การศึกษาเปรียบเทียบการเอื้อประโยชน์ในร่างกายของยาเม็ดนาโพรเชนที่มีจำหน่ายในประเทศไทย

นางสาว อุษา อมรสิริพาณิชย์

วิทยานิพนธ์นี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญา เภสัชศาสตรมหาบัณฑิต

ภาควิชา เภสัชกรรม

้บัณฑิดวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

พ.ศ. 2531

ISBN 974-569-571-8

ลืบสิทธิ์ของบัณฑิควิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

Comparative Studies of Bioavailability of Naproxen Tablets Commercially Available in Thailand

Miss Usa Amornsiripanish

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science in Pharmacy

Department of Pharmacy

Graduate School

Chulalongkorn University

1988

ISBN 974-569-571-8

le Compar

Thesis Title

Comparative Studies of Bioavailability of Naproxen

Tablets Commercially Available in Thailand

Ву

Miss Usa Amornsiripanish

Department

Pharmacy

Thesis Advisor

Assistant Professor Waraporn Suwakul, M.Sc. (Pharm).

Thesis Co-advisor

Associate Professor Uthai Suvanakoot, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements of the Master's Degree

(Professor Thavorn Vajrabhaya, Ph.D.)

Thesis Committee

Duanychil- Panon van Chairman

(Associate Professor Duangchit Panomvana Na Ayudhya, Ph.D.)

Waraporn Sunakul Thesis Advisor

(Assistant Professor Waraporn Suwakul, M.Sc. in Pharm)

Uth- Thesis Co-advisor

(Associate Professor Uthai Suvanakoot, Ph.D.)

Kaisi Umpraja Member

(Lecturer Kaisri Umprayn, Ph.D.)

อุษา อมรสิริพาณิชย์ : การศึกษาเปรียบเทียบการเอื้อประโยชน์ในร่างกายของยาเม็ด นาโพรเซนที่มีจำหน่ายในประเทศไทย (COMPARATIVE STUDIES OF BIOAVAILABILITY OF NAPROXEN TABLETS COMMERCIALLY AVAILABLE IN THAILAND) อ.ที่ปรึกษา : ผศ. วราภรณ์ สุวกูล, อ.ที่ปรึกษาร่วม : รศ. คร. อุทัย สุวรรณกูฏ, 123 หน้า.

การวิจัยครั้งนี้มีจุดมุ่งหมายเพื่อศึกษาความสมมูลในร่างกายของยาเม็ดนาโพรเซนตำรับต่าง ๆ ที่มีจำหน่ายในประเทศไทย เทียบกับยาเม็ด Naprosyn^R ซึ่งเป็นคำรับต้นแบบที่นำสั่งจากต่างประเทศ โดยทำการศึกษาทั้งในหลอดทดลองและในร่างกาย

การศึกษานอกร่างกายประกอบด้วย การทา ปริมาณตัวยาสำคัญในยาเม็ด ความแข็ง การแคก กระจายตัว และการละลายของยาเม็ดในสารละลายตัวกลางสองชนิด คือ simulated gastric fluid และ simulated intestinal fluid ผลการวิจัยพบว่า ยาเม็ดทุกคำรับมีปริมาณตัวยาสำคัญตาม มาตรฐานของ United States Pharmacopoeia XXI ความแข็งของยาเม็ดมีคาตั้งแต่ 4.52 ± 0.39 ถึง มากกว่า 20 กิโลปอนค์ และมีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ (p < 0.05) ยาเม็ด นาโพรเชนทั้ง 9 ตำรับมีการแตกกระจายตัวภายในเวลา 30 นาที ได้มาตรฐานที่กำหนดใน United States Pharmacopoeia XXI และค่านี้มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ (p < 0.05) ค่าคงที่อัตราการละลายของยาเม็ดใน simulated gastric fluid และ simulated intestinal fluid มีค่าตั้งแต่ 0.55 ± 0.09 ถึง 2.03 ± 0.35 ต่อชั่วโมง และ 0.76 ± 0.20 ถึง 6.22 ± 1.96 ต่อชั่วโมงดามลำดับ และพบความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของตำรับ B, D, E, H, I และตำรับ B, D, H, I ตามลำดับ เมื่อเปรียบเทียบกับตำรับ A ซึ่งกำหนดเป็นตำรับต้นแบบ

