สารยับยั้งไทโรซิเนสจากเปลือกต้นละมุคสีคา Manilkara kauki (L.) Dubard




# จุหาลงกรณ์มหาวิทยาลัย

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีชีวภาพ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2560 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

## TYROSINASE INHIBITORS FROM BARK OF TALAWRINTA (Manilkara kauki (L.) Dubard)



A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Biotechnology Faculty of Science Chulalongkorn University Academic Year 2017 Copyright of Chulalongkorn University

| Thesis Title   | TYROSINASE INHIBITORS FROM BARK OF<br>TALAWRINTA (Manilkara kauki (L.) Dubard) |  |  |
|----------------|--------------------------------------------------------------------------------|--|--|
| Ву             | Miss Sirinada Srisupap                                                         |  |  |
| Field of Study | Biotechnology                                                                  |  |  |
| Thesis Advisor | Assistant Professor Chanya Chaicharoenpong, Ph.D.                              |  |  |

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

| <br>Dean | of the | Faculty | of | Science |
|----------|--------|---------|----|---------|
|          |        |         |    |         |
|          |        |         |    |         |

(Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

Chairman

(Associate Professor Nattaya Ngamrojanavanich, Ph.D.)

\_\_\_\_\_Thesis Advisor

(Assistant Professor Chanya Chaicharoenpong, Ph.D.)

Examiner

(Associate Professor Preecha Phuwapraisirisan, Ph.D.)

\_\_\_\_\_External Examiner

(Damrong Sommit, Ph.D.)

จุฬาลงกรณ์มหาวิทยาลัย

**Chulalongkorn University** 

สรินดา ศรีสุภาพ : สารยับยั้งไทโรซิเนสจากเปลือกต้นละมุคสีดา *Manilkara kauki* (L.) Dubard (TYROSINASE INHIBITORS FROM BARK OF TALAWRINTA (*Manilkara kauki* (L.) Dubard)) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ผศ. คร.จรรยา ชัยเจริญพงศ์, 128 หน้า.

้เมลานินคือสารจำเป็นสำหรับการปกป้องผิวหนังของมนุษย์จากรังสีอัลตราไวโอเลต อย่างไรก็ ้ตามการผลิตเมลานินที่มากเกินไปในชั้นผิวหนังกำพร้านำไปสู่ความผิดปกติของการผลิตเม็ดสีมากเกินไป เช่น ฝ้า กระ และจุดค่างคำ ไทโรซิเนสคือหนึ่งในเอนไซม์หลักของกระบวนการผลิตเม็คสี ละมุคสีคา (Manilkara kauki (L.) Dubard) เป็นหนึ่งในพืชสกุล Manilkara ของวงศ์พิกุล การศึกษานี้พยายามที่จะ ตรวจสอบหาปริมาณฟีนอลิกทั้งหมด ปริมาณฟลาโวนอยค์ทั้งหมด ถทธิ์ต้านอนมลอิสระ และถทธิ์ต้านไท ้โรซิเนสในระดับหลอดทคลองของส่วนต่างๆ ของต้นละมดสีดา และแยกสารต้านไทโรซิเนสจากเปลือก ต้นละมุคสีคา ส่วนสกัดหยาบเมทานอล และน้ำของผล ใบ เมล็ค เปลือก ไม้ และเนื้อ ไม้ของละมุคสีคา ถูก นำมาประเมินผลปริมาณฟีนอลิกทั้งหมด ปริมาณฟลาโวนอยค์ทั้งหมด ฤทธิ์ต้านอนุมูลอิสระ และฤทธิ์ต้าน ไทโรซิเนส เปลือกไม้ของต้นละมคสีคาแสคงปริมาณฟีนอลิกทั้งหมค ปริมาณฟลาโวนอยค์ทั้งหมคใน ปริมาณสูง และแสคงฤทธิ์ต้านอนุมูลอิสระสูง ส่วนสกัดหยาบเมทานอลของเปลือกไม้ของต้นละมุคสีดา แสดงฤทธิ์ต้านไทโรซิเนสสูงที่สุด (IC<sub>50</sub> 0.26  $\pm$  0.05 mg/mL) ดังนั้นเปลือกไม้ของต้นละมุดสีดาถูกนำมา สกัคด้วย นอร์มัล-เฮกเซน เอทิลแอซิเทต เมทานอล และน้ำ ตามลำดับ ทั้งส่วนสกัดหยาบเอทิลแอซิเทต และ เมทานอลจากเปลือกไม้แสดงปริมาณสารประกอบฟีนอลิก และฟลา โวนอยค์สง และฤทธิ์ต้านอนมลอิสระ ้สูง นอกจากนี้ส่วนสกัคหยาบเอทิลแอซิเทตของเปลือกไม้แสดงฤทธิ์ต้านไทโรซิเนสสูงกว่าส่วนสกัคหยาบ นอร์มัล-เฮกเซน เมทานอล และน้ำค้วยค่า IC $_{50}$  0.24  $\pm$  0.02 และ 0.28  $\pm$  0.04 mg/mL สำหรับแอล-ไทโร ซีน และแอล-โคพา เป็นสารตั้งต้นตามลำคับ ดังนั้นส่วนสกัดหยาบเอทิลแอซิเทตถูกนำมาแยกและทำให้ บริสุทธิ์ ได้สาร I คือ taraxerol และสาร II คือ dihydrokaempferol สาร I แสดงฤทธิ์ต้านไทโรซิเนส ด้วยค่า IC<sub>50</sub> 2.32 ± 0.06 และ 2.65 ± 0.03 mM สำหรับแอล-ไทโรซีน และแอล-โคพาเป็นสารตั้งต้น ตามถำดับ สาร II แสดงฤทธิ์ต้านไทโรซิเนสด้วยค่า IC $_{50}$  1.15  $\pm$  0.06 และ 1.74  $\pm$  0.05 mM สำหรับแอล-้ ใทโรซีน และแอล-โคพา เป็นสารตั้งต้นตามลำคับ สาร I และสาร II แสคงฤทธิ์ต้านโทโรซิเนสต่ำกว่ากรค ์ โคจิก แต่สาร I และสาร II แสดงฤทธิ์ต้านโทโรซิเนสสูงกว่าอัลฟา-อาร์บูทิน จากผลการทดลองนี้แนะนำ ้ว่าส่วนสกัดหยาบเอทิลแอซิเทตของเปลือกต้นละมุดสีดากวรตรวจสอบฤทธิ์ทางชีวภาพอื่นๆเพิ่มเติม เช่น ฤทธิ์ต้านการแพ้ ความเป็นพิษต่อเซลล์ และฤทธิ์ต้านไทโรซิเนสในสิ่งมีชีวิตเพื่อประเมินผลส่วนสกัค หยาบนี้ก่อนที่จะนำไปใช้เป็นส่วนประกอบที่มีศักยภาพในเครื่องสำอางที่ทำให้ผิวขาว

| สาขาวิชา   | เทคโนโลยีชีวภาพ | ลายมือชื่อนิสิต            |
|------------|-----------------|----------------------------|
| ปีการศึกษา | 2560            | ลายมือชื่อ อ.ที่ปรึกษาหลัก |

#### # # 5772289023 : MAJOR BIOTECHNOLOGY

### KEYWORDS: MANILKARA KAUKI (L.) DUBARD / ANTIOXIDANT ACTIVITY / TYROSINASE INHIBITORY ACTIVITY

SIRINADA SRISUPAP: TYROSINASE INHIBITORS FROM BARK OF TALAWRINTA (*Manilkara kauki* (L.) Dubard). ADVISOR: ASST. PROF. CHANYA CHAICHAROENPONG, Ph.D., 128 pp.

Melanin is essential for protecting human skin from ultraviolet radiation However, its overproduction in the basal epithelial layer leads to hyperpigmentary disorders of the skin such as melasma, blemish and age spots. Tyrosinase is one of key enzymes in melanogenesis. Manilkara kauki (L.) Dubard or Talawrinta is one of the plants in genus Manilkara of Sapotaceae family. This study attempted to investigate in vitro total phenolic and flavonoid contents, antioxidant and tyrosinase inhibitory activities of crude extract of different parts of *M kauki* and purify tyrosinase inhibitors from stem barks of *M. kauki*. Methanol and aqueous crude extracts of fruits, leaves, seeds, stem barks and woods of *M* kauki evaluated on their total phenolic and flavonoid contents, antioxidant and tyrosinase inhibitory activities. Stem barks of M. kauki showed high amount of total phenolic and flavonoid contents and strong antioxidant activity. Methanol crude extracts of stem barks exhibited the highest tyrosinase inhibitory activity (IC<sub>50</sub> value of  $0.26 \pm 0.05$  mg/mL). Thus, stem barks of *M. kauki* was extracted with n-hexane, ethyl acetate, methanol and water, respectively. Both of ethyl acetate and methanol crude extracts of stem barks exhibited high amount of phenolic compounds and flavonoids and strong antioxidant activity. Furthermore, ethyl acetate crude extract of stem bark exhibited higher tyrosinase inhibitory activity than n-hexane, methanol and aqueous crude extracts with IC<sub>50</sub> values of  $0.24 \pm 0.02$  and  $0.28 \pm 0.04$  mg/mL for L-tyrosine and L-DOPA as substrates, respectively. Thus, ethyl acetate crude extract was further isolated and purified to afford compound I as taraxerol and compound II as dihydrokaempferol. Compound I exhibited tyrosinase inhibitory activity with IC<sub>50</sub> values of 2.32  $\pm$ 0.06 and 2.65  $\pm$  0.03 mM for L-tyrosine and L-DOPA as substrates, respectively. Compound II exhibited tyrosinase inhibitory activity with IC<sub>50</sub> values of  $1.15 \pm 0.06$  and  $1.74 \pm 0.05$  mM for *L*-tyrosine and *L*-DOPA as substrates, respectively. Compounds I and II showed lower tyrosinase inhibitory activity than kojic acid but they were exhibited higher tyrosinase inhibitory activity than  $\alpha$ -arbutin. These results suggested that ethyl acetate crude extract of stem barks of *M. kauki* should be further investigated for others biological activities including anti-allergic, cytotoxicity and in vivo tyrosinase inhibitory activities to evaluate it before using as a potential ingredient in whitening cosmetics.

Academic Year: 2017

Field of Study: Biotechnology

Student's Signature \_\_\_\_\_\_Advisor's Signature \_\_\_\_\_\_

#### **ACKNOWLEDGEMENTS**

I would like to express my gratitude to my thesis advisor, Assistant Professor Dr. Chanya Chaicharoenpong for guidance, valuable suggestions and special support in correcting and criticizing all of this study.

I would like to express my sincere thanks to my examination committees, Associate Professor Dr. Nattaya Ngamrojanavanich, Associate Professor Dr. Preecha Phuwapraisirisan and Dr. Damrong Sommit for their useful advice and careful reviewing of this thesis.

I would like to express my thanks to Graduate School, Chulalongkorn University for financial support.

Furthermore, I would like to thanks Institute of Biotechnology and Genetic Engineering, all members of laboratory room no. 604 and all of my friends. Finally, I would especially like to thank my family for supporting me, always beside me and their love through my thesis work.

### CONTENTS

|                                                                  | Page |
|------------------------------------------------------------------|------|
| THAI ABSTRACT                                                    | U    |
| ENGLISH ABSTRACT                                                 | V    |
| ACKNOWLEDGEMENTS                                                 | vi   |
| CONTENTS                                                         | vii  |
| LIST OF TABLES                                                   | X    |
| LIST OF FIGURES                                                  | xiv  |
| LIST OF ABBREVIATIONS                                            |      |
| CHAPTER I INTRODUCTION                                           | 1    |
| CHAPTER II THEORITICAL                                           |      |
| 2.1 Melanin synthesis                                            | 3    |
| 2.2 Manilkara kauki (L.) Dubard                                  | 4    |
| 2.3 Literature reviews                                           | 5    |
| 2.3.1 Biological activities of Sapotaceae family                 | 5    |
| 2.3.2 Summary of tyrosinase inhibitors of Sapotaceae family      | 30   |
| CHAPTER III MATERIALS AND METHODS                                | 36   |
| 3.1 Plant materials                                              | 36   |
| 3.2 Reagents                                                     | 36   |
| 3.3 General techniques and procedures                            | 36   |
| 3.3.1 Thin layer chromatography (TLC)                            | 36   |
| 3.3.2 Preparative thin layer chromatography (PTLC)               | 36   |
| 3.3.3 Column chromatography (CC)                                 | 37   |
| 3.3.4 Medium pressure liquid chromatography (MPLC)               | 37   |
| 3.3.5 Hot air oven                                               | 37   |
| 3.3.6 Vacuum rotary evaporator                                   | 37   |
| 3.3.7 Melting point apparatus                                    | 37   |
| 3.3.8 UV-Visible spectrophotometry                               | 37   |
| 3.3.9 Nuclear magnetic resonance (NMR) spectroscopy              | 38   |
| 3.3.10 High resolution electrospray ionization mass spectroscopy |      |

|                                                                                   | Page |
|-----------------------------------------------------------------------------------|------|
| 3.4 Methods                                                                       | 38   |
| 3.4.1 Extraction                                                                  | 38   |
| 3.4.1.1 Preparation of crude extracts of different parts of M. kauki              | 38   |
| 3.4.1.2 Preparation of crude extracts of stem barks of <i>M. kauki</i>            | 39   |
| 3.4.2 Phytochemical analysis                                                      | 40   |
| 3.4.2.1 Total phenolic content                                                    | 40   |
| 3.4.2.2 Total flavonoid content                                                   | 40   |
| 3.4.3 Biological activity assays                                                  | 40   |
| 3.4.3.1 Antioxidant activity assays                                               | 40   |
| 3.4.3.1.1 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay                              | 40   |
| 3.4.3.1.2 The ferric reducing antioxidant power (FRAP) assay.                     | 41   |
| 3.4.3.2 Tyrosinase inhibitory assay                                               | 41   |
| 3.4.3.3 Determination of $IC_{50}$ for tyrosinase inhibitory activity             | 42   |
| 3.4.4 Separation of ethyl acetate crude extract of stem barks of <i>M. kauki</i>  | 42   |
| CHAPTER IV RESULTS AND DISCUSSION                                                 |      |
| 4.1 Extraction of different parts of <i>M. kauki</i>                              | 57   |
| 4.2 Phytochemical compositions of different parts of <i>M. kauki</i>              | 57   |
| 4.2.1 Total phenolic content                                                      | 57   |
| 4.2.2 Total flavonoid content                                                     | 58   |
| 4.3 Biological activities of different parts of <i>M. kauki</i>                   | 59   |
| 4.3.1 Antioxidant activities                                                      | 59   |
| 4.3.1.1 DPPH radical scavenging activity                                          | 59   |
| 4.3.1.2 FRAP activity                                                             | 60   |
| 4.3.2 Tyrosinase inhibitory activity                                              | 61   |
| 4.4 Extraction of stem barks of <i>M. kauki</i>                                   | 62   |
| 4.5 Phytochemical compositions of crude extracts of stem barks of <i>M. kauki</i> | 63   |
| 4.5.1 Total phenolic content                                                      | 63   |
| 4.5.2 Total flavonoid content                                                     | 63   |

| Page |
|------|
|------|

ix

| 4.6 Biological activities of crude extracts of stem barks of <i>M. kauki</i>                          | 64  |
|-------------------------------------------------------------------------------------------------------|-----|
| 4.6.1 Antioxidant activities                                                                          | 64  |
| 4.6.1.1 DPPH radical scavenging activity                                                              | 64  |
| 4.6.1.2 FRAP activity                                                                                 | 64  |
| 4.6.2 Tyrosinase inhibitory activity                                                                  | 64  |
| 4.7 Isolation of ethyl acetate crude extract of stem barks of <i>M. kauki</i>                         | 65  |
| 4.8 Elucidation of isolated compounds of ethyl acetate crude extract of stem barks of <i>M. kauki</i> | 84  |
| 4.8.1 Compound I                                                                                      |     |
| 4.8.2 Compound II.                                                                                    | 87  |
| 4.9 Tyrosinase inhibitory activity of isolated compounds                                              | 90  |
| CHAPTER V CONCLUSION                                                                                  | 93  |
| REFERENCES                                                                                            | 96  |
| APPENDIX                                                                                              | 105 |
| VITA                                                                                                  | 128 |
|                                                                                                       |     |

**CHULALONGKORN UNIVERSITY** 

### LIST OF TABLES

|            |                                                                                                                                 | -           |
|------------|---------------------------------------------------------------------------------------------------------------------------------|-------------|
| Table 2.1  | The summary of biological activities of Sapotaceae family                                                                       | 6           |
| Table 2.2  | The isolated compounds of Sapotaceae family                                                                                     | 9           |
| Table 2.3  | The summary of tyrosinase inhibitors from Sapotaceae family                                                                     | 31          |
| Table 4.1  | Characteristic and percentage yield of methanol crude extracts of different parts of <i>M. kauki</i>                            | <u>57</u>   |
| Table 4.2  | Characteristic and percentage yield of aqueous crude extracts of different parts of <i>M. kauki</i>                             | <u>57</u>   |
| Table 4.3  | Total phenolic content of methanol and aqueous crude extracts of different parts of <i>M. kauki</i>                             | <u>58</u>   |
| Table 4.4  | Total flavonoid contents of methanol and aqueous crude extracts of different parts of <i>M. kauki</i>                           | <u>59</u>   |
| Table 4.5  | DPPH radical scavenging activity of methanol and aqueous crude extracts of different parts of <i>M. kauki</i>                   | <u>60</u>   |
| Table 4.6  | FRAP activity of methanol and aqueous crude extracts of different parts of <i>M. kauki</i>                                      | <u>61</u>   |
| Table 4.7  | Tyrosinase inhibitory activity (IC <sub>50</sub> ) of methanol and aqueous crude extracts of different parts of <i>M. kauki</i> | <u>62</u>   |
| Table 4.8  | Characteristic and percentage yield of crude extracts of stem barks of <i>M. kauki</i>                                          | of<br>_63   |
| Table 4.9  | Phytochemical composition of crude extracts of stem barks of <i>M. kauki</i>                                                    | <u>_</u> 64 |
| Table 4.10 | Antioxidant activities of stem barks of <i>M. kauki</i>                                                                         | <u>6</u> 4  |
| Table 4.11 | Tyrosinase inhibitory activity of stem barks of <i>M. kauki</i>                                                                 | 65          |
| Table 4.12 | Isolation and tyrosinase inhibitory activity of fraction E                                                                      | 66          |
| Table 4.13 | Isolation and tyrosinase inhibitory activity of fraction E1                                                                     | 67          |
| Table 4.14 | Isolation and tyrosinase inhibitory activity of fraction E1B                                                                    | <u>67</u>   |
| Table 4.15 | Isolation of fraction E1BC                                                                                                      | <u>68</u>   |

| <b>Table 4.16</b> | Isolation of fraction E1BC2                                  | <u>68</u> |
|-------------------|--------------------------------------------------------------|-----------|
| <b>Table 4.17</b> | Isolation of fraction E1BC2C                                 | 68        |
| <b>Table 4.18</b> | Isolation of fraction E1BC2C2                                | <u>69</u> |
| <b>Table 4.19</b> | Isolation of fraction E1C                                    | <u>69</u> |
| <b>Table 4.20</b> | Isolation of fraction E1CG                                   | <u>69</u> |
| <b>Table 4.21</b> | Isolation and tyrosinase inhibitory activity of fraction E1D | 70        |
| <b>Table 4.22</b> | Isolation of fraction E1DI                                   |           |
| <b>Table 4.23</b> | Isolation of fraction E1DID                                  | 71        |
| <b>Table 4.24</b> | Isolation of fraction E1E                                    | 71        |
| <b>Table 4.25</b> | Isolation of fraction E1EE                                   |           |
| <b>Table 4.26</b> | Isolation of fraction E1EF4                                  | 71        |
| <b>Table 4.27</b> | Isolation of fraction E1EF4B                                 | 72        |
| <b>Table 4.28</b> | Isolation of fraction E1F                                    |           |
| <b>Table 4.29</b> | Isolation of fraction E1H                                    | 72        |
| <b>Table 4.30</b> | Isolation of fraction E1HA                                   |           |
| <b>Table 4.31</b> | Isolation of fraction E1HB                                   | 73        |
| <b>Table 4.32</b> | Isolation of fraction E1HC                                   | 73        |
| <b>Table 4.33</b> | Isolation of fraction E1HC4                                  | 74        |
| <b>Table 4.34</b> | Isolation of fraction E1HE                                   | 74        |
| Table 4.35        | Isolation and tyrosinase inhibitory activity of fraction E11 | 74        |
| <b>Table 4.36</b> | Isolation of fraction E1IC                                   | 75        |
| <b>Table 4.37</b> | Isolation and tyrosinase inhibitory activity of fraction E2  | 75        |
| <b>Table 4.38</b> | Isolation of fraction E2A                                    | 76        |
| <b>Table 4.39</b> | Isolation of fraction E2AD                                   | 76        |
| <b>Table 4.40</b> | Isolation of fraction E2AE                                   | 76        |

| Table 4.41        | Isolation of fraction E2B                                                               | 77                                            |
|-------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------|
| <b>Table 4.42</b> | Isolation of fraction E2BD                                                              | 77                                            |
| Table 4.43        | Isolation of fraction E2BE                                                              | 77                                            |
| Table 4.44        | Isolation of fraction E2BE1                                                             | 78                                            |
| Table 4.45        | Isolation of fraction E2C                                                               | 78                                            |
| Table 4.46        | Isolation of fraction E2CC                                                              | 78                                            |
| <b>Table 4.47</b> | Isolation of fraction E2CC4                                                             | <u>79</u>                                     |
| Table 4.48        | Isolation of fraction E2CE                                                              | <u>79</u>                                     |
| Table 4.49        | Isolation of fraction E2CF                                                              | <u>79</u>                                     |
| Table 4.50        | Isolation of fraction E2D                                                               |                                               |
| Table 4.51        | Isolation of fraction E2DC                                                              |                                               |
| Table 4.52        | Isolation of fraction E2DC4                                                             |                                               |
| Table 4.53        | Isolation of fraction E2DC5                                                             |                                               |
| Table 4.54        | Isolation of fraction E2DC5C                                                            | <u>81</u>                                     |
| Table 4.55        | Isolation of fraction E2E                                                               |                                               |
| Table 4.56        | Isolation of fraction E2ED                                                              | <u>81</u>                                     |
| Table 4.57        | Isolation of fraction E2EE                                                              |                                               |
| Table 4.58        | Isolation of fraction E2EF                                                              |                                               |
| Table 4.59        | Isolation of fraction E2F                                                               |                                               |
| Table 4.60        | Isolation and tyrosinase inhibitory activity of fraction E3                             |                                               |
| Table 4.61        | Isolation of fraction E3B                                                               | 83                                            |
| <b>Table 4.62</b> | Isolation of fraction E3BB                                                              |                                               |
| Table 4.63        | Comparison of <sup>1</sup> H and <sup>13</sup> C NMR of compound <b>I</b> and taraxerol | <u>        86                            </u> |

| <b>Table 4.64</b> | Comparison of <sup>1</sup> H and <sup>13</sup> C NMR of compound <b>II</b> and dihydrokaempferol | 88        |
|-------------------|--------------------------------------------------------------------------------------------------|-----------|
| <b>Table 4.65</b> | Tyrosinase inhibitory activity values of isolated compounds of stem barks of <i>M. kauki</i>     | <u>91</u> |
| Table A           | Serial dilutions of gallic acid equivalent                                                       | 106       |
| Table B           | Serial dilutions of quercetin equivalent                                                         | 107       |
| Table C           | Serial dilutions of trolox equivalent                                                            | 108       |



CHULALONGKORN UNIVERSITY

## LIST OF FIGURES

| Figure 1  | The skin structure                                                   | 3         |
|-----------|----------------------------------------------------------------------|-----------|
| Figure 2  | The Melanin biosynthesis pathway                                     | 4         |
| Figure 3  | (a) The leaves (b) the fruits and (c) whole plant of <i>M. kauki</i> | 5         |
| Figure 4  | Chemical structure of isolated compounds of Sapotaceae family        | 11        |
| Figure 5  | Chemical structure of tyrosinase inhibitors of Sapotaceae family     | 32        |
| Figure 6  | Extraction procedure of different parts of <i>M. kauki</i>           | 38        |
| Figure 7  | Extraction procedure of stem barks of <i>M. kauki</i>                | 39        |
| Figure 8  | Isolation procedure of ethyl acetate crude extract (E)               | 42        |
| Figure 9  | Isolation procedure of fraction E1                                   | 43        |
| Figure 10 | Isolation procedure of fraction E1B                                  | 44        |
| Figure 11 | Isolation procedure of fraction E1C                                  | 45        |
| Figure 12 | Isolation procedure of fraction E1D                                  | 46        |
| Figure 13 | Isolation procedure of fraction E1E                                  | 47        |
| Figure 14 | Isolation procedure of fraction E1F                                  | 47        |
| Figure 15 | Isolation procedure of fractions E1H, E1HA and E1HB                  | 48        |
| Figure 16 | Isolation procedure of fractions E1HC and E1HE                       | 49        |
| Figure 17 | Isolation procedure of fraction E1I                                  | 49        |
| Figure 18 | Isolation procedure of fraction E2                                   | <u>50</u> |
| Figure 19 | Isolation procedure of fraction E2A                                  | <u>50</u> |
| Figure 20 | Isolation procedure of fraction E2B                                  | 51        |
| Figure 21 | Isolation procedure of fractions E2C, E2CC and E2CE                  | 52        |
| Figure 22 | Isolation procedure of fraction E2CF                                 | <u>53</u> |
| Figure 23 | Isolation procedure of fraction E2D                                  | <u>54</u> |
| Figure 24 | Isolation procedure of fraction E2E                                  | <u>55</u> |

| Figure 25 | Isolation procedure of fraction E2F                                                                                | <u>55</u>  |
|-----------|--------------------------------------------------------------------------------------------------------------------|------------|
| Figure 26 | Isolation procedure of fraction E3                                                                                 | 56         |
| Figure 27 | The summary of isolation of ethyl acetate crude extract of bark of <i>M. kauki</i>                                 |            |
| Figure 28 | HMBC correlation of taraxerol (compound I)                                                                         | <u> </u>   |
| Figure 29 | The structure of compound <b>I</b>                                                                                 |            |
| Figure 30 | HMBC correlation of dihydrokaempferol (compound II)                                                                | <u></u> 89 |
| Figure 31 | The structure of compound <b>II</b>                                                                                | <u>90 </u> |
| Figure 32 | Calibration plots of tyrosinase inhibitory activity of compounds <b>II</b> using <i>L</i> -tyrosine as a substrate |            |
| Figure 33 | Calibration plots of tyrosinase inhibitory activity of compounds <b>II</b> using <i>L</i> -DOPA as a substrate     |            |
| Figure 34 | Standard curve of total phenolic content                                                                           | 109        |
| Figure 35 | Standard curve of total flavonoid content                                                                          | 109        |
| Figure 36 | Standard curve of DPPH radical scavenging assay                                                                    | 110        |
| Figure 37 | Standard curve of FRAP assay                                                                                       | 110        |
| Figure 38 | <sup>1</sup> H-NMR spectrum (CDCl <sub>3</sub> ) of compound <b>I</b>                                              |            |
| Figure 39 | <sup>13</sup> C-NMR spectrum (CDCl <sub>3</sub> ) of compound I                                                    | 112        |
| Figure 40 | DEPT90 spectrum (CDCl <sub>3</sub> ) of compound <b>I</b>                                                          | 113        |
| Figure 41 | DEPT135 spectrum (CDCl <sub>3</sub> ) of compound I                                                                | 114        |
| Figure 42 | HSQC spectrum (CDCl <sub>3</sub> ) of compound <b>I</b>                                                            | 115        |
| Figure 43 | HMBC spectrum (CDCl <sub>3</sub> ) of compound <b>I</b>                                                            | 116        |
| Figure 44 | COSY spectrum (CDCl <sub>3</sub> ) of compound I                                                                   | 117        |
| Figure 45 | NOESY spectrum (CDCl <sub>3</sub> ) of compound I                                                                  | 118        |
| Figure 46 | HR-ESI-MS spectrum of compound I                                                                                   | 119        |
| Figure 47 | <sup>1</sup> H-NMR spectrum (CD <sub>3</sub> COCD <sub>3</sub> ) of compound <b>II</b>                             | 120        |

| Figure 48 | <sup>13</sup> C-NMR spectrum (CD <sub>3</sub> COCD <sub>3</sub> ) of compound <b>II</b> |  |
|-----------|-----------------------------------------------------------------------------------------|--|
| Figure 49 | DEPT90 spectrum (CD <sub>3</sub> COCD <sub>3</sub> ) of compound II                     |  |
| Figure 50 | DEPT135 spectrum (CD <sub>3</sub> COCD <sub>3</sub> ) of compound <b>II</b>             |  |
| Figure 51 | HSQC spectrum (CD <sub>3</sub> COCD <sub>3</sub> ) of compound <b>II</b>                |  |
| Figure 52 | HMBC spectrum (CD <sub>3</sub> COCD <sub>3</sub> ) of compound <b>II</b>                |  |
| Figure 53 | COSY spectrum (CD <sub>3</sub> COCD <sub>3</sub> ) of compound II                       |  |
| Figure 54 | HR-ESI-MS spectrum of compound II                                                       |  |



CHULALONGKORN UNIVERSITY

## LIST OF ABBREVIATIONS

| δ                   | Chemicals shift                                           |
|---------------------|-----------------------------------------------------------|
| °C                  | Degree celsius                                            |
| %                   | Percentage                                                |
| μg                  | Microgram                                                 |
| μL                  | Microliter                                                |
| μm                  | Micrometer                                                |
| μM                  | Micromolar                                                |
| Abs                 | Absorbance                                                |
| ABTS                | 2,2'-Azino-bis (3-ethylbenzthiazoline-6-sulphonic acid)   |
| CDCl <sub>3</sub>   | Deuterated chloroform                                     |
| CD <sub>3</sub> OD  | Deuterated methanol                                       |
| cm                  | Centimeter                                                |
| $cm^{-1}$           | Reciprocal centimeter                                     |
| <sup>13</sup> C-NMR | Carbon nuclear magnetic resonance spectroscopy            |
| COSY                | Homonuclear correlation spectroscopy                      |
| CC                  | Column chromatography                                     |
| d                   | Doublet (for NMR spectra)                                 |
| dd                  | Doublet of doublet (for NMR spectra)                      |
| DEPT                | Distrotionless enhancement by polarization transfer       |
| DHI                 | 5,6-dihydroxyindole                                       |
| DHICA               | 5,6-dihydroxyindole-2-carboxylic acid                     |
| DI                  | Deionized                                                 |
| DMSO                | Dimethyl sulfoxide                                        |
| DPPH                | 1,1-Diphenyl-2-picryhydrazyl                              |
| e.g.                | Exempli gratia OMGKORN ONIVERSITY                         |
| et al.              | et alii                                                   |
| FRAP                | The ferric reducing antioxidant power                     |
| g                   | Gram                                                      |
| h                   | Hour                                                      |
| HIV                 | Human Immunodeficiency Virus                              |
| <sup>1</sup> H NMR  | Proton nuclear magnetic resonance spectroscopy            |
| HMBC                | Heteronuclear multiple bond correlation                   |
| HMQC                | Heteronuclear multiple quantum correlation                |
| HPLC                | High performance liquid chromatography                    |
| HRESIMS             | High resolution electrospray ionization mass spectrometry |
| HSQC                | Heteronuclear single quantum correlation                  |
| Hz                  | Hertz                                                     |
| IC <sub>50</sub>    | Half maximal inhibitory concentration                     |
|                     |                                                           |

| IL-1β               | Interleukin-1β                                      |
|---------------------|-----------------------------------------------------|
| IL-8                | Interleukin-8                                       |
| In                  | Inch                                                |
| Inches <sup>2</sup> | Square of inches                                    |
| J                   | Coupling constant                                   |
| kg                  | Kilogram                                            |
| L                   | Liter                                               |
| L-DOPA              | L-3,4-dihydroxyphenylalanine                        |
| LD <sub>50</sub>    | Half maximal lethal dose                            |
| m                   | Multiple (for NMR spectra)                          |
| Μ                   | Molar                                               |
| m/z                 | Mass-to-charge ratio                                |
| $m^2$               | Square of meter                                     |
| MCF                 | Michigan Cancer Foundation                          |
| mg                  | Milligram                                           |
| mg GAE              | Milligram of gallic acid equivalent                 |
| mg TE               | Milligram of trolox equivalent antioxidant capacity |
| mg QE               | Milligram of quercetin equivalent                   |
| min                 | Minute                                              |
| mL                  | Milliliter                                          |
| mm                  | Millimeter                                          |
| mM                  | Millmolar                                           |
| MPLC                | Medium pressure liquid chromatography               |
| MTCC                | Microbial Type Culture Collection                   |
| NA                  | No activity                                         |
| ND                  | No detection                                        |
| nm                  | Nanometer                                           |
| nM                  | Nanomolar ALONGKORN UNIVERSITY                      |
| NMR                 | Nuclear magnetic resonance spectroscopy             |
| NOESY               | Nuclear Overhauser Enhancement Spectroscopy         |
| Р                   | Product                                             |
| pН                  | A logarithmic measure of hydrogen ion concentration |
| PTLC                | Preparative thin layer chromatography               |
| QE                  | Quercetin equivalent                                |
| ROS                 | Reactive oxygen                                     |
| S                   | Singlet (for NMR spectra)                           |
| S                   | Substrate                                           |
| $SC_{50}$           | Half maximal scavenging of the DPPH                 |
| SD                  | standard deviation                                  |
| SPSS                | Statistical package for the social sciences         |
| t                   | Triplet (for NMR spectra)                           |
|                     |                                                     |

| TE   | Trolox equivalent         |
|------|---------------------------|
| TLC  | Thin layer chromatography |
| TMS  | Tetramethylsilane         |
| TPTZ | 2,4,6-tripyridyltriazine  |
| UV   | Ultraviolet               |
| v/v  | Volume by volume          |
| W    | Weight                    |
| w/v  | Weight by volume          |
| w/w  | Weight by weight          |
|      |                           |



**CHULALONGKORN UNIVERSITY** 

# CHAPTER I INTRODUCTION

In recent years, trends in using traditional medicinal plants and herbs have been growing rapidly such as traditional medicines, herbal teas, healthy foods and especially herbal cosmetics. Nowadays, Thai medical herbs and plants are one of the ingredients of whitening products. Melanin is produced by melanocytes. Melanocytes are found in the basal layer of epidermis. Melanin is essential for protecting human skin from ultraviolet radiation. However, its overproduction in the basal epithelial layer leads to hyperpigmentary disorders of the skin such as melasma, blemish and age spots [1]. Tyrosinase is one of key enzymes in melanogenesis. *L*-Tyrosine is hydroxylated to *L*-3,4-dihydroxyphenylalanine (*L*-DOPA) by tyrosinase and followed by the oxidation of *L*-DOPA to DOPAquinone. From DOPAquinone, the melanin synthesis pathways diverge to produce either eumelanin or pheomelanin [2].

