที่ 2-19 แบบจำลองคาน23	
รูปที่ 2-20 การเสียรูปของชิ้นส่วนย่อย23	

รูปที่	2-21 ชิ้นส่วนไฟไนต์เอลิเมนต์ย่อย	.25
รูปที่	2-22 ความเค้นดัดและความเค้นเฉือนในหน้าตัด (Hibbeler, 2017)	.27
รูปที่	3-1 แปลนจำลองโครงสร้างทางวิ่งยกระดับ	.28
รูปที่	3-2 หน้าตัดแบบบริเวณฐานรองรับ	.29
รูปที่	3-3 หน้าตัดแบบปกติ	.29
รูปที่	3-4 ผังการติดตั้งแม่แรงไฮดรอลิคด้านหน้า	.30
รูปที่	3-5 ผังการติดตั้งแม่แรงไฮดรอลิคด้านข้าง	.30
รูปที่	3-6 การติดตั้งแม่แรงไฮดรอลิคภาคสนามสำหรับการทดสอบแรงดัด (Bending test)	.31
รูปที่	3-7 ตำแหน่งการให้แรงในการทดสอบแรงดัด	.32
รูปที่	3-8 ตำแหน่งการให้แรงในการทดสอบแรงเฉือน	.32
รูปที่	3-9 การปล่อยมวลถุงทรายเพื่อเหนี่ยวนำให้เกิดการสั่นแบบอิสระ	.33
รูปที่	3-10 น้ำหนักรถไฟตามมาตรฐานจีน ZK Train Load	.35
รูปที่	3-11 ลำดับการให้แรงในการทดสอบถึงระดับ 1.20 เท่าของน้ำหนักบรรทุกออกแบบ	.38
รูปที่	3-12 ลำดับการให้แรงในการทดสอบถึงระดับ 1.60 เท่าของน้ำหนักบรรทุกออกแบบ	. 39
รูปที่	3-13 ลำดับการให้แรงในการทดสอบถึงระดับ 2.00 เท่าของน้ำหนักบรรทุกออกแบบ	.40
รูปที่	3-14 ตำแหน่งการติดตั้งแม่แรงไฮดรอลิคภาคสนามในการทดสอบแรงเฉือน	.41
รูปที่	3-15 ลำดับการให้แรงในการทดสอบแรงเฉือน	41
รูปที่	3-16 Very high sensitivity seismometer (Kinemetrics)	.42
รูปที่	3-17 High sensitive accelerometer (Kyowa)	.42
รูปที่	3-18 Displacement sensor (DTH-A-50, Kyowa)	.43
รูปที่	3-19 Inclinometer (Level developments)	.43
รูปที่	3-20 Strain gauge (Kyowa)	.43
รูปที่	3-21 กล้องกำลังขยาย 10x ใช้ตรวจสอบรอยร้าว	.44
รูปที่	3-22 ตำแหน่งการติดตั้งอุปกรณ์ตรวจวัดสำหรับการทดสอบแรงดัด (Segment 1)	.44

รูปที่ 3-23 ตำแหน่งการติดตั้งอุปกรณ์ตรวจวัดสำหรับการทดสอบแรงดัด (Segment 5, L/3)	44
รูปที่ 3-24 ตำแหน่งการติดตั้งอุปกรณ์ตรวจวัดสำหรับการทดสอบแรงดัด (Segment 7, L/2)	44
รูปที่ 3-25 ตำแหน่งการติดตั้งอุปกรณ์ตรวจวัดสำหรับการทดสอบแรงดัด (Segment 9, 2L/3)	45
รูปที่ 3-26 ตำแหน่งการติดตั้งอุปกรณ์ตรวจวัดสำหรับการทดสอบแรงดัด (Segment 13)	45
รูปที่ 3-27 ตำแหน่งการติดตั้งอุปกรณ์ตรวจวัดสำหรับการทดสอบแรงเฉือน (Segment 1)	46
รูปที่ 3-28 ตำแหน่งการติดตั้งอุปกรณ์ตรวจวัดสำหรับการทดสอบแรงเฉือน (Segment 5, L/3)	46
รูปที่ 3-29 ตำแหน่งการติดตั้งอุปกรณ์ตรวจวัดสำหรับการทดสอบแรงเฉือน (Segment 7, L/2)	46
รูปที่ 3-30 ตำแหน่งการติดตั้งอุปกรณ์ตรวจวัดสำหรับการทดสอบแรงเฉือน (Segment 9, 2L/3)	46
รูปที่ 3-31 ตำแหน่งการติดตั้งอุปกรณ์ตรวจวัดสำหรับการทดสอบแรงเฉือน (Segment 11)	47
รูปที่ 3-32 ตำแหน่งการติดตั้งอุปกรณ์ตรวจวัดสำหรับการทดสอบแรงเฉือน (Segment 12/1)	47
รูปที่ 3-33 ตำแหน่งการติดตั้งอุปกรณ์ตรวจวัดสำหรับการทดสอบแรงเฉือน (Segment 12/2)	47
รูปที่ 3-34 ตำแหน่งการติดตั้งอุปกรณ์ตรวจวัดสำหรับการทดสอบแรงเฉือน (Segment 13)	47
รูปที่ 4-1 การทดสอบเชิงพลวัต	52
รูปที่ 4-2 ความสัมพันธ์ระหว่างความเร่งในแนวดิ่งของโครงสร้างกับเวลาจากตัวตรวจจับ AC-1 (L/2 ในการทดสอบครั้งที่ 1	2) 55
รูปที่ 4-3 Frequency power spectrum จากตัวตรวจจับ AC-1 (L/2) ในการทดสอบครั้งที่ 1	55
รูปที่ 4-4 โครงสร้างทางวิ่งยกระดับก่อนการทดสอบโครงสร้าง	56
รูปที่ 4-5 เครื่องควบคุมแม่แรงไฮดรอลิค	56
รูปที่ 4-6 Data Locker สำหรับใช้เก็บข้อมูลผลตอบสนองของโครงสร้าง	57
รูปที่ 4-7 หน้าจอแสดงผลตอบสนองเพื่อใช้เฝ้าระวังระหว่างการทดสอบโครงสร้าง	57
รูปที่ 4-8 การตรวจสอบรอยร้าวโดยใช้กล้องกำลังขยายสูง	57
รูปที่ 4-9 ผลตอบสนองค่าการแอ่นตัวในการทดสอบถึง 1.20 เท่าของค่าน้ำหนักบรรทุกออกแบบ	
(Second cycle)	58
รูปที่ 4-10 การแอ่นตัวของโครงสร้างเทียบกับเกณฑ์การทดสอบในการทดสอบระดับ 1.20 เท่าของ 	เค่า
น้ำหนักบรรทุกออกแบบ	59

รูปที่ 4-11 ผลตอบสนองค่ามุมหมุนในการทดสอบถึง 1.20 เท่าของค่าน้ำหนักบรรทุกออกแบบ (Second cycle)
รูปที่ 4-12 ค่ามุมหมุนเทียบกับเกณฑ์การทดสอบในการทดสอบระดับ 1.20 เท่าของค่าน้ำหนัก บรรทุกออกแบบ (Second cycle)
รูปที่ 4-13 ค่าความเครียดก่อนการปรับแก้ค่าในการทดสอบระดับ 1.20 เท่าของน้ำหนักบรรทุก ออกแบบ
รูปที่ 4-14 ค่าความเครียดหลังการปรับแก้ค่าในการทดสอบระดับ 1.20 เท่าของน้ำหนักบรรทุก ออกแบบ
รูปที่ 4-15 ค่าความเครียดในการทดสอบระดับ 1.20 เท่าของน้ำหนักบรรทุกออกแบบ
รูปที่ 4-16 ค่าการแอ่นตัวจากการทดสอบถึงระดับการให้แรง 1.20 เท่าของน้ำหนักบรรทุกออกแบบ
รูปที่ 4-17 ความสัมพันธ์ระหว่างแรงและการแอ่นตัว (1.20x design load, Second cycle)65
รูปที่ 4-18 ค่ามุมหมุนที่ฐานรองรับจากการทดสอบถึงระดับการให้แรง 1.20 เท่าของน้ำหนักบรรทุก ออกแบบ
รูปที่ 4-19 ค่าความเครียดดึงจากการทดสอบถึงระดับการให้แรง 1.20 เท่าของน้ำหนักบรรทุก ออกแบบ
รูปที่ 4-20 ค่าความเครียดอัดจากการทดสอบถึงระดับการให้แรง 1.20 เท่าของน้ำหนักบรรทุก ออกแบบ
รูปที่ 4-21 ค่าความเค้นเฉือนจากการทดสอบถึงระดับการให้แรง 1.20 เท่าของน้ำหนักบรรทุก ออกแบบ
รูปที่ 4-22 ค่าการแอ่นตัวจากการทดสอบถึงระดับการให้แรง 1.60 เท่าของน้ำหนักบรรทุกออกแบบ
รูปที่ 4-23 ความสัมพันธ์ระหว่างแรงและการแอ่นตัว (1.60x design load)
รูปที่ 4-24 ค่ามุมหมุนที่ฐานรองรับจากการทดสอบถึงระดับการให้แรง 1.60 เท่าของน้ำหนักบรรทุก ออกแบบ
รูปที่ 4-25 ค่าความเครียดดึงจากการทดสอบถึงระดับการให้แรง 1.60 เท่าของน้ำหนักบรรทุก ออกแบบ

เที่ 4-26 ค่าความเครียดอัดจากการทดสอบถึงระดับการให้แรง 1.60 เท่าของน้ำหนักบรรทุก กแบบ 			
รูปที่ 4-29 แผนภาพรอยร้าวจากการสำรวจรอยร้าวในระดับการให้แรง C17 (K=1.60) ในการทดส ถึงระดับการให้แรง 1.60 เท่าของน้ำหนักบรรทุกออกแบบ	าอบ . 77		
รูปที่ 4-30 ค่าการแอ่นตัวจากการทดสอบถึงระดับการให้แรง 2.00 เท่าของน้ำหนักบรรทุกออกแบ	บ . 80		
รูปที่ 4-31 ความสัมพันธ์ระหว่างแรงและการแอ่นตัว (2.00x design load)	.81		
รูปที่ 4-32 ค่ามุมหมุนที่ฐานรองรับจากการทดสอบถึงระดับการให้แรง 2.00 เท่าของน้ำหนักบรรทุ ออกแบบ	ุก . 82		
รูปที่ 4-33 ค่าความเครียดดึงจากการทดสอบถึงระดับการให้แรง 2.00 เท่าของน้ำหนักบรรทุก ออกแบบ	. 83		
รูปที่ 4-34 ค่าความเครียดอัดจากการทดสอบถึงระดับการให้แรง 2.00 เท่าของน้ำหนักบรรทุก ออกแบบ	. 84		
รูปที่ 4-35 ค่าความเครียดเฉือนจากการทดสอบถึงระดับการให้แรง 2.00 เท่าของน้ำหนักบรรทุก ออกแบบ	. 84		
รูปที่ 4-36 แผนภาพรอยร้าวหลังจากการทดสอบถึงระดับการให้แรง 2.00 เท่าของน้ำหนักบรรทุก ออกแบบ	. 86		
รูปที่ 4-37 ค่าการแอ่นตัวจากการทดสอบแรงเฉือน	. 87		
รูปที่ 4-38 ค่ามุมหมุนที่ฐานรองรับจากการทดสอบแรงเฉือน	. 88		
รูปที่ 4-39 ค่าความเครียดดึงจากการทดสอบแรงเฉือน	. 89		
รูปที่ 4-40 ค่าความเครียดอัดจากการทดสอบแรงเฉือน	. 89		
รูปที่ 4-41 ค่าความเครียดทแยงจากการทดสอบแรงเฉือน	. 90		

รูปที่ 5-1 ภาพรวมแบบจำลองเบื้องต้น	
รูปที่ 5-2 มิติหน้าตัดชนิดปลายช่วง	
รูปที่ 5-3 มิติหน้าตัดชนิดกึ่งกลางช่วง	
รูปที่ 5-4 มิติตามขวางของแนวลวดอัดแรง	
รูปที่ 5-5 มิติตามยาวของแนวลวดอัดแรง	
รูปที่ 5-6 น้ำหนักบรรทุกจรเคลื่อนที่ ZK live load	
รูปที่ 5-7 ความสัมพันธ์ระหว่างแรงและการแอ่นตัว (1.20x Design load, Second	d cycle) 103
รูปที่ 5-8 ความสัมพันธ์ระหว่างแรงและค่าการทรุดตัว (1.20x Design load, Secc	ond cycle)104
รูปที่ 5-9 ความสัมพันธ์ระหว่างแรงและค่าการทรุดตัวที่จะนำไปใช้ปรับปรุงคุณสมบ้	Jัติฐานรองรับ . 104
รูปที่ 5-10 ความสัมพันธ์ระหว่างแรงและมุมหมุนที่ฐานรองรับ(1.20x Design loac	l, Second cycle)
รูปที่ 5-11 ความสัมพันธ์ระหว่างแรงและค่าความเครียดดึง (1.20x Design load, 1	Second cycle)
รูปที่ 5-12 ความสมพนธระหว่างแรงและคาความเครียดอด (1.20x Design load,	Second cycle)
รูปที่ 5-13 ความสัมพันธ์ระหว่างค่าตัวคณ Al PHA และ Mean Absolute Differe	nce
รูปที่ 6-1 แบบจำลองโครงสร้างจากโปรแกรม Midas FFA	
รูปที่ 6-2 การแอ่นตัวของโครงสร้างจากแรงกระทำ ZK Live load จากโปรแกรม N	Vidas FEA 118
รูปที่ 6-3 มิติหน้าตัด Bangsue-Donmuang Section	
รูปที่ 6-4 มิติหน้าตัด Bangsue-Donmuang Scaled-section	121
รูปที่ 6-5 บิติหบ้าตัด Section B2	121
รูปที่ 6-6 บิติหบ้าตัด Section C1	121
รูปที่ 6 7 มิติหมัดตั้งเริ่าวุณุรามุรามราย	122
งกับ ก เ พิมพศ เมษาการระหลังเหรือสาก กลุ่มสิ่วกระกกแบกลูเสีว carea-zectiou	

บทที่ 1

บทนำ

1.1 ที่มาและความสำคัญ

ประวัติการใช้รถไทยของประเทศไทยนั้นมีมาอย่างยาวนานโดยมีการก่อสร้างทางรถไฟ สายแรกตั้งแต่ปีพุทธศักราช 2433 ในสมัยของรัชกาลที่ 5 ทางรถไฟตั้งแต่ครั้งอดีตได้ถูกออกแบบ สำหรับรถไฟความเร็วธรรมดาโดยทำความเร็วได้สูงสุดเพียงไม่เกิน 100-120 กิโลเมตรต่อชั่วโมง แต่ ในปัจจุบันนั้นการเดินทางโดยใช้รถไฟความเร็วธรรมดาไม่สอดคล้องสภาพความต้องการของสังคมไทย เนื่องจากใช้เวลานานเมื่อเทียบกับการเดินทางโดยการขนส่งสาธารณะอื่น ๆ เช่น การเดินทางด้วย รถยนต์ หรือเครื่องบิน ภาครัฐได้เล็งเห็นถึงปัญหาจึงริเริ่มโครงการรถไฟความเร็วสูงขึ้นมาในประเทศ ไทย ซึ่งโครงการรถไฟความเร็วสูงนั้นตัวรถไฟมีขีดความสามารถในการทำความเร็วได้ถึง 250 กิโลเมตรต่อชั่วโมง ซึ่งเป็นที่คาดหวังว่าโครงการรถไฟความเร็วสูงจะเข้ามาแก้ไขปัญหาในเรื่องของ เวลาการเดินทางได้ และอาจจะสามารถบรรเทาปัญหาการกระจุกตัวภายในเมืองใหญ่ได้ในอนาคต

โครงการรถไฟความเร็วสูงเป็นโครงการขนาดใหญ่ของการรถไฟแห่งประเทศไทย ภายใต้ ความร่วมมือระหว่างรัฐบาลไทยและสารธารณรัฐประชาชนจีนโดยแบ่งความรับผิดชอบออกเป็นสอง ส่วน โดยส่วนแรกทางรัฐบาลประเทศไทยจะเป็นผู้รับผิดชอบและลงทุนทั้งหมดในวงเงิน 179,412 ล้านบาท อีกส่วนหนึ่งเป็นความรับผิดชอบของทางประเทศจีนซึ่งเป็นผู้รับผิดชอบในส่วนของงาน ออกแบบ และติดตั้งงานระบบราง ระบบไฟฟ้าเครื่องกล ระบบควบคุมการเดินรถ จัดหาขบวนรถไฟ ความเร็วสูง และฝึกอบรมบุคลากร โดยเส้นทางของโครงการรถไฟความเร็วสูงนั้นจะเชื่อมระหว่าง กรุงเทพ-หนองคาย มีทั้งหมด 11 สถานีคือ สถานีกลางบางชื่อ สถานีดอนเมือง สถานีอยุธยา สถานี สระบุรี สถานีปากช่อง สถานีนครราชสีมา สถานีบัวใหญ่ สถานีบ้านไผ่ สถานีขอนแก่น สถานีอุดรธานี สถานีหนองคาย โดยมีระยะทางรวมประมาณ 608 กิโลเมตร

เนื่องจากโครงการรถไฟความเร็วสูงนั้นเป็นโครงการที่มีขนาดใหญ่ สัญญาต่าง ๆ จึงถูก แบ่งออกเป็นหลายสัญญา โดยสัญญาที่ 2-1 นั้นเป็นสัญญาที่รับผิดชอบโดยบริษัทซีวิลเอ็นจีเนียริง จำกัด รับผิดชอบงานโยธาในช่วงตำบล สีคิ้ว-กุดจิก จังหวัดนครราชสีมาระยะทาง 11 กิโลเมตร โดย สัญญานั้นจะกำหนดให้ทดสอบสภาพการรับน้ำหนักจริงของโครงสร้างทางวิ่งยกระดับช่วงพาดอย่าง ง่ายมีความยาว 32.6 เมตร โดยมีระยะระหว่างศูนย์กลางฐานรองรับ (Bearing) 31.5 เมตร โดย สามารถแบ่งการทดสอบออกเป็นการทดสอบเชิงสถิตและการทดสอบเชิงพลวัต

งานวิจัยนี้จึงมุ่งเน้นศึกษาพฤติกรรมของโครงสร้างจากผลการทดสอบโครงสร้างสะพาน และการใช้ข้อมูลจากผลการทดสอบเพื่อนำไปปรับปรุงแบบจำลองเบื้องต้นของโครงสร้างให้มี คุณสมบัติต่าง ๆ ใกล้เคียงกับโครงสร้างจริงมากที่สุด โดยมุ่งหวังว่าจะสามารถนำแบบจำลอง โครงสร้างที่ปรับปรุงแล้วไปใช้ในการศึกษาความเป็นไปได้ที่จะลดราคาค่าก่อสร้างโครงสร้างลง และมุ่งหวังว่าการศึกษานี้จะเป็นแนวทางที่จะนำไปวิเคราะห์ประมวลผลความคุ้มค่าของโครงการใน อนาคตที่มีลักษณะโครงสร้างสะพานคล้ายกับโครงสร้างสะพานที่ถูกทดสอบและใช้ในงานวิจัย

1.2 วัตถุประสงค์ของการวิจัย

1.2.1 เพื่อศึกษาพฤติกรรมการรับแรงและสมรรถนะทางโครงสร้างของทางวิ่งยกระดับใน เส้นทางรถไฟความเร็วสูงไทย-จีน

1.2.2 เพื่อทำการทดสอบโครงสร้างทางวิ่งยกระดับจริงในภาคสนามแบบ Full-scale Load Test

1.2.3 เพื่อสร้างแบบจำลองโครงสร้างในคอมพิวเตอร์และปรับเทียบกับผลการทดสอบ โครงสร้างจริงในภาคสนาม

 1.2.4 เพื่อศึกษาความเป็นไปได้ในการปรับปรุงหน้าตัดโครงสร้างทางวิ่งยกระดับให้มี ประสิทธิภาพและประหยัดยิ่งขึ้น

1.3 ขอบเขตของการวิจัย

1.3.1 ใช้แบบจำลองแบบเส้น (Line element) และแบบจำลองแบบก้อน (Solid element) ในแบบจำลองโครงสร้างทางวิ่งยกระดับ

1.3.2 การทดสอบโครงสร้างจริงในภาคสนาม (Full-scaled Load Test) และมาตรฐานการ
ออกแบบจะอ้างอิงจากมาตรฐานของจีน TB 2092-2003 และ TB 10621-2014 ตามลำดับ

 1.3.3 การปรับเทียบแบบจำลองโครงสร้างทางวิ่งยกระดับจะคำนึงถึงผลการทดสอบโครงสร้าง จริงในภาคสนาม โดยจะปรับปรุงค่าเฉพาะคุณสมบัติของฐานรองรับ คุณสมบัติของคอนกรีต และคุณสมบัติของเส้นลวดอัดแรง 1.3.4 การปรับปรุงขนาดของโครงสร้างทางวิ่งยกระดับจะคงความลึกและความกว้างของ โครงสร้าง แต่จะปรับเปลี่ยนเฉพาะความหนาของชิ้นส่วน คุณสมบัติของลวดอัดแรง และ คุณสมบัติของคอนกรีต

 1.3.5 การปรับปรุงหน้าตัดโครงสร้างทางวิ่งยกระดับจะไม่พิจารณาผลของความเค้นเฉพาะจุด (local stress) ในแบบจำลองไฟในต์เอลิเมนต์

1.3.6 พิจารณาเฉพาะโครงการรถไฟความเร็วสูงในความร่วมมือระหว่างประเทศไทยและ สาธารณรัฐประชาชนจีน

1.4 ประโยชน์ที่ได้รับ

 1.4.1 ทราบถึงพฤติกรรมในการรับแรงของโครงสร้างทางวิ่งยกระดับของโครงการรถไฟ ความเร็วสูง ซึ่งออกแบบโดยวิศวกรชาวจีนตามมาตรฐานการออกแบบของประเทศจีน

 1.4.2 เป็นแนวทางการปรับปรุงการวิเคราะห์ออกแบบโครงสร้างทางวิ่งยกระดับรถไฟ ความเร็วสูง ให้มีประสิทธิภาพและมีความประหยัดยิ่งขึ้นสำหรับโครงการในอนาคต

1.5 แผนการดำเนินงาน

1.5.1 ศึกษางานวิจัย ทฤษฎี มาตรฐานที่เกี่ยวข้องในงานทดสอบสะพาน การปรับปรุง แบบจำลอง และการพัฒนาหน้าตัดโครงสร้างสะพาน

1.5.2 ทดสอบโครงสร้างทางวิ่งยกระดับในภาคสนามตามมาตรฐานจีน

1.5.3 วิเคราะห์และสรุปผลการทดสอบภาคสนาม

1.5.4 สร้างแบบจำลองโครงสร้างในคอมพิวเตอร์และปรับเทียบแบบจำลองโครงสร้างตามผล การทดสอบภาคสนาม

 1.5.5 ปรับปรุงคุณลักษณะทางกายภาพของแบบจำลองเพื่อความคุ้มค่าและความประหยัดโดย ยังคงได้มาตรฐานตามเกณฑ์การทดสอบและการออกแบบของประเทศจีน

1.5.6 สรุปผลการวิจัย

บทที่ 2

งานวิจัยและทฤษฎีที่เกี่ยวข้อง

2.1 งานวิจัยที่เกี่ยวข้อง

2.1.1 งานวิจัยที่เกี่ยวข้องกับพฤติกรรมและการทดสอบโครงสร้างสะพาน

การศึกษาเพื่อการประเมินและทดสอบโครงสร้างสะพานเต็มรูปแบบ (Full-scale load test) นั้นจะต้องพิจารณาในหลายแง่มุมในการทดสอบเพื่อให้การทดสอบนั้นมีประสิทธิภาพและ มีความปลอดภัย การทดสอบสมรรถนะโครงสร้างในงานวิจัยฉบับนี้พิจารณาเกณฑ์มาตรฐานการ ออกแบบโครงสร้างรถไฟความเร็วสูงของประเทศจีน (TB10621-2014) และใช้มาตรฐานการทดสอบ โครงสร้างสะพานคอนกรีตอัดแรงของประเทศจีน (TB2092-2003) โดยมีงานวิจัยที่เกี่ยวข้องกับการ ทดสอบโครงสร้างทางวิ่งยกระดับดังต่อไปนี้

Takebayashi et al. (1994) และคณะได้ทำการทดสอบโครงสร้างทางวิ่งยกระดับขนาด จริงด้วยวิธีทำลาย โครงสร้างที่ใช้ทดสอบมีความยาว 44.25 เมตรและใช้ลวดอัดแรงชนิดภายนอก (External tendon) หน้าตัดมีความกว้างของปีกบน 10.20 เมตรและมีความลึก 2.40 เมตร การศึกษาของ Takebayashi ใช้วิธีกำหนดภาระกระทำด้วยโมเมนต์ที่กึ่งกลางช่วงโดยมีการศึกษาทั้ง พฤติกรรมของความเครียดที่เกิดขึ้นภายในโครงสร้างที่ขึ้นส่วนย่อยต่าง ๆ รวมถึงการศึกษาพฤติกรรม ของการวิบัติ (Failure mechanism) พบว่าก่อนเกิดการวิบัตินั้นรอยต่อระหว่างชิ้นส่วนนั้น มี ระยะห่างเพิ่มขึ้นอย่างต่อเนื่องและมีรอยร้าวด้านข้างปรากฏดังแสดงในรูปที่ 2-1 นอกจากนี้ Takebayashi ยังสรุปผลงานวิจัยไว้อีกว่าการทำนายพฤติกรรมของโครงสร้างทางวิ่งยกระดับนั้น สามารถใช้แบบจำลองคานธรรมดาในการทำนายพฤติกรรมได้อย่างแม่นยำในช่วง Service Load โดยหลังจากที่รอยต่อระหว่างชิ้นส่วนนั้นเปิดออก จะต้องใช้วิธีไฟไนต์เอลิเมนต์ที่ซับซ้อนเพื่อใช้ทำนาย ผล Ultimate moment capacity ของโครงสร้างให้แม่นยำ

รูปที่ 2-1 รอยต่อระหว่างชิ้นส่วนก่อนเกิดการวิบัติ (Takebayashi et al., 1994)

McClure and West (2011) ได้ทำการทดสอบเต็มรูปแบบ (Full scale load test) ด้วยวิธีเชิงสถิตกับสะพานคอนกรีตอัดแรงความยาวช่วง 37 เมตรโดยใช้น้ำหนักกระทำจากรถบรรทุก จริงซึ่งใช้ทำน้ำหนักบรรทุกตามขนาดรถมาตรฐาน AASHTO HS20-44 สำหรับการทดสอบที่ระดับ การใช้งาน (Service load) ใช้วิธีเคลื่อนรถบรรทุกไปตามความยาวของสะพานอย่างช้า ๆ ด้วย ความเร็ว 1 ไมล์ต่อชั่วโมง (1.61 km/h) เพื่อหลีกเลี่ยงผลจากแรงกระแทก และใช้แรงจากแม่แรงไฮ ดรอลิคผ่านทาง Loading frame สำหรับการทดสอบทำลาย การทดสอบนั้นมุ่งเน้นในเรื่องของการ ตรวจวัดค่าแอ่นตัวของโครงสร้าง ค่ามุมหมุนที่ฐานรองรับ และค่าความเครียดที่กึ่งกลางช่วงพาดโดยมี การเปรียบเทียบกันระหว่างผลจากการทดสอบจริงและผลจากแบบจำลองไฟไนต์เอลิเมนต์ ผลการทดสอบระบุว่าค่าการแอ่นตัวที่กึ่งกลางช่วงนั้นมีค่าสูงกว่าจากแบบจำลองไฟไนต์เอลิเมนต์ แสดงในรูปที่ 2-2 และค่าความเค้นที่ตรวจวัดได้มีค่าสูงกว่าค่าจากแบบจำลองไฟไนต์เอลิเมนต์ 17% โดย McClure และ West ให้เหตุผลไว้ว่าเนื่องจากค่าความเค้นดังกล่าวมีผลมาจากทั้งแรงดัดและ แรงบิดทำให้ค่าความเค้นที่ตรวจวัดได้มีค่าสูงกว่าในแบบจำลองไฟไนต์เอลิเมนต์ สะพานที่ใช้ทดสอบ นั้นวิบัติจากการแตกหักของคอนกรีตบริเวณรอยต่อที่กึ่งกลางช่วงโดยก่อนเกิดการวิบัตินั้นโครงสร้างมี ค่าการแอ่นตัวเพิ่มขึ้นอย่างรวดเร็ว 6.35 mm โดยจากการตรวจสอบพบว่าเส้นลวดอัดแรงทุกเส้นขาด ออกจากกันมีเพียงเหล็กเส้นเท่านั้นที่ยึดรั้งโครงสร้างสะพานเอาไว้ไม่ไห้แยกจากกัน

รูปที่ 2-2 การเปรียบเทียบค่าการแอ่นตัวของสะพานทดสอบ McClure and West (1984)

Yuan et al. (2013) ได้ทำการทดสอบคานคอนกรีตอัดแรงประกอบรูปกล่อง (Segmental concrete box beam) ด้วยวิธีการทดสอบแบบทำลายโดยตัวคานที่นำมาทดสอบนั้น เป็นคานยาว 5.76 เมตรซึ่งจำลองมาจากสะพานที่ใช้ก่อสร้างจริงโดยมีอัตราส่วนขนาดย่อดังแสดงใน รูปที่ 2-3 ลวดอัดแรงที่ใช้ภายในคานนั้นถูกดัดแปลงให้มีทั้งชนิดภายใน (Internal Tendons) และ ภายนอก (External tendons) เพื่อใช้ศึกษาพฤติกรรมโครงสร้าง รอยร้าวและรูปแบบการวิบัติ จาก การทดสอบได้ผลสรุปว่าเมื่อโครงสร้างได้รับโมเมนต์กระทำเพิ่มขึ้นรอยร้าวที่เกิดบริเวณรอยต่อนั้นมี การขยายตัวอย่างต่อเนื่อง อีกทั้งยังได้ข้อสรุปที่สำคัญว่าลวดชนิดภายในนั้นมีประสิทธิภาพมากกว่าทั้ง ในด้านการรับแรง (Load-carrying capacity) และด้านความเหนียว (Ductility) โดยจากการทดสอบ ถึงการวิบัติพบว่าโครงสร้างคาน 2 ใน 3 ตัวนั้นวิบัติที่ตำแหน่งรอยต่อบริเวณด้านบนของชิ้นส่วนย่อย แสดงถึงโครงสร้างนั้นมีจุดเปราะบางที่รอยต่อระหว่างชิ้นส่วนย่อยบริเวณกลางช่วงพาด

รูปที่ 2-3 คานคอนกรีตอัดแรงประกอบรูปกล่อง (Yuan et al., 2013)

Saibabu et al. (2013) ได้ทำการทดสอบโครงสร้างทางวิ่งยกระดับคอนกรีตอัดแรงรูป กล่องโดยทำการทดลองสมรรถนะของรอยต่อระหว่างชิ้นส่วนโดยใช้รอยต่อแบบแห้ง (Dry) และแบบ ใช้ Epoxy โดยใช้การให้แรงแบบ Cyclic loading เพื่อใช้เปรียบเทียบสมรรถนะทางโครงสร้าง โดยรวม จากการศึกษาพบว่าหลังเกิดรอยร้าวขึ้นครั้งแรก (First crack) กำลังของโครงสร้างทางวิ่ง ยกระดับที่ใช้รอยต่อแบบแห้งนั้นน้อยกว่ารอยต่อที่ใช้ Epoxy โดยโครงสร้างที่ใช้รอยต่อแบบแห้งนั้นมี การแอ่นตัวของโครงสร้างสูงกว่าดังแสดงผลการทดสอบในรูปที่ 2-4 ทำให้คณะผู้วิจัยสรุปเอาไว้ว่า หลังจากเกิดรอยร้าวครั้งแรก (First crack) คุณสมบัติของรอยต่อนั้นมีผลต่อกำลังโดยรวมของ โครงสร้างและโครงสร้างที่ใช้รอยต่อทั้งสองแบบนั้นก็มีการวิบัติเกิดขึ้นที่ตำแหน่งรอยต่อที่กึ่งกลางช่วง บริเวณด้านบนหรือบริเวณที่รับความเค้นอัดซึ่งสอดคล้องกับงานวิจัยของ Yuan และ Takebayashi ที่มีรูปแบบการวิบัติเหมือนกัน

รูปที่ 2-4 ความสัมพันธ์ระหว่างการแอ่นตัวและความเครียดอัด (Saibabu et al., 2013)

Bacinskas et al. (2013) และคณะได้มีการดำเนินงานวิจัยการทดสอบสะพานรถไฟ ประกอบเหล็กคอนกรีตช่วงเดี่ยว (Single span composite steel-concrete railway bridge) ซึ่งมี ขนาดช่วงยาว 32 m จำนวน 2 ทางวิ่งโดยมีการทดสอบเชิงเปรียบเทียบระหว่างการทดสอบบน สะพานจริงด้วยหัวรถจักรหนัก 2M62 ซึ่งมีภาระกระทำ 2,328 kN ทั้งการทดสอบเชิงสถิตและการ ทดสอบเชิงพลวัต การทดสอบนั้นจะใช้ความเร็วหัวรถจักรในการวิ่งตั้งแต่ 20 ถึง 100 km/h โดยมี จุดมุ่งหมายในการทดสอบเพื่อหาค่าแอ่นตัวสูงสุดจากแรงกระทำเชิงสถิตเพื่อเปรียบเทียบกับแรง กระทำเชิงพลวัต นอกจากนี้ยังมีการเก็บข้อมูลเพื่อวิเคราะห์หาลักษณะเฉพาะของการสั่นของสะพาน เพื่อพิจารณาถึง Mode shapes, ความถี่, อัตราส่วนความหน่วง (Damping ratios) และ ตัวคูณ ขยายแบบพลวัต (Dynamic Amplification Factor) สะพานที่ใช้ทดสอบคือสะพานรถไฟ Kaunas-Kybartai โครงสร้างทั้งหมดถูกออกแบบด้วยมาตรฐาน Eurocode แบบจำลองเบื้องต้นที่ใช้วิเคราะห์ ผลการทดสอบนั้นจะใช้วิธีวิเคราะห์ด้วยวิธีทางไฟไนต์เอลิเมนต์ทั้งการวิเคราะห์เชิงสถิตและการ วิเคราะห์เชิงพลวัต โดยใช้การวิเคราะห์ในช่วงการเสียรูปแบบเส้นตรงเท่านั้น (Linear elastic analysis)

หัวรถจักร 2M62 นั้นถูกนำมาแล่นด้วยความเร็ว 3-5 km/h บนช่วงสะพานทดสอบโดย ใช้วิธี Quasi-static loading ซึ่งทำให้เกิดมีการแอ่นตัวมากที่สุดเท่ากับ 4.15 mm คิดเป็น 1/7710 ซึ่งผ่านเกณฑ์ของ Eurocode ที่ 1/600 เมื่อเปรียบเทียบกับผลการวิเคราะห์โดยวิธี ไฟไนต์เอลิเมนต์ ซึ่งได้ผลการวิเคราะห์การแอ่นตัวที่ตำแหน่งเดียวกันที่ 4.34 มิลลิเมตร โดยมี อัตราส่วนการแอ่นตัวของผลการวิเคราะห์ในโปรแกรมต่อผลการทดสอบเท่ากับ 1.05 ซึ่งผู้ทำการวิจัย นั้นได้ลงความเห็นว่าเป็นค่าที่สามารถยอมรับได้โดยไม่จำเป็นต้องปรับปรุงแบบจำลอง

การทดสอบเชิงพลวัตของสะพานนั้นจะใช้หัวรถจักร 2M62 จำนวน 2 หัวรถจักรซึ่งทดสอบ โดยการให้หัวรถจักรเคลื่อนที่ด้วยความเร็ว 20, 40, 60, 80 และ 100 km/h โดยที่ความเร็วสูงสุดที่ อนุญาตในการใช้งานสะพานในช่วงนี้อยู่ที่ประมาณ 80 km/h ผลการทดสอบนั้นแบ่งออกเป็น ผลตอบสนองความเร่ง, Mode shapes, ค่าความถี่ธรรมชาติ, อัตราส่วนความหน่วง, การแอ่นตัวเชิง พลวัต และ ค่า dynamic amplification factors (DAF) จากผลการศึกษาพบว่าความเร่งในแนวดิ่ง สูงสุดที่ตรวจวัดได้มีค่า 0.452 m/s² ซึ่งไม่เกินเกณฑ์ตามมาตรฐาน Eurocode ที่จำกัดไว้ 3.5 m/s² ความถี่ธรรมชาติในแนวดิ่งต่ำสุดจากการทดสอบมีค่าเท่ากับ 5.49 Hz ซึ่งผ่านเกณฑ์มาตรฐาน Eurocode (LST EN 1990/A1/AC) ที่กำหนดให้ความถี่ธรรมชาติในโหมดแรกนั้นมีค่าระหว่าง 3.93-9.86 Hz อัตราส่วนความหน่วงในงานวิจัยนั้นใช้วิธีการคำนวณแบบ Relatively Simple Logarithmic Decrement Method ซึ่งจะพิจารณาเฉพาะจากความถี่มูลฐานเท่านั้นโดยมีค่า อัตราส่วนความหน่วงเท่ากับ 1.916% ซึ่งมากกว่าค่าขีดจำกัดที่กำหนดไว้ 0.5% ค่า DAF ที่ได้จากการ ทดสอบด้วยวิธี Quasi-static loading และใช้รถไฟแล่นด้วยความเร็ว 100 km/h มีค่า 1.268 โดยค่า DAF ที่คำนวนโดยมาตรฐาน Eurocode มีค่า 1.23 จึงสามารถสรุปได้ว่าค่าที่แนะนำโดยมาตรฐาน Eurocode นั้นไม่มีความอนุรักษ์เมื่อเทียบกับผลการทดสอบจริง

รูปที่ 2-5 การเปรียบเทียบค่า DAF จากผลการทดสอบและค่า DAF ที่แนะนำโดยมาตรฐาน

Eurocode (Bacinskas et al., 2013)

เนื่องจากในงานวิจัยของ Bacinskas D. ใช้สะพานที่มีความยาวช่วงใกล้เคียงกันกับ ความยาวช่วงที่จะใช้ทดสอบโครงการรถไฟฟ้าความเร็วสูง กรุงเทพมหานคร-นครราชสีมา ดังนั้น งานวิจัยชิ้นนี้จึงเป็นงานวิจัยที่สามารถนำมาใช้ประโยชน์และเปรียบเทียบกับการศึกษานี้ได้เป็นอย่างดี

Bagge et al. (2014) และคณะได้ทำการทดสอบสะพานคอนกรีตอัดแรงชนิดดึงทีหลัง (Post-Tensioned Concrete Bridge) ที่มีความยาวช่วงพาด 18 ถึง 29.35 เมตรโดยมีจุดประสงค์ เพื่อปรับปรุงแบบจำลองไฟไนต์เอลิเมนต์จากการประเมินสมรรถนะโครงสร้างของสะพานที่เปิดใช้ มาแล้ว 55 ปี สะพานถูกทดสอบโดยใช้แรงจากแม่แรงไฮดรอลิคผ่านคานตามขวางดังแสดงใน รูปที่ 2-6 จากการใช้ LVDT sensor (Linear Variable Differential Transformer) และ Strain Gauge จำนวนมากที่ติดตั้งอยู่ทั่วทั้งคานและแผ่นพื้นทำให้ทางคณะผู้วิจัยสามารถนำผลการทดสอบ ทั้งหมดไปใช้ปรับปรุงแบบจำลองในโปรแกรม ABAQUS โดยสามารถให้ผลการตอบสนองที่แม่นยำ มากยิ่งขึ้นเมื่อเทียบกับแบบจำลองต้นแบบ

รูปที่ 2-6 แบบจำลองการให้แรงกระทำในการทดสอบสมรรถนะโครงสร้าง (Bagge et al., 2014)

งานวิจัยทั้งสี่งานของ McClure, Bagge, Yuan และ Takebayashi นำเสนอแง่มุมการ ทดสอบไว้อย่างน่าสนใจทั้งรูปแบบการให้แรงกระทำแก่โครงการ การติดตั้งอุปกรณ์ตรวจจับเช่น LVDT และ Strain Gauge ในตำแหน่งที่เหมาะสมสำหรับการวิจัยโดยงานวิจัยของ Yuan และ Takebayashi ได้ข้อสรุปร่วมกันว่าโครงสร้างทางวิ่งยกระดับที่ประกอบด้วยชิ้นส่วนย่อยหลายชิ้นนั้นมี จุดเปราะบาง (Critical point) ที่ตำแหน่งด้านบน (Compression zone) ของจุดต่อระหว่างชิ้น ส่วนย่อยบริเวณกึ่งกลางช่วงพาด อย่างไรก็ตามงานวิจัยที่ได้กล่าวมานั้นเป็นเพียงงานวิจัยที่ศึกษา พฤติกรรมเชิงสถิตของโครงสร้างสะพาน โดยงานวิจัยที่ศึกษาเกี่ยวกับพฤติกรรมเชิงพลวัตนั้น มีงานวิจัยที่เป็นประโยชน์และในอ้างอิงในการทำวิทยานิพนธ์ดังนี้

Deng and Cai (2010) ได้ศึกษาผลกระทบของค่าตัวคูณแรงกระแทก (Impact factor) ของสะพานหลายความยาวช่วงเพื่อเปรียบเทียบกับค่า Impact factor ที่แนะนำโดยมาตรฐาน AASHTO กับผลตอบสนองจากแบบจำลองไฟไนต์เอลิเมนต์ สภาพพื้นผิวทางวิ่งในแบบจำลองนั้นได้ จากการสำรวจพื้นผิวของสะพานจริงที่มีสภาพผิวจราจรหลายรูปแบบและนำไปสร้างฟังก์ชันผิวทางวิ่ง ขึ้น 5 แบบตามสภาพพื้นผิวจากดีที่สุดไปแย่ที่สุด จากผลการศึกษาพบว่าค่า Impact factor ที่ แนะนำโดยมาตรฐาน AASHTO นั้นมีค่าที่ต่ำและไม่อนุรักษ์เมื่อเทียบผลตอบสนองจากแบบจำลอง กรณีพื้นผิวแย่และแย่มาก

รูปที่ 2-7 ความสัมพันธ์ระหว่างตัวคูณแรงกระแทกและความเร็วรถบรรทุก (Deng and Cai, 2010)

Ghindea et al. (2019) ได้ทำการศึกษาพฤติกรรมเชิงพลวัตของโครงสร้างสะพานแขวน Agigea ในประเทศโรมาเนีย โครงสร้างสะพานมีช่วงพาด 80 m, 200 m, และ 80 m ตามลำดับ ใน การทดสอบโครงสร้างนั้น ผู้วิจัยได้ใช้รถบรรทุกขนาด 32 ตันโดยใช้ความเร็วตั้งแต่ 10-50 km/h แล่น ผ่านเนินสามเหลี่ยมที่เตรียมไว้โดยเมื่อล้อรถบรรทุกตกลงมากระแทกกับสะพานจึงทำให้เกิดแรง เหนี่ยวนำให้สะพานเกิดพฤติกรรมเชิงพลวัตขึ้น จากผลการศึกษาพบว่าโครงสร้างสะพานแขวน ดังกล่าวนั้นมีค่าความถี่ธรรมชาติแนวดิ่งโหมดแรกเท่ากับ 2.98 Hz อัตราส่วนความหน่วง (Damping ratio) 4.81% และค่าความเร่งสูงสุดของโครงสร้างมีค่า 1.86 m/s² ซึ่งไม่เกินเกณฑ์มาตรฐาน Eurocode กำหนดที่ 3.50 m/s²

รูปที่ 2-8 ผลการวิเคราะห์ค่าความถี่ธรรมชาติจากสัญญาณความเร่ง (Ghindea et al., 2019)

He et al. (2012) ได้ทำการศึกษาและทดสอบโครงจำลองสร้างทางวิ่งยกระดับสำหรับ รถไฟความเร็วสูงที่มีมุมเอียง (Skew angle) ตั้งแต่ 0 องศาถึง 60 องศาที่มีต้นแบบมาจากทางรถไฟ ระหว่างเมืองปักกิ่งและเซี่ยงไฮ้ในประเทศจีน โครงสร้างดังกล่าวมีขนาด 1:8 เท่าของขนาดจริงโดยมี ช่วงพาดยาว 5.00-8.75-5.00 m จากผลการทดสอบเชิงพลวัตพบว่าค่าความถี่ธรรมชาติของสะพาน ทดสอบนั้นมีค่าค่อนข้างคงที่ดังในรูปที่ 2-9 โดยผลของโหมดของการบิด (Torsional mode) นั้นเริ่ม แสดงให้เห็นถึงความแตกต่างของความถี่ธรรมชาติในโหมดที่ 7 ขึ้นไปซึ่งให้ผลการทดสอบใกล้เคียงกับ ผลจากแบบจำลองไฟไนต์เอลิเมนต์กล่าวคือมุมเอียงของโครงสร้างทางวิ่งยกระดับสามารถเพิ่ม ผลกระทบจากแรงบิดที่เกิดขึ้นจากแรงกระทำเชิงพลวัตได้ (Dynamic event)

รูปที่ 2-9 ความสัมพันธ์ระหว่างความถี่ธรรมชาติและมุมเอียงโครงสร้างทดสอบ (He et al., 2012)

Gatti (2019) ได้ทำการทดสอบสะพานในเมือง Ferrara ประเทศอิตาลี ทั้งการทดสอบ เชิงสถิตและการทดสอบเชิงพลวัต สะพานที่ใช้ในการทดสอบมีช่วงพาด 3 ช่วงโดยช่วงที่ใช้ทำการ ทดสอบนั้นมีความยาวช่วง 18 m การทดสอบเชิงสถิตกระทำโดยใช้รถน้ำหนัก 36 ตันจำนวนสองคัน ในการทดสอบโดยการทดสอบดังกล่าวนั้นได้ใช้มาตรฐานเก่าในการทดสอบเนื่องจากสะพานดังกล่าว ถูกทดสอบเชิงสถิตแล้วครั้งหนึ่งในปี ค.ศ. 1960 เพื่อจะเปรียบเทียบค่าการแอ่นตัวที่เกิดขึ้นในปัจจุบัน Gatti จึงเลือกใช้น้ำหนักบรรทุกเดิมในการทดสอบสะพาน การทดสอบเชิงพลวัตถูกกระทำโดยใช้ รถบรรทุกขนาดเล็กน้ำหนัก 2 ตันวิ่งผ่านขึ้นไปบนทางลาดคอนกรีตที่นำมาวางไว้ดังแสดงในรูปที่ 2-10 และตกลงมากระแทกกับผิวสะพานเพื่อเหนี่ยวนำให้สะพานเกิดผลตอบสนองเชิงพลวัต จากผล การทดสอบพบว่าสะพานมีค่าความแข็งโดยรวมลดลงเนื่องจากสะพานมีค่าการแอ่นตัวเพิ่มขึ้นในการ ทดสอบเชิงสถิต

รูปที่ 2-10 การกระแทกจากรถบรรทุกเพื่อเหนี่ยวนำให้เกิดพฤติกรรมเชิงพลวัติ (Gatti, 2019)

จากผลการทดสอบเชิงพลวัต Gatti ได้นำพฤติกรรมของโครงสร้างมาปรับปรุงแบบจำลอง เบื้องต้นให้มีค่าใกล้เคียงกับผลการทดสอบเชิงสถิตมากขึ้นเนื่องจากในแบบจำลองไฟไนต์เอลิเมนต์นั้น โครงสร้างมีค่าความถี่ธรรมชาติสูง Gatti จึงได้ทำการปรับปรุงแบบจำลองโดยใช้วิธีการปรับปรุงหน้า ตัดโครงสร้างเพื่อเปลี่ยนค่ามวลและความแข็งของโครงสร้าง โดยหลังจากการปรับปรุงโครงสร้าง สะพาน แบบจำลองที่ปรับปรุงแล้วของ Gatti สามารถมให้ผลตอบสนองทั้งเชิงสถิตและเชิงพลวัต ใกล้เคียงกับผลการทดสอบจริง

2.1.2 งานวิจัยที่เกี่ยวข้องกับการปรับปรุงแบบจำลอง

Algahtani et al. (1995) ได้ทำการศึกษาการปรับปรุงความคุ้มค่าคานคอนกรีตอัดแรงที่ มีช่วงพาด 24.40 m จำนวนสองช่วงพาดโดยมีการปรับปรุงค่าพารามิเตอร์ต่าง ๆ จำนวน 30 ค่าซึ่ง ประกอบไปด้วย มิติของหน้าตัด แนวการวางเหล็กเส้น และแนวการเดินเส้นลวดอัดแรงโดยไม่ เปลี่ยนแปลงคุณสมบัติของคอนกรีต เหล็กเส้นและเส้นลวดอัดแรง การปรับปรุงความคุ้มค่าใน งานวิจัยนั้นแบ่งออกเป็น 5 ลักษณะได้แก่ ความคุ้มค่าทางด้านราคา การใช้คอนกรีตในปริมาตรที่ต่ำ ที่สุด การใช้น้ำหนักของเหล็กเส้นน้อยที่สุด โครงสร้างมีน้ำหนักน้อยที่สุด และโครงสร้างมีความลึก ของหน้าตัดน้อยที่สุด โดยใช้มาตรฐาน ACI ในการออกแบบซึ่งการคำนวณราคาของโครงสร้างของ งานวิจัยฉบับจะพิจารณาเฉพาะค่าคอนกรีต เหล็กเส้น ลวดอัดแรง และไม้แบบที่ใช้ในการหล่อ โครงสร้าง จากการปรับปรุงโครงสร้างทั้ง 5 แบบนั้นพบว่าโครงสร้างที่ใช้ปริมาณคอนกรีตต่ำที่สุดนั้นมี ค่าใช้จ่ายโดยรวมสูงสุดจากการเปรียบเทียบโครงสร้างทั้ง 5 แบบโดยมีค่าวัสดุสูงกว่าโครงสร้างที่มี ความคุ้มค่าทางด้านราคาสูงสุดถึง 2 เท่า จากผลการศึกษาพบว่าการใช้ปริมาณคอนกรีตที่น้อยเกินไป นั้นจำเป็นที่จะต้องใช้ปริมาณเหล็กเส้นและเส้นลวดอัดแรงจำนวนมากทำให้ราคาโดยรวมสูงขึ้นอย่างมี นัยสำคัญ

Schommer et al. (2017) ได้ทำการปรับปรุงแบบจำลองจากผลการตรวจสอบสภาพ โครงสร้าง (Structural health monitoring) สะพานเก่าที่ก่อสร้างในเมื่อปี ค.ศ. 1955 โดยใช้ข้อมูลจากการทดสอบจากทั้งการทดสอบเชิงสถิตและการทดสอบเชิงพลวัตในการปรับปรุง แบบจำลอง การปรับปรุงโครงสร้างนั้นใช้วิธีการกำหนดฟังก์ชันวัตถุประสงค์ (Objective function) และใช้การปรับปรุงแบบจำลองเพื่อให้ฟังก์ชันวัตถุประสงค์นั้นมีค่าน้อยที่สุด (Minimization) สะพาน ที่ใช้ทดสอบเป็นสะพานคอนกรีตอัดแรงยาว 46 m การทดสอบเชิงสถิตนั้นใช้การวางมวลคอนกรีตที่ ตำแหน่งต่าง ๆ เพื่อวัดค่าการแอ่นตัวของสะพานโดยในการทดสอบเช็งสถิตนั้นมีการขดเชยค่าการแอ่นตัวจาก ผลของอุณหภูมิ (Temperature compensation) โดยใช้การเก็บข้อมูลการแอ่นตัวของโครงสร้าง ย้อนหลังเพื่อนำไปปรับแก้ค่าการแอ่นตัวที่เกิดในการทดสอบจริง การทดสอบเชิงพลวัตทดสอบโดยใช้ การกระตุ้นจากการกระแทกมวลที่บริเวณกึ่งกลางช่วงพาดของสะพาน การปรับปรุงแบบจำลองนั้นใช้ ทั้งการปรับค่า Modulus of elasticity ของคอนกรีต และการปรับ Local stiffness ของสะพาน เนื่องจากสะพานมีสภาพไม่สมบูรณ์ ผลการศึกษาพบว่าแบบจำลองที่ผ่านการปรับปรุงแล้วมี ผลตอบสนองใกล้เคียงกับผลการทดสอบภาคสนามมากขึ้นเมื่อเทียบกับแบบจำลองเบื้องต้น

Park et al. (2017) ได้ทำการศึกษาการต้านทานการหมุน (Rotational stiffness) ของ ฐานรองรับจากโครงสร้างสะพานขนาดย่อและสะพานจริง (รูปที่ 2-11) ที่มีช่วงพาด 2 m และ 39 m ตามลำดับเพื่อใช้พฤติกรรมของโครงสร้างจริงในการปรับปรุงคุณสมบัติของ ฐานรองรับในแบบจำลองไฟในต์เอลิเมนต์ จากการเปรียบเทียบพฤติกรรมของโครงสร้างจริงและ แบบจำลองเบื้องต้นพบว่า ค่าการแอ่นตัวสูงสุด ค่ามุมหมุนที่ฐานรองรับ และค่าความถี่ธรรมชาติใน แนวดิ่ง (Bending mode) และแนวบิด (Torsion mode) มีค่าคลาดเคลื่อนสูง (สูงสุดประมาณ 115.2%) โดยหลังจากการเพิ่มคุณสมบัติการต้านทานการหมุน 2.90x10⁹ ton-mm/rad ใน ฐานรองรับด้านซ้ายและ 1.80x10⁸ ton-mm/rad ในฐานรองรับด้านขวาพบว่าผลตอบสนองทั้งหมด ในแบบจำลองนั้นมีพฤติกรรมใกล้เคียงกับโครงสร้างจริงมากขึ้นโดยมีค่าความคลาดเคลื่อนสูงสุดเหลือ เพียง 7.0% เท่านั้น ทำให้เห็นถึงผลในการปรับปรุงฐานรองรับของแบบจำลองโครงสร้างทางวิ่ง ยกระดับเพื่อให้แบบจำลองนั้นมีผลตอบสนองใกล้เคียงกับการทดสอบจริงยิ่งขึ้น

รูปที่ 2-11 สะพานโครงสร้างเหล็กช่วงพาดยาว 39 m ที่ใช้งานวิจัย (Park et al., 2017)

Malveiro et al. (2018) ได้ทำการศึกษาการปรับปรุงแบบจำลองโครงสร้างสะพานรถไฟ ที่เป็นโครงสร้างคอมโพสิตระหว่างเหล็กและคอนกรีตโดยใช้สะพาน Alcácer do Sal ในประเทศ โปรตุเกสเป็นต้นแบบ การปรับปรุงโครงสร้างสะพานในงานวิจัยจะใช้ข้อมูลจากผลการทดสอบเชิง พลวัตของสะพานเพื่อนำมาปรับเปลี่ยนคุณสมบัติต่าง ๆ ให้แบบจำลองนั้นมีพฤติกรรมเชิงพลวัต ใกล้เคียงกับการทดสอบจริงมากยิ่งขึ้น สะพานที่ใช้ในการทดสอบมีการออกแบบให้รถไฟสามารถทำ ความเร็วได้สูงสุด 250 km/h ช่วงพาดที่ใช้ในงานวิจัยนั้นมีลักษณะฐานรองรับอย่างง่าย (Simply supported structure) ความยาวช่วง 45 เมตร ในการทดสอบโครงสร้างนั้นผู้วิจัยได้พิจารณาใช้การ ทดสอบจากขบวนรถไฟจริง Alfa Pendular (AP) ที่ความเร็ว 220 km/h เพื่อเหนี่ยวนำให้เกิด พฤติกรรมเชิงพลวัตขึ้น ในกระบวนการวิจัยนั้นพบว่าผู้วิจัยได้พิจารณาปรับเปลี่ยนค่าความหนาแน่น ของคอนกรีต ค่าโมดูลัสของเหล็ก ค่าความแข็งตามแนวแกนของฐานรองรับ (Longitudinal stiffness) ค่าโมดูลัสของบัลลาสต์ ค่าความหนาแน่นของบัลลาสต์โดยใช้วิธีการเชิงตัวเลข Genetic Algorithm ในการปรับปรุงแบบจำลองเบื้องต้นจากโปรแกรม MATLAB จากผลการศึกษาพบว่า ค่าความถี่ธรรมชาติในโหมดต่าง ๆ จากแบบจำลองที่ผ่านการปรับปรุงแล้วนั้นมีค่าใกล้เคียงกับผลการ ทดสอบเชิงพลวัตมากขึ้นดังแสดงในรูปที่ 2-12