การศึกษาการ เอื้อประโยชน์ในร่างกาย กระทำโดยคัด เลือกยา เม็ดจำนวน 5 ตำรับที่มีการละลาย แตกต่ำงกันมาศึกษาในอาสาสมัครชายไทยสุขภาพดีจำนวน 8 คน โดยใช้แบบแผนทดลองข้าม ระดับยาใน พลาสมาที่เวลาต่ำง ๆ ภายหลังการรับประทานยา เม็ดนาโพร เชนขนาด 250 มิลลิกรัมครั้งเดียว วัดโดยใช้ วิธีจำ เพาะของไฮ เพอร์ฟอร์แมนซ์ลิควิดโครมาโตกราฟี การวิเคราะห์ข้อมูลทาง เภสัชจลนศาสตร์ใช้วิธี noncompartment ผลการวิจัยพบว่า การ เอื้อประโยชน์ในร่างกายของยา เม็ดนาโพร เชนตำรับต่ำง ๆ ที่นำมาศึกษาไม่มีความแตกต่ำงกันอย่างมีนัยสำคัญทางสถิติ (p > 0.05)

นอกจากนี้ยังพบว่า ความแข็ง การแตกกระจายตัวของยาเม็ดไม่มีความสัมพันธ์กับอัตราการละลาย ของยาเม็ดในตัวกลางทั้งสองชนิด (p > 0.05) และคำการแตกกระจายตัวกับค่าคงที่อัตราการละลายใน ตัวกลางทั้งสองชนิดก็ไม่มีความสัมพันธ์กับค่าพารามิเตอร์ทางเภสัชจลนศาสตร์ (AUC , Ka, Cp max $^{\text{max}}$)

ภาควิชา	4.00 6.	Carmon
מבכוזמאוז נוומאוז ארן אָרָן		
ปีการศึกษา 2531 ถายมื้อ	ชื่ออาจารย์ที่ปรึกษา	वराष्ट्र स्वाध्य

USA AMORNSIRIPANISH: COMPARATIVE STUDIES OF BIOAVAILABILITY OF NAPROXEN TABLETS COMMERCIALLY AVAILABLE IN THAILAND. THESIS ADVISOR: ASSIS. PROF. WARAPORN SUWAKUL, M.Sc., THESIS CO-ADVISOR: ASSO. PROF. UTHAI SUVANAKOOT, Ph.D. 123 PP.

Naproxen tablets commercially available in Thailand were investigated in order to assess the bioequivalence of the local manufactured brands relatively to the original brand, Naprosyn. These tablets were evaluated both in vitro and in vivo.

The in vitro studies included the content of active ingredient, hardness, disintegration time and dissolution rates in both simulated gastric fluid and simulated intestinal fluid. The content of active ingredient of all brands were within the range of limitation as specified by the United States Pharmacopoeia XXI monograph. The hardness of tablet ranged from 4.52 ± 0.39 to more than 20 kp., and statistically significant differences among all brands were observed (p < 0.05). All nine brands of naproxen tablets met the United State Pharmacopoeia XXI specification for disintegration time, within 30 minutes, however they were statistically significant differences (p < 0.05). The dissolution rate constants of these nine brands in simulated gastric fluid and simulated intestinal fluid ranged from 0.55 \pm 0.09 to 2.03 \pm 0.35 hour , and 0.76 \pm 0.20 to 6.22 \pm 1.96 hour , respectively. Statistical results of dissolution rate constants showed significant differences (p < 0.05) between brand A and brands B, D, E, H, I in simulated gastric fluid and between brand A and brands B, D, H, I in simulated intestinal fluid.

