COMPARATIVE STUDY ON THE EFFECTS OF HOLLOW SILICA AND ACTIVATED CARBON ON METHANE HYDRATE FORMATION AND DISSOCIATION

•

Rawipreeya Suesuan

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institute Francais du Petrole 2015

I 28368885

Thesis Title:	Comparative Study on the Effects of Hollow Silica and
	Activated Carbon on Methane Hydrate Formation and
	Dissociation
By:	Rawipreeya Suesuan
Program:	Petroleum Technology
Thesis Advisors:	Assoc. Prof. Pramoch Rangsunvigit
	Dr.Santi Kulprathipanja

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

Pranoel B

(Assoc. Prof. Pramoch Rangsunvigit)

Santi Kulparthir

(Dr. Santi Kulprathipanja)

B. Krtiyanan

(Asst. Prof. Boonyarach Kitiyanan)

T. Dawther

(Dr. Tanate Danuthai)

ABSTRACT

5673023063: Petroleum Technology Program Rawipreeya Suesuan: Comparative Study on the Effects of Hollow Silica and Activated Carbon on Methane Hydrate Formation and Dissociation Thesis Advisors: Assoc. Prof. Pramoch Rangsunvigit, Dr. Santi Kulprathipanja 61 pp.
Keywords: Methane storage/ Hydrate/ Hollow silica/ Activated carbon

Both hollow silica and activated carbon are attractive porous media because of their high specific area, high porosity, and high adsorption gas capacity. The methane hydrate formation and dissociation were compared between the system with hollow silica and activated carbon. The formation experiment was conducted in the quiescent condition and closed system at 8 MPa and 6 MPa and 4°C. The dissociation experiment was conducted after the formation was completed at 6.5 MPa and 5 MPa with the driving force of 21°C. Results showed that the temperature profiles and rate of methane hydrate formation between activated carbon and hollow silica systems are different. The hydrate formation at 6 MPa gave lower conversion than that at 8 MPa in the system with activated carbon, but the different of experimental pressure not effect to the conversion in hollow silica system. The methane gas recovery in the system with hollow silica is higher than the activated carbon system. Therefore, hollow silica is an effective porous media for methane hydrate formation at lower pressure and also methane recovery than the activated carbon system. It may be concluded that the type and characteristics of porous media played a significant role on the methane hydrate formation and dissociation.

O

iii

บทคัดย่อ

รวิปรียา สื่อสวน: ศึกษาการเปรียบเทียบผลของการใช้ซิลิกาแบบกลวงกับถ่านกัมมันต์ ในการเกิดมีเทนไฮเดรตและการสลายตัวของมีเทนไฮเดรต (Comparative Study on the Effects of Hollow Silica and Activated Carbon on Methane Hydrate Formation and Dissociation) อ. ที่-ปรึกษา: รศ. ดร. ปราโมช รังสรรค์วิจิตร และ ดร. สันติ กุลประทีปัญญา 61 หน้า

ซิลิกาแบบกลวง (hollow silica) และถ่านกัมมันต์ (activated carbon) เป็นวัสคุมีรูพรุนที่ ้น่าสนใจเนื่องจากมีพื้นที่ผิว ความเป็นรพรุน และความสามารถในการคคซับก๊าซที่สง ในงานวิจัย นี้ได้เปรียบเทียบการเกิดและการสลายตัวของมีเทนไฮเดรต (methane hydrate) ระหว่างระบบที่มีซิ ้ถิกาแบบกลวงกับระบบที่มีถ่านกัมมันต์ ทุดลองการเกิดของมีเทนไฮเดรตด้วยการใช้สภาวะนิ่ง และระบบปิดที่ความดัน 8 MPa และ 6 MPa ที่ 4°C การศึกษาการสลายตัวของมีเทนไฮเดรตนั้นทำ ำเล้งจากการเกิด ไฮเดรตเสร็จสิ้น โดยทำการทดลองที่ความคัน 6.5 MPa และ 5 MPa โดยมีอุณหภูมิ ขับคัน (driving force) 21°C ผลการทคลองแสดงให้เห็นว่ารูปแบบอุณหภูมิและความเร่งในการ ้เกิดของมีเทนไฮเครดในระบบที่มีซิลิกาแบบกลวงกับระบบที่มีถ่านกับมันต์นั้นแตกต่างกัน และยัง พบว่าเปอร์เซ็นต์การเกิดมีเทนไฮเดรตที่มีความดัน 6 MPa ของระบบที่มีถ่านกัมมันต์นั้นต่ำกว่า ระบบที่มีความดันที่ 8 MPa ขณะเดียวกันพบว่าความแตกต่างของความดันนั้นไม่มีผลต่อการเกิด มีเทนไฮเครตในระบบของซิลิการแบบกลวง การสลายตัวของมีเทนไฮเตรตในระบบของซิลิกา แบบกลวงให้ปริมาณก้าซมีเทนออกมามากกว่าระบบของถ่านกับมันต์ ดังนั้นซิลิกาแบบกลวงนั้น ้เป็นวัสคุรูพรุนที่มีประสิทธิกาพสำหรับการเกิดมีเทนไฮเดรตที่ความคันต่ำกว่า และยังสามารถ ้สถายตัวโดยให้ปริมาณก๊าซมีเทนที่มากกว่าระบบของถ่านกัมมันต์ ซึ่งการศึกษานี้ยังสามารถบอก ้ได้ว่าชนิดและลักษณะของวัสดุมีรูพรุนนั้นมีผลเป็นอย่างมากต่อการเกิดและสลายตัวของมีเทนไฮ-เครต