รูปที่ 2-12 ค่าความถี่ธรรมชาติก่อนและหลังการปรับปรุงแบบจำลอง (Malveiro et al., 2018)

Hester et al. (2019) ได้เสนอวิธีการทำการทดสอบสะพานช่วงเดี่ยวความยาวช่วง 36 m และมีฐานรองรับอย่างง่ายทั้งสองด้านโดยมีฐานรองรับชนิดเคลื่อนที่ได้และเคลื่อนที่ไม่ได้อยู่ที่ บริเวณฐานรองรับทั้งสองด้านของสะพาน เพื่อศึกษาพฤติกรรมของฐานรองรับสะพานโดยนำข้อมูล จากการทดสอบไปปรับปรุงแบบจำลองไฟในต์เอลิเมนต์ ซึ่งทำการทดสอบสะพานทั้งเชิงสถิตและเชิง พลวัต เพื่อให้การปรับปรุงแบบจำลองมีประสิทธิผลมากที่สุด การทดสอบสะพานจริงเชิงพลวัตได้ถูก ศึกษาขึ้นในการศึกษาก่อนหน้านั้น (Hester et al., 2018) ซึ่ง Hester ได้นำผลการทดสอบของตน มาใช้ในงานวิจัยนี้ โดยใช้ความถี่ธรรมชาติ อัตราส่วนความหน่วง และ mode shape ต่าง ๆ ของ สะพานช่วงเดี่ยวจากผลการทดสอบเชิงพลวัตพบว่า ค่าตอบสนองที่ได้นั้นใกล้เคียงกับแบบจำลองที่ใช้ ฐานรองรับชนิดเคลื่อนที่ไม่ได้ทั้งสองด้านมากกว่าแบบจำลองตามสภาพจริงที่ด้านหนึ่งนั้นสามารถ เคลื่อนที่ได้ และจากการทดสอบเชิงสถิตโดยใช้วิธีการเคลื่อนแรงกระทำไปอย่างช้า ๆ นั้นพบว่า ฐานรองรับชนิดเคลื่อนที่ได้นั้นมีพฤติกรรมของแรงเสียดทานเข้าร่วมโดยจากการวิเคราะห์ Hester และคณะพบว่าแบบจำลองชนิดคลื่นที่ได้โดยมีสัมประสิทธิ์ความฝืดเท่ากับ 0.0263 นั้นให้ ผลตอบสนองที่ใกล้เคียงกับผลการทดสอบโครงสร้างจริงมากที่สุด

Shi et al. (2019) ได้ทำการศึกษาการปรับปรุงแบบคุณสมบัติของฐานรองรับใน แบบจำลองจากผลการทดสอบเชิงพลวัตจากโครงสร้างทางวิ่งยกระดับรถไฟรางเดี่ยวสาย Jiaoxin ใน ประเทศจีน การปรับปรุงคุณสมบัติของฐานรองรับนั้นผู้วิจัยได้พิจารณาปรับเพิ่มคุณสมบัติการต้าน การหมุนของฐานรองรับ และเปลี่ยนคุณสมบัติจากการต้านการเคลื่อนที่ในแนวราบโดยสมบูรณ์เป็น การต้านการเคลื่อนที่ในแนวราบบางส่วน จากผลการศึกษาพบว่าการเปลี่ยนคุณสมบัติที่ฐานรองรับ
ของโครงสร้างทางวิ่งยกระดับสามารถทำให้ผลตอบสนองจากแบบจำลองนั้นมีค่าใกล้เคียงกับ ผลตอบสนองจากการทดสอบจริงมากขึ้น

Ferrari et al. (2019) ได้ทำการศึกษาโครงสร้างสะพาน Brivio (รูปที่ 2-13) ในประเทศ อิตาลี เป็นสะพานคอนกรีตที่มีช่วงพาดยาว 44 m การศึกษาของ Ferrari นั้นจะใช้ผลการทดสอบเชิง พลวัตในการปรับปรุงแบบจำลองเบื้องต้น เพื่อให้แบบจำลองมีความถูกต้องมากยิ่งขึ้นเมื่อเทียบกับผล การตอบจากโครงสร้างจริง ค่าความคลาดเคลื่อนเบื้องต้นจากการเปรียบเทียบพบว่าแบบจำลอง เบื้องต้นนั้นมีค่าความคลาดเคลื่อนสูงสุด 9% ในค่าความถี่ธรรมชาติในโหมดของการบิด เพื่อที่จะลด ค่าความคลาดเคลื่อนลง Ferrari และคณะได้พิจารณาปรับค่าโมดูลัสและความหนาแน่นของ องค์ประกอบต่าง ๆ ภายในโครงสร้างสะพานได้แก่ แผ่นพื้น คานหลัก และโครงสร้างคอนกรีตโค้ง (Parabolic arches) โดยมีการเพิ่มค่าโมดูลัสสูงสุดในแผ่นพื้นที่ประมาณ 28.50% ภายหลังจากการ ปรับค่าในแบบจำลอง ค่าความคลาดเคลื่อนในโหมดเดิมนั้นลดลงเหลือเพียง 5.70% และมีความ คลาดเคลื่อนเฉลี่ยในโหมดต่าง ๆ เหลือเพียง 4% โดยจากการปรับปรุงแบบจำลองนั้นพบว่าโครง ทั้งหมดยกเว้นแผ่นพื้นถูกปรับลดค่าโมดูลัสลงเนื่องจากความเก่าแก่ของสะพานในขณะที่แผ่นพื้นนั้นมี ค่าโมดูลัสเพิ่มขึ้นเนื่องจากมีการคิดผลความแซ็งของวัสดุปิดผิวหน้ารวมเพิ่มเข้าไปในแผ่นพื้นทำให้มีค่า ความแข็งโดยรวมเพิ่มขึ้น

รูปที่ 2-13 สะพาน Brivio ประเทศอิตาลี (Ferrari et al., 2019)

Kumar Bagha et al. (2020) ได้ศึกษาการปรับปรุงโครงสร้างแบบจำลองไฟไนต์เอลิ เมนต์เพื่อให้แบบจำลองมีผลตอบสนองใกล้เคียงกับผลการทดสอบคานประกอบเหล็ก-คอนกรีตมาก ยิ่งขึ้นโดยการเปลี่ยนคุณสมบัติของโมดูลัสของคอนกรีตในทิศทางตามแนวแกนและตั้งฉากกับแกน (E_{xx} และ E_{yy}) ค่าความหนาแน่นของคอนกรีต อัตราส่วนปัวซอง และโมดูลัสของแรงเฉือน (Modulus of rigidity) ผลการศึกษาพบว่าค่าความถี่ธรรมชาติในโหมดที่ 1-9 นั้นมีค่าความคลาดเคลื่อนน้อยลง จากผลการทดสอบจริงอย่างมีนัยสำคัญ

Tran-Ngoc et al. (2020) ได้ทำการทดสอบโครงสร้างสะพานรถไฟข้ามแม่น้ำ Guadalquivir ในประเทศสเปนถูกสร้างขึ้นเมื่อปี ค.ศ. 1929 ภายหลังจากการเปิดใช้งานสะพานได้มี การช่อมแซมและเสริมกำลังของโครงสร้างหลายครั้ง โครงสร้างสะพานประกอบไปด้วยช่วงพาด 5 ช่วงพาดโดยมีขนาดช่วงพาดช่วงละ 51 m คณะผู้ทำวิจัยได้เก็บผลการทดสอบเชิงสถิตและจำแนก Mode การสั่นออกเป็นทั้งหมด 22 โหมดซึ่งประกอบไปด้วยโหมดการสั่นแนวดิ่ง (Vertical) แนวราบ (Transverse) และแนวบิด (Torsion) จากการเปรียบเทียบผลการทดสอบพบว่าผลจากแบบจำลอง ไฟในต์เอลิเมนต์นั้นยังให้ค่าผลตอบสนองที่คลาดเคลื่อนจากผลการทดสอบจริงทั้ง Mode shape และค่าความถี่ธรรมชาติดังนั้นคณะผู้วิจัยจึงได้พิจารณาปรับปรุงแบบจำลองเบื้องต้นด้วยการปรับปรุง คุณสมบัติการต้านการเคลื่อนที่ของแบบจำลอง 8 ค่าดังแสดงในรูปที่ 2-14 โดยใช้วิธีเชิงตัวเลข ผล การปรับปรุงผลการทดสอบพบว่าค่าความคลาดเคลื่อนของค่าความถี่ธรรมชาติในโหมดต่าง ๆ นั้น ลดลงอย่างมีนัยสำคัญและแสดง Mode shape ที่ถูกต้องมากขึ้นในโหมดต่าง ๆ อีกด้วย

รูปที่ 2-14 แบบจำลองสะพานรถไฟ Guadalquivir ประเทศสเปน (Tran-Ngoc et al., 2020)

Vardhan et al. (2021) ได้ทำการศึกษาปรับเปลี่ยนคุณสมบัติของฐานรองรับจาก โครงสร้างสะพานทางวิ่งยกระดับรถไฟโดยพิจารณาใช้ภาระกระทำจากน้ำหนักคงที่ (DL) น้ำหนัก บรรทุกจรเคลื่อนที่ (LL) น้ำหนักบรรทุกคงที่ส่วนเพิ่ม (SDL) แรงเหวี่ยงของรถไฟ (Centrifugal force; CF) และแรงหยุด (Braking Force; BF) โดยใช้รูปแบบหน้าตัดของฐานรองรับสองชนิดคือ แบบสี่เหลี่ยมและแบบวงกลมโดยมีการใช้วัสดุทั้งหมด 3 ชนิดได้แก่ Neoprene, Silicone rubber และ PTFE (Polytetrafluoroethylene) การศึกษานั้นเลือกใช้แบบจำลองไฟไนต์เอลิเมนต์ในการ จำลองพฤติกรรมของฐานรองรับ จากผลการศึกษาพบว่าฐานรองรับชนิดวงกลมนั้นมีค่าการทรุดตัว และค่าความเครียดที่ต่ำกว่าฐานรองรับหน้าตัดสี่เหลี่ยมทั่วไปอีกทั้งค่าความเค้นภายในฐานรองรับ วงกลมนั้นยังมีความสม่ำเสมอมากกว่าฐานรองรับชนิดสี่เหลี่ยม

Cheng and Song (2021) ได้ศึกษาพฤติกรรมและผลตอบสนองของสะพาน Yingzhou (รูปที่ 2-15) ในประเทศจีนที่สร้างขึ้นในปี 2009 เพื่อนำมาใช้ปรับปรุงแบบจำลองไฟในต์เอลิเมนต์ที่ สร้างขึ้น สะพาน Yingzhou นั้นเป็นสะพานโครงถักขนาดใหญ่มีช่วงพาดยาว 120 m จากผลการ ทดสอบพบว่าค่าความถี่ธรรมชาติที่ได้จากการทดสอบนั้นมีค่าต่างจากในแบบจำลองมาก ดังนั้นผู้วิจัย จึงพิจารณาปรับค่าหน่วยน้ำหนัก (Density) และ Elastic of modulus ของโครงถัก (Main arch) คานหลัก (Main girder) และส่วนโครงสร้างรับแรงอัด (Rigid Triangle zone) โดยใช้ทางสถิติเพื่อใช้ หาค่าพารามิเตอร์ต่าง ๆ ที่เหมาะสม จากการปรับปรุงแบบจำลองพบว่าค่าความถี่ธรรมชาติในโหมดที่ 1 ถึง 4 นั้นมีความคลาดเคลื่อนเฉลี่ยลดลงจาก 87.66% เหลือเพียง 7.90% และเพื่อยืนยันถึงความ ถูกต้องของแบบจำลองผู้วิจัยจึงได้ทำการเปรียบเทียบผลตอบสนองจากแบบจำลองที่ปรับปรุงแล้วกับ ผลการทดสอบเชิงสถิตที่ศึกษาไว้แล้วก่อนหน้าโดย Wu Y. (2010) พบว่าผลตอบสนองการแอ่นตัว ของโครงสร้างมีความคลาดเคลื่อนเฉลี่ยเหลือเพียง 6.44% จากเดิม 76.28% เมื่อเทียบกับแบบจำลอง เบื้องต้น

รูปที่ 2-15 สะพาน Yingzhou ประเทศจีน (Cheng and Song, 2021)

2.1.3 งานวิจัยที่เกี่ยวข้องกับการปรับปรุงหน้าตัดโครงสร้าง

Marti and Gonzalez-Vidosa (2010) ได้ทำการศึกษาการออกแบบโครงสร้างสะพาน คนเดินรูปตัวยู (U) โดยมีจุดประสงค์เพื่อหาหน้าตัดและความยาวช่วงที่เหมาะสมสำหรับการสร้าง สะพานคนเดินสาธารณะขึ้นโดยมีความยาวช่วงพาดตั้งแต่ 20 m ถึง 40 m และความกว้างทางเดิน ตั้งแต่ 3 m ถึง 6 m การออกแบบโครงสร้างนั้นถูกกำหนดโดยมาตรฐานการออกแบบของประเทศ สเปน (Spanish Code) และใช้ภาระกระทำจากมาตรฐาน IAP การออกแบบโครงสร้างนั้นได้ใช้ พารามิเตอร์เพื่อกำหนดค่ามิติ คุณสมบัติวัสดุ ต่าง ๆ รวม 59 ตัวแปรโดยใช้กระบวนการเชิงตัวเลข Simulated annealing (SA) และ Threshold accepting (TA) ผลการศึกษาพบว่าค่าความลึกของ คานและค่าโมดูลัสของคอนกรีตที่เหมาะสมนั้นแปรผันโดยตรงกับความยาวช่วงพาดของสะพานใน ขณะที่ความหนาของชิ้นส่วนย่อยภายในหน้าตัดที่เหมาะสมนั้นค่อนข้างมีค่าคงที่และไม่เปลี่ยนแปลง ไปตามความยาวช่วงสะพาน

Wang et al. (2015) ได้ ทำการ ทดสอบ คอนกรีตกำลังสูงพิเศษ (ultra-high performance concrete; UHPC) และได้สรุปผลไว้ว่า UHPC นั้นมีกำลังแรงอัด กำลังแรงดึง อัตรา การขึมผ่านของน้ำ และความคงทนสูงกว่าคอนกรีตกำลังสูงทั่วไป โดยปกติแล้ว UHPC นั้นจะถูก นำไปใช้สร้างเป็นฐานรองรับประเภทต่าง ๆ เนื่องจากสามารถรับแรงอัดได้มากกว่าคอนกรีตธรรมดา ทั่วไป คอนกรีตกำลังสูงพิเศษ (UHPC) นั้นมีงานวิจัยรองรับมากมาย เช่นมีความคงทนต่อความล้า (fatigue) มากเป็นพิเศษจากการต่อแผ่นพื้น UHPC กับคานยาวในลักษณะของคานประกอบ (composite beam) เนื่องจากคุณสมบัติเด่นของคอนกรีตคุณภาพสูงพิเศษนั้นคือเรื่องของกำลัง ความคงทน ต้นทุน ดังนั้นนักวิจัย ผู้ออกแบบ และ ผู้รับเหมาก่อสร้างจึงให้ความสนใจแก่คอนกรีต กำลังสูงพิเศษ ต่อมาจึงมีงานวิจัยการใช้คอนกรีตกำลังสูงพิเศษในงานสะพานทางหลวงขึ้นและได้ข้อ สรุปว่าคอนกรีตกำลังสูงพิเศษนั้นสามารถเพิ่มความยาวช่วงของสะพานได้โดยเปรียบเทียบกับการ ออกแบบแบบเดิมที่ใช้คอนกรีตธรรมดา

จากประโยชน์ทั้งหลายของคอนกรีตคุณภาพสูงพิเศษนั้น Su et al. (2020) มีแนวคิดที่จะ นำเสนอวิธีการปรับปรุงหน้าตัดสะพานด้วยวิธีการลดขนาดหน้าตัดลงด้วยการลดความหนาของ ชิ้นส่วนของสะพานตัวอย่าง คือสะพานที่ออกแบบโดยใช้คอนกรีตกำลังสูงพิเศษแห่งแรกของ สาธารณรัฐประชานจีน เพื่อใช้ออกแบบสะพานขึ้นใหม่โดยใช้หน้าตัดที่เล็กลง โดยมีวัตถุประสงค์คือ การประหยัดค่าใช้จ่ายในการก่อสร้างสะพาน ในแบบจำลองเบื้องต้นของสะพานที่ถูกปรับปรุงขนาด หน้าตัดมาแล้วนั้น นักวิจัยได้ใช้โปรแกรม ABAQUS เพื่อใช้ในการวิเคราะห์แบบจำลองต่าง ๆ ด้วยวิธี ไฟในต์เอลิเมนต์ และทดสอบตัวสะพานจริงที่ผ่านการปรับปรุงลดขนาดหน้าตัดมาแล้วด้วยผลการ ทดสอบเชิงสถิต โดยการศึกษาวิจัยนี้มีขอบเขตในการศึกษาค่าการแอ่นตัวที่กึ่งกลางสะพาน พฤติกรรมรอยร้าวที่เกิดขึ้น ความเครียดในโครงสร้างสะพานที่ตำแหน่งต่าง ๆ และความเค้นดึงที่ ตำแหน่งกึ่งกลางคานเท่านั้น สะพานที่ใช้เป็นต้นแบบในงานวิจัยของ Jia-zhan คือสะพาน UHPC แห่งแรกในประเทศจีนนั้นเป็นสะพานที่มีความยาว 4 ช่วงสะพานโดยเป็นสะพานต่อเนื่องมีช่วงความ ยาวในแต่ละช่วงยาว 30 เมตรประกอบไปด้วย 2 ทางวิ่งความกว้างสะพาน 8 เมตรโดยในแต่ละช่วง ความยาวสะพานนั้นถูกรองรับด้วยโครงสร้างกล่อง (box girder) ซึ่งมีความลึก 1.6 เมตร และมีลวด อัดแรงที่ถูกดึงด้วยกำลัง 1395 เมกกะนิวตันบริเวณปีกล่างของโครงสร้างกล่อง โดยคอนกรีตที่ใช้นั้นมี ค่าโมดูลัสของความยืดหยุ่นที่ 45.3 GPa

วิธีในการปรับปรุงหน้าตัดนั้นไม่ได้ถูกระบุไว้ในงานวิจัย แต่จุดประสงค์ของการปรับปรุง ขนาดหน้าตัดของโครงสร้างคานกล่องคือความต้องการที่จะลดขนาดลงเพื่อลดปริมาณการใช้คอนกรีต โดยจะมีผลต่อราคาการก่อสร้างสะพานทั้งทางตรง คือการลดปริมาณการใช้คอนกรีตลง และการลด ต้นทุนทางอ้อมคือการลดจำนวนรอบการขนส่งคอนกรีต ลดจำนวนคนงานที่ใช้ในงานคอนกรีต รวมถึง ต้นทุนอื่น ๆ จากผลการทดสอบโครงสร้างของ Jia-zhan และคณะพบว่าโครงสร้างสะพานที่ออกแบบ ขึ้นใหม่นั้นมีความประหยัดมากขึ้นอย่างเห็นได้ชัดเมื่อเทียบกับโครงสร้างเดิม โดยผลการทดสอบที่ได้ นั้นมีความสอดคล้องและได้ผลลัพธ์ที่ใกล้เคียงกับค่าทางทฤษฎีที่จำลองโดยโปรแกรม ABAQUS เป็น อย่างมาก ทำให้ข้อมูลที่ได้นั้นมีความน่าเชื่อถือสูง โดยสามารถนำการปรับลดหน้าตัดโครงสร้าง คอนกรีตกำลังสูงพิเศษไปประยุกต์ใช้ได้ในการวิจัยอื่น ๆ ต่อไป

Kaveh et al. (2016) ทำการศึกษาการออกแบบสะพานคอนกรีตอัดแรง (Posttensioned concrete bridge) เพื่อให้โครงสร้างมีต้นทุนค่าวัสดุต่ำที่สุดโดยใช้ระเบียบวิธีเชิงตัวเลข CBO (Colliding Bodies Optimization) โดยมาตรฐานที่ใช้ในการออกแบบ AASHTO และใช้แรง กระทำจากรถบรรทุกมาตรฐาน H20-44 และ HS20-44 ตัวแปรที่ใช้ในการกำหนดหน้าตัดโครงสร้างมี ทั้งหมด 17 ตัวได้แก่ ค่ากำลังรับแรงอัดของคอนกรีต (f_c') คุณสมบัติของเหล็กเส้นและลวดอัดแรง 6 ตัวแปร และมิติของหน้าตัดโครงสร้าง 10 ตัวแปรดังแสดงในรูปที่ 2-16 โดยค่าคุณสมบัตินอกจากที่ กล่าวมาจะเป็นค่าคงที่ทั้งหมด เช่น ขนาดของแรงกระทำ ความกว้างถนน น้ำหนักคอนกรีต ค่าโมดูลัส ของคอนกรีต กำลังของเส้นลวดอัดแรง ๆ จากผลการศึกษาที่พิจารณาความกว้างของทางวิ่ง 12 เมตร ดังในตารางที่ 2-1 ซึ่งมีค่าวัสดุสำหรับโครงสร้างสะพานความยาวช่วงพาด 40 m มีความลึกของหน้า ตัด 2.39 m เท่ากับ \$114.4 ต่อตารางเมตร (คิดจากพื้นที่ผิวทาง) คิดเป็นประมาณ 3,576 บาทต่อ ตารางเมตร

จากผลการศึกษาของ Kaveh และคณะ จะทำให้สามารถประเมินค่าวัสดุจากการ ออกแบบสำหรับโครงสร้างทางวิ่งยกระดับช่วงพาด 32.60 m โดยมีต้นทุนค่าวัสดุเท่ากับ 3,576 บาท ต่อตารางเมตรได้ประมาณ 1.42 ล้านบาทต่อช่วงพาดโดย หากรวมสัดส่วนของต้นทุนและค่าใช้จ่ายใน การดำเนินงานก่อสร้างที่ประมาณ 15% แล้วจะทำให้มีต้นทุนค่าก่อสร้างประมาณ 1.64 ล้านบาทต่อ ช่วงพาด 32.60 m อย่างไรก็ตามเนื่องจากในการพิจารณาการออกแบบโครงสร้างสะพานของ Kaveh นั้นใช้ภาระกระทำจากรถบรรทุกมาตรฐาน H20-44 และ HS20-44 ในขณะที่งานวิจัยฉบับนี้ใช้ภาระ กระทำจากรถไฟมาตรฐาน ZK Loading ซึ่งมีขนาดของแรงกระทำที่สูงกว่ามาก ประกอบกับต้นทุน ค่าวัสดุในงานวิจัยของ Kaveh นั้นอ้างอิงราคาจากประเทศสหรัฐอเมริกาจึงอาจไม่สามารถนำมา เปรียบเทียบกับผลการศึกษาในงานวิทยานิพนธ์ได้โดยตรง

รูปที่ 2-16 ตัวแปรที่ใช้ในการกำหนดมิติหน้าตัดสำหรับการออกแบหน้าตัด (Kaveh et al., 2016)

ตารางที่ 2-1 ค่าวัสดุที่ถูกที่สุดสำหรับการก่อสร้างโครงสร้างสะพานรูปกล่อง (Kaveh et al., 2016)

Variable	W = 12								
	L = 30			L = 40			L = 60		
	PSO	СВО	МСВО	PSO	CBO	МСВО	PSO	CBO	МСВО
f_c '	36	35	35	35	35	35	48	41	47
h	1.69	1.70	1.67	2.39	2.39	2.33	3.21	3.86	3.81
T_t	34	34	35	35	33	34	28	28	27
T_b	21	21	21	20	21	21	19	21	19
T_W	50	50	50	50	49	50	50	50	50
L _c	2.44	2.40	2.39	2.49	2.39	2.42	2.71	2.50	2.65
T_c	20	20	18	27	19	20	24	18	21
T_s	50	50	50	50	50	50	50	50	50
L_{x}	160	166	156	151	161	154	140	155	146
L_{y}	25	26	25	25	26	25	25	25	25
Ňs	7	14	18	17	17	17	21	12	17
$N_t/2$	8	4	3	4	4	4	4	9	6
N _A	2	2	2	2	2	2	1	2	1
У1	23	37	31	42	51	39	56	97	46
η (%)	75	76	77	78	75	78	76	81	80
ρ_s (%)	0.75	0.76	0.74	0.69	0.81	0.76	1.01	1.09	1.11
ρ_c (%)	0.26	0.26	0.25	0.26	0.26	0.25	0.29	0.29	0.29
Cost (\$/m ²)	101.0	101.6	99.5	114.4	116.0	114.1	147.7	150.1	146.6

Abd Elrehim et al. (2019) ทำการศึกษาและปรับปรุงโครงสร้างสะพานคอนกรีตโค้ง โดยใช้วิธีทางไฟไนต์เอลิเมนต์และมีการปรับความยาวช่วง ความหนาของแผ่นพื้น ความกว้างของคาน โดยคงค่ากำลังของคอนกรีตไว้ไม่เปลี่ยนแปลง จากผลการศึกษาพบว่าโครงสร้างสะพานคอนกรีตโค้ง นั้นมีความคุ้มค่าในการก่อสร้างในความยาวช่วงประมาณ 50 เมตรโดยจากการปรับปรุงความคุ้มค่า สามารถลดค่าวัสดุได้ประมาณ 30% ถึง 35% ขึ้นกับความยาวช่วงและมีค่าความเค้นเฉือนเป็นค่า ขีดจำกัดในการปรับปรุงหน้าตัดโครงสร้างโดยที่ค่าการแอ่นตัวของโครงสร้าง ค่าความเค้นอัดและ ความเค้นดึงยังไม่ถึงขีดจำกัดตามมาตรฐานการออกแบบของประเทศอียิปต์

Skoglund et al. (2020) ได้นำเสนอวิธีการปรับปรุงโครงสร้างสะพานโดยใช้วิธีการทาง ไฟในต์เอลิเมนต์ร่วมกับการใช้ Genetic algorithm ในการปรับปรุงตัวแปรต่าง ๆ เช่น ความกว้างผิว ทางวิ่ง จำนวนคาน ความหนาในขิ้นส่วนต่าง ๆ ทุกขิ้นส่วนและสามารถปรับปรุงโครงสร้างสะพานให้มี ค่าใช้จ่ายเฉพาะค่าวัสดุลดลง 33.31% โดยหน้าตัดของชิ้นส่วนย่อยภายในโครงสร้างมีขนาดเล็กลงใน ขณะที่โครงสร้างยังสามารถรับน้ำหนักได้ตามมาตรฐาน Eurocode 3 (มาตรฐานการออกแบบ โครงสร้างเหล็ก)

Nour et al. (2021) ได้ทำการศึกษาการปรับปรุงหน้าตัดโครงสร้างสะพานให้มีความ คุ้มค่าทางด้านราคาสูงสุดโดยที่โครงสร้างยังคงผ่านเกณฑ์การออกแบบของประเทศฝรั่งเศส (BPEL) การปรับปรุงพิจารณาเฉพาะคานคอนกรีตอัดแรงรูปตัวที (T-shaped section) ที่รองรับโครงสร้าง สะพานดังแสดงในรูปที่ 2-17 ปรับปรุงความคุ้มค่าคานคอนกรีตอัดแรงนั้น จะพิจารณาใช้ตัวแปร ทั้งหมด 7 ค่าได้แก่ ความลึกของหน้าตัด ความกว้างของเอว ความกว้างของฐาน ความสูงของฐาน ความชันของฐาน จำนวนเหล็กเส้น และคุณสมบัติของเส้นลวดอัดแรง จากผลการศึกษาการออกแบบ หน้าตัดเพื่อความคุ้มค่าสูงสุดกรณีสะพานช่วงพาดยาว 25 m และ 40 m พบว่าต้นทุนค่าวัสดุทั้งหมด มีค่าเท่ากับ 25,491.5 € และ 55,956 € ตามลำดับ

GHOLALONGKORN CONVERSITY จากงานวิจัยของ Nour และคณะทำให้สามารถประเมินค่าวัสดุจากการเทียบสัดส่วน สำหรับสะพานช่วงพาด 32.60 m โดยหากรวมสัดส่วนของต้นทุนและค่าใช้จ่ายในการดำเนินงาน ก่อสร้างที่ประมาณ 15% จะทำให้มีต้นทุนค่าก่อสร้างประมาณ 1.72 ล้านบาทต่อช่วงพาด 32.60 m

รูปที่ 2-17 หน้าตัดสะพานคอนกรีตที่ใช้คานรองรับแบบ T-girder (Nour et al., 2021)

2.2 ทฤษฎีที่เกี่ยวของกับงานวิจัย

โครงสร้างทางวิ่งยกระดับที่ใช้ในงานวิจัยเป็นสะพานช่วงเดี่ยวมีฐานรองรับอย่างง่ายซึ่ง แบ่งออกเป็น 13 ชิ้นส่วนย่อยที่มีค่าโมดูลัสความยืดหยุ่นของคอนกรีต ค่าโมเมนต์ความเฉื่อย และ ความยาวของชิ้นส่วนเฉพาะตัวโดยมีรูปจำลองโครงสร้างอย่างง่ายแสดงในรูปที่ 2-18 การวิเคราะห์ โครงสร้างเพื่อหาค่าการเสียรูปของโครงสร้างในงานวิจัยฉบับนี้จะใช้วิธีทางไฟไนต์เอลิเมนต์

รูปที่ 2-20 การเสียรูปของชิ้นส่วนย่อย

$$\frac{d^2}{dx^2} \left(EI \frac{d^2 w}{dx^2} \right) = 0 \tag{2-1}$$

จากสมการอนุพันธ์การโก่งตัวของคาน

เมื่อพิจารณาพลังงานศักย์ที่เกิดจากความเครียดในวัตถุ (Q) จะได้

$$Q = \frac{1}{2} \int_{V} \sigma_{x} \varepsilon_{x} dV \tag{2-2}$$

จากความสัมพันธ์ระหว่างความเครียดและการเสียรูปของชิ้นส่วนย่อยจะได้

$$\varepsilon_x = \frac{du}{dx} = -z \frac{d^2 w}{dx^2} \tag{2-3}$$

จากสมการที่ 2-2 และ 2-3 จะได้

$$Q = \frac{1}{2} \int_{V} Ez^2 \left(\frac{d^2 w}{dx^2}\right)^2 dV$$
(2-4)

เมื่อพิจารณาคานยาว L และมีพื้นที่หน้าตัด A จะได้

$$Q = \frac{1}{2} \int_0^L \left[\int_A E z^2 \left(\frac{d^2 w}{dx^2} \right)^2 dA \right] dx$$
(2-5)

$$Q = \frac{1}{2} \int_0^L E\left(\frac{d^2 w}{dx^2}\right)^2 \left[\int_A z^2 dA\right] dx$$
(2-6)

$$Q = \frac{1}{2} \int_0^L EI\left(\frac{d^2 w}{dx^2}\right)^2 dx \tag{2-7}$$

โดยที่ E คือค่าโมดูลัสของความยืดหยุ่น และ I คือโมเมนต์ความเฉื่อย

เมื่อพิจารณาพลังงานศักย์ที่เกิดจากแรงภายนอก (G) จะได้

$$G = -Work = \int_{0}^{L} p(x)w(x)dx - \sum_{1}^{2} R_{i}w_{i} - \sum_{1}^{2} M_{i}\theta_{i}$$
(2-8)

เมื่อ $R_i w_i$ และ $M_i \theta_i$ แทนงานที่เกิดที่จุดต่อทั้งสองเนื่องมาจากแรง R_i และโมเมนต์ M_i ตามลำดับ ดังนั้นจากพลังงานศักย์รวม (J) เท่ากับพลังงานศักย์ที่เกิดจากความเครียดในวัตถุ (Q) รวมกับพลังงาน ศักย์ที่เกิดจากแรงภายนอก (G) จะได้

$$J = \frac{1}{2} \int_0^L EI\left(\frac{d^2 w}{dx^2}\right)^2 dx - \int_0^L p(x)w(x)dx - \sum_{i=1}^2 R_i w_i - \sum_{i=1}^2 M_i \theta_i$$
(2-9)

เนื่องจากพลังงานศักย์รวมในสมการที่ 2-9 นั้นประกอบด้วยพจน์ของอนุพันธ์อันดับสองของ ค่าเคลื่อนตัวในแนวดิ่ง ดังนั้นการเคลื่อนตัวและค่าความชันของการเคลื่อนตัวจะถูกสมมติให้มีความ ต่อเนื่องระหว่างเอลิเมนต์ ผลลัพธ์จะมีความถูกต้องเข้าใกล้ค่าจริงหากใช้จำนวนเอลิเมนต์สูงขึ้น โดยแบบจำลองแสดงเอลิเมนต์ย่อยแสดงในรูปที่ 2-21

เนื่องจากเอลิเมนต์คานประกอบไปด้วยตัวแปร 4 ค่าได้แก่การเคลื่อนที่ในแนวดิ่งและการเคลื่อนที่ เชิงมุมของทั้งสองจุดต่อจึงสามารถสร้างความสัมพันธ์ลักษณะการกระจายของค่าเคลื่อนตัว w จาก การโก่งของคานได้ดังนี้

$$w(x) = \alpha_1 + \alpha_2 x + \alpha_3 x^2 + \alpha_4 x^3$$
(2-10)

โดยที่ $\{ lpha_1, lpha_2, lpha_3, lpha_4 \}$ เป็นค่าคงตัวซึ่งได้จากการแก้สมการจุดต่อ (node) ดังต่อไปนี้

$$w_{(x=0)} = w_1$$
 (2-11)

$$w_{(x=L)} = w_{2}$$
 พาลงกรณ์มหาวิทยาลัย (2-12)

$$\frac{dw}{dx}|(x=0) = \theta_1 \text{ ALONGKORN UNIVERSITY}$$
(2-13)

$$\frac{dw}{dx}|(x=L) = \theta_2 \tag{2-14}$$

ดังนั้นการกระจายของค่าเคลื่อนตัว w ให้อยู่ในรูปแบบของตัวไม่รู้ค่าจากวิธีทางไฟไนต์เอลิเมนต์จะ ได้

$$w(x) = \lfloor N_1 \quad N_2 \quad N_3 \quad N_4 \rfloor \begin{cases} w_1 \\ \phi_1 \\ w_2 \\ \theta_2 \end{cases} = \lfloor N \rfloor_{1 \times 4} \{\delta\}_{4 \times 1}$$
(2-15)

$$I_{3} = 1 - 3\left(\frac{x}{L}\right)^{2} + 2\left(\frac{x}{L}\right)^{3}, N_{2} = x\left(\frac{x}{L} - 1\right)^{2}, N_{3} = \left(\frac{x}{L}\right)^{2}\left(3 - 2\frac{x}{L}\right), N_{4} = \left(\frac{x^{2}}{L}\right)\left(\frac{x}{L} - 1\right)$$

จะได้ว่า
$$\frac{d^2 w}{dx^2} = \left\lfloor \frac{d^2 N}{dx^2} \right\rfloor_{1\times 4} \left\{ \delta \right\}_{4\times 1} = \left\lfloor \delta \right\rfloor_{1\times 4} \left\{ \frac{d^2 N}{dx^2} \right\}_{4\times 1}$$
(2-16)

$$\text{use} \quad J = \frac{1}{2} \int_0^L \left[\delta \right] \left\{ \frac{d^2 N}{dx^2} \right\} EI \left[\frac{d^2 N}{dx^2} \right] \left\{ \delta \right\} dx - \int_0^L p(x) w(x) dx - \sum_{i=1}^2 R_i w_i - \sum_{i=1}^2 M_i \theta_i \quad (2-17)$$

$$J = \frac{1}{2} \lfloor \delta \rfloor [K] \{\delta\} - \lfloor \delta \rfloor \{F\} - \lfloor \delta \rfloor \{R\}$$
(2-18)

เมื่อหาค่าต่ำสุดของพลังงานศักย์รวมหรือ $rac{\partial J}{\partial\{\delta\}}$

- ຈະໄດ້ $[K]{\delta} = {F} + {R}$
- เมื่อ δ คือเวกเตอร์การเสียรูปของคาน

K คือเมทริกซ์ของความแข็งเกร็ง (Stiffness matrix)

- **R** คือเวกเตอร์แรงภายในที่จุดต่อ
- F คือโหลดเวกเตอร์ซึ่งขึ้นกับแรงภายนอก $\begin{bmatrix} 6 & 3L & -6 & 3L \end{bmatrix}$

โดยที่
$$\begin{bmatrix} K \end{bmatrix} = \frac{2EI}{L^3} \begin{bmatrix} 3L & 2L^2 & -3L & L^2 \\ -6 & -3L & 6 & -3L \\ 3L & 6 & -3L & 2L^2 \end{bmatrix}$$
 สำหรับเอลิเมนต์ของคาน (2-20)

สมการที่ 2-19 แสดงสมการทางไฟไนต์เอลิเมนต์ซึ่งสามารถนำไปใช้หาค่าการเสียรูปของ โครงสร้างทางวิ่งยกระดับ ได้แก่ ค่าการแอ่นตัวและค่ามุมหมุนที่บริเวณฐานรองรับได้ โดยการ วิเคราะห์โครงสร้างจะใช้คุณสมบัติของคอนกรีตตามผลการทดสอบคอนกรีตในภาคผนวก ก โมเมนต์ ความเฉื่อย และความยาวของชิ้นส่วนย่อย

เนื่องจากโครงสร้างทางวิ่งยกระดับที่ใช้ทดสอบในงานวิจัยนั้น มีสภาพโครงสร้างเป็นคาน อย่างง่าย (Simply supported beam) ดังนั้นการหาแรงภายในจึงใช้เพียงสมการสมดุลเพียงอย่าง เดียว (Equilibrium equation) ทำให้สามารถหาค่าแรงเฉือนและโมเมนต์ภายในได้โดยง่าย โดยค่า

(2-19)

ความเค้นดัดและความเค้นเฉือนสามารถใช้ทฤษฎีโครงสร้างเบื้องต้นในการคำนวณดังในสมการที่ 2-21 และสมการที่ 2-22 ตามลำดับ

$$\sigma_{xx} = -\frac{Mz}{I_y} \tag{2-21}$$

โดยที่

 $\sigma_{\scriptscriptstyle xx}$ คือความเค้นตั้งฉากในแนวแกน x

M คือโมเมนต์ภายในหน้าตัด

- z คือระยะทางจากเส้นปกติถึงตำแหน่งที่พิจารณาความเค้นดัด
- I, คือโมเมนต์ความเฉื่อยของหน้าตัด

และ

$$\tau = \frac{VQ}{IB}$$

โดยที่

- au คือค่าความเค้นเฉือนในหน้าตัด
- V คือแรงเฉือนภายในหน้าตัด
- Q คือโมเมนต์ของพื้นที่ของตำแหน่งความเค้นเฉือนที่สนใจ
- I คือโมเมนต์ความเฉื่อยของหน้าตัด
- **B** คือความกว้างของหน้าตัด

รูปที่ 2-22 ความเค้นดัดและความเค้นเฉือนในหน้าตัด (Hibbeler, 2017)

(2-22)

บทที่ 3

การทดสอบสมรรถนะทางวิ่งยกระดับ

3.1 คุณสมบัติของทางวิ่งยกระดับที่ใช้ในการทดสอบ

ทางวิ่งยกระดับ (Viaduct) ที่ใช้ในการทดสอบนั้นเป็นโครงสร้างสะพานแบบคอนกรีตอัด แรงรูปกล่อง ระบบชิ้นส่วนสำเร็จ (Precast segmental box girder bridge) เสริมด้วยลวดอัดแรง ชนิดอัดแรงภายหลัง (Post-tensioning) โดยลวดทั้งหมดวางตัวอยู่ในคอนกรีต (Internal tendon) โดยมีความยาวช่วงพาดระหว่างฐานรองรับเท่ากับ 31.5 เมตรแบ่งออกเป็นทั้งหมด 13 ชิ้นส่วนย่อย แต่ละชิ้นส่วนยาว 2.6 เมตรเว้นแต่ชิ้นแรกและชิ้นสุดท้ายยาวชิ้นละ 2.0 เมตร รวมความยาวทั้งหมด 32.6 เมตร ความกว้างของแผ่นพื้นด้านบนและด้านล่างมีค่า 12.2 เมตร และ 4.6 เมตรตามลำดับ คอนกรีตที่ใช้เป็นเกรด C50 มีกำลังรับแรงอัดระบุ (f_c') 50 MPa และมีค่าโมดูลัสระบุ (E_c) 33,600 MPa รูปแปลนจำลองโครงสร้างทางวิ่งยกระดับแสดงไว้ในรูปที่ 3-1 โดยมีเลขแสดงชิ้น ส่วนย่อยระบุไว้เพื่อเป็นตำแหน่งอ้างอิงในวิทยานิพนธ์ฉบับนี้

รูปที่ 3-1 แปลนจำลองโครงสร้างทางวิ่งยกระดับ

หน้าตัดของทางวิ่งยกระดับแบ่งออกเป็น 2 แบบคือ หน้าตัดชนิดบริเวณฐานรองรับ และ หน้าตัดปกติ โดยหน้าตัดบริเวณฐานรองรับจะมีความหนามากกว่าหน้าตัดกึ่งกลางช่วงเนื่องจากต้อง ออกแบบให้สามารถรับแรงเฉือนที่บริเวณฐานรองรับได้ หน้าตัดชนิดบริเวณฐานรองรับจะอยู่ใน ชิ้นส่วนย่อยชิ้นที่ 1 และชิ้นส่วนที่ 13 ทั้งหมดรวมถึงชิ้นส่วนย่อยที่ 2 และ 12 บางส่วนโดยรูปและมิติ

ของหน้าตัดแบบบริเวณฐานรองรับและหน้าตัดแบบปกติแสดงไว้ในรูปที่ 3-2 และ รูปที่ 3-3 ตามลำดับ

3.2 การให้แรงกระทำแก่โครงสร้างทางวิ่งยกระดับ

การทดสอบทางวิ่งยกระดับนั้นสามารถแบ่งการทดสอบได้เป็น 2 ประเภท ได้แก่การ ทดสอบเชิงสถิต (Static test) และการทดสอบเชิงพลวัต (Dynamic test) การทดสอบเชิงสถิต จัดเป็นการทดสอบใหญ่โดยจะแบ่งสามารถแบ่งย่อยออกได้เป็นสองการทดสอบย่อยคือ การทดสอบ ถึงระดับการให้แรง 1.20 เท่าของน้ำหนักบรรทุกออกแบบ (1.20x design load) เพื่อใช้ทดสอบ สมรรถนะโครงสร้างตามเกณฑ์มาตรฐานจีน และการทดสอบถึงระดับการให้แรง 2.00 เท่าของ น้ำหนักบรรทุกออกแบบ (2.00x design load) เพื่อใช้ทดสอบสมรรถนะโดยรวมของโครงสร้าง รวมถึงการทดสอบแรงเฉือน ส่วนการทดสอบเชิงพลวัตจะทดสอบเพื่อหาความถี่ธรรมชาติของ โครงสร้างทางวิ่งยกระดับ

การให้แรงกระทำเชิงสถิตแก่โครงสร้างทางวิ่งยกระดับจะกระทำได้โดยการให้แรงผ่านแม่ แรงไฮดรอลิคที่ติดตั้งไว้บริเวณส่วนบนของโครงสร้างจำนวน 10 เครื่องโดยการให้แม่แรง ไฮดรอลิคแต่ละตัวดึงมวลถ่วง (Counter weight) บริเวณฐานด้านล่าง ทำให้การให้แรงผ่านการดึง มวลถ่วงเปรียบเสมือนการเพิ่มน้ำหนักบรรทุกขึ้นบนโครงสร้างเพื่อจำลองพฤติกรรมของโครงสร้างจริง ผังการติดตั้งแม่แรงไฮดรอลิคด้านหน้าและด้านข้างแสดงไว้ในรูปที่ 3-4 และ รูปที่ 3-5 ตามลำดับซึ่ง การทดสอบแรงดัด (Bending test) และการทดสอบแรงเฉือน (Shear test) นั้นจะมีการติดตั้งแม่ แรงไฮดรอลิคที่ต่างกันโดยมีรูปการติดตั้งแม่แรงไฮดรอลิคสำหรับการทดสอบแรงดัดในภาคสนาม แสดงไว้ในรูปที่ 3-6

รูปที่ 3-5 ผังการติดตั้งแม่แรงไฮดรอลิคด้านข้าง

30

รูปที่ 3-6 การติดตั้งแม่แรงไฮดรอลิคภาคสนามสำหรับการทดสอบแรงดัด (Bending test)

แม่แรงไฮดรอลิคสำหรับการทดสอบแรงดัดจะถูกติดตั้งห่างกันคู่ละ 4 เมตรตามแนวยาว โดยคู่ที่ 3 จะถูกติดตั้ง ณ กึ่งกลางช่วงพาดในขณะที่การติดตั้งแม่แรงไฮดรอลิคสำหรับการทดสอบแรง เฉือนจะเปลี่ยนตำแหน่งคู่ที่ 1 และ 5 มาที่ตำแหน่งบริเวณฐานรองรับเพื่อให้เกิดประสิทธิภาพในการ ให้แรงเฉือนแก่ตัวโครงสร้างดังแสดงในรูปที่ 3-5 ในการทดสอบแรงดัดโครงสร้างพิจารณาการให้แรง ของแม่แรงไฮดรอลิค P_i กระทำรูปที่ 3-7 จะสามารถคำนวณโมเมนต์กระทำ ณ กึ่งกลางช่วงได้จาก สมการที่ 3-1

จาก
$$M = \frac{10P_i}{2} \times \frac{L}{2} - \sum_{i=1}^{2} P_i x_i$$
 (3-1)
จะได้ $= \frac{10P_i}{2} \times \frac{31.5}{2} - (2 \times 4) - (2 \times 8) = 54.75P_i$

โดยที่

- M คือโมเมนต์ ณ กึ่งกลางช่วงพาด
- *P*_i คือแรงกระทำจากแม่แรงไฮดรอลิคหนึ่งเครื่อง
- *L* คือความยาวช่วงพาด
- x_i คือระยะทางระหว่างแม่แรงไฮดรอลิคถึงกึ่งกลางช่วงพาด

การทดสอบแรงเฉือนโครงสร้างจะพิจารณาการให้แรงของแม่แรงไฮดรอลิค P₁₋₆ และ P₇₋₁₀ กระทำรูปที่ 3-8 จะสามารถคำนวณแรงปฏิกิริยาที่ฐานรองรับด้านขวามือได้จากสมการที่ 3-2

$$\text{Prin } R_{right_sp} L = \left(2P_{1-6}\right) \left\{ \left(\frac{L}{2} - 4\right) + \left(\frac{L}{2}\right) + \left(\frac{L}{2} + 4\right) \right\} + \left(2P_{7-10}\right) \left\{ \left(L - 2.85\right) + \left(L - 0.6\right) \right\}$$

$$(3-2)$$

จะได้ $R_{right_sp} = 3P_{1-6} + 3.781P_{7-10}$

โดยที่

 $R_{{
m right}_sp}$ คือแรงปฏิกิริยาด้านขวาของโครงสร้างทางวิ่งยกระดับ

 $P_{\!_{1-6}}$ คือแรงกระทำจากแม่แรงไฮดรอลิคหมายเลข 1 ถึงหมายเลข 6

- P_{7-10} คือแรงกระทำจากแม่แรงไฮดรอลิคหมายเลข 7 ถึงหมายเลข 10
- *L* คือความยาวช่วงพาด

OMULALONGKORN UNIVERSITY รูปที่ 3-7 ตำแหน่งการให้แรงในการทดสอบแรงดัด

รูปที่ 3-8 ตำแหน่งการให้แรงในการทดสอบแรงเฉือน

การให้แรงกระทำเชิงพลวัตจะกระทำได้โดยการปล่อยถุงทรายหนักประมาณ 1 ตันลงบน โครงสร้างที่ความสูงประมาณ 1 เมตรเพื่อให้เกิดการเหนี่ยวนำให้เกิดการสั่นแบบอิสระขึ้นและนำไป แปรผลสัญญาณต่อไป โดยรูปที่ 3-9 แสดงการทดสอบจริงในการปล่อยมวลถุงทรายลงบนโครงสร้าง ทางวิ่งยกระดับ

รูปที่ 3-9 การปล่อยมวลถุงทรายเพื่อเหนี่ยวนำให้เกิดการสั่นแบบอิสระ

3.3 การทดสอบเชิงพลวัต

การทดสอบเชิงพลวัตเพื่อหาความถี่ธรรมชาติของโครงสร้างทางวิ่งยกระดับนั้น จำเป็นที่ จะต้องทดสอบเป็นลำดับแรกเนื่องจากหลังการทดสอบเชิงสถิตนั้นโครงสร้างทางวิ่งยกระดับอาจมีค่า ความแข็ง (Stiffness) ของโครงสร้างโดยรวมเปลี่ยนไปทำให้ผลการทดสอบเชิงพลวัตที่ได้นั้นไม่ น่าเชื่อถือ การทดสอบเชิงพลวัตนั้นจะกระทำโดยใช้ปั่นจั่นสนามที่อยู่บนพื้นยกถุงทรายมวล 1 ตัน ลอยสูงขึ้นจากผิวบนของโครงสร้างทางวิ่งยกระดับที่ตำแหน่งกึ่งกลางช่วงพาดและทำการปล่อย กระแทกกับตัวโครงสร้างเพื่อเหนี่ยวนำให้เกิดการสั่นแบบอิสระเป็นจำนวน 3 ครั้ง

อย่างไรก็ดีโครงสร้างทางวิ่งยกระดับขณะทดสอบนั้นไม่มีน้ำหนักบรรทุกคงที่ส่วนเพิ่ม (Superimposed dead load) ทำให้ผลการทดสอบที่ได้ไม่สอดคล้องความเป็นจริง จึงจำเป็นที่ จะต้องทำการปรับแก้ผลการทดสอบด้วยการวิเคราะห์เชิงพลวัตอย่างง่ายด้วยวิธีการชดเชยมวลดัง แสดงไว้ในหัวข้อที่ 4.1.1 เพื่อให้ผลการทดสอบมีความถูกต้อง

3.4 การทดสอบเชิงสถิต

การทดสอบเชิงสถิตจะแบ่งออกได้เป็นการทดสอบแรงดัด (Bending test) และการ ทดสอบแรงเฉือน (Shear test) ในการทดสอบแรงดัดเนื่องจากแรงกระทำจริงนั้นมีลักษณะการถ่าย แรงแบบแผ่ (Area load) ซึ่งยากที่จะจำลองได้ในการทดสอบจริง การจำลองพฤติกรรมของโครงสร้าง จึงกำหนดให้โมเมนต์ดัด ณ กึ่งกลางช่วงพาดมีค่าใกล้เคียงกันกับโมเมนต์ดัดที่เกิดจากพฤติกรรมของ โครงสร้างจริง การให้โมเมนต์ดัดแก่ตัวทางวิ่งยกระดับจะเพิ่มแรงกระทำเป็นวงรอบการให้แรง แบ่งเป็น 3 ระดับการทดสอบย่อยเพื่อความปลอดภัยของผู้ปฏิบัติการทดสอบได้แก่ การทดสอบโดย ให้ภาระกระทำที่ 1.20, 1.60 และ 2.00 เท่าของน้ำหนักบรรทุกออกแบบ (Design load) โดยแต่ละ การทดสอบย่อยจะค่อย ๆ เพิ่มแรงกระทำแก่ตัวสะพานโดยมีค่าการให้แรงรวมสูงสุดเท่ากับ 1000 tons, 1550 tonsและ 2050 tons ตามลำดับ

3.4.1 การให้แรงกระทำเชิงสถิตแก่โครงสร้างทางวิ่งยกระดับ

การทดสอบเชิงสถิตนั้นจะมีลำดับการให้แรงแก่ตัวโครงสร้างทางวิ่งยกระดับจากแม่แรง ไฮดรอลิคโดยมีการขั้นลำดับการให้แรงที่สำคัญได้แก่ ภาระกระทำเริ่มต้น (Initial state) สภาวะ น้ำหนักบรรทุกคงที่ (Base level, K_a) สภาวะน้ำหนักบรรทุกจรสถิต (Static live load, K_b) สภาวะ น้ำหนักบรรทุกจรออกแบบ (Design load level, K=1.00) และการให้แรงที่ระดับเกินกว่าสภาวะ ออกแบบที่ K=1.20 K=1.60 และ K=2.00 ซึ่งสภาพการให้แรงที่ระดับต่าง ๆ นั้นสามารถสรุปได้ดังนี้

ภาระกระทำเริ่มต้น (Initial state) เป็นภาระกระทำขั้นต่ำที่แม่แรงไฮดรอลิคสามารถที่ จะคงสภาพการดึงมวลถ่วงไว้ได้อย่างมีประสิทธิภาพและใช้เป็นภาระกระทำอ้างอิงที่ต่ำที่สุดสำหรับ การทดสอบโดยภาระกระทำเริ่มต้นจะใช้แรงจากแม่แรงไฮดรอลิค 10 ตัน/Jack ซึ่งคิดเป็นภาระ กระทำ ณ กึ่งกลางช่วงได้เท่ากับ 547.5 t-m (5370 kN-m)

น้ำหนักบรรทุกส่วนเพิ่ม (Superimposed dead load, SDL) เป็นน้ำหนักที่เกิดจากราว กันตก (Barrier) ระบบราง และโครงสร้างอื่น ๆ ที่วางตัวอยู่บนโครงสร้างทางวิ่งยกระดับที่ใช้ก่อสร้าง จริง ซึ่งในการทดสอบนั้นไม่มีโครงสร้างใด ๆ วางตัวอยู่ที่ผิวบนโครงสร้างทดสอบ ทำให้จะต้องจำลอง การให้แรงแกโครงสร้างทดสอบเพื่อให้พฤติกรรมของโครงสร้างมีลักษณะใกล้เคียงกันกับสภาพการใช้ งานจริง โดยน้ำหนักบรรทุกส่วนเพิ่มนั้นคิดเป็นภาระกระทำ 192 kN/m หรือคิดเป็นโมเมนต์ดัดที่ กึ่งกลางช่วง 23,700 kN-m การจำลองพฤติกรรมของน้ำหนักบรรทุกส่วนเพิ่มจะต้องใช้แรงจากแม่ แรงไฮดรอลิค 30 ตัน/Jack ร่วมกันกับน้ำหนักของ loading frame และตัวแม่แรงไฮดรอลิคซึ่ง คำนวณเฉลี่ยออกมาได้เท่ากับ 15.13 ตัน/Jack รวมทั้งหมดเป็น 45 ตัน/Jack คิดเป็นโมเมนต์ดัดที่ กึ่งกลางช่วง 2,464 t-m (24,200 kN-m) การให้แรงกระทำจากแม่แรงไฮดรอลิค 30 ตัน/Jack จึง เปรียบเสมือนว่าโครงสร้างทดสอบนั้นอยู่ในสภาพที่ใกล้เคียงกันกับสภาพการใช้งานจริงและเรียก สภาวะการให้แรงนี้ว่าสภาวะน้ำหนักบรรทุกคงที่ (Base level, K_a)

สภาวะน้ำหนักบรรทุกจรสถิต (Static live load, K_b) โดยมาตรฐานจีนกำหนดน้ำหนัก บรรทุกจรเป็นรูปแบบ ZK Live Load (รูปที่ 3-10) เคลื่อนที่ไปบนโครงสร้างทางวิ่งยกระดับโดย โมเมนต์สูงสุดที่เกิดขึ้น ณ กึ่งกลางช่วงมีค่าเท่ากับ 21,500 kN-m โดยสามารถจำลองพฤติกรรมได้ โดยใช้แรงจากแม่แรงไฮดรอลิค 40 ตัน/Jack ซึ่งเมื่อรวมกับแรงจากสภาวะพื้น (30 ตัน/Jack, Ka) ทำ ให้จะต้องใช้แรงจากแม่แรงไฮดรอลิคสุทธิเท่ากับ 70 ตัน/Jack เพื่อใช้ในการจำลองพฤติกรรมที่เกิด จากน้ำหนักบรรทุกจรสถิตในโครงสร้างจริงโดยโมเมนต์ที่กึ่งกลางช่วงพาดมีค่าเท่ากับ 3,833 t-m (37,600 kN-m)