The bioavailability of five brands of naproxen tablets with differences in dissolution characteristics were studied in 8 Thai healthy male volunteers using a crossover experiment. A single dose of 250 mg. naproxen tablet was orally administered to individual overnight fasted subjects. Plasma naproxen levels were determined by a specifically high performance liquid chromatographic method. Individual plasma-time profile was analyzed according to noncompartmental method. Results showed that no statistically significant differences (p > 0.05) in both the rate and the extent of naproxen absorption among the five brands studied were observed. These indicated that the four local manufactured brands of naproxen tablets were bioequivalent to the original brand.

There were no statistically significant linear correlation between hardness, and disintegration time or dissolution rates in both dissolution media of all brands studied (p > 0.05). The disintegration time and the in vivo parameters (AUC, Ka, Cp, T, were not correlated (p > 0.05). The dissolution rate constants in both dissolution media and the in vivo parameters (AUC, Ka, Cp, T, T, were not significantly correlative as well (p > 0.05).

ภาควิชา	4 4 99 On German
สาขาวชา เมษายวาม	
ปีการศึกษา <u>2531</u>	ลายมือชื่ออาจารย์ที่ปรึกษา 🥰 🖙 🦖

I would like to express my profound gratitude to Assistant

Professor Waraporn Suwakul and Associate Professor Uthai Suvanakoot

for their invaluable supervisions, guidance and encouragement.

My appreciation is also expressed to Associate Professor

Duangchit Panomvana Na Ayudhya and Dr. Krisana Kraisintu for their

kindness and helpful.

Special thanks is given to Mrs. Sunan Rungsrikansong for her collaboration and helpful advices in HPLC techniques. Sincere thanks are also extended to staffs of Department of Pharmacy and friends for their cooperations.

I am greatly indebted to The Government Pharmaceutical
Organization for granting financial support to conduct this project.

Finally, I wish to express my appreciation to my beloved parents, sisters and brothers for their loves, encouragement, understanding, and financial support throughout my study in Chulalongkorn University.

CONTENTS

		Page
ABSTRACT (Th	ai)	TV
ABSTRACT (En	glish)	7,7
ACKNOWLEDGEM	ENTS	VI
CONTENTS		ALL
LIST OF TABLE	ES	UIU
LIST OF FIGURE	RES	XV
LIST OF ABBRI	EVIATIONS	XVIII
CHAPTER I	INTRODUCTION	1
CHAPTER II	REVIEW OF LITERATURE	4
CHAPTER III	MATERIALS AND METHODS	10
	Materials	10
	Methods	12
	In Vitro Studies	12
	In Vivo Studies	15
CHAPTER IV	RESULTS AND DISCUSSION	21
	In Vitro Studies	21
	In Vivo Studies	47
	In Vitro - In Vivo Correlations	79
CHAPTER V	CONCLUSION	95
REFERENCES		98
APPENDICES		103
VTTAE		123

LIST OF TABLES

Table		Page
1	Treatment schedule	17
2	Physical characteristics of in vitro studies of	
	9 commercial brands of naproxen tablets	22
3	Analysis of variance for hardness (kp) of 8 brands of	
	naproxen tablets (A - H)	23
4	Comparison of hardness (kp) cf naproxen tablet brand A	
	with other brands using t-test	24
5	Analysis of variance for disintegration time (min) of	
	9 brands of naproxen tablets (A - I)	25
6	Comparison of disintegration time (min) of brand A with	
	other brands using t-test	25
7	Dissolution data of nine brands of naproxen tablets in	
	simulated gastric fluid pH 1.2	27
8	Mean dissolution rate constant (hr^{-1}) of 9 brands of	
	naproxen tablets in simulated gastric fluid (pH 1.2) and	
	in simulated intestinal fluid (pH 7.5)	30
9	Analysis of variance for dissolution rate constant (hr 1)	
	of 9 brands of naproxen tablets in simulated gastric fluid	
	(pH 1.2)	31
10	Comparison of dissolution rate constant (hr^{-1}) in	
	simulated gastric fluid (pH 1.2) of brand A with	
	other brands using t-test	31