ACKNOWELEDGEMENTS

I would like to take this chance to sincerely thank my advisor, Assoc. Prof. Pramoch Rangsunvigit, for his helpful suggestions, discussions, supervision from the very early stage of this research. He also provided me unflinching encouragement, patience and support in various ways throughout my graduate thesis.

I would also like to thank my co-advisor, Dr. Santi Kulprathipanja, for his advice, guidance, and his willingness to share his bright thoughts with me, which was very helpful for shaping up my ideas and research.

I would like to thank Asst. Prof. Boonyarach Kitiyanan and Dr. Tanate Danuthai for kindly serving on my thesis committee. Their suggestions are certainly important and helpful for completion of this thesis.

This research work was partially supported by The Ratchadapisek Sompote Endowment Fund (2013), Chulalongkorn University (CU-56-900-FC) and Thailand Research Fund (IRG5780012).

This thesis work is funded by The Petroleum and Petrochemical College; and The National Center of Excellence for Petroleum, Petrochemicals and Advance Materials, Thailand.

I would like to thank the entire faculty and staff at The Petroleum and Petrochemical College, Chulalongkorn University for their kind assistance and cooperation.

I would like to thank The Carbokarn Co., Ltd. for the kind support of activated carbon.

Finally, I would like to express my sincere gratitude to thank my whole family for showing me the joy of intellectual pursuit ever since I was a child, for standing by me and for understanding every single part of my mind.

TABLE OF CONTENTS

			 PAGE
	Title Page	e	i
	Abstract	(in English)	iii
	Title Page Abstract (in English) Abstract (in Thai) Acknowledgement Table of Contents List of Tables List of Tables List of Figures TATRODUCTION I THORETICAL BACKGROUND AND LITERATURE REVIEW 2.1 Natural Gas 2.2 Natural Gas 2.2 Natural Gas Storage 2.2.1 Compressed Natural Gas (CNG) 2.2.2 Liquefied Natural Gas (LNG) 2.2.3 Adsorbed Natural Gas (LNG) 2.3.1 Types of Adsorption 2.3.2 Adsorption 2.3.1 Types of Adsorption 2.3.2 Adsorption Isotherm 2.4 Gas Hydrates 2.4.1 Formation of Gas Hydrates 2.4.2 Dissociation of Gas Hydrates 3.4.2 Dissociation of Gas Hydrates 3.4.3 Dissociation of Gas Hydrates 3.4.4 Dissociation of Gas Hydrates 3.4.4 Dissociation of Gas Hydrates 3.4.4 Dissociation of Gas Hydrates 3.4.5 Dissociation of Gas Hydrates 3.5 Experimental Procedures	iv	
		v	
		vi	
	Acknowledgement Table of Contents List of Tables List of Figures HAPTER I INTRODUCTION II THORETICAL BACKGROUND AND LITERATURE REVIEW 2.1 Natural Gas 2.2 Natural Gas Storage 2.2.1 Compressed Natural Gas (CNG) 2.2.2 Ligurafied Natural Gas (LNG)		viii
	List of Fi	gures	ix
СНА	PTER		
	I IN	TRODUCTION	1
	II T	HORETICAL BACKGROUND	
	Α	ND LITERATURE REVIEW	3
	2.	1 Natural Gas	3
	2.	2 Natural Gas Storage	3
		2.2.1 Compressed Natural Gas (CNG)	3
		2.2.2 Liquefied Natural Gas (LNG)	3
		2.2.3 Adsorbed Natural Gas (ANG)	4
	2.	3 Adsorption	4
		2.3.1 Types of Adsorption	5
		2.3.2 Adsorption Isotherm	5
	2.	4 Gas Hydrates	8
		2.4.1 Formation of Gas Hydrates	9
		2.4.2 Dissociation of Gas Hydrates	17
	III E	XPERIMENTAL	19
	3.	1 Materials and Equipments	19
	3.	2 Experimental Procedures	19
		3.2.1 Experimental Apparatus	19