The plants of genus Manilkara are belonging to the Sapotaceae family. Characters of this genus are evergreen and fruit trees that are valuable and useful. Fruits of *Manilkara zapota* had high hydrophilic oxygen radical absorbance capacity and total phenolic compounds, so they were rich sources of diverse antioxidants [3]. Manilkara subsericea (Mart.) Dubard was investigated for biological activities. n-Hexane crude extract of fruits and ethanol crude extracts of leaves and stems of M. presented antimicrobial activity subsericea against *Staphylococcus* aureus ATCC25923 and they exhibited low cytotoxicity on Vero cells [4]. The ethanol extract of Manilkara bidentata consisted of pentacyclic triterpene and the extract was investigated the action on collagen and fibronectin synthesis. This extract decreased interleukin-1 $\beta$  (IL-1 $\beta$ ) and interleukin-8 (IL-8) pro-inflammatory cytokines. Therefore, this extract showed potential as an anti-inflammatory and anti-aging ingredients for pharmaceutical and cosmetic industries [5]. Furthermore, Sapotaceae was reported to possess pharmacological activities such as antioxidant, antimicrobial, anticancer, antidiabetic, antiulcer, immunomodulatory and tyrosinase inhibitory activities [6].

Manilkara kauki (L.) Dubard or Talawrinta is one of the plants in Sapotaceae family. It is a tropical forest plant that found in Thailand, Myanmar, Vietnam, Malaysia and Northern Queensland of Australia [7]. Previous researches, tyrosinase inhibitors were isolated from plants in Sapotaceae family such as leaves of *M. zapota*, barks of *Sideroxylon inerme*, stems of *Synsepalum dulcificum*, barks of *Glycoxylon huber* and flowers of *Mimosops elengi* [6]. This study attempted to investigate total phenolic and flavonoid contents, *in vitro* antioxidant and inhibitory activities of crude extracts of stem barks of *M. kauki* against tyrosinase. In addition, this study had compared the effects of crude extract with that of kojic acid and  $\alpha$ -arbutin. Furthermore, crude extracts were isolated and elucidated the structure of isolated compounds of stem barks of *M. kauki*.

### Objectives

1. To study tyrosinase inhibitory activity of crude extracts and isolated compounds of stem barks of *M. kauki* L. Dubard.

2. To elucidate the structure of isolated compounds of stem barks of *M. kauki*.



# CHAPTER II THEORITICAL

#### 2.1 Melanin synthesis

The skin is the largest organ of the body. It protects us from microbes and the element. The skin helps regulate body temperature and permits the sensation of touch, heat and cold. There are three main layers of skin as epidermis, dermis and hypodermis. The skin structure is shown in Figure 1. Epidermis is the outer layer of skin. It consists of three types of cell; keratinocytes, melanocytes and langerhans cells. Melanocytes are a unique organelle that produce the pigmented biopolymers [8]. Melanin is a pigment that occurs in fungi [9], plants and humans [10]. It is effective for color of skin, hair and eye in humans. There are two types of melanin pigments that were produced by melanocytes cell: eumelanin and pheomelanin. Eumelanin is black to brown shades pigment and while pheomelanin is red to yellow shades pigment [11].

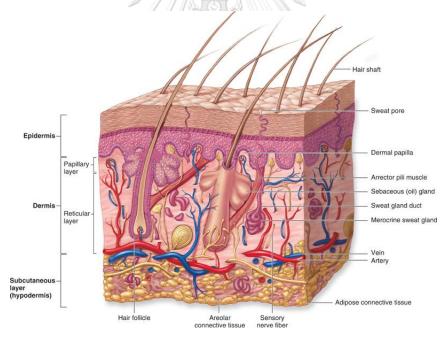
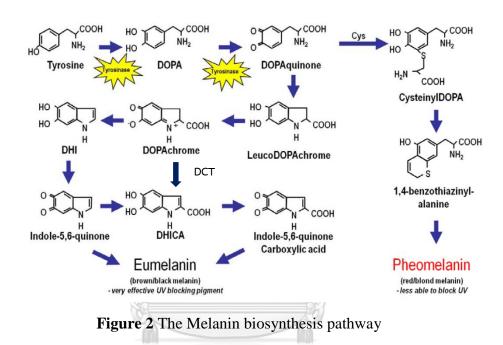




Figure 1 The skin structure

Melanogenesis is occurred by the activation of key enzyme of melanogenesis, tyrosinase. Tyrosinase (E.C.1.14.18.1) is a copper containing enzyme that locates in the membrane of melanosome [12]. Tyrosinase catalyzes the first two steps of melanogenesis. Firstly, the hydroxylation of *L*-tyrosine to *L*-DOPA and secondly, the oxidation of *L*-DOPA to DOPAquinone [13]. Following the formation of DOPAquinone, the melanogenesis splits into synthesis of eumelanin and pheomelanin [14]. For eumelanin pathway, DOPAquinone form will be converted to DOPAchrome

and it is spontaneously converted to 5,6-dihydroxyindole (DHI). Then, DHI is oxidized to indole-5,6-quinone and it is polymerized to eumelanin. Another way, DOPAchrome is converted to 5,6-dyhydroxyindole-2-carboxylic acid (DHICA) via enzymatic conversion by dopachrome tautomerase (DCT) and then, it is oxidized to indole-5,6-quinone carboxylic acid and polymerized to eumelanin. In pheomelanin pathway, cysteine reacts with DOPAquinone to form cysteinylDOPA. Then, It is converted to 1,4-benzothiazonylalanine and polymerized to form pheomelanin. The melanogenesis is presented in Figure 2.



#### 2.2 Manilkara kauki (L.) Dubard

Manilkara kauki (L.) Dubard or Talawrinta is one of tropical plants in Sapotaceae family. It grows up to 25-30 meters. Branches are whitish grey or brownish and glabrous. Leaves are broadly ovate, apex rounded, upper surface glabrous and lower surface silvery sericeous. Fruits are oval in shape and have sweet flavor. Barks are grey-brown and deeply fissured. Flowers are yellowish-white [7]. Leaves, fruits and whole plant of M. kauki are shown in Figure 3. M. kauki was reported to have several kinds of pharmacological activities. The fresh ripe fruits are contains many nutrients such as proteins, fats, minerals and niacin. It has high iron contents which is essential element for blood production. It is useful to help blood system to produce red blood cell for avoid anemia. In addition, the fruits contain a lot of vitamin A which is good for eye health. Furthermore, it can treat diarrhea and inflammation of the mouth [15]. In India, seeds are used as febrifuge and anthelmintic, fruits and barks of M. kauki are used as astringent [16] and folk medicine [17].



Figure 3 (a) The leaves (b) the fruits and (c) whole plant of *M. kauki* 

#### 2.3 Literature reviews

Several tropical plants exhibited tyrosinase inhibitory activity. Woods of *Cudrania javanensis* Trec. exhibited tyrosinase inhibitory activity with percent inhibition of 77.86  $\pm$  2.41% at concentration of 200 µg/ml[18]. Woods, root barks and roots of *Artocarpin integer* (Thumb.) Merr. showed strong tyrosinase inhibitory activity with percent inhibition of 80.02  $\pm$  3.22%, 82.60  $\pm$  0.76% and 90.57  $\pm$  2.93% at concentration of 200 µg/ml, respectively. Artocarpanone was isolated from ethanol crude extract of roots of *A. integer* (Thumb.) Merr. and exhibited tyrosinase inhibitory activity with IC<sub>50</sub> value of 44.56 µg/mL [18]. In addition, aqueous crude extract of hearthwood of *Artocaropin lakoocha* Roxb. exhibited tyrosinase inhibitory activity with IC<sub>50</sub> value of 0.76 µg/mL. Oxyresveratrol which was isolated from aqueous crude extract of heartwood of *A. lakoocha* Roxb. showed tyrosinase inhibitory activity with IC<sub>50</sub> value of 0.83 µg/mL [19]. The ethyl acetate crude extract of *Phyllanthus emblica* Linn. exhibited tyrosinase inhibitory activity with IC<sub>50</sub> value of 0.83 µg/mL [19]. The ethyl acetate crude extract of *Phyllanthus emblica* Linn. exhibited tyrosinase inhibitory activity with IC<sub>50</sub> value of 0.151 ± 0.072 mg/mL [20]. Methanol crude extract of roots of *Carissa opaca* showed tyrosinase inhibitory activity with IC<sub>50</sub> value of 34.76 µg/mL [21].

**GHULALONGKORN UNIVERSI** 

2.3.1 Biological activities of Sapotaceae family

Sapotaceae family has shown several kinds of biological activities such as anticancer, antidiabetic, antiulcer, immunomodulatory antioxidant and tyrosinase inhibitory activities. The summary of biological activities of Sapotaceae family is shown in Table 2.1. The isolated compounds except tyrosinase inhibitors of Sapotaceae family are shown in Table 2.2 and chemical constituent of isolated compounds of Sapotaceae family are shown in Figure 4.

| Botanical name           | Plant<br>part   | Extract                           | Biological activity                                                                                                                                              | Reference    |
|--------------------------|-----------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Achras<br>sapota         | Leaves          | Methanol                          | Mosquitocidal activity<br>against a common malarial<br>vector, <i>Anopheles stephensi</i><br>Liston                                                              | [22]         |
| Chrysophyllum<br>albidum | Leaves          | Petroleum<br>ether<br>Ethyl ether | DPPH radical scavenging<br>activity (4,057.50 ± 809.60<br>g/kg)<br>DPPH radical scavenging<br>activity (414.40 ± 92.00<br>g/kg)                                  | [23]         |
| Madhuca<br>longifolia    | Leaves          | Petroleum<br>ether                | Antimicrobial activity<br>against Escherichia coli and<br>Staphylococcus aureus.                                                                                 | [24]         |
|                          | Leaves          | Ethanol                           | Wound healing activity $(17.86 \pm 0.19\%)$                                                                                                                      | [25]         |
| Manilkara<br>hexandra    | Seeds           | Acetone                           | AntibacterialactivityagainstStreptococcusmutansStreptococcus                                                                                                     | [26]         |
| Manilkara<br>huberi      | Barks           | CH <sub>2</sub> Cl <sub>2</sub>   | Antifungal activity against<br>Candida albicans, Candida<br>glabrata and Candida<br>parapsilosis.                                                                | [27]         |
| Manilkara<br>subsericea  | Aerial parts    | Ethyl acetate                     | Molluscicidal activity (LD <sub>50</sub><br>= $23.41 \pm 1.15 \ \mu g/mL$ )                                                                                      | [28]         |
| Manilkara<br>zapota      | Flowers         | Ethanol<br>เลงกรณ์มห              | Anticancer activity against MCF-7 cell line ( $IC_{50} = 12.5$ µg/ml)                                                                                            | [29]         |
|                          | Leaves          | Ethanol ORN                       | DPPH radical scavenging<br>activity ( $IC_{50} = of 68.27$<br>$\mu g/mL$ )                                                                                       | [30]         |
|                          | Leaves          | Petroleum<br>ether                | Antifungal activity against<br><i>Mucor hiemalis</i> (MTCC<br>No.157), <i>Fusarium eumartii</i><br>(MTCC No.399) and<br><i>Candida albicans</i><br>(MTCC No.183) | [31]         |
|                          | Leaves<br>Seeds | Methanol<br>Methanol              | Antimicrobial activity<br>DPPH radical scavenging<br>activity ( $IC_{50} = 8.50 \pm 0.55$<br>µg/mL                                                               | [32]<br>[33] |

 Table 2.1 The summary of biological activities of Sapotaceae family

| Botanical name              | Plant<br>part         | Extract                                                                                     | Biological activity                                                                                                                                                                                                                                  | Reference    |
|-----------------------------|-----------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| <i>M. zapota</i> (continue) | Seeds                 | Ethanol                                                                                     | Anti-inflammation (87.28% at concentration 500 µg/mL)                                                                                                                                                                                                | [34]         |
| (continue)                  | Seeds                 | Aqueous                                                                                     | Invertase inhibitory activity<br>(98.7% at concentration 10<br>mg/mL)                                                                                                                                                                                | [35]         |
| Mimosops<br>elengi          | Barks                 | Methanol                                                                                    | Antimicrobial activity<br>against<br>Streptococcus mutans,<br>Enterococcus faecalis and<br>staphylococcus aureus.                                                                                                                                    | [36]         |
|                             | Barks<br>Flowers      | Ethanol<br>Methanol                                                                         | Diuretic activity<br>Antibacterial activity<br>against <i>Bacillus</i> cereus<br>(MTCC-1305),<br><i>Enterobacter</i> faecalis<br>(MTCC-5112),                                                                                                        | [37]<br>[38] |
|                             | า สา                  | ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม | Salmonella paratyphi<br>(MTCC-735),<br>Staphylococcus aureus<br>(MTCC-96), Escherichia<br>coli (MTCC-729),<br>Proteus vulgaris MTCC-<br>426, Klebsiella pneumoniae<br>(MTCC-109),<br>Pseudomonas aeruginosa<br>(MTCC-647) and<br>Serratia marcescens |              |
|                             | <b>CHUL</b><br>Leaves | Ethanol                                                                                     | (MTCC-86)<br>Anti HIV-1 integrase<br>activity                                                                                                                                                                                                        | [39]         |
|                             | Leaves                | Methanol                                                                                    | DPPH radical scavenging activity $(74.96 \pm 5.18\%)$                                                                                                                                                                                                | [40]         |
|                             | Leaves                | Methanol                                                                                    | Anti-urease activity ( $IC_{50} = 62.1\pm1.20 \ \mu g/mL$ )                                                                                                                                                                                          | [41]         |
|                             | Stem<br>barks         | Ethyl<br>acetate                                                                            | Bacillus subtilis, Bacillus<br>licheniformis and Proteus<br>mirabilis                                                                                                                                                                                | [42]         |

 Table 2.1 The summary of biological activities of Sapotaceae family (continue)

| Botanical name          | Plant<br>part | Extract          | Biological activity                                             | Reference |
|-------------------------|---------------|------------------|-----------------------------------------------------------------|-----------|
| Monoteheca<br>buxifolia | Leaves        | Aqueous          | Antifungal activity against grain moulds                        | [43]      |
|                         | Stems         | Ethyl<br>acetate | Antibacterial activity                                          |           |
|                         |               | acetate          | against Escherichia coli,<br>Pseudomonas aeruginosa,            |           |
|                         |               |                  | Erwinia carotovora,                                             |           |
|                         |               |                  | Salmonella typhi,                                               |           |
|                         |               |                  | Klebsiella pneumoniae and                                       |           |
|                         | ~             |                  | Staphylococcus aureus                                           | 5 ( 0 ]   |
|                         | Stems         | Ethyl            | DPPH radical scavenging                                         | [43]      |
|                         |               | acetate          | activity (IC <sub>50</sub> = $194.24 \pm 7.36 \mu\text{g/mL}$ ) |           |
| Pouteria                | Stem          | Aqueous          | Immunomodulatory activity                                       | [44]      |
| cambodiana              | barks         |                  |                                                                 |           |
| Pouteria                | Leaves        | <i>n</i> -Hexane | α-Amylase inhibitory                                            | [45]      |
| ramiflora               |               |                  | activity                                                        |           |
| Pouteria sapota         | Fruits 🧖      | <i>n</i> -Hexane | Total soluble phenols                                           | [46]      |
|                         | 1             | $:CH_2Cl_2$      | activity $(28.51 \pm 0.61 \text{ mg})$                          |           |
|                         |               | (1:1)            | Gallic acid equivalent (GAE) /100 g fresh weight)               |           |
|                         |               | 1 Deccession     | Total carotenoid activity                                       |           |
|                         |               | EN SKA           | $(1127.94 \pm 5.30 \ \mu g \ \beta$ -                           |           |
|                         | S.            |                  | carotene/100 g fresh weight)                                    |           |
|                         | 22            | 0                | δ-Tocopherol activity (0.36                                     |           |
|                         |               |                  | $\pm 0.03$ mg/100 g dry weight)                                 |           |
| Synsepalum              | Seeds         | Methanol         | Total phenolic content                                          | [47]      |
| dulcificum              |               |                  | $(306.7 \pm 44.1 \text{ GAE}/100 \text{ g})$                    |           |
|                         |               |                  | fresh weight)<br>Total flavonaid content (2.8                   |           |
|                         |               |                  | Total flavonoid content (3.8 mg (Quercetin equivalent           |           |
|                         |               |                  | mg (Quercetin equivalent<br>(QE)/100 g fresh weight)            |           |
|                         |               |                  | DPPH radical scavenging                                         |           |
|                         |               |                  | activity (96.30% of fresh                                       |           |
|                         |               |                  | weight)                                                         |           |
|                         |               |                  | ABTS radical scavenging                                         |           |
|                         |               |                  | activity (32.50% of fresh                                       |           |
|                         |               |                  | weight)                                                         |           |

**Table 2.1** The summary of biological activities of Sapotaceae family (continue)

| Botanical name | Plant<br>part | Extract    | Biological activity                           | Reference |
|----------------|---------------|------------|-----------------------------------------------|-----------|
| Sideroxylon    | Barks         | Acetone    | Tyrosinase inhibitory                         | [48]      |
| inerme         |               |            | activity (IC <sub>50</sub> = $63.00 \pm 2.10$ |           |
|                |               |            | μg/mL)                                        |           |
|                |               | Methanol   | Tyrosinase inhibitory                         |           |
|                |               |            | activity (IC <sub>50</sub> = $82.10 \pm 2.70$ |           |
|                |               |            | μg/mL)                                        |           |
|                |               | $CH_2Cl_2$ | Tyrosinase inhibitory                         |           |
|                |               |            | activity (IC <sub>50</sub> > 400 $\mu$ g/mL)  |           |
| Tridesmostemon | Stem          | Methanol   | Antimicrobial activity                        | [49]      |
| omphalocar     | barks         |            | against Escherichia coli,                     |           |
| Poides         |               |            | Shigella dysenteriae,                         |           |
|                |               |            | Staphylococcus aureus,                        |           |
|                |               |            | Proteus vulgaris, Klebsiella                  |           |
|                |               |            | pneumoniae,                                   |           |
|                |               | ////2      | Streptococcus faecalis,                       |           |
|                |               | ////299    | Salmonella typhi,                             |           |
|                | 2             | //RO       | Candida albicans and                          |           |
|                |               |            | Candida krusei                                |           |

 Table 2.1 The summary of biological activities of Sapotaceae family (continue)

| Botanical name           | Plant part | Compound                                                            | Reference |
|--------------------------|------------|---------------------------------------------------------------------|-----------|
| Argania spinosa          | Seeds      | Naringenin-7- <i>O</i> -glucoside (1)<br>Hesperidin (2)             | [6]       |
|                          |            | (+)-Catechin (3)                                                    |           |
|                          | จุฬาลง     | (-)- <i>epi</i> -Catechin ( <b>4</b> )<br>Caffeic acid ( <b>5</b> ) |           |
|                          |            | Ferulic acid (6)                                                    |           |
|                          |            | Syringic acid (7)                                                   |           |
|                          |            | Veratric acid (8)                                                   |           |
| Chrysophyllum<br>cainito | Fruits     | Cyanidin-3- $O$ - $\beta$ -glucopyranoside (9)                      | [50]      |
| Madhuca latifolia        | Fruits     | 3',4'-Dihydroxy-5,2'-dimenthoxy-6,7-                                | [6]       |
|                          |            | methylen dioxy isoflavone (10)                                      |           |
| Manilkara                | Resin      | $3\beta$ -O-Acetyl- $\alpha$ -amyrin (11)                           | [5]       |
| bidentata                |            | $3\beta$ -O-trans Cinnamyl- $\alpha$ -amyrin (12)                   |           |
|                          |            | $3\beta$ -O-trans Cinnamyl lupeol (13)                              |           |

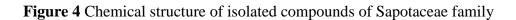

| Botanical name   | Plant part | Compound                                                      | Reference |
|------------------|------------|---------------------------------------------------------------|-----------|
| Manilkara zapota | Fruits     | Apigenin-7- $O$ - $\alpha$ - $L$ -rhamnoside (14)             | [6]       |
|                  |            | Dihydromyricetin (15)                                         |           |
|                  |            | (+)-Gallocatechin (16)                                        |           |
|                  |            | Leucodelphinidine (17)                                        |           |
|                  |            | Leucocyanidine (18)                                           |           |
|                  |            | Leucoperalgonidine (19)                                       |           |
|                  |            | Methylchlorogenate (20)                                       |           |
|                  | Seeds      | D-Quercitol (21)                                              |           |
| Mimusops         | Barks      | Taraxeryl acetate (22)                                        | [51]      |
| hexandra         |            | Cinnamic acid (23)                                            |           |
| Mimusops         | Fruits     | $\beta$ -Sitosterol (24)                                      | [52]      |
| manilkara        |            | $\beta$ -Amyrin acetate (25)                                  |           |
| Pouteria         | Leaves     | (+)-Catechin-O-gallate (26)                                   | [6]       |
| campechiana      | lam        | Taxifolin-3- $O$ - $\alpha$ - $L$ -rhamnopyranoside           |           |
| -                |            | (27)                                                          |           |
|                  |            | (+)-Catechin-O-gallate (28)                                   |           |
|                  |            | trans-Taxifolin-3-O-a-L-                                      |           |
|                  |            | arabinopyranoside (29)                                        |           |
|                  |            | Taxifolin-3- $O$ - $\alpha$ - $L$ -arabinofuranoside          |           |
|                  |            | (30)                                                          |           |
| Pouteria caimito | Leaves     | Spinasterol (31)                                              | [53]      |
| Pouteria obovata | Fruits     | 2 <i>R</i> ,3 <i>R</i> -4'- <i>O</i> -Methyldihydrokaempferol | [6]       |
|                  |            | 7- <i>O</i> -[3"- <i>O</i> -acetyl]-β- <i>D</i> -             |           |
|                  |            | glucopyranoside (32)                                          |           |
| Pouteria         | Leaves     | Friedelin (33)                                                | [45]      |
| ramiflora        | -1011      | epi-Friedelanol (34)                                          |           |
| Pouteria sapota  | Fruits     | Gallocatechin-3-O-gallate (35)                                | [6]       |
| Pouteria         | Leaves     | <i>trans</i> -α-Farnesol ( <b>36</b> )                        | [54]      |
| splendens        |            | trans-Nerolidol (37)                                          |           |
|                  |            | $cis-\beta$ -Elemene ( <b>38</b> )                            |           |
|                  |            | Germacrene D ( <b>39</b> )                                    |           |
|                  |            | $\beta$ -Selinene ( <b>40</b> )                               |           |
|                  |            | Eremophilene (41)                                             |           |
|                  |            | $\delta$ -Cadinene (42)                                       |           |
|                  |            | 10- <i>epi</i> -α-Cadinol ( <b>43</b> )                       |           |
|                  |            | $10$ - <i>epi</i> - $\alpha$ -Muurolol ( <b>44</b> )          |           |
|                  |            | epi-Globulol ( <b>45</b> )                                    |           |
|                  |            | Globulol (46)                                                 |           |
|                  |            | Ledene (47)                                                   |           |
|                  |            | Palustrol (48)                                                |           |

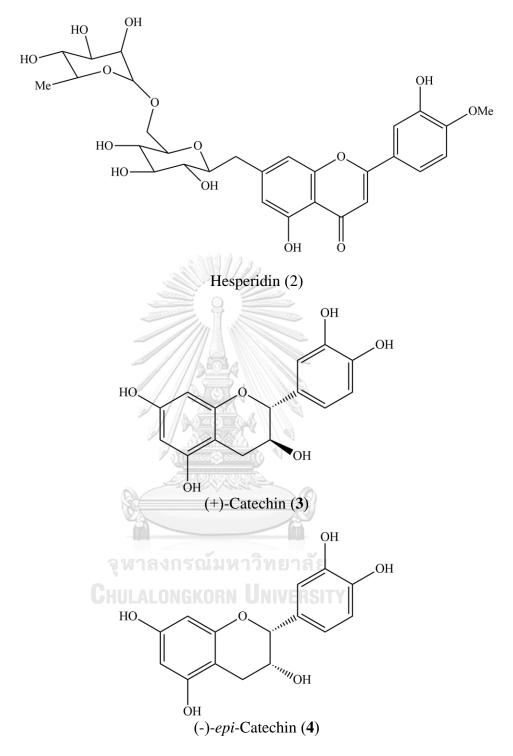
Table 2.2 The isolated compounds of Sapotaceae family (continue)

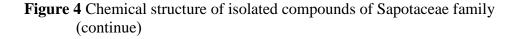
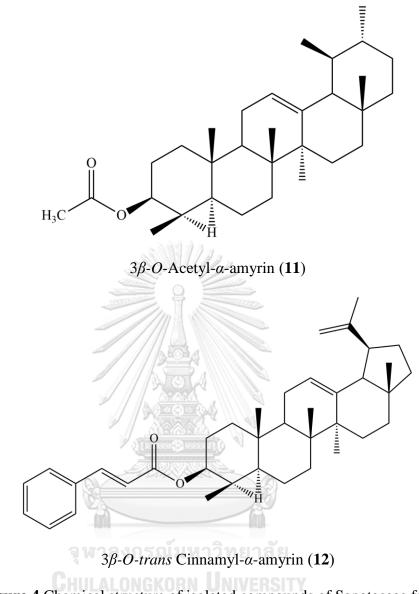
| Botanical name   | Plant part              | Compound                                                 | Reference |
|------------------|-------------------------|----------------------------------------------------------|-----------|
| P. splendens     | Leaves                  | Isophytol (49)                                           | [54]      |
| (continue)       |                         | trans-Phytol (50)                                        |           |
| Pouteria torta   | Leaves                  | Lupeol acetate (51)                                      | [55]      |
| torta            |                         | Myricetin (52)                                           | [56]      |
|                  |                         | Mericetin-3- $O$ - $\beta$ - $D$ -galactopyranoside      |           |
|                  |                         | (53)                                                     |           |
|                  |                         | Mericetin-3- $O$ - $\alpha$ - $L$ -arabinopyranoside     |           |
|                  |                         | (54)                                                     |           |
| Tridesmostemon   | Stem                    | Lichexanthone (55)                                       | [6]       |
| omphalocarpoides | wood                    |                                                          |           |
| Vitellaria       | Kernels                 | 3- $O$ - $\beta$ - $D$ -Glucuronopyranosyl 16 $\alpha$ - | [57]      |
| paradoxa         |                         | hydroxyprotobassic acid (56)                             |           |
|                  | l v                     | $3-O-\beta-D$ -Glucopyranosyl                            |           |
|                  | 1000                    | $16\alpha$ -hydroxyprotobassic acid (57)                 |           |
|                  |                         | $3-O-\beta-D$ -Glucuronopyranosyl                        |           |
|                  |                         | protobassic acid (58)                                    |           |
|                  |                         | Mi-Glycoside l (59)                                      |           |
|                  |                         | Protobassic acid (60)                                    |           |
|                  |                         | Bassic acid (61)                                         |           |
|                  |                         | Spinasterol 3- $O$ - $\beta$ - $D$ -glucopyranoside      |           |
|                  |                         | (62)                                                     |           |
|                  | · · · · ·               | Isotachioside (63)                                       |           |
|                  |                         | Gallic acid (64)                                         |           |
|                  |                         |                                                          |           |
|                  | -                       |                                                          |           |
|                  | -1211                   |                                                          |           |
|                  |                         | กรณ์มหาวิทยาลัย                                          | ,OH       |
|                  |                         |                                                          | ,OH       |
|                  |                         | NGKORN UNIVERSITY                                        |           |
|                  | <ul> <li>_0、</li> </ul> |                                                          |           |
| HO               | $\mathbf{V}$            |                                                          |           |
|                  |                         |                                                          |           |
| TI               | Ommer                   | ·····MOH                                                 |           |
| Н                | U I                     |                                                          |           |
|                  | Ь<br>ОН                 | OH O                                                     |           |

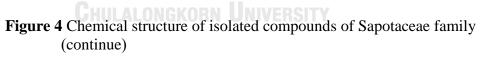
Table 2.2 The isolated compounds of Sapotaceae family (continue)

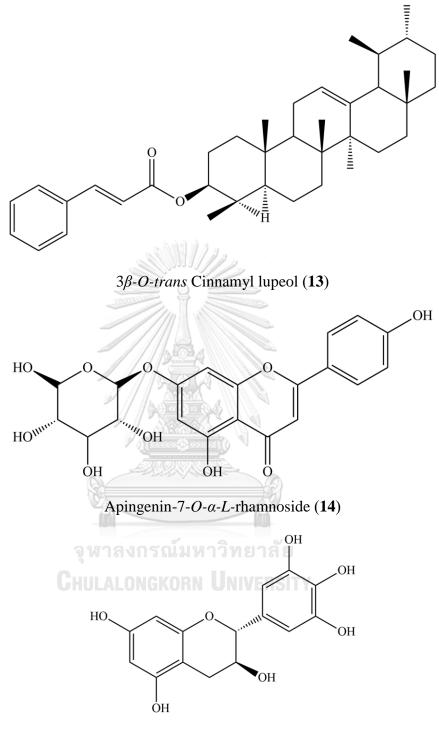
Naringenin-7-*O*-glucoside (1)





