REFERENCES

- Aukett, P. N., S. Cartlidge and I. J. F. Poplett (1986) Effect of benzene alkylation on the state of aluminium in zeolite ZSM-5. Zeolites, 6(3), 169-174.
- Ausavasukhi, A., T. Sooknoi and D. E. Resasco (2009) Catalytic deoxygenation of benzaldehyde over gallium-modified ZSM-5 zeolite. <u>Journal of Catalysis</u>, 268(1), 68-78.
- Bauer, F., E. Bilz and A. Freyer (2004). "Selectivity improvement in xylene isomerization." Studies in Surface Science and Catalysis 154: 2169-2178.
- Beyer, H. K., G. Borbély-Pálné and J. Wu (1994) Solid-state dealumination of zeolites. <u>Studies in Surface Science and Catalysis</u>, 84, 933-940.
- Bhat, Y. S., J. Das and A. B. Halgeri (1995) Effect of extrusion and silvlation of ZSM-5 on para selectivity of diethylbenzenes. <u>Applied Catalysis A:</u> <u>General</u>, 122, 161-168.
- Bhat, Y. S., J. Das and A. B. Halgeri (1995) n-Pentane aromatization over pore size regulated MFI zeolite: Enrichment of para-xylene content in xylenes. <u>Applied Catalysis A: General</u>, 130, 1-4.
- C.N., S. (1996). <u>Heterogeneous catalysis in industrial practice</u>, New York, Krieger Publishing Company.
- Cassiano-Gaspar, S., D. Bazer-Bachi, J. Chevalier, E. Lécolier, Y. Jorand and L. Rouleau (2014) Novel extrudates based on the multiscale packing of alumina particles and boehmite or aluminophosphate binders. <u>Powder</u> <u>Technology</u>, 225, 74-79.
- Choudhary, V. R., K. Mantri and C. Sivadinarayana (2000) Influence of zeolite factors zeolitic acidity on the propane aromatization activity and selectivity of Ga/H–ZSM-5. <u>Microporous and Mesoporous Materials</u> 37, 1-8.
- Chu, Y., B. Zhang and Q. Zhang (2013) The use of deposited nanocarbon for characterization of zeolite supported metal catalyst. <u>Microporous and</u> <u>Mesoporous Materials</u>, 201-206.
- Devadas, P., A. K. Kinage and V. R. Choudhary (1998) Effect of silica binder on acidity, catalytic activity and deactivation due to coking in propane

aromatization over H-gallosilicate (MFI). <u>Studies in Surface Science and</u> <u>Catalysis</u>, 113, 425-432.

- Ding, Y., J. Liang, Y. Fan, Y. Wang and X. Bao (2007) Synergisms between matrices and ZSM-5 in FCC gasoline non-hydrogenating upgrading catalysts. <u>Catalysis Today</u>, 125(3–4), 178-184.
- El-Malki, E.-M., R. A. van Santen and W. M. H. Sachtler (2000) Isothermal oscillations during N₂O decomposition over Fe/ZSM-5: effect of H₂O vapor. <u>Microporous and Mesoporous Materials</u>, 35–36, 235-244.
- Elimelech, M. and J. Gregory (1998) <u>Particle deposition and aggregation:</u> <u>measurement, modelling and simulation.</u> Butterworth-Heinemann.
- Fan, Y., X. Lin, G. Shi and H. Liu (2007) Realumination of dealuminated HZSM-5 zeolite by citric acid treatment and its application in preparing FCC gasoline hydro-upgrading catalyst. <u>Microporous and Mesoporous Materials</u>, 98(1–3), 174-181.
- Freiding, J. and B. Kraushaar-Czarnetzki (2011) Novel extruded fixed-bed MTO catalysts with high olefin selectivity and high resistance against coke deactivation. <u>Applied Catalysis A: General</u>, 328, 254–260.
- Gnep, N. S., J. Y. Doyement and M. Guisnet (1988) Role of gallium species on the dehydrocyclodimerization of propane on ZSM5 catalysts. <u>Journal of</u> <u>Molecular Catalysis</u>, 45(3), 281-284.
- Gu, L., D. Ma, S. Yao, C. Wang, W. Shen and X. Bao. (2010) Structured zeolites catalysts with hierarchical channel structure.
- Guisnet, M. and P. Magnoux (2001) Organic chemistry of coke formation." <u>Applied Catalysis A: General</u> 212(1-2): 83-96.
- Holdrich, W., H. Eichhorn, R. Lehnert, L. Marosi, W. Mross, R. Ranke, W. Ruppel and H. Schlimper (1984) Proceedings of 6th Int. Zeolite Conf., Reno, USA, Butterworths, New York.
- Hui, T., W. Jun, R. Xiaoqian and C. Demin (2011) Disproportionation of Toluene by Modified ZSM-5 Zeolite Catalysts with High Shape-selectivity Prepared Using Chemical Liquid Deposition with Tetraethyl Orthosilicate. <u>Chinese</u> <u>Journal of Chemical Engineering</u>, 19(2), 292-298.

