STUDY OF IMPROVING CARBON DIOXIDE ADSORPTION CAPACITY USING ADSORBENTS IMPREGNATED WITH PIPERAZINE

Danai Praekiat

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2014

128370557

Thesis Title:	Study of Improving Carbon Dioxide Adsorption Capacity
	Using Adsorbents Impregnated with Piperazine
By:	Danai Praekiat
Program:	Petroleum Technology
Thesis Advisors:	Assoc. Prof. Chintana Saiwan
	Prof. Paitoon Tontiwachwuthikul

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

Chutin Scieran

(Assoc. Prof. Chintana Saiwan)

(Prof. Paitoon Tontiwachwuthikul)

10.

Wilipat Senanced

(Asst. Prof. Kitipat Siemanond)

Turndet Supp

(Dr. Teeradet Supap)

1

ABSTRACT

5573004063: Petroleum Technology Program
Danai Praekiat: Study of Improving Carbon Dioxide Adsorption
Capacity Using Adsorbents Impregnated with Piperazine.
Thesis Advisors: Assoc. Prof. Chintana Saiwan, and Prof. Paitoon
Tontiwachwuthikul 98 pp.

Keywords: Carbon dioxide/ Adsorption/ Activated carbon/ Silica gel/ Piperazine

The adsorption of carbon dioxide (CO₂) for the natural gas processing application was performed with adsorbents modified with piperazine (PZ). To optimize CO₂ adsorption capacity, the effects of adsorption pressure, PZ loading, and types of adsorbents (activated carbon, or AC, and silica gel, or SG) were studied. Piperazine was impregnated onto the surface of AC and SG adsorbents by the wet impregnation method. The surface morphology of the unimpregnated and impregnated adsorbents was characterized using a surface area analyzer. The PZ loading was detected by a gas chromatography-flame ionization detector. It was found that the maximum PZ loading on the AC and SG were 3.45 wt% and 8.33 wt%, respectively. In the CO₂ adsorption and regeneration experiments, the adsorbents were tested in a stainless steel reactor. The breakthrough curves obtained from the feed gas containing 15% CO₂/N₂ with a flow rate of 15 mL/min were determined by using a gas chromatography-thermal conductivity detector. The effects of adsorption pressure were carried out at 298 K at various pressures, i.e. 14.7, 30, 50, and 70 psi. The results showed that PZ impregnated on AC and SG at pressure 70 psi showed the highest CO_2 adsorption capacity of 6.7 mmol/g and 7.7 mmol/g, respectively. The efficiency of regeneration of the impregnated adsorbents was more than 85 % during three consecutive test cycles.

บทคัดย่อ

ดนัย แพร่เกียรติ : การศึกษาประสิทธิภาพการดูดซับของคาร์บอนไดออกไซด์โดยใช้ตัว ดูดซับที่อิมแพรกเนทด้วยสารปีเปอราซีน (Study of Improving Carbon Dioxide Adsorption Capacity Using Adsorbents Impregnated with Piperazine) อ. ที่ปรึกษา : รศ.คร จินตนา สายวรรณ์ และ ศ.คร. ไพฑูรย์ ตันติเวชวุฒิกุล, 98 หน้า