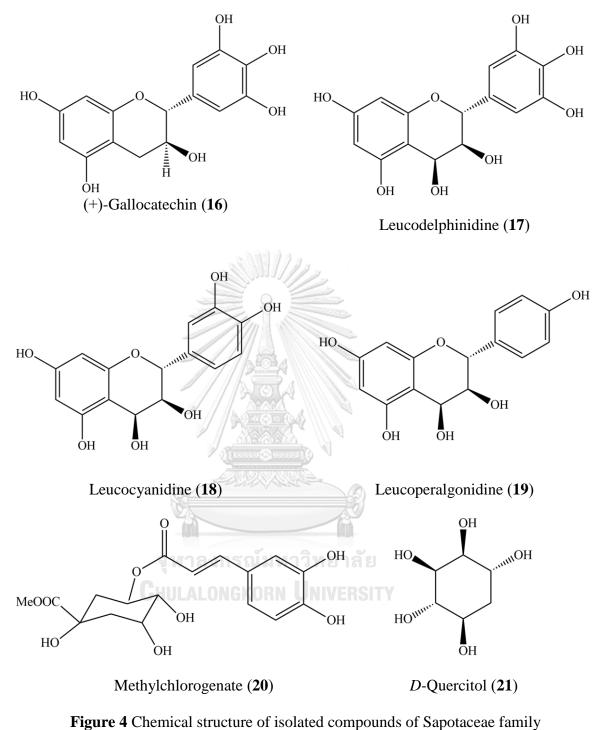





Figure 4 Chemical structure of isolated compounds of Sapotaceae family (continue)




3',4'-dihydroxy-5,2'-dimenthoxy-6,7-methylen dioxy isoflavone (10)










Dihydromyricetin (15)

Figure 4 Chemical structure of isolated compounds of Sapotaceae family (continue)



(continue)

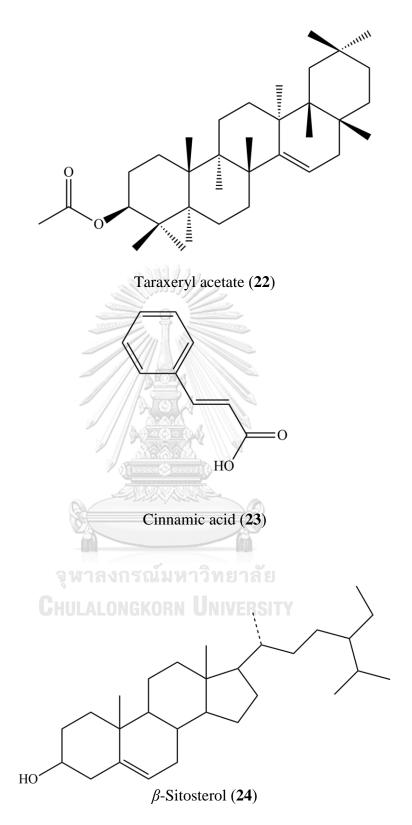



Figure 4 Chemical structure of isolated compounds of Sapotaceae family (continue)

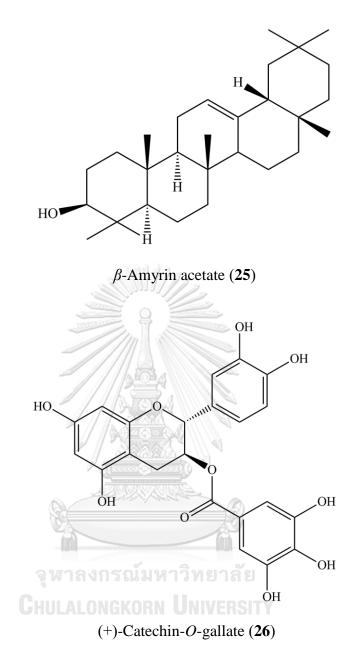
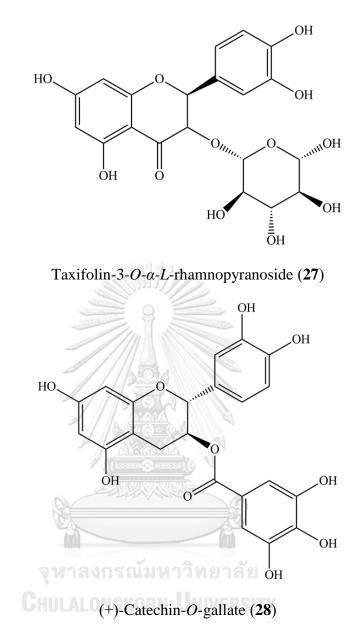



Figure 4 Chemical structure of isolated compounds of Sapotaceae family (continue)



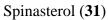
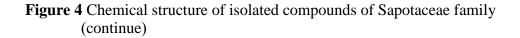
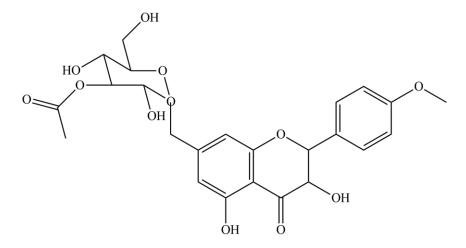
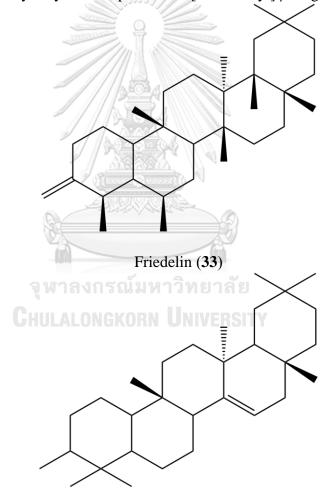
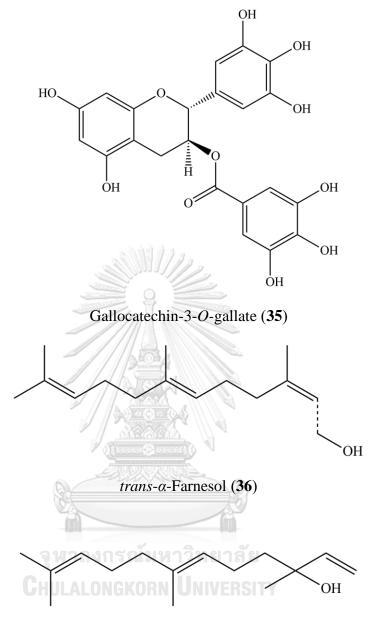





Figure 4 Chemical structure of isolated compounds of Sapotaceae family (continue)








2R, 3R-4'-O-Methyldihydrokaempferol 7-O-[3"-O-acetyl]- $\beta$ -D-glucopyranoside (32)



epi-Friedelanol (34)

Figure 4 Chemical structure of isolated compounds of Sapotaceae family (continue)



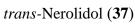
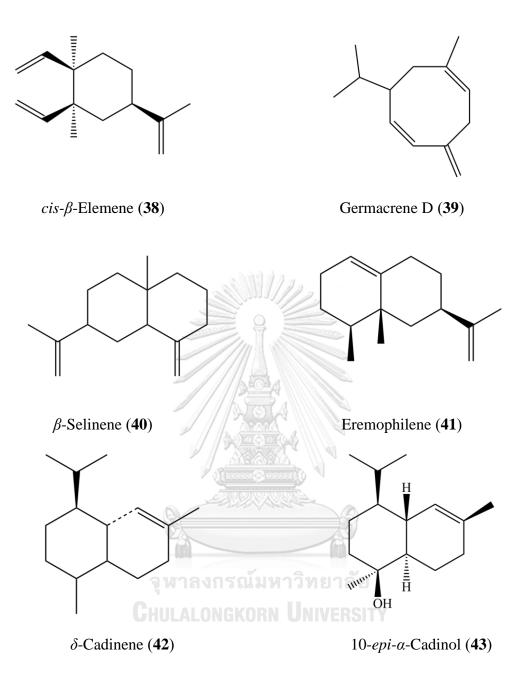
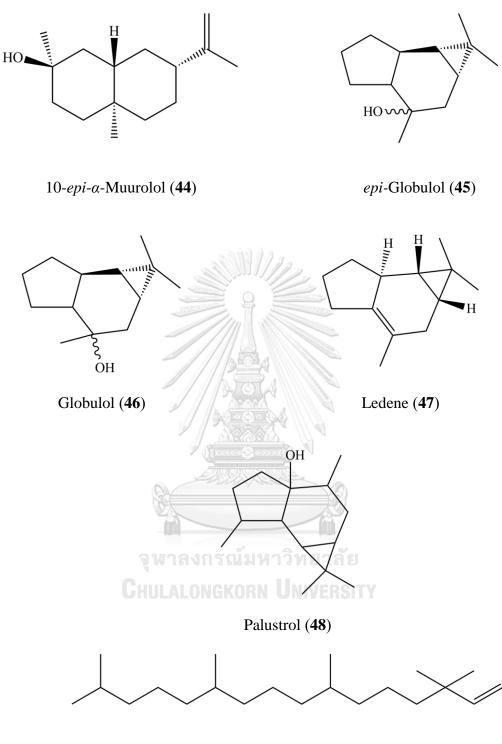
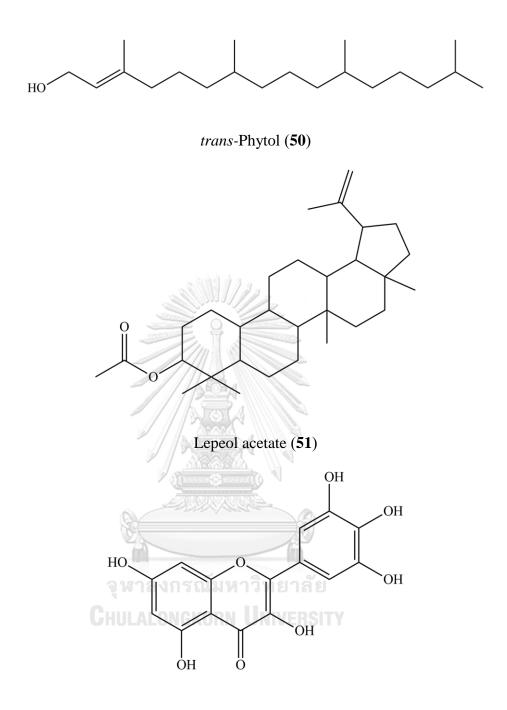
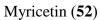
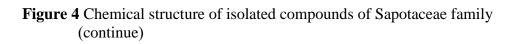



Figure 4 Chemical structure of isolated compounds of Sapotaceae family (continue)



Figure 4 Chemical structure of isolated compounds of Sapotaceae family (continue)




Isophytol (49)

Figure 4 Chemical structure of isolated compounds of Sapotaceae family (continue)







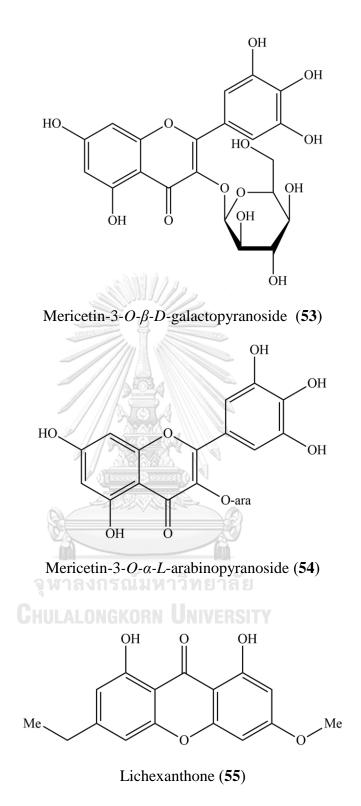
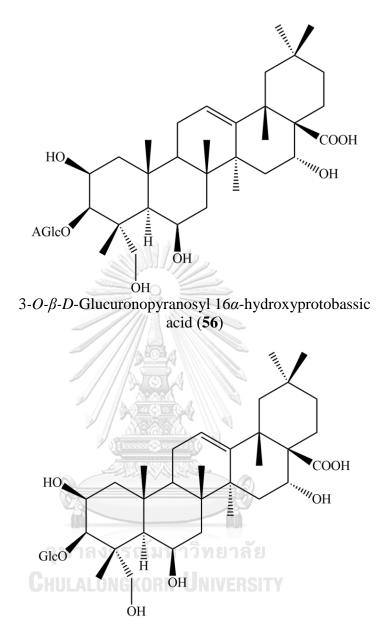




Figure 4 Chemical structure of isolated compounds of Sapotaceae family (continue)



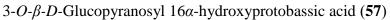
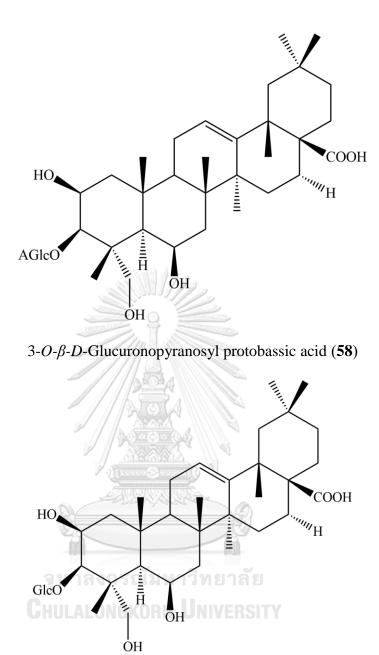




Figure 4 Chemical structure of isolated compounds of Sapotaceae family (continue)



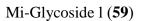
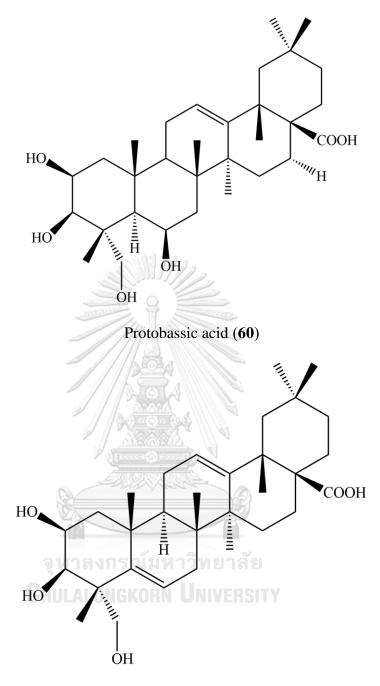
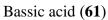
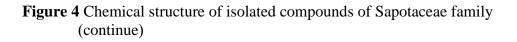
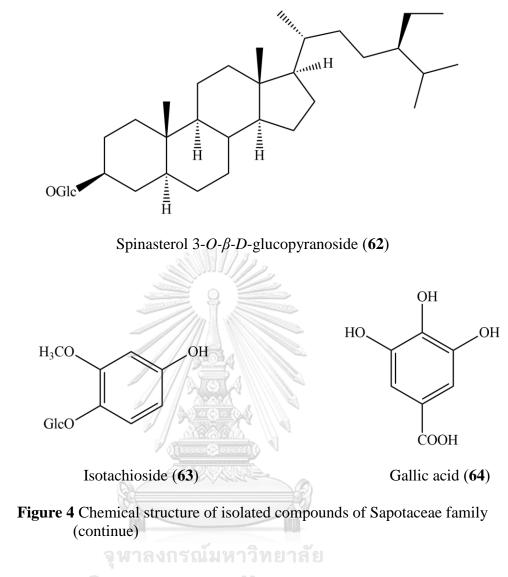







Figure 4 Chemical structure of isolated compounds of Sapotaceae family (continue)









2.3.2 Summary of tyrosinase inhibitors of Sapotaceae family

Sapotaceae was reported to possess pharmacological activities such as antioxidant, antimicrobial, anticancer, antidiabetic, antiulcer, immunomodulatory and tyrosinase inhibitory activities [6]. Tyrosinase inhibitors have been found from natural sources and some of them were developed as cosmetic agents. Tyrosinase inhibitors of Sapotaceae family are shown in Table 2.3. The chemical structure of tyrosinase inhibitors of Sapotaceae family is shown in Figure 5.

| Botanical name           | Plant part | Tyrosinase inhibitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reference |
|--------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Manilkara zapota         | Leaves     | Myricetin-3- $O$ - $\alpha$ - $L$ -rhamnoside (65)<br>(30% inhibition at concentration 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [58]      |
|                          | Barks      | $\mu$ g/mL)<br>Taraxerol methyl ether ( <b>66</b> ) (IC <sub>50</sub> = 106.53 ± 0.34 and 283.33 ± 0.59 $\mu$ M for <i>L</i> -tyrosine and <i>L</i> -DOPA,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [59]      |
|                          | Barks      | respectively)<br>6-Hydroxyflavanone ( <b>67</b> ) (IC <sub>50</sub> =<br>41.76 $\pm$ 0.20 and 63.10 $\pm$ 0.73 µM for<br><i>L</i> -tyrosine and <i>L</i> -DOPA, respectively)<br>(+)-Dihydrokaempferol ( <b>68</b> ) (IC <sub>50</sub> =<br>32.17 $\pm$ 0.32 and 31.60 $\pm$ 0.73 µM for<br><i>L</i> -tyrosine and <i>L</i> -DOPA, respectively)<br>3,4-Dihydroxybenzoic acid ( <b>69</b> ) (IC <sub>50</sub><br>= 55.21 $\pm$ 0.70 and 43.91 $\pm$ 0.21 µM<br>for <i>L</i> -tyrosine and <i>L</i> -DOPA,<br>respectively)<br>Taraxerol ( <b>70</b> ) (IC <sub>50</sub> = 103.37 $\pm$ 0.22<br>and 272.10 $\pm$ 0.16 µM for <i>L</i> -tyrosine<br>and <i>L</i> -DOPA, respectively)<br>Taraxerone ( <b>71</b> ) (IC <sub>50</sub> = 70.63 $\pm$ 0.36<br>and 90.60 $\pm$ 0.26 µM for <i>L</i> -tyrosine<br>and <i>L</i> -DOPA, respectively) | [59]      |
| Sideroxylon inerme       | Barks      | Epigallocatechin gallate ( <b>72</b> ) ( $IC_{50} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [48]      |
| ,                        | CHULALON   | $\begin{array}{l} \text{Procyanidin B1 (73) (IC_{50} = 200.00 \pm 2.20 \ \mu\text{M}) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| Synsepalum<br>dulcificum | Stems      | (+)- $epi$ -Syringaresinol (74) (IC <sub>50</sub> = 200.50 µM)<br>4-Acetonyl-3,5-dimethoxy- $p$ -quinol (75) (IC <sub>50</sub> = 208.10 µM)<br>cis- $p$ -Coumaric acid (76) (IC <sub>50</sub> = 197.90 µM)<br>trans- $p$ -Coumaric acid (77) (IC <sub>50</sub> = 168.70 µM)<br>p-Hydroxybenzoic acid (78) (IC <sub>50</sub> = 358.60 µM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [60]      |

 Table 2.3 The summary of tyrosinase inhibitors from Sapotaceae family

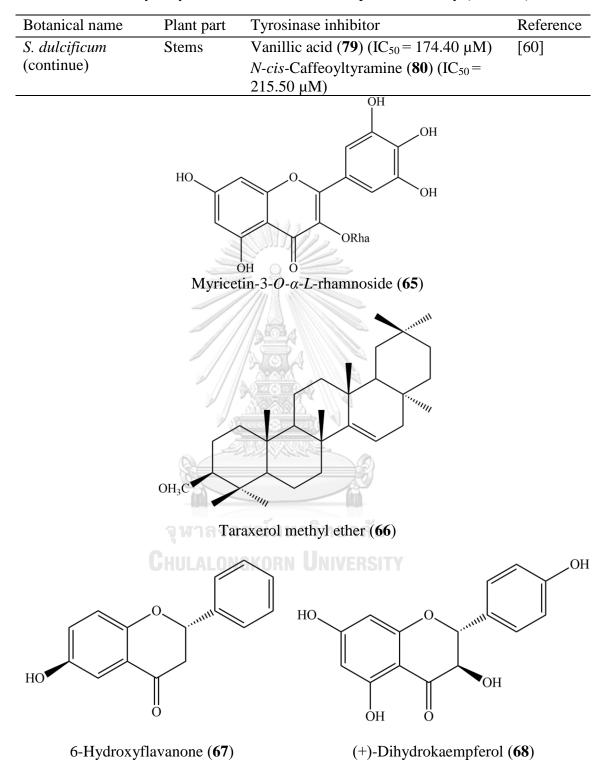
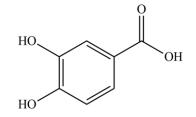
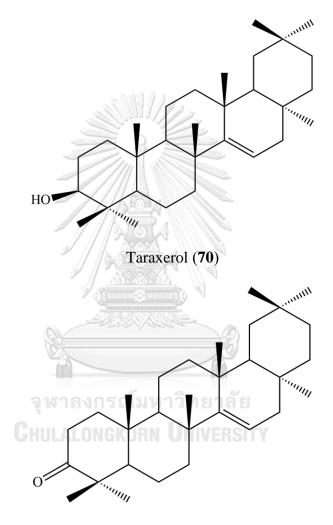
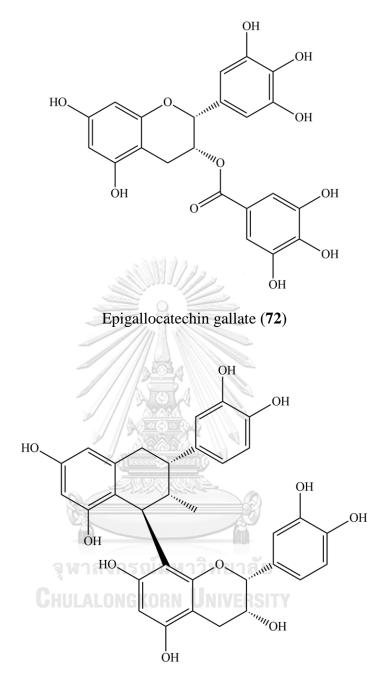
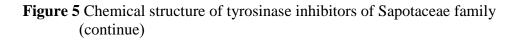





Table 2.3 Summary of tyrosinase inhibitors from Sapotaceae family (continue)

Figure 5 Chemical structure of tyrosinase inhibitors of Sapotaceae family




3,4-Dihydroxybenzoic acid (69)




Taraxerone (71)

Figure 5 Chemical structure of tyrosinase inhibitors of Sapotaceae family (continue)



Procyanidin B1 (73)



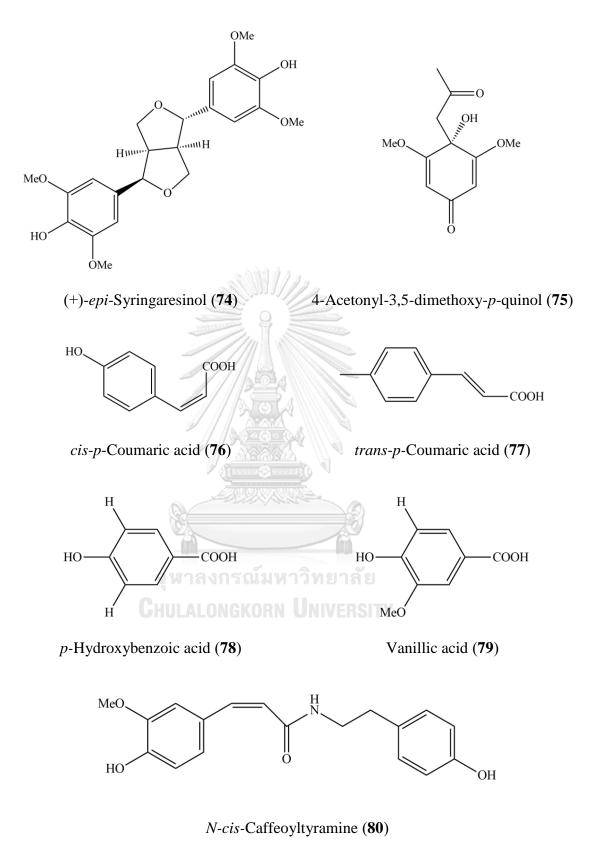



Figure 5 Chemical structure of tyrosinase inhibitors of Sapotaceae family (continue)

# CHAPTER III MATERIALS AND METHODS

## 3.1 Plant materials

The fresh fruits, leaves, seeds, stem barks and woods of *M. kauki* were collected from Jaransanitwong garden, Bangkok, Thailand in December 2015. The plant was identified by a botanist of Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand. The voucher specimen (BCU No. A015371) was deposited at Professor Kasin Suvatabhandhu Herbarium, Chulalongkorn University, Bangkok, Thailand.

### **3.2 Reagents**

3.2.1 All commercial grade organic solvents were distilled prior to use such as n-hexane, dichloromethane, ethyl acetate, acetone and methanol.

3.2.2 All analytical grade chemicals; sodium dihydrogen phosphate monohydrate, disodium dihydrogen phosphate monohydrate, dimethyl sulfoxide (DMSO), absolute ethanol, sulfuric acid, *L*-tyrosine, *L*-DOPA, kojic acid,  $\alpha$ -arbutin, chloroform-*d* and acetone-*d*<sub>6</sub> were purchased from Merck (Germany). Mushroom tyrosinase was purchased from Sigma-Aldrich (USA).

## 3.3 General techniques and procedures

3.3.1 Thin layer chromatography (TLC)

| <u>ุ</u> จหาลงกรณ์มหาวิทยาลัย                                                       |                                            |  |  |
|-------------------------------------------------------------------------------------|--------------------------------------------|--|--|
| Techniques:                                                                         | One dimension                              |  |  |
| Stationary phase: A ONGK Silica gel 60 F <sub>254</sub> (Merck, Germany) pre-coated |                                            |  |  |
|                                                                                     | plate                                      |  |  |
| Layer thickness:                                                                    | 0.2 mm                                     |  |  |
| Distance of mobile phase:                                                           | 4 cm                                       |  |  |
| Mobile phase:                                                                       | Various solvent systems                    |  |  |
| Detection:                                                                          | a. UV light at 254 nm                      |  |  |
|                                                                                     | b. dipping in 10% sulfuric acid in aqueous |  |  |
| ethanol and heating on hot plate                                                    |                                            |  |  |

3.3.2 Preparative thin layer chromatography (PTLC)

| Techniques:       | One dimension                                          |  |  |
|-------------------|--------------------------------------------------------|--|--|
| Stationary phase: | Silica gel 60 F <sub>254</sub> (Merck, Germany) glass- |  |  |
|                   | coated plate                                           |  |  |
| Layer thickness:  | 1 mm                                                   |  |  |

| Distance of mobile phase: | 18 cm                                      |  |  |
|---------------------------|--------------------------------------------|--|--|
| Mobile phase:             | Various solvent systems                    |  |  |
| Detection:                | a. UV light at 254 nm                      |  |  |
|                           | b. dipping in 10% sulfuric acid in aqueous |  |  |
|                           | ethanol and heating on hot plate           |  |  |

#### 3.3.3 Column chromatography (CC)

| Stationary phase: | Silica gel 60, 70-230 mesh (Merck, Germany), |  |  |  |
|-------------------|----------------------------------------------|--|--|--|
|                   | Diaion HP-20, 250-280 mesh (Mistsubishi,     |  |  |  |
|                   | Japan) and Sephadex LH-20, 8-11 µm           |  |  |  |
|                   | (Bioscience, USA)                            |  |  |  |
| Mobile phase:     | Various solvent systems                      |  |  |  |
| Packing method:   | Wet packing                                  |  |  |  |
| Detection:        | Eluted fraction were monitored by TLC        |  |  |  |
|                   |                                              |  |  |  |

3.3.4 Medium pressure liquid chromatography (MPLC)

(Isolera ISO-1SV, Sweden)

| Stationary phase: | Silica gel 50 µm with a surface area of 500 m <sup>2</sup><br>(Biotage <sup>®</sup> SNAP KP-Sil, Sweden) |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------|--|--|
| Mobile phase:     | Various solvent systems                                                                                  |  |  |
| Detection         | UV-Visible spectrophotometer, range of                                                                   |  |  |
| A                 | wavelength was 200-800 nm                                                                                |  |  |

3.3.5 Hot air oven

The WiseVen hot air oven (Witeg, Germany) was used for drying plant materials at 60  $^{\circ}$ C.

3.3.6 Vacuum rotary evaporator

The rotary evaporator model EYELA rotary evaporator N-1000(EYELA, Japan) was used for evaporation solvents under vacuum.

3.3.7 Melting point apparatus

Thermo Scientific 1202D Manual melting point apparatus (Thermo Fisher Scientific, USA) was used for determination melting points.

3.3.8 UV-Visible spectrophotometry

UV spectra were recorded with a Microplate reader Multiscan GO (Thermo Fisher Scientific, USA).

3.3.9 Nuclear magnetic resonance (NMR) spectroscopy

The <sup>1</sup>H and <sup>13</sup>C NMR spectra were determined at 300 and 75.5 MHz, respectively on Bruker model Fourier Spectrometer (Bruker, USA). Tetramethylsilane (TMS) was used as an internal standard.

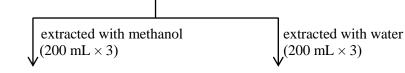
3.3.10 High resolution electrospray ionization mass spectroscopy

High resolution mass spectra were determined on Bruker model MICROTOF (Bruker Daltons Inc, Breman, Germany). The coupled mass spectrometer was operated in electrospray ionization (ESI) mode. Scan range were 35-3000 m/z.

#### 3.4 Methods

3.4.1 Extraction

3.4.1.1 Preparation of crude extracts of different parts of M. kauki


The fresh plants of fruits (62.40 g), leaves (892.29 g), seeds (26.27 g), stem barks (103.18 g) and woods (146.79 g) of *M. kauki* were dried in hot air oven at 60 °C and then powdered. The dried powder of fruits (22.31 g), leaves (376.93 g), seeds (18.56 g), stem barks (66.65 g) and woods (49.23 g) of *M. kauki* were extracted with methanol at room temperature ( $30 \pm 2$  °C) for 72 hours and water at 60 °C for 20 minutes. This process was repeated for 3 times. After filtration, each extract was evaporated under reduced pressure to obtain methanol and aqueous crude extracts. The extraction procedure of different parts of *M. kauki* is shown in Figure 6.

Fresh plants of fruits, leaves, seeds, stem barks and woods of M. kauki

CHULALONGKORN V Dried in oven at 60 °C

Dried fruits, leaves, seeds, stem barks and woods of M. kauki

 $\bigvee$  Ground Dried powder of fruits, leaves, seeds, stem barks and woods of *M. kauki* 



Methanol crude extract

Aqueous crude extract

Figure 6 Extraction procedure of different parts of *M. kauki* 

#### 3.4.1.2 Preparation of crude extracts of stem barks of M. kauki

The fresh plants of stem barks of *M. kauki* were dried in hot air oven at 60 °C and then powdered. The dried powders of stem barks were extracted with *n*-hexane (10 L × 3), ethyl acetate (10 L × 3) and methanol (10 L × 3) at room temperature (30  $\pm$  2 °C) for 72 hours and water (1 L × 3) at 60 °C for 20 minutes, respectively. This process was repeated for 3 times. After filtration, each extract was evaporated under reduced pressure to obtain *n*-hexane (H), ethyl acetate (E), methanol (M) and aqueous (A) crude extracts. The extraction procedure of stem barks of *M. kauki* is shown in Figure 7.

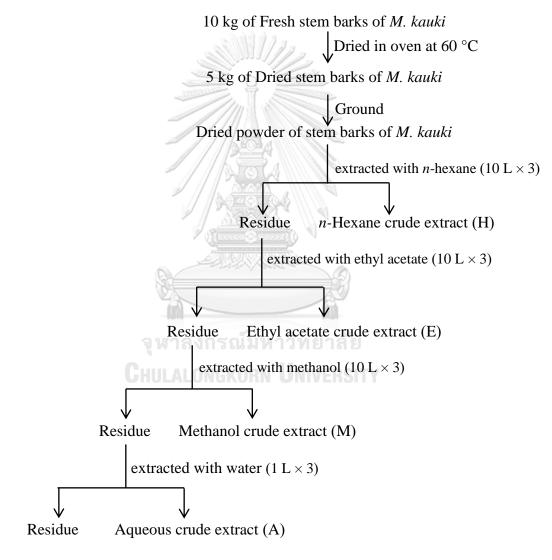



Figure 7 Extraction procedure of stem barks of M. kauki

#### 3.4.2 Phytochemical analysis

#### 3.4.2.1 Total phenolic content

Total phenolic content was determined by the Folin-Ciocalteu reagent method [61] with some modification. The 18  $\mu$ L of sample or standard solution was added into 36  $\mu$ L of 10% Folin-Ciocalteu reagent and followed by 146  $\mu$ L of 350 mM Na<sub>2</sub>CO<sub>3</sub> solution. The solution was incubated at room temperature (30 ± 2 °C) for 1 hour. The absorbance was measured at 765 nm using spectrophotometer. Gallic acid was used as a standard phenolic compound for calculation. A serial dilution of gallic acid was performed at concentration ranging of 100-1000  $\mu$ M. The total phenolic content of sample was calculated and expressed as mg of gallic acid equivalent (GAE)/g of dry weight. All samples were analyzed in triplicated.