σ

- I.V., A., B. N., B. L.M. and I. G. (2009) Aromatization of industrial feedstock mainly with butanes and butenes over HZSM-5 and Zn/HZSM-5 catalysts. <u>Acta Chemica</u>, 17, 5-34.
- J, P.-R., C. C.H, E. K, C. C.H and G. J.C. (2007) Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. <u>Chem Soc Rev</u>, 37(11), 2530-2542.
- Jacobs, P. A., E. M. Flanigen and J. C. Jansen (2001) Introduction to Zeolite Science and Practice. <u>Elsevier</u>.
- Kaya, C. and E. G. Butler (2002) Plastic forming and microstructural development of a-alumina ceramics from highly compacted green bodies using extrusion. <u>Journal of the European Ceramic Society</u>, 22, 1917–1926
- Kim, S. D., S. C. Baek, Y.-J. Lee, K.-W. Jun, M. J. Kim and I. S. Yoo (2006) Effect of γ-alumina content on catalytic performance of modified ZSM-5 for dehydration of crude methanol to dimethyl ether. <u>Applied Catalysis A:</u> <u>General</u>, 309(1), 139-143.
- Kimura, T., N. Hata, K. Sakashita and S. Asaoka (2012) Production of aromatics from heavier *n*-paraffins on hybrid cracking-reforming catalyst. <u>Catalysis</u> <u>Today</u>, 185(1), 119-125.
- Kissin, Y. V. (1996) Chemical Mechanism of Hydrocarbon Cracking over Solid Acidic Catalysts. Journal of Catalysis, 163, 50-62.
- Kitagawa, H., Y. Sendoda and Y. Ono (1986) Transformation of propane into aromatic hydrocarbons over ZSM-5 zeolites. <u>Journal of Catalysis</u>, 101(1), 12-18.
- Kumar, S., A. K. Sinha, S. G. Hegde and S. Sivasanker (2000) Influence of mild dealumination on physicochemical, acidic and catalytic properties of H-ZSM-5. Journal of Molecular Catalysis A: Chemical, 154, 115–120.
- Lamberov, A. A., O. V. Levin, S. R. Egorova, Evstyagin D.A. and A. A.G. (2003) Effect of peptization on texture and physicomechanical propertie of aluminum hydroxides. <u>Russian Journal of Applied Chemistry</u>, 3, 351-357.

