OPTIMIZATION OF TWO-STAGE UASB SYSTEM FOR H₂ AND CH₄ PRODUCTION FROM CASSAVA WASTEWATER WITH ADDED CASSAVA RESIDUE

Tasanee Wangmor

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2014

I2837017x

Thesis Title	Optimization of Two-Stage UASB System for H_2 and CH_4
	Production from Cassava Wastewater with Added Cassava
	Residue
By:	Tasanee Wangmor
Program:	Petrochemical Technology
Thesis Advisors:	Prof. Sumaeth Chavadej
	Assoc. Prof. Pramoch Rangsunvigit

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

...... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

Sumwith Chavidej

(Prof. Sumaeth Chavadej)

Prainail A

(Assoc. Prof. Pramoch Rangsunvigit)

Ratana Rujiravanit

(Assoc. Prof. Ratana Rujiravanit)

suntcla

(Prof. Suntud Sirianuntapaiboon)

ABSTRACT

5571033063: Petrochemical Technology Program
Tasanee Wangmor: Optimization of Two-Stage UASB System for
H₂ and CH₄ Production from Cassava Wastewater with Added
Cassava Residue.

Thesis Advisors: Prof. Sumaeth Chavadej, and Assoc. Prof. Pramoch Rangsunvigit 68 pp.

Keywords: Two stage hydrogen and methane production/ Cassava residue/ Cassava wastewater/ Upflow anaerobic sludge blanket reactor (UASB)/ Thermophilic operation

In this research, hydrogen and methane production from cassava wastewater with added cassava residue by using a two stage upflow anaerobic sludge blanket (UASB) system was investigated under thermophilic temperature (55 °C). The two stage UASB system was operated at different cassava residue concentrations (ranging from 300 to 1,500 mg/l under a COD loading rate of 12 kg/m³d based on the methane bioreactor or 72 kg/m³d based on the hydrogen bioreactor without added cassava residue). The recycle ratio of the effluent from the methane bioreactor to the feed flow rate was fixed at 1:1. In addition, the solution pH was controlled at 5.5 in the hydrogen bioreactor while the methane bioreactor was not controlled. Under the optimum cassava residue concentration of 1,200 mg/l, the produced gas contained 43 % H₂, 55 % CO₂, and 2 % CH₄ for the hydrogen bioreactor and 70.5 % CH₄, 28 % CO₂, and 1.5 % H₂ for the methane bioreactor. Apart from hydrogen and methane production performance, the two stage UASB system could significantly break down the cellulosic fraction. Under the optimum cassava residue concentration of 1,200 mg/l and the COD loading rate of 12 kg/m³d of the cassava wastewater, the degradation performance of cellulose and hemicellulose were 42.1 % and 20.7 %, respectively for the hydrogen bioreactor and 35.2 % and 17.8 % for the methane bioreactor.

บทคัดย่อ

ทัศนีย์ วังหม้อ : การเพิ่มประสิทธิภาพของการผลิตไฮโครเจนและมีเทนจากน้ำเสียที่ได้ จากกระบวนการผลิตแป้งมันที่มีกากมันสำปะหลังแขวนลอยอยู่โคยใช้ถังปฏิกรณ์แบบยูเอเอสบี แบบสองขั้น (Optimization of Two-Stage UASB System for H₂ and CH₄ Production from Cassava Wastewater with Added Cassava Residue) อ. ที่ปรึกษา: ศ.คร. สุเมธ ชวเคช และ รศ.คร. ปราโมช รังสรรค์วิจิตร 68 หน้า