#### 3.4.2.2 Total flavonoid content

Total flavonoid content was determined by the aluminum chloride colorimetric assay [62]. The sample was dissolved in methanol at concentration of 1.0 mg/mL. The reaction mixture of sample and standard solution contained 125  $\mu$ L of sample or standard solution and 75  $\mu$ L of 5% NaNO<sub>2</sub> solution. After incubation at room temperature (30 ± 2 °C) for 6 min, the solution was added by 150  $\mu$ L of 10% AlCl<sub>3</sub> solution and incubated at room temperature (30 ± 2 °C) for 5 min. Then, 750  $\mu$ L of 1 M NaOH and 900  $\mu$ L of distilled water were added to the reaction solution. After incubation at room temperature (30 ± 2 °C) for 15 min, the absorbance was measured at 510 nm. The total flavonoid content was expressed as mg quercetin equivalent (QE)/g of dry weight. All samples were analyzed in triplicated.

3.4.3 Biological activity assays

3.4.3.1 Antioxidant activity assays

3.4.3.1.1 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay

DPPH assay was determined using spectrophotometric method [63] with some modifications. The sample was dissolved in 95% methanol at concentration of 1.0 mg/mL. The stock solution of 0.6 mM DPPH was prepared by dissolution of 0.6 mM DPPH with 50 mL of methanol and stored at -20 °C until use. The DPPH working solution was mixed with 10 mL of DPPH stock solution and 45 mL of methanol:water (1:19 v/v) in the dark. The reaction mixture of sample or standard solution contained 10  $\mu$ L of sample or standard and 190  $\mu$ L of DPPH working solution. The reaction mixture of blank contained 10  $\mu$ L of 95% methanol and 190  $\mu$ L of DPPH working solution. After incubation at room temperature (30 ± 2 °C) for 30 min in the dark, the absorbance was measured at 515 nm. The results were expressed in mg of trolox equivalent (TE)/g of crude extract. Calibration curve ranges were 25-1,000  $\mu$ g/mL.

All samples were analyzed in triplicated. Percentage of DPPH radical scavenging activity was analyzed according to this equation.

DPPH radical scavenging activity (%) = 
$$\frac{A - B}{A} \times 100$$

By A is an absorbance of reaction mixture of blank, B is an absorbance of reaction sample or standard.

#### 3.4.3.1.2 The ferric reducing antioxidant power (FRAP) assay

The FRAP assay was done according to previous study [64] with some modification. The sample was dissolved in 95% methanol at concentration of 1.0 mg/mL. The FRAP working solution contained 10 mL of 300 mM acetate buffer (pH 3.6), 1 mL of 20 mM FeCl<sub>3</sub>·6H<sub>2</sub>O and 1 mL of 10 mM 2,4,6-tripyridyltriazine (TPTZ) in 40 mM HCl and then warmed at 37 °C before using. The reaction mixture of sample and standard solution contained 10  $\mu$ L of sample or standard solution and 190  $\mu$ L of FRAP working solution. After incubation at room temperature (30 ± 2 °C) for 30 min in the dark, the absorbance was measured at 593 nm. The results were expressed in mg of trolox equivalent (TE)/g of crude extract. Calibration curve ranges were 25-1,000  $\mu$ g/mL. All samples were analyzed in triplicated.

3.4.3.2 Tyrosinase inhibitory assay

The tyrosinase inhibitory activity was preformed according to the method of Ishiahra et al. with slightly modification [65]. Kojic acid and  $\alpha$ -arbutin were used as positive controls at concentration of 0.1 mg/mL and 1.0 mg/mL, respectively in phosphate buffer pH 6.5. L-tyrosine and L-DOPA were used as substrates. The sample was dissolved in 20% DMSO in ethanol at concentration of 1.0 mg/mL. The reaction mixture of control without test sample (A) contained 133 µL of 0.1 M sodium phosphate buffer (pH 6.5), 47 µL of 2.5 mM substrate, 8 µL of DMSO:absolute ethanol (1:4 v/v) and 12 µL of tyrosinase solution (14.7 Units/mg, 1.2 mg/mL of 0.1 M sodium phosphate buffer, pH 6.5). The reaction mixture of blank of control (B) contained 133 µL of 0.1 M sodium phosphate buffer, 47 µL of 2.5 mM substrate and 8  $\mu$ L of DMSO:absolute ethanol (1:4 v/v). The reaction mixture of sample and positive control (C) contained 133 µL of 0.1 M sodium phosphate buffer (pH 6.5), 47  $\mu$ L of 2.5 mM substrate, 12  $\mu$ L of tyrosinase solution and 8  $\mu$ L of sample solution. The reaction mixture of blank of sample and positive control (D) contained 133  $\mu$ L of 0.1 M sodium phosphate buffer (pH 6.5), 47  $\mu$ L of 2.5 mM substrate and 8  $\mu$ L of sample solution. After incubation at room temperature (30  $\pm$  2 °C) for 20 min, reaction mixture was measured at 475 nm. The assay for each sample was performed in triplicate. The results were then averaged and expressed with standard deviations. Tyrosinase inhibitory activity was analyzed according to the equation below.

%Inhibition = 
$$\frac{(A-B)-(C-D)}{(A-B)} \times 100$$

By A is an absorbance without inhibitor, B is an absorbance of control without inhibitor, C is an absorbance with inhibitor and D is an absorbance of control with inhibitor.

3.4.3.3 Determination of  $IC_{50}$  for tyrosinase inhibitory activity

The half maximal inhibitory concentration (IC<sub>50</sub>) is a concentration of sample reduced by half of inhibition on *in vitro* tyrosinase inhibitory activity. Samples were evaluated by dissolving in 20% DMSO in ethanol and were tested on tyrosinase inhibitory activity assay. Kojic acid and  $\alpha$ -arbutin were used as reference compounds.

3.4.4 Separation of ethyl acetate crude extract of stem barks of M. kauki.

The ethyl acetate crude extract (E) (70 g) was separated by quick column chromatography with silica gel (280 g). The quick column chromatography was eluted with *n*-hexane:ethyl acetate (1:1 v/v 10 L), ethyl acetate (10 L), ethyl acetate:methanol (9:1 v/v 10 L) and ethyl acetate:methanol: (4:1 v/v 11 L), respectively. The separation was given three fractions as E1-E3. Each fraction was tested on tyrosinase inhibitory activity. The isolation procedure of ethyl acetate crude extract is shown in Figure 8.

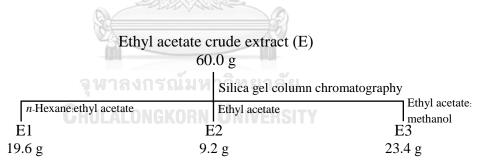



Figure 8 Isolation procedure of ethyl acetate crude extract (E)

The fraction E1 (19.6 g) was separated by silica gel column chromatography, using *n*-hexane, *n*-hexane:dichloromethane (4:1, 3:2 and 1:4 v/v; 15.0, 7.5, and 11.0 L, respectively) and ethyl acetate (4 L) as eluents to get ten fractions (E1A-E1J). Each fraction was tested on tyrosinase inhibitory activity. The isolation procedure of fraction E1 is shown in Figure 9.

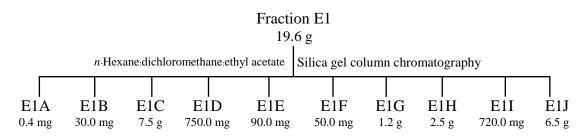
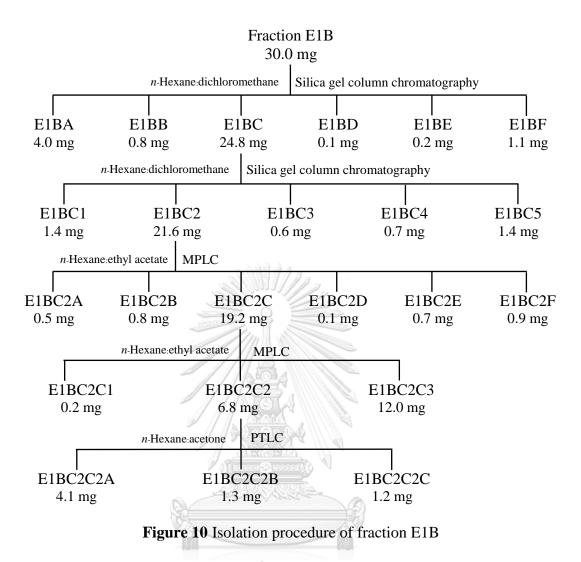




Figure 9 Isolation procedure of fraction E1

The fraction E1B (30.0 mg) was further isolated by column chromatography with *n*-hexane (0.2 L) and *n*-hexane:dichloromethane (49:1, 24.1, 19.1 and 9.1 v/v; 0.7, 1.0, 1.0 and 0.2 L, respectively) as eluents to get six fractions (E1BA-E1BF). The fraction E1BC (24.8 mg) was separated by silica gel column chromatography and eluted with *n*-hexane (0.3 L), *n*-hexane:dichloromethane (99:1, 97:3, 19:1 and 9:1 v/v; 0.3, 1.3, 0.1 and 0.2 L) and dichloromethane (0.2 L) to obtain five fractions (E1BC1-E1BC5). The fraction E1BC2 (22.5 mg) was separated by MPLC using gradient system of *n*-hexane (A) and ethyl acetate (B) as eluent with flow rate 10 mL/min (100% A at 0-11 min, 0-5% B for 12-50 min, 5% B at 51-56 min, 5%-10% B at 57-73 min and 10%-50% at 74-80 min, respectively) to afford six fractions (E1BC2A-E1BC2F). The fraction E1BC2C (19.2 mg) was separated by MPLC, using gradient system of *n*-hexane (A) and ethyl acetate (B) as eluent with flow rate 10 mL/min (100% A at 0-9 min, 0-3% at 10-23 min, 3% B at 24-32 min, 3-5% at 33-39 min and 5-40% at 40-50 min, respectively) to get three fractions (E1BC2C1-E1BC2C3). The fraction E1BC2C2 (6.8 mg) was separated by PTLC using n-hexane:acetone (19:1 v/v) as developing solvent to get three fractions (E1BC2C2A-E1BC2C2C). The isolation procedure of fraction E1B is shown in Figure 10.

> จุฬาลงกรณิมหาวิทยาลัย Chulalongkorn University



The fraction E1C (7.0 g) showed moderate tyrosinase inhibitory activity. The fraction E1C was separated by MPLC using gradient system of *n*-hexane (A) and dichloromethane (B) with flow rate 10 mL/min (100% A at 0-40 min, 10% B at 41-70 min, 30% B at 71-109 min and 30-50% B at 110-172 min, respectively) to get ten fractions (E1CA-E1CJ). The fraction E1CG (20.0 mg) was separated by PTLC using petroleum ether:dichloromethane (4:1 v/v) as developing solvent to get three fractions (E1CG1-E1CG3). The isolation procedure of fraction E1C is shown in Figure 11.

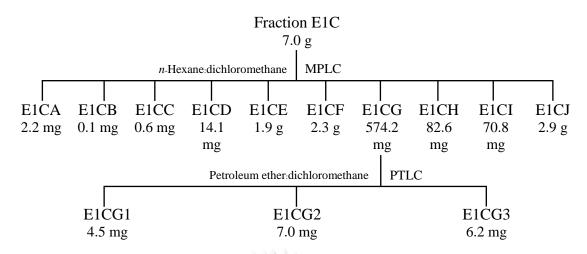



Figure 11 Isolation procedure of fraction E1C

The fraction E1D (730 mg) showed strong tyrosinase inhibitory activity. The fraction E1D was separated by silica gel column chromatography with *n*-hexane (0.7 L) and *n*-hexane:dichloromethane (9:1, 4:1 and 7:3 v/v; 1.1, 1.0 and 2.5 L, respectively) as eluents to afford ten fractions (E1DA-E1DJ). Fraction E1DI (479.8 mg) was further separated by silica gel column chromatography with *n*-hexane:dichloromethane (9:1, 17:3, 4:1 and 7:3 v/v; 0.3, 0.4, 0.3 and 1.2 L, respectively) as eluents to get six fractions (E1DIA-E1DIF). Then, Fraction E1DID (339.0 mg) was separated by silica gel column chromatography with *n*-hexane (0.2 L) and *n*-hexane:acetone (49:1 v/v; 0.9 L) as eluents to obtain four fractions (E1DID1-E1DID4). Fraction E1DID3 was obtained as white solid (319.2 mg, compound I). The isolation procedure of fraction E1D is shown in Figure 12.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

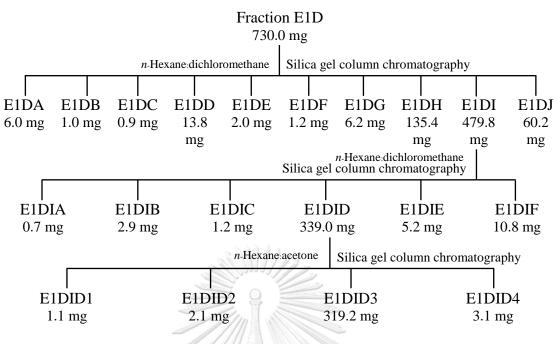



Figure 12 Isolation procedure of fraction E1D

The fraction E1E showed strong tyrosinase inhibitory activity. The fraction E1E (90.4 mg) was separated by silica gel column chromatography with *n*-hexane (0.6 L) and *n*-hexane:dichloromethane (9:1, 4:1, 7:3 and 3:2 v/v; 1.2, 1.0, 0.4 and 1.5 L, respectively) as eluents to afford eight fractions (E1EA-E1EH). The fraction E1EF (74.2 mg) was separated by silica gel column chromatography with *n*-hexane:dichloromethane (9:1, 17:3, 4:1, 7:3 and 3:2 v/v; 0.3, 0.3, 0.8, 0.3 and 0.2 L, respectively) as eluents to obtain five fractions (E1EF1-E1EF5). The fraction E1EF4 (68.5 mg) was separated by silica gel column chromatography with *n*-hexane (0.5 L) and *n*-hexane:acetone (19:1, 9:1 and 17:3 v/v; 0.6, 0.3 and 0.6 L, respectively) as eluents to get five fractions (E1EF4A-E1EF4E). Then, the fraction E1EF4B (55.5 mg) was separated by silica gel column chromatography with *n*-hexane (0.2 L) and *n*-hexane:acetone (99:1, 49:1 and 3:2 v/v; 0.2, 0.4 and 0.2 L) as eluents to get three fractions (E1EF4B1-E1EF4B3). Fraction E1EF4B2 was obtained as white solid (54.9 mg, compound **I**). The isolation procedure of fraction E1E is shown in Figure 13.

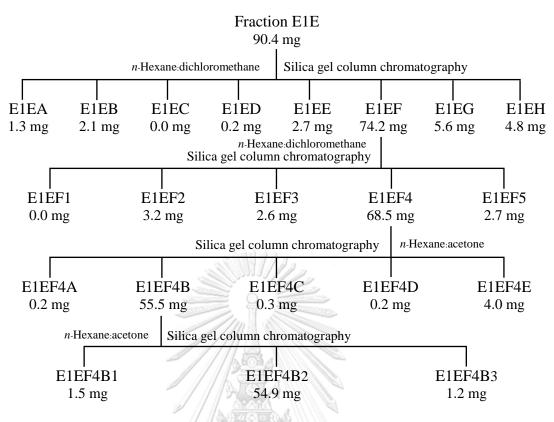



Figure 13 Isolation procedure of fraction E1E

The fraction E1F (50.0 mg) was separated by PTLC using *n*-hexane:dichloromethane (9:1 v/v) as developing solvent to afford four fractions (E1FA-E1FD). Fraction E1FB was obtained as white solid (9.2 mg, compound I). The isolation procedure of fraction E1F is shown in Figure 14.

|         | จุหาลงกรณ์ม <sub>E</sub>    | <sub>โF</sub> วิทยาล้ |    |        |
|---------|-----------------------------|-----------------------|----|--------|
|         | CHULALONGKO <sup>50.0</sup> | ) mg                  |    |        |
|         | n-Hexane:dichloromethane    | PTLC                  |    |        |
|         |                             |                       |    |        |
| E1FA    | E1FB                        | E1                    | FC | E1FE   |
| 15.3 mg | 9.2 mg                      | 5.6                   | mg | 2.2 mg |

Figure 14 Isolation procedure of fraction E1F

The fraction E1H (0.6 g) was separated by column chromatography with *n*-hexane:ethyl acetate (9:1, 17:3, 4:1 and 2:3 v/v; 1.0, 0.3, 0.4 and 0.2 L, respectively) as eluents to give six fractions (E1HA-E1HF). The isolation procedure of fraction E1H is shown in Figure 15. The fraction E1HA was separated by PTLC using *n*-hexane:dichloromethane (3:2 v/v) as developing solvent to get two fractions (E1HA1-E1HA2). The fraction E1HB (37.0 mg) was separated by MPLC using gradient of *n*-hexane (A) and ethyl acetate (B) as eluent with flow rate 1 mL/min (100% A at 0-75

min, 3% B at 76-135 min, 5% B at 136-196 min, 8% B at 197-257 min and 10% B at 258-322 min, respectively) to obtain nine fractions (E1HB1-E1HB9). The extraction procedure of fraction E1HB is shown in Figure 15. The fraction E1HC (70.0 mg) was separated by silica gel column chromatography with *n*-hexane (0.2 L), *n*-hexane:ethyl acetate (19:1, 47:3 and 93:7 v/v; 0.8, 0.2 and 1.3 L, respectively) and ethyl acetate (0.2 L) to get five fractions (E1HC1-E1HC5). The fraction E1HC4 (33.6 mg) was separated by PTLC using petroleum ether:ethyl acetate (27:3 v/v) as developing solvent to afford five fractions (E1HC4A-E1HC4E). The isolation procedure of fraction E1HC is shown in Figure 16. The fraction E1HE (22.1 mg) was separated by column chromatography with dichloromethane (0.3 L), dichloromethane:acetone (99:1, 24:1 and 47:3 v/v; 0.3, 0.3 and 0.7, respectively) as eluents to obtain four fractions (E1HE1-E1HE4). The isolation procedure of fractions (E1HE1-E1HE4).

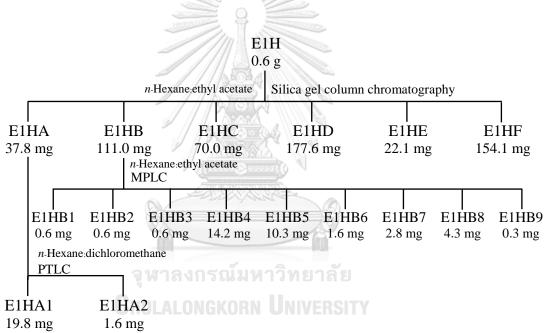



Figure 15 Isolation procedure of fractions E1H, E1HA and E1HB

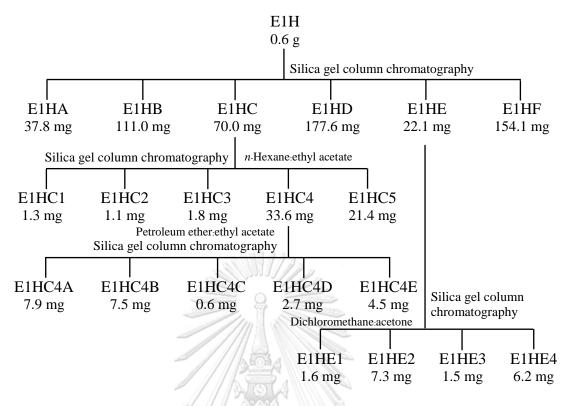



Figure 16 Isolation procedure of fractions E1HC and E1HE

The fraction E1I showed strong tyrosinase inhibitory activity. The Fraction E1I (0.6 g) was separated by silica gel column chromatography with *n*-hexane:ethyl acetate (4:1, 7:3 and 3:2 v/v; 0.2, 0.9 and 0.5 L, respectively) to get six fractions (E1IA-E1IF). Then, fraction E1IC (55.3 mg) was separated by PTLC using *n*-hexane:acetone (3:2 v/v) as developing solvent to get five fractions (E1IC1-E1IC5). Fraction E1IC5 was afforded as yellow solid (7.8 mg, compound **II**). The isolation procedure of fraction E1I is shown in Figure 17.

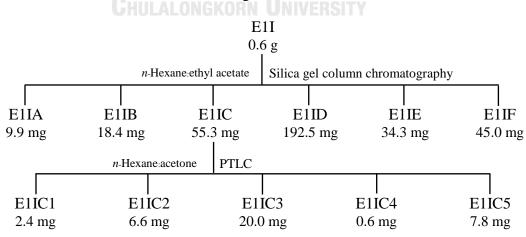



Figure 17 Isolation procedure of fraction E1I

The fraction E2 showed moderate tyrosinase inhibitory activity. The fraction E2 (7.5 g) was separated by MPLC using gradient system of *n*-hexane (A) and acetone (B) as eluent with flow rate 36 mL/min (100% A at 0-3 min, 0-50% B at 4-25 min, 50-95% B at 26-43 min and 95-100% B at 44-56 min, respectively) to obtain six fractions (E2A-E2F). The isolation procedure of fraction E2 is shown in Figure 18.

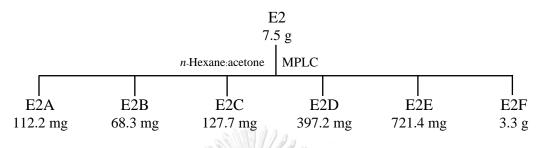



Figure 18 Isolation procedure of fraction E2

The fraction E2A (112.2 mg) was separated by MPLC using gradient system of *n*-hexane (A) and dichloromethane (B) as eluent with flow rate 10 mL/min (100% A at 0-15 min, 0-100% B at 16-89 min and 100% B 90-96 min, respectively) to obtain seven fractions (E2AA-E2AG). The fraction E2AD (13.5 mg) was separated by PTLC using *n*-hexane:dichloromethane (1:1 v/v) as developing solvent to get three fractions (E2AD1-E2AD3). The fraction E2AE (6.9 mg) was separated by PTLC using *n*-hexane:dichloromethane (1:1 v/v) as developing solvent to obtain three fractions (E2AE1-E2AE3). The isolation procedure of fraction E2A is shown in Figure 19.

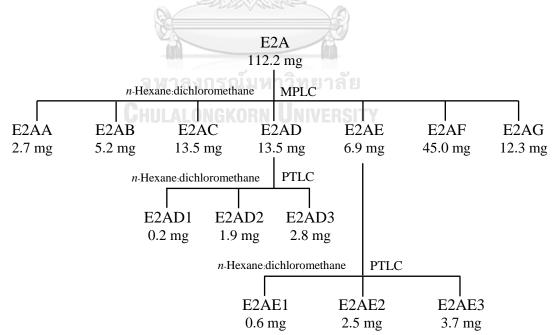



Figure 19 Isolation procedure of fraction E2A

The fraction E2B (60.0 mg) showed strong tyrosinase inhibitory activity. The fraction E2B was separated by MPLC using gradient system of *n*-hexane (A) and acetone (B) as eluent with flow rate 10 mL/min (100% A at 0-6 min, 0-5% B at 6-7 min, 5% B at 8-13 min, 5-10% B at 14-15 min, 10% B at 16-21 min, 10-15% B at 22-23 min, 15% B at 24-29 min, 15-20% B at 30-31 min, 20% B at 32-37 min, 20-30% B at 38-40 min, 30% B at 41-49 min and 30-65% B at 50-60 min, respectively) to get seven fractions (E2BA-E2BG). The fraction E2BD (9.9 mg) was separated by PTLC using *n*-hexane: acetone (4:1 v/v) as developing solvent to obtain two fractions (E2BD1-E2BD2). The fraction E2BE (18.9 mg) was separated by MPLC using gradient system of dichloromethane (A) and ethyl acetate (B) as eluent with flow rate 10 mL/min (100% A at 0-5 min, 0-2% B at 6-10 min, 2% B at 11-14 min, 2-5% B at 15-20 min and 5-10% B at 21-30 min, respectively) to afford three fractions (E2BE1-E2BE3). The fraction E2BE1 (9.6 mg) was further separated by PTLC using dichloromethane: ethyl acetate (49:1 v/v) as developing solvent to afford three fractions (E2BE1A-E2BE1C). The isolation procedure of fraction E2B is shown in Figure 20.

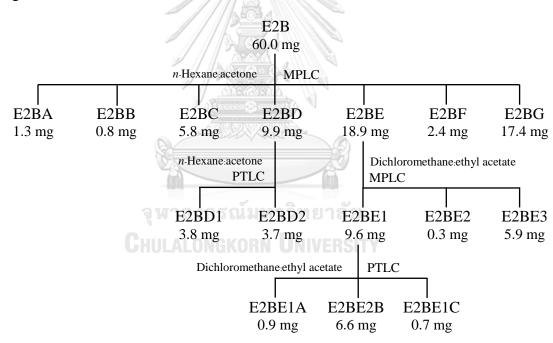



Figure 20 Isolation procedure of fraction E2B

The fraction E2C (127.7 mg) was separated by MPLC using gradient system of *n*-hexane (A) and acetone (B) as eluent with flow rate 10 mL/min (5% B at 0-12 min, 5-10% B at 13-15 min, 10% B at 16-21 min, 10-15% B at 22-23 min, 15% B at 24-29 min, 15-20% B at 30-31 min, 20% B 32-37 min, 20-30% B at 38-39 min, 30% B at 40-45 min, 30-40% B at 46-47 min, 40% B at 48-54 min and 75% B at 55-78 min, respectively) to get eight fractions (E2CA-E2CH). The extraction procedure of fraction E2C is shown in Figure 21. The fraction E2CC (8.9 mg) was separated by

MPLC using gradient system of *n*-hexane (A) and acetone (B) as eluent with flow rate 5 mL/min (100% A at 0-15 min and 0-20% B at 16-81 min, respectively) to obtain four fractions (E2CC1-E2CC4). The fraction E2CC4 (7.0 mg) was separated by PTLC using *n*-hexane:acetone (1:9 v/v) as developing solvent to give four fractions (E2CC4A-E2CC4D). The isolation procedure of fraction E2CC4 is shown in Figure 21. The fraction E2CE (15.0 mg) was separated by PTLC using *n*-hexane:acetone (4:1 v/v) as developing solvent to obtain three fractions (E2CE1-E2CE3). The extraction procedure of fraction E2CE is shown in Figure 21. The fraction E2CE (62.0 mg) was separated by MPLC using gradient system of dichloromethane (A) and ethyl acetate (B) as eluent with flow rate 5 mL/min (100% A at 0-15 min, 0-20% B at 16-86 min ant 20% B at 87-93 min, respectively) to get three fractions (E2CF1-E2CF3). The isolation procedure of fraction E2CF is shown in Figure 22.

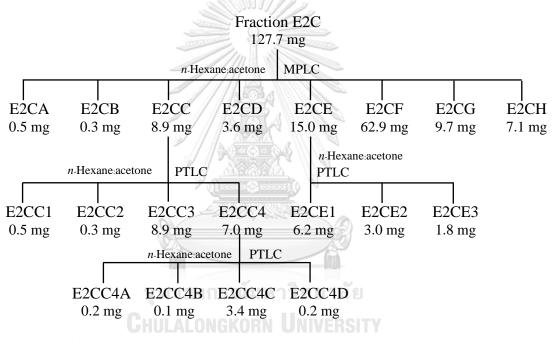



Figure 21 Isolation procedure of fractions E2C, E2CC and E2CE

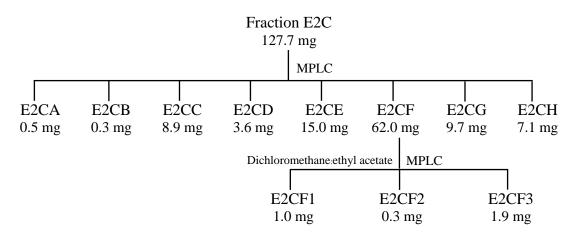



Figure 22 Isolation procedure of fraction E2CF

The fraction E2D (255.0 mg) was separated by MPLC using gradient system of n-hexane (A) and ethyl acetate (B) with flow rate 10 mL/min (0-99% B at 0-72 min) to obtain three fractions (E2DA-E2DC). The fraction E2DC (206.9 mg) was separated by MPLC using gradient system of dichloromethane (A) and ethyl acetate (B) as eluent with flow rate 10 mL/min (5% B at 0-10 min, 10% B at 11-16 min, 20% B at 17-22 min, 30% B at 23-28 min, 50% B at 29-35 min and 80% B at 36-46 min, respectively) to get six fractions (E2DC1-E2DC6). The fraction E2DC4 (39.6 mg) was separated by MPLC using gradient system of *n*-hexane (A) and acetone (B) as eluent with flow rate 2 mL/min (10% B at 0-38 min, 10-40% at 39-141 min, 40-42% B at 142-147 min, 42-45% B at 148-158 min and 45% B at 159-165 min, respectively) to afford five fractions (E2DC4A-E2DC4E). The fraction E2DC5 (65.6 mg) was separated by MPLC using gradient system of *n*-hexane (A) and ethyl acetate (B) as eluent with flow rate 2 mL/min (10-30% B at 0-37 min, 30% at 38-63 min, 40% B at 64-89 min, 50% B at 90-114 min, 60% B at 115-135 min and 70% B at 136-161 min, respectively) to obtain three fractions (E2DC5A-E2DC5C). The fraction E2DC5C (45.2 mg) was separated by PTLC using petroleum ether: ethyl acetate (1:9 v/v) as developing solvent to afford two fractions (E2DC5CA-E2DC5CB). The isolation procedure of fraction E2D is shown in Figure 23.