Table		Page
11	Dissolution data of nine brands of naproxen tablets in	
	simulated intestinal fluid pH 7.5	32
12	Analysis of variance for dissolution rate constant (hr^{-1})	
	of 9 brands of naproxen tablets in simulated intestinal	
	fluid (pH 7.5)	35
13	Comparison of dissolution rate constant (hr^{-1}) in	
	simulated intestinal fluid (pH 7.5) of brand A with	
	other brands using t-test	35
14	Correlation between hardness (k_p) and disintegration time	
	(min) of 8 brands of naproxen tablets	37
15	Correlation between hardness (kp) and dissoltuion rate	
	constant (hr^{-1}) of 8 brands of naproxen tablets in	
	simulated gastric fluid (pH 1.2)	39
16	Correlation between hardness (kp) and dissolution rate	
	constant (hr^{-1}) of 8 brands of naproxen tablets in	
	simulated intestinal fluid (pH 7.5)	41
17	Correlation between disintegration time (min) and	
	dissolution rate constant (hr^{-1}) of 9 brands of naproxen	
•	tablets in simulated gastric fluid (pH 1.2)	43
18	Correlation between disintegration time (min) and	
	dissolution rate constant (hr^{-1}) of 9 brands of naproxen	
	tablets in simulated intestiral fluid (pH 7.5)	45
19	Plasma naproxen concentration at various times following	
	oral administration of 250 mg naproxen tablet, brand A	
	to 8 subjects	49

Tab le	I	Page
20	Plasma naproxen concentration at various times	
	following oral administration of 250 mg naproxen tablet,	
	brand B, to 8 subjects	50
21	Plasma naproxen concentration at various times	
	following oral administration of 250 mg naproxen tablet,	
	brand C, to 8 subjects	51
22	Plasma naproxen concentration at various times	
	following oral administration of 250 mg naproxen tablet,	
	brand D, to 8 subjects	52
23	Plasma naproxen concentration at various times	
	following oral administration of 250 mg naproxen tablet,	
	brand E, to 8 subjects	53
24	Area under the plasma concentration-time curve (AUC_0^{24})	
	of naproxen from 8 subjects following 250 mg oral	
	administration of five different brands of naproxen tablets	59
25	Analysis of variance and student's t-statistical	
	comparison of AUC (µg.hr/ml) of 5 brands of naproxen	
	tablets	60
26	Area under the plasma concentration-time curve (AUC $_{0}^{\infty}$)	
	of naproxen from 8 subjects following 250 mg oral	
	administration of five different brands of naproxen tablets	61
27	Analysis of variance and student's t-statistical comparison	ı
	of AUC (µg.hr/ml) of 5 brands of naproxen tablets	62

Table		Page
28	Mean residence time after oral administration (MRT oral)	
	of naproxen from 8 subjects following 250 mg oral	
	administration of five different brands of naproxen tablets	63
29	Analysis of variance and student's t-statistical comparison	
	of MRT oral (hr) of 5 brands of naproxen tablets	. 64
30	Mean residence time after intravenous administration	
	(MRT_{iv}) of naproxen approximately calculated from the	
	reciprocal of elimination rate constant (1/Kel) from the	
	plasma concentration time curve following 250 mg oral	
	administration of five different brands of naproxen tablets	. 65
31	Analysis of variance and student's t-statistical comparison	
	of MRT $_{iv}$ (hr) of 5 brands of naproxen tablets	. 66
32	Mean absorption time (MAT) of naproxen from 8 subjects	
	following 250 mg oral administration of five different	
	brands of naproxen tablets	. 67
33	Analysis of variance and student's t-statistical comparison	
	of MAT (hr) of 5 brands of naproxen tablets	68
34	Absorption rate constant (Ka) of naproxen from 8 subjects	
	following 250 mg oral administration of five different	
	brands of naproxen tablets	. 69
35	Analysis of variance and student's t-statistical comparison	
	of Ka (hr ⁻¹) of 5 brands of naproxen tablets	. 70