การดูคซับก๊าซการ์บอน ใดออกไซค์จากขบวนการแปรรูปก๊าซธรรมชาติโดยการใช้ตัวดูด ซับที่อิมแพรกเนทด้วยสารปีเปอราซีน มีวัตถุประสงค์เพื่อหาความจุของการดูดซับก๊าซ คาร์บอนใคออกไซด์ โดยศึกษาความดันของการดูดซับ, ปริมาณการใส่สารปีเปอราซีน รวมถึง ชนิดของตัวดูดซับ (ถ่านกัมมันต์ และ ซิลิกาเจล) ปีเปอราซีนถูกอิมแพรกเนทลงบนผิวหน้าของ ถ่านกัมมันต์และซิลิกาเจลด้วยวิธีอิมแพรกเนทแบบเปียก การวิเคราะห์พื้นที่ผิวตัวดูคซับทั้งชนิด ้ไม่ได้อิมแพรกเนท และชนิดอิมแพรกเนท วิเคราะห์ โดยใช้เครื่องวิเคราะห์พื้นที่ผิว ปริมาณสารปี เปอราซีนมากที่สุดที่ฝังอยู่ในตัวดูคซับ ถูกวัดด้วยเกรื่องแก๊ส โครมาโทกราฟี-เฟลมไอออไนเซชั่น ้โดยปริมาณสารปิเปอราซีนที่ฝังอยู่ในถ่านกัมมันต์และซิลิกาเจลวัคได้ 3.45 และ 8.33 เปอร์เซ็นต์ เฉลี่ยโคยน้ำหนักตามลำดับ ในขั้นตอนการวัดก่าความจุของการดูคซับก๊าซการ์บอนไดออกไซด์ และการนำกลับมาใช้ใหม่ของตัวดูคซับเดิม ตัวดูคซับถูกทคลองในเครื่องปฏิกรณ์สแตนเลส โดย กราฟเบรคทรูจากก๊าซคาร์บอนไดออกไซด์ 15% ที่อัตราการไหล 15 มิลลิลิตรต่อนาที ถูกวัดโดย ้เครื่องแก๊ส โครมาโทกราฟีเทอร์มัลคอนคักทิวิตีร์ การศึกษาผลกระทบของความคันต่างๆในการดูด ซับที่อุณหภูมิห้อง ที่ความคันต่างๆคือ ความคันบรรยากาศ, 30, 50 และ 70 ปอนค์ต่อตารางนิ้ว พบว่าที่การดูคซับด้วยความคัน 70 ปอนด์ต่อตารางนิ้ว ถ่านกัมมั่นต์และซิลิกาเจล ที่มีปีเปอราซีน มี ความจุในการดูคซับมากที่สุด ได้ค่า 6.7 มิลลิโมลต่อกรัม และ 7.7 มิลลิโมลต่อกรัม ตามลำคับ การศึกษาผลของการนำตัวดูคซับกลับมาใช้ซ้ำ พบว่าประสิทธิภาพในการดูคซับมีค่ามากกว่า 85 % ตลอดการทดลองต่อเนื่อง 3 รอบติดกัน

ACKNOWLEDGEMENTS

It is my wonderful time to be able to study in the petroleum technology program for my master's degree at the Petroleum and Petrochemical College (PPC), Chulalongkorn University. I would like to acknowledge the assistance and support of people who have supported in this research.

First of all, I would like to give million thanks to my advisor Assoc. Prof. Chintana Saiwan for her help, encouragement, and guidance towards my master thesis research. Her support contributed meaningfully to inspire and maintain my enthusiasm throughout the whole period. Without her advices, attentions and supports, I cannot get through and achieve the goal of this work. Second, I would like to thank all of PPC's research affairs staff for their kind assistance and cooperation in order to train me to be skillful for using the characterization equipment.

Finally, I wish to thank this amazing college that had given me much never ending knowledge, mighty experiences during my experiments and unforgettable memories among colleagues and people in the college. Also, my deepest gratitude to my beloved family for the support and encouragement on the path I have chosen throughout this successful completion of the research.

This thesis work is funded by the Petroleum and Petrochemical College, Chulalongkorn University; the Center of Excellence on Petrochemical and Materials Technology, Thailand, and Carbokarn Co., Ltd (Thailand) for the supply of activated carbon.

TABLE OF CONTENTS

		PAGE
Titl	le Page	i
Ab	stract (in English)	iii
Ab	stract (in Thai)	iv
Acl	knowledgements	v
Tał	ble of Contents	vi
Lis	List of Tables	
Lis	t of Figures	xii
CHAP	ſER	
Ι	INTRODUCTION	1
II	THEORETICAL BACKGROUND AND	
	LITERATURE REVIEW	2
III	EXPERIMENTAL	28
	3.1 Equipment and Chemicals	28
	3.1.1 Experimental Setup	28
	3.2 Experiment Procedures	29
	3.2.1 Preparation of Adsorbents	29
	3.2.2 Preparation of Piperazine Impregnation onto	
	Adsorbents	30
	3.3 Methodology	30
	3.3.1 Characterization of Adsorbents	30
	3.3.1.1 Surface Area Characterization of Adsorbents	30
	3.3.1.2 Surface Morphology Characterization	31
	3.3.1.3 Measurement of Thermal Stability	31
	3.3.1.4 Measurement of Degree of Piperazine Loading	31
	3.3.2 CO ₂ Adsorption-Regeneration	32