		3.2.2 M	ethane Hydrate Formation	21
•		3.2.3 M	ethane Hydrate Dissociation	22
		3.2.4 Ch	aracterization	23
	IV	RESULTS A	ND DISCUSSION	25
		4.1 Effects o	f Activated Carbon	25
		4.1.1 Me	ethane Hydrate Formation	25
		4.1.2 Me	ethane Hydrate Dissociation	29
		4.2 Effects o	f Hollow silica	33
		4.2.1 Me	ethane Hydrate Formation	33
		4.2.2 Me	ethane Hydrate Dissociation	37
		4.3 Comparis	son of the Effects of Hollow Silica and	
		Activated	l Carbon	41
		4.3.1 Me	ethane Hydrate Formation	41
		4.3.2 Me	ethane Hydrate Dissociation	43
	V	CONCLUSI	ONS AND RECOMMENDATIONS	46
		REFERENC	ES	48
		APPENDIC	ES	52
		Appendix A	Calculation for the Methane Consumption	52
		Appendix B	Calculation for the Conversion of Water to	
			Hydrate	55
		Appendix C	Calculation for the Percentage of Methane	
			Recovery	56
		Appendix D	Methane Uptake Capacity	58

CIRRICULUM VITAE

LIST OF TABLES

•	TABL	Ε	PAGE
	4.1	Methane hydrate formation experimental conditions with the	
		presence of activated carbon at 4°C	26
	4.2	Methane hydrate dissociation experimental conditions in the system	
		with activated carbon with 21°C driving force	30
	4.3	Methane hydrate formation experimental conditions in the system	
		with hollow silica at 4°C	33
	4.4	Methane hydrate dissociation experimental conditions in the system	
		with hollow silica with driving force 21°C	39

•

LIST OF FIGURES

FIGURE

2.1	Type I of adsorption isotherm.	5
2.2	Type II of adsorption isotherm.	6
2.3	Type III of adsorption isotherm.	6
2.4	Type IV of adsorption isotherm.	7
2.5	Type V of adsorption isotherm.	7
2.6	Structure types of gas hydrates.	8
2.7	Crystal structure of methane hydrates.	9
2.8	Effect of water content on the storage of methane gas	
	in activated carbon.	10
2.9	Temperature-pressure behavior of methane hydrate formation	
	and dissociation in distilled water.	12
2.10	Phase behavior of water/hydrocarbon system.	12
2.11	Equilibrium curve of 0.004 wt% multi-walled carbon nanotubes	
	and pure water.	14
2.12	The pressure and temperature in methane hydrate systems.	
	Curve A is with pure system, while Curve B is for nano silica	
	suspension system in two freezing-thawing cycles.	14
2.13	Hydrate phase equilibrium of natural gas hydrates in porous	
	silica gels.	16
2.14	Gas hydrates yields at different pressures in methane-water-silica	
	system.	17
3.1	Schematic diagram of experimental apparatus.	20
3.2	Cross-section of a crystallizer.	21
4.1	Gas uptake and temperature profiles during the methane hydrate	
	formation of the AC/H ₂ O/CH ₄ system at 8 MPa and 4° C	
	(Experiment 3, Table 4.1).	27