Table		Page
36	Peak plasma concentration (Cp_{max}) of naproxen reading	
	directly from the plasma concentration time curve of	
	each individual following 250 mg oral administration of	
	five different brands of naproxen tablets	. 72
37	Analysis of variance and student's t-statistical comparison	
	of Cp_{max} (µg/ml) of 5 brands of naproxen tablets	. 73
38	Time to peak plasma level (T_{max}) of naproxen reading	
	directly from the plasma concentration time curve of each	
	individual following 250 mg oral administration of five	
	different brands of naproxen tablets	. 74
39	Analysis of variance and student's t-statistical comparison	
	of T_{max} (hr) of 5 brands of naproxen tablets	. 75
40	Plasma half-life (t_1) of naproxen from 8 subjects following	
	250 mg oral administration of five different brands of	
	naproxen tablets	. 76
41	Analysis of variance and student's t-statistical comparison	
	of $t_{\frac{1}{2}}$ (hr) of 5 brands of naproxen tablets	. 77
42	The mean values of pharmacokinetic parameters of naproxen	
	from 8 subjects following 250 mg oral administration	. 78
43	Correlation between disintegration time (min) and ${ m AUC}_{ m O}^{ m w}$	
	(µg.hr/ml) of 5 brands of naproxen tablets	. 81

Table	Ţ	2 age
44	Correlation between disintegration time (min) and Ka (hr^{-1})	
	of 5 brands of naproxen tablets	82
45	Correlation between disintegration time (min) and Ka (hr^{-1})	
	of 4 brands of naproxen tablets	83
46	Correlation between disintegration time (min) and Cp max	
	($\mu g/ml$) of 5 brands of naproxen tablets	84
47	Correlation between disintegration time (min) and T_{max} (hr)	
	of 5 brands of naproxen tablets	35
48	Correlation between dissolution rate constant (hr^{-1}) in	
	simulated gastric fluid (pH 1.2) and AUC_0^∞ (µg.hr/ml) of	
	5 brands of naproxen tablets	86
49	Correlation between dissolution rate constant (hr^{-1}) in	
	simulated gastric fluid (pH 1.2) and Ka (hr $^{-1}$) of 5 brands	
	of naproxen tablets	87
50	Correlation between dissolution rate constant (hr^{-1}) in	
	simulated gastric fluid (pH 1.2) and Cp_{max} (µg/ml) of	•
	5 brands of naproxen tablets	88
51	Correlation between dissolution rate constant (hr ⁻¹) in	
	simulated gastric fluid (pH 1.2) and T_{max} (hr) of 5 brands	
	of naproxen tablets	89
52	Correlation between dissolution rate constant (hr 1) in	
	simulated intestinal fluid (pH 7.5) and AUC_0^{∞} (µg.hr/ml) of	
	5 brands of naproxen tablets	90

Table		Page
53	Correlation between dissolution rate constant (hr^{-1}) in	
	simulated intestinal fluid (pH 7.5) and Ka (hr^{-1}) of	
	5 brands of maproxen tablets	91
54	Correlation between dissolution rate constant (hr^{-1}) in	
	simulated intestinal fluid (pH 7.5) and Cp_{max} (µg/ml)	
	of 5 brands of naproxen tablets	. 92
55	Correlation between dissolution rate constant (hr ⁻¹) in	
	simulated intestinal fluid (pH 7.5) and T_{max} (hr) of	
	5 brands of naproxen tablets	. 93
56	Typical standard curve data for naproxen concentrations in	
	simulated gastric fluid (pH 1.2) estimated using linear	
	regression	. 107
57	Typical standard curve data for naproxen concentrations in	
	simulated intestinal fluid (pH 7.5) estimated using linear	
	regression	. 109
58	Typical standard curve data for naproxen concentrations in	
	human plasma estimated using linear regression	. 111
59	Physiological characteristics of the subjects	. 113