รูปที่ 3-10 น้ำหนักรถไฟตามมาตรฐานจีน ZK Train Load

สภาวะน้ำหนักบรรทุกออกแบบ (Design load level, K=1.00) เป็นภาระกระทำที่เกิด จากการปรับค่าน้ำหนักบรรทุกจรสถิตโดยการคูณค่าการคูณขยายทางพลวัต Dynamic factor (μ) ในสมการที่ 3-3 เพื่อใช้เพิ่มขนาดของแรงกระทำเนื่องจากผลของการกระแทก โดยเมื่อแทนค่าใน สมการดังกล่าวจะได้ว่าค่าการคูณขยายมีค่าเท่ากับ 1.086 ทำให้เมื่อนำไปคูณกับน้ำหนักบรรทุกจร สถิตจะได้ว่าจะต้องใช้แรงจากแม่แรงไฮดรอลิค 43.4 ตัน/Jack เพื่อความสะดวกในการทำการทดสอบ จึงพิจารณาใช้แรงจากแม่แรงไฮดรอลิค 45 ตัน/Jack ในการแทนพฤติกรรมของภาระจากสภาวะ น้ำหนักบรรทุกจรออกแบบซึ่งเมื่อรวมกับแรงจากสภาวะน้ำหนักบรรทุกคงที่ (30 ตัน/Jack, Ka) ทำให้ จะต้องใช้แรงจากแม่แรงไฮดรอลิคสุทธิเท่ากับ 75 ตัน/Jack เพื่อใช้ในการจำลองพฤติกรรมที่เกิดจาก สภาวะน้ำหนักบรรทุกจรออกแบบโดยคิดเป็นโมเมนต์ที่กึ่งกลางช่วงพาดมีค่าเท่ากับ 4,106 t-m (40,300 kN-m)

ann
$$(1+\mu) = 1 + \left(\frac{1.44}{\sqrt{L_{\varphi}} - 0.2} - 0.18\right)$$
 (3-3)

จะได้
$$=1 + \left(\frac{1.44}{\sqrt{31.5} - 0.2} - 0.18\right)$$

= 1.086

โดยที่

 μ คือตัวค่าการคูณขยายทางพลวัต

L_o คือความยาวช่วงพาด

สภาวะการให้แรงที่ 1.20 เท่าของค่าน้ำหนักบรรทุกออกแบบ (1.20x design load level, K=1.20) เป็นการให้แรงกระทำแก่โครงสร้างทางวิ่งยกระดับโดยมีระดับการให้แรง 100 ตัน/ Jack คิดเป็นโมเมนต์ที่กึ่งกลางช่วงพาดมีค่าเท่ากับ 5,475 t-m (53,700 kN-m) เพื่อตรวจสอบและ ยืนยันว่าหน้าตัดที่ก่อสร้างไม่เกิดรอยร้าวซึ่งจะทำให้โครงสร้างทางวิ่งยกระดับนั้นมีความคงทนและ สามารถใช้งานได้เกิน 100 ปีตามมาตรฐานจีน

สภาวะการให้แรงที่ 1.60 เท่าของค่าการออกแบบ (1.60x design load level, K=1.60) เป็นการให้แรงกระทำแก่โครงสร้างทางวิ่งยกระดับโดยมีระดับการให้แรง 155 ตัน/Jack คิดเป็น โมเมนต์ที่กึ่งกลางช่วงพาดมีค่าเท่ากับ 8,486 t-m (83,200 kN-m) จัดเป็นภาระกระทำเพื่อการ ประเมินระดับน้ำหนักบรรทุกที่อาจทำให้เกิดการแตกร้าวขึ้น (Cracking resistance)

สภาวะการให้แรงที่ 2.00 เท่าของค่าการออกแบบ (2.00x design load level, K=2.00) เป็นการให้แรงกระทำแก่โครงสร้างทางวิ่งยกระดับโดยมีระดับการให้แรง 205 ตัน/Jack คิดเป็น โมเมนต์ที่กึ่งกลางช่วงพาดมีค่าเท่ากับ 11,224 t-m (110,000 kN-m) จัดเป็นภาระกระทำสูงสุดใน การทดสอบ โดยที่ระดับการให้แรงที่ 2.00 เท่าอาจทำให้เกิดการวิบัติขึ้น (Load carrying capacity) ดังนั้นการให้แรงกระทำในขั้นนี้จะใช้เพื่อยืนยันถึงความแข็งแรงของโครงสร้างทางวิ่งยกระดับโดย ตารางที่ 3-1 แสดงระดับการให้แรงกระทำ ภาระโมเมนต์กระทำกึ่งกลางช่วง และภาระโมเมนต์สุทธิที่ รวมผลของน้ำหนักบรรทุกคงที่ของโครงสร้างซึ่งมีผลการวิเคราะห์ละเอียดในบทที่ 5 (โมเมนต์กึ่งกลาง ช่วงจากน้ำหนักบรรทุกคงที่เท่ากับ 2437.4 t-m) และน้ำหนักรวมจากแม่แรงไฮดรอลิคและ Loading frame คิดเป็น 30.26 tons/frame หรือคิดเป็นแรงกระทำเฉลี่ย 15.13 tons ที่ตำแหน่งแม่แรง ไฮดรอลิค

		Jack load (P _i)	Bending Moment	Support Reaction	
Load level	Actual K	(tons/Jack)	Applied Moment	Total Moment	(tons)
Dead load	0.33	0	0	2437	343
Prestress	-	-	-6423	-	0
Frame load	0.45	Equivalent 15.13	838	3276	76
Initial state	0.52	10	548	3823	50
ZK live load	0.63	-	2186	4624	299
Static live load - Base level (Kb-Ka)	0.63	40	2190	4627	200
SDL=192 kN/m	0.67	-	2425	4863	319
Base level (K _a)	0.67	30	1643	4918	150
K=0.80	0.79	45	2464	5739	225
Static live load (K _b)	0.97	70	3833	7108	350
Theoretical design load level	1.00	73.4	4019	7294	367
Design load level (K=1.00)	1.01	75	4106	7382	375
K=1.05	1.05	80	4380	7656	400
K=1.10	1.09	85	4654	7929	425
K=1.15	1.12	90	4928	8203	450
K=1.20	1.20	100	5475	8751	500
K=1.25	1.27	110	6023	9298	550
K=1.30	1.31	115	6296	9572	575
K=1.35	1.35	120	6570	9846	600
K=1.40	1.39	125	6844	10119	625
K=1.45	1.42	130	7118	10393	650
K=1.50	1.50	140	7665	10941	700
K=1.55	1.54	145	7939	11214	725
K=1.60	1.61	155	8486	11762	775
K=1.65	1.65	160	8760	12036	800
K=1.70	1.69	165	9034	12309	825
K=1.80	1.80	180	9855	13131	900
K=1.90	1.88	190	10403	13678	950
K=2.00	1.99	205	11224	14499	1025

ตารางที่ 3-1 ตารางสรุปการให้ภาระกระทำแก่โครงสร้างทางวิ่งยกระดับในการทดสอบแรงดัด

3.4.2 การทดสอบถึงภาระกระทำ 1.20 เท่าของค่าน้ำหนักบรรทุกออกแบบ

การทดสอบถึงภาระกระทำ 1.20 เท่าของน้ำหนักบรรทุกออกแบบมีวัตถุประสงค์หลักใน การทดสอบตามมาตรฐานจีน ด้านการแอ่นตัว มุมหมุนที่ฐานรองรับ ค่าความเค้นที่ตำแหน่งต่าง ๆ รวมถึงเกณฑ์ทางด้านรอยร้าวโดยสามารถแบ่งการทดสอบออกเป็น 3 วงรอบย่อยได้แก่ First cycle, Second cycle และ Proof load test ตามลำดับ ขนาดของการให้แรงในแต่ละวงรอบ และเวลาที่ใช้ ในการค้างแรงจากแม่แรงไฮดรอลิคแสดงไว้ในรูปที่ 3-11

การทดสอบย่อย First cycle เป็นการทดสอบย่อยแรกที่ให้ภาระกระทำถึงค่าออกแบบ (design load, K=1.00) เพื่อจำลองพฤติกรรมจริงของทางวิ่งยกระดับเมื่อมีการใช้งานตามปกติโดย แบ่งเป็นระดับการให้แรงทั้งหมด 8 ระดับ การทดสอบย่อย Second cycle เป็นการทดสอบย่อยที่สองที่ให้ภาระกระทำถึง K=1.20 โดยตามมาตรฐานจีนกำหนดว่าจะต้องไม่เกิดรอยร้าวขึ้นในหน้าตัดโครงสร้างทางวิ่งยกระดับเพื่อความ คงทนของโครงสร้าง (Durability) เนื่องจากโครงสร้างถูกออกแบบให้มีอายุการใช้งานอย่างน้อย 100 ปี ในการทดสอบจะแบ่งการให้แรงทั้งหมด 13 ระดับ โดยเมื่อถึงการให้แรงสูงสุดที่ 100 ตัน/Jack จะ ทำการค้างภาระกระทำไว้ 20 นาทีเพื่อให้เกิดความปลอดภัยกับทีมงานในการสำรวจรอยร้าวและ เพื่อให้รอยร้าวที่อาจเกิดขึ้นนั้นปรากฏชัดเจนก่อนการเข้าสำรวจ

การทดสอบย่อย Proof load test เป็นการทดสอบย่อยสุดท้ายที่ให้ภาระกระทำสูงสุด เท่ากับการทดสอบย่อยที่สอง (Second cycle) โดยการทดสอบย่อยนี้มีขึ้นเพื่อใช้ยืนยันผลการ ตรวจสอบรอยร้าวที่อาจเกิดขึ้นในหน้าตัดของทางวิ่งยกระดับ การทดสอบจะให้แรงกระทำสูงสุดที่ ระดับการให้แรง K=1.20 เช่นเดียวกันกับการทดสอบย่อยที่สอง

รูปที่ 3-11 ลำดับการให้แรงในการทดสอบถึงระดับ 1.20 เท่าของน้ำหนักบรรทุกออกแบบ

3.4.3 การทดสอบถึงภาระกระทำ 1.60 เท่าของค่าน้ำหนักบรรทุกออกแบบ

การทดสอบถึงภาระกระทำ 1.60 เท่าของน้ำหนักบรรทุกออกแบบ มีวัตถุประสงค์หลักใน การประเมินระดับน้ำหนักบรรทุกที่ทำให้หน้าตัดเกิดการแตกร้าวขึ้น (Cracking resistance test) การทดสอบนี้จะเน้นการตรวจสอบรอยร้าวที่อาจเกิดขึ้นในหน้าตัดบริเวณภายใต้โครงสร้างที่ตำแหน่ง กึ่งกลางช่วงพาดซึ่งเป็นบริเวณที่เกิดความเค้นดึง (Tensile stress) สูงที่สุด โดยจะแบ่งระดับการให้ แรงออกเป็น 17 ระดับดังแสดงในรูปที่ 3-12 การตรวจรอยร้าวนั้นจะเริ่มตรวจสอบหลังจากการให้ แรงในระดับ K=1.20 ขึ้นไปโดยมีระดับการให้แรงกระทำสูงสุดที่ระดับ K=1.60

3.4.4 การทดสอบถึงภาระกระทำ 2.00 เท่าของค่าน้ำหนักบรรทุกออกแบบ

GRULALOMGKORN UNIVERSITY การทดสอบถึงภาระกระทำ 2.00 เท่าของค่าน้ำหนักบรรทุกออกแบบออกแบบหรือ Bending strength test มีวัตถุประสงค์หลักในการทดสอบเพื่อประเมินน้ำหนักบรรทุกที่อาจทำให้ เกิดการวิบัติของโครงสร้างทางวิ่งยกระดับหรือความสามารถในการแบกทานน้ำหนักของโครงสร้าง (Load carrying capacity) โดยการทดสอบจะใช้การตรวจสอบรอยร้าวและค่าการแอ่นตัวของ โครงสร้างในการประเมิน โดยจะแบ่งระดับการให้แรงออกเป็น 26 ระดับดังแสดงในรูปที่ 3-13 การ ตรวจสอบรอยร้าวที่เกิดขึ้นจะต้องพิจารณารอยร้าวที่เกิดขึ้นใหม่ นอกเหนือจากรอยร้าวเดิมที่อาจ เกิดขึ้นเนื่องจากโครงสร้างอาจได้รับความเสียหายจากการทดสอบที่ระดับ 1.60 เท่าของน้ำหนัก บรรทุกออกแบบ (Cracking resistance test) โดยการทดสอบนี้มีระดับการให้แรงกระทำสูงสุดที่ ระดับ K=2.00 ซึ่งคิดเป็น 2 เท่าของค่าน้ำหนักบรรทุกออกแบบ

3.4.5 การทดสอบแรงเฉือน

การทดสอบแรงเฉือน (Shear test) จะทำทดสอบหลังการทดสอบแรงดัดเสร็จสิ้น การทดสอบแรงเฉือนจะเน้นการตรวจสอบรอยร้าวที่อาจเกิดขึ้นบริเวณฐานรองรับด้านที่ติดตั้งแม่ แรงไฮดรอลิค โดยจะมีการเปลี่ยนตำแหน่งแม่แรงไฮดรอลิคดังแสดงในรูปที่ 3-14 แม่แรงไฮดรอลิค ตำแหน่ง P1 ถึง P6 จะให้ภาระกระทำที่แตกต่างจากตำแหน่ง P7 ถึง P10 เพื่อใช้จำลองพฤติกรรม แรงเฉือนที่เกิดขึ้นบริเวณฐานรองรับอันเนื่องมาจากการใช้งานจริงและระหว่างการก่อสร้างซึ่งมีแรง ปฏิกิริยาประมาณ 672.9 และ 948.1 ตันตามลำดับ โดยมีรายละเอียดระดับแรงปฏิกิริยาที่ ฐานรองรับแสดงในตารางที่ 3-2 และมีลำดับการให้แรงทั้งหมด 11 ระดับดังแสดงรายละเอียดไว้ใน รูปที่ 3-15

รูปที่ 3-14 ตำแหน่งการติดตั้งแม่แรงไฮดรอลิคภาคสนามในการทดสอบแรงเฉือน

ตารางที่ 3-2 ตารางสรุปการให้ภาระกระทำแก่โครงสร้างทางวิ่งยกระดับในการทดสอบแรงเฉือน

Landlevel	Load Step	Applied Jack	Load (tons)	Reaction Force	Total Reaction Force
Load level		P1-P6	P7-P10	(tons)	(tons)
Dead load	-	0	0	342.6	Self weight
Frame load	-	Equivalent 15.13	Equivalent 15.13	102.6 (Right side)	102.6
(1) Initial state	S1	10	10	67.8	170.4
2	S2	20	10	97.8	200.4
3	\$3	40	10	157.8	260.4
4	S 4	40	40	271.2	373.8
5	S5	40	65	365.8	468.4
6	S6	40	85	441.4	544.0
7	S 7	40	105	517.0	<mark>619.6</mark>
Theoretical SDL+LL	-	-	-	672.9	672.9
8 (SDL+LL)	58	40	125	592.6	695.2
9	S 9	40	145	668.2	770.8
10	S10	40	165	743.9	846.5
Theoretical Max. Erection	-	-	-	948.1	948.1
11 (Max Erection)	S11	40	185	819.5	922.1

รูปที่ 3-15 ลำดับการให้แรงในการทดสอบแรงเฉือน

3.5 การตรวจวัดผลตอบสนอง

ผลตอบสนองที่เกิดขึ้นจากการทดสอบภาคสนามทั้งการทดสอบเชิงสถิตและการทดสอบ เชิงพลวัตจะใช้อุปกรณ์ตรวจจับที่แตกต่างกัน โดยการทดสอบเชิงพลวัตจะใช้ตัวตรวจจับความเร่ง 5 ตัว แบ่งเป็นตัวตรวจจับคลื่นแผ่นดินไหวความไวสูง (Very high sensitivity seismometer) และตัว ตรวจจับความเร่งความไวสูง (High sensitive accelerometer) ส่วนการทดสอบเชิงสถิตจะใช้ อุปกรณ์ตรวจจับความแม่นยำสูงจำนวน 35 และ 33 ตัวในการทดสอบแรงดัดและการทดสอบแรง เฉือนตามลำดับ โดยจะแบ่งเป็นตัวตรวจจับการเคลื่อนที่ (Displacement sensor) ตัวตรวจจับความ ลาดเอียง (Inclinometer) และเกจวัดความเครียด (Strain gauge) นอกจากนี้การตรวจสอบรอยร้าว ที่อาจเกิดขึ้นจำเป็นจะต้องใช้กล้องกำลังขยาย 10x ในการตรวจสอบโดยมีรายละเอียดและผังการ ติดตั้งอุปกรณ์ตัวตรวจจับต่าง ๆ ดังนี้

การตรวจจับผลตอบสนองจากการทดสอบเชิงพลวัตนั้น จะใช้ความเร็วการเก็บข้อมูล 250 ข้อมูลต่อวินาทีเพื่อให้ข้อมูลที่เก็บได้นั้นมีความน่าเชื่อถือต่อการแปลงผลและรายงานผลการ ทดสอบ โดยตัวตรวจจับคลื่นแผ่นดินไหวความไวสูง (รูปที่ 3-16, AC-1) จำนวน 1 ตัวจะถูกติดตั้งไว้ที่ ตำแหน่งกึ่งกลางช่วงพาด (L/2) และตัวตรวจจับความเร่งความไวสูงจำนวน 4 ตัว (รูปที่ 3-17, AC-2 ถึง AC-5) จะถูกติดตั้งไว้ที่ตำแหน่ง L/3, L/2 และ 2L/3 ตำแหน่งการติดตั้งของตัวตรวจจับทั้งสอง แบบแสดงไว้ในรูปที่ 3-22 ถึงรูปที่ 3-26

รูปที่ 3-16 Very high sensitivity seismometer (Kinemetrics)

รูปที่ 3-17 High sensitive accelerometer (Kyowa)

การตรวจจับผลตอบสนองจากการทดสอบเชิงสถิตในการทดสอบแรงดัดจะใช้ตัวตรวจจับ 3 ชนิด โดยมีตัวตรวจจับการเคลื่อนที่จำนวน 7 ตัว (รูปที่ 3-18, DP-1 ถึง DP-7) ติดตั้งไว้ที่ตำแหน่ง ฐานรองรับทั้งสองด้าน, L/3, L/2 และ 2L/3 ตัวตรวจจับความลาดเอียงจำนวน 2 ตัว (รูปที่ 3-19, IC-1 และ IC-4) ติดตั้งไว้ที่ตำแหน่งฐานรองรับทั้งสองด้านและที่ตำแหน่ง L/2 เกจวัดความเครียด จำนวน 22 ตัว (รูปที่ 3-20, SG-1 ถึง SG-22) ติดตั้งไว้ที่ตำแหน่งฐานรองรับทั้งสองด้าน, L/3, L/2 และ 2L/3 โดยมีตำแหน่งการติดตั้งของตัวตรวจจับทั้งสามชนิดแสดงไว้ในรูปที่ 3-22 ถึงรูปที่ 3-26 และใช้กล้องกำลังขยาย 10x (รูปที่ 3-21) ในการตรวจสอบรอยร้าวที่อาจเกิดขึ้นในการทดสอบ สมรรถนะโครงสร้าง

รูปที่ 3-19 Inclinometer (Level developments)

รูปที่ 3-20 Strain gauge (Kyowa)

รูปที่ 3-21 กล้องกำลังขยาย 10x ใช้ตรวจสอบรอยร้าว

รูปที่ 3-23 ตำแหน่งการติดตั้งอุปกรณ์ตรวจวัดสำหรับการทดสอบแรงดัด (Segment 5, L/3)

รูปที่ 3-24 ตำแหน่งการติดตั้งอุปกรณ์ตรวจวัดสำหรับการทดสอบแรงดัด (Segment 7, L/2)

รูปที่ 3-25 ตำแหน่งการติดตั้งอุปกรณ์ตรวจวัดสำหรับการทดสอบแรงดัด (Segment 9, 2L/3)

รูปที่ 3-26 ตำแหน่งการติดตั้งอุปกรณ์ตรวจวัดสำหรับการทดสอบแรงดัด (Segment 13)

การตรวจจับผลตอบสนองจากการทดสอบเชิงสถิตในการทดสอบแรงเฉือนจะใช้ตัว ตรวจจับเช่นเดียวกันกับการทดสอบแรงดัด โดยมีตัวตรวจจับการเคลื่อนที่จำนวน 8 ตัว (DP-1 ถึง DP-4 และ DP-8 ถึง DP-11) ติดตั้งไว้ที่ตำแหน่งฐานรองรับทั้งสองด้านโดยมีการเพิ่มตัวตรวจจับการ เคลื่อนที่เพิ่มเติมบริเวณใกล้ฐานรองรับด้านที่ติดตั้งแม่แรงไฮดรอลิค L/3, L/2 และ 2L/3 ตัวตรวจจับ ความลาดเอียงจำนวน 3 ตัว (IC-1 ถึง IC-3) ติดตั้งไว้ที่ตำแหน่งฐานรองรับทั้งสองด้านและที่ตำแหน่ง L/2 เกจวัดความเครียดจำนวน 22 ตัว (SG-9 ถึง SG-12 และ SG-15 ถึง SG-3) ติดตั้งไว้ที่ตำแหน่ง 2L/3 ตลอดจนบริเวณฐานรองรับด้านที่ติดตั้งแม่แรงไฮดรอลิคโดยตำแหน่งการติดตั้งของตัวตรวจจับ ทั้งสามชนิดแสดงไว้ในรูปที่ 3-27 ถึงรูปที่ 3-34

รูปที่ 3-27 ตำแหน่งการติดตั้งอุปกรณ์ตรวจวัดสำหรับการทดสอบแรงเฉือน (Segment 1)

รูปที่ 3-28 ตำแหน่งการติดตั้งอุปกรณ์ตรวจวัดสำหรับการทดสอบแรงเฉือน (Segment 5, L/3)

รูปที่ 3-29 ตำแหน่งการติดตั้งอุปกรณ์ตรวจวัดสำหรับการทดสอบแรงเฉือน (Segment 7, L/2)

รูปที่ 3-30 ตำแหน่งการติดตั้งอุปกรณ์ตรวจวัดสำหรับการทดสอบแรงเฉือน (Segment 9, 2L/3)

รูปที่ 3-31 ตำแหน่งการติดตั้งอุปกรณ์ตรวจวัดสำหรับการทดสอบแรงเฉือน (Segment 11)

รูปที่ 3-33 ตำแหน่งการติดตั้งอุปกรณ์ตรวจวัดสำหรับการทดสอบแรงเฉือน (Segment 12/2)

รูปที่ 3-34 ตำแหน่งการติดตั้งอุปกรณ์ตรวจวัดสำหรับการทดสอบแรงเฉือน (Segment 13)

3.6 เกณฑ์การทดสอบโครงสร้างทางวิ่งยกระดับ

เกณฑ์การทดสอบสมรรถนะโครงสร้างทางวิ่งยกระดับในโครงการรถไฟความเร็วสูงใน ความร่วมมือระหว่างประเทศไทยและจีนนั้น จะพิจารณาใช้เกณฑ์มาตรฐานการออกแบบของประเทศ จีน (TB 10621-2014) เป็นเกณฑ์การทดสอบเนื่องจากเป็นข้อกำหนดของทางประเทศจีนและ ผู้ออกแบบชาวจีน เกณฑ์การทดสอบสมรรถนะโครงสร้างสามารถแบ่งประเภทการทดสอบออกเป็น การทดสอบเชิงพลวัต การทดสอบเชิงสถิต(การทดสอบแรงดัด) และการทดสอบเชิงสถิต(การทดสอบ แรงเฉือน) โดยการทดสอบสมรรถนะโครงสร้างจะใช้ผลจากการทดสอบภาคสนามเพื่อใช้ประเมิน เกณฑ์การทดสอบต่าง ๆ

3.6.1 เกณฑ์การทดสอบเชิงพลวัต

เพื่อตอบสนองความสะดวกสบายของผู้โดยสารในการเดินทางด้วยรถไฟความเร็วสูง มาตรฐานจีนจึงกำหนดเกณฑ์ความถี่ธรรมชาติขั้นต่ำในแนวดิ่งเพื่อใช้ยืนยันถึงความแข็งในแนวดิ่ง (Vertical stiffness) ที่มากพอ โดยการทดสอบเชิงพลวัตจะทำการทดสอบเพื่อหาความถี่ธรรมชาติใน แนวดิ่งของตัวโครงสร้างทางวิ่งยกระดับจากตกกระแทกของมวลถุงทราย เกณฑ์ตามมาตรฐานจีนระบุ ให้ใช้ค่าความถี่ธรรมชาติขั้นต่ำตามสมการที่ 3-4

3.6.2 เกณฑ์การทดสอบเชิงสถิต (การทดสอบแรงดัด)

เกณฑ์การทดสอบเชิงสถิตในส่วนของการทดสอบแรงดัดเป็นเกณฑ์ที่ใช้ประเมินเพื่อใช้ ยืนยันความปลอดภัยในการใช้งานจริง ความคงทนของโครงสร้าง และขีดจำกัดของโครงสร้างทางวิ่ง ยกระดับ โดยเกณฑ์การทดสอบสามารถแบ่งออกได้เป็นเกณฑ์การแอ่นตัว เกณฑ์มุมหมุนที่ฐานรองรับ เกณฑ์ความเค้น เกณฑ์รอยร้าว และเกณฑ์ขีดจำกัดของโครงสร้างซึ่งมีรายละเอียดระบุไว้ในหัวข้อที่ 3.6.2.1 ถึงหัวข้อที่ 3.6.2.5 ตามลำดับ

3.6.2.1 เกณฑ์การแอ่นตัว

เกณฑ์การแอ่นตัวของโครงสร้างทางวิ่งยกระดับจะพิจารณาจากการแอ่นตัวที่กึ่งกลางช่วง ของโครงสร้างทางวิ่งยกระดับจากภาระกระทำเคลื่อนที่ ZK live load ไม่เกิน L/1400 หรือ 22.5 มิลลิเมตร ภาระกระทำ ZK live load นั้นสามารถจำลองพฤติกรรมได้โดยการใช้ผลต่างของ ผลตอบสนองการแอ่นตัวจากสภาวะน้ำหนักบรรทุกจรสถิตเคลื่อนที่ (Static live load, K_b) และ ผลตอบสนองจากภาระกระทำจากสภาวะพื้น (Base level, K_a) โดยที่ค่าการแอ่นตัวดังกล่าวจะต้อง เป็นค่าการแอ่นตัวสุทธิกล่าวคือจะต้องนำค่าการแอ่นตัวลบด้วยค่าเฉลี่ยของการทรุดตัวของ ฐานรองรับทั้งสองด้าน

3.6.2.2 เกณฑ์มุมหมุนที่ฐานรองรับ

เกณฑ์มุมหมุนที่ฐานรองรับของโครงสร้างทางวิ่งยกระดับจะพิจารณาจากมุมหมุนที่ ฐานรองรับทั้งสองด้านจากภาระกระทำเคลื่อนที่ ZK live load ไม่เกิน 0.0020 เรเดียน ภาระกระทำ ZK live load นั้นสามารถจำลองพฤติกรรมได้โดยการใช้ผลต่างของผลตอบสนองมุมหมุนที่ ฐานรองรับจากภาระกระทำโดยน้ำหนักบรรทุกจรสถิตเคลื่อนที่ (Static live load, K_b) และ ผลตอบสนองจากภาระกระทำจากสภาวะพื้น (Base level, K_a)

3.6.2.3 เกณฑ์ความเค้น

ความเค้นที่เกิดขึ้นในโครงสร้างทางวิ่งยกระดับนั้นสามารถแบ่งออกได้เป็นทั้งความเค้นดึง ความเค้นอัด และความเค้นเฉือนโดยจะใช้ภาระกระทำร่วม (Load combination) 2 กรณีดังแสดง ในตารางที่ 3-3 ซึ่งประกอบภาระกระทำจากน้ำหนักคงที่ของทางวิ่งยกระดับ(DL) แรงในเส้นลวดอัด แรง (PS) น้ำหนักคงที่ส่วนเพิ่ม (SDL=192 kN/m) และ ZK live load การจำลองภาระกระทำ ดังกล่าวจะใช้ผลต่างของผลตอบสนองในการทดสอบโครงสร้างโดยมีรายละเอียดในตารางที่ 3-4

การทดสอบสมรรถนะโครงสร้างนั้นจะพิจารณาความเค้นดึงที่ผิวล่างของคอนกรีต ตำแหน่งกึ่งกลางช่วงพาด (Bottom-fiber, mid-span) ขณะที่ความเค้นอัดจะพิจารณาจากตำแหน่งที่ ติดเกจวัดความเครียดเพื่อใช้วัดผลตอบสนองความเครียดอัดซึ่งสูงจากผิวล่างคอนกรีต 2.077 m ที่ ตำแหน่งกึ่งกลางช่วงพาด

ความเค้นดึง ความเค้นอัด และความเค้นเฉือนจากเส้นลวดอัดแรง (Prestressed Tendon, PS) จะใช้การคำนวณด้วยวิธีทางไฟไนต์เอลิเมนต์โดยใช้โปรแกรม Midas Civil ในการ วิเคราะห์โครงสร้างซึ่งมีรายละเอียดระบุไว้ในบทที่ 5 โดยจะได้ผลตอบสนองความเค้นดึง ความเค้นอัด และความเค้นเฉือนเท่ากับ -22.10 MPa, -3.53 MPa และ -1.85 MPa ตามลำดับ

Admissible Stress Values for Bending test (MPa)					
Stress criteria	DL+PS+ZK live load	DL+PS+SDL+ZK live load			
Max. Shear stress at support	0.17f _c = 5.70	0.17f _c = 5.70			
Max. Principal compressive stress at mid span	$0.60f_{c} = -20.10$	0.66f _c = -22.11			
Max. Principal tension stress at mid span	f _{ct} = 3.10	f _{ct} = 3.10			

ตารางที่ 3-3 เกณฑ์ความเค้นในการทดสอบแรงดัดตามมาตรฐาน TB 10621-2014

ตารางที่ 3-4 การเลือกผลตอบสนองเพื่อใช้พิจารณาเกณฑ์ความเค้นของโครงสร้างทางวิ่งยกระดับ

Load case	Mid-Span moment (tons-m)	Shear force (1.70m from Support) (tons)	Tensile Stress (Mid-Span) (MPa)	Compressive Stress (Mid-Span) (MPa)	Shear Stress (1.70 m from Support) (MPa)
DL	2437.4	279.04	K=1.00 - K _a	K=1.00 - K _a	K=1.10 - K _a
PS	-6422.8	-472.11	-22.10 (FEM Analysis)	-3.53 (FEM Analysis)	-1.85 (FEM Analysis)
SDL	2425.4	275.07	K=1.00 - K _a	K=1.00 - K _a	K=1.10 - K _a
ZK live load	2186.4	263.25	K _b -K _a	K _b -K _a	K=1.10 - K _a
Base level (Ka)	1643	150			
Static live load (Kb)	3833	350			
K=1.00	4106	375			
K=1.10	4654	425			
K _b -K _a	2190	200			
K=1.00 - K _a	2463	225			
K=1.10 - K _a	3011	275			

3.6.2.4 เกณฑ์รอยร้าว

เกณฑ์รอยร้าวของโครงสร้างทางวิ่งยกระดับจะพิจารณาจากแรงกระทำ K=1.20 โดย โครงสร้างทางวิ่งยกระดับจะผ่านเกณฑ์ทางด้านรอยร้าวหากตรวจสอบด้วยกล้องส่องกำลังขยาย 10x บริเวณผิวล่างของโครงสร้างทางวิ่งยกระดับโดยไม่พบรอยร้าวอันเนื่องมาจากแรงดัดหลังจากคงภาระ กระทำไว้ 20 นาที

3.6.2.5 เกณฑ์ชีดจำกัดของโครงสร้าง

เกณฑ์ขีดจำกัดของโครงสร้างจะพิจารณาจากภาระกระทำการให้แรงสูงสุดที่ภาระกระทำ K=2.00 โดยโครงสร้างยังสามารถคงสภาพไว้ได้โดยไม่เกิดการวิบัติขึ้นจึงจะถือว่าผ่านเกณฑ์ขีดจำกัด ของโครงสร้าง

3.6.3 เกณฑ์การทดสอบเชิงสถิต (การทดสอบแรงเฉือน)

เกณฑ์การทดสอบเชิงสถิตในส่วนของการทดสอบแรงเฉือนเป็นเกณฑ์ที่ใช้ยืนยันความ ปลอดภัยระหว่างการใช้งานจริง และระหว่างการก่อสร้างโครงสร้างทางวิ่งยกระดับโดยเกณฑ์การ ทดสอบสามารถแบ่งออกได้เป็นเกณฑ์รอยร้าว เกณฑ์ความเค้น และเกณฑ์การทรุดตัวที่ฐานรองรับซึ่ง มีรายละเอียดระบุไว้ในหัวข้อที่ 3.6.3.1 ถึงหัวข้อที่ 3.6.3.3 ตามลำดับ

3.6.3.1 เกณฑ์รอยร้าว

เกณฑ์รอยร้าวของโครงสร้างทางวิ่งยกระดับจะพิจารณาจากภาระกระทำสูงสุดที่ระดับ S11 โดยโครงสร้างทางวิ่งยกระดับจะผ่านเกณฑ์ทางด้านรอยร้าวหากตรวจสอบด้วยกล้องส่อง กำลังขยาย 10x บริเวณผิวล่างของโครงสร้างทางวิ่งยกระดับโดยไม่พบรอยร้าวจากการทดสอบบริเวณ ฐานรองรับหลังจากคงภาระกระทำไว้ 3 นาที

3.6.3.2 เกณฑ์ความเค้น

ความเค้นที่เกิดขึ้นในโครงสร้างทางวิ่งยกระดับนั้นสามารถแบ่งออกได้เป็นทั้งความเค้นดึง ความเค้นอัด และความเค้นเฉือน เกณฑ์ความเค้นจะใช้ภาระกระทำสูงสุดที่ระดับ S11 โดยความเค้น ดึงสูงสุดที่ผิวบนของแผ่นพื้น ความเค้นอัดสูงสุดที่ผิวล่างของแผ่นพื้น และความเค้นเฉือนสูงสุดมีค่าไม่ เกิน 1.50MPa -1.80MPa และ 5.70MPa ตามลำดับดังแสดงไว้ในตารางที่ 3-5

Admissible Stress Values for Shear test (MPa)				
Stress criteria	S11 (40 tons/jack and 185 tons / jack)			
Max. Shear stress at support	0.17f _c = 5.70			
Max. compressive stress of the top surface of the bottom surface at support	-1.80			
Max. tensile stress of the bottom surface of the top slab at support	1.50			

ตารางที่ 3-5 เกณฑ์ความเค้นในการทดสอบแรงเฉือนตามมาตรฐาน TB 10621-2014

3.6.3.3 เกณฑ์การทรุดตัวที่ฐานรองรับ

ผลการทดสอบจะผ่านเกณฑ์การทรุดตัวที่ฐานรองรับก็ต่อเมื่อการทรุดตัวที่ฐานรองรับ จากผลการตอบสนองโดยภาระกระทำสูงสุดจากการก่อสร้างซึ่งเทียบเท่าระดับการให้แรงสูงสุดที่ ระดับ S11 (Max. Erection) ซึ่งจะต้องเกิดค่าการทรุดตัวที่ฐานรองรับไม่เกิน 2 mm
บทที่ 4

ผลการทดสอบสมรรถนะโครงสร้างทางวิ่งยกระดับ

4.1 การทดสอบสมรรถนะโครงสร้างจริงในภาคสนาม

4.1.1 ข้อมูลในการทดสอบเชิงพลวัต

การทดสอบเชิงพลวัตมีการทดสอบเมื่อวันที่ 10 ธันวาคม พ.ศ. 2563 โดยทดสอบทั้งหมด 3 ครั้งจากการใช้มวลถุงทรายหนัก 1 ตันกระแทกลงบนโครงสร้างทางวิ่งยกระดับจากการตัดเชือกดัง แสดงในรูปที่ 4-1 ข้อมูลการทดสอบเชิงพลวัตนั้นอยู่ในรูปของ Matrix ขนาดใหญ่โดยแถว (Row) ของ Matrix นั้นเป็นลำดับของข้อมูลที่เก็บโดยมีความเร็วในการเก็บข้อมูล 500 แถวต่อวินาทีและหลัก (Column) นั้นเป็นลำดับของตัวตรวจจับความเร่งที่ใช้ในการทดสอบ (AC-1 ถึง AC-5) ผลการทดสอบ ที่ได้นั้นยังไม่สามารถนำมารายงานผลได้โดยตรงด้วยเหตุผล 2 ข้อ โดยข้อแรกเนื่องจากผลการทดสอบ มีโดเมนและเรนจ์เป็นเวลาและความเร่งตามลำดับ ซึ่งเกณฑ์การทดสอบเชิงพลวัตนั้นจะพิจารณาจาก ค่าความถี่ธรรมชาติในโหมดที่ 1 เป็นสำคัญจึงจำเป็นต้องเปลี่ยนจากโดเมนเวลาเป็นโดเมนความถี่เพื่อ นำไปใช้เปรียบเทียบต่อไป และข้อที่สองเนื่องจากโครงสร้างทางวิ่งยกระดับที่ใช้ทดสอบนั้นไม่มี น้ำหนักภาระกระทำคงที่เพิ่มเติม (SDL) อีกทั้งยังมีมวลของ Loading frame ที่จะต้องนำมาปรับแก้ ทำให้มวลของโครงสร้างทางวิ่งยกระดับที่ใช้ทดสอบไม่ตรงกับสภาพการใช้งานจริง จึงจำเป็นจะต้องมี การปรับแก้ค่าความถี่ธรรมชาติที่ได้จากการทดสอบก่อนนำไปใช้รายงานผลต่อไป

รูปที่ 4-1 การทดสอบเชิงพลวัต

การแปลงโดเมนจากเวลาเป็นความถี่นั้นจะพิจารณาใช้การวิเคราะห์แบบ Frequency power spectrum โดยใช้การแปลงฟังก์ชันด้วยวิธีฟูเรียร์จากฟังก์ชันพื้นฐาน FFT (Fast Fourier transform) ในโปรแกรม MATLAB โดยรูปที่ 4-2 และรูปที่ 4-3 แสดงตัวอย่างสัญญาณความเร่งใน โดเมนเวลา และ Frequency power spectrum ที่ได้จากการแปลงโดยวิธีฟูเรียร์ตามลำดับโดยใช้ ข้อมูลจากการทดสอบเชิงพลวัตครั้งที่ 1 จากตัวตรวจจับ AC-1 (L/2)

การปรับแก้ค่าความถี่ธรรมชาติอันเนื่องมาจากมวลโครงสร้างทางวิ่งยกระดับไม่ตรงกับ สภาพการใช้งานจริงนั้น จะพิจารณาให้ความแข็งของโครงสร้าง (Structural stiffness) เป็นค่าคงที่ โดยจะปรับขนาดของมวลตามการคำนวณในสมการที่ 4-1 และมีตัวอย่างการคำนวณกรณีน้ำหนัก ภาระกระทำคงที่เพิ่มเติม (SDL) 209kN/m โดยใช้ค่าความถี่ธรรมชาติจากข้อมูลการทดสอบเชิง พลวัตครั้งที่ 1 จากตัวตรวจจับ AC-1 (L/2) (6.176 Hz)

$$\begin{aligned} & \Im \cap \qquad f = \frac{\pi}{2L^2} \sqrt{\frac{EI}{\rho A}} \\ &= \frac{\pi}{2L^2} \sqrt{\frac{EI}{m'}} \\ & \Im \in \tilde{I} \\ \Im \in I \\ & \Im : \qquad f_{ex} = \frac{\pi}{2L^2} \sqrt{\frac{EI}{m'_{ex}}} \\ & \Im : \qquad f_{md} = \frac{\pi}{2L^2} \sqrt{\frac{EI}{m'_{ex}}} \\ & \therefore \qquad f_{md} = f_{ex} \sqrt{\frac{m'_{ex}}{m'_{md}}} \\ & f_{md} = f_{ex} \sqrt{\frac{\frac{M'_{ex}}{M'_{VD} + M_{LD}}}{L}} \\ & f_{md} = f_{ex} \sqrt{\frac{\frac{M_{VD} + M_{LD}}{L}}{L}} \\ & f_{md} = f_{ex} \sqrt{\frac{M_{VD} + M_{LD}}{M_{VD} + M_{SDL}}} \end{aligned}$$

(4-1)

โดยที่

 f_{ex} เป็นความถี่ธรรมชาติที่ได้จากการทดสอบเชิงพลวัต

 $f_{\scriptscriptstyle md}$ เป็นความถี่ธรรมชาติที่ผ่านการปรับปรุงค่าแล้ว

m'_{ex} เป็นมวลต่อความยาวของโครงสร้างจริง

m'_{md} เป็นมวลต่อความยาวที่ผ่านการปรับปรุงค่าแล้ว

- E เป็นค่าโมดูลัสเฉลี่ยของโครงสร้าง
- I เป็นโมเมนต์ความเฉื่อยของหน้าตัดโครงสร้าง
- *L* เป็นความยาวช่วงพาด
- $M_{_{V\!D}}$ เป็นมวลเฉพาะโครงสร้างทางวิ่งยกระดับ
- $M_{\rm LF}$ เป็นมวลรวมของ Loading frame
- $M_{\scriptscriptstyle SDL}$ เป็นมวลรวมของน้ำหนักกระทำคงที่ส่วนเพิ่ม (SDL)

เมื่อแทนค่าจากผลการทดสอบพลวัตครั้งที่ 1 โดยใช้ข้อมูลจากตัวตรวจจับ AC-1 (L/2) พิจารณากรณีน้ำหนักกระทำคงที่ส่วนเพิ่ม 209 kN/m กระทำตลอดความยาวโครงสร้างทางวิ่ง ยกระดับ 32.6m และโครงสร้างทางวิ่งยกระดับมีพื้นที่หน้าตัดเฉลี่ย 7.985 m² โดยคอนกรีตมีน้ำหนัก 25 kN/m³ และเส้นลวดอัดแรงมีน้ำหนัก 77.09 kN/m³

$$f_{ex} = 6.176 \, Hz$$

 $M_{VD} = 685.1 \, tons (จากผลวิเคราะห์ในบทที่ 5)$
 $M_{LF} = 30.26 \, tons / frame \times 5 \, frame = 151.3 \, tons$
 $M_{SDL} = 209 \, kN / m \times 32.6 \, m = 6,813 \, kN = 694.8 \, tons$
 $\therefore f_{md} = 6.176 \sqrt{\frac{685.1 + 151.3}{685.1 + 694.8}} = 4.808 \, Hz$

รูปที่ 4-2 ความสัมพันธ์ระหว่างความเร่งในแนวดิ่งของโครงสร้างกับเวลาจากตัวตรวจจับ AC-1 (L/2)

ในการทดสอบครั้งที่ 1

รูปที่ 4-3 Frequency power spectrum จากตัวตรวจจับ AC-1 (L/2) ในการทดสอบครั้งที่ 1

4.1.2 ข้อมูลในการทดสอบเชิงสถิต

การทดสอบเชิงสถิตแบ่งการทดสอบออกเป็นทั้งหมด 4 วัน โดยมีรายละเอียดใน ตารางที่ 4-1 โครงสร้างทางวิ่งยกระดับที่ใช้ในการทดสอบ (รูปที่ 4-4) จะใช้เครื่องควบคุมจำนวน 3 เครื่อง (รูปที่ 4-5) เพื่อควบคุมระดับการให้แรงจากแม่แรงไฮดรอลิคจำนวน 5 คู่ (10 ตัว) โดย ผลตอบสนองจากโครงสร้างทั้งหมดจะถูกเก็บข้อมูลไว้ใน Data Locker (รูปที่ 4-6) ในการทดสอบ โครงสร้างจริงจะมีการเฝ้าระวังโดยพิจารณาค่าการแอ่นตัวของโครงสร้างอยู่ตลอดการทดสอบดังแสดง ในรูปที่ 4-7 เพื่อความปลอดภัยในการเข้าสังเกตการณ์ภายใต้โครงสร้างและการตรวจสอบรอยร้าวที่ อาจเกิดขึ้นในระหว่างการทดสอบ ซึ่งรอยร้าวภายใต้โครงสร้างถูกตรวจสอบโดยใช้กล้องกำลังขยายสูง ดังแสดงในรูปที่ 4-8

DATE	Testing Objective	Target Load level			
December 19, 2020	1.20x DL Test	1.20x Design Load Level (Max. Applied Load = 1,000 tons)			
January 7, 2021	Cracking Resistance Test	1.60x Design Load Level (Max. Applied Load = 1,550 tons)			
January 14, 2021	Bending Strength Test	2.00x Design Load Level (Max. Applied Load = 2,050 tons)			
January 21, 2021	Shear Strength Test	Erection Load Level (Max. Applied Reaction = 820 tons)			

รูปที่ 4-4 โครงสร้างทางวิ่งยกระดับก่อนการทดสอบโครงสร้าง

รูปที่ 4-5 เครื่องควบคุมแม่แรงไฮดรอลิค

รูปที่ 4-6 Data Locker สำหรับใช้เก็บข้อมูลผลตอบสนองของโครงสร้าง

รูปที่ 4-7 หน้าจอแสดงผลตอบสนองเพื่อใช้เฝ้าระวังระหว่างการทดสอบโครงสร้าง

รูปที่ 4-8 การตรวจสอบรอยร้าวโดยใช้กล้องกำลังขยายสูง

ข้อมูลการทดสอบเชิงสถิตนั้นอยู่ในรูปของ Matrix ขนาดใหญ่โดยแถว (Row) ของ Matrix นั้นเป็นลำดับของข้อมูลที่เก็บโดยมีความเร็วในการเก็บข้อมูล 200 แถวต่อวินาทีและหลัก (Column) นั้นเป็นลำดับของตัวตรวจจับทั้งสามชนิดได้แก่ Displacement sensor, Inclinometer และ Strain gauge โดยข้อมูลจากตัวตรวจจับทั้งสามชนิดมีวิธีการจัดการข้อมูลที่ต่างกันเนื่องจาก จะต้องพิจารณาเกณฑ์การทดสอบเชิงสถิตเป็นหลักในการจัดการข้อมูลเพื่อให้สามารถนำข้อมูลมา เปรียบเทียบกับเกณฑ์การทดสอบได้

4.1.2.1 การจัดการข้อมูลจากตัวตรวจจับการเคลื่อนที่ (Displacement sensor)

ข้อมูลขั้นต้นที่ได้จากตัวตรวจจับการเคลื่อนที่นั้นยังไม่สามารถนำมาใช้รายงานผลเพื่อ นำไปเทียบกับเกณฑ์การทดสอบได้ เนื่องจากมีสัญญาณรบกวนจึงจะใช้ค่าเฉลี่ย (Mean value) ของ ผลตอบสนองในแต่ละระดับการให้แรง เพื่อให้ข้อมูลที่ได้มีความน่าเชื่อถือ ผลตอบสนองการแอ่นตัวที่ ได้นั้น จะต้องนำมาลบกับค่าการทรุดตัวของฐานรองรับกล่าวคือผลตอบสนองจากตัวตรวจจับการ เคลื่อนที่ DP-2, DP-3, DP-4, DP-6 และ DP-7 จะต้องนำมาลบกับค่าเฉลี่ยของผลตอบสนอง DP-1 และ DP-5 จึงจะทำให้ได้ผลการแอ่นตัวสุทธิสอดคล้องกับเกณฑ์การแอ่นตัวของโครงสร้าง รูปที่ 4-9 แสดงตัวอย่างผลตอบสนองจากตัวตรวจจับการเคลื่อนที่ในการทดสอบแรงดัดถึงระดับการให้แรง 1.20 เท่าของค่าน้ำหนักบรรทุกออกแบบในวงรอบที่สอง (Second cycle)

รูปที่ 4-9 ผลตอบสนองค่าการแอ่นตัวในการทดสอบถึง 1.20 เท่าของค่าน้ำหนักบรรทุกออกแบบ

(Second cycle)

การเปรียบเทียบผลการทดสอบกับเกณฑ์การแอ่นตัวในการทดสอบโครงสร้างนั้น จะเริ่ม พิจารณาการแอ่นตัวจากสภาวะน้ำหนักบรรทุกคงที่ (Base level, Ka) ขึ้นไปโดยจะใช้ผลตอบสนอง เฉลี่ยของแต่ละระดับการให้มาแสดงผลดังแสดงตัวอย่างไว้ในรูปที่ 4-10 ซึ่งเป็นการแสดงผลการแอ่น ตัวของโครงสร้างโดยเริ่มแสดงผลตอบสนองจากสภาวะน้ำหนักบรรทุกคงที่ขึ้นไปในการทดสอบการ แอ่นตัวในการทดสอบถึงระดับการให้แรง 1.20 เท่าของค่าน้ำหนักบรรทุกออกแบบ (Second cycle)

น้ำหนักบรรทุกออกแบบ

หาลงกรณ์มหาวิทยาลัย

4.1.2.2 การจัดการข้อมูลจากตัวตรวจจับความลาดเอียง (Inclinometer)

ข้อมูลขั้นต้นที่ได้จากตัวตรวจจับการเคลื่อนที่นั้นยังไม่สามารถนำมาใช้รายงานผลเพื่อ นำไปเทียบกับเกณฑ์การทดสอบได้ เนื่องจากมีสัญญาณรบกวนจึงจะใช้ค่าเฉลี่ย (Mean value) ของ ผลตอบสนองในแต่ละระดับการให้แรงเพื่อให้ข้อมูลที่ได้มีความน่าเชื่อถือ โดยรูปที่ 4-11 แสดง ตัวอย่างผลตอบสนองจากตัวตรวจจับแนวลาดเอียงทั้งสองด้านในการทดสอบแรงดัดถึงระดับการให้ แรง 1.20 เท่าของค่าน้ำหนักบรรทุกออกแบบในวงรอบที่สอง (Second cycle) การแสดงผลการ เปรียบเทียบผลการทดสอบกับเกณฑ์มุมหมุนที่ฐานรองรับจะพิจารณามุมหมุนเริ่มต้นจากการให้แรงที่ ระดับสภาวะน้ำหนักบรรทุกคงที่ (Base level, K_a) โดยจะใช้ผลตอบสนองเฉลี่ยของแต่ละระดับมา แสดงผล ดังแสดงตัวอย่างไว้ในรูปที่ 4-12 ซึ่งเริ่มแสดงผลตอบสนองจากสภาวะน้ำหนักบรรทุกคงที่ขึ้น ไปในการทดสอบมุมหมุนที่ฐานรองรับในการทดสอบถึงระดับการให้แรง 1.20 เท่าของค่าน้ำหนัก บรรทุกออกแบบ (Second cycle)

รูปที่ 4-11 ผลตอบสนองค่ามุมหมุนในการทดสอบถึง 1.20 เท่าของค่าน้ำหนักบรรทุกออกแบบ

(Second cycle)

รูปที่ 4-12 ค่ามุมหมุนเทียบกับเกณฑ์การทดสอบในการทดสอบระดับ 1.20 เท่าของค่าน้ำหนัก

บรรทุกออกแบบ (Second cycle)

4.1.2.3 การจัดการข้อมูลจากตัวตรวจจับความเครียด (Strain gauge)

ปัญหาที่สำคัญของการตรวจจับความเครียดและอาจส่งผลต่อการปรับปรุงแบบจำลอง โครงสร้างในบทที่ 5 คือผลตอบสนองที่เกิดขึ้นจากภาระกระทำเดียวกันนั้นให้ผลตอบสนองที่ต่างกัน อย่างมีนัยสำคัญโดยรูปที่ 4-13 แสดงผลตอบสนองความเครียดดึง (Tensile strain) ที่เกิดขึ้นจากการ ทดสอบถึงระดับการให้แรง 1.20 เท่าของน้ำหนักบรรทุกออกแบบ (Second cycle) เนื่องจากภาระ กระทำในระดับการให้แรง TS1 และ TS13 อยู่ในระดับ Initial stage (10 ตัน/Jack) ซึ่งควรจะให้ ผลตอบสนองที่ใกล้เคียงกันแต่จากผลการทดสอบพบว่าผลตอบสนองความเครียดมีค่าต่างกันโดย เฉลี่ยประมาณ 50 µm/m การแก้ปัญหาที่เกิดขึ้นนั้นตั้งอยู่บนสมมติฐานว่าค่าความเครียดที่ต่างกัน นั่น<u>แปรผันโดยตรงกับเวลาที่ใช้ในการทดสอบเนื่องจากผลของการเปลี่ยนแปลงของอุณหภูมิ</u> ดังนั้น เพื่อเป็นการแก้ปัญหาที่เกิดขึ้นจึงได้พิจารณาปรับลดผลตอบสนองความเครียดจากการทดสอบแบบ เส้นตรงและจะใช้ค่าเฉลี่ยในแต่ละระดับการให้แรงเพื่อให้ผลตอบสนองนั้นมีความน่าเชื่อถือมากยิ่งขึ้น รูปที่ 4-14 แสดงผลการทดสอบที่ปรับปรุงผลการตอบสนองตามวิธีการที่กล่าวไว้ และรูปที่ 4-15 แสดงผลตอบสนองโดยพิจารณาความเครียดเริ่มต้นจากการให้แรงที่ระดับสภาวะน้ำหนักบรรทุกคงที่ (Base level, K₂)

รูปที่ 4-13 ค่าความเครียดก่อนการปรับแก้ค่าในการทดสอบระดับ

1.20 เท่าของน้ำหนักบรรทุกออกแบบ

รูปที่ 4-14 ค่าความเครียดหลังการปรับแก้ค่าในการทดสอบระดับ

1.20 เท่าของน้ำหนักบรรทุกออกแบบ

รูปที่ 4-15 ค่าความเครียดในการทดสอบระดับ 1.20 เท่าของน้ำหนักบรรทุกออกแบบ

4.2 ผลการทดสอบสมรรถนะโครงสร้างทางวิ่งยกระดับ

การทดสอบสมรรถนะโครงสร้างทางวิ่งยกระดับมีลำดับการทดสอบเริ่มจากการทดสอบ เชิงพลวัต การทดสอบแรงดัดถึงภาระกระทำ 1.20 1.60 และ 2.00 เท่าของน้ำหนักบรรทุกออกแบบ ตามด้วยการทดสอบแรงเฉือนตามลำดับ เกณฑ์การแอ่นตัว มุมหมุนที่ฐานรองรับ ค่าความเค้น และ เกณฑ์รอยร้าวจะเน้นเปรียบเทียบในการทดสอบแรงดัดถึงภาระกระทำ 1.20 เท่าของน้ำหนักบรรทุก ออกแบบเนื่องจากการทดสอบถึงภาระกระทำ 1.60 เท่าของน้ำหนักบรรทุกออกแบบนั้น โครงสร้าง เกิดรอยร้าวขึ้นบนโครงสร้างซึ่งอาจส่งผลต่อความน่าเชื่อถือในการใช้เปรียบเทียบผลตอบสนองกับ เกณฑ์การทดสอบดังกล่าว

4.2.1 ผลการทดสอบเชิงพลวัต

การทดสอบเชิงพลวัตนั้นจะกระทำเป็นจำนวน 3 ครั้งโดยที่ตำแหน่งกึ่งกลางช่วง (L/2) จะพิจารณาใช้ผลการตอบสนองจาก AC-1 เพียงตัวตรวจจับเดียว เนื่องจากเป็นตัวตรวจจับที่มีความ แม่นยำในการวัดผลมากที่สุด โดย AC-4 และ AC-5 จะแสดงค่าผลตอบสนองที่ L/3 และ 2L/3 ตามลำดับโดยผลการทดสอบเชิงพลวัตแสดงไว้ในตารางที่ 4-2 ในการปรับค่าความถี่ธรรมชาติจากการ ชดเชยมวลจะใช้ค่าความถี่ธรรมชาติที่ต่ำที่สุดจากการทดสอบซึ่งมีค่าเท่ากับ 6.176 Hz โดยผลการ ปรับค่าความถี่ธรรมชาติด้วยวิธีชดเชยมวลแสดงไว้ในตารางที่ 4-3 ซึ่งผลตอบสนองความเร่งที่น้อย ที่สุดจากการปรับค่าชดเชยมวลมีค่าเท่า 4.808 Hz โดยที่สัญญาณความเร่งจากตัวตรวจจับ Frequency power spectrum จากการทดสอบ และรูประหว่างการทดสอบนั้นแสดงไว้ใน ภาคผนวก ข ในส่วนของผลการทดสอบเชิงพลวัต

ตารางที่ 4-2 ผลการทดสอบเชิงพลวัต

Natural frequency (Hz)					
Test No.	L/3	L/2	2L/3		
1	6.176	6.176	6.187		
2	6.208	6.194	6.194		
3	6.197	6.197	6.197		
Average	6.194	6.189	6.193		
Minimum	6.176	6.176	6.187		

Viaduct Configuration -	Mass (tons)				Vertical Frequency	Min. Frequency (Hz)
	Viaduct	Loading Frame	SDL	Total	Hz	TB 10621-2014
Viaduct withour SDL	685.1	151.3	0	836.4	6.176	
Viaduct with SDL=173kN/m	685.1	0	575.1	1260.2	5.031	2.050
Viaduct with SDL=192kN/m	685.1	0	638.3	1323.4	4.910	5.059
Viaduct with SDL=209kN/m	685.1	0	694.8	1379.9	4.808	