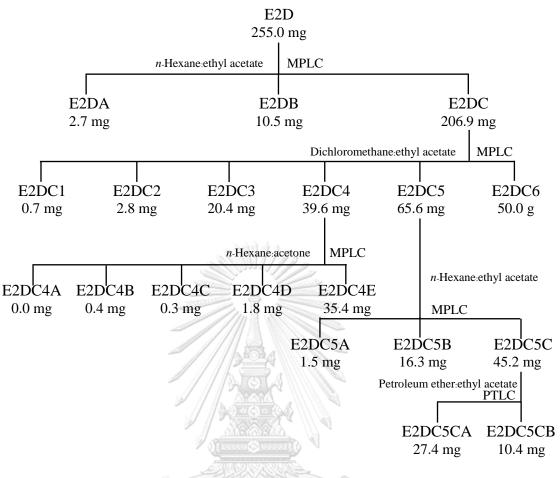
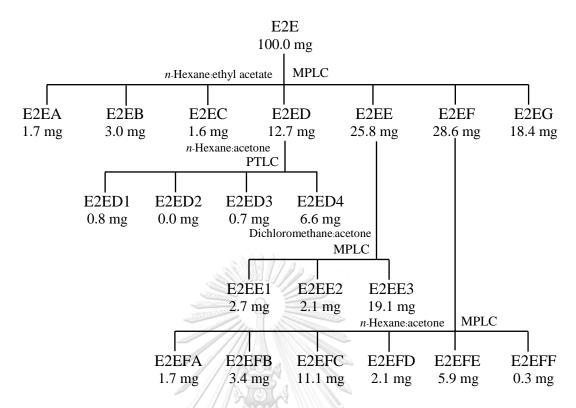
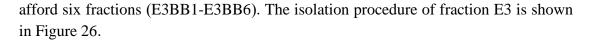
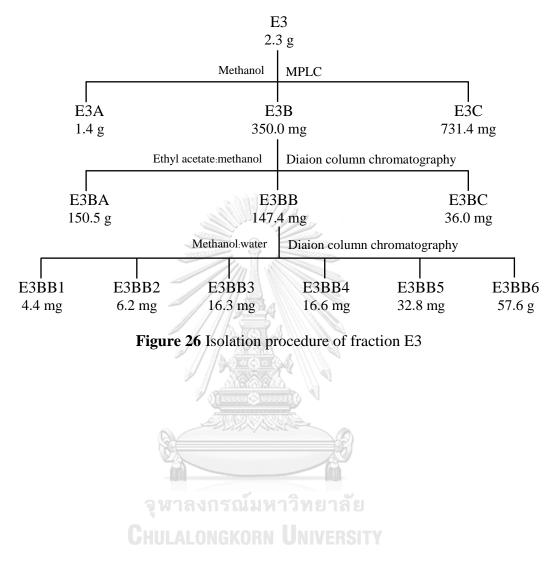



Figure 23 Isolation procedure of fraction E2D

The fraction E2E (100.0 mg) was separated by MPLC using gradient system of *n*-hexane (A) and ethyl acetate (B) as eluent with flow rate 10 mL/min (100% A at 0-10 min, 0-10% B at 11-14 min, 10% B at 15-20 min, 10-20% B at 21-26 min, 20% B at 21-31 min, 30-50% B at 32-37 min, 50% B at 38-52 min and 50-100% B at 53-76 min, respectively) to get seven fractions (E2EA-E2EG). The fraction E2ED (12.7 mg) was separated by PTLC using *n*-hexane:acetone (3:2 v/v) as developing solvent to afford four fractions (E2ED1-E2ED4). The fraction E2EE (25.8 mg) was separated by MPLC using gradient system of dichloromethane (A) and acetone (B) as eluent with flow rate 10 mL/min (100% A at 0-8 min, 0-8% B at 9-39 min, 8-10% B at 40-45 min, 10-15% B at 46-62 min and 15% B at 63-76 min, respectively) to get three fractions (E2EE1-E2EE3). The fraction E2EF (28.6 mg) was separated by MPLC using gradient system of *n*-hexane (A) and acetone (B) as eluent with flow rate 2mL/min (10-50% B at 0-40 min and 50-90% B at 41-121 min, respectively) to obtain six fractions (E2EFA-E2EFF). The isolation procedure of fraction E2E is shown in Figure 24.





Figure 24 Isolation procedure of fraction E2E crude extract


The fraction E2F (150 mg) was separated by MPLC using gradient system of n-hexane (A) and ethyl acetate (B) as eluent with flow rate 5 mL/min (10% B at 0-54 min, 20% B at 55-95 min, 30% B at 96-136 min, 50% B at 137-177 min, 70% B at 178-242 min, respectively) to get eleven fractions (E2FA-E2FJ). The isolation procedure of fraction E2F is shown in Figure 25.

|        | จุฬาลงกรณ์ม <sub>ีE2F</sub> วิทยาลัย |             |             |         |        |        |        |         |         |
|--------|--------------------------------------|-------------|-------------|---------|--------|--------|--------|---------|---------|
|        |                                      |             |             | 150     | mg     |        |        |         |         |
|        |                                      | <i>n</i> -H | exane:ethyl | acetate | MPLC   |        |        |         |         |
|        |                                      |             |             |         |        |        |        |         |         |
| E1FA   | E1FB                                 | E1FC        | E1FD        | E1FE    | E1FF   | E1FG   | E1FH   | E1FI    | E1FJ    |
| 3.3 mg | 17.0 mg                              | 12.6 mg     | 8.9 mg      | 12.2 mg | 8.9 mg | 8.5 mg | 8.5 mg | 16.8 mg | 42.0 mg |

Figure 25 Isolation procedure of fraction E2F

The fraction E3 (2.3 g) was separated by MPLC using isocratic of methanol (A) with flow rate 10 mL/min (100% A at 0-141 min) to get three fractions (E3A-E3C). The fraction E3B (140.0 mg) was separated diaion column chromatography with ethyl acetate and ethyl acetate:methanol (19:1 v/v) to obtain three fractions (E3BA-E3BC). The fraction E3BB (140.0 mg) was separated by diaion column chromatography with water, methanol:water (1:9, 1:4, 3:7, 2:3 and 1:1 v/v; 0.2, 0.2, 0.3, 0.2 and 0.3 L, respectively) and methanol (0.5 L), respectively as eluents to





# **CHAPTER IV RESULTS AND DISCUSSION**

## 4.1 Extraction of different parts of *M. kauki*

The dried powder of fruits, leaves, seeds, stem barks and woods of M. kauki were extracted with methanol and water. Methanol and aqueous crude extracts of five different parts of *M. kauki* were afforded percentage yield of crude extracts in the range of 3.39-19.08% w/w of dry plant. Aqueous crude extract of fruits of M. kauki got the highest percent yield with 19.08% w/w of dry weight. While, methanol crude extract of woods of *M. kuaki* got the lowest percent yield with 3.39% w/w of dry weight. The characteristic and percent yield of methanol and aqueous crude extracts of different parts of *M. kauki* are shown in Tables 4.1 and 4.2, respectively.

| Table 4.1 Characteristic | and percentage yield of methanol crude extract of differ | ent |
|--------------------------|----------------------------------------------------------|-----|
| parts of M. kauki        |                                                          |     |

| Part of plant | Dry weight (g) | Methanol crude extract |                                 |  |
|---------------|----------------|------------------------|---------------------------------|--|
|               |                | Characteristic         | Yield (g) (% w/w of dry weight) |  |
| Fruits        | 10.62          | Light brown gum        | 1.17 (11.02)                    |  |
| Leaves        | 29.77          | Green solid            | 3.45 (11.59)                    |  |
| Seeds         | 7.86           | Brown solid            | 0.42 (5.34)                     |  |
| Stem barks    | 34.13          | Brown solid            | 2.02 (5.92)                     |  |
| Woods         | 24.43          | Yellow gum             | 0.83 (3.39)                     |  |

Table 4.2 Characteristic and percentage yield of aqueous crude extract of different parts of *M. kauki* 

| Part of plant Dry weight (g) |       | Aqueous crude extrac | Aqueous crude extract |  |  |
|------------------------------|-------|----------------------|-----------------------|--|--|
|                              |       | Characteristic       | Yield (g) (% w/w of   |  |  |
|                              |       |                      | dry weight)           |  |  |
| Fruits                       | 11.69 | Brown gum            | 2.23 (19.08)          |  |  |
| Leaves                       | 19.39 | Dark green solid     | 1.74 (8.97)           |  |  |
| Seeds                        | 10.70 | Brown solid          | 0.93 (8.69)           |  |  |
| Stem barks                   | 32.52 | Brown solid          | 1.92 (5.92)           |  |  |
| Woods                        | 24.70 | Yellow gum           | 1.12 (4.53)           |  |  |

#### 4.2 Phytochemical compositions of different parts of M. kauki

#### 4.2.1 Total phenolic content

The results of total phenolic content of methanol and aqueous crude extracts of different parts of M. kauki are presented in Table 4.3. Methanol crude extract of leaves of *M. kauki* exhibited the highest amount of total phenolic content (11.79  $\pm$  0.04 mg GAE/g of dry weight) and followed by methanol crude extract of stem barks, aqueous crude extract of leaves, aqueous crude extract of stem barks, methanol crude extract of woods, aqueous and methanol crude extracts of fruits, aqueous crude extract of woods, aqueous and methanol crude extracts of seeds with values of 10.45  $\pm$  0.03, 9.50  $\pm$  0.08, 4.00  $\pm$  0.02, 2.83  $\pm$  0.05, 2.83  $\pm$  0.01, 1.92  $\pm$  0.02, 1.91  $\pm$  0.03, 0.95  $\pm$  0.02 and 0.79  $\pm$  0.01 mg GAE/g of dry weight, respectively.

The previous researches showed that methanol and aqueous crude extracts of barks of *M. elengi* exhibited total phenolic content with values of  $154.36 \pm 0.51$  and  $72.60 \pm 1.10$  mg GAE/g of dry weight [66]. Methanol:water (70:30 v/v) crude extract of leaves of *A. spinosa* exhibited total phenolic content with value of 2.88 mg GAE/g of dry weight [67]. Aqueous and ethanol crude extracts of seeds of *M. zapota* showed total phenolic content with values of  $115.89 \pm 4.52$  and  $1.00 \pm 0.01$  g GAE/g of dry weight [68]. These plants are trees in Sapotaceae family. Consequently, crude extracts of barks of *M. elengi* and seeds of *M. zapota* exhibited higher total phenolic content values than crude extracts of stem barks of *M. kauki* but methanol and aqueous crude extracts of leaves and stem barks of *M. kauki* exhibited higher total phenolic content than leaves of *A. spinosa*.

| Part of    | Total phenolic content |                 |                  |                  |  |  |
|------------|------------------------|-----------------|------------------|------------------|--|--|
| plant      | Methanol crude         | extract         | Aqueous crude e  | extract          |  |  |
|            | (mg GAE/g of           | (mg GAE/g of    | (mg GAE/g of     | (mg GAE/g of dry |  |  |
|            | crude extract)         | dry weight)     | crude extract)   | weight)          |  |  |
| Fruits     | $17.52 \pm 0.19$       | $1.92 \pm 0.02$ | $14.83\pm0.07$   | $2.83\pm0.01$    |  |  |
| Leaves     | $101.75 \pm 1.15$      | $11.79\pm0.04$  | $105.98\pm0.38$  | $9.50\pm0.08$    |  |  |
| Seeds      | $14.83\pm0.11$         | $0.79 \pm 0.01$ | $10.88 \pm 0.14$ | $0.95\pm0.02$    |  |  |
| Stem barks | $176.56\pm0.70$        | $10.45\pm0.03$  | $99.73 \pm 0.51$ | $4.00\pm0.02$    |  |  |
| Woods      | $101.75\pm0.61$        | $2.83\pm0.05$   | $47.71\pm0.42$   | $1.91\pm0.03$    |  |  |

**Table 4.3** Total phenolic content of methanol and aqueous crude extracts of different parts of *M. kauki*

#### 4.2.2 Total flavonoid content

The results of total flavonoid content of methanol and aqueous crude extracts of different parts of *M. kauki* are presented in Table 4.4. The highest total flavonoid content was obtained in methanol crude extract of leaves of with value of 89.84  $\pm$  0.19 mg QE/g of dry weight and followed by aqueous crude extract of leaves, aqueous and methanol crude extracts of stem barks, aqueous and methanol crude extracts of fruits, aqueous crude extract of woods, aqueous and methanol crude extracts of seeds and methanol crude extract of woods which showed total flavonoid content values of 66.60  $\pm$  0.22, 58.07  $\pm$  0.32, 48.62  $\pm$  0.21, 20.17  $\pm$  0.16, 10.72  $\pm$  0.08, 4.54  $\pm$  0.21, 3.66  $\pm$  0.14, 2.04  $\pm$  0.07 and 0.46  $\pm$  0.07 mg QE/g of dry weight, respectively.

The previous reports showed that total methanol and aqueous crude extracts of barks of *M. elengi* exhibited high total flavonoid content with values of  $54.7 \pm 0.22$  and  $23.5 \pm 0.80$  mg QE/g of dry weight, respectively [66]. Methanol:water (70:30 v/v) crude extract of leaves of *A. spinosa* exhibited total flavonoid content with value of 0.869 mg QE/g of dry weight [67]. Aqueous and ethanol crude extracts of *M. zapota* showed total flavonoid content with values of  $7.26 \pm 1.86$  and  $7.2 \pm 1.40$  mg QE/ g dry weight, respectively [68]. These plants are trees in Sapotaceae family. Consequently, the crude extract of *M. elengi* exhibited higher total flavonoid content value than *M. kauki* crude extract but crude extracts of *M. kauki* exhibited higher total flavonoid content than *A. spinosa* and methanol and aqueous crude extracts of leaves and stem barks of *M. kauki* showed higher total flavonoid content than crude extract of seeds of *M. zapota*.

| Table 4.4 Total flavonoid content of methanol and aqueous crude extracts of M. kauk | i |
|-------------------------------------------------------------------------------------|---|
|                                                                                     |   |
|                                                                                     |   |

| Part of plant | Total flavonoid content |                  |                          |                  |  |  |
|---------------|-------------------------|------------------|--------------------------|------------------|--|--|
|               | Methanol crude extract  |                  | Aqueous crude e          | extract          |  |  |
|               | (mg QE/g of             | (mg QE/g of dry  | (mg QE/g of              | (mg QE/g of      |  |  |
|               | crude extract)          | weight)          | crude extract)           | dry weight)      |  |  |
| Fruits        | $98.00 \pm 0.72$        | $10.72\pm0.08$   | $105.67 \pm 0.82$        | $20.17\pm0.16$   |  |  |
| Leaves        | $775.33 \pm 1.81$       | $89.84 \pm 0.19$ | $^{\sim}743.33 \pm 2.14$ | $66.60 \pm 0.22$ |  |  |
| Seeds         | 38.33 ± 1.41            | $2.04 \pm 0.07$  | $42.00 \pm 1.15$         | $3.66\pm0.14$    |  |  |
| Stem barks    | 820.67 ± 1.98           | $48.62 \pm 0.21$ | $799.67\pm2.96$          | $58.07 \pm 0.32$ |  |  |
| Woods         | $13.67 \pm 0.72$        | $0.46\pm0.07$    | $113.33\pm1.27$          | $4.54\pm0.21$    |  |  |

#### 4.3 Biological activities of different parts of M. kauki

4.3.1 Antioxidant activities

4.3.1.1 DPPH radical scavenging activity

The DPPH free radical scavenging activity of different parts of *M. kauki* was investigated by spectrophotometric method. The results of DPPH free radical scavenging activity are presented in Table 4.5. The highest DPPH radical scavenging activity was found in methanol crude extract of stem barks with value of 257.02  $\pm$  0.26 mg TE/g of crude extract. Secondly, aqueous crude extract of leaves showed DPPH radical scavenging activity with value of 243.19  $\pm$  1.24 mg TE/g of crude extract and followed by aqueous crude extract of stem barks, methanol crude extract of leaves, methanol and aqueous crude extracts of woods, methanol crude extracts of fruits and seeds, aqueous crude extracts of fruits and seeds which exhibited DPPH radical scavenging activity with values of 219.19  $\pm$  0.13, 208.60  $\pm$  0.98, 194.38  $\pm$  0.70, 66.04  $\pm$  0.57, 45.28  $\pm$  0.51, 16.08  $\pm$  0.31, 13.01  $\pm$  0.51 and 10.32  $\pm$  0.38 mg TE/g of crude extracts of stem barks and leaves of *M. kauki* exhibited strong DPPH

radical scavenging activity. Whereas, fruits and seeds of *M. kauki* showed low activity of DPPH radical scavenging.

Methanol and aqueous crude extracts of Bidens tripartita exhibited DPPH radical scavenging activity with values of 504.87  $\pm$  4.58 and 260.69  $\pm$  6.36 mg TE/g of crude extract, respectively [69]. It showed higher DPPH radical scavenging activity than crude extracts of *M. kauki*. Butanol crude extract of aerial parts of *Bidens humilis* showed DPPH radical scavenging activity with value of  $173.8 \pm 6.2$  mg TE/g of crude extract. (2S)-Isookanin 7-O- $\alpha$ -L-arabinopyranoside, (2S)-isookanin 7-O-(2"-acetyl)- $\alpha$ -Larabinopyranoside and luteolin 7-*O*- $\beta$ -*D*-glucopyranosyl-(1 $\rightarrow$ 6)- $\beta$ -*D*galactopyranoside were isolated from butanol crude extract of B. humiliis and showed DPPH radical scavenging with values of  $513.7 \pm 28.7$ ,  $484.7 \pm 21.3$  and  $357.8 \pm 17.5$ mg TE/g of crude extract, respectively [70]. Methanol and aqueous crude extracts of leaves and stem barks of M. kauki showed higher DPPH radical scavenging activity than butanol crude extract of aerial parts of *B. humilis*. Thus, methanol and aqueous crude extracts of leaves and stem barks of M. kauki might be contained excellent active compounds.

| Part of plant | DPPH             |                  | 4                 |                  |
|---------------|------------------|------------------|-------------------|------------------|
|               | Methanol crude   | extract          | Aqueous crude     | extract          |
|               | (mg TE/g of      | Percentage of    | (mg TE/g of       | Percentage of    |
|               | crude extract)   | inhibition (%)   | crude extract)    | inhibition (%)   |
| Fruits        | $45.28 \pm 0.51$ | $8.53\pm0.09$    | $13.01 \pm 0.51$  | $0.99\pm0.08$    |
| Leaves        | $208.60\pm0.98$  | $46.68\pm0.21$   | $243.19 \pm 1.24$ | $54.76 \pm 0.32$ |
| Seeds         | $16.08 \pm 0.31$ | $1.71\pm0.02$    | $10.32\pm0.38$    | $0.36\pm0.04$    |
| Stem barks    | $257.02\pm0.26$  | $57.99 \pm 0.05$ | $219.19\pm0.13$   | $49.19\pm0.03$   |
| Woods         | $194.38\pm0.70$  | $43.36\pm0.23$   | $66.04 \pm 0.57$  | $13.38\pm0.19$   |

**Table 4.5** DPPH radical scavenging activity of methanol and aqueous crude extracts of different parts of *M. kauki*

#### 4.3.1.2 FRAP activity

The results of FRAP activity of different parts of *M. kauki* are presented in Table 4.6. Aqueous crude extract of leaves showed the highest FRAP activity with value of 219.56  $\pm$  0.89 mg TE/g of crude extract and followed by methanol crude extract of leaves, methanol and aqueous crude extracts of stem barks, methanol and aqueous crude extract of seeds and fruits and aqueous crude extracts fruits and seeds which exhibited FRAP activity with values of 210.94  $\pm$  1.37, 210.94  $\pm$  0.89, 107.89  $\pm$  0.79, 72.61  $\pm$  0.98, 42.06  $\pm$  0.98, 15.93  $\pm$  0.98, 11.78  $\pm$  0.96, 5.11  $\pm$  0.79 and 4.56  $\pm$  0.81 mg TE/g of crude extract, respectively.

The previous researches, methanol and aqueous crude extracts of *B. tripartita* exhibited FRAP activity with values of  $299.21 \pm 3.87$  and  $193.44 \pm 6.22$  mg TE/g of

crude extract, respectively [69]. Chlorogenic acid, *epi*-catechin and luteolin-7glucoside were main phenolic components of *B. tripartita* extracts. Correlation between total phenolic content with DPPH radical scavenging and FRAP activities were reported in previous study. Phenolic compounds were investigated to be the most important antioxidants of plant materials [71]. Methanol and aqueous crude extracts of leaves and stem barks of *M. kauki* exhibited DPPH radical scavenging and FRAP activities values nearly *B. tripartita* crude extracts. Thus, methanol and aqueous crude extracts of leaves and stem barks of *M. kauki* might be contained high amount of phenolic compounds and antioxidant inhibitors.

| M. kauki      | 5111120                    |                       |
|---------------|----------------------------|-----------------------|
| Part of plant | FRAP (mg TE/g of crude ext | tract)                |
|               | Methanol crude extract     | Aqueous crude extract |
| Fruits        | $11.78 \pm 0.96$           | $5.11 \pm 0.79$       |
| Leaves        | $210.94 \pm 1.37$          | $219.56 \pm 0.69$     |
| Seeds         | $15.93 \pm 0.98$           | $4.56 \pm 0.81$       |

 $107.89 \pm 0.79$ 

 $42.06 \pm 0.98$ 

**Table 4.6** FRAP activity of methanol and aqueous crude extracts of different parts of *M. kauki*

4.3.2 Tyrosinase inhibitory activity

 $210.94 \pm 0.89$ 

 $72.61 \pm 0.98$ 

Stem barks

Woods

Methanol and aqueous crude extracts of fruits, leaves, seeds, stem barks and woods of *M. kauki* were evaluated for their tyrosinase inhibitory activity using *L*-tyrosine as the a substrate (Table 4.7). Kojic acid and  $\alpha$ -arbutin were used as positive controls. The methanol crude extract of stem exhibited the strongest tyrosinase inhibitory activity with IC<sub>50</sub> value of  $0.26 \pm 0.05$  mg/mL and followed by methanol crude extract of leaves and aqueous crude extracts of stem barks, leaves and fruits, methanol crude extract of fruits, methanol and aqueous crude extracts of seeds exhibited tyrosinase inhibitory activity with IC<sub>50</sub> values of  $0.32 \pm 0.08$ ,  $0.41 \pm 0.11$ ,  $0.49 \pm 0.12$ ,  $0.49 \pm 0.11$ ,  $0.75 \pm 0.14$ ,  $3.86 \pm 0.12$  and  $3.88 \pm 0.17$  mg/mL, respectively. Whereas, methanol and aqueous crude extracts of woods of *M. kauki* showed no tyrosinase inhibitory activity. Methanol and aqueous crude extract of fruits, leaves and stem barks of *M. kauki* exhibited stronger tyrosinase inhibitory activity than  $\alpha$ -arbutin which was used as a positive control.

Tyrosinase inhibitors from natural sources have been reported and their mechanisms of inhibition have been investigated. Acetone extract of *Koelreuteria henryi, Camellia sinensis* and *Rhodiola rosea* demonstrated tyrosinase inhibitory activity with IC<sub>50</sub> values of 289.00  $\pm$  0.50, 232.50  $\pm$  3.30 and 181.80  $\pm$  11.00 µg/mL, respectively. In comparison, kojic acid was used as a positive control (IC<sub>50</sub> value of 6.20  $\pm$  0.40 µg/mL) [72]. Acetone extract of seeds of *Alpinia zerumbet* exhibited tyrosinase inhibitory activity with IC<sub>50</sub> value of 2.30  $\pm$  0.02 µg/mL and found that

cholest-4-ene-3,6-dione was isolated from this extract as a potent steroid for this activity [73]. Methanol and ethyl acetate extracts of woods of M. alba exhibited potent tyrosinase inhibitory activity with IC<sub>50</sub> values of  $0.40 \pm 0.02$  and  $1.30 \pm 0.10$  $\mu$ g/mL, respectively [74]. Likewise, the twigs of *M. alba* showed strong tyrosinase inhibitory activity [75]. Methanol extract of leaves of *Hypericum laricifolium* showed strong tyrosinase inhibitory activity with IC<sub>50</sub> value of 120.90 µg/mL [76]. S.inerme, a tree in the family Sapotaceae, was reported on tyrosinase inhibitory activity using Ltyrosine as a substrate. Acetone and methanol crude extracts of S. inerme barks exhibited tyrosinase inhibitory activity with IC<sub>50</sub> values of  $63.00 \pm 2.10$  and  $82.10 \pm$ 2.70 µg/mL, respectively [48]. Moreover, epi-gallocatechin gallate and procyanidin B1 were isolated from this methanol crude extract and exhibited potent tyrosinase inhibitory activity with IC<sub>50</sub> values of  $30 \pm 1.9$  and  $200 \pm 2.2 \ \mu g/mL$ , respectively. Various plants demonstrated significant tyrosinase inhibition. Therefore, natural tyrosinase inhibitors should be further investigated for potent tyrosinase inhibitors. Methanol crude extract of stem barks exhibited the strongest tyrosinase inhibitory activity, so it was further isolated to find potent tyrosinase inhibitors.

| Parts of plant    | IC <sub>50</sub>       |                       |  |  |
|-------------------|------------------------|-----------------------|--|--|
|                   | Methanol crude extract | Aqueous crude extract |  |  |
| Fruits            | $0.75 \pm 0.14*$       | $0.49 \pm 0.11*$      |  |  |
| Leaves            | $0.32 \pm 0.08*$       | $0.49 \pm 0.12*$      |  |  |
| Seeds             | 3.86 ± 0.12*           | $3.88 \pm 0.17*$      |  |  |
| Stem barks        | $0.26 \pm 0.05*$       | $0.41 \pm 0.11*$      |  |  |
| Woods             | No activity*           | No activity*          |  |  |
| Kojic acid        | จหาลงกรณ์มหาวิ81       | $7 \pm 0.03$ **       |  |  |
| $\alpha$ -Arbutin | 1.                     | $92 \pm 0.09*$        |  |  |

**Table 4.7** Tyrosinase inhibitory activity (IC<sub>50</sub>) of methanol and aqueous crude extracts of different parts of M. kauki

\* IC<sub>50</sub> value (mg/mL) + LALONGKORN ON VERSITY

\*\*IC<sub>50</sub> value ( $\mu$ g/mL)

Stem barks and leaves of *M. kauki* showed high total phenolic and total flavonoid contents and also strong antioxidant activity. Stem barks of *M. kauki* exhibited the strongest tyrosinase inhibitory activity. Thus, the evaluation of total phenolic and total flavonoid contents showed relationship between total phenolic and flavonoid contents and antioxidant and tyrosinase inhibitory activities. The highest levels of phenolic and flavonoid components likewise, the previous research [77]. It was demonstrated that stem barks of *M. kauki* might be contained high amount of antioxidant and tyrosinase inhibitors.

#### 4.4 Extraction of stem barks of M. kauki

The stem barks of *M. kauki* were extracted with *n*-hexane, ethyl acetate and methanol at room temperature  $(30 \pm 2 \text{ °C})$  for 72 hours and water at 60 °C for 20

minutes, respectively. The extracts were filtered and evaporated to give four crude extracts as *n*-hexane crude extract (165.45 g, 3.27% w/w of dry weight, yellow gum), ethyl acetate crude extract (77.52 g, 1.54% w/w of dry weight, green gum), methanol crude extract (847.63 g, 16.85% w/w of dry weight, brown solid) and aqueous crude extract (495.25 g, 9.84% w/w of dry weight, brown gum). The different polarities of solvents were used for classification of chemical constituents in stem barks. The characteristic and percentage yield of crude extracts of stem barks of *M. kauki* are shown in Table 4.8. All of different polarities of crude extracts of stem barks were tested on total phenolic and flavonoid contents, antioxidant and tyrosinase inhibitory activities.

**Table 4.8** Characteristic and percentage yield of crude extracts of stem barks of *M. kauki*

| Crude extract    | Characteristic | Yield (g) (%, w/w of dry weight) |
|------------------|----------------|----------------------------------|
| <i>n</i> -Hexane | Yellow gum     | 164.45 (3.27)                    |
| Ethyl acetate    | Green gum      | 77.52 (1.54)                     |
| Methanol         | Brown solid    | 847.63 (16.85)                   |
| Aqueous          | Brown gum      | 495.25 (9.84)                    |

# 4.5 Phytochemical compositions of crude extracts of stem barks of M. kauki

Phytochemical compositions of the crude extracts of stem barks of *M. kauki* were determined as total phenolic and flavonoid contents.

4.5.1 Total phenolic content

Methanol crude extract of stem barks of *M. kauki* exhibited the highest total phenolic content with value of  $160.12 \pm 0.27$  mg GAE/g of crude extract and followed by ethyl acetate crude extract ( $111.46 \pm 0.38$  mg GAE/g of crude extract), aqueous crude extract ( $66.17 \pm 0.26$  mg GAE/g of crude extract) and *n*-hexane crude extract ( $10.98 \pm 0.14$  mg GAE/g of crude extract) of stem barks of *M. kauki*, respectively. Total phenolic content of crude extracts of stem barks of *M. kauki* is shown in Table 4.9.

# 4.5.2 Total flavonoid content

Ethyl acetate crude extract of stem barks of *M. kauki* exhibited the highest total flavonoid content with value of 755.33  $\pm$  1.53 mg QE/g of crude extract and followed by methanol crude extract (527.33  $\pm$  1.00 mg QE/g of crude extract), aqueous crude extract (516.67  $\pm$  1.73 mg QE/g of crude extract) and *n*-hexane crude extract (283.67  $\pm$  1.52 mg QE/g of crude extract) of stem barks, respectively. Total flavonoid content of crude extracts of stem barks of *M. kauki* is shown in Table 4.9.

| Crude extract    | Total phenolic content (m |                            |
|------------------|---------------------------|----------------------------|
|                  | GAE/g of crude extract)   | (mg QE/g of crude extract) |
| <i>n</i> -Hexane | $10.98 \pm 0.14$          | $283.67 \pm 1.52$          |
| Ethyl acetate    | $111.46 \pm 0.38$         | $755.33 \pm 1.53$          |
| Methanol         | $160.12 \pm 0.27$         | $527.33 \pm 1.00$          |
| Aqueous          | $66.17 \pm 0.26$          | $516.67 \pm 1.73$          |

Table 4.9 Phytochemical compositions of crude extracts of stem barks of M. kauki

#### 4.6 Biological activities of crude extracts of stem barks of M. kauki

4.6.1 Antioxidant activities

## 4.6.1.1 DPPH radical scavenging activity

Ethyl acetate crude extract of stem barks of *M. kauki* exhibited the highest DPPH radical scavenging with DPPH radical scavenging value of  $249.33 \pm 0.25$  mg TE/g of crude extract and followed by methanol crude extract ( $241.26 \pm 0.32$  mg TE/g of crude extract), aqueous crude extract ( $39.52 \pm 0.25$  mg TE/g of crude extract) and *n*-hexane crude extract ( $11.85 \pm 0.67$  mg TE/g of crude extract) of stem barks of *M. kauki*, respectively. DPPH radical scavenging activity of stem barks of *M. kauki* is shown in Table 4.10.

4.6.1.2 FRAP activity

Methanol crude extract of stem barks of *M. kauki* exhibited the highest FRAP activity with FRAP activity value of  $221.50 \pm 0.78$  mg TE/g of crude extract and followed by ethyl acetate crude extract (179.28  $\pm$  0.59 mg TE/g of crude extract), aqueous (50.94  $\pm$  0.20 mg TE/g of crude extract) and *n*-hexane crude extract (10.39  $\pm$  0.59 mg TE/g of crude extract) of stem barks of *M. kauki*, respectively. FRAP activity of stem barks of *M. kauki* is shown in Table 4.10.

| Crude extract    | DPPH            |                  | FRAP               |
|------------------|-----------------|------------------|--------------------|
|                  | (mg TAE/g       | Percentage       | of (mg TAE/g crude |
|                  | crude extract)  | inhibition (%)   | extract)           |
| <i>n</i> -Hexane | $11.85\pm0.67$  | $0.72\pm0.03$    | $10.39\pm0.59$     |
| Ethyl acetate    | $249.33\pm0.25$ | $56.19 \pm 0.04$ | $179.28\pm0.59$    |
| Methanol         | $241.26\pm0.32$ | $54.31\pm0.06$   | $221.50\pm0.78$    |
| Aqueous          | $39.52\pm0.25$  | $7.18\pm0.04$    | $50.94 \pm 0.20$   |

Table 4.10 Antioxidant activities of stem barks of *M. kauki* 

#### 4.6.2 Tyrosinase inhibitory activity

Ethyl acetate crude extract exhibited the strongest tyrosinase inhibitory activity (IC<sub>50</sub> values of 0.24  $\pm$  0.02 and 0.28  $\pm$  0.04 mg/mL for *L*-tyrosine and *L*-DOPA, respectively) and followed by methanol crude extract (IC<sub>50</sub> value of 1.66  $\pm$ 

0.07 and 1.25  $\pm$  0.05 for *L*-tyrosine and *L*-DOPA, respectively), aqueous crude extract (IC<sub>50</sub> value of 1.89  $\pm$ 0.09 and 1.89  $\pm$ 0.09 mg/mL for *L*-tyrosine and *L*-DOPA, respectively) and *n*-hexane crude extract (IC<sub>50</sub> value of 9.58  $\pm$  0.17 and 9.23  $\pm$  0.28 mg/mL for *L*-tyrosine and *L*-DOPA, respectively). The tyrosinase inhibitory activity of crude extracts of stem barks of *M. kauki* is shown in Table 4.11.