้งานวิจัยนี้ทำการผลิตไฮโครเจนและมีเทนจากน้ำเสียที่ได้จากกระบวนการผลิตแป้งมันที่มี กากมันสำปะหลังแขวนลอยอยู่โคยใช้ถังปฏิกรณ์แบบยูเอเอสบีสองขั้น ซึ่งถังปฏิกรณ์ทั้งสองถูก ควบคุมอุณหภูมิอยู่ที่ 55 องศาเซลเซียส โดยระบบยูเอเอสบีแบบสองขั้นจะควบคุมความเข้มข้น ของกากมันสำปะหลังที่ป้อนเข้าไป (ซึ่งอยู่ในช่วง 300 ถึง 1,500 มิลลิกรัมต่อลิตร ภายใต้อัตราการ ้ป้อนปริมาณสารอินทรีย์ 12 กิโลกรัมต่อลูกบาศก์เมตรต่อวันเทียบกับถังปฏิกรณ์ที่ใช้ผลิตมีเทน หรือ 72 กิโลกรัมต่อลูกบาศก์เมตรต่อวันเทียบกับถังปฏิกรณ์ที่ใช้ผลิตไฮโครเจน) น้ำเสียงาออก จากการผลิตมีเทนถูกนำกลับมาป้อนเข้าถังปฏิกรณ์ที่ใช้ผลิตไฮโครเจนในอัตราส่วน 1 ต่อ 1 (น้ำ เสียที่มีกากมันสำปะหลังแขวนลอยอยู่ที่เข้ามาใหม่) นอกจากนี้ถังปฏิกรณ์สำหรับผลิตไฮโครเจน ้จะควบคุมค่าความเป็นกรด-ด่างของระบบเท่ากับ 5.5 ในขณะที่ถังปฏิกรณ์สำหรับผลิตมีเทนไม่มี การควบคุมค่าความเป็นกรด-ค่างของระบบ จากผลการทคลองพบว่าความเข้มข้นของกากมัน ้สำปะหลังในน้ำเสียแป้งมันที่ 1.200 มิลลิกรัมต่อลิตร เป็นสภาวะเหมาะสมที่สามารถผลิตก๊าซ ้ไฮโครเจนและมีเทนได้มากที่สุดคือ ในถังปฏิกรณ์ที่ใช้ผลิตไฮโครเจนได้องค์ประกอบของก๊าซ ไฮโครเจน 43 % ก๊าซคาร์บอนไดออกไซด์ 55 % และก๊าซมีเทน 2 % และในถังปฏิกรณ์ที่ใช้ผลิต มีเทนได้องค์ประกอบของก๊าซมีเทน 70.5 % ก๊าซคาร์บอนไดออกไซด์ 28 % และก๊าซไฮโรเจน 1.5 % ระบบยูเอเอสบีแบบสองขั้นนอกจากมีประสิทธิภาพในการผลิตไฮโครเจนและมีเทนแล้ว มันยังสามารถย่อยสลายเซลลุโลสได้ โดยภายใต้สภาวะที่เหมาะสมที่มีความเข้มข้นของกากมัน ้สำปะหลังอยู่ที่ 1,200 มิลลิกรัมต่อลิตรและอัตราการป้อนสารอินทรีย์ของน้ำเสียแป้งมันที่ไม่มีกาก มันสำปะหลังแขวนลอยอยู่ที่ 12 กิโลกรัมต่อลูกบาศก์เมตรต่อวันเทียบกับถังปฏิกรณ์ที่ใช้ผลิต ้มีเทน พบว่าประสิทธิภาพในการย่อยสลายเซลลูโลสและเฮมิเซลลูโลสสำหรับถังปฏิกรณ์ที่ใช้ผลิต ใฮโครเจนเท่ากับ 42.1 % และ 20.7 % ตามลำคับ ในขณะที่ถังปฏิกรณ์ที่ใช้ผลิตมีเทนสามารถย่อย สถายเซลลูโลสและเฮมิเซลลูโลสได้ 35.2 % และ 17.8 % ตามลำดับ

ACKNOWLEDGEMENTS

This work would have not been successful without the assistance of the following individuals and organizations. First of all, this thesis work is funded by The Petroleum and Petrochemical College; and The National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

I would like to express my grateful appreciation to my thesis advisors, Prof. Sumaeth Chavadej and Assoc. Prof. Pramoch Rangsunvigit, for several constructive suggestions and discussion throughout this research work. Special thanks go to Assoc. Prof. Ratana Rujiravanit and Prof. Suntud Sirianuntapaiboon for their valuable suggestions. Furthermore, I would like to take this opportunity to thank my senior, MS. Patcharee Intanoo for her kindly advice and suggestion and also all of my PPC friends for their friendly assistance, cheerfulness, and encouragement. Finally, I would like to thank Ubon Bioethanol Co., Ltd. Thailand for kindly providing the seed sludge, cassava residue, cassava wastewater for this study.

TABLE OF CONTENTS

PA	40	ĴΕ
----	----	----

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	x

CHAPTER

Ι	INTRODUCTION	1
II	LITERATURE REVIEW	3
	2.1 Background of Hydrogen and Methane	3
	2.2 Advantages of Hydrogen	3
	2.3 Advantages of Methane	4
	2.4 Hydrogen Production Processes	4
	2.4.1 Coal Gasification	5
	2.4.2 Thermal Cracking of Methane	5
	2.4.3 Partial Oxidation (POX)	5
	2.4.4 Electrolysis	5
	2.4.5 Biological Process	6
	2.5 Cassava Production in Thailand	7
	2.6 Cassava Wastewater	8
	2.7 Common Parameters in Wastewater	8
	2.7.1 Total Solids (TS)	8
	2.7.2 Total Volatile Solids (TVS)	8
	2.7.3 Total Suspended Solids (TSS)	8
	2.7.4 Volatile Suspended Solids (VSS)	9