98

	3.3.2.1 Preliminary Test for CO ₂ Adsorption	32
	3.3.2.2 Effect of Adsorption Pressure	33
	3.3.2.3 Adsorbent Regeneration	33
IV	RESULTS AND DISCUSSION	34
	4.1 Characterization Results	34
	4.1.1 Analysis of Piperazine Loading (wt %)	34
	4.1.2 Scanning Electron Microscope	
	& Surface Area Analysis	35
	4.1.3 Thermo Gravimetric Analysis (TGA)	39
	4.2 Effects of Adsorption Pressure	41
	4.3 Regeneration Stability Results	47
V	CONCLUSIONS AND RECOMMENDATIONS	54
	REFERENCES	56
	APPENDICES	60
	Appendix A Preparation Of Piperazine Solution	60
	Appendix B Piperazine Calibration Curve	61
	Appendix C Specification Of Activated Carbon And Equipment	64
	Appendix D Preparation For Standard Carbon Dioxide	
	Concentration	65

CURRICULUM VITAE

LIST OF TABLES

TABLE

PAGE

2.1	Industrial activity of worldwide large stationary CO ₂ sources with	
	emissions of more than 0.1 million tonnes of $CO_2(Mt CO_2)$ per year	3
2.2	Properties of carbon dioxide	3
2.3	Structural formula of common alkanolamines	6
2.4	Chemical data and structure of piperazine	8
2.5	Physical and chemical properties of the common used absorbents	9
2.6	Overall rate constants for 1.0 M amine at 25 °C	10
2.7	Comparison between chemisorption and physisorption	13
2.8	Literature review on CO ₂ adsorption properties of activated carbon an	d
	carbon nanotubes at low pressure	21
2.9	Literature review on CO ₂ adsorption properties of some zeolites and	
	zeolite-like materials at low pressure	21
2.10	Literature review on CO_2 adsorption properties of some MOFs and	
	ZMOFs	22
2.11	Literature data on CO ₂ adsorption capacity of amine-impregnated	
	Adsorbent	23
2.12	Literature data on CO ₂ adsorption of amine-grafted adsorbent	26
3.1	Operating parameters of adsorption pressure system	33
4.1	Surface area analysis of unimpregnated and impregnated AC and SG	37
4.2	Summary of surface area analysis of unimpregnated and impregnated	
	adsorbent	38
4.3	Normalized CO ₂ adsorption capacity of pure adsorbent	42
4.4	Normalized CO ₂ adsorption capacity between pure and impregnated	
	adsorbent	46
4.5	Normalized CO_2 adsorption capacities of the 3.45 wt % PZ-AC	
	after regeneration	52
4.6	Normalized CO_2 adsorption capacities of the 8.33 wt % PZ-SG	
	after regeneration	52

TABLE

PAGE

A.1	Preparation of piperazine solution for the activated carbon	60
A.2	Preparation of piperazine solution for the silica gel	60
B.1	The preparation of piperazine concentration for the calibration curve	61
B.2	Samples of impregnated activated carbon, 10 wt % piperazine	
	loading on activated carbon	63
B.3	Samples of impregnated activated carbon, 30 wt % piperazine	
	loading on silica gel	63
C.1	Specification of palm shell activated carbon	64
D.1	Actual flow from mass flow controllers by bubble flowmeter	65
D.2	Adsorption data from Gas Chromatogram of pure activated carbon	
	at atmospheric pressure (14.7 psi) and room temperature	66
D.3	Adsorption data from Gas Chromatogram of pure activated carbon	
	at pressure 30 psi and room temperature	67
D.4	Adsorption data from Gas Chromatogram of pure activated carbon	
	at pressure 50 psi and room temperature	68
D.5	Adsorption data from Gas Chromatogram of pure activated carbon	
	at pressure 70 psi and room temperature	69
D.6	Adsorption data from Gas Chromatogram of pure silica gel	
	at atmospheric pressure (14.7 psi) and room temperature	69
D.7	Adsorption data from Gas Chromatogram of pure silica gel	
	at 30 psi and room temperature	70
D.8	Adsorption data from Gas Chromatogram of pure silica gel	
	at 50 psi and room temperature	71
D.9	Adsorption data from Gas Chromatogram of pure silica gel	
	at 70 psi and room temperature	71
D.10	Adsorption data from Gas Chromatogram of 3.45 wt % PZ-AC	
	at 14.7 psi and room temperature	73
D.11	Regeneration data from Gas Chromatogram of regeneration cycle 1	
	of 3.45 wt % PZ-AC at 14.7 psi and room temperature	74