The previous published studies, (+)-*epi*-syringaresinol and *N*-transferuloyltyramine were isolated from methanol crude extract of stems of *S. dulcificum*. (+)-*epi*-Syringaresinol and *N*-trans-feruloyltyramine exhibited DPPH radical scavenging activity with IC<sub>50</sub> values of 100.2 and 154.7  $\mu$ M, respectively and these compounds exhibited tyrosinase inhibitory activity with IC<sub>50</sub> values of 200.5 and 215.5  $\mu$ M, respectively [60]. The ethyl acetate crude extract of *Peucedanum knappii* showed the highest antioxidant with SC<sub>50</sub> value of 36.4 mg/mL and tyrosinase inhibitory activity with IC<sub>50</sub> value of 517 mg/mL. Isorhamnetin-3-*O*- $\beta$ -*D*glucopyranoside was isolated from ethyl acetate crude extract of *P. knappii*. This compound exhibited DPPH radical scavenging with SC<sub>50</sub> value of 2.9  $\mu$ g/mL and tyrosinase inhibitory activity with IC<sub>50</sub> value of 27.95  $\mu$ g/mL [77]. After reviewing the previous researches, they show significant results which can be found in this research.

| Crude extract     | Tyrosinase inhibitory a | Tyrosinase inhibitory activity (IC <sub>50</sub> ) |  |  |
|-------------------|-------------------------|----------------------------------------------------|--|--|
|                   | <i>L</i> -tyrosine      | L-DOPA                                             |  |  |
| <i>n</i> -Hexane  | $9.58 \pm 0.17*$        | $9.23\pm0.28*$                                     |  |  |
| Ethyl acetate     | $0.24 \pm 0.02*$        | $0.28\pm0.04\text{*}$                              |  |  |
| Methanol          | $1.66 \pm 0.07*$        | $1.25\pm0.05*$                                     |  |  |
| Aqueous           | $1.89 \pm 0.09*$        | $1.58 \pm 0.11*$                                   |  |  |
| Kojic acid        | $8.17 \pm 0.03$ **      | $8.43 \pm 0.05 **$                                 |  |  |
| <i>α</i> -Arbutin | $1.92 \pm 0.09*$        | $1.73 \pm 0.11*$                                   |  |  |

Table 4.11 Tyrosinase inhibitory activity of stem barks of *M. kauki* 

\*  $IC_{50}$  value (mg/mL)

\*\*IC<sub>50</sub> value (µg/mL)

Several polyphenols including flavanones, flavones and isoflavones have been isolated from plants. Some of these compounds were identified and reported as tyrosinase inhibitors [78]. Thus, ethyl acetate crude extract of stem barks have potential to be excellent source for potent tyrosinase inhibitors.

#### 4.7 Isolation of ethyl acetate crude extract of stem barks of *M. kauki*

The ethyl acetate crude extract of stem barks of *M. kauki* was isolated using silica gel quick column chromatography with a mixture of *n*-hexane:ethyl acetate, ethyl acetate and a mixture of ethyl acetate:methanol to obtain three fractions (E1-E3). All three fractions were tested on tyrosinase inhibitory activity using *L*-tyrosine as a substrate. Fraction E1 showed the strongest tyrosinase inhibitory activity with percent inhibition of  $74.64 \pm 0.74\%$  and followed by fractions E2 and E3 with percent

inhibition of 71.46  $\pm$  0.70% and 70.56  $\pm$  0.82%, respectively. The isolation and tyrosinase inhibitory activity of ethyl acetate crude extract are shown in Table 4.12.

| Fraction                | Characteristic   | Yield (g) (% w/w | Tyrosinase inhibitory |
|-------------------------|------------------|------------------|-----------------------|
|                         |                  | of ethyl acetate | activity (%)          |
|                         |                  | crude extract)   |                       |
| E1                      | Yellow green gum | 19.60 (32.67)    | $74.64 \pm 0.74*$     |
| E2                      | Dark brown solid | 9.15 (15.25)     | $71.46 \pm 0.70 *$    |
| E3                      | Dark brown solid | 23.38 (38.96)    | $70.56 \pm 0.82*$     |
| Kojic acid <sup>a</sup> |                  |                  | $98.19 \pm 0.12$ **   |
| Kojic acid <sup>a</sup> | 1                |                  | 98.19 ± 0.12**        |

Table 4.12 Isolation and tyrosinase inhibitory activity of fraction E

<sup>a</sup> Positive control

\* at concentration 1 mg/mL

\*\* at concentration 0.1 mg/mL

The fraction E1 was further isolated using silica column chromatography with gradient elution of mixture of *n*-hexane and dichloromethane to obtain ten fractions (E1A-E1J). All ten fractions were tested on tyrosinase inhibitory activity using *L*-tyrosine as a substrate. The fractions E1D, E1I and E1J showed strong tyrosinase inhibitory activity with percent inhibition of  $73.51 \pm 0.76\%$ ,  $79.70 \pm 4.65\%$  and  $75.69 \pm 1.04\%$ , respectively. The fractions E1B, E1C, E1E, E1F and E1H showed moderate tyrosinase inhibitory activity with percent inhibition of  $41.01 \pm 6.89\%$ ,  $62.76 \pm 1.54\%$ ,  $64.14 \pm 2.36\%$ ,  $58.87 \pm 1.83\%$  and  $41.38 \pm 4.42\%$ , respectively. The fraction E1G showed weak tyrosinase inhibitory activity with percent inhibitory activity. The isolation and tyrosinase inhibitory activity of fraction E1 are shown in Table 4.13.

จุฬาลงกรณีมหาวิทยาลัย Chulalongkorn University

| Fraction                      | Characteristic    | Yield (mg) (% w/w | Tyrosinase inhibitory |
|-------------------------------|-------------------|-------------------|-----------------------|
|                               |                   | of fraction E1)   | activity (%)          |
| E1A                           | White wax         | 0.4 (0.00)        | No activity           |
| E1B                           | White powder      | 30.0 (0.15)       | $41.01 \pm 6.89$ *    |
| E1C                           | Yellow wax        | 7,480.0 (38.16)   | $62.76 \pm 1.54*$     |
| E1D                           | White solid       | 750.0 (3.83)      | $73.51 \pm 0.76$ *    |
| E1E                           | Crystal colorless | 90.0 (0.46)       | $64.14 \pm 2.36*$     |
| E1F                           | Crystal colorless | 50.0 (0.26)       | $58.87 \pm 1.83*$     |
| E1G                           | Yellow solid      | 1,190.0 (6.07)    | $11.01 \pm 3.78*$     |
| E1H                           | Gold solid        | 2,520.0 (12.86)   | $41.38 \pm 4.42*$     |
| E1I                           | Green solid       | 720.0 (3.67)      | $79.70 \pm 4.65*$     |
| E1J                           | Yellow wax        | 6,450.0 (32.91)   | $75.69 \pm 1.04*$     |
| Kojic acid <sup>a</sup>       |                   |                   | $98.19 \pm 0.09 **$   |
| <sup>a</sup> Positive control |                   |                   |                       |

Table 4.13 Isolation and tyrosinase inhibitory activity of fraction E1

\* at concentration 1 mg/mL

\*\* at concentration 0.1 mg/mL

The fraction E1B was further isolated using silica gel column chromatography with gradient elution of mixture of *n*-hexane and dichloromethane to get six fractions (E1BA-E1BF). The isolation and tyrosinase inhibitory activity of fraction E1B are shown in Table 4.14.

**Table 4.14** Isolation and tyrosinase inhibitory activity of fraction E1B

|          | V3V            | MACK I            |                       |
|----------|----------------|-------------------|-----------------------|
| Fraction | Characteristic | Yield (mg) (% w/w | Tyrosinase inhibitory |
|          |                | of fraction E1B)  | activity (%)          |
| E1BA     | White solid    | 4.0 (13.33)       | ND                    |
| E1BB     | White solid    | 0.8 (2.67)        | ND                    |
| E1BC     | White solid    | 24.8 (82.67)      | $40.02 \pm 01.02$     |
| E1BD     | White solid    | 0.1 (0.33)        | ND                    |
| E1BE     | White solid    | 0.2 (0.67)        | ND                    |
| E1BF     | White solid    | 1.1 (0.04)        | ND                    |
|          |                |                   |                       |

ND = no detection

The fraction E1BC was a major component of fraction E1B. It was isolated using silica gel column chromatography with gradient elution of mixture of n-hexane and dichloromethane to obtain five fractions (E1BC1-E1BC5). The isolation of fraction E1BC is shown in Table 4.15.

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E1BC) |
|----------|----------------|-------------------------------------|
| E1BC1    | White solid    | 1.4 (5.64)                          |
| E1BC2    | White solid    | 21.6 (0.87)                         |
| E1BC3    | White solid    | 0.6 (0.02)                          |
| E1BC4    | White solid    | 0.7 (1.49)                          |
| E1BC5    | White solid    | 1.4 (5.64)                          |

 Table 4.15 Isolation of fraction E1BC

The fraction E1BC2 was a major component of fraction E1BC. It further was isolated by MPLC using gradient system of *n*-hexane and ethyl acetate with flow rate 10 mL/min to afford six fractions (E1BC2A-E1BC2F). The isolation of fraction E1BC2 is shown in Table 4.16.

**Table 4.16** Isolation of fraction E1BC2

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E1BC2) |
|----------|----------------|--------------------------------------|
| E1BC2A   | White solid    | 0.5 (2.31)                           |
| E1BC2B   | White solid    | 0.8 (3.70)                           |
| E1BC2C   | White solid    | 19.2 (88.89)                         |
| E1BC2D   | White solid    | 0.1 (0.46)                           |
| E1BC2E   | White solid    | 0.7 (3.24)                           |
| E1BC2F   | White solid    | 0.9 (4.17)                           |

The fraction E1BC2C was a major component of fraction E1BC2. It was separated by MPLC using gradient system of *n*-hexane and ethyl acetate as eluent with flow rate 10 mL/min to obtain three fractions (E1BC2C1-E1BC2C3). The isolation of fraction E1BC2C is shown in Table 4.17.

 Table 4.17 Isolation of fraction E1BC2C

|          |                | ODN INVEDCITY                         |
|----------|----------------|---------------------------------------|
| Fraction | Characteristic | Yield (mg) (% w/w of fraction E1BC2C) |
| E1BC2C1  | White solid    | 0.2 (1.04)                            |
| E1BC2C2  | White solid    | 18.8 (97.92)                          |

The fraction E1BC2C2 was a major component of fraction E1BC2C. It was separated by PTLC using *n*-hexane and ethyl acetate as developing solvent to afford three fractions (E1BC2C2A-E1BC2C2C). The isolation of fraction E1BC2C2 is shown in Table 4.18. Unfortunately, isolation of fraction E1BC2C2 did not succeed to get pure compound.

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E1BC2C2) |
|----------|----------------|----------------------------------------|
| E1BC2C2A | White solid    | 10.1 (53.72)                           |
| E1BC2C2B | White solid    | 1.3 (6.91)                             |
| E1BC2C2C | White solid    | 1.2 (6.38)                             |

Table 4.18 Isolation of fraction E1BC2C2

The fraction E1C showed moderate tyrosinase inhibitory activity. The fraction E1C was separated by MPLC using gradient system of *n*-hexane and dichloromethane with flow rate 10 mL/min to get ten fractions (E1CA-E1CJ). The isolation of fraction E1C is shown in Table 4.19.

 Table 4.19 Isolation of fractions E1C

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E1C) |
|----------|----------------|------------------------------------|
| E1CA     | White wax      | 2.2 (0.03)                         |
| E1CB     | White solid    | 0.1 (0.00)                         |
| E1CC     | White solid    | 0.6 (0.01)                         |
| E1CD     | White wax      | 14.1 (0.20)                        |
| E1CE     | White wax      | 1,932.1 (27.6)                     |
| E1CF     | White solid    | 1,299.7 (18.56)                    |
| E1CG     | White wax      | 574.2 (8.20)                       |
| E1CH     | Yellow wax     | 82.6 (1.18)                        |
| E1CI     | Yellow wax     | 70.8 (1.01)                        |
| E1CJ     | Yellow oil     | 2,920.8 (41.72)                    |

The fraction E1CG was separated by PTLC using petroleum ether and dichloromethane as developing solvent to obtain three fractions (E1CG1-E1CG3). The isolation of fraction E1CG is shown in Table 4.20. Unfortunately, isolation of fraction E1CG did not succeed to get pure compound.

 Table 4.20 Isolation of fraction E1CG

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E1CG) |
|----------|----------------|-------------------------------------|
| E1CG1    | White wax      | 4.5 (22.50)                         |
| E1CG2    | White wax      | 7.0 (35.00)                         |
| E1CG3    | White wax      | 6.2 (31.00)                         |

The fraction E1D showed strong tyrosinase inhibitory activity. The fraction E1D was separated by silica gel column chromatography with gradient system of *n*-hexane and dichloromethane to get ten fractions (E1DA-E1DJ). The isolation and tyrosinase inhibitory activity of fraction E1D are shown in Table 4.21.

| Fraction    | Characteristic | Yield (mg) (% w/w<br>of fraction E1D) | Tyrosinase inhibitory<br>activity (%) |
|-------------|----------------|---------------------------------------|---------------------------------------|
| E1DA        | White solid    | 6.0 (0.82)                            | ND                                    |
| E1DB        | White solid    | 1.0 (0.14)                            | ND                                    |
| E1DC        | White solid    | 0.9 (0.12)                            | ND                                    |
| E1DD        | White solid    | 13.8 (1.89)                           | ND                                    |
| E1DE        | White solid    | 2.0 (0.27)                            | ND                                    |
| E1DF        | White solid    | 1.2 (0.16)                            | ND                                    |
| E1DG        | White solid    | 6.2 (0.85)                            | ND                                    |
| E1DH        | White solid    | 135.4 (18.55)                         | $66.64 \pm 1.24$                      |
| E1DI        | White solid    | 479.8 (65.73)                         | $67.32\pm0.87$                        |
| E1DJ        | White solid    | 60.2 (8.25)                           | $39.23 \pm 2.32$                      |
| ND = No det | ection         |                                       |                                       |

Table 4.21 Isolation and tyrosinase inhibitory activity of fraction E1D

Fraction E1DI was a major component of fraction E1D. It was separated by silica gel column chromatography with gradient system of *n*-hexane and dichloromethane to obtain six fractions (E1DIA-E1DIE). The isolation of fraction E1DI is shown in Table 4.22.

 Table 4.22 Isolation of fraction E1DI

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E1DI) |
|----------|----------------|-------------------------------------|
| E1DIA    | White solid    | 0.7 (0.14)                          |
| E1DIB    | White solid    | 2.9 (0.60)                          |
| E1DIC    | White solid    | 1.2 (0.31)                          |
| E1DID    | White solid    | 339.0 (70.65)                       |
| E1DIE    | White solid    | 5.2 (1.09)                          |
| E1DIF    | White solid    | 10.8 (2.25)                         |

Fraction E1DID was a major component of fraction E1DI. It was further separated with gradient system of *n*-hexane and acetone to afford four fractions (E1DID1-E1DID4). Fraction E1DID3 (compound I) was obtained as white solid (339.0 mg, 0.57% w/w of ethyl acetate crude extract). Other fractions showed more than one spot on TLC and did not have enough amounts for separation. The isolation of fraction E1DID is shown in Table 4.23.

| Table 4.23 Isol | ation of fraction | E1DID |
|-----------------|-------------------|-------|
|-----------------|-------------------|-------|

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E1DID) |
|----------|----------------|--------------------------------------|
| E1DID1   | White solid    | 1.1 (0.32)                           |
| E1DID2   | White solid    | 2.1 (0.62)                           |
| E1DID3   | White solid    | 319.2 (94.16)                        |
| E1DID4   | White solid    | 3.1 (0.91)                           |

The fraction E1E (90.4 mg) showed strong tyrosinase inhibitory activity. The fraction E1E was separated by silica gel column chromatography with gradient elution of *n*-hexane and dichloromethane to afford eight fractions (E1EA-E1EH). The isolation of fraction E1E is shown in Table 4.24.

| Fraction          | Characteristic | Yield (mg) (% w/w | Tyrosinase inhibitory |
|-------------------|----------------|-------------------|-----------------------|
|                   |                | of fraction E1E)  | activity (%)          |
| E1EA              | White solid    | 1.3 (1.44)        | ND                    |
| E1EB              | White solid    | 2.1 (2.32)        | ND                    |
| E1EC              | White solid    | 0.0 (0.00)        | ND                    |
| E1ED              | White solid    | 0.2 (0.22)        | ND                    |
| E1EE              | White solid    | 2.7 (2.99)        | ND                    |
| E1EF              | White solid    | 74.2 (82.08)      | $60.27\pm0.52$        |
| E1EG              | White solid    | 5.6 (6.19)        | ND                    |
| E1EH              | White solid    | 4.8 (5.31)        | ND                    |
| ND - No detection |                |                   |                       |

 Table 4.24 Isolation and tyrosinase inhibitory activity of fraction E1E

ND = No detection

The fraction E1EF was a major component of fraction E1E. It was further separated by silica gel column chromatography with gradient system of n-hexane and dichloromethane to get five fractions (E1EF1-E1EF5). The isolation fraction E1EF is shown in Table 4.25.

| Table 4.25 Isolation of fraction E1EF |  |
|---------------------------------------|--|
|---------------------------------------|--|

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E1EF) |
|----------|----------------|-------------------------------------|
| E1EF1    | White solid    | 0.0 (0.00)                          |
| E1EE2    | White solid    | 3.2 (4.31)                          |
| E1EF3    | White solid    | 2.6 (3.50)                          |
| E1EF4    | White solid    | 68.5 (92.32)                        |
| E1EF5    | White solid    | 2.7 (3.64)                          |

The fraction E1EF4 was a major component of fraction E1EF. It was further separated by silica gel column chromatography with *n*-hexane and acetone to obtain five fractions (E1EF4A-E1EF4E). The isolation of fraction E1EF4 is shown in Table 4.26.

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E1EF4) |
|----------|----------------|--------------------------------------|
| E1EF4A   | White solid    | 0.2 (0.29)                           |
| E1EE4B   | White solid    | 55.5 (0.81)                          |
| E1EF4C   | White solid    | 0.3 (0.43)                           |
| E1EF4D   | White solid    | 0.2 (0.29)                           |
| E1EF4E   | White solid    | 4.0 (5.84)                           |

 Table 4.26 Isolation of fraction E1EF4

The fraction E1EF4B was a major component of fraction E1EF4. It was separated by silica gel column chromatography with gradient system of *n*-hexane and acetone to afford E1EF4B1-E1EF4B5. Fraction E1EF4B2 (compound **I**) was obtained as white solid (54.9 mg, 0.09% w/w of ethyl acetate crude extract). Other fractions showed more than one spot on TLC and did not have enough amounts for separation. The isolation of fraction E1EF4B is shown in Table 4.27.

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E1EF4B) |  |
|----------|----------------|---------------------------------------|--|
| E1EF4B1  | White solid    | 1.5 (2.70)                            |  |
| E1EE4B2  | White solid    | 54.9 (98.92)                          |  |
| E1EF4B3  | White solid    | 1.2 (2.16)                            |  |
|          |                |                                       |  |

Table 4.27 Isolation of fraction E1EF4B

The fraction E1F showed moderate tyrosinase inhibitory activity. It was separated by PTLC using *n*-hexane:dichloromethane as developing solvent to afford four fractions (E1FA-E1FD). Fraction E1FB (compound I) was obtained as white solid (9.2 mg, 0.02% w/w of ethyl acetate crude extract. Other fractions showed more than one spot on TLC and did not have enough amounts for separation. The isolation of fraction E1F is shown in Table 4.28.

 Table 4.28 Isolation of fraction E1F

| Characteristic | Yield (mg) (% w/w of fraction E1F)        |
|----------------|-------------------------------------------|
| White solid    | 15.3 (30.60)                              |
| White solid    | 9.2 (18.40)                               |
| White solid    | 5.6 (11.20)                               |
| White solid    | 2.2 (4.40)                                |
|                | White solid<br>White solid<br>White solid |

The fraction E1H showed moderate tyrosinase inhibitory activity. It was separated by column chromatography with mixture of n-hexane and ethyl acetate to obtain six fractions (E1HA-E1HF). The isolation of fraction E1H is shown in Table 4.29.

#### Table 4.29 Isolation of fraction E1H

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E1H) |
|----------|----------------|------------------------------------|
| E1HA     | White wax      | 37.8 (6.30)                        |
| E1HB     | White wax      | 111.0 (18.50)                      |
| E1HC     | White wax      | 70.0 (11.67)                       |
| E1HD     | White wax      | 177.6 (29.60)                      |
| E1HE     | White wax      | 22.1(3.68)                         |
| E1HF     | Yellow wax     | 154.1 (25.68)                      |

The fraction E1HA was separated by PTLC using *n*-hexane and dichloromethane as developing solvent to obtain two fractions (E1HA1-E1HA2). The

isolation of fraction E1HA is shown in Table 4.30. Unfortunately, isolation of fraction E1HA did not succeed to get pure compound.

Table 4.30 Isolation of fraction E1HA

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E1HA) |
|----------|----------------|-------------------------------------|
| E1HA1    | White wax      | 19.8 (52.38)                        |
| E1HA2    | White wax      | 1.6 (0.42)                          |

The fraction E1HB was a major component of fraction E1H. It was separated by MPLC using gradient system of *n*-hexane and ethyl acetate with flow rate 1 mL/min to obtain nine fractions (E1HB1-E1HB9). The isolation of fraction E1HB is shown in Table 4.31. Unfortunately, isolation of fraction E1HB did not succeed to afford pure compound.

 Table 4.31 Isolation of fraction E1HB

|          | lin            |                                     |
|----------|----------------|-------------------------------------|
| Fraction | Characteristic | Yield (mg) (% w/w of fraction E1HB) |
| E1HB1    | White wax      | 0.6 (1.62)                          |
| E1HB2    | White wax      | 0.6 (1.62)                          |
| E1HB3    | White wax      | 0.6 (1.62)                          |
| E1HB4    | White wax      | 14.2 (38.38)                        |
| E1HB5    | White wax      | 10.3 (27.84)                        |
| E1HB6    | White wax      | 1.6 (4.32)                          |
| E1HB7    | White wax      | 2.8 (7.57)                          |
| E1HB8    | White wax      | 4.3 (11.62)                         |
| E1HB9    | White wax      | 0.3 (0.81)                          |
|          | 40             |                                     |

The fraction E1HC was separated by silica gel column chromatography with gradient system of *n*-hexane and ethyl acetate to get four fractions (E1HC1-E1HC5). The isolation of fraction E1HC is shown in Table 4.32.

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E1HC) |
|----------|----------------|-------------------------------------|
| E1HC1    | White wax      | 1.3 (1.86)                          |
| E1HC2    | White wax      | 1.1 (1.57)                          |
| E1HC3    | White wax      | 1.8 (2.57)                          |
| E1HC4    | White wax      | 33.6 (48.00)                        |
| E1HC5    | White wax      | 21.4 (30.57)                        |

Table 4.32 Isolation of fraction E1HC

The fraction E1HC4 was a major component of fraction E1HC. It was separated by PTLC using petroleum ether and ethyl acetate as developing system to get five fractions (E1HC4A-E1HC4E). The isolation of fraction E1HC4 is shown in Table 4.33. Unfortunately, isolation of fraction E1HC4 did not succeed to obtain pure compound.

| Fraction | Characteristic | Yield (mg) (% w/w of fraction<br>E1HC4) |
|----------|----------------|-----------------------------------------|
| E1HC4A   | White wax      | 7.9 (23.51)                             |
| E1HC4B   | White wax      | 7.5 (22.32)                             |
| E1HC4C   | White wax      | 0.6 (1.78)                              |
| E1HC4D   | White wax      | 2.7 (8.04)                              |
| E1HC4E   | White wax      | 4.5 (13.39)                             |

Table 4.33 Isolation of fraction E1HC4

The fraction E1HE was separated by column chromatography with mixture of dichloromethane and acetone to obtain four fractions (E1HE1-E1HE4). The isolation of fraction E1HE is shown in Table 4.34. Unfortunately, isolation of fraction E1HE did not succeed to obtain pure compound. The fractions E1HE1-E1HE4 showed more than one spot on TLC and did not have enough amounts for separation.

#### **Table 4.34** Isolation of fractions E1HE

| Fraction | Characteristic | Yield (mg) (% w/w of fraction<br>E1HE) |
|----------|----------------|----------------------------------------|
| E1HE1    | White wax      | 1.6 (7.24)                             |
| E1HE2    | White wax      | 7.3 (33.03)                            |
| E1HE3    | White wax      | 1.5 (6.79)                             |
| E1HE4    | White wax      | 6.2 (28.05)                            |

The fraction E1I showed the strongest tyrosinase inhibitory activity among fractions E1A-E1I. The fraction E1I was separated by silica gel column chromatography with *n*-hexane and ethyl acetate to get six fractions (E1IA-E1IF). The isolation and tyrosinase inhibitory activity of fraction E1I are shown in Table 4.35.

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E1I) | Tyrosinase inhibitory<br>activity (%) |
|----------|----------------|------------------------------------|---------------------------------------|
| E1IA     | Yellow wax     | 9.9 (1.65)                         | ND                                    |
| E1IB     | Yellow solid   | 184.1 (30.85)                      | $23.29 \pm 1.1$                       |
| E1IC     | Yellow solid   | 55.3 (9.22)                        | $76.26\pm0.2$                         |
| E1ID     | Yellow solid   | 192.5 (32.08)                      | $33.23 \pm 2.1$                       |
| E1IE     | Yellow wax     | 34.3 (5.72)                        | ND                                    |
| E1IF     | Yellow wax     | 45.0 (7.50)                        | ND                                    |
| ND N 1   |                |                                    |                                       |

ND = No detection

The fraction E1IC exhibited the strongest tyrosinase inhibitory activity among fractions E1IA-E1IF. It was further separated by PTLC using *n*-hexane and acetone as developing solvent to afford five fractions (E1IC1-E1IC5). Fraction E1IC5 (compound **II**) was obtained as a yellow solid (7.8 mg, 0.01% w/w of ethyl acetate

crude extract). Other fractions showed weak tyrosinase inhibitory activity. The isolation of fraction E1IC is shown in Table 4.36.

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E1IC) |
|----------|----------------|-------------------------------------|
| E1IC1    | Yellow solid   | 2.4 (4.34)                          |
| E1IC2    | Yellow solid   | 6.6 (11.93)                         |
| E1IC3    | Yellow solid   | 20.0 (36.17)                        |
| E1IC4    | Yellow solid   | 0.6 (1.08)                          |
| E1IC5    | Yellow solid   | 7.8 (14.10)                         |

 Table 4.36 Isolation of fraction E1IC

The fraction E2 showed moderate tyrosinase inhibitory activity. The fraction E2 was separated by MPLC using gradient system of *n*-hexane and acetone with flow rate 36 mL/min to get six fractions (E2A-E2F). The fraction E2B showed the strongest tyrosinase inhibitory activity with percent inhibition of 70.39  $\pm$  0.38% and followed by fractions E2F, E2D, E2A, E2C and E2E showed tyrosinase inhibitory activity with percent inhibition of 62.80  $\pm$  0.17%, 62.30  $\pm$  0.29%, 61.79  $\pm$  0.14%, 58.26  $\pm$  0.12% and 58.18  $\pm$  0.16%, respectively. The isolation and tyrosinase inhibitory activity of fraction E2 are shown in Table 4.37.

Table 4.37 Isolation and tyrosinase inhibitory activity of fraction E2

| Fraction                | Characteristic | Yield (mg) (% w/w | Tyrosinase inhibitory |
|-------------------------|----------------|-------------------|-----------------------|
|                         |                | of fraction E2)   | activity (%)          |
| E2A                     | White solid    | 112.2 (1.50)      | $61.79 \pm 0.14*$     |
| E2B                     | White solid    | 68.3 (0.91)       | $70.39 \pm 0.38*$     |
| E2C                     | White wax      | 127.7 (1.70)      | $58.26 \pm 0.12*$     |
| E2D                     | White wax      | 297.2 (3.96)      | $62.30 \pm 0.29*$     |
| E2E                     | Brown solid    | 721.4 (9.62)      | $58.18\pm0.16*$       |
| E2F                     | Brown solid    | 3,263.3 (43.51)   | $62.80 \pm 0.17*$     |
| Kojic acid <sup>a</sup> |                |                   | $98.19 \pm 0.12$ **   |

<sup>a</sup> Positive control

\* at concentration 1 mg/mL

\*\* at concentration 0.1 mg/mL

The fraction E2A showed moderate tyrosinase inhibitory activity. It was separated by MPLC using gradient system of *n*-hexane and dichloromethane with flow rate 10 mL/min to obtain seven fractions (E2AA-E2AG). Isolation of fraction E2A is shown in Table 4.38.

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E2A) |
|----------|----------------|------------------------------------|
| E2AA     | White solid    | 2.7 (2.41)                         |
| E2AB     | White solid    | 5.2 (4.63)                         |
| E2AC     | White solid    | 13.5 (12.03)                       |
| E2AD     | White solid    | 13.5 (12.03)                       |
| E2AE     | White solid    | 6.9 (6.15)                         |
| E2AF     | White solid    | 45.0 (40.11)                       |
| E2AG     | White solid    | 12.3(10.96)                        |

Table 4.38 Isolation of fraction E2A

The E2AD was a major component of fraction E2A. It was further separated by PTLC using *n*-hexane and dichloromethane as developing solvent to get three fractions (E2AD1-E2AD3). The isolation of fraction E2AD is shown in Table 4.39. Unfortunately, isolation of fraction E2AD did not succeed to afford pure compound.

 Table 4.39 Isolation of fraction E2AD

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E2AD) |
|----------|----------------|-------------------------------------|
| E2AD1    | White solid    | 0.2 (1.48)                          |
| E2AD2    | White solid    | 1.9 (14.07)                         |
| E2AD3    | White solid    | 2.8 (20.74)                         |
|          |                |                                     |

The fraction E2AE was separated by PTLC using *n*-hexane and dichloromethane as developing solvent to afford three fractions (E2AE1-E2AE3). The isolation of fraction E2AE is shown in Table 4.40. Unfortunately, isolation of fraction E2AE did not succeed to get pure compound. The fraction E2AE1 showed one spot on TLC. Then, there were detected by NMR spectroscopy that showed spectrum of mixture compound.

 Table 4.40 Isolation of fraction E2AE

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E2AE) |
|----------|----------------|-------------------------------------|
| E2AE1    | White solid    | 0.6 (8.70)                          |
| E2AE2    | White solid    | 2.5 (36.23)                         |
| E2AE3    | White solid    | 3.7 (53.62)                         |

The fraction E2B showed strong tyrosinase inhibitory activity. The fraction E2B was separated by MPLC using gradient system of *n*-hexane and acetone with flow rate 10 mL/min to afford seven fractions (E2BA-E2BG). The isolation of fraction E2B is shown in Table 4.41.

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E2B) |
|----------|----------------|------------------------------------|
| E2BA     | White solid    | 1.3 (2.17)                         |
| E2BB     | White solid    | 0.8 (1.33)                         |
| E2BC     | White solid    | 5.8 (9.67)                         |
| E2BD     | White solid    | 9.9 (16.50)                        |
| E2BE     | White solid    | 18.9 (31.50)                       |
| E2BF     | White solid    | 2.4 (4.00)                         |
| E2BG     | White solid    | 17.4 (29.00)                       |

Table 4.41 Isolation of fraction E2B

The fraction E2BD was separated by PTLC using *n*-hexane and acetone as developing solvent to get two fractions (E2BD1-E2BD2). The isolation of fraction E2BD is shown in Table 4.42. Unfortunately, isolation of fraction E2BD did not succeed to get pure compound.

 Table 4.42 Isolation of fraction E2BD

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E2BD) |
|----------|----------------|-------------------------------------|
| E2BD1    | White solid    | 3.8 (38.38)                         |
| E2BD2    | White solid    | 3.7 (37.37)                         |

The fraction E2BE was a major component of fraction E2B. It was separated by MPLC using gradient system of dichloromethane and ethyl acetate with flow rate 10 mL/min to obtain three fractions (E2BE1-E2BE3). The isolation of fraction E2BE is shown in Table 4.43.