Figure		Page
1	Structural formula of naproxen	4
2	Dissolution profile of nine commercial brands of	
	naproxen tablets in simulated gastric fluid pH 1.2	23
3	The sigma-minus plot between amount of undissolved	
	naproxen in simulated gastric fluid versus time for	
	nine brands of naproxen tablets	29
4	Dissolution profile of nine commercial brands of	
	naproxen tablets in simulated intestinal fluid pH 7.5	33
5	The sigma-minus plot between amount of undissolved	
	naproxen in simulated intestinal fluid versus time for	
	nine brands of naproxen tablets	34
6	Correlation between hardness and disintegration time	38
7	Correlation between hardness and dissolution rate	
	constant in simulated gastric fluid	40
8	Correlation between hardness and dissolution rate	
	constant in simulated intestinal fluid	42
9	Correlation between disintegration time and dissolution	
	rate constant in simulated gastric fluid	44
10	Correlation between disintegration time and dissolution	
	rate constant in simulated intestinal fluid	46
11	High pressure liquid chromatogram of narroxen (A) and	
	internal standard (B)	48

Figure		Page
12	Mean plasma naproxen concentration-time profile from	
	8 subjects following oral administration of 250 mg	
	naproxen tablets, brand A and brand B	54
13	Mean plasma naproxen concentration-time profile from	
	8 subjects following oral administration of 250 mg	
	naproxen tablets, brand C and brand D	55
14	Mean plasma naproxen concentration-time profile from	
	8 subjects following oral administration of 250 mg	
	naproxen tablets, brand E	56
15	Comparison of the mean plasma naproxen concentration	
	time profile of five different brands following oral	
	administration of 250 mg naproxen tablet to 8 subjects	57
16	Correlation between disintegration time and AUC_0^{∞}	81
17	Correlation between disintegration time and Ka	82
18	Correlation between disintegration time and Ka (when	
	brand A was excluded)	83
19	Correlation between disintegration time and Cp max	84
20	Correlation between disintegration time and T_{max}	85
21	Correlation between dissolution rate constant in simulated	
	gastric fluid and AUC_0^{∞}	36
22	Correlation between dissolution rate constant in simulated	
	gastric fluid and Ka	37

Figure		Page
23	Correlation between dissolution rate constant in	
	simulated gastric fluid and Cp max	88
24	Correlation between dissolution rate constant in	
	simulated gastric fluid and T_{max}	89
25	Correlation between dissolution rate constant in	•
	simulated intestinal fluid and ${ m AUC}_{ m o}^{\infty}$	90
26	Correlation between dissolution rate constant in	
	simulated intestinal fluid and Ka	91
27	Correlation between dissolution rate constant in	
	simulated intestinal fluid and Cp_{\max}	92
28	Correlation between dissolution rate constant in	
	simulated intestinal fluid and $\boldsymbol{T}_{\text{max}}$	93
29	Typical standard curve for naproxen concentrations in	
	simulated gastric fluid pH 1.2	108
30	Typical standard curve for naproxen concentrations in	
•	simulated intestinal fluid pH 7.5	110
31	Typical standard curve for naproxen concentrations in	
	human plasma	112

XVIII

LIST OF ABBREVIATIONS

°C = degree Celcius

% = percent

μg = microgram

mg = milligram

g = gram

kp = kilopound

μl = microlitre

ml = millilitre

1 = litre

nm = nanometer

cm = centrimeter

rpm = revolutions per minute

min = minute

hr = hour

yr = year

 AUC_0^{∞} = area under the plasma concentration—time curve

AUMC = area under the (first) moment curve

MRT = mean residence time

MAT = mean absorption time

Ka = absorption rate constant

 Cp_{max} = peak plasma concentration

 T_{max} = time to peak plasma concentration

 $t_{1/2}$ = half-life