TABLE

D.12	Regeneration data from Gas Chromatogram of regeneration cycle 2	
	of 3.45 wt % PZ-AC at 14.7 psi and room temperature	75
D.13	Regeneration data from Gas Chromatogram of regeneration cycle 3	
	of 3.45 wt % PZ-AC at 14.7 psi and room temperature	75
D.14	Adsorption data from Gas Chromatogram of 3.45 wt % PZ-AC	
	at 30 psi and room temperature	76
D.15	Regeneration data from Gas Chromatogram of regeneration cycle 1	
	of 3.45 wt % PZ-AC at 30 psi and room temperature	77
D.16	Regeneration data from Gas Chromatogram of regeneration cycle 2	
	of 3.45 wt % PZ-AC at 30 psi and room temperature	77
D.17	Regeneration data from Gas Chromatogram of regeneration cycle 3	
	of 3.45 wt % PZ-AC at 30 psi and room temperature	78
D.18	Adsorption data from Gas Chromatogram of 3.45 wt % PZ-AC	
	at 50 psi and room temperature	78
D.19	Regeneration data from Gas Chromatogram of regeneration cycle 1	
	of 3.45 wt % PZ-AC at 50 psi and room temperature	79
D.20	Regeneration data from Gas Chromatogram of regeneration cycle 2	
	of 3.45 wt % PZ-AC at 50 psi and room temperature	80
D.21	Regeneration data from Gas Chromatogram of regeneration cycle 3	
	of 3.45 wt % PZ-AC at 50 psi and room temperature	80
D.22	Adsorption data from Gas Chromatogram of 3.45 wt % PZ-AC	
	at 70 psi and room temperature	81
D.23	Regeneration data from Gas Chromatogram of regeneration cycle 1	
	of 3.45 wt % PZ-AC at 70 psi and room temperature	82
D.24	Regeneration data from Gas Chromatogram of regeneration cycle 2	
	of 3.45 wt % PZ-AC at 70 psi and room temperature	83
D.25	Regeneration data from Gas Chromatogram of regeneration cycle 3	
	of 3.45 wt % PZ-AC at 70 psi and room temperature	84
D.26	Adsorption data from Gas Chromatogram of 8.33 wt % PZ-SG	
	at 14.7 psi and room temperature	84

TABLE

D.27	Regeneration data from Gas Chromatogram of regeneration cycle 1	
	of 8.33 wt % PZ-SG at 14.7 psi and room temperature	85
D.28	Regeneration data from Gas Chromatogram of regeneration cycle 2	
	of 8.33 wt % PZ-SG at 14.7 psi and room temperature	85
D.29	Regeneration data from Gas Chromatogram of regeneration cycle 3	
	of 8.33 wt % PZ-SG at 14.7 psi and room temperature	85
D.30	Adsorption data from Gas Chromatogram of 8.33 wt % PZ-SG	
	at 30 psi and room temperature	86
D.31	Regeneration data from Gas Chromatogram of regeneration cycle 1	
	of 8.33 wt % PZ-SG at 30 psi and room temperature	87
D.32	Regeneration data from Gas Chromatogram of regeneration cycle 2	
	of 8.33 wt % PZ-SG at 30 psi and room temperature	88
D.33	Regeneration data from Gas Chromatogram of regeneration cycle 3	
	of 8.33 wt % PZ-SG at 30 psi and room temperature	88
D.34	Adsorption data from Gas Chromatogram of 8.33 wt % PZ-SG	
	at 50 psi and room temperature	89
D.35	Regeneration data from Gas Chromatogram of regeneration cycle 1	
	of 8.33 wt % PZ-SG at 50 psi and room temperature	89
D.36	Regeneration data from Gas Chromatogram of regeneration cycle 2	
	of 8.33 wt % PZ-SG at 50 psi and room temperature	90
D.37	Regeneration data from Gas Chromatogram of regeneration cycle 3	
	of 8.33 wt % PZ-SG at 50 psi and room temperature	91
D.38	Adsorption data from Gas Chromatogram of 8.33 wt % PZ-SG	
	at 70 psi and room temperature	91
D.39	Regeneration data from Gas Chromatogram of regeneration cycle 1	
	of 8.33 wt % PZ-SG at 70 psi and room temperature	92
D.40	Regeneration data from Gas Chromatogram of regeneration cycle 2	
	of 8.33 wt % PZ-SG at 70 psi and room temperature	93
D.41	Regeneration data from Gas Chromatogram of regeneration cycle 3	
	of 8.33 wt % PZ-SG at 70 psi and room temperature	94