Ø

- Lee, Y.-J., Y.-W. Kim, N. Viswanadham, K.-W. Jun and J. W. Bae (2010) Novel aluminophosphate (AIPO) bound ZSM-5 extrudates with improved catalytic properties for methanol to propylene (MTP) reaction. <u>Applied Catalysis A:</u> <u>General</u>, 374(1-2), 18-25.
- Lercher, S. Z. A. J. J. A. (2006) Xylene isomerization with *surface-modified HZSM-5 zeolite catalysts: An in situ IR study. Journal of Catalysis, 241, 304-311.
- Lin, X., Y. Fan, Z. Liu, G. Shi, H. Liu and X. Bao (2007) A novel method for enhancing on-stream stability of fluid catalytic cracking (FCC) gasoline hydro-upgrading catalyst: Post-treatment of HZSM-5 zeolite by combined steaming and citric acid leaching. <u>Catalysis Today</u>, 125(3–4), 185-191.
- Lucas, A. d., P. Canizares, A. Durán and A. Carrero (1997) Dealumination of HZSM-5 zeolites: Effect of steaming on acidity and aromatization activity " <u>Applied Catalysis A: General</u>, 154(1–2), 221-240.
- Marturano, M., E. F. Aglietti and O. Ferretti (1997) α-A1₂O₃ Catalyst supports for synthesis gas production: influence of different alumina bonding agents on support and catalyst properties. <u>Materials Chemistry and Physics</u>, 47, 252-256.
- Menges, M. and B. Kraushaar-Czarnetzki (2012). "Kinetics of methanol to olefins over AlPO₄-bound ZSM-5 extrudates in a two-stage unit with dimethylether pre-reactor. <u>Microporous and Mesoporous Materials</u>, 164, 172-181.
- Meriaudeau, P., G. Sapaly and C. Naccache (1991) Dual Function Mechanism of Alkane Aromatization over H-HZSM-5 Supported Ga, Zn, Pt Catalysts: Respective Role of Acidity and Additive. <u>Studies in Surface Science and Catalysis</u>, 60, 267-279.
- Muller, M., G. Harvey and R. Prins (2000) Comparison of the dealumination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with SiCl₄ by ¹H, ²⁹Si and ²⁷Al MAS NMR. <u>Microporous and Mesoporous Materials</u>, 34, 135-147.
- N., V., M. G. and R. T.S.R.P. (2004) Cracking and aromatization properties of some metal modified ZSM-5 catalysts for light alkane conversions. <u>Journal</u> <u>of Molecular Catalysis: Chemical</u>, 223, 269-274.

σ

- Nagamori, Y. and M. Kawase (1998) Converting light hydrocarbons containing olefins to aromatics (Alpha Process). <u>Microporous and Mesoporous</u> Material, 21, 439-445.
- Nakamura, I. and K. Fujimoto (1996) On the role of gallium for the aromatization of lower paraffins with Ga-promoted ZSM-5 catalysts. <u>Catalysis Today</u>, 31, 335-344.
- Nitipan, T. (2012). Catalytic Conversion of n-Alkanes to Aromatics over Silylated Ga-exchanged HZSM-5 Catalysts. Master, Chulalongkorn University, Thailand.
- Niwa, M., S. Sota and N. Katada (2012) Strong Brønsted acid site in HZSM-5 created by mild steaming. <u>Catalysis Today</u>, 185, 17–24.
- Saxena, S. K., N. Viswanadhama and A. a. H. Al-Muhtaseb (2013). Enhanced production of high octane gasoline blending stock from methanol with improved catalyst life on nano-crystalline ZSM-5 catalyst. <u>Journal of</u> <u>Industrial and Engineering Chemistry</u>.
- Serra, J. M., E. Guillon and A. Corma (2005) Optimizing the conversion of heavy reformate streams into xylenes with zeolite catalysts by using knowledge base high-throughput experimentation techniques. <u>Journal of Catalysis</u>, 232, 342–354.
- Shihabi, D. S., W. E. Garwood, P. Chu and C. D. Chang (1985) Aluminum insertion into high-silica zeolite frameworks: II. Binder activation of high-silica ZSM-5. Journal of Catalysis, 93, 471-474.
 - Sirokman, G., Y. Sendoda and Y. Ono (1986) Conversion of pentane into aromatics over ZSM-5 zeolites. <u>Zeolites</u>, 6(4), 299-303.
 - Tagliabue, M., A. Carati and C. Flego (2004) Study on the stability of a Ga/Nd/ZSM-5 aromatisation catalyst. <u>Applied Catalysis A: General</u>, 265, 23–33.

Thomsonk. "Reactivity in Zeolite Systems." from

https://engineering.purdue.edu/~thomsonk/projects.html.

Tregubenko, V. Y., I. E. Udras, V. A. Udras and A. S. Belyi (2011) Effect of pseudoboehmite peptization by organic acids on texture characteristics of obtained aluminium oxides. <u>Russian Journal of Applied Chemistry</u>, 1, 9-16.