	2.7.5 Total Dissolved Solids (TDS)	9
	2.7.6 Biochemical Oxygen Demand (BOD)	9
	2.7.7 Chemical Oxygen Demand (COD)	9
	2.8 Anaerobic Fermentation Process	10
	2.8.1 Fundamental of Anaerobic Fermentation Process	10
	2.8.2 Types of Anaerobic Treatment Processes	11
	2.9 Two-Step Hydrogen and Methane Production	18
III	EXPERIMENTAL	20
	3.1 Materials	20
	3.1.1 Substrates	20
	3.1.2 Chemicals	21
	3.2 Equipment	21
	3.3 Methodology	22
	3.2.1 Cassava Wastewater and Cassava Residue	
	Preparation	22
	3.2.2 Bioreactor Design and Operation	22
	3.4 Analytical Methods	24
	3.4.1 COD Analysis	24
	3.4.2 Total VFA Analysis	25
	3.4.3 VFA Composition Analysis	25
	3.4.4 Gas Composition Analysis	25
	3.4.5 Total Suspended Solids (TSS) Analysis	26
	3.4.6 Volatile Suspended Solids (VSS) Analysis	26
	3.4.7 Phosphorous Analysis	27
	3.4.8 Nitrogen Analysis	27
	3.4.9 Cassava Residue Composition Analysis	27
	3.4.10 Microbial Concentration (MLVSS)	28
	3.4.11 Microbial Washout (Effluent VSS)	28

CHAPTER

PAGE

68

RE	SULTS AND DISCUSSION	29
4.1	Hydrogen Production Performance	29
	4.1.1 COD Removal and Gas Production Rate	29
	4.1.2 Hydrogen Production Performance	30
	4.1.3 Volatile Fatty Acid (VFA) and VFA Composition	33
4.2	Methane Production Performance	35
	4.2.1 COD Removal and Gas Production Rate	35
	4.2.2 Methane Production Performance	36
	4.2.3 Volatile Fatty Acid (VFA) and VFA Composition	40
4.3	Microbial Concentration and Microbial Washout Results	41
4.4	Nitrogen and Phosphorous Results	43
4.5	Digestibility Results	46
4.6	Overall Performance	48
CC	DNCLUSIONS AND RECOMMENDATIONS	50
5.1	Conclusions	50
5.2	Recommendations	50
RE	FERENCES	51
AP	PENDICES	55
Ар	pendix A Calibration Curves	55
Ар	pendix B Preparation of 1 M NaOH Solution for	
	pH Control System	65
Ар	pendix C Volatile Fatty Acids (VFA) Quantification	
	by Distillation Method	66
	by Distillation Method	I

LIST OF TABLES

TAB	LE	PAGE
2.1	Typical organic loading rates for anaerobic suspended	
	growth processes at 30°C	12
3.1	Characteristics of the studied cassava wastewater	20
3.2	Elemental and chemical compositions of the studied cassava	
	residue	21
Al	Gas chromatograph's calibration curve for hydrogen (H_2)	55
A2	Gas chromatograph's calibration curve for nitrogen (N_2)	56
A3	Gas chromatograph's calibration curve for oxygen (O_2)	57
A4	Gas chromatograph's calibration curve for methane (CH ₄)	58
A5	Gas chromatograph's calibration curve for carbon dioxide	
	(CO ₂)	59
A6	Liquid chromatograph's calibration curve for acetic acid	60
A7	Liquid chromatograph's calibration curve for propionic acid	61
A8	Liquid chromatograph's calibration curve for butyric acid	62
A9	Liquid chromatograph's calibration curve for valeric acid	63
A10	Liquid chromatograph's calibration curve for ethanol	64

LIST OF FIGURES

FIGURE		PAGE
2.1	Flow diagram of the anaerobic digestion process.	10
2.2	Anaerobic suspended growth processes: (a) complete-mix	
	process, (b) anaerobic contact process, and (c) anaerobic	
	sequencing batch reactor process.	13
2.3	Schematic of the UASB process and some modifications: (a)	
	original UASB process, (b) UASB reactor with sedimentation	
	tank and sludge recycle, and (c) UASB reactor with internal	
	packing for fixed-film attached growth, placed above the	
	sludge blanket.	14
2.4	Schematic of alternative sludge blanket processes: (a)	
	anaerobic baffled reactor (ABR) and (b) anaerobic migrating	
	blanket reactor (AMBR).	15
2.5	Upflow anaerobic attached growth treatment reactors: (a)	
	anaerobic upflow packed-bed reactor, (b) anaerobic	
	expanded-bed reactor, and (c) anaerobic fluidized-bed reactor.	17
2.6	Downflow attached growth anaerobic treatment reactor	17
3.1	Schematic of two stage upflow anaerobic sludge blanket	
	(UASB) unit.	23
3.2	(a) COD reactor and (b) spectrophotometer.	24
3.3	(a) glass-fiber filter disk and (b) filtration apparatus.	26
4.1	COD removal and gas production rate as a function of	
	cassava residue concentration at 55 °C and pH 5.5.	30
4.2	Gas composition and hydrogen production rate as a function	
	of cassava residue concentration at 55 °C and pH 5.5.	31