D.42 Summary data obtained for CO₂ adsorption

95

LIST OF FIGURES

FIGURE

PAGE

2.1	Technology alternatives for carbon dioxide capture in the power sector.	4
2.2	Proposed reaction of carbon dioxide in aqueous amine-based systems.	7
3.1	Schematic flow diagram for CO ₂ adsorption.	29
4.1	Calibration curve of PZ standard of known concentration.	35
4.2a	SEM micrographs of unimpregnated AC.	36
4.2b	SEM micrographs of impregnated AC.	36
4.2c	SEM micrographs of unimpregnated SG.	36
4.2d	SEM micrographs of impregnated SG.	36
4.3	Thermal stability of PZ at room temperature to 500 °C.	39
4.4	Thermal stability of AC and 3.45 wt % PZ-AC	
	at room temperature to 500 °C.	40
4.5	Thermal stability of SG and 8.33 wt % PZ-SG	
	at room temperature to 500 °C.	40
4.6	Breakthrough curves of pure AC at atmospheric pressure (14.7 psi),	
	30 psi, 50 psi, and 70 psi.	41
4.7	Breakthrough curves of pure SG at atmospheric pressure (14.7 psi),	
	30 psi, 50 psi, and 70 psi.	42
4.8a	The breakthrough curves of the unimpregnated and impregnated AC.	44
4.8b	The breakthrough curves of the unimpregnated and impregnated SG.	44
4.9	Breakthrough curves of impregnated AC at	
	14.7 psi, 30 psi, 50 psi, and 70 psi.	45
4.10	Breakthrough curves of impregnated SG at	
	14.7 psi, 30 psi, 50 psi, and 70 psi.	45
4.11a	CO ₂ adsorption capacity of AC and 3.45 wt % PZ-AC	47
4.11b	CO ₂ adsorption capacity of SG and 8.33 wt % PZ-SG	47
4.12	Breakthrough curves of PZ-AC adsorption at 14.7 psi, and	
	regeneration cycle I, cycle II, cycle III at room temperature.	48

FIGURE

4.13	Breakthrough curves of PZ-AC adsorption at 30 psi,	
	and regeneration cycle I, cycle II, cycle III at room temperature.	48
4.14	Breakthrough curves of PZ-AC adsorption at 50 psi,	
	and regeneration cycle I, cycle II, cycle III at room temperature.	49
4.15	Breakthrough curves of PZ-AC adsorption at 70 psi,	
	and regeneration cycle I, cycle II, cycle III at room temperature.	49
4.16	Breakthrough curves of PZ-SG adsorption at 14.7 psi,	
	and regeneration cycle I, cycle II, cycle III at room temperature.	50
4.17	Breakthrough curves of PZ-SG adsorption at 30 psi,	
	and regeneration cycle I, cycle II, cycle III at room temperature.	50
4.18	Breakthrough curves of PZ-SG adsorption at 50 psi,	
	and regeneration cycle I, cycle II, cycle III at room temperature.	51
4.19	Breakthrough curves of PZ-SG adsorption at 70 psi,	
	and regeneration cycle I, cycle II, cycle III at room temperature.	51
4.20	Cyclic CO2 adsorption capacity of unimpregnated and	
	impregnated adsorbents.	52
B.1	The calibration curve of piperazine standard.	62
D.1	Calibration curve of standard CO_2 concentration by bubble flowmeter.	66