- Vadakayil, A. (2012). from ajitvadakayil.blogspot.com/2012/06/cargo-recirculationat-sea-onchemical.html.
- van Garderen, N., F. J. Clemens, C. G. Aneziris and T. Graule (2012) Improved γalumina support based pseudo-boehmite shaped by micro-extrusion process for oxygen carrier support application. <u>Ceramics International</u>, 38(7), 5481-5492.
- Viswanadham, N. and M. Kumar (2006) Effect of dealumination severity on the pore size distribution of mordenite. <u>Microporous and Mesoporous</u> <u>Materials</u>, 92(1-3), 31-37.
- Viswanadham, N., A. R. Pradhan, N. Ray and S. C. Vishnoi (1996) Reaction pathways for the aromatization of paraffins in the presence of H-ZSM-5 and Zn/H-ZSM-5. <u>Applied Catalysis A: General</u>, 137, 225-233.
- Viswanadham, N., S. K. Saxena and M. O. Garg (2013) Octane number enhancement studies of naphtha over noble metal loaded zeolite catalysts. <u>Journal of Industrial and Engineering Chemistry</u>, 19, 950-955.
- Xu, Y., L. Cheng and L. Zhang (2000) Composition, microstructure, and thermal stability of silicon carbide chemical vapor deposited at low temperatures." <u>Journal of Materials Processing Technology</u>, 101(1–3), 47-51.
- Zhang, Y., Y. Zhou and K. Yang (2006). "Effect of hydrothermal treatment on catalytic properties of PtSnNa/ZSM-5 catalyst for propane dehydrogenation. Microporous and Mesoporous Materials, 96, 245–254.
- Zhang, S., Gong, Y., Zhang, L., Liu, Y., Dou, T., Xu, J., and Deng, F. (2015). Hydrothermal treatment on ZSM-5 extrudates catalyst for methanol to propylene reaction: Finely tuning the acidic property. <u>Fuel Processing</u> <u>Technology</u>, 129, 130-138.
- Zhu, Z., Z. Xie, Q. Chen, D. Kong, W. Li, W. Yang and C. Li (2007) Chemical liquid deposition with polysiloxane of ZSM-5 and its effect on acidity and catalytic properties. <u>Microporous and Mesoporous Materials</u>, 101(1–2), 169-175.

APPENDICES

Appendix A Calculation Feed Flowrate for Steaming and Activity Testing

The temperature and vapor pressure of steaming conditions were varied from the selected nitrogen gas flow rate.

Condition	Temperature (°C)	Vapor pressure (kPa)	$\frac{N_2}{(mol \cdot h^{-1})}$	H ₂ O (mol·h ⁻¹)	WHSV (h ⁻¹)
ZP5	400	5.00	0.1087	0.0056	0.1016
ZP20	400	20.00	0.1087	0.0267	0.4813
ZP40	400	40.00	0.1087	0.0709	1.2766
ZT350	350	26.75	0.1174	0.0421	0.7583
ZT500	500	26.75	0.0946	0.0340	0.6112
ZT650	650	26.75	0.0792	0.0284	0.5118

Table A1 Calculation of water flowrate for steaming treatment

Fixed: N_2 flowrate = 100 mL·min = 6000 mL·h At 400 °C, vapor pressure 5 kPa, and operating pressure 1 atm Density of N₂ = $0.0005072 \text{ g} \cdot \text{mL}^{-1}$ = $(6000 \text{ mL} \cdot \text{h}^{-1})^{\text{x}} (0.0005072 \text{ g} \cdot \text{mL}^{-1})$ Mole of N_2 (28 g·mol^{-1}) $= 0.1087 \text{ mol} \cdot \text{h}^{-1}$ = H_2O mole + N_2 mole Total mole Mole fraction = Pressure fraction H₂O 5 kPa = $0.1087 + H_2O$ 101.3 kPa $= 0.0056 \text{ mol} \cdot \text{h}^{-1}$ H₂O $(0.0056 \text{ mol} \cdot \text{h}^{-1})^{x} (18 \text{ g} \cdot \text{mol}^{-1})$ $= 0.1016 \text{ g} \cdot \text{h}^{-1}$

0

Calculation of *n*-pentane feed flow rate at WHSV = $5 h^{-1}$

Amount of HZSM-5 catalyst = 0.20 g

WHSV = Flow rate
$$(g \cdot h^{-1})$$

Weight of catalyst
 $5 h^{-1} = Flow rate (g \cdot h^{-1})$
0.20 g
Flow rate = 1.0 g $\cdot h^{-1}$