0

PAGE

FIGURE

4.2	Gas uptake and temperature profiles during the methane hydrate	
	formation of the AC/H2O/CH4 system at 6 MPa and 4°C	
	(Experiment 4, Table 4.1).	28
4.3	Comparison of hydrate growth during the methane hydrate	
	formation in the system of $AC/H_2O/CH_4$ at 8 MPa and 6 MPa	
	at 4°C (Experiment 3 and 4, respectively, Table 4.1). Time zero in	
	the figure corresponds to the first point of hydrate growth.	29
4.4	Methane released and temperature profiles in the system of	
	AC/H ₂ O/CH ₄ at 6.5 MPa, and temperature driving force = 21° C	
	(Experiment 3, Table 4.2).	31
4.5	Methane released and temperature profiles in the system of	
	AC/H ₂ O/CH ₄ at 5 MPa, and temperature driving force = 21° C	
	(Experiment 4, Table 4.2).	31
4.6	Comparison of gas released during the methane hydrate	
	dissociation in the system of AC/H ₂ O/CH ₄ at 6.5 MPa and 5 MPa,	
	and temperature driving force = 21° C (Experiment 3 and 4,	
	respectively, Table 4.2). Time zero in the figure <i>a</i> orresponds to	
	the first point of hydrate growth.	32
4.7	Gas uptake and temperature profiles during the methane hydrate	
	formation of the $HS/H_2O/CH_4$ system at 8 MPa and 4°C	
	(Experiment 8, Table 4.3).	34
4.8	Gas uptake and temperature profiles during the methane hydrate	
	formation of the $HS/H_2O/CH_4$ system at 8 MPa and 4°C	
	(Experiment 12, Table 4.3).	35
4.9	Morphology of hollow silica by scanning electron microscope	
	(SEM) (a) Particle of hollow silica in different sizes, (b) Breakage	
	hollow silica.	36
4.10	Particles of hollow silica by transmission electron microscope	
	(TEM)	36

FIGURE PAGE 4.11 Comparison of hydrate growth during the methane hydrate formation in the system of the HS/H₂O/CH₄ at the 8 MPa and 6 MPa at 4°C (Experiment 8 and 12 respectively, Table 4.3) Time zero in the figure corresponds to the first point of hydrate 37 growth. 4.12 Methane released and temperature profiles in the system of the $HS/H_2O/CH_4$ at 6.5 MPa, and temperature driving force = 21°C (Experiment 8, Table 4.4). 39 4.13 Methane released and temperature profiles in the system of the HS/H₂O/CH₄ at experimental pressure of 5 MPa, and temperature driving force = 21°C (Experiment 12, Table 4.4). 40 4.14 Comparison of the methane released during the methane hydrate dissociation in the system of the HS/H₂O/CH₄ at 6.5 MPa and 5 MPa and temperature driving force = 21° C (Experiment 2) and 6, respectively, Table 4.4). Time zero in the figure 41 corresponds to the first point of hydrate released. 4.15 Comparison of gas uptake during the methane hydrate formation in the system of the HS/H₂O/CH₄ and AC/H₂O/CH₄ at 8 MPa and 6 MPa. Time zero in the figure corresponds to the first point of hydrate growth. 42 4.16 Comparison of the methane released during the methane hydrate dissociation in the system of the HS/H₂O/CH₄ and AC/H₂O/CH₄ at 6.5 MPa and 5 MPa (temperature driving force = 21° C). Time zero in the figure corresponds to the first point of hydrate released. 44 4.17 Methane hydrate phase equilibrium points of methane hydrate of the $HS/H_2O/CH_4$ and $AC/H_2O/CH_4$ and pure water system. 45 Dl Comparison of gas uptake during the methane hydrate formation in the systems of HS/H₂O/CH₄ at 8 MPa and 6 MPa. Time zero in the figure corresponds to the first point of hydrate growth. 58

0

xi

FIGURE

PAGE

D2	Comparison of gas uptake during the methane hydrate formation	
	in the systems of HS/H ₂ O/CH ₄ at 8 MPa and 6 MPa. Time zero in	
	the figure corresponds to the first point of hydrate growth.	59
D3	Comparison of gas uptake during the methane hydrate formation	
	in the systems of $HS/H_2O/CH_4$ at 8 MPa and 6 MPa. Time zero in	
	the figure corresponds to the first point of hydrate growth.	60

.