ตารางที่ 4-3 ผลการปรับแก้ค่าความถี่ธรรมชาติด้วยวิธีชดเชยมวล

4.2.2 ผลการทดสอบเชิงสถิต

ผลการทดสอบโดยละเอียดแสดงไว้ในภาคผนวก ข ในส่วนของการทดสอบโครงสร้างเชิง สถิตโดยผลตอบสนองในการทดสอบเชิงสถิตนั้น จะเริ่มพิจารณาหลังจากภาระกระทำระดับ Base level (K_a) หรือที่ระดับการให้แรง 30 ตัน/Jack ในทุกการทดสอบเพื่อความสะดวกในการพิจารณา เกณฑ์การทดสอบโครงสร้างเทียบกับผลการทดสอบโครงสร้าง

ผลการทดสอบทั้งด้านความเค้นดึง ความเค้นอัด และความเค้นเฉือนนั้นจำเป็นที่จะต้อง ใช้ค่าจากตัวตรวจจับความเครียดในการทดสอบแล้วจึงนำมาแปลงผลจากความเครียดเป็นความเค้น โดยใช้ค่าโมดูลัสของคอนกรีตจากผลการทดสอบคอนกรีตที่ระบุไว้ในภาคผนวก ก

4.2.2.1 ผลการทดสอบถึงภาระกระทำ 1.20 เท่าของน้ำหนักบรรทุกออกแบบ4.2.2.1.1 ค่าการแอ่นตัวของโครงสร้างและการทรุดตัวของฐานรองรับ

ผลตอบสนองการแอ่นตัวของโครงสร้างที่ตำแหน่ง 0, L/3, L/2, 2L/3 และ L แสดงไว้ใน รูปที่ 4-16 โดยสัญญาณจาก DP-1 และ DP-5 แสดงค่าการทรุดตัวที่ฐานรองรับทางด้านซ้าย (0) และ ทางด้านขวา (L) ตามลำดับ DP-2 และ DP-4 แสดงค่าการแอ่นตัวที่ตำแหน่ง L/3 และ 2L/3 ตามลำดับและ DP-3, DP-6 และ DP-7 แสดงค่าการทรุดตัวที่ตำแหน่ง L/2 โดย DP-6 และ DP-7 ถูก ติดตั้งเพิ่มเติมเพื่อให้การเก็บข้อมูลที่ตำแหน่ง L/2 สามารถบ่งบอกถึงพฤติกรรมการให้แรงที่สมมาตร (ไม่มีการบิดตัว) ค่าการทรุดตัวสูงสุดที่ฐานรองรับและค่าการแอ่นตัวสุทธิสูงสุดจากระดับการให้แรง K=1.20 (100 ตัน/Jack) มีค่า 0.18 mm และ 15.36 mm ตามลำดับ ค่าการแอ่นตัวสุทธิจากระดับ การให้แรง Static live load (70 ตัน/Jack, K_b) มีค่าเท่ากับ 8.66 mm ความสัมพันธ์ระหว่างแรง และการแอ่นตัวสูงสุดของโครงสร้างที่กึ่งกลางช่วงของโครงสร้างในการทดสอบถึงระดับการให้แรง 1.20 เท่าของน้ำหนักบรรทุกออกแบบในวงรอบที่สอง (Second cycle) แสดงไว้ในรูปที่ 4-17

รูปที่ 4-16 ค่าการแอ่นตัวจากการทดสอบถึงระดับการให้แรง 1.20 เท่าของน้ำหนักบรรทุกออกแบบ

รูปที่ 4-17 ความสัมพันธ์ระหว่างแรงและการแอ่นตัว (1.20x design load, Second cycle)

4.2.2.1.2 ค่ามุมหมุนที่ฐานรองรับ

ผลตอบสนองมุมหมุนของโครงสร้างที่ตำแหน่งฐานรองรับด้านซ้าย (0, IC-1) และด้านขวา (L, IC-4) แสดงไว้ในรูปที่ 4-18 ค่ามุมหมุนจากระดับการให้แรง Static live load (70 ตัน/Jack, K_b) และค่ามุมหมุนสูงสุดมีค่า 0.00085 เรเดียน (0.0487องศา) และ 0.00150 เรเดียน (0.0859 องศา) ตามลำดับ

รูปที่ 4-18 ค่ามุมหมุนที่ฐานรองรับจากการทดสอบถึงระดับการให้แรง

1.20 เท่าของน้ำหนักบรรทุกออกแบบ

4.2.2.1.3 ค่าความเครียดและค่าความเค้น

ผลตอบสนองความเครียดดึงตำแหน่ง L/3, L/2 และ 2L/3 แสดงไว้ในรูปที่ 4-19 ค่า ความเครียดดึงสูงสุดที่กึ่งกลางช่วงพาดจากแรงระดับ Base level (30 ตัน/Jack, K_a), Static live load (70 ตัน/Jack, K_b), K=1.00 (75 ตัน/Jack), K=1.10 (85 ตัน/Jack) และค่าความเครียดดึง สูงสุด(SG-11) จากระดับแรง K=1.20 (100 ตัน/Jack) มีค่าเท่ากับ 81.61, 239.54, 259.95, 308.32 และ 411.65 μm/m ตามลำดับ โดยสามารถคิดเป็นค่าความเค้นดึงได้เท่ากับ 3.34, 9.80, 10.63, 12.61 และ 16.84 MPa ตามลำดับ

CHULALONGKORN UNIVERSITY

ผลตอบสนองความเครียดอัดตำแหน่ง L/3, L/2 และ 2L/3 แสดงไว้ในรูปที่ 4-20 ค่า ความเครียดอัดสูงสุดที่กึ่งกลางช่วงพาดจากแรงระดับ Base level (30 ตัน/Jack, K_a), Static live load (70 ตัน/Jack, K_b), K=1.00 (75 ตัน/Jack), K=1.10 (85 ตัน/Jack) และค่าความเครียดอัด สูงสุดจากระดับแรง K=1.20 (100 ตัน/Jack) มีค่าเท่ากับ -10.83, -26.24, -27.38, -33.45 และ -43.74 μm/m โดยสามารถคิดเป็นค่าความเค้นอัดได้เท่ากับ -0.44 MPa, -1.07, -1.12, -1.37 และ -1.79 MPa ตามลำดับ

ผลตอบสนองความเค้นเฉือนจะพิจารณาความเครียดที่ตำแหน่ง 0 และ L แสดงไว้ในรูปที่ 4-21 โดยความเครียดที่ตำแหน่ง SG-19 และ SG-20 (ตำแหน่งด้านซ้ายของชิ้นส่วนย่อยชิ้นที่ 2, L) ให้ผลตอบสนองที่มากที่สุดซึ่งค่าความเครียดที่ตำแหน่ง SG-19 จากแรงระดับ Base level (30 ตัน/ Jack, K_a), Static live load (70 ตัน/Jack, K_b), K=1.00 (75 ตัน/Jack), K=1.10 (85 ตัน/Jack) และค่าความเครียดสูงสุดจากระดับแรง K=1.20 (100 ตัน/Jack) มีค่าเท่ากับ 14.46, 46.23, 48.68, 55.57 และ 56.26 μ m/m ตามลำดับส่วนค่าความเครียดที่ตำแหน่ง SG-20 จากแรงระดับ Base level (30 ตัน/Jack, K_a), Static live load (70 ตัน/Jack, K_b), K=1.00 (75 ตัน/Jack), K=1.10 (85 ตัน/Jack) และค่าความเครียดสูงสุดจากระดับแรง K=1.20 (100 ตัน/Jack) มีค่า -16.71, -40.03, -41.81, -50.40 และ -65.02 μ m/m ตามลำดับ จากความสัมพันธ์ระหว่างความเค้นและความเครียด จะสามารถวิเคราะห์ค่าความเค้นเฉือนที่ให้ผลตอบสนองสูงสุดที่การให้แรงระดับ Base level (30 ตัน/Jack, K_a), Static live load (70 ตัน/Jack, K_b), K=1.00 (75 ตัน/Jack), K=1.10 (85 ตัน/Jack, K_a), Static live load (70 ตัน/Jack, K_b), K=1.00 (75 ตัน/Jack), Level (30 ตัน/Jack, K_a), Static live load (70 ตัน/Jack, K_b), K=1.00 (75 ตัน/Jack), K=1.10 (85 ตัน/Jack, K_a), Static live load (70 ตัน/Jack, K_b), K=1.00 (75 ตัน/Jack), K=1.10 (85 ตัน/Jack) และ K=1.20 (100 ตัน/Jack) เท่ากับ 0.81, 2.23, 2.34, 2.74 และ 3.14 ตามลำดับ

รูปที่ 4-20 ค่าความเครียดอัดจากการทดสอบถึงระดับการให้แรง

1.20 เท่าของน้ำหนักบรรทุกออกแบบ

รูปที่ 4-21 ค่าความเค้นเฉือนจากการทดสอบถึงระดับการให้แรง

1.20 เท่าของน้ำหนักบรรทุกออกแบบ

จากผลการตอบสนองความเค้นจากการทดสอบถึงระดับการให้แรง 1.20 เท่าของน้ำหนัก บรรทุกออกแบบนั้นสามารถสรุปค่าความเค้นกรณีต่าง ๆ ได้ในตารางที่ 4-4 โดยที่ค่าความเค้นดึง ความเค้นอัด และความเค้นเฉือนจากแรงจากลวดอัดแรง (PS) นั้นได้ทำการวิเคราะห์ตามรายละเอียด แสดงไว้ในบทที่ 5

Stress Values from Bending test (1.20x DL)					
Load case	Tensile stress (MPa)	Compressive stress (MPa)	Shear stress (MPa)		
Base level (K _a)	2.99	-0.41	0.81		
Static live load (K _b)	8.87	-1.02	2.23		
K=1.00	9.61	-1.05	2.34		
K=1.10	11.24	-1.26	2.74		
K=1.20	14.29	-1.75	3.14		
Static live load (K _b) - Base level (K _a)	5.88	-0.61	-		
K=1.00 - Base level (K _a)	6.62	-0.64	-		
K=1.10 - Base level (K _a)	-	-	1.93		
DL	6.62	-0.64	1.93		
PS	-22.10	-3.53	-1.85		
SDL=192 kN/m	6.62	-0.64	1.93		
ZK live load	5.88	-0.61	1.93		
DL+PS+ZK live load	-9.61	-4.77	2.01		
DL+PS+SDL+ZK live load	-2.99	-5.41	3.94		

ตารางที่ 4-4 ค่าความเค้นจากการทดสอบถึงระดับการให้แรง 1.20 เท่าของน้ำหนักบรรทุกออกแบบ

4.2.2.1.4 รอยร้าวที่เกิดขึ้นในการทดสอบ

จากการตรวจสอบรอยร้าวบริเวณตำแหน่งที่มีโมเมนต์ดัดสูงสุดบริเวณกึ่งกลางช่วงในการ ทดสอบถึงระดับ 1.20 เท่าของน้ำหนักบรรทุกออกแบบทั้ง 3 วงรอบ พบว่าไม่พบรอยร้าวอัน เนื่องมาจากแรงกระทำจากการทดสอบใด ๆ เพื่อยืนยันถึงความถูกต้องในการตรวจสอบรอยร้าวจึง พิจารณาสังเกตการณ์ที่บริเวณรอยต่อของชิ้นส่วนย่อยที่ 6 และชิ้นส่วนย่อยที่ 7 โดยใช้กล้อง กำลังขยาย 10 เท่าในการตรวจสอบและทำการวิเคราะห์ระยะห่างของตำแหน่งอ้างอิง 2 จุดพบว่าที่ ตำแหน่งอ้างอิงนั้นมีระยะห่างระหว่างจุดอ้างอิง 2 จุดเท่าเดิมทุกระดับการให้แรง (2.625 mm) ตลอดทั้งการทดสอบดังแสดงในตารางที่ 4-5

ตารางที่ 4-5 ระยะห่างระหว่างจุดอ้างอิงในการทดสอบถึงระดับ

Joint Width Monitoring					
Load Cycle	Load Step	Joint width between 2 refernce points (mm)	Referecnce		
First cycle	Initial state	2.625	11 mm		
First cycle	TF5 (75 tons)	2.625	11 mm		
Second cycle	TS9 (100 tons)	2.625	11 mm		
Proof load test	TP6 (100 tons)	2.625	11 mm		

1.20 เท่าของน้ำหนักบรรทุกออกแบบ

4.2.2.2 ผลการทดสอบถึงภาระกระทำ 1.60 เท่าของน้ำหนักบรรทุกออกแบบ4.2.2.2.1 ค่าการแอ่นตัวของโครงสร้างและการทรุดตัวของฐานรองรับ

ผลตอบสนองการแอ่นตัวของโครงสร้างที่ตำแหน่ง 0, L/3, L/2, 2L/3 และ L แสดงไว้ใน รูปที่ 4-22 โดยสัญญาณจาก DP-1 และ DP-5 แสดงค่าการทรุดตัวที่ฐานรองรับทางด้านซ้าย (0) และ ทางด้านขวา (L) ตามลำดับ DP-2 และ DP-4 แสดงค่าการแอ่นตัวที่ตำแหน่ง L/3 และ 2L/3 ตามลำดับและ DP-3, DP-6, DP-7 แสดงค่าการทรุดตัวที่ตำแหน่ง L/2 โดยค่าการทรุดตัวสูงสุดที่ ฐานรองรับและค่าการแอ่นตัวสุทธิสูงสุดจากระดับการให้แรง K=1.60 (155 ตัน/Jack) มีค่า 0.62 mm และ 35.84 mm ตามลำดับ โดยภาระกระทำสูงที่สุดที่ยังคงผ่านเกณฑ์การทดสอบด้าน การแอ่นตัวของโครงสร้างอยู่ที่ระดับการให้แรง K=1.45 (130 tons/Jack) ซึ่งมีผลการแอ่นตัว ถึงกลางช่วง 22.05 mm ความสัมพันธ์ระหว่างแรงจากแม่แรงไฮดรอลิคและการแอ่นตัวสูงสุดของ โครงสร้างที่กึ่งกลางช่วงพาดในการทดสอบถึงระดับการให้แรง 1.60 เท่าของแสดงไว้ในรูปที่ 4-23 โดยมีขีดจำกัดเส้นตรงอยู่ระหว่างการให้แรงที่ระดับ K=1.40 และ K=1.45

รูปที่ 4-22 ค่าการแอ่นตัวจากการทดสอบถึงระดับการให้แรง 1.60 เท่าของน้ำหนักบรรทุกออกแบบ

รูปที่ 4-23 ความสัมพันธ์ระหว่างแรงและการแอ่นตัว (1.60x design load)

4.2.2.2.2 ค่ามุมหมุนที่ฐานรองรับ

ผลตอบสนองมุมหมุนของโครงสร้างที่ตำแหน่งฐานรองรับด้านซ้าย (0, IC-1) และด้านขวา (L, IC-4) แสดงไว้ในรูปที่ 4-24 ค่ามุมหมุนจากระดับการให้แรง Static live load (70 ตัน/Jack, K_b) และค่ามุมหมุนสูงสุด (K=1.60) มีค่า 0.00084 เรเดียน (0.0481องศา) และ 0.00328 เรเดียน (0.1879 องศา) ตามลำดับ โดยภาระกระทำสูงที่สุดที่ยังคงผ่านเกณฑ์การทดสอบด้านมุมหมุนที่ ฐานรองรับอยู่ที่ระดับการให้แรง K=1.40 (125 tons/Jack) ซึ่งมีผลตอบสนอง 0.00200 เรเดียน (0.1146 องศา)

รูปที่ 4-24 ค่ามุมหมุนที่ฐานรองรับจากการทดสอบถึงระดับการให้แรง

1.60 เท่าของน้ำหนักบรรทุกออกแบบ

4.2.2.2.3 ค่าความเครียดและค่าความเค้น

ผลตอบสนองความเครียดดึงตำแหน่ง L/3, L/2 และ 2L/3 แสดงไว้ในรูปที่ 4-25 โดยที่ ตำแหน่งกึ่งกลางช่วงนั้นเกจวัดความเครียด SG-11 สามารถตรวจวัดได้เพียงถึงระดับการให้แรง K=1.35 (120 tons/Jack) เนื่องจากตัวโครงสร้างทางวิ่งยกระดับมีความเครียดที่สูงขึ้นมากในระดับ การให้แรง K=1.40 (125 tons/Jack) จึงทำให้เกจวัดความเครียดเกิดความเสียหายขึ้นอย่างไรก็ตาม เกจวัดความเครียด SG-10 นั้นให้ผลการทดสอบที่ต่างออกไปโดยเกจวัดความเครียด SG-10 นั้น สามารถวัดผลตอบสนองได้ตลอดการทดสอบแต่ผลการตอบสนองที่ตรวจวัดได้นั้นมีค่าน้อยกว่า ผลตอบสนองทั้งที่ตำแหน่ง L/3 และ 2L/3 จากเกจวัดความเครียด SG-6, SG-7, SG-16 และ SG-17 โดยมีผลต่างของผลการตอบสนองความเครียดระหว่างระดับแรง K=1.35 และ Base level (K_a) เท่ากับ 800.99 μm/m คิดเป็นความเค้นดึง 32.76 MPa ซึ่งเป็นความเค้นที่สูงที่สุดที่สามารถวัดได้ ก่อนเกจวัดความเครียด SG-11 ชำรุด

ผลตอบสนองความเครียดอัดตำแหน่ง L/3, L/2 และ 2L/3 แสดงไว้ในรูปที่ 4-26 จาก ผลตอบสนองความเครียดอัดนั้น แสดงถึงค่าความเครียดอัดที่เกิดขึ้นในโครงสร้างทางวิ่งยกระดับมี ค่าสูงสุดที่ตำแหน่ง 2L/3 (SG-5) ซึ่งมีผลต่างของผลตอบสนองความเครียดระหว่างระดับแรง K=1.60 และ Base level (K_a) เท่ากับ -77.2 μm/m คิดเป็นความเค้นอัด -3.21 MPa

ผลตอบสนองความเค้นเฉือนจะพิจารณาความเครียดที่ตำแหน่ง 0 และ L แสดงไว้ใน รูปที่ 4-27 พบว่าความเครียดที่ตำแหน่ง SG-19 และ SG-20 (ตำแหน่งด้านซ้ายของชิ้นส่วนย่อยชิ้นที่ 12, L) ให้ผลตอบสนองที่มากที่สุด โดยค่าความเครียด SG-19 จากผลต่างระหว่างแรงระดับ Base level (30 ตัน/Jack, K_a) และ K=1.60 (155 ตัน/Jack) มีค่า 90.22 µm/m โดยค่า ความเครียด SG-20 จากผลต่างระหว่างแรงระดับ Base level (30 ตัน/Jack, K_a) และระดับแรง K=1.60 (155 ตัน/Jack) มีค่า -90.97 µm/m จากความสัมพันธ์ระหว่างความเค้นและความเครียดจะ สามารถวิเคราะห์หาค่าความเค้นเฉือนที่ให้ผลตอบสนองสูงสุดจากแรงระดับ K=1.60 (155 ตัน/Jack) ได้เท่ากับ 4.69 MPa

รูปที่ 4-25 ค่าความเครียดดึงจากการทดสอบถึงระดับการให้แรง

1.60 เท่าของน้ำหนักบรรทุกออกแบบ

รูปที่ 4-27 ค่าความเครียดเฉือนจากการทดสอบถึงระดับการให้แรง

1.60 เท่าของน้ำหนักบรรทุกออกแบบ

4.2.2.2.4 รอยร้าวที่เกิดขึ้นในการทดสอบ

จากการตรวจสอบรอยร้าวบริเวณตำแหน่งที่มีโมเมนต์ดัดสูงบริเวณ L/3 ถึง 2L/3 (ชิ้นส่วนย่อยที่ 5 ถึง 9) พบว่าที่ระดับการให้แรง K=1.45 (130 tons/Jack) โครงสร้างเริ่มมีรอยร้าว ปรากฏให้เห็นดังแสดงในรูปที่ 4-28 สอดคล้องกับพฤติกรรมการแอ่นตัวของโครงสร้างทางวิ่งยกระดับ ซึ่งเริ่มมีพฤติกรรมโครงสร้างไม่เป็นเส้นตรง (Non-linear deflection) ในระดับการให้แรงดังกล่าว รอยร้าวที่ปรากฏขึ้นนั้นได้พัฒนาต่อไปจนถึงระดับการให้แรงสูงสุด K=1.60 (155 tons/Jack) ดัง แสดงในรูปที่ 4-29 ซึ่งรอยร้าวที่มีความกว้าง (Width) สูงสุดนั้นมีความกว้าง 0.166 mm ดังแสดงใน ตารางที่ 4-6

การตรวจสอบการพัฒนาของรอยร้าวนั้นไม่สามารถตรวจสอบได้โดยง่ายเนื่องจากเหตุผล ด้านความปลอดภัยของทีมงานสำรวจ ดังนั้นจึงได้พิจารณาสังเกตรอยต่อของชิ้นส่วนย่อยที่ 6 และชิ้น ส่วนย่อยที่ 7 โดยใช้กล้องกำลังขยาย 10 เท่าในการตรวจสอบและทำการวิเคราะห์ระยะห่างของ ตำแหน่งอ้างอิง 2 จุดโดยจะเก็บข้อมูลที่ระดับการให้แรง K=1.00, K=1.20, K=1.45 และ K=1.60 ตามลำดับโดยจากการสำรวจรอยต่อพบว่าตำแหน่งจุดอ้างอิง 2 จุดนั้นเริ่มมีระยะห่างมากขึ้นตั้งแต่ ระดับแรง K=1.45 (130 tons/Jack) โดยจุดอ้างอิง 2 จุดนั้นมีระยะห่างเพิ่มขึ้น 0.625 mm จาก 3.700 mm เป็น 4.325 mm ที่ระดับแรงสูงสุด K=1.60 (1.55 tons/Jack) ดังแสดงในตารางที่ 4-7

CHULALONGKORN UNIVERSITY

รูปที่ 4-28 แผนภาพรอยร้าวจากการสำรวจรอยร้าวในระดับการให้แรง C14 (K=1.45) ในการทดสอบ

ถึงระดับการให้แรง 1.60 เท่าของน้ำหนักบรรทุกออกแบบ

รูปที่ 4-29 แผนภาพรอยร้าวจากการสำรวจรอยร้าวในระดับการให้แรง C17 (K=1.60) ในการทดสอบ

ถึงระดับการให้แรง 1.60 เท่าของน้ำหนักบรรทุกออกแบบ

ตารางที่ 4-6 ตารางสรุปรอยร้าวสำคัญที่เกิดขึ้นในการทดสอบถึงระดับ 1.60 เท่าของน้ำหนักบรรทุก

Joint Width Monitoring				
Location	Crack No.	Crack Width (mm)	Length (m)	Referecnce
Segment 7	6	0.1 <mark>3</mark> 8	1.12	0.1mm
Segment 7	7	0.166	1.44	0.1mm
Segment 7	8	0.094	0.70) [0.1mm
Segment 7	9	0.083	7.01	0.1mm

ออกแบบ

ตารางที่ 4-7 ระยะห่างระหว่างจุดอ้างอิงในการทดสอบถึงระดับ 1.60 เท่าของน้ำหนักบรรทุก

Joint Width Monitoring					
Load Cycle	Load Step	Joint width between 2 refernce points (mm)	Referecnce		
Cracking Resistance Test	K=1.00 C5 (75 tons/Jack)	3.700	1 mm.		
Cracking Resistance Test	K=1.20 C9 (100 tons/Jack)	3.700] 1 mm		
Cracking Resistance Test	K=1.45 C14 (130 tons/Jack)	3.888	1-1-mm		
Cracking Resistance Test	K=1.60 C17 (155 tons/Jack)	4.325	1 mm		

ออกแบบ

4.2.2.3 ผลการทดสอบถึงภาระกระทำ 2.00 เท่าของน้ำหนักบรรทุกออกแบบ4.2.2.3.1 ค่าการแอ่นตัวของโครงสร้างและการทรุดตัวของฐานรองรับ

ผลตอบสนองการแอ่นตัวของโครงสร้างที่ตำแหน่ง 0, L/3, L/2, 2L/3 และ L แสดงไว้ใน รูปที่ 4-30 โดยสัญญาณจาก DP-1 และ DP-5 แสดงค่าการทรุดตัวที่ฐานรองรับทางด้านซ้าย (0) และ ทางด้านขวา (L) ตามลำดับ DP-2 และ DP-4 แสดงค่าการแอ่นตัวที่ตำแหน่ง L/3 และ 2L/3 ตามลำดับและ DP-3, DP-6, DP-7 แสดงค่าการทรุดตัวที่ตำแหน่ง L/2 โดยค่าการทรุดตัวสูงสุดที่ ฐานรองรับและค่าการแอ่นตัวสุทธิสูงสุดจากระดับการให้แรง K=2.00 (205 ตัน/Jack) มีค่า 0.62 mm และ 110.21 mm ตามลำดับ โดยภาระกระทำสูงที่สุดที่ยังคงผ่านเกณฑ์การทดสอบด้าน การแอ่นตัวของโครงสร้างอยู่ที่ระดับการให้แรง K=1.40 (125 tons/Jack) ซึ่งมีผลการแอ่นตัว กึ่งกลางช่วง 21.82 mm ความสัมพันธ์ระหว่างแรงจากแม่แรงไฮดรอลิคและการแอ่นตัวสูงสุดของ โครงสร้างที่กึ่งกลางช่วงพาดในการทดสอบถึงระดับการให้แรง 2.00 เท่าของน้ำหนักบรรทุกออกแบบ แสดงไว้ในรูปที่ 4-31 โดยมีขีดจำกัดเส้นตรงแรกอยู่ระหว่างการให้แรงที่ระดับ K=1.60 และ K=1.45

รูปที่ 4-30 ค่าการแอ่นตัวจากการทดสอบถึงระดับการให้แรง 2.00 เท่าของน้ำหนักบรรทุกออกแบบ

รูปที่ 4-31 ความสัมพันธ์ระหว่างแรงและการแอ่นตัว (2.00x design load)

4.2.2.3.2 ค่ามุมหมุนที่ฐานรองรับ

ผลตอบสนองมุมหมุนของโครงสร้างที่ตำแหน่งฐานรองรับด้านซ้าย (0, IC-1) และด้านขวา (L, IC-4) แสดงไว้ในรูปที่ 4-32 ค่ามุมหมุนจากระดับการให้แรง Static live load (70 ตัน/Jack, K_b) และค่ามุมหมุนสูงสุด (K=2.00) มีค่า 0.00086 เรเดียน (0.0493องศา) และ 0.00873 เรเดียน (0.5002 องศา) ตามลำดับ โดยภาระกระทำสูงที่สุดที่ยังคงผ่านเกณฑ์การทดสอบด้านมุมหมุนที่ ฐานรองรับอยู่ที่ระดับการให้แรง K=1.35 (120 tons/Jack) ซึ่งมีผลตอบสนอง 0.00194 เรเดียน (0.1112 องศา)

รูปที่ 4-32 ค่ามุมหมุนที่ฐานรองรับจากการทดสอบถึงระดับการให้แรง

2.00 เท่าของน้ำหนักบรรทุกออกแบบ

4.2.2.3.3 ค่าความเครียดและค่าความเค้น

ผลตอบสนองความเครียดดึงตำแหน่ง L/3, L/2 และ 2L/3 แสดงไว้ในรูปที่ 4-33 เนื่องจากโครงสร้างทางวิ่งยกระดับนั้นมีความเสียหายจากการทดสอบถึงระดับการให้แรง 1.60 เท่า ของน้ำหนักบรรทุกออกแบบ ดังนั้นผลตอบสนองจากตำแหน่ง L/2 (SG-11) จึงสามารถวัดผล ตอบสนองได้เพียงถึงระดับการให้แรง K=1.20 (100 tons/Jack) ซึ่งสามารถวัดผลตอบสนองเทียบกับ ระดับการให้แรงที่ Base level (Ka) ได้เท่ากับ 561.20 µm/m (22.95 MPa) ก่อนที่เกจวัด ความเครียดจะเกิดความเสียหายขึ้นผลตอบสนองจากตำแหน่ง L/3 (SG-6 และ SG-7) สามารถวัดผล ตอบสนองได้ถึงระดับการให้แรง K=1.70 (165 tons/Jack) และผลตอบสนองจากตำแหน่ง 2L/3 (SG-16 และ SG-17) สามารถวัดผลได้ตลอดการทดสอบ แต่ผลการตอบสนองสูงสุดนั้นสามารถวัดได้ ที่ระดับการให้แรง K=1.60 (155 tons/Jack) ก่อนที่ผลตอบสนองความเครียดดึงนั้นจะลดลงแม้ว่าจะ เพิ่มระดับแรงกระทำขึ้นจนถึงระดับการให้แรงสูงสุดที่ระดับ K=2.00 (205 tons/Jack)

ผลตอบสนองความเครียดอัดตำแหน่ง L/3, L/2 และ 2L/3 แสดงไว้ในรูปที่ 4-34 จากผล การทดสอบค่าความเครียดอัดในโครงสร้างพบว่าที่ตำแหน่งกึ่งกลางช่วงผลการตอบสนองจากเกจวัด ความเครียด SG-9 ที่ระดับการให้แรงไม่เกิน K=1.40 (125 tons/Jack) ให้ผลตอบสนองความเครียด อัดสูงที่สุดในการทดสอบเท่ากับ -55.36 µm/m (-2.26 MPa) เมื่อเทียบกับระดับการให้แรง Base level (K_a) หลังจากระดับการให้แรง K=1.40 นั้นผลตอบสนองความเครียดอัดที่วัดได้มีค่าลดลงจน เมื่อถึงระดับการให้แรง K=1.50 (140 tons/Jack) ตัวตรวจจับความเครียด SG-9 (L/2) ให้ผลการ ตอบสนองเป็นปกติ (0 μm/m, Neutral) โดยผลตอบสนองจากทุกเกจวัดความเครียดนั้นสามารถ วัดผลตอบสนองเป็นความเครียดดึงได้เพิ่มมากขึ้น จากผลการทดสอบที่ระดับการให้แรงสูงสุด K=2.00 (205 tons/Jack) ตัวตรวจจับความเครียด SG-9 (L/2) สามารถวัดความเครียดดึงได้สูงสุด 228.98 μm/m (9.36 MPa)

ผลตอบสนองความเค้นเฉือนจะพิจารณาความเครียดที่ตำแหน่ง 0 และ L แสดงไว้ใน รูปที่ 4-35 โดยความเครียดที่ตำแหน่ง SG-19 และ SG-20 (ตำแหน่งด้านซ้ายของชิ้นส่วนย่อยชิ้นที่ 12, L) ให้ผลตอบสนองที่มากที่สุดที่ระดับการให้แรง K=1.80 (180 tons/Jack) โดยผลตอบสนองที่ ระดับการให้แรง K=2.00 (205 tons/Jack) นั้นให้ผลตอบสนองที่น้อยกว่าซึ่งค่าความเครียด SG-19 จากผลต่างระหว่างแรงระดับ Base level (30 ตัน/Jack, K_a) และ K=1.80 (180 ตัน/Jack) มีค่า 112.39 µm/m ค่าความเครียด SG-20 จากผลต่างระหว่างแรงระดับ Base level (30 ตัน/Jack, K_a) และระดับแรง K=1.80 (180 ตัน/Jack) มีค่า -100.38 µm/m จากความสัมพันธ์ระหว่างความเค้น และความเครียดจะสามารถวิเคราะห์หาค่าความเค้นเฉือนที่ให้ผลตอบสนองสูงสุดจากแรงระดับ K=1.80 (180 ตัน/Jack) ได้เท่ากับ 5.51 MPa

2.00 เท่าของน้ำหนักบรรทุกออกแบบ

รูปที่ 4-35 ค่าความเครียดเฉือนจากการทดสอบถึงระดับการให้แรง 2.00 เท่าของน้ำหนักบรรทุกออกแบบ

4.2.2.3.4 รอยร้าวที่เกิดขึ้นในการทดสอบ

การตรวจสอบรอยร้าวในการทดสอบถึงระดับการให้แรง 2.00 เท่าของน้ำหนักบรรทุก ออกแบบนั้นสามารถตรวจสอบได้เพียงที่ระดับการให้แรงสูงสุด K=2.00 (205 tons/Jack) จาก เหตุผลด้านความปลอดภัยเนื่องจากโครงสร้างมีความเสียหายและมีรอยร้าวก่อนการเริ่มการทดสอบ เนื่องจากการทดสอบถึงระดับการให้แรง 1.60 เท่าของน้ำหนักบรรทุกออกแบบก่อนหน้า โดยหลังจาก การทดสอบถึงระดับการให้แรง K=2.00 นั้นพบว่ามีรอยร้าวเกิดขึ้นจำนวนมากดังในรูปที่ 4-36

Chulalongkorn University

2.00 เท่าของน้ำหนักบรรทุกออกแบบ

4.2.2.4 ผลการทดสอบแรงเฉือน

4.2.2.4.1 ค่าการแอ่นตัวของโครงสร้างและการทรุดตัวของฐานรองรับ

ผลการแอ่นตัวอันเนื่องมาจากการทดสอบแรงเฉือนนั้น แสดงไว้ในรูปที่ 4-37 โดยผลต่าง ระหว่างการแอ่นตัวสูงสุดที่กึ่งกลางช่วงจากการให้แรงระดับ S11 (Max Erection load, 40/185 tons/Jack) และ S1 (10/10 tons/Jack) นั้นมีค่าเท่ากับ 6.69 mm และค่าการทรุดตัวสูงสุดของ ฐานรองรับด้านซ้าย (0) และด้านขวา (L) มีค่าเท่ากับ 0.08 และ 0.85 mm ตามลำดับ

รูปที่ 4-37 ค่าการแอ่นตัวจากการทดสอบแรงเฉือน

4.2.2.4.2 ค่ามุมหมุนที่ฐานรองรับ

ผลการแอ่นตัวอันเนื่องมาจากการทดสอบแรงเฉือนนั้นแสดงไว้ในรูปที่ 4-38 โดยจากผล การทดสอบพบว่า ค่ามุมหมุนทั้งสองฝั่ง (0, L) มีอัตราการเปลี่ยนแปลงที่ไม่เท่ากันตามลักษณะการให้ แรงแก่โครงสร้างโดยที่ระดับการให้แรงสูงสุด S11 (Max Erection load, 40/185 tons/Jack) นั้น พบว่าค่ามุมหมุนที่ฐานรองรับด้านซ้ายและด้านขวามีค่าเท่ากับ 0.00058 เรเดียน (0.033 องศา) และ 0.00094 เรเดียน (0.054 องศา) ตามลำดับ

รูปที่ 4-38 ค่ามุมหมุนที่ฐานรองรับจากการทดสอบแรงเฉือน

4.2.2.4.3 ค่าความเครียดและค่าความเค้น

ผลตอบสนองความเครียดดึงในการทดสอบแรงเฉือนแสดงไว้ในรูปที่ 4-39 การทดสอบ แรงเฉือนนั้นจะพิจารณาความเครียดดึงเฉพาะบริเวณฐานรองรับโดยจะพิจารณาเฉพาะเกจวัด ความเครียด SG-27 ถึง SG-29 โดยมีความเครียดดึงสูงสุดจากการให้แรงระดับ S11 (Max Erection, 40/185 tons/Jack) เท่ากับ 20.92, -12.00, 5.60 μm/m ตามลำดับ ซึ่งคิดเป็นความเค้นดึงสูงสุด เท่ากับ 1.08 MPa

ผลตอบสนองความเครียดอัดในการทดสอบแรงเฉือนแสดงไว้ในรูปที่ 4-40 การทดสอบ แรงเฉือนนั้นจะพิจารณาความเครียดอัดเฉพาะบริเวณฐานรองรับโดยจะพิจารณาเฉพาะเกจวัด ความเครียด SG-30 ถึง SG-32 โดยมีความเครียดอัดสูงสุดจากการให้แรงระดับ S11 (Max Erection, 40/185 tons/Jack) เท่ากับ -18.81, -14.89 และ -13.23 µm/m ตามลำดับ ซึ่งคิดเป็นความเค้นอัด สูงสุดเท่ากับ -0.97 MPa

ผลตอบสนองความเค้นเฉือนจะพิจารณาความเครียดที่ฐานรองรับด้านขวา (L) โดยมี ผลตอบสนองแสดงรูปที่ 4-41 จากผลการทดสอบพบว่าความเครียดที่ตำแหน่งด้านซ้ายของชิ้น ส่วนย่อยชิ้นที่ 12 (SG-19 และ SG-20, L) ให้ผลตอบสนองสูงสุดเมื่อเทียบกับตำแหน่งอื่น ๆ ที่ระดับ การให้แรง S11 (Max Erection, 40/185 tons/Jack) โดยค่าความเครียดสูงสุดจาก SG-19 และ SG-20 มีค่า 33.86 และ -62.90 μm/m ซึ่งสามารถคิดเป็นความเค้นเฉือนสูงสุดได้เท่ากับ 2.51 MPa

รูปที่ 4-40 ค่าความเครียดอัดจากการทดสอบแรงเฉือน

รูปที่ 4-41 ค่าความเครียดทแยงจากการทดสอบแรงเฉือน

4.2.2.4.4 รอยร้าวที่เกิดขึ้นในการทดสอบ

การทดสอบแรงเฉือนโครงสร้างทางวิ่งยกระดับนั้นมีระดับการให้แรงทั้งหมด 11 ระดับ การให้แรง S1-S11 โดยหลังจากการทดสอบระดับการให้แรงสูงสุดที่ระดับ S11 (Max Erection, 40/185 tons/Jack) พบว่าไม่มีรอยร้าวใด ๆ ปรากฏเพิ่มขึ้นจากการสำรวจโครงสร้างโดยใช้กล้อง กำลังขยาย 10 เท่าที่บริเวณขึ้นส่วนย่อยชิ้นที่ 9, 10, 11 และ 12

4.3 สรุปผลการทดสอบโครงสร้างทางวิ่งยกระดับ

4.3.1 สรุปผลการทดสอบเชิงพลวัต CRN CONVERSITY

ผลการทดสอบความถี่ธรรมชาติทางวิ่งยกระดับทำให้สามารถวิเคราะห์หาค่าความถี่ ธรรมชาติต่ำสุดได้เท่ากับ 6.176 Hz เมื่อนำค่าความถี่ธรรมชาติดังกล่าวไปปรับแก้ด้วยวิธีชดเชยมวล ดังแสดงในตารางที่ 4-3 ทำให้สามารถคำนวณค่าความถี่ธรรมชาติแนวดิ่งต่ำสุดได้เท่ากับ 4.808 Hz ซึ่งมาตรฐานการทดสอบของจีนกำหนดให้ค่าความถี่ธรรมชาติแนวดิ่งไม่ต่ำกว่า 3.059 Hz ทำให้โครงสร้างทางวิ่งยกระดับ<u>ผ่านการทดสอบเชิงพลวัตตามมาตรฐานจีน TB 10621-2014</u> ดังแสดง ในตารางที่ 4-8

Vertical Natura Viaduct Configuration Frequency (Hz)		Recommended Vertical Natural Frequency from Calculation Report (Hz)	Min. Frequency (Hz) TB 10621-2014		
Viaduct without SDL	6.176	-			
Viaduct with SDL=173kN/m	5.031	3.616	2.050		
Viaduct with SDL=192kN/m	4.910	3.612	5.059		
Viaduct with SDL=209kN/m	4.808	3.611			

ตารางที่ 4-8 สรุปผลการทดสอบค่าความถี่ธรรมชาติแนวดิ่ง

4.3.2 สรุปผลการทดสอบเชิงสถิต

4.3.2.1 สรุปผลการทดสอบแรงดัด

4.3.2.1.1 การแอ่นตัวของโครงสร้าง

การแอ่นตัวของโครงสร้างทางวิ่งยกระดับจะพิจารณาใช้ค่าการแอ่นตัวสูงสุดจากการ ทดสอบถึงระดับ 1.20 เท่าของน้ำหนักบรรทุกออกแบบในวงรอบที่สอง (1.20x Design load, Second cycle) ค่าการแอ่นตัวสูงสุดจากผลต่างระหว่างระดับการให้แรง Static live load (K_b) และ Base level (K_a) ซึ่งเทียบเท่าได้กับภาระกระทำ ZK live load มีค่าเท่ากับ 8.66 mm โดยค่าการ แอ่นตัวของโครงสร้างมีค่าไม่เกินค่าการแอ่นตัวสูงสุดที่กำหนดโดยมาตรฐานจีนที่ 21.5 mm จึงทำให้ โครงสร้างทางวิ่งยกระดับนั้น<u>ผ่านเกณฑ์การแอ่นตัวตามมาตรฐานจีน TB 10621-2014</u>

การแอ่นตัวของโครงสร้างทางวิ่งยกระดับมีพฤติกรรมการแอ่นตัวเป็นเส้นตรงโดยมี ขีดจำกัดเส้นตรงแรกที่ระดับให้แรง K=1.40 และมีขีดจำกัดเส้นตรงที่สองที่ระดับการให้แรง K=1.60 ซึ่งที่ระดับการให้แรงสูงสุด K=2.00 โครงสร้างมีค่าการแอ่นตัวสูงสุดเท่ากับ 110.21 mm และมีค่า การทรุดตัวสูงสุดที่ฐานรองรับ 0.55 mm ที่ระดับการให้แรง K=2.00

4.3.2.1.2 เกณฑ์มุมหมุนที่ฐานรองรับ

เกณฑ์มุมหมุนที่ฐานรองรับของโครงสร้างทางวิ่งยกระดับจะพิจารณาใช้ค่ามุมหมุนสูงสุด จากการทดสอบถึงระดับ 1.20 เท่าของน้ำหนักบรรทุกออกแบบในวงรอบที่สอง (1.20x Design load, Second cycle) ค่าการมุมหมุนสูงสุดจากผลต่างระหว่างระดับการให้แรง Static live load (K_b) และ Base level (K_a) ซึ่งเทียบเท่าได้กับภาระกระทำ ZK live load มีค่าเท่ากับ 0.00085 เรเดียน โดยค่ามุมหมุนที่ฐานรองรับมีค่าไม่เกินค่ามุมหมุนสูงสุดที่กำหนดโดยมาตรฐานจีนที่ 0.0020 เรเดียน จึงทำให้โครงสร้างทางวิ่งยกระดับนั้น<u>ผ่านเกณฑ์มุมหมุนที่ฐานรองรับตามมาตรฐานจีน TB 10621-2014</u>

4.3.2.1.3 เกณฑ์ความเค้น

ความเค้นของโครงสร้างทางวิ่งยกระดับจะพิจารณาใช้ผลตอบสนองจากการทดสอบถึง ระดับ 1.20 เท่าของน้ำหนักบรรทุกออกแบบในวงรอบที่สอง (1.20x Design load, Second cycle) จากผลการทดสอบสามารถสรุปเทียบค่าความเค้นดึง ความเค้นอัด และความเค้นเฉือนเทียบกับเกณฑ์ ตามมาตรฐานจีนได้ดังตารางที่ 4-9 ซึ่งค่าความเค้นทั้งหมดนั้นมีค่าไม่เกินกว่าที่มาตรฐานกำหนดจึง สามารถสรุปได้ว่าโครงสร้างทางวิ่งยกระดับผ่านเกณฑ์ความเค้นตามมาตรฐานจีน TB 10621-2014

ตารางที่ 4-9 การเปรียบเทียบความเค้นจากผลทดสอบแรงดัดและเกณฑ์ความเค้น TB 10621-2014

Comparison of Stress Values (MPa)								
Stross critoria	DL+PS+Z	K live load	DL+PS+SDL+ZK live load					
Stress criteria	Bending test	TB 10621-2014	Bending test	TB 10621-2014				
Max. Shear stress (1.70m from support)	2.01	5.70	3.94	5.70				
Max. Principal compressive stress at mid span	-4.84	-20.10	-5.52	-22.10				
Max. Principal tension stress at mid span	-8.35	3.10	-1.06	3.10				

4.3.2.1.4 เกณฑ์รอยร้าว

การทดสอบรอยร้าวจะพิจารณาจากการทดสอบถึงระดับ 1.20 เท่าของน้ำหนักบรรทุก ออกแบบ โดยจากการตรวจสอบรอยร้าวเมื่อให้แรงสูงสุดที่ 1.20 เท่าของน้ำหนักบรรทุกออกแบบ (K=1.20) ไม่พบว่ามีรอยร้าวใด ๆ ปรากฏขึ้นจากการทดสอบซึ่งทำให้<u>ผ่านเกณฑ์รอยร้าวตาม</u> <u>มาตรฐานจีน TB 10621-2014</u>

4.3.2.1.5 อัตราส่วนความปลอดภัยของการทดสอบแรงดัด

อัตราส่วนความปลอดภัย (Factor of Safety; F.S.) หมายถึงอัตราส่วนระหว่างค่า อัตราส่วนความปลอดภัย (Factor of Safety; F.S.) หมายถึงอัตราส่วนระหว่างค่า อัตจำกัดจากเกณฑ์การทดสอบต่อผลตอบสนองจากการทดสอบโครงสร้าง ค่าอัตราส่วนความ ปลอดภัยของการแอ่นตัวของโครงสร้างและค่ามุมหมุนที่ฐานรองรับแสดงไว้ในตารางที่ 4-10 ค่า อัตราส่วนความปลอดภัยของความเค้นนั้นจะแบ่งออกเป็น 2 กรณีตามการเกณฑ์ความเค้นโดยมี รายละเอียดการคำนวณอัตราส่วนความปลอดภัยของความเค้นดึง ความเค้นอัด และความเค้นเฉือน แสดงไว้ละเอียดในตารางที่ 4-11 โดยอัตราส่วนความปลอดภัยที่น้อยที่สุดจากผลการทดสอบ สมรรถนะโครงสร้างคืออัตราส่วนความปลอดภัยของความเค้นเฉือนซึ่งมีค่าเท่ากับ 1.91

Bending Test						
Criteria	Response	Limit	F.S.			
Deflection (mm)	8.66	21.5	2.48			
Inclination (rad)	0.00085	0.002	2.35			

ตารางที่ 4-10 อัตราส่วนความปลอดภัยของการแอ่นตัวของโครงสร้างและมุมหมุนที่ฐานรองรับ

ตารางที่ 4-11 การคำนวณค่าอัตราส่วนความปลอดภัยของค่าความเค้น

	Bending Test									
Critoria	Load case	Stress	Limit	Loa	Load combination (1)			Load combination (2)		
Citteria	Ludu Case	(MPa)	LIIIIIL	DL+PS	Interval	F.S.	DL+PS+SDL	Interval	F.S.	MIII. F.S.
	DL	6.62								
Tensile	PS	-22.10	2.1	15.40	10 50	2.16	0.07	11.07	2.04	2.04
Stress SDL ZK live l	SDL	6.62	5.1	-15.48	10.50	3.10	-8.87	11.97	2.04	2.04
	ZK live load	5.88								
Compressive	DL	-0.64								
	PS	-3.53	22.1	4.17	17.07	20.50	4.00	17.20	20.52	20.52
Stress	SDL	-0.64	-22.1	-4.17	-17.93	29.58	-4.80	-17.30	28.53	28.53
	ZK live load	-0.61								
	DL	1.93								
Shear	PS	-1.85	F 7	0.00	5.62	2.01	2.01	2.60	1.01	1.01
Stress	SDL	1.93	5.7	0.08	5.62	2.91	2.01	3.09	1.91	1.91
	ZK live load	1.93								
				100	2520XX	and a				

4.3.2.2 สรุปผลการทดสอบแรงเฉือน

.3.2.2 ลรุปผลการทดลอบแรงเนอน

4.3.2.2.1 เกณฑ์รอยร้าว

การทดสอบรอยร้าวจะพิจารณาจากการทดสอบด้วยแรงสูงสุดที่ระดับ S11 พบว่าไม่มี รอยร้าวใด ๆ ปรากฏขึ้นจากการทดสอบซึ่งสามารถใช้ยืนยันได้ว่าโครงสร้างบริเวณฐานรองรับมี ความสามารถในการรองรับภาระกระทำจากการใช้งานและจากการก่อสร้างทำให้โครงสร้าง<u>ผ่านเกณฑ์</u> <u>รอยร้าวตามมาตรฐานจีน TB 10621-2014</u>

4.3.2.2.2 เกณฑ์ความเค้น

ความเค้นของโครงสร้างทางวิ่งยกระดับจะพิจารณาใช้ผลตอบสนองจากการให้แรงระดับ สูงสุด S11 (Max. Erection) โดยผลการทดสอบสามารถสรุปเทียบค่าความเค้นดึง ความเค้นอัด และ ความเค้นเฉือนเทียบกับเกณฑ์ตามมาตรฐานจีนไว้ในตารางที่ 4-12 ซึ่งค่าความเค้นทั้งหมดมีค่าไม่เกิน

กว่าที่มาตรฐานกำหนดจึงสามารถสรุปได้ว่าโครงสร้างทางวิ่งยกระดับ<u>ผ่านเกณฑ์ความเค้นตาม</u> <u>มาตรฐานจีน TB 10621-2014</u>

ตารางที่ 4-12 การเทียบความเค้นจากผลทดสอบแรงเฉือนและเกณฑ์ความเค้น TB 10621-2014

Comparison of Stress Values (MPa)							
Stress criteria	Shear test (S11)	TB 10621-2014					
Max. Shear stress at support	2.51	5.70					
Max. compressive stress of the top surface of the bottom surface at support	-0.97	-1.80					
Max. tensile stress of the bottom surface of the top slab at support	1.08	1.50					

4.3.2.2.3 เกณฑ์การทรุดตัวที่ฐานรองรับ

การทรุดตัวของโครงสร้างทางวิ่งยกระดับจะพิจารณาใช้ค่าการทรุดตัวสูงสุดจากการให้ แรงระดับสูงสุด S11 (Max. Erection) ซึ่งมีค่าการทรุดตัวสูงสุดเท่ากับ 0.85 mm โดยมาตรฐานจีน กำหนดให้การทรุดตัวที่ฐานรองรับมีค่าไม่เกิน 2.00 mm ดังนั้นจึงสามารถสรุปได้ว่าโครงสร้างทางวิ่ง ยกระดับ<u>ผ่านเกณฑ์การทรุดตัวที่ฐานรองรับตามมาตรฐานจีน TB 10621-2014</u>

4.3.2.2.4 อัตราส่วนความปลอดภัยของการทดสอบแรงเฉือน

อัตราส่วนความปลอดภัย (Factor of Safety; F.S.) ของการทดสอบแรงเฉือนนั้นจะ พิจารณาเหมือนกับการทดสอบแรงดัดดังแสดงไว้ในตารางที่ 4-13 จากผลการทดสอบแรงเฉือนนั้นจะ ได้ว่าค่าอัตราส่วนความปลอดภัยของความเค้นดึงนั้นมีค่าน้อยที่สุดซึ่งเท่ากับ 1.39

Shear Test							
Criteria	Location	Response	Limit	F.S.			
Shear stress (MPa)	Right support	2.51	5.70	2.27			
Compressive stress (MPa)	Top surface of the bottom surface at right support	-0.97	-1.80	1.86			
Tensile stress (MPa)	Bottom surface of the top slap at right support	1.08	1.50	1.39			
Support settlement (mm)	Right support	0.85	2.00	2.35			

ตารางที่ 4-13 อัตราส่วนความปลอดภัยของการทดสอบแรงเฉือน

บทที่ 5

การปรับปรุงแบบจำลองด้วยผลการทดสอบสมรรถนะโครงสร้าง

5.1 แบบจำลองเบื้องต้น

แบบจำลองโครงสร้างทางวิ่งยกระดับเบื้องต้นมีความสำคัญเป็นอย่างยิ่งในการใช้ประเมิน พฤติกรรมของโครงสร้างจริงจากภาระกระทำต่าง ๆ ทั้งพฤติกรรมเชิงพลวัตและพฤติกรรมเชิงสถิต การสร้างแบบจำลองเบื้องต้นในงานวิจัยนี้จะใช้โปรแกรม Midas Civil ในการวิเคราะห์ผลตอบสนอง เพื่อจะนำไปใช้ทำนายพฤติกรรมโครงสร้างจริง และนำผลการวิเคราะห์ที่ได้ไปปรับเทียบ (Calibrate) กับผลตอบสนองจากการทดสอบสมรรถนะโครงสร้างภาคสนาม เพื่อใช้ในการปรับปรุงแบบจำลอง เบื้องต้นให้มีพฤติกรรมใกล้เคียงกับพฤติกรรมจริงมากยิ่งขึ้น

5.1.1 ลักษณะทางกายภายของแบบจำลองเบื้องต้น

การสร้างแบบจำลองเบื้องต้นเพื่อวิเคราะห์ผลการทดสอบนั้น จะใช้โปรแกรม Midas Civil จำลองโครงสร้างทางวิ่งยกระดับที่มีช่วงพาดความยาว 32.6 เมตร ซึ่งเป็นความยาวช่วง พาดที่ใช้มากที่สุดเป็นต้นแบบในการสร้างแบบจำลองเบื้องต้น โดยเป็นรูปแบบเดียวกับโครงสร้างทาง วิ่งยกระดับที่ใช้ในการทดสอบสมรรถนะดังที่ได้กล่าวไว้ในบทที่ 4

แบบจำลองเบื้องต้นโครงสร้างทางวิ่งยกระดับเป็นโครงสร้างสะพานรูปกล่องประกอบไป ด้วย 13 ชิ้นส่วนย่อยในลักษณะเดียวกันกับโครงสร้างทางวิ่งยกระดับจริงที่ใช้ทดสอบสมรรถนะ โครงสร้าง แบบจำลองเบื้องต้นจะใช้แบบจำลองเชิงเส้น (Line element) โดยมีลักษณะเป็นคาน อย่างง่าย (Simple beam) ที่มีความยาวทั้งหมด 32.60 m คิดเป็นความยาวช่วงพาด 31.50 m ฐานรองรับฝั่งซ้ายเป็น Pinned-support และฐานรองรับฝั่งขวาเป็น Roller support โดย ฐานรองรับทั้งสองฝั่งอยู่ถัดเข้ามาจากปลายสุดทั้งสองด้าน 0.55 m มีลักษณะทางกายภายโดยรวม แสดงไว้ในรูปที่ 5-1

หน้าตัดของโครงสร้างทางวิ่งยกระดับมีความลึกตามแนวเส้นกึ่งกลาง 2.686 m มีความ กว้างของแผ่นพื้นด้านบนและด้านล่างเท่ากับ 12.20 m และ 4.60 m ตามลำดับโดยมีรูปแบบหน้าตัด ที่ใช้ 3 รูปแบบได้แก่หน้าตัดชนิดปลายช่วง (End section) ชนิดกึ่งกลางช่วง (Mid-span section) และชนิดผสม (Tapered section) ซึ่งเป็นหน้าตัดที่ปลายด้านหนึ่งเป็นชนิดปลายช่วงและอีกด้านหนึ่ง เป็นชนิดกึ่งกลางช่วง มิติของหน้าตัดชนิดปลายช่วงและกึ่งกลางช่วงแสดงไว้ในรูปที่ 5-2 และรูปที่ 5-3 ตามลำดับ โดยตำแหน่งของหน้าตัดแต่ละชนิดแสดงไว้ในตารางที่ 5-1

แบบจำลองเบื้องต้นจะใช้ลวดอัดแรงชนิดภายในหน้าตัด (Internal tendon) ตลอดทั้ง โครงสร้างโดยมีเส้นทางการเดินลวด (Tendon profile) ทั้งหมด 19 แนว โดยสามารถแบ่งกลุ่มได้ เป็น 8 กลุ่ม (N1 ถึง N8) รายละเอียดมิติตามขวางและมิติตามยาวของแนวเส้นลวดอัดแรงแสดงไว้ใน รูปที่ 5-4 และ รูปที่ 5-5 ตามลำดับ

รูปที่ 5-2 มิติหน้าตัดชนิดปลายช่วง

รูปที่ 5-3 มิติหน้าตัดชนิดกึ่งกลางช่วง

ตารางที่ 5-1 ชนิดหน้าตัดในของโครงสร้างทางวิ่งยกระดับ

รูปที่ 5-5 มิติตามยาวของแนวลวดอัดแรง

1000L/2-400

250

CENTERLINE OF BEARING

5.1.2 คุณสมบัติของวัสดุ (Material properties)

แบบจำลองเบื้องต้นประกอบด้วยวัสดุ 2 ประเภทได้แก่ลวดอัดแรงและคอนกรีต ลวดอัดแรงที่ใช้ในแบบจำลองเป็นชนิด A416-270 (Low relaxation) มีค่า Modulus of Elasticity 196,500 MPa และมีหน่วยน้ำหนักเท่ากับ 7.709 kN/m³ คอนกรีตที่ใช้ในแบบจำลองจะพิจารณาใช้ ผลการทดสอบคอนกรีตของโครงสร้างทางวิ่งยกระดับจริงโดยมีค่า Modulus of elasticity , Compressive strength และหน่วยน้ำหนัก ของแต่ละชิ้นส่วนย่อยแสดงไว้ในตารางที่ 5-2