According to *n*-pentane density is equal to 0.626 g·mL at 20 °C, 1 atm

Flow rate =
$$1.0 \text{ g} \cdot \text{h}^{-1}$$

 $0.626 \text{ g} \cdot \text{mL}$
= $1.597 \text{ mL} \cdot \text{h}^{-1}$

Calculation of light naphtha (75 %C₅ and 25 %C₆) feed flow rate at WHSV = 2 h^{-1} Amount of HZSM-5 catalyst = 0.20 g

WHSV = Flow rate
$$(g \cdot h^{-1})$$

Weight of catalyst
 $2 h^{-1} =$ Flow rate $(g \cdot h^{-1})$
0.20 g
Flow rate = 0.4 $g \cdot h^{-1}$

According to light naphtha density is equal to 0.634 g·mL at 20 °C, 1 atm

o

Flow rate = $0.4 \text{ g} \cdot \text{h}^{-1}$

$$0.634 \text{ g·mL}$$

= 0.631 mL·h⁻¹

a

Appendix B Mass Balance Calculation of CLD/Ga/Ac/ZP5 Catalyst

Condition:	Pressu	ire	=	1	atm	
	Temp	erature	=	500	°C	
	Cataly	vst amount	=	0.2	: g	
	WHS	V	=	5	h ⁻¹	
			=	Feed	flowrate / amount of catalyst	
Feed flo		lowrate	=	5 h ⁻¹ :	< 0.2 g	
			1	500 °C 0.2 : g 5 h^{-1} Feed flowrate / amount of catalyst 5 $h^{-1} \times 0.2$ g 0.1 g·h ⁻¹ 1.597 mL·h ⁻¹ 25.4 mL·min ⁻¹ 25.4 mL·min ⁻¹ × (0.001165 g·mL ⁻¹) 0.0296 g·min ⁻¹ 0.626 g·mL ⁻¹		
	At 20	°C and 1 atm, 1	he dens	ity of r	-pentane is 0.626 g·mL ⁻¹	
	tane feed rate	=	$(0.1 \text{ g} \cdot \text{h}^{-1}) / (0.626 \text{ g} \cdot \text{mL}^{-1})$			
			=	1.597	mL·h ⁻¹	
	Nitrog	gen carrier gas	=	25.4	mL·min ⁻¹	
			=	25.4 r	$nL \cdot min^{-1} \times (0.001165 \text{ g} \cdot mL^{-1})$	
			=	0.029	6 g·min ⁻¹	
Density prop	erties:	<i>n</i> -Pentane	=	0.626	g·mL ⁻¹	
		Hydrogen	=	0.000	083 g·mL ⁻¹	
		Nitrogen	=	0.001	165 g⋅mL ⁻¹	

TOS (min)	N ₂ +H ₂ +HC (mL)	N ₂ (mL)	Duration (min)	Area H ₂	H ₂ (mL)	HC (mL)
80	1924	1524	60	30722	127	273.3
140	1972	1524	60	37093	157	291.2
200	1942	1524	60	37734	157	260.9
260	1783	1524	60	34064	130	128.8

 Table B1
 Volume of product from wet test equipment

Note: The area of pulsing $H_2 \ 1 \ mL$ is equal to 466456

Example calculate at TOS = 80 min

ο

 N_2 volume = (25.4 mL·min⁻¹) × 60 min = 1524 mL

 H_2 volume = (30722/466456) × 1924 mL= 127 mL

HC volume = 1924 – 1524 – 127 = 273.3 mL

-

Table B2 Product selectivity and conversion of *n*-pentane over CLD/Ga/Ac/ZP5catalyst (Reaction condition: 500 °C, 1 atm, and WHSV = 5 h-1)