 Table 4.43 Isolation of fraction E2BE

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E2BE) |
|----------|----------------|-------------------------------------|
| E2BE1    | White solid    | 9.6 (50.79)                         |
| E2BE2    | White solid    | 0.3 (1.59)                          |
| E2BE3    | White solid    | 5.9 (31.22)                         |

The fraction E2BE1 was a major component of fraction E2BE. It was separated by PTLC using dichloromethane and ethyl acetate as developing solvent to get three fractions (E2BE1A-E2BE1C). The isolation of fraction E2BE1 is shown in Table 4.44 Unfortunately, isolation of fraction E2BE1 did not succeed to afford pure compound. The fractions E2BE1A-E2BE1C showed more than one spot on TLC and did not have enough amounts for separation.

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E2BE1) |
|----------|----------------|--------------------------------------|
| E2BE1A   | White solid    | 0.9 (9.38)                           |
| E2BE1B   | White solid    | 6.6 (68.75)                          |
| E2BE1C   | White solid    | 0.7 (7.29)                           |

**Table 4.44** Isolation of fraction E2BE1

The fraction E2C showed moderate tyrosinase inhibitory activity. It was separated by MPLC using gradient system of *n*-hexane and acetone with flow rate 5 mL/min to afford eight fractions (E2CA-E2CH). The isolation of fraction E2C is shown in Table 4.45.

Fraction Characteristic Yield (mg) (% w/w of fraction E2C) White solid E2CA 0.5(0.39)E2CB White solid 0.3(0.23)E2CC White solid 8.9 (6.97) White wax E2CD 3.6(2.82)E2CE White wax 15.0 (11.75) E2CF White wax 62.9 (49.26) E2CG White wax 9.7 (7.60) E2CH White wax 7.1 (5.56)

 Table 4.45 Isolation of fraction E2C

The fraction E2CC was further separated by MPLC using gradient system of n-hexane and acetone with flow rate 5 mL/min to get four fractions (E2CC1-E2CC4). The isolation of fraction E2CC is shown in Table 4.46.

**Table 4.46** Isolation of fraction E2CC

| จุฬาลงกรณ์มหาวิทยาลัย |                |                                     |  |
|-----------------------|----------------|-------------------------------------|--|
| Fraction              | Characteristic | Yield (mg) (% w/w of fraction E2CC) |  |
| E2CC1                 | White solid    | 0.2 (2.25)                          |  |
| E2CC2                 | White solid    | 0.3 (3.37)                          |  |
| E2CC3                 | White solid    | 1.2 (13.48)                         |  |
| E2CC4                 | White solid    | 7.0 (78.65)                         |  |

The fraction E2CC4 was a major component of fraction E2CC. It was separated by PTLC using *n*-hexane and acetone as developing solvent to get four fractions (E2CC4A-E2CC4D). The isolation of fraction E2CC4 is shown in Table 4.47. Unfortunately, isolation of fraction E2CC4 did not succeed to get pure compound.

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E2CC4) |
|----------|----------------|--------------------------------------|
| E2CC4A   | White solid    | 0.2 (2.86)                           |
| E2CC4B   | White solid    | 0.1 (1.43)                           |
| E2CC4C   | White solid    | 3.4 (48.57)                          |
| E2CC4D   | White solid    | 0.2 (2.86)                           |

Table 4.47 Isolation of fraction E2CC4

The fraction E2CE was further separated by PTLC using a mixture of *n*-hexane and acetone as developing solvent to get three fractions (E2CE1-E2CE3). The isolation of fraction E2CE is shown in Table 4.48. Unfortunately, isolation of fraction E2CE did not succeed to afford pure compound.

**Table 4.48** Isolation of fraction E2CE

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E2CE) |
|----------|----------------|-------------------------------------|
| E2CE1    | White solid    | 6.2 (41.33)                         |
| E2CE2    | White solid    | 3.0 (20.00)                         |
| E2CE3    | White solid    | 1.8 (12.00)                         |
|          |                |                                     |

The fraction E2CF showed moderate tyrosinase inhibitory activity. It was separated by MPLC using gradient system of dichloromethane and ethyl acetate with flow rate 5 mL/min to obtain three fractions (E2CF1-E2CF3). The isolation of fraction E2CF is shown in Table 4.49. Unfortunately, isolation of fraction E2CF did not succeed to obtain pure compound.

| Table 4.49 Isolation of fraction E2C | F |
|--------------------------------------|---|
|--------------------------------------|---|

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E2CF) |
|----------|----------------|-------------------------------------|
| E2CF1    | White solid    | 1.0 (1.59)                          |
| E2CF2    | White solid    | 0.3(0.47)                           |
| E2CF3    | White solid    | 1.9 (3.02)                          |

The fraction E2D showed moderate tyrosinase inhibitory activity. It was separated by MPLC using gradient system of *n*-hexane and ethyl acetate with flow rate 10 mL/min to get three fractions (E2DA-E2DC). The isolation of fraction E2D is shown in Table 4.50. The fraction E2DA-E2DC showed more than one spot on TLC and did not have enough amounts for separation.

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E2D) |
|----------|----------------|------------------------------------|
| E2DA     | White wax      | 2.7 (1.06)                         |
| E2DB     | White wax      | 10.5 (4.12)                        |
| E2DC     | White wax      | 206.9 (81.14)                      |

The fraction E2DC was a major component of fraction E2D. It was further separated by MPLC using gradient system of dichloromethane and ethyl acetate with flow rate 10 mL/min to get six fractions (E2DC1-E2DC6). The isolation of fraction E2DC is shown in Table 4.51.

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E2DC) |
|----------|----------------|-------------------------------------|
| E2DC1    | White wax      | 0.7 (0.34)                          |
| E2DC2    | White wax      | 2.8 (1.35)                          |
| E2DC3    | White wax      | 20.4 (9.86)                         |
| E2DC4    | White wax      | 39.6 (19.14)                        |
| E2DC5    | White wax      | 65.6 (31.71)                        |
| E2DC6    | White wax      | 50.0 (24.17)                        |

 Table 4.51 Isolation of fraction E2DC

The fraction E2DC4 was a major component of fraction E2DC. It was separated by MPLC using gradient system of *n*-hexane and acetone with flow rate 2 mL/min to obtain five fractions (E2DC4A-E2DC4E). The isolation of fraction E2DC4 is shown in Table 4.52. Unfortunately, isolation of fraction E2DC4 did not succeed to obtain pure compound.

**Table 4.52** Isolation of fraction E2DC4

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E2DC) |
|----------|----------------|-------------------------------------|
| E2DC4A   | White wax      | 0.0 (0.00)                          |
| E2DC4B   | White wax      | 0.4 (1.01)                          |
| E2DC4C   | White wax      | 0.3 (0.76)                          |
| E2DC4D   | White wax      | 1.8 (4.54)                          |
| E2DC4E   | White wax      | 35.4 (89.39)                        |

The fraction E2DC5 was a major component of fraction E2DC. It was further separated by MPLC using gradient system of *n*-hexane and ethyl acetate with flow rate 5 mL/min to get three fractions (E2DC5A-E2DC5C). The isolation of fraction E2DC5 is shown in Table 4.53.

 Table 4.53 Isolation of fraction E2DC5

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E2DC5) |
|----------|----------------|--------------------------------------|
| E2DC5A   | White wax      | 1.5 (2.29)                           |
| E2DC5B   | White wax      | 16.3 (24.85)                         |
| E2DC5C   | White wax      | 45.2 (68.90)                         |

The fraction E2DC5C was a major component of fraction E2DC5. It was separated by PTLC using mixture of petroleum ether and ethyl acetate as developing solvent to afford two fractions (E2DC5CA-E2DC5CB). The isolation of fraction

E2DC5C is shown in Table 4.54. Unfortunately, isolation of fraction E2DC5C did not succeed to get pure compound.

 Table 4.54 Isolation of fraction E2DC5C

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E2DC4CA) |
|----------|----------------|----------------------------------------|
| E2DC5CA  | White wax      | 27.4 (60.62)                           |
| E2DC5CB  | White wax      | 10.4 (23.01)                           |

The fraction E2E showed moderate tyrosinase inhibitory activity. It was separated by MPLC using gradient system of *n*-hexane and ethyl acetate with flow rate 10 mL/min to get seven fractions (E2EA-E2EG). The isolation of fraction E2E is shown in Table 4.55.

Table 4.55 Isolation of fraction E2E

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E2E) |
|----------|----------------|------------------------------------|
| E2EA     | White wax      | 1.7 (1.7)                          |
| E2EB     | White wax      | 3.0 (3.0)                          |
| E2EC     | White wax      | 1.6 (1.6)                          |
| E2ED     | White wax      | 12.7 (12.7)                        |
| E2EE     | White wax      | 25.8 (25.8)                        |
| E2EF     | White wax      | 28.6 (28.6)                        |
| E2EG     | White wax      | 18.4 (18.4)                        |

The fraction E2ED was further separated by PTLC using mixture of *n*-hexane and acetone as developing solvent to get four fractions (E2ED1-E2ED4). The isolation of fraction E2ED is shown in Table 4.56. Unfortunately, isolation of fraction E2ED did not succeed to afford pure compound.

 Table 4.56 Isolation fraction E2ED

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E2ED) |
|----------|----------------|-------------------------------------|
| E2ED1    | White wax      | 0.8 (6.30)                          |
| E2ED2    | White wax      | 0.0 (0.00)                          |
| E2ED3    | White wax      | 0.7 (5.51)                          |
| E2ED4    | White wax      | 6.6 (51.97)                         |

The fraction E2EE was separated by MPLC using gradient system of dichloromethane and acetone with flow rate 10 mL/min to afford three fractions (E2EE1-E2EE3). The isolation of fraction E2EE is shown in Table 4.57.

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E2EE) |
|----------|----------------|-------------------------------------|
| E2EE1    | White wax      | 2.7 (10.46)                         |
| E2EE2    | White wax      | 2.1 (8.14)                          |
| E2EE3    | White wax      | 19.1 (74.03)                        |

 Table 4.57 Isolation of fraction E2EE

The fraction E2EF was a major component of fraction E2E. It was further separated by MPLC using gradient system of *n*-hexane and acetone with flow rate 2 mL/min to obtain six fractions (E2EFA-E2EFF). The isolation of fraction E2EF is shown in Table 4.58. Unfortunately, isolation of fraction E2EF did not succeed to obtain pure compound. The fractions E2EFA-E2EFF showed more than one spot on TLC and did not have enough amounts for separation.

 Table 4.58 Isolation of fraction E2EF

| Fraction Characteristic |             | Yield (mg) (% w/w of fraction E2EF) |
|-------------------------|-------------|-------------------------------------|
| E2EFA                   | White solid | 1.7 (5.94)                          |
| E2EFB                   | White solid | 3.4 (11.89)                         |
| E2EFC                   | White solid | 11.1 (38.81)                        |
| E2EFD                   | White solid | 2.1 (7.34)                          |
| E2EFE                   | White solid | 5.9 (20.63)                         |
| E2EFF                   | White solid | 0.3 (1.05)                          |
|                         | () Haddada  | - month A                           |

The fraction E2F showed moderate tyrosinase inhibitory activity. It was separated by MPLC using gradient system of *n*-hexane and ethyl acetate with flow rate 5 mL/min to obtain 10 fractions (E2FA-E2FJ). The isolation of fraction E2F is shown in Table 4.59. Unfortunately, isolation of fraction E2F did not succeed to obtain pure compound.

 Table 4.59 Isolation of fraction E2F
 ONIVERSITY

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E2EF) |
|----------|----------------|-------------------------------------|
| E2FA     | White solid    | 3.3 (2.2)                           |
| E2FB     | White solid    | 17.0 (11.3)                         |
| E2FC     | White solid    | 12.6 (8.4)                          |
| E2FD     | White solid    | 8.7 (5.8)                           |
| E2FE     | White solid    | 12.2 (8.13)                         |
| E2FF     | White solid    | 8.9 (5.93)                          |
| E2FG     | White solid    | 8.5 (5.67)                          |
| E2FH     | White solid    | 8.5 (5.67)                          |
| E2FI     | White solid    | 16.8 (11.2)                         |
| E2FJ     | White solid    | 50.0 (33.33)                        |

The fraction E3 was separated by MPLC using isocratic elution of methanol with flow rate 10 mL/min to obtain three fractions (E3A-E3C). Fraction E3B showed

strong tyrosinase inhibitory activity with percent inhibition of 74.74  $\pm$  2.79%. Fraction E3C showed moderate tyrosinase inhibitory activity with percent inhibition of 48.22  $\pm$  1.50%. While, E3A showed weak tyrosinase inhibitory activity with percent inhibition of 29.32  $\pm$  2.47%. The tyrosinase inhibitory activity and isolation of fraction E3 are shown in Table 4.60.

| Fraction                      | Characteristic | Yield (mg) (% w/w of | Tyrosinase inhibitory |  |  |  |
|-------------------------------|----------------|----------------------|-----------------------|--|--|--|
|                               |                | fraction E3)         | activity (%)          |  |  |  |
| E3A                           | Brown solid    | 1,436.2 (62.44)      | $29.32 \pm 2.47*$     |  |  |  |
| E3B                           | Brown solid    | 350.0 (15.22)        | $74.74 \pm 2.79 *$    |  |  |  |
| E3C                           | Brown solid    | 731.4 (31.80)        | $48.22 \pm 1.50*$     |  |  |  |
| Kojic acid <sup>a</sup>       |                |                      | $95.19 \pm 0.07$ **   |  |  |  |
| <sup>a</sup> Positive co      | ontrol         |                      |                       |  |  |  |
| * concentration at 1 mg/mL    |                |                      |                       |  |  |  |
| ** concentration at 0.1 mg/mL |                |                      |                       |  |  |  |

Table 4.60 Isolation and tyrosinase inhibitory activity of fraction E3

The fraction E3B showed strong tyrosinase inhibitory activity. It was separated using diaion column chromatography with gradient system of ethyl acetate and methanol to get three fractions (E3BA-E3BC). The isolation of fraction E3B is shown in Table 4.61.

Table 4.61 Isolation of fraction E3B

| Fraction | Characteristic | Yield (mg) (% w/w of fraction E3B) |
|----------|----------------|------------------------------------|
| E3BA     | Brown solid    | 150.5 (43.00)                      |
| E3BB     | Brown solid    | 147.4 (42.11)                      |
| E3BC     | Brown solid    | 36.0 (10.28)                       |

The fraction E3BB was showed a major component of fraction E3B. It was separated by diaion column chromatography with isocratic system of water and methanol as eluent to obtain six fractions (E3BB1-E3BB6). The isolation of fraction E3BB is shown in Table 4.62. Unfortunately, isolation of fraction E3BB did not succeed to obtain pure compound.

| Table 4.62 Isolation | of fraction E3BB |
|----------------------|------------------|
|----------------------|------------------|

| Fraction | Characteristic | Yield (mg) (%, w/w of fraction E3BB) |
|----------|----------------|--------------------------------------|
| E3BB1    | Brown solid    | 4.4 (2.98)                           |
| E3BB2    | Brown solid    | 6.2 (4.20)                           |
| E3BB3    | Brown solid    | 16.3 (11.04)                         |
| E3BB4    | Brown solid    | 16.6 (11.24)                         |
| E3BB5    | Brown solid    | 32.8 (22.21)                         |
| E3BB6    | Brown solid    | 57.6 (39.00)                         |

Compounds I and II were isolated from fraction E1 of ethyl acetate crude extract. Isolation of fractions E2 and E3 did not succeed to afford pure compound. The summary of isolation of ethyl acetate crude extract of stem barks of M. *kauki* is showed in Figure 27.

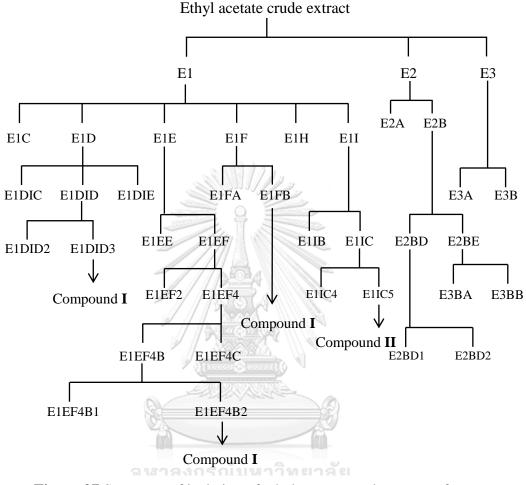



Figure 27 Summary of isolation of ethyl acetate crude extract of stem barks of *M. kauki* 

# **4.8** Elucidation of isolated compounds of ethyl acetate crude extract of stem barks of *M. kauki*

#### 4.8.1 Compound I

Compound **I** was obtained as white solid. It was isolated from ethyl acetate crude extract of stem barks of *M. kauki* (403.1 mg, 0.67 % w/w of ethyl acetate crude extract). The melting point was 272-274 °C. The actual melting point is nearly with the standard melting point of 278-280 °C [79]. The HR-ESI-MS spectrum of compound **I** (Figure 46) showed  $[M+Na]^+$  at m/z 449.3603. A molecular formula of compound **I** was assigned as  $C_{30}H_{50}O$  and calculated for  $C_{30}H_{50}O$  as m/z 426.3849.

The <sup>1</sup>H (300 MHz) and <sup>13</sup>C NMR (75 MHz) data of compound **I** are shown in Table 4.63. The <sup>1</sup>H-NMR signals of eight methyl protons displayed at  $\delta$  0.93 ppm (s, H-23), 0.91 ppm (s, H-24), 0.98 ppm (s, H-25), 1.09 ppm (s, H-26), 0.82 ppm (s, H-27), 0.80 ppm (s, H-28), 0.95 ppm (s, H-29) and 0.91 ppm (s, H-30). The <sup>1</sup>H-NMR signals of one methylene proton displayed at  $\delta$  5.53 ppm (dd, J = 8.2, 3.2 Hz, H-14). The <sup>1</sup>H-NMR signals of four methine protons displayed at  $\delta$  3.19 ppm (m, H-3), 1.40 ppm (m, H-5), 1.41 ppm (m, H-9) and 1.44 ppm (m, H-18). The <sup>1</sup>H-NMR spectrum of compound **I** is shown in Figure 38.

The <sup>13</sup>C-NMR signals of eight methyl groups displayed at  $\delta$  27.8 ppm (C-23), 15.4 ppm (C-24), 15.4 ppm (C-25), 29.8 ppm (C-26), 25.9 ppm (C-27), 29.9 ppm (C-28), 33.3 ppm (C-29) and 21.3 ppm (C-30). The <sup>13</sup>C-NMR signal of one methylene group displayed at  $\delta$  158.1 ppm (C-14). The <sup>13</sup>C-NMR signal of one carbon attached to hydroxyl group at  $\delta$  79.1 ppm (C-3). The <sup>13</sup>C-NMR signal of six quaternary carbons displayed at  $\delta$  38.7 ppm (C-4), 39.0 ppm (C-8), 35.9 ppm (C-10), 37.5 ppm (C-13), 38.0 ppm (C-17) and 28.8 ppm (C-20). The <sup>13</sup>C-NMR spectrum of compound I is shown in Figure 39.

The HMBC spectrum is correlation between protons and carbons. The HMBC spectrum (Figure 43) showed correlation signals of H-3 (3.19)/C-1 (37.7), 2 (27.1) and C-4 (38.7), H-5 (1.40)/C-6 (18.8) and C-10 (35.9), H-7 (1.31, 0.98)/C-6 (18.8) and C-8 (39.0), H-9 (1.41)/C-10 (35.9) and C-11 (17.5), H-15 (1.63, 1.22)/C-14 (158.1) and C-16 (36.5), H-18 (1.44)/C-13 (37.5) and C-19 (41.3), H-23 (0.98)/C-3 (79.1), C-4 (38.7) and C-5 (55.5), H-24 (15.4)/C-3 (79.1), C-4 (38.7) and C-5 (55.5), H-25 (0.93)/C-1 (37.7), C-5 (55.5) and C-10 (35.9), H-26 (29.8)/C-7 (35.1), C-8 (39.0) and C-9 (48.7), H-27 (25.9)/C-11 (17.5), C-12 (37.7) and C-13 (37.5), H-28 (0.80)/C-16 (36.5), C-17 (38.0) and C-22 (33.1), H-29 (33.33)/C-18 (49.2), C-19 (41.3) and C-20 (28.8), H-30 (0.91)/C-20 (28.8), C-21 (33.7) and C-22 (33.1). HMBC correlation of compound I is shown in Figure 28.

Compound I was identified as taraxerol by comparison of spectroscopic data with published literature [80]. The spectrums of DEPT90 (Figure 40), DEPT135 (Figure 41), HSQC (Figure 42), COSY (Figure 44) and NOESY (Figure 45) were confirmed the structure of compound I. The structure of compound I is shown in Figure 29.

| Compound I |                                                |              |              | Taraxerol [80]   |                  |
|------------|------------------------------------------------|--------------|--------------|------------------|------------------|
| Position   | $\delta_{\rm H}$ (multiplicity, $J_{\rm HH}$ ) | $\delta_{C}$ | HMBC         | $\delta_{\rm H}$ | $\delta_{\rm C}$ |
|            |                                                |              | correlations |                  |                  |
| 1          | 1.62 (m), 1.57 (m)                             | 37.7         |              |                  | 38.0             |
| 2          | 1.68 (m), 1.40 (m)                             | 27.1         |              |                  | 27.1             |
| 3          | 3.19 (m)                                       | 79.1         | C-1, 2, 4    | 3.20             | 79.1             |
| 4          | -                                              | 38.7         |              |                  | 39.0             |
| 5          | 1.40 (m)                                       | 55.5         | C-6, 10      |                  | 55.5             |
| 6          | 1.52 (m), 1.47 (m)                             | 18.8         |              |                  | 18.8             |
| 7          | 1.31 (m), 0.98 (m)                             | 35.1         | C-6, 8       |                  | 35.1             |
| 8          |                                                | 39.0         |              |                  | 38.8             |
| 9          | 1.41 (m)                                       | 48.7         | 🦢 C-10, 11   |                  | 48.7             |
| 10         | -                                              | 35.9         |              |                  | 37.6             |
| 11         | 1.64 (m), 1.27 (m)                             | 17.5         |              |                  | 17.5             |
| 12         | 1.28 (m), 1.95 (m)                             | 37.7         |              |                  | 35.8             |
| 13         | - ////2                                        | 37.5         |              |                  | 37.7             |
| 14         | 5.53 (dd, J = 8.2, 3.2 Hz)                     | ⊙ 158.1      |              | 5.52             | 158.1            |
| 15         | 1.63 (m), 1.22 (m)                             | 116.9        | C-14, 16     |                  | 116.9            |
| 16         | - // 25                                        | 36.5         |              |                  | 36.7             |
| 17         |                                                | 38.0         |              |                  | 37.7             |
| 18         | 1.44 (m)                                       | 49.2         | C-13, 19     |                  | 49.3             |
| 19         | 2.03 (m), 1.33 (m)                             | 41.3         |              |                  | 41.3             |
| 20         |                                                | 28.8         |              |                  | 28.8             |
| 21         | 1.55 (m), 1.46 (m)                             | 33.7         | A CONTRACTOR |                  | 33.7             |
| 22         | 1.51 (m), 1.43 (m)                             | 33.1         |              |                  | 33.1             |
| 23         | 0.98 (s)                                       | 28.0         | C-3, 4, 5    | 0.92 (s)         | 28.0             |
| 24         | 0.82 (s)                                       | 15.4         | C-3, 4, 5    | 0.90 (s)         | 15.4             |
| 25         | 0.93 (s) LONG (                                | 15.4         | C-1, 5, 10   | 0.97 (s)         | 15.4             |
| 26         | 1.09 (s)                                       | 29.8         | C-7, 8, 9    | 1.08 (s)         | 29.8             |
| 27         | 0.91 (s)                                       | 25.9         | C-11, 12, 13 | 0.82 (s)         | 25.9             |
| 28         | 0.80(s)                                        | 29.9         | C-16, 17, 22 | 0.80 (s)         | 29.9             |
| 29         | 0.95 (s)                                       | 33.3         | C-18, 19, 20 | 0.94 (s)         | 33.3             |
| 30         | 0.91 (s)                                       | 21.35        | C-20, 21, 22 | 0.90 (s)         | 21.3             |

 Table 4.63 Comparison of <sup>1</sup>H- and <sup>13</sup>C-NMR of compound I and taraxerol

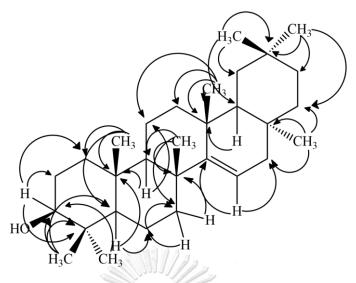



Figure 28 HMBC correlation of taraxerol (compound I)

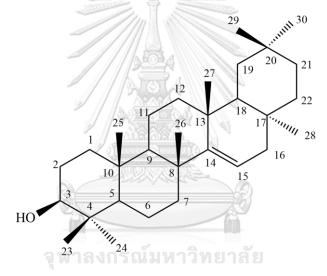



Figure 29 The structure of taraxerol (compound I)

In previous researches, taraxerol was isolated from various plants such as leaves crude extracts of *Jatropha tanjorensis* [79], *Rhizophora mangle* and *Rhizophora racemose* [81], roots crude extract of *Taraxacum officinale* [82], seed oils of *Catharanthus roseus, Nymphaea nelumbo, Casuarina equisetifolia, Acrocarpus fraxinifolius* [83] and barks of *Cupania dentate* [84]. Furthermore, taraxerol was isolated from Sapotaceae family such as seed oils of *M. hexandra*, leaves of *P. ramiflora* [45], barks of *M. elengi* which showed antibacterial activity [85]. Taraxerol has been reported to exhibit antibacterial [85], antigiardial [84], mulluscicidal [28] and antimicrobial activities [86].

#### 4.8.2 Compound II

Compound II was obtained as yellow solid. It was isolated from ethyl acetate crude extract of stem bark of M. kauki (7.8 mg, 0.013% w/w of ethyl acetate crude

extract). The melting point was 184-186 °C. The actual melting point is nearly with the standard melting point of 221-223 °C [87]. The HR-ESI-MS spectrum of compound **II** (Figure 54) displayed  $[M+Na]^+$  at m/z 311.214. A molecular formula of compound **II** was assigned as  $C_{15}H_{12}O_6$  and calculated for  $C_{15}H_{12}O_6$  as m/z 288.0630. <sup>1</sup>H-NMR and <sup>13</sup>C NMR data of compound **II** are shown in Table 4.64. The <sup>1</sup>H-NMR signals of four aromatic protons displayed at  $\delta$  7.42 ppm (d, J = 8.6 Hz, H-2' and H-6'), 6.89 ppm (d, J = 8.6 Hz, H-3' and H-5'), 5.99 ppm (d, J = 2.1 Hz, H-8) and 5.95 ppm (d, J = 2.1 Hz, H-6), respectively. The <sup>1</sup>H-NMR signals of two methine protons displayed at  $\delta$  5.08 ppm (d, J = 11.5 Hz, H-2) and 4.67 ppm (d, J = 11.5 Hz, H-3). The <sup>1</sup>H-NMR signals of hydroxyl group signal displayed at  $\delta$  11.71 ppm. The <sup>1</sup>H-NMR spectrum of compound **II** is shown in Figure 47.

The <sup>13</sup>C-NMR signals of one ketone group displayed at  $\delta$  198.81 ppm (C-4) and six methylene groups were displayed at  $\delta$  96.42, 97.47, 116.3, 116.3, 130.70 and 130.70 ppm (C-6, C-8, C-2', C-3', C-5' and C-6', respectively). The <sup>13</sup>C-NMR spectrum of compound **II** is shown in Figure 48.

The HMBC spectrum is correlation between protons and carbons. The HMBC spectrum (Figure 52) showed correlation signals of H-3 (4.67)/C-2 (84.8), C-3 (73.5) and C-4 (198.81), H-6 (5.95)/C-5 (165.4), C-6 (96.4) and C-7 (168.4), H-8 (5.99)/C-7 (168.4), C-8 (97.5) and C-9 (164.6), H-2' (7.42)/C-1' (129.5), C-3' (116.3), and C-6' (130.7), H-3' (6.89)/C-2' (130.7), C-4' (159.3) and C-5' (116.3), H-5' (6.89)/C-3' (116.3), C-4' (159.26) and C-6' (130.70) and H-6' (5.95)/C-1' (129.5), C-2' (130.7) and C-5' (116.3). The HMBC correlation of compound **II** is showed in Figure 30.

Compound **II** was identified by comparison of spectroscopic data with published literature [88]. The spectrums of DEPT90 (Figure 49), DEPT135 (Figure 50), HSQC (Figure 51) and COSY (Figure 53) were confirmed the structure of compound **II**. The structure of compound **II** is shown in Figure 31.

|          | Compound II Dihydrokaempferol [8 |              |              |                                   |       |
|----------|----------------------------------|--------------|--------------|-----------------------------------|-------|
| Position | $\delta_{\mathrm{H}}$            | $\delta_{C}$ | HMBC         | $\delta_{\rm H}$ $\delta_{\rm C}$ |       |
|          | (multiplicity,                   |              | correlations | (multiplicity,                    |       |
|          | $J_{ m HH})$                     |              |              | $J_{ m HH})$                      |       |
| 1        | -                                | -            |              | -                                 | -     |
| 2        | 5.08                             | 84.8         |              | 4.97                              | 85.00 |
|          | (d, J = 11.5  Hz)                |              |              | (d, J = 11.6  Hz)                 |       |
| 3        | 4.67                             | 73.5         | C-2, 4       | 4.54                              | 73.6  |
|          | (d, J = 11.5  Hz)                |              |              | (d, J = 11.6  Hz)                 |       |
| 4        | -                                | 198.8        |              | -                                 | 198.5 |
| 5        | -                                | 165.4        |              | -                                 | 165.3 |
| 6        | 5.95                             | 96.4         | C-5, 7       | 5,87                              | 97.3  |
|          | (d, J = 2.1  Hz)                 |              |              | (d, J = 1.59  Hz)                 |       |

**Table 4.64** Comparison of <sup>1</sup>H and <sup>13</sup>C NMR of compound **II** and dihydrokaempferol

|          | Compou                | nd <b>II</b>          | Dihydrokaempferol [88] |                       |                  |
|----------|-----------------------|-----------------------|------------------------|-----------------------|------------------|
| Position | $\delta_{\mathrm{H}}$ | $\delta_{\mathrm{C}}$ | HMBC                   | $\delta_{\mathrm{H}}$ | $\delta_{\rm C}$ |
|          | (multiplicity,        |                       | correlations           | (multiplicity,        |                  |
|          | $J_{ m HH})$          |                       |                        | $J_{ m HH})$          |                  |
| 7        |                       | 168.4                 |                        |                       | 168.8            |
| 8        | 5.99                  | 97.5                  | C-7, 9                 | 5.91                  | 96.3             |
|          | (d, J = 2.1  Hz)      |                       |                        | (d, J = 1.59  Hz)     |                  |
| 9        | -                     | 164.6                 |                        | -                     | 164.6            |
| 10       | -                     | 101.9                 |                        | -                     | 101.9            |
| 1'       | -                     | 129.5                 |                        | -                     | 129.3            |
| 2'       | 7.42                  | 130.7                 | C-1', 3', 6'           | 7.35                  | 130.4            |
|          | (d, J = 8.6  Hz)      |                       | 1112.                  | (d, J = 8.56  Hz)     |                  |
| 3'       | 6.89                  | 116.3                 | C-2', 4', 5'           | 6.82                  | 116.1            |
|          | (d, J = 8.6  Hz)      |                       |                        | (d, J = 8.56  Hz)     |                  |
| 4'       | _ 4                   | 159.3                 |                        | -                     | 159.2            |
| 5'       | 6.89 🥔                | 116.3                 | C-3', 4', 6'           | 6.82                  | 116.1            |
|          | (d, J = 8.6  Hz)      | //// §                |                        | (d, J = 8.56  Hz)     |                  |
| 6'       | 7.42                  | 130.7                 | C-1', 2', 5'           | 7.35                  | 130.3            |
|          | (d, J = 8.6  Hz)      |                       |                        | (d, J = 8.56  Hz)     |                  |

Table 4.64 Comparison of <sup>1</sup>H- and <sup>13</sup>C-NMR of compound II and dihydrokaempferol

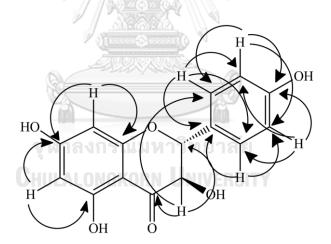



Figure 30 HMBC correlation of dihydrokaempferol (compound II)

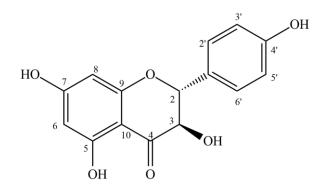


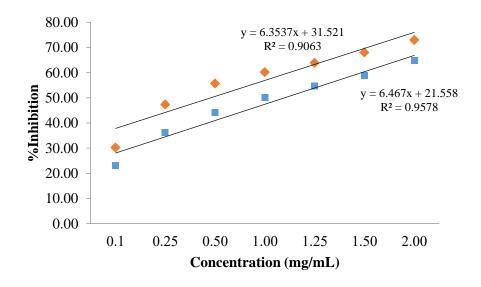

Figure 31 The structure of dihydrokaempferol (compound II)

In previous researches, dihydrokaempferol was isolated from various plants such as leaves of *C. sinensis* [89], fruits of *Maclura pomifera* [90], flowers of *Paeonia ostia* [88], aerial part of *Euphorbia cuneate* [87], fruits of *Citrus unshiu* [91], woods of *Annona ambotay* [92], knotwood of *Pinus banksiana* [93], roots of *Polygonum amplexicaule* [94] and branches of *Gracinia schomburgkiana* [95]. Dihydrokaenferol exhibited antioxidant (DPPH activity with  $IC_{50} = 34.2 \pm 0.98 \mu g/mL$ ) [88], antiulcerogenic [87], lipid peroxidation ( $IC_{50} = 5.4 nM$ ) [93] and anti-HIV-1 [96] activities.