Concrete properties								
Segment No.	Modulus of Elasticity (MPa)	Compressive strength (MPa)	Unit weight (kN/m ³)					
1	46100	52.59	25.0					
2	42000	59.87	25.0					
3	44200	53.34	25.0					
4	41600	63.67	25.0					
5	41600	63.67	25.0					
6	44500	56.77	25.0					
7	40900	59.03	25.0					
8	44800	62.43	25.0					
9	41900	65.73	25.0					
10	43900	59.91	25.0					
11	48600	59.13	25.0					
12	51800	54.47	25.0					
13	48300	58.40	25.0					

ตารางที่ 5-2 คุณสมบัติของคอนกรีตที่ใช้ในแบบจำลองเบื้องต้น

5.1.3 แรงกระทำที่ใช้ในแบบจำลองโครงสร้างเบื้องต้น

การกำหนดแรงกระทำที่ใช้ในแบบจำลองเบื้องต้นจะพิจารณาจากสภาวะการให้แรงใน การทดสอบสมรรถนะโครงสร้างภาคสนาม กล่าวคือตำแหน่งและขนาดของแรงกระทำจะมีลักษณะ เดียวกันกับการทดสอบจริงในการทดสอบเชิงสถิตโดยแรงกรณี (Load case) ที่ใช้ในแบบจำลอง เบื้องต้นมีรายละเอียดแสดงในหัวข้อที่ 5.1.3.1 ถึงหัวข้อที่ 5.1.3.4

5.1.3.1 แรงกระทำจากน้ำหนักโครงสร้าง

แรงกระทำจากน้ำหนักโครงสร้างจะแบ่งเป็น 2 ประเภทได้แรงจากน้ำหนักบรรทุกคงที่ (Dead load; DL) และน้ำหนักคงที่ส่วนเพิ่ม (Superimposed dead load; SDL) ซึ่งน้ำหนักบรรทุก คงที่ส่วนเพิ่มนั้นมีระดับการให้แรงอยู่ทั้งหมด 3 กรณีได้แก่ 173 kN/m, 192 kN/m และ 209 kN/m ดังนั้นเพื่อที่จะคำนวณหาค่าความถี่ธรรมชาติในสภาพการใช้งานจริงของโครงสร้างจึงพิจารณาใช้มวล ของโครงสร้างร่วมกับมวลเสมือน (Load to mass) จากกรณีน้ำหนักคงที่ส่วนเพิ่ม

5.1.3.2 แรงกระทำจากเส้นลวดอัดแรง

เส้นลวดอัดแรงที่ใช้ในแบบจำลองเบื้องต้นมีค่า Ultimate strength และ Yield Strength เท่ากับ 1,860 และ 1,569 MPa ตามลำดับโดยรายละเอียดจำนวนเส้นลวดและหน่วยแรง ที่ใช้ภายในเส้นลวดอัดแรงแต่ละกลุ่ม (N1 ถึง N8) แสดงไว้ในตารางที่ 5-3

Tendon Group	No. of Tendon	. of Tendon Total area Total area Total area		Jacking stress (MPa)
N1	20-7Ø12.7mm	2780	Both ends	1295
N2	20-7Ø12.7mm	2780	Both ends	1339
N3	20-7Ø12.7mm	2780	Both ends	1295
N4	18-7Ø12.7mm	2502	Both ends	1295
N5	18-7Ø12.7mm	2502	Both ends	1295
N6	15-7Ø12.7mm	2085	Both ends	1220
N7	15-7Ø12.7mm	2085	Both ends	1220
N8	15-7Ø12.7mm	2085	Both ends	1220

ตารางที่ 5-3 รายละเอียดหน่วยแรงในเส้นลวดอัดแรง

5.1.3.3 แรงกระทำจากน้ำหนักบรรทุกจรเคลื่อนที่

แรงกระทำจากน้ำหนักบรรทุกจรเคลื่อนที่ใช้ตามมาตรฐานจีน ZK live loadดังแสดงใน รูปที่ 5-6 โดยมีจำนวนขบวนน้อยสุด 1 ขบวนและมากสุด 2 ขบวน (2 ทางวิ่ง)

รูปที่ 5-6 น้ำหนักบรรทุกจรเคลื่อนที่ ZK live load

5.1.3.4 แรงกระทำในการทดสอบเชิงสถิต

แรงกระทำเชิงสถิตที่ใช้ในแบบจำลองเบื้องต้นจะใช้เป็นแรงกระทำแบบจุด (Point load) กระทำตำแหน่งเดียวกันกับแม่แรงไฮดรอลิคที่ใช้ในการทดสอบเชิงสถิตตามการให้แรงถึงระดับ 1.20 เท่าของน้ำหนักบรรทุกออกแบบโดยแสดงกรณีแรงทั้งหมดในตารางที่ 5-4

Load Case	Force (-Z Direction) (tons/node)
Initial state	10
Base level	30
K=0.80	45
Static live load	70
K=1.00	75
K=1.05	80
K=1.10	85
K=1.15	90
K=1.20	100
Courses	1//2

ตารางที่ 5-4 แรงกระทำแบบจุดในแบบจำลองเบื้องต้น

5.2 ผลการวิเคราะห์โครงสร้างแบบจำลองเบื้องต้น

5.2.1 ผลการวิเคราะห์เชิงพลวัต

ผลการวิเคราะห์เชิงสถิตจะแบ่งกรณีตามมวลโครงสร้างทางวิ่งยกระดับออกเป็น 4 กรณี ได้แก่ มวลเฉพาะจากโครงสร้างทางวิ่งยกระดับ และมวลโครงสร้างทางวิ่งยกระดับรวมกับมวลเสมือน จาก SDL โดยผลการวิเคราะห์ค่าความถี่ธรรมชาติในแนวดิ่งโหมดแรกนั้นแสดงไว้ในตารางที่ 5-5

Viaduct Configuration	Vertical Frequency (Hz)	Tested Vertical Frequency (Hz)
Viaduct without SDL	5.605	6.176
Viaduct with SDL=173kN/m	4.072	5.031
Viaduct with SDL=192kN/m	3.971	4.910
Viaduct with SDL=209kN/m	3.886	4.808

ตารางที่ 5-5 ผลการวิเคราะห์ค่าความถี่ธรรมชาติแนวดิ่งจากแบบจำลองเบื้องต้น

5.2.2 ผลการวิเคราะห์เชิงสถิต

การวิเคราะห์เชิงสถิตจากแบบจำลองเบื้องต้นนั้นจะแบ่งผลการตอบสนองออกเป็นค่าการ แอ่นตัวของโครงสร้าง ค่ามุมหมุน ค่าความเค้นอัด ค่าความเค้นดึง และค่าความเค้นเฉือน ผลการ วิเคราะห์เชิงสถิตนั้นแสดงไว้ในตารางที่ 5-6 โดยผลตอบสนองจะถูกนำไปเทียบกับผลตอบสนองที่ได้ จากการทดสอบภาคสนาม เพื่อใช้ในการปรับเทียบแบบจำลองเบื้องต้นให้มีผลตอบสนองใกล้เคียงกับ การทดสอบสมรรถนะโครงสร้างจริงมากยิ่งขึ้นในหัวข้อที่ 5.3

Original Model										
Response	Location	Initial state 10 t/node	Base level 30 t/node	K=0.80 45 t/node	Static LL 70 t/node	K=1.00 75 t/node	K=1.05 80 t/node	K=1.10 85 t/node	K=1.15 90 t/node	K=1.20 100 t/node
	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	L/3	0.00	3.48	6.08	10.43	11.30	12.17	13.04	13.91	15.64
Deflection (mm)	L/2	0.00	4.01	7.02	12.03	13.04	14.04	15.04	16.04	18.05
	2L/3	0.00	3.44	6.02	10.33	11.19	12.05	12.91	13.77	15.49
	L	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Indination (rad)	Left	0.00000	0.00036	0.00063	0.00108	0.00117	0.00126	0.00135	0.00144	0.00163
	Right	0.00000	0.00036	0.00062	0.00106	0.00115	0.00124	0.00133	0.00142	0.00160
Toncilo strain (um/m)	L/3	0.00	55.20	96.60	165.61	179.41	193.21	207.01	220.81	248.41
(Pottom fiber)	L/2	0.00	65.29	114.26	195.87	212.20	228.53	244.84	261.17	293.81
(Bottom fiber)	2L/3	0.00	54.84	95.97	164.51	178.22	191.93	205.64	219.36	246.76
Comprossive strain (um/m)	L/3	0.00	-10.76	-18.83	-32.28	-34.98	-37.66	-40.35	-43.04	-48.43
(2.077m above bottom fiber)	L/2	0.00	-12.76	-22.34	-38.29	-41.48	-44.67	-47.87	-51.06	-57.44
	2L/3	0.00	-10.68	-18.69	-32.04	-34.71	-37.38	-40.05	-42.72	-48.06

,							Ŷ	
a	6	2 2	9	5	e ع	0	4	v
ตารางที่ 5-6	ผลตอบสนองเข	เงสถตจ	ากการวโคร	าะหเคร	ังสรางแร	บบจาลอ	งเปอง	าตน

5.3 การปรับปรุงแบบจำลองเบื้องต้น

5.3.1 การเลือกผลตอบสนองสมรรถนะโครงสร้างเพื่อใช้ปรับปรุงแบบจำลอง

ผลตอบสนองโครงสร้างทางวิ่งยกระดับเชิงสถิตจากการทดสอบถึงระดับการให้แรง 1.20 เท่าของน้ำหนักบรรทุกออกแบบในวงรอบที่สอง (Second cycle) จะถูกใช้เป็นผลตอบสนองหลักใน การปรับเทียบแบบจำลอง โดยมีผลการทดสอบสรุปไว้ในตารางที่ 5-7 โดยค่าความเครียดเฉือนจะไม่ ถูกนำมาพิจารณาเนื่องจากตำแหน่งที่ติดเกจวัดความเครียดทั้ง 4 จุดในโครงสร้างทางวิ่งยกระดับนั้น อยู่ในช่วงหน้าตัดแบบผสม (Tapered section) ทำให้ผลตอบสนองที่ได้มีความคลาดเคลื่อนสูง จึงไม่ เหมาะที่จะนำมาพิจารณาจากปรับปรุงโครงสร้างแบบจำลอง และจากผลการทดสอบจะพบค่า ความเครียดอัด (Compressive strain) ที่ตำแหน่ง L/2 มีค่าต่ำผิดปกติอย่างมีนัยสำคัญเมื่อเทียบที่ ตำแหน่ง L/3 และ 2L/3 ซึ่งขัดต่อทฤษฎีโครงสร้างเบื้องต้น ดังนั้นการปรับปรุงแบบจำลองจะไม่นำ ข้อมูลความเครียดอัดที่ตำแหน่ง L/2 มาพิจารณาในการเปรียบเทียบระหว่างผลตอบสนองจาก แบบจำลองเบื้องต้นและผลตอบสนองจากการทดสอบสมรรถนะโครงสร้าง

จากผลการทดสอบทั้งค่าการแอ่นตัว ค่ามุมหมุนที่ฐานรองรับ และค่าความเครียดบ่งชี้ว่า ค่าความแข็งโดยรวมของโครงสร้าง (Structural stiffness) จากผลการทดสอบสมรรถนะโครงสร้างมี ค่าน้อยกว่าผลตอบสนองจากแบบจำลองเบื้องต้น เหตุที่โครงสร้างจริงนั้นมีค่าความแข็งของโครงสร้าง โดยรวมน้อยกว่าในค่าความแข็งโดยรวมในแบบจำลองนั้นในงานวิจัยนี้มีสมมติฐานว่า<u>ค่าความแข็ง โดยรวมของโครงสร้างถูกลดทอนจากความไม่สมบูรณ์ของรอยต่อระหว่างชิ้นส่วนย่อยทั้ง 13 ชิ้น ส่วนย่อย</u> ดังนั้นการปรับปรุงแบบจำลองโครงสร้างทางวิ่งยกระดับจะมุ่งเน้นในการปรับลดค่า Modulus of Elasticity ของคอนกรีตเพื่อลดความแข็งโดยรวมของโครงสร้างและเปลี่ยนคุณสมบัติ ของฐานรองรับเป็นแบบ Spring เพื่อให้โครงสร้างในแบบจำลองเบื้องต้นนั้นมีการทรุดตัวเกิดขึ้น เช่นเดียวกันกับการทดสอบจริง

ตารางที่ 5-7 ผลตอบสนองเชิงสถิตจากผลการทดสอบถึงระดับการให้แรง

	Structural Performance Test (1.20x Design load, Second cycle)											
Response	Location	Initial state 10 t/Jack	Base level 30 t/Jack	K=0.80 45 t/Jack	Static LL 70 t/Jack	K=1.00 75 t/Jack	K=1.05 80 t/Jack	K=1.10 85 t/Jack	K=1.15 90 t/Jack	K=1.20 100 t/Jack		
	0	0.00	0.02	0.04	0.10	0.11	0.12	0.14	0.14	0.18		
	L/3	0.00	3.60	6.10	10.57	11.36	12.29	13.25	14.01	16.10		
Deflection (mm)	L/2	0.00	4.39	7.48	12.97	13.93	15.05	16.22	17.13	19.59		
	2L/3	0.00	3.80	6.44	11.15	11.99	12.95	13.96	14.74	16.83		
	L	0.00	0.03	0.06	0.11	0.12	0.13	0.14	0.15	0.18		
Inclination (rad)	Left	0.00000	0.00043	0.00074	0.00128	0.00137	0.00148	0.00160	0.00169	0.00193		
	Right	0.00000	-0.00042	-0.00072	-0.00125	-0.00134	-0.00144	-0.00157	-0.00165	-0.00188		
Toncilo stain (um/m)	L/3	0.00	67.91	115.16	201.20	215.64	231.07	248.48	263.00	292.59		
(Rottom fiber)	L/2	0.00	73.16	122.00	216.86	234.92	253.23	274.80	293.93	349.38		
	2L/3	0.00	62.03	106.33	185.46	201.51	215.43	231.42	242.98	274.29		
Comprossive strain (um/m)	L/3	0.00	-13.83	-21.31	-37.05	-38.77	-42.55	-46.38	-49.90	-56.78		
(2.077m shows bottom fiber)	L/2	0.00	-10.04	-16.22	-24.87	-25.59	-28.29	-30.69	-36.29	-42.84		
	2L/3	0.00	-11.51	-16.28	-27.25	-27.86	-30.45	-33.57	-37.81	-44.66		

1.20 เท่าของน้ำหนักบรรทุกออกแบบ

จากผลการทดสอบเชิงพลวัตจะพบว่าค่าความถี่ธรรมชาติแนวดิ่งที่ต่ำที่สุดมีค่า 4.808 Hz ในขณะที่ค่าความถี่ธรรมชาติจากแบบจำลองเบื้องต้นนั้นมีค่าความถี่ธรรมชาติแนวดิ่งที่ต่ำที่สุด 3.886 Hz โดยจากการเปรียบเทียบจะพบว่าค่าความแข็งของโครงสร้างทดสอบนั้นมีค่าสูงกว่าใน แบบจำลอง ซึ่งแตกต่างกับผลการทดสอบเชิงสถิต ที่เป็นเช่นนี้อาจเกิดจากโครงสร้างและจุดรองรับ ของ Loading Frame ที่ใช้ติดตั้งแม่แรงไฮดรอลิคส่งผลต่อค่าความแข็งโดยรวมของโครงสร้างทำให้ ค่าความถี่ธรรมชาติแนวดิ่งที่ได้จากการทดสอบสูงกว่าแบบจำลองเบื้องต้นมาก อย่างไรก็ดีเนื่องจาก ค่าความถี่ที่ได้ทั้งจากแบบจำลองและผลการทดสอบโครงสร้างจริง มีค่าสูงกว่าเกณฑ์ขั้นต่ำตาม มาตรฐานจีนค่อนข้างมาก การปรับปรุงหน้าตัดจึงแทบไม่ส่งผลกระทบจนทำให้ไม่ผ่านเกณฑ์

5.3.2 การวิเคราะห์และเลือกข้อมูลผลการทดสอบเชิงสถิต

จากผลการทดสอบโครงสร้างทางวิ่งยกระดับในระดับการให้แรงถึง 1.20 เท่าของน้ำหนัก บรรทุกออกแบบนั้น โครงสร้างมีพฤติกรรมยืดหยุ่นโดยสมบูรณ์ดังนั้นผลตอบสนองควรจะมีพฤติกรรม เป็นเส้นตรงจึงไม่จำเป็นจะต้องใช้ข้อมูลจากทุกระดับการให้แรงในการปรับเทียบค่าโมดูลัสของ คอนกรีต แต่จะพิจารณาใช้ค่าที่น่าเชื่อถือบางค่าเท่านั้นโดยข้อมูลจากผลการทดสอบโครงสร้างนั้นจะ ไม่พิจารณาที่ระดับการให้แรงที่ระดับ Base level (30 tons/Jack) และ K=0.80 (45 tons/Jack) เนื่องจากมีระดับการให้แรงต่ำทำให้มีเปอร์เซ็นต์ความคลาดเคลื่อนในการกำหนดแรงจากแม่แรงไฮ ดรอลิคสูง รายละเอียดการเลือกข้อมูลที่จะใช้ในการปรับเทียบค่าโมดูลัสของคอนกรีตจะพิจารณาจาก ข้อมูลการแอ่นตัว ข้อมูลการทุดตัวของฐานรองรับ ข้อมูลมุมหมุนที่ฐานรองรับ ข้อมูลความเครียดดึง และข้อมูลความเครียดอัด โดยจะแสดงรายละเอียดไว้ในหัวข้อที่ 5.3.2.1 ถึงหัวข้อที่ 5.3.2.5 ตามลำดับ

5.3.2.1 การเลือกข้อมูลการแอ่นตัว

ค่าการแอ่นตัวจากการทดสอบถึงระดับการให้แรง 1.20 เท่าของน้ำหนักบรรทุกออกแบบ แสดงไว้ในรูปที่ 5-7 จากข้อมูลจะสามารถพิจารณาได้ว่าผลตอบสนองค่าการแอ่นตัวทั้งที่ตำแหน่ง L/3, L/2 และ 2L/3 มีลักษณะเป็นเส้นตรงโดยไม่มีผลตอบสนองจากแรงกระทำใด ๆ ที่ให้ผล ตอบสนองห่างจากเส้นแนวโน้ม (Trend line) โดยในงานวิจัยฉบับนี้จะเลือกเฉพาะกรณีแรง Static live load (70 tons/Jack) เพื่อนำไปใช้ปรับเทียบปรับเทียบค่าโมดูลัสของคอนกรีต

รูปที่ 5-7 ความสัมพันธ์ระหว่างแรงและการแอ่นตัว (1.20x Design load, Second cycle)

5.3.2.2 การเลือกข้อมูลการทรุดตัวของฐานรองรับ

ค่าการทรุดตัวจากการทดสอบถึงระดับการให้แรง 1.20 เท่าของน้ำหนักบรรทุกออกแบบ แสดงไว้ในรูปที่ 5-8 ค่าการทรุดตัวของฐานรองรับจะนำไปใช้ปรับคุณสมบัติของฐานรองรับให้มี พฤติกรรมเป็นแบบยืดหยุ่นกล่าวคือจะใช้ข้อมูลการทรุดตัวในการหาค่าความแข็งของฐานรองรับจาก ค่าความชันซึ่งมีหน่วยเป็น tons/mm จากข้อมูลจะสามารถพิจารณาได้ว่าที่ระดับการให้แรง K=1.20 ค่าการทรุดตัวเริ่มมีแนวโน้มที่จะเบนออกจากเส้นแนวโน้ม (Trend line) และค่าการทรุดตัวของ ฐานรองรับด้านซ้ายที่ระดับการให้แรง Static live load และ K=1.00 นั้นค่อนข้างเบนออกจาก เส้นแนวโน้มเมื่อเทียบกับการให้แรงที่ระดับ K=1.05 ถึง K=1.15 ดังนั้นในการปรับค่าคุณสมบัติ ฐานรองรับจะพิจารณาใช้ข้อมูลจากระดับการให้แรง K=1.05, K=1.10 และ K=1.15 เท่านั้นโดยใน รูปที่ 5-9 แสดงข้อมูลการทรุดตัวของฐานรองรับที่จะนำไปใช้ปรับค่าคุณสมบัติของฐานรองรับ

รูปที่ 5-8 ความสัมพันธ์ระหว่างแรงและค่าการทรุดตัว (1.20x Design load, Second cycle)

รูปที่ 5-9 ความสัมพันธ์ระหว่างแรงและค่าการทรุดตัวที่จะนำไปใช้ปรับปรุงคุณสมบัติฐานรองรับ

5.3.2.3 การเลือกข้อมูลมุมหมุนที่ฐานรองรับ

ค่ามุมหมุนที่ฐานรองรับจากการทดสอบถึงระดับการให้แรง 1.20 เท่าของน้ำหนักบรรทุก ออกแบบแสดงไว้ในรูปที่ 5-10 จากข้อมูลจะสามารถพิจารณาได้ว่าผลตอบสนองค่ามุมหมุนที่ ฐานรองรับทั้งด้านซ้าย (0) และด้านขวา (L) มีลักษณะเป็นเส้นตรงโดยไม่มีผลตอบสนองจากแรง กระทำใด ๆ ที่ให้ผลตอบสนองห่างจากเส้นแนวโน้ม (Trend line) โดยในงานวิจัยนี้จะเลือกเฉพาะ กรณีแรง Static live load (70 tons/Jack) เพื่อนำไปใช้ปรับเทียบค่าโมดูลัสของคอนกรีต

รูปที่ 5-10 ความสัมพันธ์ระหว่างแรงและมุมหมุนที่ฐานรองรับ(1.20x Design load, Second cycle)

5.3.2.4 การเลือกข้อมูลความเครียดดึง

ค่าความเครียดดึงจากการทดสอบถึงระดับการให้แรง 1.20 เท่าของน้ำหนักบรรทุก ออกแบบแสดงไว้ในรูปที่ 5-11 จากข้อมูลจะสามารถพิจารณาได้ว่าผลตอบสนองเกือบทั้งหมดมี ลักษณะเป็นเส้นตรงโดยมีเพียงผลตอบสนองจากแรงระดับสูงสุด K=1.20 ตำแหน่ง L/2 ที่เริ่มเบน ออกจากเส้นแนวโน้ม (Trend line) โดยในงานวิจัยฉบับนี้จะเลือกเฉพาะกรณีแรง Static live load (70 tons/Jack) เพื่อนำไปใช้ปรับเทียบค่าโมดูลัสของคอนกรีต

รูปที่ 5-11 ความสัมพันธ์ระหว่างแรงและค่าความเครียดดึง (1.20x Design load, Second cycle)

5.3.2.5 การเลือกข้อมูลความเครียดอัด

ค่าความเครียดอัดจากการทดสอบถึงระดับการให้แรง 1.20 เท่าของน้ำหนักบรรทุก ออกแบบแสดงไว้ในรูปที่ 5-12 จากข้อมูลจะสามารถพิจารณาได้ว่าผลตอบสนองจากตำแหน่ง 2L/3 นั้นมีลักษณะค่อนข้างเบนออกจากเส้นแนวโน้ม (Trend line) และไม่มีความสม่ำเสมอของข้อมูล ดังนั้นในการพิจารณาการปรับเทียบค่าโมดูลัสของคอนกรีตจะพิจารณาเฉพาะผลตอบสนองที่ตำแหน่ง L/3 ซึ่งมีผลการตอบสนองค่อนข้างสม่ำเสมอและข้อมูลมีการเบนออกจากเส้นแนวโน้มเพียงเล็กน้อย โดยในงานวิจัยนี้จะพิจารณาเลือกเฉพาะกรณีแรง Static live load (70 tons/Jack)

CHULALONGKORN UNIVERSITY

รูปที่ 5-12 ความสัมพันธ์ระหว่างแรงและค่าความเครียดอัด (1.20x Design load, Second cycle)

5.3.3 สรุปผลการเลือกข้อมูลเพื่อนำมาปรับปรุงแบบจำลอง

5.3.3.1 ข้อมูลที่ใช้ในการปรับปรุงค่า Modulus of Elasticity ของคอนกรีต

การปรับปรุงคุณสมบัติของคอนกรีตด้วยวิธีการลดค่า Modulus of Elasticity ของ คอนกรีตนั้น จะใช้ข้อมูลจากค่าการแอ่นตัวที่ตำแหน่ง L/3, L/2 และ 2L/3 ค่ามุมหมุนที่ฐานรองรับ ด้านซ้ายและด้านขวา ค่าความเครียดดึงที่ตำแหน่ง L/3, L/2 และ 2L/3 และค่าความเครียดอัดที่ ตำแหน่ง L/3 โดยจะพิจารณาจากกรณีแรง Static live load เพียงกรณีเดียวเนื่องจากผลตอบสนอง ที่เลือกใช้ในการปรับปรุงคุณสมบัติของคอนกรีตนั้น มีลักษณะค่อนข้างเป็นเส้นตรงดังแสดงใน หัวข้อที่ 5.3.2 โดยตารางที่ 5-8 แสดงการเปรียบเทียบค่าผลตอบสนองที่นำไปใช้ในการปรับปรุงค่า Modulus of Elasticity ของคอนกรีตจากการทดสอบและจากผลตอบสนองจากแบบจำลองเบื้องต้น

4			9 9	/					0	4	ν
marann	го	andial	~pin linnpin	1201000000	IOMONIAN	10 10000	nannaan	1110011010	0000	10100	mai
	7-X	11111	78171171817		INDIAINA	101 94 1717	1171/19120019	111 1 211 111	A INPIN	17101.71	10171
rj ja jn rj .) ()	1)] 860	<i>a U U b i j U L</i>	' a @ V j a j N V i	161710 061 4		<i>J J J V J V J V J V J V J V J V J V J V</i>		0 J610 V	5 U U VI	110

Response	Location	Initial state 10 t/node or Jack	Performance test 70 t/Jack	Original model 70 t/node	Diff. (%)	Mean Abosolute Diff. (%)
	L/3	0.00	10.57	10.43	1.34	
Deflection (mm)	L/2	0.00	12.97	12.03	7.24	5.30
	2L/3	0.00	11.15	10.33	7.34	
Inclination (rad)	Left	0.00000	0.00128	0.00108	15.36	14 09
	Right	0.00000	-0.00125	-0.00106	14.61	14.90
Toncilo stain (um/m)	L/3	0.00	201.20	165.61	17.69	
(Bottom fiber)	L/2	0.00	216.86	195.87	9.68	12.89
(Bottoin fiber)	2L/3	0.00	185.46	164.51	11.30	
Compressive strain (µm/m) (2.077m above bottom fiber)	L/3	0.00	-37.05	-32.28	12.86	12.86

5.3.3.2 ข้อมูลที่ใช้ในการปรับคุณสมบัติของฐานรองรับ

ข้อมูลที่ใช้ในการปรับคุณสมบัติของฐานรองรับจะแบ่งชุดข้อมูลออกเป็นฐานรองรับ ด้านซ้ายและฐานรองรับด้านขวาโดยใช้ผลของแรงกระทำ K=1.05, K=1.10 และ K=1.15 ในการ ปรับแก้คุณสมบัติของฐานรองรับในแบบจำลองเบื้องต้นเพื่อให้ฐานรองรับทั้งสองข้างนั้นมีการทรุดตัว ใกล้เคียงกับผลการทดสอบเชิงสถิต

5.3.4 การปรับปรุงค่า Modulus of Elasticity ของคอนกรีต

การปรับปรุงค่า Modulus of Elasticity ของคอนกรีต (E_c) จะเป็นการปรับค่าโดยใช้ตัว คูณค่าอัลฟา (**α**) ในการปรับลดค่ากำลังของคอนกรีตเนื่องจากแบบจำลองเบื้องต้นนั้นมีค่าความแข็ง โดยรวมสูงกว่าโครงสร้างจริงโดยการปรับค่าโมดูลัสของคอนกรีตนั้นจะ<u>ใช้ค่าอัลฟา (**α**) เท่ากันทุกขึ้น ส่วนย่อย</u>โดยผลการปรับลดค่ากำลังคอนกรีตจะพิจารณาใช้ค่าอัลฟาตั้งแต่ 1.00 จนถึง 0.80 โดยผล การการตอบสนองที่ได้จากการปรับค่าอัลฟาและการเปรียบเทียบผลการทดสอบดังกล่าวกับการ ทดสอบเชิงสถิตแสดงไว้ในตารางที่ 5-9 และตารางที่ 5-10 ตามลำดับ จากตารางที่ 5-10 ค่าบวก (+) บ่งบอกถึงค่าผลตอบสนองที่ได้จากแบบจำลองมีค่าน้อยกว่าผลการทดสอบเชิงสถิต (ไม่อนุรักษ์) และ ค่าลบ (-) แสดงถึงค่าการตอบสนองที่ได้จากแบบจำลองมีค่ามากกว่าผลการทดสอบเชิงสถิต (อนุรักษ์) ซึ่งแต่ละประเภทของผลตอบสนองจะมีค่าเฉลี่ยสัมบูรณ์ของการเปรียบเทียบผลตอบสนองระหว่าง ผลตอบสนองจากการทดสอบและผลตอบสนองจากแบบจำลองที่ปรับค่า E_c แล้วโดยใช้ตัว คูณ อัลฟาดังแสดงในคอลัมน์ MAD (Mean Absolute Difference) โดยรูปที่ 5-13 แสดง ความสัมพันธ์ระหว่างค่าตัวคูณอัลฟากับค่า MAD ของแต่ละประเภทของผลตอบสนอง

การเลือกใช้ค่าตัวคูณอัลฟาในการปรับปรุงแบบจำลองเบื้องต้นนั้นขึ้นอยู่กับวัตถุประสงค์ ในการนำแบบจำลองไปใช้งาน โดยแนวทางในการปรับค่าในงานวิจัยนี้เสนอไว้ 2 แนวทางดังแสดง แถบสีชมพูและสีเขียวตามลำดับโดยแนวทางแรกเป็นแนวทางที่จะนำไปใช้ในการปรับปรุงความคุ้มค่า ในการก่อสร้างซึ่งจะกล่าวต่อไปในบทที่ 6

แนวทางการปรับค่าตัวคูณอัลฟาวิธีแรกนั้นจะพิจารณาเลือกค่าตัวคูณอัลฟาที่ทำให้ ค่าเฉลี่ยของ MAD มีค่าต่ำที่สุดส่งผลให้ค่าผลตอบสนองโดยรวมของแบบจำลองนั้นมีค่าใกล้เคียงกับ ผลการทดสอบมากที่สุดโดยจากตารางที่ 5-10 จะพบว่ามีเพียงค่ามุมหมุนที่ฐานรองรับเท่านั้นที่เป็นค่า ไม่อนุรักษ์ (ผลตอบสนองของแบบจำลองต่ำกว่าผลการทดสอบ) ค่าการแอ่นตัวนั้นเป็นค่าอนุรักษ์สูง (ผลตอบสนองของแบบจำลองสูงกว่าผลการทดสอบมาก) โดยที่ผลตอบสนองความเครียดอัดและ ความเครียดดึงนั้นมีความแม่นยำโดยให้ผลตอบสนองใกล้เคียงกับผลตอบสนองจากการทดสอบ สมรรถนะโครงสร้าง

จากผลการทดสอบสมรรถนะโครงสร้างถึงระดับการให้แรง 1.20 เท่าของน้ำหนักบรรทุก ออกแบบนั้นพบว่าค่าความเครียดดึงมีอัตราส่วนความปลอดภัยต่ำที่สุด ดังนั้นการเลือกใช้ค่าอัลฟา เท่ากับ 0.88 จึงมีความเหมาะสมในการนำแบบจำลองไปใช้ปรับปรุงความคุ้มค่าในบทที่ 6 เนื่องจาก แบบจำลองที่ปรับปรุงแล้วจะมีความเที่ยงตรงต่อผลการตอบสนองความเครียดดึงมาก โดยที่ยังให้ ผลตอบสนองที่อนุรักษ์อยู่ที่ตำแหน่ง L/2 (-1.55%) ในขณะที่ค่ามุมหมุนที่ฐานรองรับมีอัตราส่วน ความปลอดภัยสูงทำให้ผลตอบสนองของแบบจำลองที่เป็นผลตอบสนองไม่อนุรักษ์นั้นสามารถนำไปใช้ ปรับปรุงความคุ้มค่าต่อไปได้

การปรับค่าตัวคูณอัลฟาวิธีที่สองจะพิจารณาการใช้ค่าตัวคูณอัลฟาที่ทำให้ผลตอบสนอง ทั้งหมดนั้นเป็นค่าอนุรักษ์ กล่าวคือแบบจำลองที่ผ่านการปรับปรุงนั้นจะให้ค่าผลตอบสนองที่ไม่ เที่ยงตรงเมื่อเทียบกับการทดสอบแต่จะให้ค่าผลตอบสนองที่สูงกว่าในทุกผลการตอบสนองซึ่งการใช้ แบบจำลองดังกล่าวในการปรับปรุงความคุ้มค่าในบทที่ 6 นั้นจะมีความปลอดภัยสูงที่สุด แต่ใน งานวิจัยนี้จะพิจารณาใช้ค่าตัวคูณอัลฟาวิธีแรกด้วยเหตุผลที่กล่าวไว้แล้วในข้างต้น

α	Def	lection (r	nm)	Inclinat	ion (rad)	Tens (B	ile stain (µ ottom fibe	m/m) er)	Compressive strain (µm/m) (2.077m above bottom fiber)
	L/3	L/2	2L/3	Left	Right	L/3	L/2	2L/3	L/3
1.00	10.43	12.03	10.33	0.00108	-0.00106	165.61	195.87	164.51	-32.28
0.99	10.53	12.15	10.43	0.00109	-0.00107	167.15	197.69	166.04	-32.63
0.98	10.63	12.27	10.53	0.00110	-0.00108	168.72	199.55	167.61	-32.98
0.97	10.74	12.39	10.63	0.00112	-0.00110	170.32	201.44	169.20	-33.34
0.96	10.84	12.51	10.74	0.00113	-0.00111	171.95	203.36	170.82	-33.70
0.95	10.95	12.63	10.84	0.00114	-0.00112	173.62	205.33	172.47	-34.08
0.94	11.06	12.76	10.95	0.00115	-0.00113	175.31	207.33	174.16	-34.46
0.93	11.17	12.89	11.07	0.00116	-0.00114	177.04	209.37	175.88	-34.85
0.92	11.29	13.02	11.18	0.00117	-0.00115	178.80	211.45	177.63	-35.25
0.91	11.41	13.16	11.30	0.00118	-0.00116	180.60	213.58	179.42	-35.66
0.90	11.53	13.30	11.41	0.00120	-0.00118	182.44	215.74	181.24	-36.08
0.89	11.65	13.44	11.54	0.00121	-0.00119	184.31	217.95	183.11	-36.51
0.88	11.77	13.58	11.66	0.00122	-0.00120	186.23	220.21	185.01	-36.95
0.87	11.90	13.73	11.79	0.00124	-0.00121	188.18	222.51	186.95	-37.40
0.86	12.03	13.88	11.92	0.00125	-0.00123	190.17	224.87	188.93	-37.86
0.85	12.17	14.04	12.05	0.00126	-0.00124	192.21	227.27	190.96	-38.33
0.84	12.30	14.19	12.18	0.00128	-0.00125	194.29	229.72	193.02	-38.81
0.83	12.44	14.36	12.32	0.00129	-0.00127	196.42	232.23	195.14	-39.31
0.82	12.59	14.52	12.46	0.00131	-0.00128	198.59	234.80	197.30	-39.82
0.81	12.73	14.69	12.61	0.00132	-0.00130	200.81	237.42	199.51	-40.34
0.80	12.88	14.86	12.76	0.00134	-0.00131	203.09	240.10	201.77	-40.87

ตารางที่ 5-9 ผลตอบสนองของแบบจำลองที่ปรับปรุงแล้ว

a		Deflectio	n Diff. (%)		Incli	nation Dif	f.(%)		Tensile sta	ain Diff (%))	Compressive	strain Diff (%)	Mean of MADs
u	L/3	L/2	2L/3	MAD	Left	Right	MAD	L/3	L/2	2L/3	MAD	L/3	MAD	(%)
1.00	1.34	7.24	7.34	5.30	15.36	14.61	11.76	17.69	9.68	11.30	12.89	12.86	12.86	10.70
0.99	0.39	6.35	6.45	4.39	14.58	13.80	10.92	16.92	8.84	10.47	12.08	11.93	11.93	9.83
0.98	-0.58	5.44	5.54	3.85	13.72	13.00	10.19	16.14	7.98	9.63	11.25	10.98	10.98	9.07
0.97	-1.56	4.51	4.61	3.56	12.86	12.12	9.51	15.35	7.11	8.77	10.41	10.02	10.02	8.37
0.96	-2.57	3.57	3.67	3.27	12.07	11.24	8.86	14.54	6.22	7.90	9.55	9.02	9.02	7.68
0.95	-3.59	2.60	2.71	2.97	11.14	10.35	8.15	13.71	5.32	7.00	8.68	8.02	8.02	6.95
0.94	-4.64	1.62	1.72	2.66	10.28	9.47	7.47	12.87	4.39	6.10	7.79	6.99	6.99	6.23
0.93	-5.70	0.62	0.72	2.35	9.34	8.51	6.73	12.01	3.45	5.17	6.88	5.93	5.93	5.47
0.92	-6.79	-0.41	-0.30	2.50	8.40	7.62	6.18	11.13	2.49	4.22	5.95	4.85	4.85	4.87
0.91	-7.91	-1.45	-1.35	3.57	7.46	6.66	5.90	10.24	1.51	3.26	5.00	3.74	3.74	4.55
0.90	-9.04	-2.52	-2.41	4.66	6.53	5.70	5.63	9.33	0.51	2.28	4.04	2.61	2.61	4.23
0.89	-10.20	-3.61	-3.50	5.77	5.51	4.66	5.31	8.39	-0.50	1.27	3.39	1.45	1.45	3.98
0.88	-11.38	-4.72	-4.61	6.91	4.49	3.61	5.00	7.44	-1.55	0.25	3.08	0.27	0.27	3.81
0.87	-12.59	-5.86	-5.75	8.07	3.48	2.57	4.70	6.47	-2.61	-0.80	3.29	-0.95	0.95	4.25
0.86	-13.83	-7.02	-6.91	9.26	2.38	1.53	4.39	5.48	-3.69	-1.87	3.68	-2.19	2.19	4.88
0.85	-15.10	-8.21	-8.10	10.47	1.37	0.40	4.08	4.47	-4.80	-2.96	4.08	-3.46	3.46	5.52
0.84	-16.39	-9.43	-9.31	11.71	0.19	-0.64	4.18	3.44	-5.93	-4.08	4.48	-4.77	4.77	6.29
0.83	-17.71	-10.67	-10.56	12.98	-0.90	-1.85	5.24	2.38	-7.09	-5.22	4.89	-6.11	6.11	7.31
0.82	-19.06	-11.94	-11.83	14.28	-2.07	-2.97	6.44	1.30	-8.27	-6.38	5.32	-7.48	7.48	8.38
0.81	-20.45	-13.24	-13.13	15.61	-3.24	-4.17	7.67	0.19	-9.48	-7.57	5.75	-8.89	8.89	9.48
0.80	-21.86	-14.58	-14.46	16.97	-4.42	-5.38	8.92	-0.94	-10.72	-8.79	6.81	-10.33	10.33	10.76

ตารางที่ 5-10 ค่าความต่างระหว่างผลการทดสอบและผลตอบสนองจากแบบจำลองที่ปรับปรุงแล้ว

รูปที่ 5-13 ความสัมพันธ์ระหว่างค่าตัวคูณ ALPHA และ Mean Absolute Difference

110

5.3.5 การปรับคุณสมบัติของฐานรองรับ

แบบจำลองเบื้องต้นนั้นจะใช้ฐานรองรับที่ไม่สามารถทรุดตัวได้ (D_z= 0 mm) โดยการ ปรับคุณสมบัติของฐานรองรับนั้น จะพิจารณาใช้ค่าความชันระหว่างแรงปฏิกิริยาที่ฐานรองรับและค่า การทรุดตัวที่ได้จากการทดสอบถึงระดับการให้แรง 1.20 เท่าของน้ำหนักบรรทุกออกแบบโดยจาก ตารางที่ 5-11 การปรับคุณสมบัติของฐานรองรับทั้งสองข้างจะเปลี่ยนจากต้านการเคลื่อนที่ในแนวดิ่ง สมบูรณ์เป็นฐานรองรับที่สามารถหดตัว (Spring support) ได้โดยใช้ค่าความแข็ง (Stiffness) ของ ฐานรองรับด้านซ้ายและฐานรองรับด้านขวาเท่ากับ 2788.2 และ 2661.0 tons/mm ตามลำดับ

ตารางที่ 5-11 การคำนวณค่าความแข็งของฐานรองรับ

		Sound Star		2				
Lood (tone (look)		Left Support		Right Support				
	Reaction (tons)	Settlement (mm)	Slope (tons/mm)	Reaction (tons)	Settlement (mm)	Slope (tons/mm)		
10	50	0.000		50.0	0.000			
80	400	0.124	2700 2	400.0	0.132	2001 0		
85	425	0.136	2788.2	425.0	0.142	2001.0		
90	450	0.143		450.0	0.149			

5.4 ผลการวิเคราะห์โครงสร้างที่ผ่านการปรับปรุงแล้ว

5.4.1 ผลวิเคราะห์โครงสร้างเชิงพลวัต

แบบจำลองที่ปรับปรุงแล้วนั้นจะมีค่าความแข็งโดยรวมของโครงสร้าง (Structural stiffness) ลดลงเนื่องจากการปรับลดค่ากำลังของคอนกรีต ดังนั้นความถี่ธรรมชาติแนวดิ่งที่ได้จาก การวิเคราะห์โครงสร้างจึงมีค่าลดลงเช่นเดียวกัน เนื่องจากค่าความถี่ธรรมชาตินั้นแปรผันโดยตรงกับ รากที่สองของค่าความแข็งของโครงสร้างโดยมีผลการวิเคราะห์แสดงไว้ในตารางที่ 5-12 ซึ่งมี ค่าความถี่ธรรมชาติที่ต่ำที่สุดจากกรณี SDL=209 kN/m มีค่าเท่ากับ 3.640 Hz

ตารางที่ 5-12 ค่าความถี่ธรรมชาติแนวดิ่งจากการปรับปรุงแบบจำลอง

Viadust Configuration	Vertical Natura	al Frequency (Hz)	Min. Frequency (Hz)
	Original Model	Modified Model	TB 10621-2014
Viaduct without SDL	5.605	5.249	
Viaduct with SDL=173kN/m	4.072	3.814	2 050
Viaduct with SDL=192kN/m	3.971	3.718	5.055
Viaduct with SDL=209kN/m	3.886	3.640	

5.4.2 ผลวิเคราะห์โครงสร้างเชิงสถิต

จากการปรับปรุงแบบจำลองเบื้องต้นจะได้แบบจำลองที่ผ่านการปรับปรุงแล้วโดยมีผล การวิเคราะห์แสดงไว้ในตารางที่ 5-13 แบบจำลองที่ผ่านการปรับปรุงนั้นมีค่าความแข็งโดยรวมของ โครงสร้างลดลงเป็นผลให้ผลตอบสนองการแอ่นตัวของโครงสร้างและค่ามุมหมุนที่ฐานรองรับมีค่ามาก ขึ้นเมื่อเทียบกับแบบจำลองเบื้องต้น โดยมีผลการการตอบสนองกรณีต่าง ๆ แสดงไว้ใน ตารางที่ 5-14 เมื่อนำผลตอบสนองทั้งสองชุดมาเปรียบเทียบกันจะได้ผลการเปรียบเทียบแสดงไว้ใน ตารางที่ 5-15 โดยความเค้นอัดที่ตำแหน่ง L/2 และ 2L/3 จะไม่ถูกนะมาใช้เปรียบเทียบค่า ผลตอบสนองเนื่องจากข้อมูลที่ได้จากการทดสอบนั้นมีความไม่สมบูรณ์โดยจะใช้เพียงค่าความเค้นอัด ที่ตำแหน่ง L/3 เท่านั้นในการเปรียบเทียบค่าผลตอบสนองกับแบบจำลองที่ผ่านการปรับปรุงแล้ว

		11	11 / / / I	120334 0111									
	Calibrated Model (E=0.88E _c)												
Perponse	Location	Initial state	Base level	K=0.80	Static LL	K=1.00	K=1.05	K=1.10	K=1.15	K=1.20			
Kesponse	Location	10 t/node	30 t/node	45 t/node	70 t/node	75 t/node	80 t/node	85 t/node	90 t/node	100 t/node			
	0	0.00	0.04	0.06	0.11	0.12	0.13	0.13	0.14	0.16			
	L/3	0.00	3.97	6.94	11.90	12.89	13.88	14.87	15.86	17.84			
Deflection (mm)	L/2	0.00	4.57	8.00	13.71	14.85	15.99	17.14	18.28	20.56			
	2L/3	0.00	3.93	6.87	11.78	12.77	13.75	14.73	15.71	17.68			
	L	0.00	0.04	0.07	0.11	0.12	0.13	0.14	0.15	0.17			
In alignation (and)	Left	0.00000	0.00041	0.00071	0.00122	0.00133	0.00143	0.00153	0.00163	0.00184			
Incunation (rad)	Right	0.00000	-0.00040	-0.00070	-0.00120	-0.00130	-0.00140	-0.00150	-0.00160	-0.00180			
Tanaila atuana (MDa)	L/3	0.00	2.27	3.98	6.82	7.38	7.95	8.52	9.09	10.22			
(Dettern fiber)	L/2	0.00	2.64	4.62	7.93	8.59	9.25	9.91	10.57	11.89			
(Bottom fiber)	2L/3	0.00	2.27	3.98	6.82	7.39	7.96	8.53	9.09	10.23			
Compressive stress (MDs)	L/3	0.00	-0.45	-0.79	-1.35	-1.47	-1.58	-1.69	-1.80	-2.03			
(2.077m above bottom fiber)	L/2	0.00	-0.53	-0.92	-1.58	-1.71	-1.84	-1.97	-2.10	-2.37			
	2L/3	0.00	-0.45	-0.79	-1.35	-1.46	-1.58	-1.69	-1.80	-2.03			

ตารางที่ 5-13 ผลการวิเคราะห์โครงสร้างจากแบบจำลองที่ผ่านการปรับปรุงแล้ว

จุหาลงกรณ์มหาวิทยาลัย

GHULALONGKORN UNIVERSITY ตารางที่ 5-14 ผลตอบสนองจากการทดสอบเชิงสถิตถึงระดับการให้แรง

	Structural Performance Test (1.20x Design load, Second cycle)											
Posponso	Location	Initial state	Base level	K=0.80	Static LL	K=1.00	K=1.05	K=1.10	K=1.15	K=1.20		
Kesponse	Location	10 t/Jack	30 t/Jack	45 t/Jack	70 t/Jack	75 t/Jack	80 t/Jack	85 t/Jack	90 t/Jack	100 t/Jack		
	0	0.00	0.02	0.04	0.10	0.11	0.12	0.14	0.14	0.18		
	L/3	0.00	3.60	6.10	10.57	11.36	12.29	13.25	14.01	16.10		
Deflection (mm)	L/2	0.00	4.39	7.48	12.97	13.93	15.05	16.22	17.13	19.59		
	2L/3	0.00	3.80	6.44	11.15	11.99	12.95	13.96	14.74	16.83		
	L	0.00	0.03	0.06	0.11	0.12	0.13	0.14	0.15	0.18		
la alia a ti a a (ua d)	Left	0.00000	0.00043	0.00074	0.00128	0.00137	0.00148	0.00160	0.00169	0.00193		
incunation (rad)	Right	0.00000	-0.00042	-0.00072	-0.00125	-0.00134	-0.00144	-0.00157	-0.00165	-0.00188		
Tanaila atain (um (m)	L/3	0.00	2.49	4.22	7.37	7.89	8.46	9.10	9.63	10.71		
(Dettern filter)	L/2	0.00	2.63	4.39	7.81	8.46	9.11	9.89	10.58	12.57		
(Bottom fiber)	2L/3	0.00	2.29	3.92	6.84	7.43	7.94	8.53	8.96	10.11		
Compressive strain (um/m)	L/3	0.00	-0.51	-0.78	-1.36	-1.42	-1.56	-1.70	-1.83	-2.08		
Compressive strain (µm/m)	L/2	-	-	-	-	-	-	-	-			
(2.077m above bottom fiber)	21/3	_	_	_	_	_	-	_	_	_		

1.20 เท่าของน้ำหนักบรรทุกออกแบบ

Comparison of Results (Calibrated Model vs Structural Performance Test) Response Initial state 10 t/Jack Base level 30 t/Jack K=0.80 45 t/Jack Static LL 70 t/Jack K=1.00 75 t/Jack K=1.05 80 t/Jack K=1.10 85 t/Jack K=1.15 90 t/Jack K=1.20 10 t/Jack 0 0.00% -110.61% -47.6% -9.19% -7.91% -1.61% 0.94% 0.01% 11.78% L/3 0.00% -10.20% -13.76% -12.54% -13.45% -12.94% -12.22% -13.23% -10.82% L/2 0.00% -40.7% -6.96% -5.69% -6.60% -6.28% -5.66% -6.71% -4.94% L/2 0.00% -24.27% -18.44% -1.05% -0.44% 0.21% 1.03% -0.95% 6.81% Inclination (rad) Left 0.00% 5.65% 3.17% 4.42% 3.46% 3.88% 4.56% 3.44% 5.14% Meditation (rad) Left 0.00% 5.68% 7.45% 6.45% 5.98% 6.33% 5.60% 4.54%														
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Comparison of Results (Calibrated Model vs Structural Performance Test)												
Nesponse Lotation 10 t/Jack 30 t/Jack 45 t/Jack 70 t/Jack 75 t/Jack 80 t/Jack 85 t/Jack 90 t/Jack 100 t/Jack 0 0.00% -110.61% -47.6% -9.19% -7.91% -1.61% 0.94% 0.01% 117.8% L/3 0.00% -10.20% -13.76% -12.54% -13.45% -12.22% -13.23% -10.82% Deflection (mm) L/2 0.00% -40.7% -6.96% -5.69% -6.60% -5.28% -5.66% -6.71% -4.94% 2L/3 0.00% -3.42% -6.74% -5.72% -6.46% -6.17% -5.54% -6.57% -5.68% -0.95% -6.81% -0.95% -6.81% -5.16% 6.81% -1.84% -1.05% -0.44% 0.21% 1.03% -0.95% 6.81% Inclination (rad) Left 0.00% 5.65% 3.17% 4.42% 3.46% 3.88% 4.56% 3.44% 5.14% Right 0.00% 5.65% 3.17%	Perpense	Location	Initial state	Base level	K=0.80	Static LL	K=1.00	K=1.05	K=1.10	K=1.15	K=1.20			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Response	LUCATION	10 t/Jack	30 t/Jack	45 t/Jack	70 t/Jack	75 t/Jack	80 t/Jack	85 t/Jack	90 t/Jack	100 t/Jack			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0	0.00%	-110.61%	-47.6%	-9.19%	-7.91%	-1.61%	0.94%	0.01%	11.78%			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		L/3	0.00%	-10.20%	-13.76%	-12.54%	-13.45%	-12.94%	-12.22%	-13.23%	-10.82%			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Deflection (mm)	L/2	0.00%	-4.07%	-6.96%	-5.69%	-6.60%	-6.28%	-5.66%	-6.71%	-4.94%			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2L/3	0.00%	-3.42%	-6.74%	-5.72%	-6.46%	-6.17%	-5.54%	-6.57%	-5.03%			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		L	0.00%	-24.27%	-18.44%	-1.05%	-0.44%	0.21%	1.03%	-0.95%	6.81%			
Right 0.00% 4.14% 2.13% 3.53% 2.98% 2.93% 4.00% 2.72% 4.00% Tensile stain (µm/m) (Bottom fiber) L/3 0.00% 8.60% 5.68% 7.45% 6.45% 5.98% 6.33% 5.60% 4.54% L/2 0.00% -0.33% -5.28% -1.54% -1.45% -0.16% 0.12% 5.47% L/3 0.00% 0.59% -1.48% 0.26% 0.55% -0.18% 0.08% -1.51% -1.16% Compressive strain (µm/m) (2.077m above bottom fiber) L/2 -	Indination (rad)	Left	0.00%	5.65%	3.17%	4.42%	3.46%	3.88%	4.56%	3.44%	5.14%			
L/3 0.00% 8.60% 5.68% 7.45% 6.45% 5.98% 6.33% 5.60% 4.54% (Bottom fiber) L/2 0.00% -0.33% -5.28% -1.54% -1.45% -0.16% 0.12% 5.47% 2L/3 0.00% 0.59% -1.48% 0.26% 0.55% -0.18% 0.08% -1.54% Compressive strain (µm/m) (2.077m above bottom fiber) L/2 - <t< td=""><td>incunation (rau)</td><td>Right</td><td>0.00%</td><td>4.14%</td><td>2.13%</td><td>3.53%</td><td>2.98%</td><td>2.93%</td><td>4.00%</td><td>2.72%</td><td>4.00%</td></t<>	incunation (rau)	Right	0.00%	4.14%	2.13%	3.53%	2.98%	2.93%	4.00%	2.72%	4.00%			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Tancila stain (um/m)	L/3	0.00%	8.60%	5.68%	7.45%	6.45%	5.98%	6.33%	5.60%	4.54%			
L/3 0.00% 0.59% -1.48% 0.26% 0.55% -0.18% 0.08% -1.51% -1.16% Compressive strain (µm/m) (2.077m above bottom fiber) L/3 0.00% 10.95% -1.13% 0.26% -3.26% -1.30% 0.41% 1.26% 2.39% L/2 2L/3 - <td< td=""><td>(Dettern fiber)</td><td>L/2</td><td>0.00%</td><td>-0.33%</td><td>-5.28%</td><td>-1.54%</td><td>-1.54%</td><td>-1.45%</td><td>-0.16%</td><td>0.12%</td><td>5.47%</td></td<>	(Dettern fiber)	L/2	0.00%	-0.33%	-5.28%	-1.54%	-1.54%	-1.45%	-0.16%	0.12%	5.47%			
Compressive strain (µm/m) L/3 0.00% 10.95% -1.13% 0.26% -3.26% -1.30% 0.41% 1.26% 2.39% (2.077m above bottom fiber) L/2 -	(Bottom fiber)	2L/3	0.00%	0.59%	-1.48%	0.26%	0.55%	-0.18%	0.08%	-1.51%	-1.16%			
(2.077m above bottom fiber) $\frac{L/2}{2L/3}$	Compressive strain (um/m)	L/3	0.00%	10.95%	-1.13%	0.26%	-3.26%	-1.30%	0.41%	1.26%	2.39%			
	Compressive Strain (µm/m)	L/2	-	-	-	-	-							
		2L/3	-	-	-	-	-	-	-	-	-			

ตารางที่ 5-15 การเปรียบเทียบผลการทดสอบและผลการวิเคราะห์โครงสร้างที่ปรับปรุงแล้ว

5.5 สรุปผลการปรับปรุงแบบจำลองเบื้องต้น

จากผลการวิเคราะห์โครงสร้างเชิงพลวัตที่ผ่านการปรับปรุงแล้วจะสามารถสรุปได้ว่า ค่าความถี่ธรรมชาติแนวดิ่งของแบบจำลองนั้นมีค่าลดลงโดยมีผลมาจากทั้งการปรับลดค่ากำลังของ คอนกรีตและการเปลี่ยนแปลงคุณสมบัติของฐานรองรับโดยค่าความถี่ธรรมชาติแนวดิ่งต่ำสุดนั้นมีค่า ลดลงจาก 3.886 Hz เป็น 3.640 Hz ซึ่งลดลง 6.33% แต่เมื่อเทียบกับขีดจำกัดจากมาตรฐาน TB 10621-2014 นั้นพบว่ายังคงสามารถผ่านเกณฑ์การทดสอบได้