TOS (min)	80	140	200	260
Conversion	88.30	83.75	81.40	80.97
Aromatic selectivity	93.68	90.00	91.30	90.20
Light hydrocarbon selectivity	6.32	10.00	8.70	9.80
Benzene selectivity •	6.51	5.63	15.76	10.49
Toluene selectivity	52.98	44.06	45.11	45.18
Ethylbenzene selectivity	3.36	4.15	2.46	3.09
Xylene selectivity	30.83	36.16	27.96	31.44
Xylene yield	27.23	30.28	22.76	25.46
<i>p</i> -Xylene	19.57	21.28	16.46	18.55
<i>m</i> -Xylene	7.09	8.56	5.96	6.53
o-Xylene	0.57	0.44	0.34	0.37
<i>p</i> -Xylene selectivity in xylenes	71.88	70.27	72.32	72.87
Overall mass balance error (%)	2.20	1.72	2.11	2.14
Carbon balance error (%)	13.21	10.66	0.55	0.55
Hydrogen balance error (%)	29.38	24.69	0.00	0.00

Overall Balance at TOS = 80 min

1

Component	Input(g)	Component	Output(g)
<i>n</i> -Pentane	1.000	Gas Product	1.051
Nitrogen	1.785	Nitrogen	1.785
Hydrogen	0.005	Hydrogen	0.011
Total	2.785	Total	2.847

Þ

Compourd	A moc	%Area=%Wt	N/133/	Mala	$0/M_{\rm olo} = 0/V_{\rm ol}$	Vol	Mass	Wt. C	Wt. H
	Area		IVI VV	wiole	$\gamma_0 v 0 e = \gamma_0 v 0 $	(mL)	(g)	• (g)	(g)
Ethane	1	0.0000	30	0.0000	0.00	0.00	0.00	0.0000	0.0000
Ethylene	841	0.0044	28	0.0002	1.35	3.70	0.00	0.0040	0.0007
Propane	2,338	0.0121	44	0.0003	2.40	6.55	0.01	0.0105	0.0023
Propylene	2,618	0.0136	42	0.0003	2.81	7.68	0.01	0.0123	0.0021
Butane	2,710	0.0141	58	0.0002	2.11	5.76	0.01	0.0123	0.0026
Acetylene	323	0.0017	26	0.0001	0.56	1.53	0.00	0.0016	0.0001
1-Butene	779	0.0040	56	0.0001	0.63	1.71	0.00	0.0037	0.0006
i-Butene	816	0.0042	56	0.0001	0.66	1.79	0.00	0.0038.	0.0006
n-Pentane	22,560	0.1172	72	0.0016	14.13	38.61	0.12	0.1034	0.0207
Benzene	11,074	0.0575	78	0.0007	6.40	17.49	0.06	0.0562	0.0047
Toluene	90,177	0.4686	92	0.0051	44.20	120.78	0.50	0.4529	0.0431
Ethylbenzene	5,726	0.0298	106	0.0003	2.44	6.66	0.03	0.0285	0.0030
p-, m-Xylene	51,389	0.2670	106	0.0025	21.86	59.74	0.28	0.2560	0.0267
o-Xylene	1,096	0.0057	106	0.0001	0.47	1.27	0.01	0.0055	0.0006
Total	192,448	1.0000		0.0115	100.00	273.28	1.06	0.9509	0.1077

72

Component	Input(g)	Component	Output(g)
n-Pentane	1.000	Gas Product	1.055
Nitrogen	1.775	Nitrogen	1.775
Hydrogen	0.000	Hydrogen	0.013
Total	2.775	Total	2.844