FIGURE

PAGE

Specific hydrogen production rate (SPHR) as a function of	
cassava residue concentration at 55 °C and pH 5.5.	32
Hydrogen yield as a function of cassava residue concentration	
at 55 °C and pH 5.5.	32
Effluent pH and alkalinity as a function of cassava residue	
concentration at 55 °C and pH 5.5.	33
Total VFA, organic acid and alcohol concentration as a	
function of cassava residue concentration at 55 °C and pH 5.5.	35
COD removal and gas production rate as a function of	
cassava residue concentration at 55 °C without pH control.	36
Gas composition and hydrogen production rate as a function	
of cassava residue concentration at 55 °C without pH control.	37
Specific methane production rate (SPMR) as a function of	
cassava residue concentration at 55 °C without pH control.	38
Methane yield as a function of cassava residue concentration	
at 55 °C without pH control.	38
Effluent pH and alkalinity as a function of cassava residue	
concentration at 55 °C without pH control.	39
Total VFA, organic acid and alcohol concentration as a	
function of cassava residue concentration at 55 °C without pH	
control.	41
MLVSS and Effluent VSS as a function of cassava residue	
concentration on (a) hydrogen UASB unit, and (b) methane	
UASB unit.	42
Nitrogen and phosphorous uptake as a function of cassava	
residue concentration on (a) hydrogen UASB unit, and (b)	
methane UASB unit.	44
	Specific hydrogen production rate (SPHR) as a function of cassava residue concentration at 55 °C and pH 5.5. Hydrogen yield as a function of cassava residue concentration at 55 °C and pH 5.5. Effluent pH and alkalinity as a function of cassava residue concentration at 55 °C and pH 5.5. Total VFA, organic acid and alcohol concentration as a function of cassava residue concentration at 55 °C and pH 5.5. COD removal and gas production rate as a function of cassava residue concentration at 55 °C without pH control. Gas composition and hydrogen production rate as a function of cassava residue concentration at 55 °C without pH control. Specific methane production rate (SPMR) as a function of cassava residue concentration at 55 °C without pH control. Methane yield as a function of cassava residue concentration at 55 °C without pH control. Effluent pH and alkalinity as a function of cassava residue concentration at 55 °C without pH control. Total VFA , organic acid and alcohol concentration as a function of cassava residue concentration at 55 °C without pH control. MLVSS and Effluent VSS as a function of cassava residue concentration on (a) hydrogen UASB unit, and (b) methane UASB unit. Nitrogen and phosphorous uptake as a function of cassava residue concentration on (a) hydrogen UASB unit, and (b) methane UASB unit.

FIGURE

4.15	Concentrations of ammonium-nitrogen, nitrate-nitrogen,	
	nitrite-nitrogen, organic-nitrogen, and total-nitrogen and as	
	function of cassava residue concentration as a function of	
	cassava residue concentration on (a) hydrogen UASB unit,	
	and (b) methane UASB unit.	45
4.17	Degradation of lignocellulosic materials and bacteria	
	concentration as a function of cassava residue concentration	
	on (a) hydrogen UASB unit, and (b) methane UASB unit.	47
4.18	Overall performance of two stage UASB processes.	49
Al	The relationship between amount of hydrogen (H_2) and	
	peak area.	55
A2	The relationship between amount of nitrogen (N_2) and	
	peak area.	56
A3	The relationship between amount of oxygen (O ₂) and	
	peak area.	57
A4	The relationship between amount of methane (CH_4) and	
	peak area.	58
A5	The relationship between amount of carbon dioxide (CO_2)	
	and peak area.	59
A6	The relationship between concentration of acetic acid and	
	peak area.	60
A7	The relationship between concentration of propionic acid and	
	peak area.	61
A8	The relationship between concentration of butyric acid and	
	peak area.	62
A9	The relationship between concentration of valeric acid and	
	peak area.	63
A10	The relationship between concentration of ethanol and	
	peak area.	64

PAGE