จากผลการวิเคราะห์โครงสร้างเชิงสถิตที่ผ่านการปรับปรุงแล้วพบว่าผลตอบสนองการ แอ่นตัวของโครงสร้างนั้นมีความอนุรักษ์สูง เนื่องจากผลตอบสนองที่ได้นั้นมีค่ามากกว่าผลการทดสอบ โครงสร้างเฉลี่ยประมาณ 8% ในขณะที่ผลตอบสนองค่ามุมหมุนที่ฐานรองรับนั้นไม่มีความอนุรักษ์ เนื่องจากผลตอบสนองที่ได้จากแบบจำลองนั้นมีค่าต่ำกว่าผลทดสอบในช่วงประมาณ 4% ผลตอบสนองความเค้นอัดและความเค้นดึงนั้นเป็นผลตอบสนองหลักที่จะมีความสำคัญในการ พิจารณาปรับความคุ้มค่าในการก่อสร้างในบทที่ 6 ดังนั้นในงานวิจัยฉบับนี้จึงมุ่งเน้นในการปรับ แบบจำลองให้มีความเที่ยงตรงต่อผลตอบสนองความเค้น โดยทั้งค่าความเค้นดึงและค่าความเค้นอัดมี ค่าแตกต่างจากผลการทดสอบโดยเฉลี่ยประมาณ 3% ซึ่งมีเพียงค่าความเค้นที่ตำแหน่ง L/3 จาก แบบจำลองเท่านั้นที่ให้ค่าไม่อนุรักษ์เมื่อเทียบกับผลการทดสอบ

แบบจำลองที่ผ่านการปรับปรุงแล้วมีพฤติกรรมและผลตอบสนองใกล้เคียงกับผลการ ทดสอบโครงสร้าง โดยให้ค่าผลตอบสนองที่ปลอดภัยในผลตอบสนองความเค้นดึง ความเค้นอัด และ ค่าการแอ่นตัวของโครงสร้าง ทำให้การนำแบบจำลองที่ผ่านการปรับปรุงแล้วไปประยุกต์ใช้ในการ ปรับปรุงความคุ้มในการก่อสร้างต่อไปในบทที่ 6

บทที่ 6

การปรับปรุงหน้าตัดโครงสร้างเพื่อความคุ้มค่าในการก่อสร้าง

6.1 วัตถุประสงค์ในการปรับปรุงหน้าตัด

เนื่องจากโครงการรถไฟความเร็วสูง กรุงเทพฯ - หนองคาย ถูกออกแบบโดยวิศวกรจาก ประเทศจีนซึ่งอาจไม่มีข้อมูลของคุณภาพในกระบวนการก่อสร้างทางวิ่งยกระดับในประเทศไทยเช่น การควบคุมคุณภาพของคอนกรีต เหล็ก ฯลฯ และคุณภาพการก่อสร้างของแรงงานฝีมือ จึงอาจมีการ เผื่อค่าอัตราส่วนความปลอดภัยไว้สูง ประกอบกับการเลือกใช้โครงสร้างที่ใช้การเดินลวดอัดแรงชนิด ภายใน (Internal tendons) ทำให้โครงสร้างมีความอนุรักษ์สูง และอาจเกินความจำเป็นเมื่อเทียบกับ เกณฑ์การออกแบบตามมาตรฐานจีน ซึ่งสามารถยืนยันได้โดยผลการทดสอบในบทที่ 4 และผล วิเคราะห์ในบทที่ 5 ดังนั้นการปรับปรุงหน้าตัดโครงสร้างโดยอ้างอิงผลการทดสอบสมรรถนะ โครงสร้างจะช่วยเพิ่มความมั่นใจสำหรับวิศวกรผู้ออกแบบหากจะนำไปปรับแก้แบบการก่อสร้างให้มี ความประหยัดมากขึ้นก่อนการก่อสร้างจริง หรือนำไปปรับใช้ในช่วงการก่อสร้างโครงสร้างให้มี ความประหยัดมากขึ้นก่อนการก่อสร้างจริง หรือนำไปปรับใช้ในช่วงการก่อสร้างโครงสร้างให้มี เกณรทำให้โครงสร้างมีประสิทธิภาพ และมีความประหยัดในการก่อสร้างมากขึ้นเมื่อเทียบกับ โครงสร้างเดิมโดยใช้แบบจำลองไฟไนต์เอลิเมนต์ที่ผ่านการปรับเทียบจากผลการทดสอบสมรรถนะ ภาคสนามดังแสดงรายละเอียดไว้ในบทที่ 5

6.2 ขอบเขตและข้อจำกัดในการปรับปรุงความคุ้มค่า

การปรับปรุงความคุ้มค่าในการออกแบบโครงสร้างทางวิ่งยกระดับนั้นมีขอบเขตการศึกษา เฉพาะโครงสร้างทางวิ่งยกระดับโครงรถไฟความเร็วสูงในความร่วมมือระหว่างรัฐบาลไทยและรัฐบาล จีนเท่านั้น การปรับปรุงความคุ้มค่าในการออกแบบจะพิจารณาใช้แบบจำลองที่ปรับปรุงด้วยผลการ ทดสอบสมรรถนะโครงสร้างในบทที่ 5 โดยใช้คุณสมบัติของวัสดุ แรงกระทำในกรณีต่าง ๆ และ คุณสมบัติของฐานรองรับตามเดิม ในการปรับปรุงความคุ้มค่าจะการใช้การปรับลดปริมาณคอนกรีต และเส้นลวดอัดแรงผ่านการปรับลดค่าความหนาของหน้าตัดที่ใช้ในโครงสร้างทางวิ่งยกระดับและการ เปลี่ยนจำนวนเส้นลวดอัดแรงภายในหน้าตัดโครงสร้าง เนื่องจากการปรับปรุงความคุ้มค่าในการ ออกแบบนั้นจะพิจารณาเพื่อใช้แทนที่โครงสร้างที่อาจเกิดขึ้นในอนาคต ดังนั้นเพื่อรักษาเส้นทาง (Alignment) และระดับความสูงช่องลอดใต้โครงสร้าง (Clearance) เดิม จึงต้องคงความลึกของหน้า ตัด ความกว้างส่วนปีกและความกว้างแผ่นพื้นไว้ที่ 2.686 เมตร 12.20 เมตรและ 4.60 เมตรตาม ขนาดโครงสร้างเดิม

6.3 กระบวนการปรับปรุงและผลการปรับปรุงความคุ้มค่าในการออกแบบ

การปรับปรุงคววามคุ้มค่าในการออกแบบจะใช้เกณฑ์การออกแบบตามมาตรฐานจีนเพื่อ ใช้กำหนดขีดจำกัดของโครงสร้าง โดยค่าการแอ่นตัวและมุมหมุนที่บริเวณฐานรองรับของโครงสร้างจะ ใช้ผลตอบสนองจาก ZK live load เพียงอย่างเดียว ในขณะที่ค่าความเค้นที่เกิดขึ้นนั้นจะพิจารณา จากการรวมแรง (Load combination) 2 แบบ จากแรง 4 ชนิดได้แก่ DL+PS+ZK live load และ DL+SDL+PS+ZK live load ซึ่งเป็นการรวมแรงวิกฤตตามผู้ออกแบบโครงสร้างจากประเทศจีนดัง แสดงผลการวิเคราะห์โครงสร้างทางวิ่งยกระดับเดิมไว้ในภาคผนวก ง โดยน้ำหนักบรรทุกคงที่ (DL) น้ำหนักบรรทุกคงที่ส่วนเพิ่ม (SDL) แรงจากลวดอัดแรง (PS) และแรงจาก ZK live load เป็นแรง กระทำหลักแก่ตัวโครงสร้างทางวิ่งยกระดับ (Viaduct) โดยในงานวิจัยฉบับนี้จะไม่คำนึงถึงผลจากแรง กระทำอื่น ๆ เช่น แรงเหวี่ยง (CF) แรงลม (WF) แรงจากแรงเบรก (BF) ฯลฯ เนื่องจากโครงสร้างทาง วิ่งยกระดับมีลักษณะเป็นโครงสร้างคานอย่างง่ายและไม่ต่อเนื่อง ดังนั้นแรงกระทำดังกล่าวจะรับภาระ ส่วนใหญโดยเสาและฐานรากของโครงสร้างทางวิ่งยกระดับ

การปรับปรุงความคุ้มค่าในงานวิจัยนี้จะพิจารณาเริ่มจากการใช้หน้าตัดที่ออกแบบไว้ สำหรับโครงสร้างทางวิ่งรถไฟโครงการเชื่อมสามสนามบินช่วงบางชื่อ-ดอนเมือง หน้าตัดดังกล่าวมีการ เดินลวดอัดแรงชนิดภายนอก (External tendon) ทำให้มีขนาดความหนาโดยรวมน้อยกว่าโครงสร้าง ต้นแบบ จากการวิเคราะห์โครงสร้างทางวิ่งรถไฟบางชื่อ-ดอนเมืองโดยใช้ปัจจัยพื้นฐานตาม แบบจำลองที่ผ่านการปรับปรุงแล้วในบทที่ 5 (มีคุณสมบัติของวัสดุ คุณสมบัติของฐานรองรับ ความ ยาวช่วง และจำนวนชิ้นส่วนย่อยภายในช่วงพาดตามเดิม) พบว่าโครงสร้างทางวิ่งยกระดับจากต้นแบบ รถไฟบางชื่อ-ดอนเมือง (Bangsue-Donmuang Original Section) มีค่าความถี่ธรรมชาติในแนวดิ่ง ไม่ผ่านเกณฑ์การทดสอบที่มีขีดจำกัดต่ำสุดเท่ากับ 3.059 Hz ดังแสดงผลตอบสนองเทียบเกณฑ์การ ทดสอบ TB 10621-2014 ในตารางที่ 6-1 อย่างไรก็ตามหน้าตัดในโครงสร้างทางวิ่งรถไฟบางชื่อ-ดอน เมืองมีขนาดความกว้างของแผ่นพื้นบน แผ่นพื้นล่าง และความลึกของหน้าตัดเพียง 10.20, 4.0 และ 2.30 เมตรเท่านั้น เพื่อรักษามิติเดิมจึงจำเป็นจะต้องทำการขยายขนาดหน้าตัดให้ได้มิติสอดคล้องกับ โครงการรถไฟความเร็วสูงในงานวิจัย หน้าตัด Bangsue-Donmuang Scaled-section เป็นหน้าตัดที่ผ่านการปรับขนาดของ หน้าตัดให้มีความกว้างและความลึกตามโครงสร้างในโครงการรถไฟความเร็วสูง ไทย-จีน โดยเมื่อ นำไปวิเคราะห์โครงสร้างแล้วพบว่าผลตอบสนองผ่านเกณฑ์การทดสอบทุกประการ โดยมีการลดการ ใช้คอนกรีตและลวดอัดแรงลง 18.5% และ 23.7% ตามลำดับดังในตารางที่ 6-1 ดังนั้นหน้าตัดชนิดนี้ จึงเป็นเสมือนจุดเริ่มต้นในงานวิจัยซึ่งจะนำไปใช้คำนวณความคุ้มค่าต่อไป

เนื่องจากหน้าตัด Bangsue-Donmuang Scaled-section นั้นยังคงผ่านเกณฑ์การ ทดสอบโครงสร้าง ในงานวิจัยฉบับนี้จึงเสนอแนวทางในการลดขนาดหน้าตัดเพิ่มเติมโดยจะลดขนาด ขึ้นส่วนชนิดกึ่งกลางช่วงเท่านั้นโดยจะพิจารณาคงขิ้นส่วนบริเวณฐานรองรับเอาไว้ให้มีขนาดตามเดิม เนื่องจากแบบจำลองที่ปรับปรุงแล้วในบทที่ 5 ไม่ได้นำค่าความเค้นเฉือนมาเป็นข้อพิจารณาเพื่อความ ปลอดภัยเนื่องจากบริเวณฐานรองรับนั้นมีค่าความเค้นเฉือนสูง งานวิจัยฉบับนี้จึงพิจารณาไม่ปรับลด ความหนาของชิ้นส่วนที่บริเวณฐานรองรับซึ่งมีความยาวด้านละ 2.0 เมตรโดยจะพิจารณา เปลี่ยนแปลงขนาดของโครงสร้างในชิ้นส่วนที่เหลือรวมความยาว 28.6 เมตรจากความยาวทั้งหมดรวม 32.6 เมตร

	Optimization												
Load	Droportios and critoria	Limit	Original Section	Bangsue-Donr	nuang Section								
combination	Properties and criteria	LIIIIIL	(Mid-Span Section)	Original Section	Scaled-section								
	Concrete cross section area (m ²)	-	7.358	4.291 (-41.7%)	5.994 (-18.5%)								
	Total tendon cross section area (m ²)	-	0.04545	0.03468 (-23.7%)	0.03468 (-23.7%)								
Section	Number of Tendons per duct	-	20/18/15	25	25								
Properties	Moment of Inertia (Iyy) (m ⁴)	-	6.498	3.189	6.074								
	Width (m)	12.200	12.200	10.200	12.200								
	Depth (m)	2.686	2.686	2.300	2.686								
7K live load	Deflection (mm)	22.5	9.04	18.95	10.18								
ZK live loau	End rotation (rad)		0.00083	0.001781	0.00093								
-	Natural frequency [DL+SDL] (Hz)	3.059	3.640	2.929	3.732								
	Max. stress at top slab (MPa)	3.10	-1.33	1.39	-1.74								
	Min. stress at top slab (MPa)	-20.10	-4.24	-6.87	-6.01								
PS+DL	Max. stress at bottom slab (MPa)	3.10	-7.33	-1.08	-0.68								
+ZK LL	Min. stress at bottom slab (MPa)	-20.10	-17.64	-17.65	-14.62								
	Max. shear stress (MPa)	5.70	1.85	3.29	2.14								
	Min. shear stress (MPa)	-5.70	-1.72	-1.51	-0.87								
	Max. stress at top slab (MPa)	3.10	-2.07	-2.87	-2.83								
	Min. stress at top slab (MPa)	-22.11	-7.58	-9.67	-8.58								
PS+DL+SDL	Max. stress at bottom slab (MPa)	3.10	-4.27	-2.29	-0.05								
+ZK LL	Min. stress at bottom slab (MPa)	-22.11	-12.83	-9.13	-7.15								
	Max. shear stress (MPa)	5.70	2.25	1.52	2.12								
	Min. shear stress (MPa)	-5.70	-2.23	-2.28	-2.12								

ตารางที่ 6-1 ผลการวิเคราะห์หน้าตัดบางชื่อ-ดอนเมือง

เพื่อเป็นแนวทางเบื้องต้นในการศึกษาการปรับปรุงความคุ้มค่าในการออกแบบ กระบวนการในการลดขนาดหน้าตัดและการลดจำนวนเส้นลวดอัดแรงนั้น จะเริ่มจากการกำหนดหน้า ตัด Section A1 ถึง Section A6 โดยหน้าตัดดังกล่าวเป็นหน้าตัดที่ลดขนาดความหนาภายในของ หน้าตัดบางส่วน Bangsue-Donmuang Scaled-section ลง 10% ถึง 60% ตามลำดับโดยมีจำนวน เส้นลวด 25 เส้นต่อท่อ (Duct) ตามเดิม ผลการวิเคราะห์พบว่าหน้าตัด Section A1 และ Section A2 ยังคงผ่านเกณฑ์การทดสอบโดยที่ Section A3 ถึง Section A5 ไม่ผ่านเกณฑ์ความเค้น และ Section A6 ไม่ผ่านเกณฑ์ค่าความถี่ธรรรมชาติและเกณฑ์ความเค้นดังตารางที่ 6-2 ดังนั้น Section A6 จึงไม่ถูกพิจารณาต่อ

หน้าตัด Section B1 ถึง B5 และ Section C1 ถึง C5 ถูกกำหนดขึ้นมาเพื่อใช้หาจำนวน เส้นลวดภายในหน้าตัด Section A1 ถึง Section A5 ที่น้อยที่สุดที่เป็นไปได้โดยมีความแตกต่างคือ Section B1 ถึง Section B5 จะไม่ยอมให้เกิดความเค้นดึงขึ้นบนหน้าตัดแต่ Section C1 ถึง Section C5 จะยอมให้เกิดความเค้นดึงขึ้นได้ตามที่มาตรฐาน TB 10621-2014 กำหนด (3.10 MPa) จากการวิเคราะห์โครงสร้างพบว่า Section B3 ถึง B5 และ Section C5 ไม่ผ่านเกณฑ์โดยมีผลแสดง ในตารางที่ 6-3 และ ตารางที่ 6-4 สำหรับ Section B และ Section C ตามลำดับ หน้าตัดที่ผ่าน เกณฑ์และมีความคุ้มค่าที่สุดจากผลการวิเคราะห์ได้แก่ Section B2 หากไม่ยอมให้มีความเค้นดึง ภายในหน้าตัดและ Section C4 โดยยอมให้มีความเค้นดึงเกิดขึ้นได้ไม่เกิน 3.10 MPa

หน้าตัด Section B2 และ Section C4 นั้นผ่านเกณฑ์การทดสอบโครงสร้างตาม มาตรฐาน TB 10621-2014 ด้วยขีดจำกัดด้านความเค้นดึงและความเค้นอัด โดยจากบทที่ 5 แบบจำลองที่ปรับปรุงแล้วนั้นไม่ให้ค่าอนุรักษ์ในผลตอบสนองมุมหมุนที่ฐานรองรับและค่าความเค้น เฉือน ดังนั้นจากการที่ผลตอบสนองค่ามุมหมุนที่ฐานรองรับและค่าความเค้นเฉือนจากแบบจำลองที่ใช้ หน้าตัด Section B2 และ Section B4 ยังมีค่าต่ำกว่าขีดจำกัดอยู่พอสมควรทำให้แบบจำลองที่ใช้ จากการปรับปรุงแบบจำลองเบื้องต้นในบทที่ 5 นั้นมีความน่าเชื่อถือมากยิ่งขึ้น

การจำลองพฤติกรรมโครงสร้างในการพิจารณาความคุ้มค่าในการลดขนาดหน้าตัดทั้งหมด นั้น ใช้แบบจำลองโครงสร้างซึ่งเป็นโครงสร้างเชิงเส้น (Line Element) ในโปรแกรม Midas Civil อย่างไรก็ตามเพื่อเป็นการยืนยันผลการวิเคราะห์และเพื่อตรวจสอบผลตอบสนอง ในงานวิจัยฉบับนี้จึง พิจารณาใช้การวิเคราะห์โดยใช้โครงสร้างของแข็ง (Solid Element) ในโปรแกรม Midas FEA โดย จะพิจารณาใช้ขนาดความกว้างของเอลิเมนต์ไม่เกิน 200 mm เพื่อให้ผลตอบสนองนั้นมีความแม่นยำ แต่จะไม่พิจารณาถึงผลของความเค้นเฉพาะจุด (local stress) ที่ตำแหน่งต่าง ๆ ของหน้าตัด โครงสร้างโดยฐานรองรับในแบบจำลองจะเปลี่ยนเป็นฐานรองรับแบบพื้นที่ (Surface boundary) โดยมีรูปตัวอย่างแบบจำลองและการแอ่นตัวจากภาระกระทำ ZK Live load ในรูปที่ 6-1 และรูปที่ 6-2 ตามลำดับ จากการวิเคราะห์โครงสร้างพบว่าผลตอบสนองที่ได้จากโปรแกรม Midas FEA ให้ค่า ใกล้เคียงกันกับผลตอบสนองจากโปรแกรม Midas Civil ดังแสงในตารางที่ 6-5 โดยทั้งหน้าตัด Section B2 และ Section C4 นั้นยังคงผ่านเกณฑ์การทดสอบตามมาตรฐานจีน TB 10621-2014

หน้าตัดตามขวาง Bangsue-Donmuang section, Bangsue-Donmuang Scaledsection, Section B2 และ Section C4 มีมิติแสดงไว้ในรูปที่ 6-3 ถึงรูปที่ 6-6 ตามลำดับโดยทั้งสี่ หน้าตัดดังกล่าวจะใช้หน้าตัดชนิดปลายช่วงที่มีมิติแสดงในรูปที่ 6-7 จากการวิเคราะห์โครงสร้างด้วย วิธีการปรับปรุงแบบจำลองเบื้องต้นด้วยผลการทดสอบสมมรถนะภาคสนามพบว่า หน้าตัด Bangsue-Donmuang Scaled-section, Section B2 และ Section C4 นั้นเป็นหน้าตัดที่สามารถ ใช้แทนหน้าตัดโครงสร้างรถไฟความเร็วสูง ไทย-จีน ได้โดยยังคงผ่านเกณฑ์การทดสอบ TB 10621-2014 อย่างไรก็ตามการจะนำหน้าตัดทั้งสามไปประยุกต์ใช้ในโครงการรถไฟความเร็วสูงใน อนาคตจำเป็นจะต้องออกแบบอย่างละเอียดต่อไปเนื่องจากการวิเคราะห์ดังกล่าวเป็นเพียงการ วิเคราะห์ที่พิจารณาเฉพาะโครงสร้างส่วนบน (Superstructure) เพื่อแสดงให้เห็นถึงความเป็นไปได้ใน การลดต้นทุนค่าก่อสร้าง

รูปที่ 6-1 แบบจำลองโครงสร้างจากโปรแกรม Midas FEA

รูปที่ 6-2 การแอ่นตัวของโครงสร้างจากแรงกระทำ ZK Live load จากโปรแกรม Midas FEA

	Optimization												
Load					Optimize	d section							
combination	Properties and criteria	Limit	Section A1	Section A2	Section A3	Section A4	Section A5	Section A6					
	Concrete cross section area (m ²)	-	5.162 (-29.8%)	4.682 (-36.4%)	4.256 (-42.2%)	3.819 (-48.1%)	3.469 (-52.9%)	2.998 (-59.3%)					
	Total tendon cross section area (m ²)	-	0.03468 (-23.7%)	0.03468 (-23.7%)	0.03468 (-23.7%)	0.03468 (-23.7%)	0.03468 (-23.7%)	0.03468 (-23.7%)					
Section	Number of Tendons per duct	-	25	25	25	25	25	25					
Properties	Moment of Inertia (Iyy) (m ⁴)	-	5.365	4.920	4.484	4.032	3.604	3.113					
	Width (m)	12.200	12.200	12.200	12.200	12.200	12.200	12.200					
	Depth (m)	2.686	2.686	2.686	2.686	2.686	2.686	2.686					
7K live load	Deflection (mm)	22.5	11.56	12.62	13.86	15.44	17.27	20.01					
ZK live loau	End rotation (rad)	0.002	0.00106	0.00115	0.00126	0.00140	0.00157	0.00182					
-	Natural frequency [DL+SDL] (Hz)	3.059	3.611	3.521	3.419	3.301	3.171	3.010					
	Max. stress at top slab (MPa)	3.10	-1.34	-1.29	-1.18	-0.99	-0.80	-0.80					
	Min. stress at top slab (MPa)	-20.10	-6.87	-7.44	-7.96	-8.64	-9.19	-10.33					
PS+DL	Max. stress at bottom slab (MPa)	3.10	-0.75	-0.78	-0.81	-0.83	-0.86	-0.89					
+ZK LL	Min. stress at bottom slab (MPa)	-20.10	-17.65	-20.05	-22.93	-26.55	-31.21	-37.78					
	Max. shear stress (MPa)	5.70	2.64	3.00	3.44	4.00	4.74	5.79					
	Min. shear stress (MPa)	-5.70	-1.15	-1.35	-1.59	-1.90	-2.29	-2.87					
	Max. stress at top slab (MPa)	3.10	-2.83	-2.83	-2.83	-2.83	-2.83	-2.83					
	Min. stress at top slab (MPa)	-22.11	-9.67	-10.21	-10.79	-11.52	-11.99	-13.11					
PS+DL+SDL	Max. stress at bottom slab (MPa)	3.10	-0.13	-0.16	-0.19	-0.22	-0.25	-0.28					
+ZK LL	Min. stress at bottom slab (MPa)	-22.11	-9.13	-10.76	-12.68	-15.07	-18.15	-22.53					
	Max. shear stress (MPa)	5.70	2.28	2.38	2.53	2.72	3.01	3.39					
	Min. shear stress (MPa)	-5.70	-2.28	-2.38	-2.53	-2.72	-3.01	-3.39					

ตารางที่ 6-2 ผลการวิเคราะห์หน้าตัด Section A

Optimization											
Load	Dura antian and aritaria	Lingth	Optimized section								
combination	Properties and criteria	Limit	Section B1	Section B2	Section B3	Section B4	Section B5				
	Concrete cross section area (m ²)	-	5.162 (-29.8%)	4.682 <mark>(</mark> -36.4%)	4.256 (-42.2%)	3.819 (-48.1%)	3.469 (-52.9%)				
	Total tendon cross section area (m ²)	-	0.03329 (-26.8%)	0.03190 (-29.8%)	0.03190 (-29.8%)	0.03051 (-32.9%)	0.03051 (-32.9%)				
Section	Number of Tendons per duct	-	24	23	23	22	22				
Properties	Moment of Inertia (Iyy) (m ⁴)	-	5.365	4.920	4.484	4.032	3.604				
	Width (m)	12.200	12.200	12.200	12.200	12.200	12.200				
	Depth (m)	2.686	2.686	2.686	2.686	2.686	2.686				
ZK live load	Deflection (mm)	22.5	11.56	12.62	13.86	15.44	17.27				
	End rotation (rad)	0.002	0.00106	0.00115	0.00126	0.00140	0.00157				
-	Natural frequency [DL+SDL] (Hz)	3.059	3.611	3.419	3.419	3.301	3.171				
	Max. stress at top slab (MPa)	0.00	-1.40	-1.41	-1.30	-1.18	-1.01				
	Min. stress at top slab (MPa)	-20.10	-6.64	-6.94	-7.43	-7.76	-8.25				
PS+DL	Max. stress at bottom slab (MPa)	0.00	-0.68	-0.65	-0.67	-0.64	-0.67				
+ZK LL	Min. stress at bottom slab (MPa)	-20.10	-16.73	-18.03	-20.68	-22.73	-26.81				
	Max. shear stress (MPa)	5.70	2.52	2.72	3.12	3.46	4.11				
	Min. shear stress (MPa)	-5.70	-1.02	-1.07	-1.27	-1.36	-1.67				
	Max. stress at top slab (MPa) 0.		-2.71	-2.60	-2.60	-2.49	-2.48				
	Min. stress at top slab (MPa) -2		-9.69	-10.27	-10.84	-11.60	-12.07				
PS+DL+SDL +ZK LL	Max. stress at bottom slab (MPa)	0.00	-0.06	-0.03	-0.05	-0.01	-0.05				
	Min. stress at bottom slab (MPa)	-22.11	-8.22	-8.74	-10.42	-11.25	-13.75				
	Max. shear stress (MPa)	5.70	2.41	2.66	2.85	3.26	3.64				
	Min. shear stress (MPa)	-5.70	-2.41	-2.66	-2.85	-3.26	-3.64				

Optimization										
Load combination	Droportion and criteria	Limit		Optimized section						
	Properties and criteria	Limit	Section C1	Section C2	Section C3	Section C4	Section C5			
	Concrete cross section area (m ²)	-	5.162 (-29.8%)	4.682 (-36.4%)	4.256 (-42.2%)	3.819 (-48.1%)	3.469 (-52.9%)			
	Total tendon cross section area (m ²)	-	0.02774 (-39.0%)	0.02774 (-39.0%)	0.02635 (-42.0%)	0.02635 (-42.0%)	0.02635 (-42.0%)			
Section	Number of Tendons per duct	-	20	20	19	19	19			
Properties	Moment of Inertia (Iyy) (m ⁴)	-	5.365	4.920	4.484	4.032	3.604			
	Width (m)	12.200	12.200	12.200	12.200	12.200	12.200			
	Depth (m)	2.686	2.686	2.686	2.686	2.686	2.686			
7K live load	Deflection (mm)	22.5	11.56	12.62	13.86	15.44	17.27			
ZK live loau	End rotation (rad)	0.002	0.00106	0.00115	0.00126	0.00140	0.00157			
-	Natural frequency [DL+SDL] (Hz)	3.059	3.611	3.419	3.419	3.301	3.171			
	Max. stress at top slab (MPa)	3.10	-1.64	-1.59	-1.55	-1.37	-1.21			
	Min. stress at top slab (MPa)	-20.10	-5.93	-6.35	-6.52	-7.01	-7.39			
PS+DL	Max. stress at bottom slab (MPa)	3.10	-0.41	-0.45	-0.40	-0.43	-0.46			
+ZK LL	Min. stress at bottom slab (MPa)	-20.10	-13.07	-15.00	-16.17	-18.91	-22.41			
	Max. shear stress (MPa)	5.70	2.00	2.29	2.49	2.92	3.49			
	Min. shear stress (MPa)	-5.70	-0.51	-0.64	-0.64	-0.82	-1.04			
	Max. stress at top slab (MPa)	3.10	-2.26	-2.26	-2.14	-2.14	-2.14			
	Min. stress at top slab (MPa)	-22.11	-9.86	-10.37	-10.96	-11.73	-12.20			
PS+DL+SDL	Max. stress at bottom slab (MPa)	3.10	2.83	2.40	2.99	2.50	2.04			
+ZK LL	Min. stress at bottom slab (MPa)	-22.11	-4.55	-5.70	-5.92	-7.43	-9.34			
	Max. shear stress (MPa)	5.70	2.92	3.09	3.48	3.80	4.27			
	Min. shear stress (MPa)	-5.70	-2.92	-3.09	-3.48	-3.79	-4.27			
	J.									

ตารางที่ 6-4 ผลการวิเคราะห์หน้าตัด Section C

ตารางที่ 6-5 ผลการเปรียบเทียบการวิเคราะห์จากโปรแกรม Midas Civil และ Midas FEA

Comparison of Models									
Load	Dura antia and aritaria	1.1	Secti	on B2	Section C4				
combination	Properties and criteria	Limit	Midas Civil	Midas FEA	Midas Civil	Midas FEA			
	Concrete cross section area (m ²)	-	4.682 (-36.4%)	4.682 (-36.4%)	3.819 (-48.1%)	3.819 (-48.1%)			
	Total tendon cross section area (m ²)	-	0.03190 (-29.8%)	0.02774 (-39.0%)	0.02635 (-42.0%)	0.02635 (-42.0%)			
Section	Number of Tendons per duct	-	23	23	19	19			
properties	Moment of Inertia (Iyy) (m ⁴)	-	4.92	4.92	4.032	4.032			
	Width (m)	12.200	12.200	12.200	12.200	12.200			
	Depth (m)	2.686	2.686	2.686	2.686	2.686			
ZK live load	Deflection (mm)	22.5	12.62	12.45	15.44	15.41			
	End rotation (rad)	0.002	0.00115	0.00118	0.00140	0.00145			
-	Natural frequency [DL+SDL] (Hz)	3.059	3.419	3.413	3.301	3.291			
	Max. stress at top slab (MPa)	3.10	-1.41	-1.46	-1.37	-1.45			
	Min. stress at top slab (MPa)	-20.10	-6.94	-8.50	-7.01	-8.14			
PS+DL+ZK	Max. stress at bottom slab (MPa)	3.10	-0.65	-0.79	-0.43	-0.55			
LL	Min. stress at bottom slab (MPa)	-20.10	-18.03	-18.18	-18.91	-19.11			
	Max. shear stress (MPa)	5.70	2.72	3.07	2.92	3.41			
	Min. shear stress (MPa)	-5.70	-2.72	-3.05	-2.92	-3.33			
	Max. stress at top slab (MPa)	3.10	-2.60	-1.45	-2.14	-0.98			
	Min. stress at top slab (MPa)	-22.11	-10.27	-9.73	-11.73	-11.14			
PS+DL+SDL+	Max. stress at bottom slab (MPa)	3.10	-0.03	-0.11	2.50	2.71			
ZK LL	Min. stress at bottom slab (MPa)	-22.11	-8.74	-9.12	-7.43	-8.01			
	Max. shear stress (MPa)	5.70	2.66	2.72	3.80	4.01			
	Min. shear stress (MPa)	-5.70	-2.66	-2.77	-3.79	-3.98			

รูปที่ 6-5 มิติหน้าตัด Section B2

รูปที่ 6-7 มิติหน้าตัดบริเวณฐานรองรับ Bangsue-Donmuang Scaled-section

6.4 การประเมินต้นทุนค่าก่อสร้างที่ประหยัดได้

การประเมินความคุ้มค่าของการปรับปรุงในการออกแบบจะพิจารณาจากหน้าตัดทั้งหมด 4 แบบได้แก่หน้าตัดดั้งเดิม (Original Section), Bangsue-Donmuang Scaled-section, Section B2 และ Section C4 ตามลำดับ การประเมินความคุ้มค่าเบื้องต้นจะคำนวณเฉพาะส่วนของคอนกรีต และลวดอัดแรงเท่านั้นโดยใช้ราคากลางจากโครงการรถไฟความเร็วสูงในความร่วมมือระหว่างรัฐบาล ไทยและรัฐบาลจีนในสัญญาที่ 1 ช่วงกรุงเทพ-นครราชสีมา โดยมีรายละเอียดราคาและ BOQ บางส่วนแสดงในภาคผนวก ค จึงพิจารณาใช้ราคาคอนกรีตเกรด C50 เท่ากับ 3,345.05 บาทต่อ ลูกบาศก์เมตรและราคาเส้นลวดอัดแรงเท่ากับ 76,646.74 บาทต่อตัน โดยราคาดังกล่าวเป็นราคาที่ รวมถึงค่าใช้จ่ายในการดำเนินงานก่อสร้างอันประกอบด้วย ค่าอำนวยการ ค่าดอกเบี้ย กำไรและภาษี ไว้แล้ว การคำนวณปริมาณงานจะพิจารณาเฉพาะโครงสร้างที่มีความยาวทางวิ่งยกระดับ 32.60 เมตรซึ่งคิดเป็นประมาณ 70% (อ้างอิงตามราคากลาง) ของโครงการรถไฟความเร็วสูงในความร่วมมือ ระหว่างรัฐบาลไทยและรัฐบาลจีนในสัญญาที่ 2 ช่วงกรุงเทพ-หนองคายซึ่งมีระยะทางประมาณ 608 กิโลเมตร การคิดราคาค่าคอนกรีตและลวดอัดแรงนั้นมีรายละเอียดการคำนวณโดยละเอียดแสดงไว้ใน ตารางที่ 6-6 ถึงตารางที่ 6-12

Tandan		BOQ of Prestress Steel Tendon (Original Section)										
Profile	Tendon area (mm ²)	No. of tendon	Total area (mm ²)	Length (m)	Volume (m ³)	Unit weight (ton/m ³)	Weight (tons)	Unit price (Baht/ton)	Price (Baht)			
T1L	139	20	2780	32.407	0.09009	7.861	0.7082	76646.74	54,282			
T1R	139	20	2780	32.407	0.09009	7.861	0.7082	76646.74	54,282			
T2L	139	20	2780	32.437	0.09017	7.861	0.7089	76646.74	54,332			
T2R	139	20	2780	32.437	0.09017	7.861	0.7089	76646.74	54,332			
T3L	139	20	2780	32.423	0.09014	7.861	0.7086	76646.74	54,309			
T3R	139	20	2780	32.423	0.09014	7.861	0.7086	76646.74	54,309			
T4L	139	18	2502	32.405	0.08108	7.861	0.6373	76646.74	48,851			
T4R	139	18	2502	32.405	0.08108	7.861	0.6373	76646.74	48,851			
T5L	139	18	2502	32.378	0.08101	7.861	0.6368	76646.74	48,810			
T5R	139	18	2502	32.378	0.08101	7.861	0.6368	76646.74	48,810			
T6L	139	15	2085	32.351	0.06745	7.861	0.5302	76646.74	40,641			
T6R	139	15	2085	32.351	0.06745	7.861	0.5302	76646.74	40,641			
T7LL	139	15	2085	32.321	0.06739	7.861	0.5297	76646.74	40,603			
T7LR	139	15	2085	32.321	0.06739	7.861	0.5297	76646.74	40,603			
T7RL	139	15	2085	32.321	0.06739	7.861	0.5297	76646.74	40,603			
T7RR	139	15	2085	32.321	0.06739	7.861	0.5297	76646.74	40,603			
T8L	139	15	2085	31.819	0.06634	7.861	0.5215	76646.74	39,973			
T8M	139	15	2085	31.819	0.06634	7.861	0.5215	76646.74	39,973			
T8R	139	15	2085	31.819	0.06634	7.861	0.5215	76646.74	39,973			
Total	-	327	-	613.543	1.46847	-	11.5436	-	884,781			
			7			7						

ตารางที่ 6-6 การคำนวณราคาลวดอัดแรงในหน้าตัดดั้งเดิม (Original Section)

จุฬาลงกรณ์มหาวิทยาลัย

ตารางที่ 6-7 การคำนวณราคาลวดอัดแรงในหน้าตัด Bangsue-Donmuang Scaled-section

Tendon Profile	BOQ of Prestress Steel Tendon (Bangsue-Donmuang Scaled-section)										
	Tendon area (mm ²)	No. of tendon	Total area (mm ²)	Length (m)	Volume (m ³)	Unit weight (ton/m ³)	Weight (tons)	Unit price (Baht/ton)	Price (Baht)		
T1L	139	25	3475	32.688	0.11359	7.861	0.8929	76646.74	68,441		
T1R	139	25	3475	32.688	0.11359	7.861	0.8929	76646.74	68,441		
T2L	139	25	3475	32.808	0.11401	7.861	0.8962	76646.74	68,692		
T2R	139	25	3475	32.808	0.11401	7.861	0.8962	76646.74	68,692		
T3L	139	25	3475	32.737	0.11376	7.861	0.8943	76646.74	68,543		
T3R	139	25	3475	32.737	0.11376	7.861	0.8943	76646.74	68,543		
T4L	139	25	3475	32.802	0.11399	7.861	0.8960	76646.74	68,679		
T4R	139	25	3475	32.802	0.11399	7.861	0.8960	76646.74	68,679		
Total	-	200	-	262.070	0.91069	-	7.159	-	548,710		

ตารางที่ 6-8 การคำนวณราคาลวดอัดแรงในหน้าตัด Section B2
Taudau				BOQ of Pres	tress steel te	ndon (Section B	2)		
Profile	Tendon area (mm ²)	No. of tendon	Total area (mm ²)	Length (m)	Volume (m ³)	Unit weight (ton/m ³)	Weight (tons)	Unit price (Baht/ton)	Price (Baht)
T1L	139	23	3197	32.688	0.10450	7.861	0.8215	76646.74	62,965
T1R	139	23	3197	32.688	0.10450	7.861	0.8215	76646.74	62,965
T2L	139	23	3197	32.808	0.10489	7.861	0.8245	76646.74	63,197
T2R	139	23	3197	32.808	0.10489	7.861	0.8245	76646.74	63,197
T3L	139	23	3197	32.737	0.10466	7.861	0.8227	76646.74	63,060
T3R	139	23	3197	32.737	0.10466	7.861	0.8227	76646.74	63,060
T4L	139	23	3197	32.802	0.10487	7.861	0.8244	76646.74	63,185
T4R	139	23	3197	32.802	0.10487	7.861	0.8244	76646.74	63,185
Total	-	184	-	262.070	0.83784	-	6.586	-	504,813

ตารางที่ 6-9 การคำนวณราคาลวดอัดแรงในหน้าตัด Section C4

Tandan				BOQ of Pres	tress Steel Te	endon (Section C	4)		
Profile	Tendon area (mm ²)	No. of tendon	Total area (mm ²)	Length (m)	Volume (m ³)	Unit weight (ton/m ³)	Weight (tons)	Unit price (Baht/ton)	Price (Baht)
T1L	139	19	2641	32.688	0.08633	7.861	0.6786	76646.74	52,015
T1R	139	19	2641	32.688	0.08633	7.861	0.6786	76646.74	52,015
T2L	139	19	2641	32.808	0.08665	7.861	0.6811	76646.74	52,206
T2R	139	19	2641	32.808	0.08665	7.861	0.6811	76646.74	52,206
T3L	139	19	2641	32.737	0.08646	7.861	0.6796	76646.74	52,093
T3R	139	19	2641	32.737	0.08646	7.861	0.6796	76646.74	52,093
T4L	139	19	2641	32.802	0.08663	7.861	0.6810	76646.74	52,196
T4R	139	19	2641	32.802	0.08663	7.861	0.6810	76646.74	52,196
Total	-	152	-	262.070	0.69213	-	5.441	-	417,020

ตารางที่ 6-10 การสรุปราคาค่าลวดอัดแรงในหน้าตัดประเภทต่าง ๆ

F 2011 RUD RUD RUR DROW													
Total price of Presstress Steel Tendon													
Section Type Total Weight Unit Price Price Price (tons) (Baht/ton) (Baht) Ratio													
Original Structure	11.544	76646.74	884,781	1.00									
Donmuang-Bangsue Scaled-section	7.159	76646.74	548,710	0.62									
Section B2	6.586	76646.74	504,813	0.57									
Section C4 5.441 76646.74 417,020 0.47													

ตารางที่ 6-11 การคำนวณราคาคอนกรีตที่ใช้ในหน้าตัดประเภทต่าง ๆ

BOQ of Concrete													
	E	nd-segment	Mid	-span segment	Quantitu	Volumn of	Not Ouantity	Unit Drice	Drico				
Section Type	Length	Cross section area	Length	Cross section area	Quantity	Tendons	NetQuantity	UnitPrice	Price	Price Ratio			
	(m)	(m ²)	(m)	(m ²)	(m ³)	(m ³)	(m ³)	(Baht/m ³)	(Baht)	hatio			
Original Structure	2.55	11.007	27.50	7.358	230.4	1.468	228.9	3345.05	765,830	1.00			
Donmuang-Bangsue Scaled-section	2.00	14.941	28.60	5.994	201.3	0.911	200.4	3345.05	670,347	0.88			
Section B2	2.00	14.941	28.60	4.682	163.8	0.838	162.9	3345.05	545,074	0.71			
Section C4	2.00	14.941	28.60	3.819	139.1	0.692	138.4	3345.05	462,999	0.60			

ตารางที่ 6-12 การสรุปราคาทั้งหมดจากคอนกรีตและลวดแรงที่ใช้ในหน้าตัดประเภทต่าง ๆ

		Total Price			
Section Type	Concrete Price (Baht)	Tendon Price (Baht)	Total Price per Span (Baht)	Total Price per km (Baht)	Price ratio
Original Structure	765,830	884,781	1,650,611	50,477,414	1.00
Donmuang-Bangsue Scaled-section	670,347	548,710	1,219,057	37,280,037	0.74
Section B2	545,074	504,813	1,049,887	32,106,640	0.64
Section C4	462,999	417,020	880,019	26,911,898	0.53

จากผลการคำนวณเบื้องต้นพบว่าโครงสร้างหน้าตัดเดิมมีต้นทุนเฉพาะส่วนที่ใช้ใน โครงสร้างทางวิ่งยกระดับ (Viaduct) จากราคาคอนกรีตและลวดอัดแรงประมาณ 1.65 ล้านบาทต่อ ความยาวช่วงพาดโดยหากเปลี่ยนประเภทหน้าตัดเป็น Bangsue-Donmuang Scaled-section, Section B2 และ Section C4 จะสามารถลดค่าใช้จ่ายลงเหลือ 1.22, 1.05 และ 0.88 ล้านบาท ตามลำดับซึ่งคิดเป็นค่าใช้จ่ายที่ลดลงร้อยละ 26, 36 และ 47 ตามลำดับ

6.5 สรุปผลการปรับปรุงหน้าตัดโครงสร้างเพื่อความคุ้มค่าในการก่อสร้าง

จากการปรับปรุงหน้าตัดโดยใช้วิธีลดปริมาณการใช้คอนกรีตและเส้นลวดอัดแรงภายใน หน้าตัด พบว่าโครงสร้างที่เปลี่ยนไปใช้หน้าตัด Section C4 เป็นหน้าตัดที่มีความเค้นดึงภายในหน้า ตัดจากแรงกระทำร่วมไม่เกินที่เกณฑ์มาตรฐานจีนกำหนดโดยสามารถประหยัดค่าใช้จ่ายจากคอนกรีต และเส้นลวดอัดแรงได้มากที่สุดโดยลดการใช้ลงประมาณ 36% โครงสร้างที่เปลี่ยนไปใช้หน้าตัด Section B2 ซึ่งเป็นหน้าตัดที่ควบคุมไม่ให้เกิดความเค้นดึงภายในหน้าตัดซึ่งมีความคงทนในการ นำไปใช้งานมากกว่า Section C4 สามารถประหยัดค่าใช้จ่ายจากคอนกรีตและเส้นลวดอัดแรงได้ ประมาณ 47% และหน้าตัด Bangsue-Donmuang Scaled-section ที่ปรับมิติมาจากหน้าตัดที่ ออกแบบสำหรับโครงการอื่นสามารถประหยัดต้นทุนคอนกรีตและเส้นลวดอัดแรงได้ประมาณ 26%

ในแง่ของงบประมาณที่สามารถประหยัดได้นั้น หากพิจารณาในเบื้องต้นพบว่าตลอด ระยะทางของโครงการรถไฟความเร็วสูง กรุงเทพฯ-หนองคาย ซึ่งมีระยะทางรวม 608 กิโลเมตรนั้นมี สัดส่วนของทางวิ่งยกระดับประมาณ 80% และในส่วนที่เป็นทางวิ่งยกระดับดังกล่าวจะเป็นโครงสร้าง ที่ใช้ช่วงพาดมาตรฐานอยู่ที่ประมาณ 85% จึงคิดเป็นระยะทางของโครงสร้างช่วงพาดมาตรฐาน เท่ากับ 413.4 กิโลเมตร ซึ่งหากสามารถประหยัดค่าก่อสร้างเฉพาะในส่วนของต้นทุนวัสดุคอนกรีต และลวดอัดแรงตามหน้าตัดที่ปรับปรุงความคุ้มค่า (หน้าตัด C4) ตามที่ได้อภิปรายไว้ข้างต้น จะทำให้ สามารถลดต้นทุนค่าก่อสร้างของโครงการลงได้เท่ากับ 9,742.9 ล้านบาท

บทที่ 7

สรุปผลการวิจัย

งานวิจัยนี้ได้ศึกษาการทดสอบโครงสร้างทางวิ่งยกระดับช่วงพาดยาว 32.60 m ของ โครงการรถไฟความเร็วสูง ไทย-จีน ช่วงกรุงเทพา-หนองคายโดยมีการทดสอบเชิงพลวัตและการ ทดสอบเชิงสถิตเพื่อเปรียบเทียบกับเกณฑ์การทดสอบตามมาตรฐานของประเทศจีนแล้วนำไปใช้ ปรับปรุงแบบจำลองโครงสร้างในคอมพิวเตอร์เบื้องต้นให้มีพฤติกรรมใกล้เคียงกับผลการทดสอบโดย คงไว้ซึ่งความอนุรักษ์เพื่อความปลอดภัยในการนำแบบจำลองไปใช้ศึกษาความเป็นไปได้ในการ ปรับปรุงหน้าตัดให้มีประสิทธิภาพและประหยัดยิ่งขึ้นในโครงการรถไฟความเร็วสูงที่อาจเกิดขึ้นใน อนาคต โดยผลการดำเนินการวิจัยได้ข้อสรุปดังต่อไปนี้

 โครงสร้างทางวิ่งยกระดับช่วงพาดยาว 32.60 m ที่ใช้ในโครงการรถไฟความเร็วสูงใน เส้นทางกรุงเทพฯ - นครราชสีมา สัญญาที่ 2-1 ช่วงระหว่างอำเภอ สีคิ้ว-กุดจิก ผ่านเกณฑ์การ ทดสอบตามมาตรฐานการออกแบบ TB 10621-2014 ด้วยวิธีการทดสอบภาคสนาม TB 2092-2003 ของประเทศจีน โครงสร้างทางวิ่งยกระดับมีค่าความถี่ธรรมชาติในแนวดิ่งน้อยที่สุดเท่ากับ 4.808 Hz จากการปรับแก้ด้วยวิธีชดเชยมวล ค่าอัตราส่วนความปลอดภัยที่น้อยที่สุดจากการทดสอบแรงดัดและ การทดสอบแรงเฉือนของโครงสร้างมีค่าเท่ากับ 1.91 และ 1.39 ตามลำดับโดยที่โครงสร้างทางวิ่ง ยกระดับสามารถรับโมเมนต์ดัดได้ถึงระดับ 2 เท่าของน้ำหนักบรรทุกออกแบบ โดยไม่เกิดการวิบัติขึ้น โดยมีค่าการแอ่นตัวสูงสุดที่กึ่งกลางช่วงพาด 110.21 mm และโครงสร้างมีการทรุดตัวสูงสุดที่ ฐานรองรับด้านขวา 0.85 mm จากการทดสอบแรงเฉือนที่ระดับการให้แรงสูงสุดซึ่งจำลองพฤติกรรม จริงระหว่างการก่อสร้างโครงสร้างทางวิ่งยกระดับ

2. โครงสร้างทางวิ่งยกระดับมีค่าความทนทานตามที่มาตรฐานจีนกำหนด โดยจากผลการ ทดสอบแรงคัดที่ระดับการให้แรง 1.20 เท่าของน้ำหนักบรรทุกออกแบบ พบว่าโครงสร้างทางวิ่ง ยกระดับไม่ปรากฏรอยร้าวใด ๆ จากการทดสอบ ซึ่งยืนยันถึงประสิทธิภาพของหน้าตัดที่จะสามารถใช้ งานได้โดยไม่เกิดการแตกร้าว ทำให้มีความทนทานของโครงสร้างมีอายุการใช้งานอย่างน้อย 100 ปี ตามมาตรฐานการออกแบบของประเทศจีน การทดสอบพบรอยร้าวชุดแรกปรากฏขึ้นที่ระดับการให้ แรง 1.45 เท่าของน้ำหนักบรรทุกออกแบบซึ่งสัมพันธ์กับค่าการแอ่นตัวของโครงสร้างที่แสดง พฤติกรรมสูญเสียความแข็งบางส่วนจากการที่คอนกรีตเริ่มแตกร้าวที่ระดับการให้แรงเดียวกัน และ หลังจากการให้แรงถึงระดับ 1.60 เท่าของน้ำหนักบรรทุกออกแบบ ค่าการแอ่นตัวของโครงสร้างแสดง พฤติกรรมสูญเสียความแข็งในรอบที่สองโดยมีรอยร้าวปรากฏมากขึ้นอย่างชัดเจน จากผลการทดสอบ โครงสร้างพบว่าความสูงของ Neutral axis ขยับสูงขึ้นทำให้ค่าความความเครียดบริเวณใต้ปีก โครงสร้างตำแหน่งที่ติดอุปกรณ์ Strain gauge นั้นกลายเป็นความเค้นดึงเมื่อถึงระดับการให้แรง 1.60 เท่าของน้ำหนักบรรทุกออกแบบ

3. การปรับค่าโมดูลัสของคอนกรีตสามารถปรับปรุงแบบจำลองเบื้องต้นให้มีค่าความ คลาดเคลื่อนน้อยลงได้อย่างเป็นระบบ โดยแบบจำลองเบื้องต้นให้ผลตอบสนองเชิงสถิตต่างจากการ ทดสอบจริงเฉลี่ย 10.70 % จากการปรับปรุงแบบจำลองเบื้องต้นพบว่าการปรับลดค่าโมดูลัสจาก ผลทดสอบคอนกรีตลง 12% ส่งผลให้ความแตกต่างของผลตอบสนองเมื่อเทียบกับผลการทดสอบจริง เหลือเฉลี่ย 3.81% โดยที่ผลตอบสนองจากแบบจำลองที่ปรับปรุงแล้วยังคงมีความอนุรักษ์เมื่อเทียบ กับผลการทดสอบจริง ยกเว้นผลตอบสนองค่ามุมหมุนที่ฐานรองรับและค่าความเค้นเฉือนสูงสุด

 4. ค่าการทรุดตัวของฐานรองรับทั้งสองข้างของโครงสร้างทางวิ่งยกระดับมีค่าแตกต่างกัน เล็กน้อย จากการปรับคุณสมบัติของฐานรองรับในแบบจำลองเบื้องต้นให้มีค่าการทรุดตัวใกล้เคียงกับ ผลการทดสอบจริงพบว่าจะต้องกำหนดคุณสมบัติของฐานรองรับให้มีอัตราการทรุดตัวที่ฐานรองรับ ด้านซ้ายและด้านขวาเท่ากับ 2788.2 และ 2661.0 tons/mm ตามลำดับ

5. โครงสร้างทางวิ่งยกระดับในเส้นทางรถไฟความเร็วสูง ไทย-จีน นั้นมีความอนุรักษ์ ค่อนข้างสูงเมื่อพิจารณาจากเกณฑ์มาตรฐานการออกแบบ TB 10621-2014 ซึ่งเมื่อทำการปรับปรุง ความคุ้มค่าเบื้องต้นพบว่าสามารถลดต้นทุนค่าคอนกรีตและเส้นลวดอัดแรงได้โดยการปรับเปลี่ยน ขนาดและคุณสมบัติของหน้าตัด จากผลการศึกษาพบว่าการประยุกต์ใช้หน้าตัดโครงสร้างของ โครงการอื่นซึ่งเป็นโครงสร้างทางวิ่งยกระดับที่ใช้ลวดอัดแรงชนิดภายนอก สามารถลดต้นทุนค่า คอนกรีตและเส้นลวดอัดแรงได้ประมาณ 26% และเมื่อใช้หน้าตัด Section B2 และ C4 แทนที่ โครงสร้างเดิมจะสามารถประหยัดได้เพิ่มขึ้นเป็น 36% และ 47% ตามลำดับโดยโครงสร้างที่ใช้หน้า ตัดดังกล่าวยังสามารถผ่านเกณฑ์มาตรฐาน TB 10621-2014 ของประเทศจีนได้ทุกเกณฑ์การทดสอบ

หากนำหน้าตัด Section B2 และหน้าตัด Section C4 มาใช้แทนที่หน้าตัดโครงสร้าง
 เดิมจะสามารถลดค่าใช้จ่ายเฉพาะส่วนของคอนกรีตและลวดอัดแรงได้รวม 18.37 และ 23.57 ล้าน
 บาทต่อกิโลเมตรตามลำดับ โดยสามารถลดค่าใช้จ่ายในการก่อสร้างเฉพาะทางวิ่งยกระดับ (Viaduct)
 ได้เท่ากับ 36% และ 47% ตามลำดับ และหากพิจารณาตลอดโครงการรถไฟความเร็วสูง ไทย-จีน จะ

สามารถประหยัดค่าใช้จ่ายได้ 7594.2 และ 9742.9 ล้านบาทตามลำดับ หรือคิดเป็น 4.23 % และ 5.43% ของมูลค่ารวมทั้งโครงการ (199,412.2 ล้านบาท) ตามลำดับ

ข้อเสนอแนะ

 เนื่องจากการติด Strain gauge เพื่อวัดความเค้นเฉือนที่บริเวณฐานรองรับทั้งสองด้าน ของโครงสร้างทางวิ่งยกระดับอยู่ในตำแหน่งชิ้นส่วน Tapered segment ของโครงสร้าง ซึ่งเป็น ชิ้นส่วนที่ใช้เชื่อมระหว่างหน้าตัดชนิดปลายช่วงและกึ่งกลางช่วง ทำให้ผลตอบสนองความเค้นเฉือนที่ ได้นั้นยังไม่ใช่ค่าสูงสุดทางทฤษฎี โดยการติด Strain gauge เพื่อวัดค่าความเค้นเฉือนสูงสุดภายใน โครงสร้างควรติดที่ตำแหน่งถัดจาก Tapered segment เพื่อให้การทดสอบสมรรถนะโครงสร้างนั้น สามารถวัดค่าความเค้นเฉือนสูงสุดภายในโครงสร้างได้อย่างแม่นยำ

 การปรับเทียบค่าความเครียดจาก Strain gauge ที่เกิดจากผลของความต่างของ อุณหภูมิที่เปลี่ยนไปโดยใช้การปรับลดผลตอบสนองแบบเส้นตรง (Linear calibration) เป็นเพียง สมมติฐานเบื้องต้น โดยการปรับเทียบที่มีประสิทธิภาพควรใช้การเก็บข้อมูลจริงของการเพิ่มขึ้นของ ความเครียดจากการติด Strain gauge เพิ่มเพื่อใช้อ้างอิงในการปรับค่าได้อย่างมีประสิทธิภาพ

 การลดขนาดหน้าตัดโครงสร้างทางวิ่งยกระดับโดยใช้หน้าตัด B2 และ หน้าตัด C4 นอกจากสามารถลดค่าใช้จ่ายในการก่อสร้างทางวิ่งยกระดับได้แล้ว ยังสามารถลดภาระจากน้ำหนัก บรรทุกคงที่ (DL) ที่ลงสู่ฐานรากและเสาเข็มของโครงสร้างทางวิ่งยกระดับได้ โดยสามารถขยายผลการ วิเคราะห์โครงสร้างเพื่อหาความเป็นไปได้ในการลดขนาดหรือจำนวนของเสาเข็มที่ใช้ภายในโครงการ รถไฟความเร็วสูงได้ ซึ่งอาจนำไปสู่การลดค่าใช้จ่ายในโครงการได้เพิ่มขึ้น

4. ค่าความเค้นเฉพาะจุด (local stress) อาจเป็นข้อจำกัดในการปรับปรุงหน้าตัด โครงสร้าง เนื่องจากหน้าตัด B2 และหน้าตัด C4 มีแผ่นพื้นด้านบนและแผ่นพื้นด้านล่างของหน้าตัด บาง ทำให้ควรพิจารณาผลของน้ำหนักบรรทุกจรเคลื่อนที่เพิ่มเติมโดยจะต้องทำการสร้างแบบจำลองที่ สมจริง (Realistic model) ขึ้นเพื่อพิจารณาผลของความเค้นเฉพาะจุด โดยแบบจำลองที่สมจริงนั้น จำเป็นที่จะต้องจำลองเหล็กเส้น (Mild steel) ที่มีผลต่อค่าความเค้นเฉพาะจุด ทั้งความเค้นอัด ความ เค้นดึง และความเค้นเฉือน เพิ่มลงไปในแบบจำลองเพื่อให้ผลการวิเคราะห์นั้นมีความแม่นยำต่อการ ทำนายผลของความเค้นเฉพาะจุดมากที่สุด

บรรณานุกรม

- ABD ELREHIM, M. Z., EID, M. A. & SAYED, M. G. 2019. Structural optimization of concrete arch bridges using Genetic Algorithms. *Ain Shams Engineering Journal*, 10, 507-516.
- ALGAHTANI, A. S., ALSAADOUN, S. S. & ABULFEILAT, E. A. 1995. Design Optimization of Continuous Partially Prestressed Concrete Beams. *Computers & Structures*, 55, 365-370.
- BACINSKAS, D., KAMAITIS, Z., JATULIS, D. & KILIKEVICIUS, A. 2013. Load Testing and Model Updating of a Single Span Composite Steel-concrete Railway Bridge. *Procedia Engineering*, 57, 127-135.
- BAGGE, N., NILIMAA, J., BLANKSVÄRD, T. & ELFGREN, L. 2014. Instrumentation and Full-Scale Test of a Post-Tensioned Concrete Bridge. *Nordic Concrete Research*, 51, 63-83.
- CHENG, X. X. & SONG, Z. Y. 2021. Modal experiment and model updating for Yingzhou Bridge. *Structures*, 32, 746-759.
- DENG, L. & CAI, C. S. 2010. Development of dynamic impact factor for performance evaluation of existing multi-girder concrete bridges. *Engineering Structures,* 32, 21-31.
- FERRARI, R., FROIO, D., RIZZI, E., GENTILE, C. & CHATZI, E. N. 2019. Model updating of a historic concrete bridge by sensitivity- and global optimization-based Latin Hypercube Sampling. *Engineering Structures,* 179, 139-160.
- GATTI, M. 2019. Structural health monitoring of an operational bridge: A case study. *Engineering Structures,* 195, 200-209.
- GHINDEA, C. L., CRUCIAT, R. I. & RACANEL, I. R. 2019. Dynamic test of a bridge over the Danube - Black Sea Channel at Agigea. *Materials Today: Proceedings*, 12, 491-498.
- HE, X. H., SHENG, X. W., SCANLON, A., LINZELL, D. G. & YU, X. D. 2012. Skewed concrete box girder bridge static and dynamic testing and analysis. *Engineering Structures*, 39, 38-49.