10141	2.115	10121 2.0	<u> </u>					÷	
Compound	Area	%Area=%Wt	MW	Mole	%Mole = %Vol	Vol (mL)	Mass (g)	Wt. C (g)	Wt. H (g)
Methane	1,045.3	0.0049	16	0.00	2.44	7.12	0.01	0.0038	0.0013
Ethane	2,958.2	0.0139	30	0.00	3.69	10.75	0.01	0.0115	0.0029
Ethylene	4,307.6	0.0203	28	0.00	5.76	16.76	0.02	0.0180	0.0030
Propane	4,372.7	0.0206	44	0.00	3.72	10.83	0.02	0.0174	0.0039
Propylene	1,347.0	0.0063	42	0.00	1.20	3.49	0.01	0.0056	0.0009
Butane	1,831.8	0.0086	58	0.00	1.18	3.44	0.01	0.0074	0.0015
Acetylene	846.3	0.0040	26	0.00	1.22	3.55	0.00	0.0038	0.0003
1-Butene	483.8	0.0023	56	0.00	0.32	0.94	0.00	0.0020	0.0003
i-Butene	620.8	0.0029	56	0.00	0.41	1.21	0.00	0.0026	0.0004
n-Pentane	34,560.2	0.1625	72	0.00	17.96	52.31	0.17	0.1401	0.0280
Benzene	10,037.2	0.0472	78	0.00	4.82	14.02	0.05	0.0451	0.0038
Toluene	78,476.2	0.3690	92	0.00	31.92	92.95	0.38	0.3486	0.0332
Ethylbenzene	7,392.5	0.0348	106	0.00	2.61	7.60	0.04	0.0326	0.0034
<i>p</i> -, <i>m</i> -Xylene	63,467.2	0.2984	106	0.00	22.41	65.25	0.31	0.2796	0.0291
o-Xylene	939.7	0.0044	106	0.00	0.33	0.97	0.00	0.0041	0.0004
Total	212,686.5	1.0000		0.01	100.00	291.18	1.03	0.9222	0.1125

•

•

Overall Balance at TOS = 200 min

٥

Component	Input(g)	Component	Output(g)
<i>n</i> -Pentane	1.000	Gas Product	0.937
Nitrogen	1.775	Nitrogen	1.775
Hydrogen	0.000	Hydrogen	0.013
Total	2.775	Total	2.726

Compound	Area	% Area = % Wt	MW	Mole	%Mole=%Vol	Vol	Mass	Wt. C	Wt. H
			1.1.1.4.4	WIOIC		(mL)	(g)	(g)	(g)
Methane	469.5	0.24	16	0.02	1.20	3.13	0.00	0.0017	0.0006
Ethane	1,030.3	0.53	30	0.02	1.40	3.66	0.00	0.0039	0.0010
Ethylene	2,835.2	1.45	28	0.05	4.14	10.80	0.01	0.0116	0.0019
Propane	2,660.4	1.36	44	0.03	2.47	6.45	0.01	0.0104	0.0023
Propylene	4,293.9	2.20	42	0.05	4.18	10.91	0.02	0.0175	0.0029
Butane	802.7	0.41	58	0.01	0.57	1.48	0.00	0.0032	0.0007
Acetylene	768.8	0.39	26	0.02	1.21	3.15	0.00	0.0034	0.0003
1-Butene	558.5	0.29	56	0.01	0.41	1.06	0.00	0.0023	0.0004
i-Butene	391.8	0.20	56	0.00	0.29	0.75	0.00	0.0016	0.0003
n-Pentane	36,249.1	18.60	72	0.26	20.59	53.71	0.17	0.1439	0.0288
Benzene	25,010.3	12.83	78	0.16	13.11	34.21	0.12	0.1100	0.0092
Toluene	71,576.5	36.72	92	0.40	31.81	83.01	0.34	0.3113	0.0296
Ethylbenzene	3,907.1	2.00	106	0.02	1.51	3.93	0.02	0.0169	0.0018
<i>p</i> -, <i>m</i> -Xylene	43,685.6	22.41	106	0.21	16.85	43.97	0.21	0.1884	0.0196
o-Xylene	667.9	0.34	106	0.00	0.26	0.67	0.00	0.0029	0.0003
Total	194,907.6	100.00		1.25	100.00	260.90	0.93	0.8288	0.0996

.

Overall Balance at TOS = 260 min

0

Component	Input(g)	Component	Output(g)
<i>n</i> -Pentane	1.0000	Gas Product	0.9298
Nitrogen	1.7755	Nitrogen	1.7755
Hydrogen	0	Hydrogen	0.0108
Total	2.7755	Total	2.7161