- HESTER, D., BROWNJOHN, J., BOCIAN, M., XU, Y. & QUATTRONE, A. 2018. Using inertial measurement units originally developed for biomechanics for modal testing of civil engineering structures. *Mechanical Systems and Signal Processing*, 104, 776-798.
- HESTER, D., KOO, K., XU, Y., BROWNJOHN, J. & BOCIAN, M. 2019. Boundary condition focused finite element model updating for bridges. *Engineering Structures*, 198.

HIBBELER, R. C. 2017. Mechanics of materials : plus MasteringEngineering.

- KAVEH, A., MANIAT, M. & ARAB NAEINI, M. 2016. Cost optimum design of post-tensioned concrete bridges using a modified colliding bodies optimization algorithm. *Advances in Engineering Software,* 98, 12-22.
- KUMAR BAGHA, A., GUPTA, P. & PANWAR, V. 2020. Finite element model updating of a composite material beam using direct updating method. *Materials Today: Proceedings*, 27, 1947-1950.
- MALVEIRO, J., RIBEIRO, D., SOUSA, C. & CALÇADA, R. 2018. Model updating of a dynamic model of a composite steel-concrete railway viaduct based on experimental tests. *Engineering Structures*, 164, 40-52.
- MARTI, J. V. & GONZALEZ-VIDOSA, F. 2010. Design of prestressed concrete precast pedestrian bridges by heuristic optimization. *Advances in Engineering Software*, 41, 916-922.
- MCCLURE, R. & WEST, H. 2011. Full-scale testing of a prestressed concrete segmental bridge. *Canadian Journal of Civil Engineering*, 11, 505-515.
- MCCLURE, R. M. & WEST, H. H. 1984. Full-scale testing of a prestressed concrete segmental bridge. *Canadian Journal of Civil Engineering*, 11, 505-515.
- NOUR, N. A., VIE, D., CHATEAUNEUF, A., AMZIANE, S. & KALLASSY, A. 2021. Dimensioning of partially prestressed concrete beams, optimization of T-shaped section with heels. *Engineering Structures*, 235.
- PARK, Y. S., KIM, S., KIM, N. & LEE, J. J. 2017. Finite element model updating considering boundary conditions using neural networks. *Engineering Structures*, 150, 511-519.
- SAIBABU, S., SRINIVAS, V., SASMAL, S., LAKSHMANAN, N. & IYER, N. R. 2013. Performance evaluation of dry and epoxy jointed segmental prestressed box girders under

monotonic and cyclic loading. Construction and Building Materials, 38, 931-940.

- SCHOMMER, S., NGUYEN, V. H., MAAS, S. & ZÜRBES, A. 2017. Model updating for structural health monitoring using static and dynamic measurements. *Procedia Engineering*, 199, 2146-2153.
- SHI, Z., HONG, Y. & YANG, S. L. 2019. Updating boundary conditions for bridge structures using modal parameters. *Engineering Structures*, 196.
- SKOGLUND, O., LEANDER, J. & KAROUMI, R. 2020. Optimizing the steel girders in a high strength steel composite bridge. *Engineering Structures*, 221, 110981.
- SU, J. Z., MA, X. L., CHEN, B. C. & SENNAH, K. 2020. Full-scale bending test and parametric study on a 30-m span prestressed ultra-high performance concrete box girder. *Advances in Structural Engineering*, 23, 1276-1289.
- TAKEBAYASHI, T., DEEPRASERTWONG, K. & LEUNG, Y. W. 1994. A Full-Scale Destructive Test of a Precast Segmental Box-Girder Bridge with Dry Joints and External Tendons. *Proceedings of the Institution of Civil Engineers-Structures and Buildings,* 104, 297-315.
- TB2092-2003 Post-tensioned Pre-Cast Concrete Simple-support Girder for Railway Bridge. Professional Standard of the People's Republic of China, National Railway Administration of the People's Republic of China.
- TB10621-2014 Code for Design of High-speed Railway (2015). Professional Standard of the People's Republic of China, National Railway Administration of the People's Republic of China.
- TRAN-NGOC, H., HE, L., REYNDERS, E., KHATIR, S., LE-XUAN, T., DE ROECK, G., BUI-TIEN, T. & ABDEL WAHAB, M. 2020. An efficient approach to model updating for a multispan railway bridge using orthogonal diagonalization combined with improved particle swarm optimization. *Journal of Sound and Vibration*, 476, 115315.
- VARDHAN, G. H., KRISHNA, B. V., NAVEEN, C. S., REVANTH, B. & SINGH, S. 2021. Design optimization of bridge pier bearings based on material and shape. *Materials Today: Proceedings*.
- WANG, D. H., SHI, C. J., WU, Z. M., XIAO, J. F., HUANG, Z. Y. & FANG, Z. 2015. A review on ultra high performance concrete: Part II. Hydration, microstructure and

properties. Construction and Building Materials, 96, 368-377.

YUAN, A., DAI, H., SUN, D. & CAI, J. 2013. Behaviors of segmental concrete box beams with internal tendons and external tendons under bending. *Engineering Structures,* 48, 623-634.

Chulalongkorn University

ภาคผนวก ก

ผลการทดสอบคอนกรีตที่ใช้ในโครงสร้างทางวิ่งยกระดับ

Segment		Axial compressi (M	ve strength (f' _c) Pa)	Compressive (M	e modulus (E _c) Pa)	Compressive modulus (E_c) (MPa); $E_c = 4700\sqrt{f'_c}$: ACI318-14
Segment	Date of test	Single value	Group value	Single value	Group value	Group value
		48.66		4.38E+04		
1	5-Jun-2020	54.09	52.59	4.92E+04	4.61E+04	3.41E+04
		55.03		4.53E+04		
		55.56		4.20E+04		
2	19-Dec-2019	67.80	59.87	4.12E+04	4.20E+04	3.64E+04
		56.27		4.29E+04		
		56.25		4.49E+04		
3	6-Dec-2019	52.70	53.34	4.44E+04	4.42E+04	3.43E+04
		51.07		4.35E+04		
		63.12		4.19E+04		
4	11-Dec-2019	62.64	63.67	4.13E+04	4.16E+04	3.75E+04
		65.25		4.16E+04		
		63.12		4.19E+04		
5	11-Dec-2019	62.64	63.67	4.13E+04	4.16E+04	3.75E+04
		65.25		4.16E+04		
		54.26		4.39E+04		
6	13-Dec-2019	61.28	56.77	4.26E+04	4.45E+04	3.54E+04
		54.79		4.70E+04		
		52.67		4.18E+04		
7	14-Dec-2019	62.41	59.03	3.97E+04	4.09E+04	3.61E+04
		62.03		4.12E+04		
		62.06		4.17E+04		
8	16-Dec-2019	58.77	62.43	4.11E+04	4.48E+04	3.71E+04
		66.46		5.16E+04		
		67.88		3.97E+04		
9	17-Dec-2019	63.59	65.73	4.14E+04	4.19E+04	3.81E+04
		65.72		4.48E+04		
		61.84		5.06E+04		
10	22-Dec-2019	59.03	59.91	4.00E+04	4.39E+04	3.64E+04
		58.87		4.11E+04		
		60.59		4.83E+04		
11	23-Dec-2019	58.38	59.13	4.76E+04	4.86E+04	3.61E+04
		58.42		5.00E+04		
		55.21		5.18E+04		
12	28-Dec-2019	53.71	54.47	5.08E+04	5.18E+04	3.47E+04
		54.49		5.30E+04		
		58.56		4.98E+04		
13	28-Dec-2019	58.45	58.40	4.80E+04	4.83E+04	3.59E+04
		58.21		4.71E+04		
	Average		59.15		4.46E+04	3.61E+04

Concrete specimen laboratoy test report summary

ภาคผนวก ข

ผลการทดสอบโครงสร้างภาคสนาม

ผลการทดสอบเชิงพลวัต

Test No.1, L/3

Test No.1, L/2

Test No.1, 2L/3

Test No.2, L/3

Test No.2, L/2

Acceleration vs time, Test No.2, (2L/3) 0.070 0.060 0.050 0.040 0.030 0.020 Acceleration (g) 0.010 0.000 -0.010 -0.020 -0.030 -0.040 -0.050 -0.060 -0.070 5 6 7 8 9 10 11 12 13 14 15 Time(Sec) 2 × 10⁻⁴ Frequency power spectrum, Test No.2, (2L/3) 1.8 1.6 1.4 6.194 Hz FFT Magnitude 1 8.0 0.6 0.4 0.2 0 L 0 1 2 3 6 7 8 9 10 4 5 Frequency (Hz)

Test No.2, 2L/3

Test No.3, L/3

Test NO.3, L/2

Test No.3, 2L/3

ผลการทดสอบเชิงสถิต

การทดสอบแรงดัด 1.20 เท่าของน้ำหนักบรรทุกออกแบบวงรอบที่ 1 (1.20x DL, First cycle)

	Step	TF1	TF2	TF3	TF4	TF5	TF6	TF7	TF8
TF (1.20x)	Load step	Initial	Ка	K=0.80	Kb	K=1.00	Kb	Ka	Initial
	Load (tons)	10	30	45	70	75	70	30	10
	DP-1	0.00	0.05	0.08	0.17	0.19	0.22	0.16	0.12
	DP-2	0.00	3.48	6.06	10.53	11.55	10.16	3.21	-0.25
Deflection	DP-3	0.00	4.23	7.35	12.64	13.76	12.26	3.92	-0.12
(mm)	DP-4	0.00	3.71	6.46	11.09	12.08	10.81	3.56	0.01
(1111)	DP-5	0.00	0.04	0.08	0.13	0.15	0.15	0.08	0.05
	DP-6	0.00	4.25	7.38	12.82	13.97	12.53	4.21	0.07
	DP-7	0.00	4.38	7.65	13.20	14.35	12.75	3.99	-0.14
Inclination	IC-1	0.00	0.42	0.73	1.26	1.37	1.23	0.40	-0.01
(mrad)	IC-4	0.00	-0.41	-0.72	-1.24	-1.34	-1.20	-0.39	0.00
	SG-6	0.0	72.6	116.0	201.9	225.4	188.4	67.0	0.0
	SG-7	0.0	69.0	111.1	190.1	210.3	179.9	60.4	0.0
Tensile strain	SG-10	0.0	68.0	110.6	189.7	210.3	180.8	60.7	0.0
(µm/m)	SG-11	0.0	76.6	129.1	230.1	262.8	214.4	77.0	0.0
	SG-16	0.0	61.2	100.1	172.7	192.1	164.9	56.3	0.0
	SG-17	0.0	64.3	108.0	184.6	207.9	176.5	61.2	0.0
	SG-5	0.0	-10.1	-23.4	-39.7	-40.8	-39.0	-12.6	0.0
Comprossive	SG-8	0.0	-11.1	-20.8	-35.6	-35.5	-38.2	-12.3	0.0
strain	SG-9	0.0	-8.4	-14.8	-24.7	-21.7	-30.6	-10.1	0.0
(um/m)	SG-12	0.0	-8.2	-16.3	-27.8	-27.1	-30.0	-7.6	0.0
(,	SG-15	0.0	-7.7	-16.6	-28.1	-25.9	-31.1	-9.3	0.0
	SG-18	0.0	-8.8	-17.5	-29.2	-28.6	-31.8	-9.0	0.0
	SG-1	0.0	16.7	23.7	41.2	51.3	28.8	13.1	0.0
	SG-2	0.0	-8.5	-20.4	-35.0	-33.3	-40.0	-10.5	0.0
	SG-3	0.0	16.1	23.5	38.3	47.8	32.5	11.4	0.0
Shear strain	SG-4	0.0	-10.0	-21.2	-38.1	-35.4	-42.4	-13.3	0.0
(µm/m)	SG-19	0.0	15.2	22.5	36.7	49.1	31.2	14.5	0.0
	SG-20	0.0	-12.6	-25.4	-42.9	-43.2	-45.3	-11.6	0.0
	SG-21	0.0	13.4	21.1	37.2	45.4	29.5	14.4	0.0
	SG-22	0.0	-11.4	-23.2	-37.6	-35.5	-41.5	-9.6	0.0
	43				1	8			

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

	Step	TS1	TS2	TS3	TS4	TS5	TS6	TS7	TS8	TS9	TS10	TS11	TS12	TS13
TS (1.20x)	Load step	Initial	Ka	K=0.80	Kb	K=1.00	K=1.05	K=1.10	K=1.15	K=1.20	K=1.10	Kb	Ka	Initial
	Load (tons)	10	30	45	70	75	80	85	90	100	85	70	30	10
	DP-1	0.00	0.02	0.04	0.10	0.11	0.12	0.14	0.14	0.18	0.17	0.14	0.05	0.00
	DP-2	0.00	3.62	6.15	10.68	11.47	12.42	13.39	14.15	16.28	13.33	10.88	3.59	0.00
Deflection	DP-3	0.00	4.35	7.42	12.87	13.83	14.95	16.12	17.03	19.47	15.84	12.87	4.24	0.00
(mm)	DP-4	0.00	3.82	6.49	11.25	12.11	13.08	14.10	14.89	17.01	13.84	11.24	3.73	0.00
(IIIII)	DP-5	0.00	0.03	0.06	0.11	0.12	0.13	0.14	0.15	0.18	0.16	0.13	0.06	0.00
	DP-6	0.00	4.37	7.46	12.95	13.90	15.04	16.20	17.08	19.60	15.98	13.05	4.34	0.00
	DP-7	0.00	4.52	7.70	13.41	14.41	15.54	16.75	17.71	20.26	16.53	13.37	4.41	0.00
Inclination	IC-1	0.00	0.43	0.74	1.28	1.37	1.48	1.60	1.69	1.93	1.57	1.27	0.40	-0.02
(mrad)	IC-4	0.00	-0.42	-0.72	-1.25	-1.34	-1.44	-1.57	-1.65	-1.88	-1.53	-1.23	-0.39	0.01
	SG-6	0.0	70.8	118.4	207.3	222.1	238.0	256.2	272.2	303.1	251.9	201.6	69.8	0.0
	SG-7	0.0	65.1	111.9	195.1	209.2	224.2	240.8	253.8	282.1	239.7	192.1	66.7	0.0
Tensile strain	SG-10	0.0	64.7	112.4	194.2	209.9	225.2	241.3	254.4	287.1	236.7	191.2	66.0	0.0
(µm/m)	SG-11	0.0	81.6	131.5	239.5	259.9	281.2	308.3	333.5	411.6	316.7	238.9	80.3	0.0
	SG-16	0.0	59.4	102.2	177.1	192.2	206.2	221.3	232.3	262.3	218.7	173.8	61.2	0.0
	SG-17	0.0	64.6	110.5	193.8	210.8	224.6	241.5	253.7	286.3	239.2	188.3	67.8	0.0
	SG-5	0.0	-14.7	-22.9	-41.3	-43.5	-47.3	-51.5	-54.1	-60.2	-44.5	-40.5	-11.8	0.0
Compressive	SG-8	0.0	-12.9	-19.7	-32.8	-34.1	-37.8	-41.3	-45.7	-53.4	-38.8	-34.5	-8.6	0.0
strain	SG-9	0.0	-9.3	-16.0	-23.5	-23.8	-26.1	-27.9	-34.5	-41.9	-26.3	-23.2	-5.0	0.0
(um/m)	SG-12	0.0	-10.8	-16.4	-26.2	-27.4	-30.5	-33.4	-38.1	-43.7	-29.0	-24.4	-5.0	0.0
(SG-15	0.0	-11.5	-16.5	-28.4	-28.8	-31.1	-34.3	-38.6	-45.6	-32.1	-28.8	-6.4	0.0
	SG-18	0.0	-11.5	-16.1	-26.1	-26.9	-29.8	-32.8	-37.0	-43.7	-31.6	-27.5	-7.4	0.0
	SG-1	0.0	15.5	23.5	41.7	44.6	44.5	51.0	52.3	52.6	49.8	37.3	15.5	0.0
	SG-2	0.0	-12.1	-20.9	-35.6	-38.3	-43.1	-44.8	-47.0	-58.7	-42.7	-38.0	-10.0	0.0
	SG-3	0.0	13.3	23.7	41.6	43.5	45.5	50.5	52.0	56.4	52.3	38.8	16.0	0.0
Shear strain	SG-4	0.0	-12.3	-19.3	-33.7	-37.4	-41.4	-42.7	-46.5	-56.6	-40.1	-36.6	-8.9	0.0
(µm/m)	SG-19	0.0	14.5	26.2	46.2	48.7	52.2	55.6	54.6	56.3	55.5	37.7	19.1	0.0
	SG-20	0.0	-16.7	-24.0	-40.0	-41.8	-46.6	-50.4	-55.1	-65.0	-50.1	-42.3	-11.3	0.0
	SG-21	0.0	10.9	20.8	38.7	43.8	46.7	50.2	49.7	53.1	47.9	36.9	16.0	0.0
	SG-22	0.0	-14.9	-22.1	-36.6	-37.9	-41.7	-45.6	-50.3	-59.7	-43.3	-37.1	-9.4	0.0

การทดสอบแรงดัด 1.20 เท่าของน้ำหนักบรรทุกออกแบบวงรอบที่ 2 (1.20x DL, Second cycle)

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

	Step	TP0	TP1	TP2	TP3	TP4	TP5	TP6	TP7	TP8	TP9	TP10
TP (1.20x)	Load step	Initial	Kb	K=1.00	K=1.05	K=1.10	K=1.15	K=1.20	K=1.10	Kb	Ka	Initial
	Load (tons)	10	70	75	80	85	90	100	85	70	30	10
	DP-1	0.00	0.11	0.12	0.13	0.14	0.15	0.17	0.16	0.13	0.04	0.00
	DP-2	0.00	10.59	11.65	12.41	13.34	14.36	16.17	13.52	10.79	3.52	0.00
Deflection	DP-3	0.00	12.76	14.05	14.97	16.09	17.31	19.51	16.15	12.87	4.21	0.00
(mm)	DP-4	0.00	11.15	12.30	13.10	14.07	15.14	17.05	14.11	11.24	3.70	0.00
((1)(1))	DP-5	0.00	0.11	0.13	0.13	0.14	0.15	0.17	0.15	0.12	0.05	0.00
	DP-6	0.00	12.89	14.14	15.07	16.17	17.38	19.62	16.24	13.01	4.32	0.00
	DP-7	0.00	13.23	14.63	15.59	16.72	18.00	20.28	16.83	13.37	4.36	0.00
Inclination	IC-1	0.00	1.27	1.39	1.49	1.60	1.72	1.94	1.61	1.28	0.42	0.00
(mrad)	IC-4	0.00	-1.23	-1.36	-1.45	-1.56	-1.68	-1.89	-1.57	-1.24	-0.40	0.00
	SG-6	0.0	198.7	219.7	236.4	254.6	272.2	309.1	252.6	202.3	65.6	0.0
	SG-7	0.0	191.5	210.4	224.2	240.9	256.3	287.1	241.3	189.7	61.6	0.0
Tensile strain	SG-10	0.0	189.9	209.6	222.8	240.0	257.3	289.6	238.9	189.8	63.6	0.0
(µm/m)	SG-11	0.0	228.3	257.7	280.1	308.5	340.3	416.0	310.9	230.3	69.2	0.0
	SG-16	0.0	173.7	191.8	203.6	220.2	236.5	265.2	219.3	172.6	57.2	0.0
	SG-17	0.0	187.4	208.3	222.7	239.2	257.2	290.2	238.4	187.1	61.5	0.0
	SG-5	0.0	-40.0	-43.7	-46.7	-48.9	-53.2	-60.2	-50.3	-42.8	-14.1	0.0
c	SG-8	0.0	-34.2	-37.9	-41.1	-42.3	-46.1	-51.3	-43.2	-37.5	-12.5	0.0
compressive	SG-9	0.0	-23.3	-29.6	-32.2	-30.8	-33.7	-36.0	-30.7	-27.2	-9.5	0.0
(um/m)	SG-12	0.0	-27.0	-30.0	-32.9	-33.5	-36.7	-41.3	-33.0	-28.0	-9.0	0.0
(pin/in/	SG-15	0.0	-27.1	-31.9	-34.7	-34.3	-38.1	-42.6	-36.0	-32.1	-11.2	0.0
	SG-18	0.0	-28.1	-30.6	-33.8	-34.3	-37.4	-41.9	-35.2	-31.4	-10.7	0.0
	SG-1	0.0	34.8	38.7	41.8	45.9	48.4	55.5	44.9	35.8	12.2	0.0
	SG-2	0.0	-39.7	-42.4	-45.0	-48.0	-52.3	-58.2	-49.0	-38.9	-12.9	0.0
	SG-3	0.0	36.9	40.6	43.8	47.6	49.8	56.2	46.6	35.7	11.3	0.0
Shear strain	SG-4	0.0	-39.5	-43.9	-46.3	-49.0	-54.1	-60.6	-51.0	-42.2	-14.9	0.0
(µm/m)	SG-19	0.0	40.2	42.3	46.4	50.7	49.8	60.3	47.7	35.6	9.5	0.0
	SG-20	0.0	-42.2	-45.8	-50.1	-52.6	-56.5	-63.8	-52.9	-44.5	-14.0	0.0
	SG-21	0.0	37.7	39.9	41.9	47.4	50.1	57.1	45.7	34.4	11.7	0.0
	SG-22	0.0	-36.4	-41.2	-44.8	-45.7	-50.3	-55.8	-46.5	-39.0	-13.0	0.0
		1	ALE.				2					

การทดสอบแรงดัด 1.20 เท่าของน้ำหนักบรรทุกออกแบบวงรอบที่ 3 (1.20x DL, Proof load test)

	Step	C1	C2	C3	C4	C5	C6	С7	C8	С9	C10	C11	C12	C13	C14	C15	C16	C17	C18
(1.60x)	Load step	Initial	Ка	K=0.80	Kb	K=1.00	K=1.05	K=1.10	K=1.15	K=1.20	K=1.25	K=1.30	K=1.35	K=1.40	K=1.45	K=1.50	K=1.55	K=1.60	Initial
	Load (tons)	10	30	45	70	75	80	85	90	100	110	115	120	125	130	140	145	155	10
	DP-1	0.00	0.02	0.03	0.07	0.11	0.12	0.21	0.23	0.27	0.30	0.31	0.33	0.43	0.47	0.57	0.59	0.64	0.48
	DP-2	0.00	3.50	6.17	10.54	11.38	12.41	13.16	14.20	15.76	17.46	18.29	19.31	20.45	21.77	25.36	27.21	32.63	-0.22
Deflection	DP-3	0.00	4.14	7.30	12.39	13.43	14.63	15.46	16.66	18.58	20.60	21.57	22.73	23.97	25.83	30.50	32.87	39.68	-0.22
(mm)	DP-4	0.00	3.54	6.26	10.61	11.51	12.56	13.28	14.32	15.99	17.74	18.58	19.52	20.56	22.01	25.73	27.61	-	-
(1111)	DP-5	0.00	0.05	0.08	0.13	0.15	0.17	0.18	0.20	0.22	0.25	0.26	0.27	0.31	0.33	0.35	0.37	0.43	0.18
	DP-6	0.00	4.31	7.62	13.01	14.11	15.42	16.34	17.62	19.56	21.75	22.80	24.03	25.16	26.96	31.75	34.24	-	-
	DP-7	0.00	4.24	7.43	12.66	13.71	14.94	15.78	16.99	18.92	20.98	21.95	23.08	24.29	26.06	30.92	33.34	40.37	-0.29
Inclination	IC-1	0.00	0.42	0.74	1.26	1.37	1.49	1.57	1.69	1.89	2.09	2.19	2.31	2.42	2.57	2.98	3.17	3.71	-0.04
(mrad)	IC-4	0.00	-0.40	-0.72	-1.22	-1.33	-1.45	-1.53	-1.65	-1.85	-2.05	-2.15	-2.26	-2.38	-2.53	-2.93	-3.13	-3.67	0.00
	SG-6	0.0	70.2	118.6	209.6	226.9	255.1	275.7	293.4	326.0	365.9	382.2	403.8	422.9	442.5	478.5	490.7	532.3	3.2
	SG-7	0.0	65.3	113.5	197.8	211.9	238.8	253.5	268.8	294.3	325.6	339.3	357.9	371.9	387.1	418.3	426.5	456.0	2.7
Tensile strain	SG-10	0.0	60.8	105.1	178.6	191.3	214.9	229.9	242.3	269.2	298.9	312.3	327.8	347.3	351.0	366.4	361.6	338.9	2.2
(µm/m)	SG-11	0.0	84.0	143.3	263.5	295.4	347.7	384.5	433.5	516.1	650.9	717.7	801.0	1079.3	-	-	-	-	-
	SG-16	0.0	60.9	106.2	180.7	195.7	220.9	236.1	251.8	280.5	311.8	324.3	337.7	357.0	366.4	391.9	404.5	419.2	2.3
	SG-17	0.0	65.7	113.9	195.8	211.0	240.1	253.2	273.1	302.1	335.7	354.0	368.0	388.1	405.8	438.1	451.3	481.8	2.7
	SG-5	0.0	-13.0	-24.7	-38.1	-42.7	-44.7	-49.3	-56.0	-57.6	-66.2	-70.4	-71.5	-72.2	-77.2	-79.4	-79.3	-87.3	0.0
Compressive	SG-8	0.0	-11.1	-19.2	-30.4	-34.7	-32.0	-33.4	-40.5	-42.9	-47.5	-50.4	-58.1	-54.5	-62.5	-67.6	-67.5	-73.5	0.0
strain	SG-9	0.0	-6.8	-12.8	-18.9	-20.6	-14.3	-12.1	-18.1	-20.1	-17.4	-19.5	-27.8	-18.4	-25.8	-27.5	-25.3	4.2	0.0
(um/m)	SG-12	0.0	-8.0	-14.2	-22.5	-26.0	-22.3	-24.4	-31.1	-33.0	-36.5	-39.3	-47.2	-42.0	-46.6	-41.9	-33.6	-8.7	0.0
	SG-15	0.0	-7.2	-14.5	-22.8	-25.3	-22.7	-23.1	-28.9	-28.1	-31.1	-33.1	-38.2	-33.3	-42.7	-49.4	-48.3	-54.2	0.0
	SG-18	0.0	-8.0	-14.4	-22.9	-26.3	-22.1	-23.4	-27.7	-29.3	-31.7	-34.8	-40.6	-37.1	-45.6	-50.1	-47.3	-54.0	0.0
	SG-1	0.0	14.1	21.1	41.8	44.9	54.4	63.1	63.8	68.8	81.2	85.0	88.3	93.6	95.3	94.4	94.5	102.8	0.0
	SG-2	0.0	-12.6	-24.1	-35.2	-37.4	-37.6	-36.0	-40.4	-45.8	-48.4	-51.1	-52.5	-57.9	-59.9	-72.4	-78.1	-84.2	0.0
	SG-3	0.0	13.1	20.9	39.7	42.2	49.7	54.8	54.4	62.1	70.6	72.5	75.1	82.5	82.1	89.5	91.9	93.7	0.0
Shear strain	SG-4	0.0	-11.5	-21.9	-33.5	-36.7	-35.8	-35.7	-42.0	-45.0	-48.6	-52.2	-56.5	-56.5	-61.2	-68.9	-70.4	-74.6	0.0
(µm/m)	SG-19	0.0	19.4	24.0	50.0	53.6	66.6	74.4	72.4	84.9	92.9	95.7	97.1	100.8	97.5	100.1	103.1	109.6	0.0
	SG-20	0.0	-12.7	-22.5	-37.8	-41.8	-38.9	-42.8	-48.4	-53.0	-58.5	-62.9	-69.2	-67.7	-77.4	-87.9	-87.6	-103.7	0.0
	SG-21	0.0	14.9	25.6	43.9	46.5	57.0	63.0	63.7	71.0	82.3	85.9	85.8	96.3	92.6	91.3	93.9	97.8	0.0
	SG-22	0.0	-9.8	-19.1	-30.4	-34.9	-32.7	-33.2	-40.0	-43.9	-46.7	-48.8	-54.9	-51.8	-60.8	-73.6	-76.6	-85.2	0.0

	Step	B1	BZ	2 В	3 B	4 I	B5	B6	B7	B8	B9	B10	B11	B12	B13
(2.00x)	Load step) Initia	al Ka	N K=0	.80 K	b K=	1.00 K=	=1.05	K=1.10	K=1.15 k	<=1.20	K=1.25	K=1.30	K=1.35	K=1.40
	Load (tons	5) 10	30) 4	5 7	0	75	80	85	90	100	110	115	120	125
	ר תם	0.0	0.0	6 U.U	J/ U.	12 0	.13 (J. 14	0.16	0.16	0.19	0.20	0.21	0.23	0.24
	DP-2	0.00	0 3.7 0 4 3	/ 6.0	52 II. 55 13	05 1/	2.16 I 111 1	5.08	15.97	14.80	10.00	18.65	19./9	20.79	22.41
Deflection	DP-5 DD_4	0.00	0 4.3 N 30	4 /.0	כו ככ בי ככ	60 17	+.II I 050 1	3.17	1/1 27	15.24	19.50	21.05	22.95	24.11	20.09
(mm)	DF-4 DD-5	0.00	0 0.0	5 0.0	ח פר	.00 12 15 0	17 (0.45 0.18	0.20	0.21	0.24	0.26	0.27	0.28	0.30
	DP-6	0.0	0.0 0 44	0 78	33 0. 31 13	20 14	126 1	5 30	16 29	17 30	19 72	21 79	23 14	24 32	26 37
	DP-7	0.0	0 4.3	4 7.0	55 13	.05 14	1.11 1	5.17	16.15	17.15	19.56	21.65	22.93	24.11	26.09
Inclination	IC-1	0.0	0 0.4	3 0.7	76 1.	29 1	.39 1	1.50	1.60	1.69	1.92	2.13	2.26	2.37	2.54
(mrad)	IC-4	0.0	0 -0.4	13 -0.	75 -1.	.28 -1	.37 -	1.48	-1.58	-1.67	-1.90	-2.10	-2.23	-2.34	-2.51
	SG-6	0.0	65.	.6 112	2.7 19	3.9 21	2.3 2	27.6	246.9	264.7	308.4	341.9	360.8	381.8	410.2
	SG-7	0.0	89.	7 148	3.2 23	7.5 26	54.0 2	87.3	316.4	340.0	384.3	417.4	434.7	461.7	493.3
Tensile strain	SG-10	0.0	62.	4 11	1.3 18	9.1 20)5.8 2	18.2	238.0	251.8	283.0	295.5	290.7	295.9	297.6
(µm/m)	SG-11	0.0	78.	9 13	5.9 25	0.1 28	35.9 3	18.5	367.4	412.7	561.2	1150.3	-	-	-
	SG-16	0.0	59.	5 10	5.1 17	7.9 19	93.8 2	05.8	226.7	240.5	275.1	302.0	310.7	326.2	343.2
	SG-17	0.0	64.	5 11	1.4 19	0.6 20	9.0 2	25.3	247.8	265.7	310.8	341.3	354.0	374.4	397.7
	SG-5	0.0	-15	.9 -27	7.0 -4	2.0 -4	6.3 -	51.5	-50.9	-56.5	-59.3	-62.6	-71.1	-71.0	-69.3
Compressive	SG-8	0.0	-17	.2 -25	5.5 -3	9.3 -4	0.7 -	47.6	-43.2	-48.6	-50.2	-51.9	-61.1	-63.8	-63.6
strain	SG-9	0.0	-16	.1 -19	9.5 -2	7.8 -2	27.3 -	33.4	-27.1	-29.8	-37.3	-32.7	-36.5	-39.9	-40.5
(µm/m)	SG-12	0.0	-15	.1 -23	3.2 -3	5.9 -3	86.5 -	43.9	-38.8	-43.8	-43.2	-44.5	-52.8	-54.0	-49.6
	SG-15	0.0	-14	.3 -2	1.3 -2	8.0 -3	30.1 -	37.3	-31.4	-35.5	-41.1	-36.1	-44.9	-45.8	-47.5
	56-18	0.0	11	.8 -20).1 -3	1.5 -3	82.4 -	38.6	-33.4	-38.2	-36.4	-39.3	-46.9	-48.7	-46.8
	50-1	0.0	10.	.5 24	.9 40 >> >).2 4 D/ /	4.1 4 17 1	19.0 42.2	30.1 4E 4	46.7	51.0	/5./	60.5 E0.4	62.0 62.7	61.0
	50-2	0.0	1 - 12	0 10	0.0 -0: 01 -0:	5.4 -4 :0 2	12.1 - 02 /	45.2	-45.4 /6 0	-40.7	-51.5	-20.0	-59.4	-02.7	-00.7
Shear strain	5G-4	0.0	, 11. 1 _15	0 - 74	.4 Ji 57 _//	0.5 5 17 _4	9.5 - M A _	40.0 /10 7	-/18 3	-52.1	-56.5	-59.6	-66.5	-70.1	-72.8
(um/m)	56-19	0.0	, -13 13	3 21	1 40) 1 4	- ד.די אר 2	42.1	54.4	56.8	74.0	-55.0 85.1	81 9	87.0	91.0
(SG-20	0.0	-18	7 -28	3.7 -4	5.5 -4	16.5 -	53.9	-50.3	-54.4	-55.5	-62.0	-69.9	-70.7	-71.3
	SG-21	0.0	10.	2 22	.1 39).4 4	3.8 4	43.3	53.5	53.9	64.6	74.5	75.4	75.9	76.2
	SG-22	0.0	-17	.1 -25	5.7 -4	0.3 -4	12.4 -	49.1	-45.7	-51.1	-53.9	-56.7	-63.3	-66.1	-70.5
			04			· ·			16						
	Stop														
	step	B14	B15	B16	B17	B18	B19	B20	B21	B22	B23	B24	B25	B26	B27
(2.00x)	Load step	B14 K=1.45	B15 K=1.50	B16 K=1.55	B17 K=1.60	B18 K=1.65	B19 K=1.70	B20) K=1.8	B21 80 K=1.9	B22 0 K=2.00	B23) K=1.80	B24 D K=1.60	B25) K=1.40	B26 K=1.20	B27 Initial
(2.00x)	Load step 1 Load (tons)	B14 K=1.45 130	B15 K=1.50 140	B16 K=1.55 145	B17 K=1.60 155	B18 K=1.65 160	B19 K=1.70 165	B20) K=1.8 180	B21 80 K=1.9 190	B22 0 K=2.00 205	B23) K=1.80 180	B24 D K=1.60 155	B25) K=1.40 125	B26 K=1.20 100	B27 Initial 10
(2.00x)	Load step 1 Load (tons) DP-1	B14 K=1.45 130 0.25	B15 K=1.50 140 0.27 28.04	B16 K=1.55 145 0.30	B17 K=1.60 155 0.33 34.17	B18 K=1.65 160 0.35	B19 K=1.70 165 0.37	B20) K=1.8 180 0.41	B21 80 K=1.9 190 0.42	B22 0 K=2.00 205 0.50	B23) K=1.80 180 0.43	B24 D K=1.60 155 0.40	B25 K=1.40 125 0.34	B26 K=1.20 100 0.30	B27 Initial 10 0.12
(2.00x)	Load step 1 Load (tons) DP-1 DP-2 DP-3	B14 K=1.45 130 0.25 24.16 28.40	B15 K=1.50 140 0.27 28.04 33.25	B16 K=1.55 145 0.30 30.31 36.05	B17 K=1.60 155 0.33 34.17 40.93	B18 K=1.65 160 0.35 37.55 45.28	B19 K=1.70 165 0.37 42.34 51.56	B20) K=1.8 180 0.41 - 75.7(B21 80 K=1.9 190 0.42 - 0 87.9	B22 0 K=2.00 205 0.50 - 3 114.55	B23) K=1.80 180 0.43 - 5 67.53	B24 D K=1.60 155 0.40 -	B25) K=1.40 125 0.34 - -	B26 K=1.20 100 0.30 -	B27 Initial 10 0.12 -
(2.00x)	Load step H Load (tons) DP-1 DP-2 DP-3 DP-4	B14 K=1.45 130 0.25 24.16 28.40 24.91	B15 K=1.50 140 0.27 28.04 33.25 29.01	B16 K=1.55 145 0.30 30.31 36.05 31.29	B17 K=1.60 155 0.33 34.17 40.93 35.41	B18 K=1.65 160 0.35 37.55 45.28 38.84	B19 K=1.70 165 0.37 42.34 51.56 44.31	B20) K=1.8 180 0.41 - 75.70	B21 80 K=1.9 190 0.42 - 0 87.93	B22 0 K=2.00 205 0.50 - 3 114.55	B23) K=1.80 180 0.43 - 5 67.53 -	B24 D K=1.60 155 0.40 - - -	B25) K=1.40 125 0.34 - - -	B26 K=1.20 100 0.30 - - -	B27 Initial 10 0.12 - -
(2.00x) Deflection (mm)	Load step H Load (tons) DP-1 DP-2 DP-3 DP-4 DP-5	B14 (=1.45 130 0.25 24.16 28.40 24.91 0.31	B15 K=1.50 140 0.27 28.04 33.25 29.01 0.34	B16 K=1.55 145 0.30 30.31 36.05 31.29 0.35	B17 K=1.60 155 0.33 34.17 40.93 35.41 0.38	B18 K=1.65 160 0.35 37.55 45.28 38.84 0.40	B19 K=1.70 165 0.37 42.34 51.56 44.31 0.42	B20 0 K=1.8 180 0.41 - 75.7(- 0.47	B21 0 K=1.9 190 0.42 - 0 87.9 - 0.49	B22 0 K=2.00 205 0.50 - 3 114.55 - 0.55	B23 0 K=1.80 0.43 - 5 67.53 - 0.48	B24 0 K=1.60 155 0.40 - - - 0.45	B25) K=1.40 125 0.34 - - - 0.40	B26 K=1.20 100 0.30 - - - 0.36	B27 Initial 10 0.12 - - - - 0.36
(2.00x) Deflection (mm)	Load step H Load (tons) DP-1 DP-2 DP-3 DP-4 DP-5 DP-6	B14 X=1.45 130 0.25 24.16 28.40 24.91 0.31 28.68	B15 K=1.50 140 0.27 28.04 33.25 29.01 0.34 33.63	B16 K=1.55 145 0.30 30.31 36.05 31.29 0.35 36.36	B17 K=1.60 155 0.33 34.17 40.93 35.41 0.38 41.34	B18 K=1.65 160 0.35 37.55 45.28 38.84 0.40 45.69	B19 K=1.70 165 0.37 42.34 51.56 44.31 0.42 52.04	B20) K=1.8 180 0.41 - 75.7 - 0.47 -	B21 0 K=1.9 190 0.42 - 0 87.9: - 0 .49 - -	B22 0 K=2.00 205 0.50 - 3 114.55 - 0.55 -	B23) K=1.80 0.43 - 5 67.53 - 0.48 -	B24 D K=1.60 155 0.40 - - - 0.45 -	B25 0 K=1.40 125 0.34 - - - 0.40 -	B26 K=1.20 100 0.30 - - - 0.36 -	B27 Initial 10 0.12 - - - 0.36 -
(2.00x) Deflection (mm)	Load step I Load (tons) DP-1 DP-2 DP-3 DP-4 DP-5 DP-6 DP-7	B14 K=1.45 130 0.25 24.16 28.40 24.91 0.31 28.68 28.40	B15 K=1.50 140 0.27 28.04 33.25 29.01 0.34 33.63 33.25	B16 K=1.55 145 0.30 30.31 36.05 31.29 0.35 36.36 36.05	B17 K=1.60 155 0.33 34.17 40.93 35.41 0.38 41.34 40.93	B18 K=1.65 160 0.35 37.55 45.28 38.84 0.40 45.69 45.28	B19 K=1.70 165 0.37 42.34 51.56 44.31 0.42 52.04 51.56	B20) K=1.8 180 0.41 - 75.7(- 0.47 - - -	B21 B21 B21 B21 B21 B21 B21 B21	B22 0 K=2.00 205 0.50 - 3 114.55 - 0.55 - - -	B23 0 K=1.80 180 0.43 - 5 67.53 - 0.48 - -	B24 D K=1.60 155 0.40 - - 0.45 - 0.45 - - 0.45	B25) K=1.40 125 0.34 - - - 0.40 - - -	B26 K=1.20 100 0.30 - - - 0.36 - - -	B27 Initial 10 0.12 - - 0.36 - - -
(2.00x) Deflection (mm) Inclination (mr.d)	Load step Load (tons) DP-1 DP-2 DP-3 DP-4 DP-5 DP-6 DP-7 IC-1 IC-1	B14 (=1.45 130 0.25 24.16 28.40 24.91 0.31 28.68 28.40 2.74 2.74	B15 K=1.50 140 0.27 28.04 33.25 29.01 0.34 33.63 33.25 3.15 2.11	B16 K=1.55 0.30 30.31 36.05 31.29 0.35 36.36 36.05 3.38	B17 K=1.60 155 0.33 34.17 40.93 35.41 0.38 41.34 40.93 3.79	B18 K=1.65 160 0.35 37.55 45.28 38.84 0.40 45.69 45.28 4.13	B19 K=1.70 165 0.37 42.34 51.56 44.31 0.42 52.04 51.56 4.63 4.63	B20) K=1.8 180 0.41 - 75.70 - 0.47 - - 6.49	B21 0 K=1.9 190 0.42 - 0 87.92 - 0 87.92 - - 0 .49 - - - - - - - - - - - - -	B22 0 K=2.00 205 0.50 - 3 114.55 - 0.55 - - - 9.16	B23 0 K=1.80 180 0.43 - 5 67.53 - 0.48 - - 5.94	B24 D K=1.60 155 0.40 - - 0.45 - - 4.41	B25) K=1.40 125 0.34 - - 0.40 - - 3.01	B26 K=1.20 100 - - 0.30 - - 0.36 - - 2.30	B27 Initial 10 0.12 - - 0.36 - - - 0.36 - - - 0.17
(2.00x) Deflection (mm) Inclination (mrad)	Load step 1 Load (tons) DP-1 DP-2 DP-3 DP-4 DP-5 DP-6 DP-7 IC-1 IC-1 IC-4 Sc. 6	B14 (=1.45 130 0.25 24.16 28.40 24.91 0.31 28.68 28.40 2.74 -2.70 424.5	B15 K=1.50 140 0.27 28.04 33.25 29.01 0.34 33.63 33.25 3.15 -3.11 453.0	B16 K=1.55 145 0.30 30.31 36.05 31.29 0.35 36.36 36.05 3.38 -3.33	B17 K=1.60 155 0.33 34.17 40.93 35.41 0.38 41.34 40.93 3.79 -3.74	B18 K=1.65 160 0.35 37.55 45.28 38.84 0.40 45.69 45.28 4.13 -4.08	B19 K=1.70 165 0.37 42.34 51.56 44.31 0.42 52.04 51.56 4.63 -4.59	B20	B21 0 K=1.9 190 0.42 - 0 87.9: - 0 0.49 - - 0 7.22 2 -7.1!	B22 0 K=2.00 205 0.50 - 0.55 - 0.55 - - - 9.16 5 -9.08	B23 0 K=1.80 180 0.43 - 0.43 - 0.48 - 5.94 -5.94 -5.91	B24 D K=1.60 155 0.40 - - 0.45 - - 4.41 -4.40	B25) K=1.40 125 0.34 - - 0.40 - - 3.01 -3.00	B26 K=1.20 100 0.30 - - 0.36 - 2.30 -2.30	B27 Initial 10 0.12 - - 0.36 - - 0.17 -0.20
(2.00x) Deflection (mm) Inclination (mrad)	Joad Step I Load (tool) DP-1 DP-2 DP-3 DP-4 DP-5 DP-6 DP-7 IC-1 IC-4 SG-6 SG-7	B14 <=1.45 130 0.25 24.16 28.40 24.91 0.31 28.68 28.40 2.74 -2.70 424.5 510.5	B15 K=1.50 140 0.27 28.04 33.25 29.01 0.34 33.63 33.25 3.15 -3.11 463.0 552.4	B16 K=1.55 145 0.30 30.31 36.05 31.29 0.35 36.36 36.05 3.38 -3.33 478.2 571.4	B17 K=1.60 155 0.33 34.17 40.93 35.41 0.38 41.34 40.93 3.79 -3.74 531.4 633.3	B18 K=1.65 160 0.35 37.55 45.28 38.84 0.40 45.69 45.28 4.13 -4.08 565.8 648.7	B19 K=1.70 165 0.37 42.34 51.56 44.31 0.42 52.04 51.56 4.63 -4.59 700.7 685.4	B20 K=1.8 180 0.41 - 75.70 - 0.47 - 6.49 -6.42 - 6.56	B21 0 K=1.9 190 0.42 - 0 87.9 - 0 87.9 - - 0 7.22 2 -7.15 - - 4 673.	B22 0 K=2.00 205 0.50 - 0.55 - - 9.16 5 -9.08 7 -	B23 0 K=1.80 180 0.43 - 5 67.53 - 0.48 - 5.94 -5.91 - -	B24 D K=1.60 155 0.40 - - 0.45 - 4.41 -4.40 -	B25 0 K=1.40 125 0.34 - - 0.40 - 3.01 -3.00 - -	B26 K=1.20 100 0.30 - - 0.36 - - 2.30 -2.30 - 2.30	B27 Initial 10 0.12 - 0.36 - 0.17 -0.20 -
(2.00x) Deflection (mm) Inclination (mrad) Tensile strain	Load step I Load (tons) DP-1 DP-2 DP-3 DP-4 DP-5 DP-6 DP-7 IC-1 IC-4 SG-6 SG-7 SG-10 SG-10	B14 <=1.45 130 0.25 24.16 28.40 24.91 0.31 28.68 28.40 2.74 -2.70 424.5 510.5 292.3	B15 K=1.50 140 0.27 28.04 33.25 29.01 0.34 33.63 33.25 3.15 -3.11 463.0 552.4 291.1	B16 K=1.55 145 0.30 30.31 36.05 31.29 0.35 36.36 36.05 3.38 -3.33 478.2 571.4 281.2	B17 K=1.60 155 0.33 34.17 40.93 35.41 0.38 41.34 40.93 3.79 -3.74 531.4 633.3 272.0	B18 K=1.65 160 0.35 37.55 45.28 38.84 0.40 45.69 45.28 4.13 -4.08 565.8 648.7 215.8	B19 K=1.70 165 0.37 42.34 51.56 44.31 0.42 52.04 51.56 4.63 -4.59 700.7 685.4 218.9	B20 K=1.8 180 0.41 - 75.70 - 0.47 - 6.49 -6.42 - 656.4 142.3	B21 80 K=1.9 190 0.42 - 0 87.9 - 7 0.49 - - 7 0.49 - - - - - - - - - - - - -	B22 0 K=2.00 205 0.50 - 3 114.55 - 0.55 - - 9.16 5 -9.08 - 7 - 5 121.2	B23 0 K=1.80 0.43 - 6 67.53 - 0.48 - 5.94 -5.91 - 202.5	B24 D K=1.6C 155 0.40 - - 0.45 - 4.41 -4.40 - 225.3	B25 K=1.40 125 0.34 - - 0.40 - 3.01 -3.00 - 233.9	B26 K=1.20 100 0.30 - - 0.36 - 2.30 -2.30 -2.30 - 208.2	B27 Initial 10 0.12 - - 0.36 - - 0.17 -0.20 - - 0.0
(2.00x) Deflection (mm) Inclination (mrad) Tensile strain (µm/m)	Load step I Load (tons) DP-1 DP-2 DP-3 DP-4 DP-5 DP-6 DP-7 IC-1 IC-4 SG-6 SG-7 SG-10 SG-11	B14 K=1.45 130 0.25 24.16 28.40 24.91 0.31 28.68 28.40 2.74 -2.70 424.5 510.5 292.3 -	B15 K=1.50 140 0.27 28.04 33.25 29.01 0.34 33.63 33.25 3.15 -3.11 463.0 552.4 291.1	B16 K=1.55 145 0.30 30.31 36.05 31.29 0.35 36.36 36.05 3.38 -3.33 478.2 571.4 281.2	B17 K=1.60 155 0.33 34.17 40.93 35.41 0.38 41.34 40.93 3.79 -3.74 531.4 633.3 272.0	B18 K=1.65 160 0.35 37.55 45.28 38.84 0.40 45.69 45.28 4.13 -4.08 565.8 648.7 215.8	B19 K=1.70 165 0.37 42.34 51.56 44.31 0.42 52.04 51.56 4.63 -4.59 700.7 685.4 218.9 -	B20) K=1.8 180 0.41 - 75.70 - 0.47 - - 6.49 -6.42 - 656. 142.1	B21 30 K=1.9 190 0.42 - 0 87.9: - 7 0.49 - - 7 0.49 - - 7 0.49 - - 4 673.3 8 140.0 -	B22 0 K=2.00 205 0.50 - 3 114.55 - 0.55 - 9.16 5 -9.08 7 - 5 121.2	B23) K=1.80 180 0.43 - 5 67.53 - 0.48 - -	B24 5 K=1.6C 155 0.40 - - 0.45 - - 4.41 -4.40 - 225.3 -	B25 K=1.40 125 0.34 - - 0.40 - 3.01 -3.00 - 233.9 -	B26 K=1.20 100 0.30 - - 0.36 - 2.30 -2.30 - 208.2 -	B27 Initial 10 0.12 - - 0.36 - - 0.36 - - 0.17 -0.20 - - 0.01 - - 0.00 -
(2.00x) Deflection (mm) Inclination (mrad) Tensile strain (µm/m)	Load step i Load (tons) DP-1 DP-2 DP-3 DP-4 DP-5 DP-6 DP-7 IC-1 IC-1 IC-4 SG-6 SG-7 SG-10 SG-11 SG-16	B14 K=1.45 130 0.25 24.16 28.40 24.91 0.31 28.68 28.40 2.74 -2.70 424.5 510.5 292.3 - 357.7	B15 K=1.50 140 0.27 28.04 33.25 29.01 0.34 33.63 33.25 3.15 -3.11 463.0 552.4 291.1 - 388.2	B16 K=1.55 145 0.30 30.31 36.05 31.29 0.35 36.36 36.05 3.38 -3.33 478.2 571.4 281.2 - 398.5	B17 K=1.60 155 0.33 34.17 40.93 35.41 0.38 41.34 40.93 3.79 -3.74 531.4 633.3 272.0 - 429.9	B18 K=1.65 160 0.35 37.55 45.28 38.84 0.40 45.69 45.28 4.13 -4.08 565.8 648.7 215.8 - 398.6	B19 K=1.70 165 0.37 42.34 51.56 44.31 0.42 52.04 51.56 4.63 -4.59 700.7 685.4 218.9 - 412.0	B20) K=1.8 180 0.41 - 75.70 - 0.47 - - 6.49 -6.42 - 656.4 142.4 - 373.0	B21 30 K=1.9 190 0.42 - 0 87.9: - 0 7.22 2 -7.19 - - 4 673.3 8 140.0 - - 0 373.0	B22 0 K=2.00 205 0.50 - 3 114.55 - 0.55 - 9.16 5 -9.08 - 7 - 5 121.2 - 5 121.2	B23 0 K=1.80 180 0.43 - 5 67.53 - 0.48 - - 0.48 - - 0.48 - - 0.48 - - 0.48 - - 0.43 - 0.43 - 0.43 - 0.43 - 0.43 - 0.43 - 0.43 - 0.43 - 0.43 - 0.43 - 0.43 - 0.43 - 0.43 - 0.43 - 0.48 - 0.48 - 0.48 - 0.48 - 0.48 - 0.48 - 0.48 - 0.48 - - 0.48 - - 0.48 - - 0.48 - - 0.48 - - 0.48 - - 0.48 - - 0.48 - - - 0.48 - - - 0.48 - - - 0.48 - - - 0.48 - - - - - - - - - - - - -	B24 D K=1.6C 155 0.40 - 0.45 - 4.41 -4.40 - 225.3 - 287.2	B25 K=1.40 125 0.34 - - 0.40 - - 3.01 -3.00 - 233.9 - 253.8	B26 K=1.20 100 0.30 - - 0.36 - - 2.30 -2.30 - 2.30 -2.30 - 208.2 - 219.6	B27 Initial 10 0.12 - - 0.36 - - 0.17 -0.20 - 0.0 - 0.0 - 0.0
(2.00x) Deflection (mm) Inclination (mrad) Tensile strain (µm/m)	Load step i Load (tons) DP-1 DP-2 DP-3 DP-4 DP-5 DP-6 DP-7 IC-1 IC-1 IC-4 SG-6 SG-7 SG-10 SG-11 SG-16 SG-17	B14 <=1.45 130 0.25 24.16 28.40 24.91 0.31 28.68 28.40 2.74 -2.70 424.5 510.5 292.3 - 357.7 416.4	B15 K=1.50 140 0.27 28.04 33.25 29.01 0.34 33.25 3.15 -3.11 463.0 552.4 291.1 - 388.2 452.1	B16 K=1.55 145 0.30 30.31 36.05 31.29 0.35 36.05 3.38 -3.33 478.2 571.4 281.2 - 398.5 461.0	B17 K=1.60 155 0.33 34.17 40.93 35.41 0.38 41.34 40.93 3.79 -3.74 531.4 633.3 272.0 - 429.9 501.0	B18 K=1.65 160 0.35 37.55 45.28 38.84 0.40 45.69 45.28 4.13 -4.08 565.8 648.7 215.8 648.7 215.8 - 398.6 479.0	B19 K=1.70 165 0.37 42.34 51.56 44.31 0.42 52.04 51.56 4.63 -4.59 700.7 685.4 218.9 - 412.0 485.8	B20) K=1.8 180 0.41 - 75.70 - 0.47 -	B21 0 K=1.9 190 0.42 - 0 87.9 - 0 .49 - 0 7.22 2 -7.15 - 4 673.8 140.0 - 0 373.0 1 472.1	B22 0 K=2.00 205 0.50 - 3 114.55 - 0.55 - 9.16 5 -9.08 - 7 - 5 121.2 - 0 297.7 5 325.5	B23 0 K=1.80 180 0.43 - 5 67.53 - 0.48 - 5.94 -5.91 - 202.5 - 301.0 339.7	B24 D K=1.6C 155 0.40 - 0.45 - 4.41 -4.40 - 225.3 - 287.2 327.2	B25 K=1.40 125 0.34 - - 0.40 - 3.01 -3.00 - 233.9 - 253.8 280.6	B26 K=1.20 0.30 - - 0.36 - 2.30 -2.30 - 208.2 - 219.6 246.1	B27 Initial 10 0.12 - - 0.36 - - 0.17 -0.20 - 0.0 - 0.0 0.0 0.0
(2.00x) Deflection (mm) Inclination (mrad) Tensile strain (µm/m)	Load step I Load (ton) DP-1 DP-2 DP-3 DP-4 DP-5 DP-6 DP-7 IC-1 IC-1 IC-1 IC-1 SG-6 SG-7 SG-10 SG-11 SG-16 SG-17 SG-16 SG-17 SG-5 SG-5	B14 <=1.45 130 0.25 24.16 28.40 24.91 0.31 28.68 28.40 2.74 -2.70 424.5 510.5 292.3 - 357.7 416.4 -71.2 64.2	B15 K=1.50 140 0.27 28.04 33.25 29.01 0.34 33.25 3.15 -3.11 463.0 552.4 291.1 - 388.2 452.1 -73.0 66 0 66 0	B16 K=1.55 145 0.30 30.31 36.05 31.29 0.35 36.36 36.05 3.38 -3.33 478.2 571.4 281.2 - 398.5 461.0 -78.6 6.9.2	B17 K=1.60 155 0.33 34.17 40.93 35.41 0.38 41.34 40.93 3.79 -3.74 531.4 633.3 272.0 - 429.9 501.0 -80.6 67.0	B18 K=1.65 160 0.35 37.55 45.28 38.84 0.40 45.69 45.28 4.13 -4.08 565.8 648.7 215.8 - 398.6 479.0 -81.6 27.2	B19 K=1.70 165 0.37 42.34 51.56 44.31 0.42 52.04 51.56 4.63 -4.59 700.7 685.4 218.9 - 412.0 485.8 -70.8 61.0	B20) K=1.8 180 0.41 - 75.7(- 0.47 - 6.49 - 6.49 - 6.49 - 6.49 - 6.49 - 6.42, - 373.1 468. - 373.5	B21 0 K=1.9 190 0.42 - 0 87.9 - 0 .49 - 0 7.22 2 -7.15 - 4 673.8 140.4 - 0 373.4 1 472.4 7 - 34.2 2 - 74.2	B22 0 K=2.00 205 0.50 - 3 114.55 - 0.55 - 9.16 5 -9.08 - 7 - 5 121.2 2 297.7 5 325.5 2 21.4	B23 0 K=1.80 180 0.43 - 0.43 - 0.48 - 5.94 -5.91 - 202.5 - 301.0 339.7 -25.0	B24 D K=1.60 155 0.40 - 0.45 - 4.41 -4.40 - 225.3 - 287.2 327.2 -52.7 - -	B25 K=1.40 125 0.34 - - 0.40 - 3.01 -3.00 - 233.9 - 253.8 280.6 -48.5 42.1	B26 K=1.20 100 0.30 - - 0.36 - 2.30 -2.50 -2.50	B27 Initial 10 0.12 - - 0.36 - - - 0.17 -0.20 - - 0.0 0.0 0.0 0.0 0.0
(2.00x) Deflection (mm) Inclination (mrad) Tensile strain (µm/m) Compressive	Load step I Load (ton) DP-1 DP-2 DP-3 DP-4 DP-5 DP-6 DP-7 IC-1 IC-1 IC-1 IC-4 SG-6 SG-7 SG-10 SG-11 SG-16 SG-17 SG-5 SG-8 SG-8 SG-8 SG-8 SG-8	B14 (≤1.45 130 0.25 24.16 24.91 0.31 28.68 28.40 2.74 -2.70 424.5 510.5 292.3 - 357.7 416.4 -71.2 -64.8 -37.2	B15 K=1.50 140 0.27 28.04 33.25 29.01 0.34 33.25 3.15 -3.11 463.0 552.4 291.1 - 388.2 452.1 -73.0 -66.9 -16.2	B16 K=1.55 145 0.30 30.31 36.05 31.29 0.35 36.36 36.05 3.38 -3.33 478.2 571.4 281.2 - 398.5 461.0 -78.6 -68.0 -8.1	B17 K=1.60 155 0.33 34.17 40.93 35.41 0.38 41.34 40.93 3.79 -3.74 531.4 633.3 272.0 - 429.9 501.0 -80.6 -65.9 19.3	B18 K=1.65 160 0.35 37.55 45.28 38.84 0.40 45.69 45.28 648.7 215.8 648.7 215.8 648.7 215.8 398.6 479.0 -81.6 5-65.3	B19 K=1.7C 165 0.37 42.34 51.56 44.31 0.42 52.04 451.56 4.63 -4.59 700.7 685.4 218.9 - 412.0 485.8 -70.8 -61.9 52.34	B20) K=1.8 180 0.41 - 75.7 - 0.47 - - 6.49 - 6.49 - 6.49 - 6.49 - 656.5 142.1 - 373.3 468. -41.1 -343.5	B21 0 K=1.9 190 0.42 - 0 87.9 - 0 .49 - 0 7.22 2 -7.15 - 4 673.3 8 140.4 - 0 373.4 1 472.3 7 -34.2 3 -25.7 2 188	B22 0 K=2.00 205 0.50 - 3 114.55 - 0.55 - 9.16 5 -9.08 - 7 - 5 121.2 2 297.7 5 225.5 2 21.4 7 17.4 8 212.9	B23 0 K=1.80 180 0.43 - 0.43 - 0.48 - 5.94 -5.91 - 202.5 - 301.0 339.7 -25.0 -31.5 103.9	B24 D K=1.60 155 0.40 - 0.45 - 4.41 -4.40 - 225.3 - 287.2 327.2 -52.7 -51.9 34 3	B25 K=1.40 125 0.34 - - 0.40 - 3.01 -3.00 - 233.9 - 253.8 280.6 -48.5 -49.1 -20.2	B26 K=1.20 100 0.30 - - 0.36 - 2.30 -2.30 - 2.30 - 2.30 - 2.30 - 2.30 - 2.30 - 2.30 - 2.30 - 2.30 - 2.30 - 2.30 - 3.5 - - - - - - - - - - - - - - - - - - -	B27 Initial 10 0.12 - - 0.36 - - - 0.17 -0.20 - - 0.0 - 0.0 0.0 0.0 0.0 0.0 0.0
(2.00x) Deflection (mm) Inclination (mrad) Tensile strain (µm/m) Compressive strain	Load step I Load (tons) DP-1 DP-2 DP-3 DP-4 DP-5 DP-6 DP-7 IC-1 IC-1 IC-1 IC-1 IC-1 SG-6 SG-7 SG-10 SG-11 SG-16 SG-17 SG-5 SG-8 SG-9 SG-12	B14 300 0.25 24.16 24.16 28.40 0.31 28.68 28.68 28.68 28.64 2.74 -2.70 424.5 510.5 292.3 - 357.7 416.4 -7.12 -64.8 -3.72 -44.4	B15 K=1.50 140 0.27 28.04 33.25 29.01 0.34 33.25 3.15 -3.11 463.0 552.4 291.1 - 388.2 452.1 -73.0 -66.9 -16.2 -32.2	B16 K=1.55 145 0.30 30.31 36.05 31.29 0.35 36.36 36.05 3.38 -3.33 478.2 571.4 281.2 - 398.5 461.0 -78.6 -68.0 -8.1 -24.9	B17 K=1.60 155 0.33 34.17 40.93 35.41 0.38 41.34 40.93 3.79 -3.74 531.4 633.3 272.0 - 429.9 501.0 - 80.6 -65.9 19.3 -7.0	B18 K=1.65 37.55 45.28 38.84 0.40 45.29 45.28 45.28 45.28 45.28 45.28 45.28 45.28 45.28 45.28 45.28 648.7 215.8 648.7 215.8 648.7 215.8 398.6 479.0 -81.6 -65.3 35.2 6.2	B19 K=1.7C 165 0.37 42.34 51.56 44.31 0.42 52.04 51.56 51.56 51.56 51.56 44.31 0.42 700.7 685.4 218.9 - 412.0 485.8 - 685.4 - 70.7 52.3 22.5 52.3 22.5 52.3 52.0 52.3 52.2 52.3 52.5 52.3 52.5 52.3 52.5 52.3 52.5 52.3 52.5 52.3 52.5	B20) K=1.8 180 0.41 - 75.7/ - 0.47 -	B21 0 K=1.9 190 0.42 - 0 87.9 - 0 .49 - 0 7.22 2 -7.15 - 4 673.3 8 140.4 - 0 373.4 1 472.3 7 -34.2 3 -25.7 2 188.3 6 146	B22 0 K=2.00 205 0.50 - 3 114.55 - 0.55 - 9.16 5 -9.08 - 7 - 5 121.2 5 121.2 - 5 121.2 2 21.4 7 1.4 3 212.9 2 177.4	B23 0 K=1.80 180 0.43 - 0.48 - 5.94 -5.91 - 202.5 - 301.0 339.7 -25.0 -31.5 103.9 9.3.15	B24 D K=1.6C 155 0.40 - - 0.45 - 4.41 -4.40 - 225.3 - 287.2 327.2 -52.7 -51.9 34.3 20.8	B25 K=1.40 125 0.34 - - 0.40 - 3.01 -3.00 - 233.9 - 253.8 280.6 -48.5 -49.1 -20.2 -20.6	B26 K=1.20 100 0.30 - - 0.36 - 2.30 -2.30	B27 Initial 10 0.12 - - 0.36 - - - 0.07 - 0.07 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(2.00x) Deflection (mm) Inclination (mrad) Tensile strain (µm/m) Compressive strain (µm/m)	Load step I Load (tons) DP-1 DP-2 DP-3 DP-4 DP-5 DP-6 DP-7 IC-1 IC-1 IC-1 IC-1 IC-1 SG-6 SG-7 SG-10 SG-11 SG-16 SG-17 SG-5 SG-8 SG-8 SG-9 SG-12 SG-15	B14 (=1.45 130 0.25 24.16 28.40 2.4.91 0.31 28.68 28.68 28.40 2.74 -2.70 424.5 510.5 292.3 - 357.7 416.4 - - 415.4 - - - - - - - - - - - - -	B15 K=1.50 140 0.27 28.04 33.25 29.01 0.34 33.25 3.15 -3.11 463.0 552.4 291.1 - 388.2 452.1 -73.0 -66.2 -32.2 -45.4	B16 K=1.55 145 0.30 30.31 36.05 31.29 0.35 36.36 36.05 3.38 -3.33 478.2 571.4 281.2 - 398.5 461.0 -78.6 -68.0 -8.1 -24.9 -46.6	B17 K=1.60 155 0.33 34.17 40.93 35.41 0.38 41.34 40.93 3.79 -3.74 531.4 633.3 272.0 - 429.9 501.0 - 80.6 -65.9 19.3 -7.0 -43.7	B18 K=1.65 37.55 45.28 38.84 0.40 45.69 45.28 45.28 45.28 45.28 45.28 45.28 45.28 45.28 45.28 45.28 45.28 45.28 45.28 47.00 -81.6 479.00 -81.6 56.5 35.2 5.5 2 5.2 2 -2,2 -4,7.1	B19 K=1.7C 165 0.37 42.34 42.34 44.31 0.42 52.04 51.56 4.63 -4.59 700.7 685.4 218.9 - 412.0 485.8 - 618.9 - 52.3 22.5 - - - - - - - - - - - - -	B20) K=1.8 180 0.41 - 75.7/ - 0.47 - 0.47 - - 6.49 -6.47 - 656.6.49 - 656.6.49 - 656.6.142.2 - 373.1 468.8 - 468.8 - 34.3.155.1 - 155.5 - 151.8 - 151.8 - - - - - - - - - - - - - - - - - - -	B21 0 K=1.9 190 0.42 - 0 87.9 - 0 87.9 - 0 .49 - 0 7.22 2 -7.15 - 4 673.3 8 140.4 - 0 373.4 1 472.3 7 -34.2 3 -25.7 2 188.3 6 146.3 7 -16.0	B22 0 K=2.00 205 0.50 - 3 114.55 - 0.55 - 9.16 5 -9.08 - 7 - 5 121.2 5 121.2 - 5 121.2 2 297.7 5 325.5 2 21.4 7 17.4 3 212.9 2 177.4 3 212.9	B23 K=1.80 180 0.43 - 67.53 - 0.48 - 5.94 -5.91 - 202.5 - 301.0 339.7 -25.00 -31.5 103.9 93.1 -20.0	B24 D K=1.60 155 0.40 - - 0.45 - 4.41 -4.40 - 225.3 - 287.2 327.2 -51.9 34.3 20.8 -40.4	B25 K=1.40 125 0.34 - - 0.40 - 3.01 -3.00 - 233.9 - 253.8 280.6 -48.5 -49.1 -20.2 -20.6 -43.3	B26 K=1.20 100 0.30 - - 0.36 - 2.30 -2.30 - 2.30 -2.30 - 219.6 246.1 -39.7 -35.3 -11.8 -16.2 -32.6	B27 Initial 10 0.12 - - 0.36 - - - 0.36 - - 0.07 - 0.07 - 0.00 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
(2.00x) Deflection (mm) Inclination (mrad) Tensile strain (µm/m) Compressive strain (µm/m)	Load step I Load (ton) DP-1 DP-2 DP-3 DP-4 DP-5 DP-6 DP-7 IC-1 IC-4 SG-6 SG-7 SG-10 SG-11 SG-16 SG-17 SG-5 SG-8 SG-8 SG-8 SG-9 SG-12 SG-15 SG-18	B14 300 0.25 24.16 24.40 24.91 0.31 28.68 28.40 2.74 -2.70 424.5 510.5 202.3 - 357.7 416.4 -71.2 -64.8 -37.2 -44.4 -49.9 -47.2	B15 K=1.50 140 0.27 28.04 33.25 29.01 0.34 33.63 33.25 3.15 -3.11 463.0 552.4 291.1 - 388.2 452.1 -73.0 -66.9 -16.2 -32.2 -45.4 -47.1	B16 K=1.55 145 0.30 30.31 36.05 31.29 0.35 36.36 36.05 3.38 -3.33 478.2 571.4 281.2 - 398.5 461.0 -78.6 -68.0 -8.1 -24.9 -46.6 -49.8	B17 K=1.60 155 0.33 34.17 40.93 35.41 0.38 41.34 40.93 3.79 -3.74 531.4 633.3 272.0 - 429.9 501.0 - 80.6 - 65.9 19.3 -7.0 -43.7 -46.6	B18 K=1.65 37.55 45.28 38.84 0.40 45.69 45.28 4.13 -4.08 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 398.6 645.9 26.2 6.2 -47.1 -50.8	B19 K=1.7C 0.37 42.34 51.56 44.31 0.42 52.04 55.04 55.04 55.04 52.04 55.04 700.7 685.4 218.9 - 700.8 412.0 485.8 8-61.9 52.3 22.5 52.3 22.5 -37.7 -	B20) K=1.8 180 0.41 - 75.7/ - 0.47 - - 6.49 -6.42 - 656. 142. - 373.1 468. - 373.1 468. - 34.3 1155. 118. - 155	B21 0 K=1.9 190 0.42 - 0 87.9 - 0 .49 - 0 7.22 2 -7.19 - 4 673.3 8 140.0 - 0 373.0 1 472.3 7 -34.2 3 -25.3 6 146.3 7 -16.0 0 -14.3	B22 0 K=2.00 205 0.50 - 3 114.55 - 0.55 - 9.16 5 -9.08 7 - 5 121.2 - 5 121.2 - 5 227.7 5 225.5 2 21.4 7 17.4 3 212.9 2 177.4 3 35.4 3 33.6	B23 K=1.80 180 0.43 - 0.48 - 5.94 -5.91 - 202.5 - 301.0 339.7 -25.0 -31.5 103.9 93.1 -20.0 -13.5	B24 D K=1.6C 155 0.40 - - 0.45 - 4.41 -4.40 - 225.3 - 287.2 327.2 -51.9 34.3 20.8 -40.4 -40.1	B25 0 K=1.40 125 0.34 - - 0.40 - - 3.01 -3.00 - 233.9 - 253.8 280.6 -48.5 -49.1 -20.6 -43.3 -44.1	B26 K=1.20 100 0.30 - - 2.30 -2.30 - 219.6 246.1 - 39.7 -35.3 -11.8 -16.2 -32.6 -24.7	B27 Initial 10 0.12 - - 0.36 - - - 0.17 -0.20 - 0.0 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
(2.00x) Deflection (mm) Inclination (mrad) Tensile strain (µm/m) Compressive strain (µm/m)	Load step I Load (tons) DP-1 DP-2 DP-3 DP-4 DP-5 DP-6 DP-7 IC-1 IC-1 IC-1 IC-1 IC-1 IC-1 SG-6 SG-7 SG-10 SG-11 SG-16 SG-17 SG-5 SG-8 SG-8 SG-8 SG-9 SG-12 SG-15 SG-18 SG-1	B14 300 0.25 24.16 24.40 24.91 0.31 28.68 28.40 2.74 -2.70 424.5 510.5 202.3 - 357.7 416.4 -71.2 -64.8 -37.2 -44.4 -49.9 -47.2 86.7	B15 K=1.50 140 0.27 28.04 33.25 29.01 0.34 33.63 33.25 3.15 -3.11 463.0 552.4 291.1 - 388.2 452.1 -73.0 -66.9 -16.2 -32.2 -45.4 -47.1 98.8	B16 K=1.55 145 0.30 30.31 36.05 31.29 0.35 36.36 36.05 3.38 -3.33 478.2 571.4 281.2 - 398.5 461.0 -78.6 -68.0 -8.1 -24.9 -46.6 -49.8 98.5	B17 K=1.60 155 0.33 34.17 40.93 35.41 0.38 41.34 40.93 3.79 -3.74 531.4 633.3 272.0 - 429.9 501.0 - 80.6 - 65.9 19.3 -7.0 -43.7 -46.6 111.0	B18 K=1.65 37.55 45.28 38.84 0.40 45.69 45.28 4.13 -4.08 565.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 15.5 4 7.5 6.2 -47.1 -50.8 115.4	B19 K=1.7C 165 0.37 42.34 45.34 44.31 0.42 52.04 52.04 52.04 52.04 218.9 - 700.7 685.4 218.9 - 700.7 685.4 218.9 - 700.7 685.4 218.9 - 70.7 685.4 218.9 - 70.7 685.4 218.9 - 70.7 685.4 218.9 - 70.7 685.4 218.9 - 70.7 685.4 218.9 - 70.7 685.4 218.9 - 70.7 7	B20) K=1.8 180 0.41 - - 75.7/ - 0.47 - - 6.49 -6.42 - 656.6.49 - 656.6.49 - 656.6.49 - 656.5.142.2 - 373.1 468.8 - 34.3 - 155.5 118.0 - - - - - - - - - - - - - - - - - - -	B21 0 K=1.9 190 0.42 - 0 87.9 - 0 .49 - 0 7.22 2 -7.19 - 4 673.3 8 140.0 - 0 373.0 1 472.3 7 -34.2 3 -25.7 2 188.3 6 146.3 7 -16.0 0 -14.3 9 108.3	B22 0 K=2.00 205 0.50 - 3 114.55 - 0.55 - 9.16 5 -9.08 7 - 5 121.2 - 5 121.2 - 5 227.7 5 225.5 2 21.4 7 17.4 3 212.9 2 177.4 3 33.6 7 87.3	B23 K=1.80 180 0.43 - 0.43 - 0.43 - 0.43 - 0.43 - 0.43 - 0.43 - 0.43 - 0.48 - - 202.5 - 301.0 339.7 -25.0 -31.5 103.9 93.1 -20.0 -13.5 66.7	B24 D K=1.60 155 0.40 - - 0.45 - 4.41 -4.40 - 225.3 - 287.2 327.2 - 52.7 - 51.9 34.3 20.8 -40.4 - - - - - - - - - - - - -	B25 0 K=1.40 125 0.34 - - 0.40 - - 3.01 -3.00 - 233.9 - 253.8 280.6 -48.5 -49.1 -20.2 -20.6 -43.3 -44.1 43.4	B26 K=1.20 100 0.30 - - 0.36 - 2.30 -2.53 -1.18 -2.56 -2.4.7 -5.51 -2.56 -2.4.7 -5.51 -2.56 -2.4.7 -5.51 -2.56 -2.4.7 -5.51 -2.56 -2.57 -2.56 -2.57 -2.56 -2.57 -2.56 -2.57 -2.56 -2.57 -2.56 -2.57 -2.56 -2.57 -2.56 -2.57 -2.56 -2.57 -2.57 -2.56 -2.57 -2.56 -2.57 -2.57 -2.56 -2.57 -2.56 -2.57 -2.57 -2.56 -2.57 -2.57 -2.56 -2.57 -2.57 -2.56 -2.57 -2.57 -2.56 -2.57 -2.57 -2.56 -2.57 -2.57 -2.56 -2.57 -2	B27 Initial 10 0.12 - - 0.36 - - - 0.07 - 0.07 - 0.00 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
(2.00x) Deflection (mm) Inclination (mrad) Tensile strain (µm/m) Compressive strain (µm/m)	Load step I Load (tons) DP-1 DP-2 DP-3 DP-4 DP-5 DP-6 DP-7 IC-1 IC-4 SG-6 SG-7 SG-10 SG-11 SG-16 SG-17 SG-5 SG-8 SG-8 SG-8 SG-9 SG-12 SG-15 SG-18 SG-13 SG-13 SG-13 SG-1 SG-2	B14 300 24.16 24.16 24.40 24.91 26.68 28.40 2.74 -2.70 424.5 510.5 292.3 - 357.7 416.4 -71.2 -64.8 -37.2 -44.4 -49.9 -47.2 86.7 -70.1 -70.1 -70.2 -70.	B15 K=1.50 140 0.27 28.04 33.25 29.01 0.34 33.63 33.25 3.15 -3.11 463.0 552.4 291.1 - 388.2 452.1 -73.0 -66.9 -16.2 -32.2 -45.4 -47.1 98.8 -73.4 -73.4 -73.0 -66.9 -16.2 -32.2 -45.4 -73.4 -73.0 -66.9 -73.2 -73.0 -66.9 -73.2 -73.0 -66.9 -73.2 -73.2 -73.0 -66.9 -74.5 -73.2 -74.5	B16 K=1.55 145 0.30 30.31 36.05 31.29 0.35 36.36 36.05 3.38 -3.33 478.2 571.4 281.2 571.4 281.2 - 398.5 461.0 -78.6 -68.0 -8.1 -24.9 -46.6 -49.8 98.5 -79.7 -7.2 -	B17 K=1.60 155 0.33 34.17 40.93 35.41 0.38 41.34 40.93 3.79 -3.74 531.4 633.3 272.0 - 429.9 501.0 - 429.9 501.0 - 80.6 - 65.9 19.3 -7.0 -43.7 -46.6 111.0 - 82.5 -	B18 K=1.65 37.55 45.28 38.84 0.40 45.69 45.28 4.13 -4.08 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 105.6 479.0 65.3 35.2 6.2 -47.1 -50.8 115.4 -85.8 20.5	B19 K=1.7C 0.37 42.34 51.56 44.31 0.42 52.04 52.04 52.04 52.04 52.04 218.9 - 412.0 485.8 -70.8 52.3 22.5 -37.7 -43.2 114.8 -89.0 -	B20) K=1.8 180 0.41 - - - 0.47 - - - 6.49 - 6.49 - 6.49 - 6.6.49 - 6.6.49 - - 6.56. 142. - - 373. 468. - 373. 142. - 155. - 155. - 118. - - - - - - - - - - - - - - - - - - -	B21 0 K=1.9 190 0.42 - 0 87.9 - 0 .49 - 0 7.22 2 -7.19 - 4 673.3 8 140.0 - 0 373.0 1 472.3 7 -34.2 3 -25.3 6 146.0 7 -16.0 0 -14.3 9 108.3 8 -96.6	B22 0 K=2.00 205 0.50 - 0.55 - 9.16 5 -9.08 7 - 5 121.2 - 5 121.2 - 5 227.7 5 225.5 2 21.4 7 17.4 3 212.9 2 177.4 3 33.6 7 87.3 5 -104.6	B23 K=1.80 180 0.43 - 67.53 - 0.48 - - 5.94 -5.91 - 202.5 - 301.0 339.7 -25.0 -31.5 103.9 93.1 -20.0 -13.5 66.7 - 5.73 - - - - - - - - - - - - -	B24 D K=1.60 155 0.40 - - 0.45 - 4.41 -4.40 - 225.3 - 287.2 327.2 -51.9 34.3 20.8 -40.4 -40.1 57.8 -80.0 -	B25 0 K=1.40 125 0.34 - - 0.40 - - 3.01 -3.00 - 233.9 - 253.8 280.6 -48.5 -49.1 -20.2 -20.6 -43.3 -44.1 43.4 -66.3 -	B26 K=1.20 100 0.30 - - 2.30 -2.30 - 219.6 246.1 - 39.7 -35.3 -11.8 -16.2 -32.6 -24.7 50.1 -47.6	B27 Initial 10 0.12 - - 0.36 - - - 0.07 - 0.07 - 0.00 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
(2.00x) Deflection (mm) Inclination (mrad) Tensile strain (µm/m) Compressive strain (µm/m)	Load step I Load (tons) DP-1 DP-2 DP-3 DP-4 DP-5 DP-6 DP-7 IC-1 IC-4 SG-6 SG-7 SG-10 SG-11 SG-16 SG-17 SG-5 SG-8 SG-8 SG-9 SG-12 SG-15 SG-18 SG-15 SG-18 SG-1 SG-1 SG-2 SG-3 SG-3 SG-3 SG-3	B14 30 23 24.16 24.16 24.41 28.40 2.4.91 28.68 28.40 2.74 -2.70 424.5 510.5 292.3 - 357.7 416.4 - -71.2 -64.8 -37.2 -44.4 -37.2 -44.4 -49.9 -47.2 86.7 -70.1 73.2 26.7 -70.2	B15 K=1.50 140 0.27 28.04 33.25 29.01 0.34 33.63 33.25 3.15 -3.11 463.0 552.4 291.1 - 388.2 452.1 -73.0 -66.9 -16.2 -32.2 -45.4 -47.1 98.8 -73.4 81.1 70 5	B16 K=1.55 145 0.30 30.31 36.05 31.29 0.35 36.36 36.05 3.38 -3.33 478.2 571.4 281.2 571.4 281.2 - 398.5 461.0 -78.6 -68.0 -8.1 -24.9 -46.6 -49.8 98.5 -79.7 83.8 92.2	B17 K=1.60 155 0.33 34.17 40.93 35.41 0.38 41.34 40.93 3.79 -3.74 531.4 633.3 272.0 - 429.9 501.0 - 82.0 19.3 -7.0 -43.7 -46.6 111.0 -82.8 92.6 97.0	B18 K=1.65 37.55 45.28 45.28 45.28 45.28 45.28 45.28 47.00 565.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 10.6 56.2 6.2 -47.1 -50.8 115.4 -85.8 93.5 93.5 93.5 93.5	B19 K=1.7C 0.37 42.34 51.56 44.31 0.42 52.04 51.56 4.63 -4.59 700.7 685.4 412.0 412.0 485.8 -70.8 52.3 22.5 -37.7 -43.2 114.8 -89.0 94.2 22.5 -89.2 -99.2 -89.2 -97.2 -97	B20) K=1.8 180 0.41 - - 75.7/ - - 0.47 - - - 6.49 - 6.49 - 6.49 - 6.49 - 656. 142. - 373. 468. - 373. 468. - 155 118. - 155 118. - 155 - 155 - - - - - - - - - - - - - - - - - -	B21 0 K=1.9 190 0.42 - 0 87.9: - 0 .49 - 0 7.22 2 -7.1! - 0 7.22 2 -7.1! - 0 7.22 2 -7.1! - 0 7.22 2 -7.1! - 1 4 673.' 8 140.0 - 0 373.1 1 472.1 7 -34.2 3 -25.5.' 2 188 6 146 7 -16.0 0 -14.3 9 108.' 8 -96.6 3 -96.6	B22 0 K=2.00 205 0.50 - 0.55 - 9.16 5 -9.08 - 7 - 5 121.2 - 0 297.7 5 221.4 7 17.4 3 212.9 2 177.4 3 33.6 7 87.3 5 -104.6 9.1 9.10 104.2 9.1	B23 K=1.80 180 0.43 - 6 67.53 - 0.48 - - 5.94 -5.91 - 202.5 - 301.0 339.7 -25.0 -31.5 103.9 93.1 -20.0 -31.5 66.7 5, -87.3 7.12 -	B24 D K=1.60 155 0.40 - - 0.45 - 4.41 -4.40 - 225.3 - 287.2 327.2 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -57.8 -80.0 60.2 20.2 -20.8 -20.	B25 0 K=1.40 125 0.34 - - 0.40 - - 3.01 -3.00 - 233.9 - 253.8 280.6 -48.5 -49.1 -20.2 -20.6 -43.3 -44.1 43.4 -66.3 54.7 - -	B26 K=1.20 100 0.30 - - 2.30 -2.30 - 219.6 246.1 -39.7 -35.3 -11.8 -16.2 -32.6 -24.7 50.1 -47.6 43.2	B27 Initial 10 0.12 - - 0.36 - - - 0.07 - 0.07 - 0.00 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
(2.00x) Deflection (mm) Inclination (mrad) Tensile strain (µm/m) Compressive strain (µm/m) Shear strain (µm/m)	Load step I Load (tons) DP-1 DP-2 DP-3 DP-4 DP-5 DP-6 DP-7 IC-1 IC-4 SG-6 SG-7 SG-10 SG-11 SG-16 SG-17 SG-5 SG-8 SG-8 SG-9 SG-12 SG-15 SG-18 SG-15 SG-18 SG-1 SG-1 SG-2 SG-3 SG-4 SG-4 SG-19	B14 30 23 24.16 24.16 24.91 24.91 26.68 28.40 2.74 -2.70 424.5 510.5 292.3 - 357.7 416.4 -71.2 -64.8 -37.2 -44.4 -37.2 86.7 -70.1 7.3 86.7 -70.3 97.4	B15 K=1.50 140 0.27 28.04 33.25 29.01 0.34 33.63 33.25 3.15 -3.11 463.0 552.4 291.1 - 388.2 452.1 -73.0 -66.9 -16.2 -32.2 -45.4 -47.1 98.8 -73.4 81.1 -79.5 30.5 -3.4 -74.5 -7	B16 K=1.55 145 0.30 30.31 36.05 31.29 0.35 36.36 36.05 3.38 -3.33 478.2 571.4 281.2 571.4 281.2 - 398.5 461.0 -78.6 -68.0 -8.1 -24.9 -46.6 -49.8 98.5 -79.7 83.8 -83.3 109.0	B17 K=1.60 155 0.33 34.17 40.93 35.41 0.38 41.34 40.93 3.79 -3.74 531.4 633.3 272.0 - 429.9 501.0 - 82.0 19.3 -7.0 -43.7 -46.6 111.0 -82.8 92.6 -85.9 115.3	B18 K=1.65 37.55 45.28 38.84 0.40 45.69 45.28 4.13 -4.08 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 83.5 20.5 93.5 93.5 93.5	B19 K=1.7C 0.37 42.34 51.56 44.31 0.42 52.04 51.56 4.63 -4.59 700.7 685.4 218.9 - 700.7 685.4 218.9 - 700.7 685.4 218.9 - 700.7 685.4 218.9 - 70.7 685.4 218.9 - 70.7 685.4 21.5 69.2 21.5 69.5 71.5	B20) K=1.8 180 0.41 - - 75.7/ - - 6.49 -6.47 - 656.4 - 468. - 373.1 468. - 373.1 468. - 373.1 468. - 115.5. 118.1 - 155.5. 118.1 - 94.3 - 94.3 - 94.3 - 125.5 - - - - - - - - - - - - - - - - - -	B21 0 K=1.9 190 0.42 - 0 87.9 - 0 .49 - 0 7.22 2 -7.19 - 4 673.3 8 140.0 - 0 373.1 1 472.3 7 -34.2 3 -25.3 2 188.3 6 146.3 7 -16.0 0 -14.3 9 108.3 8 -96.6 3 -96.5 7 -18.5 7 -19.5 7 -19.5 7 -19.5 7 -19.5 7 -18.5 7 -18.5 7 -18.5 7 -18.5 7 -18.5 7 -18.5 7 -19.5 7 -18.5 7 -	B22 0 K=2.00 205 0.50 - 0.55 - 9.16 5 -9.08 - 7 - 121.2 - 297.7 5 221.4 7 17.4 3 212.9 2 177.4 3 33.6 7 87.3 5 -104.6 9.1 9 -104.4 5 89.7 9 -104.4 5 89.7 9 -104.4 5 89.7 9 -104.4 5 89.7 9 -104.4 5 9 9 7 -104.4 5 9 9 7 7 5 9 9 7 5 9 9 7 5 9	B23 K=1.80 180 0.43 - 0.48 - - 5.94 -5.91 - 202.5 - 301.0 339.7 -25.0 -31.5 103.9 93.1 -20.0 -31.5 66.7 5.94 -3.5 103.9 93.1 -20.0 -31.5 66.7 37.2 - 87.3 71.2 - 88.3 76.1 - 87.2 - 88.3 76.1 - - - - - - - - - - - - -	B24 D K=1.6C 155 0.40 - - 0.45 - 4.41 -4.40 - 225.3 - 287.2 327.2 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 -51.9 -51.9 -51.9 -51.9 -51.9 -51.9 -51.9 -51.9 -50.	B25 0 K=1.40 125 0.34 - - - 0.40 - - 3.01 -3.00 - 233.9 - 253.8 280.6 -48.5 -49.1 -20.2 -20.6 -43.3 -49.1 20.2 -20.6 -43.3 -44.1 43.4 -66.3 54.7 -61.7 40.1	B26 K=1.20 100 0.30 - - 0.36 - 2.30 -2.30 - 208.2 - 219.6 246.1 -39.7 -35.3 -11.8 -16.2 -32.6 -24.7 50.1 -47.6 43.2 -51.4 46.6	B27 Initial 10 0.12 - - 0.36 - - - 0.7 - 0.07 - 0.00 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
(2.00x) Deflection (mm) Inclination (mrad) Tensile strain (µm/m) Compressive strain (µm/m) Shear strain (µm/m)	Load step I Load (tons) DP-1 DP-2 DP-3 DP-4 DP-5 DP-6 DP-7 IC-1 IC-1 IC-1 IC-1 IC-1 IC-1 IC-1 SG-6 SG-7 SG-10 SG-11 SG-16 SG-17 SG-5 SG-8 SG-8 SG-9 SG-12 SG-15 SG-18 SG-12 SG-15 SG-18 SG-12 SG-13 SG-2 SG-3 SG-4 SG-20	B14 310 0.25 24.16 28.40 24.91 28.68 28.40 2.74 -2.70 424.5 510.5 292.3 - 357.7 416.4 -37.2 -64.8 -37.2 -44.4 -49.9 -47.2 86.7 -70.1 7.3 97.4 -76.2	B15 K=1.50 140 0.27 28.04 33.25 29.01 0.34 33.63 33.25 3.15 -3.11 463.0 552.4 291.1 - 388.2 452.1 -73.0 -66.9 -16.2 -32.2 -45.4 -47.1 98.8 -73.4 81.1 -79.5 106.3 106.3 -82.3	B16 K=1.55 145 0.30 30.31 36.05 31.29 0.35 36.36 36.05 3.38 -3.33 478.2 571.4 281.2 - 398.5 461.0 -78.6 -68.0 -8.1 -24.9 -46.6 -49.8 98.5 -79.7 83.8 -83.3 109.0 -88.8	B17 K=1.60 155 0.33 34.17 40.93 35.41 0.38 41.34 40.93 3.79 -3.74 531.4 633.3 272.0 - 429.9 501.0 - 80.6 - 65.9 19.3 -7.0 -43.7 -46.6 111.0 - 82.8 92.6 - 82.8 92.6 - 85.9 115.3 -92.4	B18 K=1.65 160 0.35 37.55 45.28 47.20	B19 K=1.7C 0.37 42.34 51.56 44.31 0.42 52.04 51.56 4.63 -4.59 700.7 685.4 412.00 485.8 -70.8 61.9 52.3 22.5 -37.7 -43.2 114.8 -89.00 94.2 -93.8 116.9 -105.6 -105.6 -105.9 -105.6 -105.9 -105.6 -105.9 -105.6 -105.9 -105.6 -105.9 -105.6 -105.9 -105.6 -105.9 -105.6 -105.9 -105.9 -105.6 -105.9	B20) K=1.8 180 0.41 - - 75.7/ - - 0.47 - - - 6.49 - 7.10 - 6.49 - 6.49 - 6.49 - 7.10 - 7.1.10 - 7 7 - 7.10 - 7.10 - 7.10 - 7 - 7.10 - 7.10 - 7 - 7 - 7 - - 7 - 7 -	B21 0 K=1.9 190 0.42 - 0 87.9: - 0 7.22 2 -7.19 - 0 7.22 2 -7.19 - 0 7.22 2 -7.19 - 1 4673. 8 140.0 - 0 373.1 1 472.1 7 -34.2 3 -25.5. 2 188 6 146 7 -16.0 0 -14.3 9 108.3 8 -96.6 3 -96.6 3 -96.5 7 -15.4 1 -128	B22 0 K=2.00 205 0.50 - 0.55 - 9.16 5 -9.08 - 7 - 5 121.2 - 0 297.7 5 225.5 2 21.4 7 17.4 3 212.9 2 177.4 3 33.6 7 87.3 5 -104.6 9.1 9 -104.4 5 98.7 9 8 -126.6	B23 K=1.80 180 0.43 - 0.48 - - 5.94 -5.91 - 202.5 - 301.0 339.7 -25.0 -31.5 103.9 93.1 -20.0 -31.5 66.7 5.84 - 8.73 71.2 - 8.83 71.2 - 8.83 71.2 - 8.83 71.2 - 8.83 71.2 - 8.83 71.2 - 8.83 71.2 - 8.83 71.2 - - - - - - - - - - - - -	B24 D K=1.60 155 0.40 - - 0.45 - 4.41 -4.40 - 225.3 - 287.2 327.2 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.9 -51.9 -51.9 -51.9 -51.9 -51.9 -51.9 -51.9 -51.9 -50.9 -50.9 -50.9 -50.8 -60.2 -80.0 -8	B25 0 K=1.40 125 0.34 - - 0.40 - - 3.01 -3.00 - 233.9 - 253.8 280.6 -48.5 -49.1 -20.2 -20.6 -43.3 -44.1 43.4 -66.3 54.7 -61.7 40.1 -81.9	B26 K=1.20 100 0.30 - - 0.36 - 2.30 -2.30 - 219.6 246.1 - 39.7 - 35.3 -11.8 -16.2 -32.6 -24.7 50.1 -47.6 43.2 - 51.4 46.6 (- 53.9	B27 Initial 10 0.12 - - 0.36 - - - 0.07 - 0.07 - 0.00 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
(2.00x) Deflection (mm) Inclination (mrad) Tensile strain (µm/m) Compressive strain (µm/m) Shear strain (µm/m)	Load step I Load (tons) DP-1 DP-2 DP-3 DP-4 DP-5 DP-6 DP-7 IC-1 IC-4 SG-6 SG-7 SG-10 SG-11 SG-16 SG-17 SG-5 SG-8 SG-9 SG-12 SG-15 SG-8 SG-9 SG-12 SG-15 SG-18 SG-1 SG-1 SG-2 SG-3 SG-4 SG-20 SG-21	B14 310 0.25 24.16 28.40 24.91 28.68 28.40 2.74 -2.70 424.5 510.5 292.3 - 357.7 416.4 -71.2 -64.8 -37.2 -44.4 -49.9 -47.2 86.7 -70.1 73.3 -76.3 97.4 -76.2 80.4	B15 K=1.50 140 0.27 28.04 33.25 29.01 0.34 33.63 3.25 3.15 -3.11 463.0 552.4 291.1 - 388.2 452.1 -73.0 -66.9 -16.2 -32.2 -45.4 -47.1 98.8 -73.4 81.1 -79.5 106.3 93.0	B16 K=1.55 145 0.30 30.31 36.05 31.29 0.35 36.36 36.05 3.38 -3.33 478.2 571.4 281.2 571.4 281.2 571.4 281.2 - - 398.5 -78.6 -68.0 -8.1 -24.9 -46.6 -49.8 98.5 -79.7 83.8 -83.3 109.0 -88.8 96.3	B17 K=1.60 155 0.33 34.17 40.93 35.41 0.38 41.34 40.93 3.79 -3.74 531.4 633.3 272.0 - 429.9 501.0 - 80.6 -65.9 19.3 -7.0 -43.7 -46.6 111.0 -82.8 92.6 -82.8 92.6 -82.8 92.4 113.9	B18 K=1.65 160 0.35 37.55 45.28 45.28 45.28 4.13 -4.08 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 648.7 215.8 10.6 479.0 6.2 -47.1 -50.8 115.4 -83.5 93.5 212.3 122.	B19 K=1.7C 0.37 42.34 51.56 44.31 0.42 52.04 51.56 463.4 218.9 - 700.7 685.4 218.9 - 700.7 685.4 218.9 - 700.7 685.4 218.9 - 70.7 685.4 218.9 - 70.7 70	B20) K=1.8 180 0.41 - - 75.7(- - - 6.49 -6.42 - - 656. - 142.4 - - 373.1 468. - 373.1 468. - 373.1 468. - 94.3 155.5 118.1 - 17.5 - 94.3 94.3 125.5 - 115.5 - 94.3 125.5 - 94.3 125.5 - 94.3 - 94.12 - 94.12 - 94.12 - 94.12 - 94.12 - 94.12 - 94.12 - 94.12 - 94.12 - 94.12 - 94.12 - 94.12 - 94.12.5 - 94.12 - 94.12 - 94.12 - 94.12 - 94.13 - 94.12 - 94.12 - 94.12 - 94.12 - 94.12 - 94.13 - 94.13 - 94.13 - 94.13 - 94.13 - 94.12 - 94.12 - 94.13 - 94.13 - 94.13 - 94.13 - 94.13 - 94.13 - 11.5 - 11.94.13 - 11.54.13 - 11.55 - 11.54.13 - 11.55 - 11.54.13 - 11.55 - 11.54.13 - 11.55 - 11.94.13 - 11.55 - 11.94.13 - 11.94.13 - 11.95 - 11.94.13 - 11.95 - 1	B21 0 K=1.9 190 - 0 87.9: - - 0 87.9: - - 0 7.9: - - 0 7.22 2 -7.19 - - 0 373.1 1 472.1 7 -34.2 3 -25.7.2 1 472.3 7 -16.0 0 -14.3 9 108.° 6 146.3 7 -96.6 9 108.° 3 -96.16 9 108.7 7 -128. 7 101.3	B22 0 K=2.00 205 0.50 - 0.55 - 9.16 5 -9.08 7 - 121.2 - 0 297.7 5 221.4 7 325.5 2 21.4 7 17.4 3 31.6 7 87.3 5 -104.6 93.1 9 -104.4 5 98.7 8 -126.4 2 106.6	B23 K=1.80 180 0.43 - - 0.43 - - - - - - - - - - - - -	B24 D K=1.60 155 0.40 - - 0.45 - - 4.41 -4.40 - 225.3 - 287.2 327.2 -51.9 34.3 20.8 -40.4 -51.9 34.3 20.8 -40.4 -51.8 -80.0 60.2 -80.4 60.4 -101.3 63.0	B25 0 K=1.40 125 0.34 - - 0.40 - - 3.01 -3.00 - 233.9 - 253.8 280.6 -48.5 -49.1 -20.2 -20.6 -43.3 -44.1 43.4 -66.3 54.7 -61.7 40.1 -81.9 45.6	B26 K=1.20 100 0.30 - - 0.36 - 2.30 -2.30 - 219.6 246.1 - 39.7 -35.3 -11.8 -16.2 -32.6 -24.7 50.1 -47.6 43.2 -51.4 46.6 -53.9 50.7	B27 Initial 10 0.12 - - 0.36 - - - 0.07 - 0.07 - 0.00 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.

การทดสอบแรงดัด 2.00 เท่าของน้ำหนักบรรทุกออกแบบ

ภาคผนวก ค

ราคาค่าวัสดุที่ใช้ในงานวิจัย

ราคากลางจากโครงการรถไฟความเร็วสูง กรุงเทพฯ-หนองคาย สัญญาที่ C4-3

23.00 KM.

THE COOPERATION BETWEEN TH GOVERNMENT OF THE KINGDOM OF THAILAND AND THE GOVERNMENT OF THE PEOPLE'S REPUBLIC OF CHINA ON BANGKOK - NONG KHAI HSR DEVELOPMENT FOR REGIONAAL CONNECTIVITY (SECTION 1 BANGKOK - NAKHON RATCHASIMA) TOTAL LENGTH:

Contract C4-3 SECTION: NAVA NAKHON - BAN PHO (DK 37+604.54 TO DK 60+001.64) BILL NO.4 : STRUCTURAL WORKS

		T	Y					onic . banc	
ITEM No.	DESCRIPTION	UNIT	QUANTITY	UNIT RATE	AMOUNT	FACTOR F	UNIT RATE x FF	TOTAL AMOUNT	REMARKS
4.122	Testing bored pites(diameter of 1,5m)	ea.	22.00	826,840.06	18,190,481.32	1.1458	947,393.34	20,842,653.50	
4.123	Testing bared piles(diameter of 2.0m)	ea.	-		-	-	-	-	
4.124	Piers and abutments								
4.124(1)	Concrete (C50)	cu.m,	1,298.86	2,919.40	3,791,894.80	1.1458	3.345.05	4,344,753.07	1
	Concrete (C4D)	cu.m.	-			-	-		-
4.124(3)	Concrete (C40)	cu.m.	76,003.12	2,605.88	198,055,010.35	1.1458	2,985.82	226,931,430.85	
4.124(4)	Concrete (C35)	 cu.m. 	3,710.87	2,329.45	8,644,281.46	1.1458	2,669.08	9,904,617.70	
4.124(5)	Concrete (C30)	cu.m.	-	-	-	-	-	-	
4.124(6)	Concrete (C25)	cu.m.	-	-	-	-	-	-	
4.124(7)	Concrete (C20)	cu.m.		-	-			-	
4.124(8)	Concrete (C15)	cum.	-	-		-		-	
4.124(9)	Reinforcement RB 9mm. dia.	ton	26.95	28,072.20	756,489.65	1.1458	32,165.13	866,785.84	
4.124(10)	Reinforcement DB 12mm, da.	ton	3,812.23	26,386.26	100,590,491.96	1.1458	30,233.38	115,256,585.69	
4.124(11)	Reinforcement DB 16mm. dia.	ton	311.73	25,931.41	8,083,598.44	1.1458	29,712.21	9,262,187.09	
4.124(12)	Reinforcement DB 20mm. dia.	ton	4,674.51	24,601.83	115,001,500.35	1.1458	28,188.78	131,768,719.10	
4.124(13)	Reinforcement DB 25mm. dia.	ton	242.13	25,377.19	6,144,579.01	1.1458	29,077.18	7,040,458.64	
4.124(14)	Reinforcement DB 28mm. dia.	ton			-	-	-		
4.124(16)	Prestressed steed stand of frame pier	ton	-	-	-	-		-	
4.125	Segmental prefabricated concrete simply supported box girder								
4.125(1)	20m simply supported box girder(Double Line)	Lm	-	-	-	-		-	
4.125(2)	24m simply supported box girder(Double Line)	Lm	592.80	171,377.45	101,592,552.36	1.1458	196,364.28	116,404,746.49	
4.125(3)	32m simply supported box girder(Double Line)	Lm	19,456.50	166,785.70	3,245,065,972.05	1.1458	191,103.06	3,718,196,590.77	
4.125(4)	40m simply supported box girder(Double Line)	Lm	122.10	199,649.95	24,377,258.90	1.1458	228,758.91	27,931,463.24	
4.125(5)	20m simply supported box girder(Single Line)	Lm	-	-		-	-		
4.125(6)	24m simply supported box girder(Single Line)	lm	-	~	-	-	-	-	
4.125(7)	32m simply supported box girder(Single Line)	Lm	-	-	-			-	
4.125(8)	40m simply supported box girder(Single Line)	Lm	-	-	-	-	-	-	
4.125(9)	Nonstandard cross simply supported box girder(Single Line)	Lm	-					-	

แบบ ปร.4 แต่นที่ 12 /40 ແນນ ປະ. 4

THE COOPERATION BETWEEN TH GOVERNMENT OF THE KINGDOM OF THAILAND AND THE GOVERNMENT OF THE PEOPLE'S REPUBLIC OF CHINA ON BANGKOK - NONG KHAI HSR DEVELOPMENT FOR REGIONAAL CONNECTIVITY (SECTION 1 BANGKOK - NAKHON RATCHASIMA) Contract C4-3 SECTION: NAVA NAKHON - BAN PHO (DK 37+004.54 TO DK 60+001.64) TOTAL LENGTH; 23.00 KM.

BILL NO.4 : STR	UCTORAL WORKS	r						Unit : Baht	
ITEM No.	DESCRIPTION	UNIT	QUANTITY	UNIT RATE	AMOUNT	FACTOR F	UNIT RATE x FF	TOTAL AMOUNT	REMARKS
4.319	Detection of piles (integrity testing)								
4.319(1)	Pites detection with acoustic transmission method / sound	ea.	430.00	49,037.32	21,086,047.60	1.1458	56,186.96	24,160,393.34	
	wave transmission method / sonic logging testing								
4.319(2)	Piles detection with low-strain reflected wave method / low	ea.	-	-		-	-	-	
	strain integrity testing / low strain seismic testing								
4.32	Testing bored piles(diameter of 1.0m)	ea.	-	-	-	-		-	
4.321	Testing bored piles(clameter of 1.2m)	ea.	-		-	-			
4.322	Testing bored piles(diameter of 1.5m)	ea.	-				-	-	
4.323	Testing bored piles(diameter of 2.0m)	ea.	-	-	-			-	
4.324	Piers and abutments								
4.324(2)	Concrete (C50)	cu.m.	8,093.90	5,207.68	42,150,461.98	1.1458	5,966.96	48,295,999.34	
4.324(2)	Concrete (C45)	cu.m.	-	-		-	-	-	
4.324(3)	Concrete (C40)	cu.m.	10,706.99	2,572.13	27,539,772.76	1.1458	2,947.15	31,555,071.63	
4.324(4)	Concrete (C35)	cu.m.	308.27	2,323.40	716,234.52	1.1458	2,662.15	820,661.51	
4.324(5)	Concrete (C30)	cu.m.	-	-	-	-		-	
4.324(6)	Concrete (C25)	cum.	-		-	-		-	
4.324(7)	Concrete (C20)	cu.m.	-		-	-		-	
4.324(8)	Concrete (C15)	cu.m.	1,439.24	2,017.85	2,904,160.34	1.1458	2,312.05	3,327,586.92	
4.324(9)	Reinforcement RB 9mm. dia.	ton	106.90	25,448.20	2,720,310.79	1.1458	29,158.55	3,116,932.10	
4.324(10)	Reinforcement DB 12mm, dia.	ton	583.72	26,108.14	15,239,739.05	1.1458	29,914.71	17,461,693.00	
4.324(11)	Reinforcement DB 16mm. dia.	ton	535.44	24,151.66	12,931,764.83	1.1458	27,672.97	14,817,216.14	
4.324(12)	Reinforcement DB 20mm, dia.	ton	536.59	24,318.27	13,048,940.50	1.1458	27,863.87	14,951,476.02	
4.324(13)	Reinforcement DB 25mm, dia.	ton	842.62	25,643.64	21,607,843.94	1.1458	29,382.48	24,758,267.58	
4.324(14)	Reinforcement D8 28mm. dia.	ton	-		-	-		-	
4.324(16)	Prestressed steed stand of frame pier	ton	321.81	66,893.65	21,527,313.08	1.1458	76,646.74	24,665,995.33	
4.325	Segmental prefabricated concrete simply supported box girder								
4.325(1)	20m simply supported box girder(Double Line)	Lm	-			-		-	
4.325(2)	24m simply supported box girder(Double Line)	Lm	-	-	-		-	-	

แบบ ปร.4 แค่นที่ 5 /40

แบบ ปร. 4

flat Babb

ภาคผนวก ง

ผลการวิเคราะห์โครงสร้างจากผู้ออกแบบโครงสร้างเดิม

Main calculation results of beam:

Chart - 1.10.2 calculation results (superimposed dead load 209kN/m)

LOAD COMBINATION	Max. Normal stress of top flange (mpa)	Min. Normal stress of top flange (mpa)	Max. Normal stress of bottom flange (mpa)	Min. Normal stress of bottom flange (mpa)	Min. Normal of epoxied joints (mpa)	Max. Shear stress (mpa)	Max. Principle compressiv e stress (mpa)	Max. Principle tensile stress (mpa)	Min. Safety factor of strength	Min. Safety factor of crack resistance
Main force	8.13	0.86	15.76	6.93	1.36	2.72	15.76	1.67	2.05	1.34
Main force + additional force	8.62	0.63	16.26	6.72	1.18	2.74	16.26	2.13	2.05	1.33

Chart -1.10.3

calculation results (superimposed dead load 192kN/m)

Load combination	Max. Normal stress of top flange (mpa)	Min. Normal stress of top flange (mpa)	Max. Normal stress of bottom flange (mpa)	Min. Normal stress of bottom flange (mpa)	Min. Normal of epoxied joints (mpa)	Max. Shear stress (mpa)	Max. Principle compressive stress (mpa)	Max. Principle tensile stress (mpa)	Min. Safety factor of strength	Min. Safety factor of crack resistance
Main force	7.94	0.94	15.25	6.68	1.41	2.61	15.25	1.60	2.06	1.34
Main force + additional force	8.44	0.71	15.75	6.47	1.23	2.62	15.75	2.05	2.06	1.32

Chart - 1.10.4 calculation results (superimposed dead load 173kN/m)

Load combination	Max. Normal stress of top flange (mpa)	Min. Normal stress of top flange (mpa)	Max. Normal stress of bottom flange (mpa)	Min. Normal stress of bottom flange (mpa)	Min. Normal of epoxied joints (mpa)	Max. Shear stress (mpa)	Max. Principle compressive stress (mpa)	Max. Principle tensile stress (mpa)	Min. Safety factor of strength	Min. Safety factor of crack resistance
Main force	7.65	0.82	15.16	6.61	1.25	2.55	15.16	1.56	2.08	1.34
Main force + additional force	8.14	0.59	15.66	6.41	1.07	2.57	15.66	2.02	2.07	1.33

Chart - 1.10.5 admissible value

Load combination	Max. Normal stress of top flange (mpa)	Min. Normal stress of top flange (mpa)	Max. Normal stress of bottom flange (mpa)	Min. Normal stress of bottom flange (mpa)	Min. Normal of epoxied joints (mpa)	Max. Shear stress (mpa)	Max. Principle compressive stress (mpa)	Max. Principle tensile stress (mpa)	Min. Safety factor of strength	Min. Safety factor of crack resistance
Main force	16.75	0.00	16.75	0.00	1.00	5.70	20.10	3.10	2.00	1.20
Main force + additional force	18. 43	0.00	18. 43	0.00	1.00	5. 70	22.11	3.10	1.80	1.20

ประวัติผู้เขียน

ชื่อ-สกุล	นายศรัณย์ เรื่องศรี
วัน เดือน ปี เกิด	8 มิถุนายน พ.ศ. 2538
สถานที่เกิด	จังหวัดกรุงเทพมหานคร
วุฒิการศึกษา	จบการศึกษาระดับมัธยมปลายจากโรงเรียนสวนกุหลาบวิทยาลัย
	จบการศึกษาระดับปริญญาตรีจากภาควิชาวิศวกรรมโยธา
	คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
	เข้าศึกษาระดับปริญญาโท ภาควิชาวิศวกรรมโยธา
	คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2562
ที่อยู่ปัจจุบัน	ตำบลบางรักพัฒนา อำเภอบางบัวทอง จังหวัดนนทบุรี 11110