¢

Compound	4 200	0/ A mag = 0/ 11/4	MW	Mala	$9/M_{olo} = 9/V_{ol}$	Vol	Mass	Wt. C	Wt. H
Compound	Area	/oArea- /o Wt.		wrote	$701 \times 1010 = 70 \times 01$	(mL)	(g)	(g)	(g)
Methane	411.4	0.21	16	0.01	1.05	1.35	0.00	0.0007	0.0002
Ethane	1,125.1	0.58	30	0.02	1.53	4.00	0.01	0.0043	0.0011
Ethylene	2,431.0	1.25	28	0.04	3.55	9.27	0.01	0.0099	0.0017
Propane	3,768.2	1.93	44	0.04	3.50	9.14	0.02	0.0147	0.0033
Propylene	3,902.2	2.00	42	0.05	3.80	9.92	0.02	0.0159	0.0027
Butane	987.2	0.51	58	0.01	0.70	1.82	0.00	0.0039	0.0008
Acetylene	1,283.7	0.66	26	0.03	2.02	5.27	0.01	0.0056	N.0005
1-Butene	720.7	0.37	56	0.01	0.53	1.37	0.00	0.0029	0.0005
i-Butene	871.0	0.45	56	0.01	0.64	1.66	0.00	0.0036	0.0006
n-Pentane	37,172.4	19.07	72	0.26	21.12	55.11	0.18	0.1476	0.0295
Benzene	16,584.7	8.51	78	0.11	8.70	22.70	0.08	0.0729	0.0061
Toluene	71,456.9	36.66	92	0.40	31.78	82.90	0.34	0.3109	0.0296
Ethylbenzene	4,888.1	2.51	106	0.02	1.89	4.92	0.02	0.0211	0.0022
<i>p</i> -, <i>m</i> -Xylene	49,003.9	25.14	106	0.24	18.91	49.34	0.23	0.2115	0.0220
o-Xylene	730.6	0.37	106	0.00	0.28	0.74	0.00	0.0032	0.0003
Total	195,337.0	100.22		1.25	100.00	259.51	0.93	0.8288	0.1010
							Y	ω. [*]	
								•	- 8 -

Appendix C The Gallium Contents Before and After Activity Testing

At atmospheric pressure, the metallic gallium is melted at 29.76 °C and vaporized at 2200 °C. The gallium has a low vapor pressure at high temperatures. During reduction, Ga₂O₃ species was converted to Ga₂O and gallium (III) hydride compounds. It was speculated that gallium (III) hydride could transform to be the metallic gallium forms resulting in vaporization of gallium metal during reaction. Therefore, the measurement of Ga species in spent catalysts will allow for the determination of Ga loss after the reaction, if any. Table A3 shows that the gallium is unchanged at 0.70 wt% after reaction at 500 °C. This result was no significant loss of trivalent element during the reaction and thermal treatments.

Table A3 The gallium content in fresh and spent CLD/Ga/Ac/ZP5 catalysts by XRF

Catalysts	SiO ₂ (wt%)	Al ₂ O ₃ (wt%)	Ga (wt%)
CLD/Ga/Ac/ZP5	92.56	6.74	0.70
Spent CLD/Ga/Ac/ZP5	93.16	6.14	0.70

υ

o

CURRICULUM VITAE

Name: Ms.Phattharanid Thanatawee

Date of Birth: October 17, 1990

Nationality: Thai

University Education:

2009–2013 Bachelor Degree of Science, Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.

Proceeding:

 Thanatawee, P.; Jongpatiwut, S.; Rirksomboon, T.; and Kitiyanan, B. (2015, April 21) Influences of Catalyst Formulation on the Catalytic Activity of Modified HZSM-5 in the Aromatization of Light Paraffins. <u>Proceeding of the 6th Research Symposium on Petrochemicals and Materials Technology and the 21st <u>PPC Symposium on Petroleum, Petrochemicals, and Polymers 2015</u>, Bangkok, Thailand.
</u>

Presentations:

- Thanatawee, P.; Jongpatiwut, S.; Rirksomboon, T.; and Kitiyanan, B. (2015, June 21-24) Mild steaming on modified HZSM-5 for the aromatization of light paraffins. Paper presented at <u>5th International Colloids Conference 2015</u>, Amsterdam, Netherlands.
- Thanatawee, P.; Jongpatiwut, S.; Rirksomboon, T.; and Kitiyanan, B. (2015, April 21) Influences of Catalyst Formulation on the Catalytic Activity of Modified HZSM-5 in the Aromatization of Light Paraffins. Paper presented at <u>The 6th Research Symposium on Petrochemicals and Materials Technology and</u>
- the 21st PPC Symposium on Petroleum, Petrochemicals, and Polymers 2015, Bangkok, Thailand.