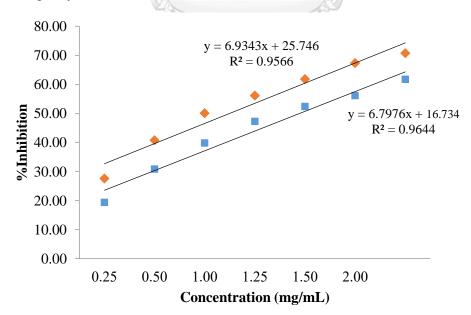
## 4.9 Tyrosinase inhibitory activity of isolated compounds

The compounds I and II were isolated from stem barks of M. kauki. They were tested on *in vitro* tyrosinase inhibitory activity. Compounds I and II were prepared for seven dilutions as 0.10, 0.25, 0.50, 1.00, 1.25, 1.50 and 2.00 mg/mL for calculation of IC<sub>50</sub> value. Compound I exhibited moderate tyrosinase inhibitory activity with IC<sub>50</sub> values of 0.99  $\pm$  0.14 and 1.13  $\pm$  0.28 mg/mL for L-tyrosine and L-DOPA, respectively. Calibration plots of compound I for L-tyrosine and L-DOPA are shown in Figures 32 and 33, respectively. Compound II exhibited strong tyrosinase inhibitory activity with IC<sub>50</sub> values of 0.33  $\pm$  0.14 and 0.05  $\pm$  0.11 mg/mL for Ltyrosine and L-DOPA, respectively. Calibration plots of compound II for L-tyrosine and L-DOPA are shown in Figures 33 and 34, respectively. Kojic acid (IC<sub>50</sub> value  $8.17 \pm 0.03$  and  $8.43 \pm 0.05 \ \mu g/mL$  for L-tyrosine and L-DOPA, respectively) and  $\alpha$ arbutin (IC<sub>50</sub> value  $1.92 \pm 0.09$  and  $1.73 \pm 0.11$  mg/mL for *L*-tyrosine and *L*-DOPA, respectively) were used as reference compounds. Tyrosinase inhibitory activity of isolated compounds of stem barks of *M. kauki* is shown in Table 4.65. Compounds I and **II** exhibited lower tyrosinase inhibitory activity than kojic acid. On the other hand, compounds I and II exhibited higher tyrosinase inhibitory activity than  $\alpha$ arbutin which was usually used in commercial whitening cosmetic.

| Compound                       | Characteristic | $IC_{50}$ (mg/mL) (mM)       |                              |  |
|--------------------------------|----------------|------------------------------|------------------------------|--|
|                                |                | L-tyrosine                   | L-DOPA                       |  |
| Compound I                     | White solid    | $0.99 \pm 0.14 \ (2.32 \pm$  | $1.13 \pm 0.28 \ (2.65 \pm$  |  |
|                                |                | 0.06) *                      | 0.03) *                      |  |
| Compound II                    | Yellow solid   | $0.33 \pm 0.14 \ (1.15 \pm$  | $0.50 \pm 0.11 \; (1.74 \pm$ |  |
| _                              |                | 0.06) *                      | 0.05) *                      |  |
| Kojic acid <sup>a</sup>        |                | $8.17 \pm 0.03$ (57.49 $\pm$ | $8.43 \pm 0.05$ (59.32 ±     |  |
|                                |                | 0.02) **                     | 0.01) **                     |  |
| $\alpha$ -Arbutin <sup>a</sup> |                | $1.92 \pm 0.09$ (7.05 ±      | $1.73 \pm 0.11$ (6.35 ±      |  |
|                                |                | 0.02) *                      | 0.01)                        |  |
| Positive control               | - S            | 1 1 1 2 3                    |                              |  |


Table 4.65 Tyrosinase inhibitory activity values of isolated compounds of stem barks of M. kauki

\*IC<sub>50</sub> value (mg/mL) (mM)


\*\*IC<sub>50</sub> value ( $\mu$ g/mL) ( $\mu$ M)

When comparison this results with previous studies, dihydrokaempferol which was isolated from twigs of M. alba [75], twigs of Cudrania tricuspidata [97], bark of Peltophorum dasyrachis [98] and barks of M. zapota [59] exhibited tyrosinase inhibitory activity with IC<sub>50</sub> values of >200  $\mu$ M (*L*-tyrosine as substrate), >100  $\mu$ M (L-tyrosine as substrate),  $126 \pm 0.32 \mu M$  (L-DOPA as substrate) and  $32.17 \pm 0.32$  and  $31.60 \pm 0.73 \mu M$  (L-tyrosine and L-DOPA as substrates, respectively), respectively. In addition, it was isolated from ethanol crude extract of vine stems of *Spatholobus* suberectus and showed tyrosinase inhibitory activity with percent inhibition of 15.18  $\pm$  6.47% at concentration 100 µM using L-DOPA as a substrate. Taraxerol is widely distributed among several plants. It was isolated from barks of M. zapota that exhibited tyrosinase inhibitory activity with IC<sub>50</sub> values of  $103.37 \pm 0.22$  and  $272.10 \pm$ 0.16  $\mu$ M for *L*-tyrosine and *L*-DOPA as substrates, respectively [59]. It is a triterpenoid compound. Triterpenoid compounds from various plants were reported as tyrosinase inhibitors. (22R)-Cycloart-20,25-dien- $2\alpha$ ,  $3\beta$ ,  $22\alpha$ -triol; (22R)-cycloart-23ene- $3\beta$ ,22 $\alpha$ ,25-triol; cycloart-23-ene- $3\beta$ ,25-diol; cycloart-20-ene- $3\beta$ ,25-diol, cycloart-25-ene- $3\beta$ ,(22*R*)22-diol;  $3\beta$ , 21, 22, 23-tetrahydroxy-cycloart-24, 25(26)-diene and (23R)-5 $\alpha$ -cycloart-24-ene-3 $\beta$ ,21,23-triol were isolated from whole plant of Amberboa ramose and exhibited tyrosinase inhibitory activity with IC<sub>50</sub> values of 7.92  $\pm$  0.39,  $15.94 \pm 1.93$ ,  $8.32 \pm 0.097$ ,  $12.09 \pm 1.03$ ,  $22.21 \pm 1.94$ ,  $1.32 \pm 0.373$  and  $4.93 \pm 0.197$  $\mu$ M, respectively. [99]. Moreover, erythrodiol, betulinic acid, maslinic acid,  $2\alpha$ ,  $3\alpha$ , 23trihydroxyolean-12-en-28-oic acid, bayogenin, arjunilic acid, methyl arjunolate, arjungenin and  $3\beta$ , 23, 24-trihydroxyolean-12-en-28-oic acid were isolated from methanol crude extract of aerial parts of Rhododendron collettianum and showed tyrosinase inhibitory activity with IC<sub>50</sub> values of  $3.12 \pm 0.25$ ,  $2.14 \pm 0.37$ ,  $1.70 \pm 0.34$ ,  $1.12 \pm 0.13$ ,  $1.10 \pm 0.10$ ,  $1.0 \pm 0.37$ ,  $2.34 \pm 0.41$ ,  $6.58 \pm 0.85$  and  $11.02 \pm 1.37 \mu$ M, respectively [100]. These compounds were evaluated for tyrosinase inhibitory activity

towards *L*-DOPA as the substrate. It was found that compounds **I** and **II** exhibited tyrosinase inhibitory activity lower than the previous studies. Because of difference in assay conditions may cause different reactivity of test sample to the enzyme reaction. The phosphate buffer (pH 6.8) was used in the reported studies; whereas, the phosphate buffer (pH 6.5) was utilized in this study. Furthermore, the incubation temperature in the reported studies was 25 °C. Whereas, incubation temperature in this study was  $30 \pm 2$  °C.



**Figure 32** Calibration plots of tyrosinase inhibitory activity of compounds I and II using *L*-tyrosine as a substrate



**Figure 33** Calibration plots of tyrosinase inhibitory activity of compounds **I** and **II** using *L*-DOPA as a substrate

## CHAPTER V CONCLUSION

The methanol and aqueous crude extracts of fruits, leaves, seeds, stem barks and woods of *M. kauki* were evaluated for their total phenolic and flavonoid contents, antioxidant and tyrosinase inhibitory activities. Methanol crude extract of leaves exhibited the highest amount of total phenolic content (11.79  $\pm$  0.04 mg GAE/g of dry weight) and followed by methanol crude extract of stem barks, aqueous crude extract of leaves, aqueous crude extract of stem barks, methanol crude extract of woods, aqueous and methanol crude extracts of fruits, aqueous crude extract of woods, aqueous and methanol crude extracts of seeds with total phenolic content values of  $10.45 \pm 0.03, 9.50 \pm 0.08, 4.00 \pm 0.02, 2.83 \pm 0.01, 2.83 \pm 0.01, 1.92 \pm 0.02, 1.91 \pm$ 0.03,  $0.95 \pm 0.02$  and  $0.79 \pm 0.01$  mg GAE/g of dry weight, respectively. Then, the crude extracts of different parts of M. kauki were evaluated for total flavonoid content. The highest total flavonoid content was obtained in methanol crude extract of leaves of with value of  $89.84 \pm 0.19$  mg QE/g of dry weight and followed by aqueous crude extract of leaves, aqueous and methanol crude extracts of stem barks, aqueous and methanol crude extracts of fruits, aqueous crude extract of woods, aqueous and methanol crude extracts of seeds and methanol crude extract of woods which showed total flavonoid content values of 66.60  $\pm$  0.22, 58.07  $\pm$  0.32, 48.62  $\pm$  0.21, 20.17  $\pm$  $0.16, 10.72 \pm 0.08, 4.54 \pm 0.21, 3.66 \pm 0.14, 2.04 \pm 0.07$  and  $0.46 \pm 0.07$  mg QE/g of dry weight, respectively. The antioxidant activities of different parts of M. kauki were investigated by DPPH radical scavenging and FRAP methods. The results of DPPH radical scavenging and FRAP activities were used trolox equivalent as standard regression curve. The highest DPPH radical scavenging activity was found in methanol crude extract of stem barks with value of  $257.02 \pm 0.26$  mg TE/g of crude extract. Secondly, aqueous crude extract of leaves showed DPPH radical scavenging activity with value of 243.19  $\pm$  1.24 mg TE/g of crude extract and followed by aqueous crude extract of stem barks, methanol crude extract of leaves, methanol and aqueous crude extracts of woods, methanol crude extracts of fruits and seeds, aqueous crude extracts of fruits and seeds which exhibited DPPH radical scavenging activity with values of 219.19  $\pm$  0.13, 208.60  $\pm$  0.98, 194.38  $\pm$  0.70, 66.04  $\pm$  0.57, 45.28  $\pm$  $0.51, 16.08 \pm 0.31, 13.01 \pm 0.51$  and  $10.32 \pm 0.38$  mg TE/g of crude extract, respectively. From the results of FRAP activity, aqueous crude extract of leaves showed the highest FRAP activity with value of  $219.56 \pm 0.89$  mg TE/g of crude extract and followed by methanol crude extract of leaves, methanol and aqueous crude extracts of stem barks, methanol and aqueous crude extracts of woods, methanol crude extract of seeds and fruits and aqueous crude extracts fruits and seeds which exhibited FRAP activity with values of  $210.94 \pm 1.37$ ,  $210.94 \pm 0.89$ ,  $107.89 \pm$  $0.79, 72.61 \pm 0.98, 42.06 \pm 0.98, 15.93 \pm 0.98, 11.78 \pm 0.96, 5.11 \pm 0.79$  and  $4.56 \pm$  0.81 mg TE/g of crude extract, respectively. The methanol and aqueous crude extracts of fruits, leaves, seeds, stem barks and woods of *M. kauki* were evaluated on tyrosinase inhibitory activity. Tyrosinase inhibitory activity was determined using *L*-tyrosine as a substrate. Methanol crude extract of stem barks exhibited the highest tyrosinase inhibitory activity with IC<sub>50</sub> value  $0.26 \pm 0.05$  mg/mL and followed by methanol crude extract of leaves, aqueous crude extract of stem barks and leaves, aqueous and methanol crude extracts of fruits, methanol and aqueous crude extract seeds which showed tyrosinase inhibitory activity with IC<sub>50</sub> values of  $0.32 \pm 0.08$ ,  $0.41 \pm 0.11$ ,  $0.49 \pm 0.12$ ,  $0.49 \pm 0.11$ ,  $0.75 \pm 0.14$ ,  $3.86 \pm 0.12$  and  $3.88 \pm 0.11$  mg/mL, respectively. Whereas, methanol and aqueous crude extracts of *M. kauki* showed no activity. These results indicated that stem barks and leaves of *M. kauki* contained high amount of phenolic compounds and flavonoids and expressed at range DPDU radical accurates EPAP and transitions.

strong DPPH radical scavenging, FRAP and tyrosinase inhibitory activities. These results suggested that the crude extracts of stem barks and leaves can be sources of antioxidant and tyrosinase inhibitors. This study further investigated the tyrosinase inhibitors from stem barks of *M. kauki*.

The stem barks of M. kauki were extracted by maceration method with nhexane, ethyl acetate, methanol and water, respectively. All crude extracts were tested on total phenolic and flavonoid contents, antioxidant and tyrosinase inhibitory activities. Methanol crude extract exhibited the highest total phenolic content with value of  $160.12 \pm 0.27$  mg GAE/g of crude extract and followed by ethyl acetate, aqueous and *n*-hexane crude extracts with values of  $111.46 \pm 0.38$ ,  $66.17 \pm 0.26$  and  $10.98 \pm 0.14$  mg GAE/g of crude extract, respectively. The highest total flavonoid content was found in ethyl acetate crude extract with value of  $755.33 \pm 1.53$  mg QE/g of crude extract and followed by methanol, aqueous and *n*-hexane crude extracts with values of  $527.33 \pm 1.00$ ,  $516.67 \pm 1.73$  and  $283.67 \pm 1.52$  mg QE/g of crude extract, respectively. Ethyl acetate crude extract showed the highest DPPH radical scavenging activity with value of  $249.33 \pm 0.25$  mg TE/g of crude extract and followed by methanol, aqueous and *n*-hexane crude extracts with values of  $241.26 \pm 0.32$ ,  $39.52 \pm$ 0.25 and 11.85  $\pm$  0.67 mg TE/g of crude extract, respectively. The highest FRAP activity was obtained in methanol crude extract with value of  $221.50 \pm 0.78$  mg TE/g of crude extract and followed by ethyl acetate, aqueous and *n*-hexane crude extracts with values of  $179.28 \pm 0.59$ ,  $50.94 \pm 0.20$  and  $10.39 \pm 0.59$  mg TE/g of crude extract, respectively. All crude extracts were also tested on tyrosinase inhibitory activity. The ethyl acetate crude extract exhibited the highest tyrosinase inhibitory activity with IC<sub>50</sub> values of 0.24  $\pm$  0.02 and 0.28  $\pm$  0.04 for *L*-tyrosine and *L*-DOPA, respectively and followed by methanol crude extract (IC\_{50} values of 1.66  $\pm$  0.07 and 1.25  $\pm$  0.05 mg/mL for L-tyrosine and L-DOPA, respectively), aqueous crude extract (IC<sub>50</sub> values of  $1.89 \pm 0.09$  and  $1.58 \pm 0.11$  mg/mL for L-tyrosine and L-DOPA, respectively) and *n*-hexane crude extract (IC<sub>50</sub> values of 9.58  $\pm$  0.17 and 9.23  $\pm$  0.28 mg/mL for Ltyrosine and L-DOPA, respectively). Hence, ethyl acetate crude extract of stem barks

of *M. kauki* exhibited high amount of phenolic compounds and flavonoids and strong antioxidant activity along with tyrosinase inhibitory activity.

Ethyl acetate crude extract of stem barks of *M. kauki* was isolated by activity guided-fractionation. Compounds I and II were isolated from ethyl acetate crude extract of stem barks. Compound I was elucidated as taraxerol ( $C_{30}H_{50}O$ ) which exhibited tyrosinase inhibitory activity with IC<sub>50</sub> values of  $2.32 \pm 0.06$  and  $2.65 \pm 0.03$ mM for L-tyrosine and L-DOPA, respectively. Compound II was elucidated as dihydrokaempferol ( $C_{15}H_{12}O_6$ ) which showed tyrosinase inhibitory activity with IC<sub>50</sub> values of  $1.15 \pm 0.06$  and  $1.74 \pm 0.05$  mM for *L*-tyrosine and *L*-DOPA, respectively. Compounds I and II exhibited lower tyrosinase inhibitory activity than kojic acid (IC<sub>50</sub> vales of 57.49  $\pm$  0.02 and 59.32  $\pm$  0.01  $\mu$ M for L-tyrosine and L- DOPA as substrates, respectively) but they exhibited higher tyrosinase inhibitory activity than  $\alpha$ -arbutin (IC<sub>50</sub> vales of 7.05 ± 0.02 and 6.35 ± 0.01 mM for *L*-tyrosine and *L*- DOPA as substrates, respectively). These results suggested that stem barks of M. kauki should be further investigated to purify tyrosinase inhibitors, especially ethyl acetate crude extract of stem barks. It should be further investigated for others biological activities including anti-allergic, cytotoxicity and in vitro tyrosinase inhibitory activities to evaluate it before using as a potential ingredient in whitening cosmetic.



## REFERENCES

- [1] Rees, J.L. The genetics of human pigmentary disorders. <u>Journal of</u> <u>Invesigative Dermatology</u> 131(3) (2011): E12-E13.
- [2] Marmol, V., and Beermann, F. Tyrosinase and related proteins in mammalian pigmentation. <u>Ferderation of European Biochemical Societies</u> 318(3) (1996): 165-168.
- [3] Isabelle, M., Lee, B.L., Lim, M.T., Koh, W.P., Huang, D., and Ong, C.N. Antioxidant activity and profiles of common fruits in Singapore. <u>Food</u> <u>Chemistry</u> 123(1) (2010): 77-84.
- [4] Fernandes, C.P., Correa, A.L., Lobo, J.F.R., Caramel, O.P., Almeida, F.B., Castro, E.S., Souza, K.F.C.S., Burth, P., Amorim, L.M.F., Santos, M.G., Ferreira, J.L.P., Falcão, D.Q., Carvalho, J.C.T., and Rocha, L. Triterpene esters and biological activities from edible fruits of *Manilkara subsericea* (Mart.) Dubard, Sapotaceae. <u>BioMed Research International</u> 2013(1) (2013): 1-7.
- [5] Rhourri-Frih, B., Renimel, I., Chaimbault, P., André, P., Herbette, G., and Lafosse, M. Pentacyclic triterpenes from *Manilkara bidentata* resin. isolation, identification and biological properties. <u>Fitoterapia</u> 88(1) (2013): 101-108.
- [6] Baky, M.H., Kamal, A.M., Elgindi, M.R., and Haggag, E.G. A review on phenolic compounds from family sapotaceae. <u>Journal of Pharmacognosy and</u> <u>Phytochemistry</u> 5(2) (2016): 280-287.
- [7] Chantaranothai, P. Sapotaceae. in Santisuk, T. and Balslev, H. (eds.), <u>Flora of Thailand</u>, pp. 625-629. Bangkok: Department of National Parks, Wildlife and Plant Conservative, 2014.
- [8] Fenske, N.A., and Lober, C.W. Structural and functional changes of normal aging skin. <u>Journal of the American Academy of Dermatology</u> 15(4) (1986): 571-585.
- [9] Toledo, A.V., Franco, M.E.E., Lopez, S.M.Y., Troncozo, M.I., Saparrat, M.C.N., and Balatti, P.A. Melanins in fungi: types, localization and putative biological roles. <u>Physiological and Molecular Plant Pathology</u> 99(1) (2017): 2-6.
- [10] Clausa, H., and Deckerb, H. Bacterial tyrosinases. <u>Systematic and Applied</u> <u>Microbiology</u> 29(1) (2006): 3-14.
- [11] Ito, S. and Wakamatsu, K. Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. <u>Pigment Cell Research</u> 16(5) (2003): 523-531.
- [12] Hearing, V.J., and Jimenez, M. Mammalian tyrosinase -the critical regulatory control point in melanocyte pigmentation. <u>International Journal of</u> <u>Biochemistry</u> 19(12) (1987): 1141-1147.

- [13] Hearing, V.J. Determination of melanin synthetic pathways. Journal of Investigative Dermatology 131(3) (2011): E8-E11.
- [14] Jimbow, K., Alena, F., Dixon, W., and Hara, H. Regulatory factors of pheomelanogenesis and eumelanogenesis in melanogenic compartment. <u>Pigment Cell Research</u> 3(S2) (1992): 36-42.
- [15] Benefits plant for health. <u>Manilkara kauki a good fruit to traditional healing</u> [Online]. 2017. Available from: https://benefitsplantforhealth.blogspot.com/2017/01/manilkara-kauki-sawokecik-benefits-for-health-Habitat-and-Distribution-Classification-traits-agood-fruit-to-traditional-healing.html [2017, December 12]
- [16] Khare, C.P. *Manilkara kauki*. In Khare, C.P. <u>Indian medicinal plants</u>, pp. 397-398. Heidelberg: Springer, 2007.
- [17] Chopra, R.N., Nayara, S.L., and Chopra, I.C. <u>Glossary of Indian medicinal</u> plants. New Delhi: Council of Scientific & Industrial Research, 1956.
- [18] Dejadisai, S., Meechai, I., Puripattanavong, J., and Kummee, S. Antityrosinase and antimicrobial activities from Thai medicinal plants. <u>Archives of Phamacal</u> <u>Research</u> 37(4) (2014): 473–483.
- [19] Tengamnuay, P., Pengrungruangwong, K., Pheansri, I., and Likhitwitayawuid, K. Artocarpus lakoocha heartwood extract as a novel cosmetic ingredient: evaluation of the *in vitro* anti-tyrosinase and *in vivo* skin whitening activities. <u>International Journal of Cosmetic Science</u> 28(4) (2006): 269-276.
- [20] Homklob, J., Winitchai, S., Rimkeeree, H., and Luangprasert, N. Free radical scavenging, tyrosinase inhibition activity and total phenolics content of ethyl acetate extracts from Indian gooseberry (*Phyllanthus emblica* L.) in Thailand. In <u>Proceedings of the 48<sup>th</sup> Kasetsart University Annual Conference, Kasetsart, 3-5 March, 2010. Subject: Agro-Industry</u>, pp. 91-99. Bangkok, 2010.
- [21] Malik, W., Ahmed, D., and Izhar, S. Tyrosinase inhibitory activities of *Carissa opaca* Stapf ex Haines roots extracts and their phytochemical analysis. <u>Pharmacognosy Magazine</u> 13(51) (2017): S544-S548.
- [22] Krishnappa, K., and Elumalai, K. Mosquitocidal activity of indigenenous plants of Western Ghats, *Achras sapota* Linn. (Sapotaceae) and *Cassia auriculata* L. (Fabaceae) against a common malarial vector, *Anopheles stephensi* Liston (Culicidae: Diptera). Journal of Coastal Life Medicine 2(5) (2014): 402-410.
- [23] Adebayo, A.H., Abolaji, A.O., Kela, R., Ayepola, O.O., Olorunfemi, T.B., and Taiwo, O.S. Antioxidant activities of the leves of *Chrysophyllum albidun* G. <u>Pakistan Journal of Pharmaceutical Sciences</u> 24(4) (2011): 545-551.
- [24] Purnima, S., and Swarnalatha. *In vitro* antimicrobial activity of *Madhuca Longifolia* leaf extract. <u>The International Journal of Engineering and Science</u> 7(4) (2018): 9-12.

- [25] Sharma, S., Sharmaa, M.C., and Kohlib, D.V. Wound healing activity and formulation of ether-benzene-95% ethanol extract of herbal drug *Madhuca longifolia* leaves in Albino rats. Journal of Optoelectronics and Biomedical <u>Materials</u> 1(1) (2010): 13-15.
- [26] Patel, K., Ali, A.K., Nair, N., and Kothari, V. *In vitro* antibacterial activity of *Manilkara hexandra* (Sapotaceae) seed extracts and violacein against multidrug resistant *Streptococcus mutans*. Journal of Natural Remedies 15(1) (2015): 1-11.
- [27] Rodrigues, K., Ramos, D.F., Carrion, L.L., Cursino, L.M.C., Jefreys, M.F., Pedroza, L.S., Osório, M.I.C., Oliveira, J.L., Andrade, J.I.A., Fernandes, C.C., Nunez, C.V., and Silva, P.E.A. Antifungal activity of Brazilian amazon plantas extracts against some species of *Candida* spp. <u>International Journal of</u> <u>Phytopharmacology</u> 5(6) (2014): 445-453.
- [28] Fariaa, R.X., Rochab, L.M., Eloísa Portugal Barros Silva Soares Souzab, Almeidac, F.B., Fernandesc, C.P., and Santosd, J.A.A. Molluscicidal activity of *Manilkara subsericea* (Mart.) dubard on *Biomphalaria glabrata* (Say, 1818). <u>Acta Tropica</u> 178(1) (2018): 163-168.
- [29] Sumithra, P., Shoba, F.G., Vimala, G., Sathya, J., Sankar, V., Saraswathi, R., and Jayapriya, G. Anti-cancer activity of *Annona squamosa* and *Manilkara zapota* flower extract against MCF-7 cell line. <u>Der Pharmacia Sinica</u> 5(6) (2014): 98-104.
- [30] Islam, M.R., Parvin, M.S., Islam, M.S., Hasan, S.M.R., and Islam, M.E. Antioxidant activity of the ethanol extract of *Manilkara zapota* leaf. <u>Journal of Scientific Research</u> 4(1) (2012): 193-202.
- [31] Mewara, D., Tamakuwala, H., and Desai, B. Antifungal activity and phytochemical screening from leaf extract of *Manilkara zapota* and *Averrhoa carambola*. International Journal of Ethnobiology & Ethnomedicine 3(1) (2017): 1-9.
- [32] Nair, R., and Sumitra, C. Antimicrobial activity of *Terminalia catappa*, *Manilkara zapota* and *Piper betel* leaf extract. <u>Indian Journal of</u> <u>Pharmaceutical Science</u> 70(3) (2008): 390-393.
- [33] Fomani, M., Nouga, A.B., Toze, F.A.A., Ndom, J.C., Waffo, A.F.K., and Wansi, J.D. Bioactive phenylethanoids from the seeds of *Manilkara zapota*. <u>British Journal of Pharmaceutical Research</u> 8(5) (2015): 1-5.
- [34] Krishna, P.S., Babu, P.S., and Karthikeyan, R. Anti-inflammatory activity of ethanolic extract of flowers *Manilkara zapota* L. by HRBC membrane stabilization method. Journal of Pharmaceutical Sciences 6(1) (2017): 19-21.
- [35] Sathishkumar, T., Anitha, S., Sharon, R.E., Santhi, V., Sukanya, M., Kumaraesan, K., and Rapheal, V.S. Evaluation of *in vitro* invertase inhibitory activity of *Manilkara zapota* seeds - a novel strategy to manage diabetes mellitus. Journal of Food Biochemistry 39(5) (2015): 517-527.

- [36] Mistry, K.S., Sanghvi, Z., Parmar, G., and Shah, S. The antimicrobial activity of *Azadirachta indica, Mimusops elengi, Tinospora cardifolia, Ocimum sanctum* and 2% chlorhexidine gluconate on common endodontic pathogens: An *in vitro* study. European Journal of Dentistry 8(2) (2014): 172-177.
- [37] Koti, B.C., and Ashok, P. Diuretic activity of extracts of *Mimusops elengi* Linn. bark. <u>International Journal of Green Pharmacy</u> 4(2) (2010): 90-92.
- [38] Reddy, L.J., and Jose, B. Evaluation of antibacterial activity of *Mimusops* elengi L. flowers and *Thichosanthes cucumerina* L. fruits from South India. <u>International Journal of Pharmacy and Pharmaceutical Sciences</u> 5(3) (2013): 362-364.
- [39] Suedee, A., Tewtrakul, S., and Panichayupakaranant, P. Anti-HIV-1 integrase activity of *Mimusops elengi* leaf extracts. <u>Pharmaceutical Biology</u> 52(1) (2013): 58-61.
- [40] Bardhan, A., Mukhopadhyay, R., Bhattacharya, S., and Biswas, M. In vitro free radical scavenging activity of leaf extracts from *Mimusops elengi*. Journal of Advanced Pharmacy Education & Research 4(4) (2014): 426-429.
- [41] Zahid, H., Rizwani, G.H., Kamil, A., Shareef, H., Tasleem, S., and Khan, A. Anti-urease activity of *Mimusops elengi* Linn (Sapotaceae). <u>European Journal</u> of Medicinal Plants 6(4) (2015): 223-230.
- [42] Shahwar, D., and Raza, M.A. In vitro antibacterial activity of extracts of Mimusops elengi against gram positive and gram negative bacteria. <u>African</u> Journal of Microbiology Research 3(3) (2009): 458-462.
- [43] Rahman, U., Rahman, T.U., Zeb, M.A., Khattak, K.F., Qaisar, M., and Ullah, S. Phytochemical screening, antibacterial and antioxidant activity of *Monoteheca buxifolia* stem. <u>International Journal of Biosciences</u> 11(1) (2017): 198-203.
- [44] Manosroi, A., Saraphanchotiwitthaya, A., and Manosroi, J. Effects of *Pouteria cambodiana* extracts on *in vitro* immunomodulatory activity of mouse immune system. <u>Fitoterapia</u> 77(3) (2006): 189-193.
- [45] Rodrigues, P.M., Gomes, J.V.D., Jamal, C.M., Neto, A.C., Santos, M.L., Fagg, C.W., Fonseca-Bazzo, Y.M., Magalhaes, P.O., Sales, P.M., and Silveira, P. Triterpenes from *Pouteria ramiflora* (Mart.) Radlk. leaves (Sapotaceae). <u>Food</u> <u>and Chemical Toxicology</u> 109(2) (2017): 1063-1068.
- [46] Yahia, E.M., Orozco, F.G., and Leon, C.A. Phytochemical and antioxidant characterization of mamey (*Pouteria sapota* Jacq. H.E. Moore & Stearn) fruit. <u>Food Research International</u> 44(1) (2011): 2175–2181.
- [47] Dua, L., Shen, Y., Zhang, X., Prinyawiwatkul, W., and Xu, Z. Antioxidantrich phytochemicals in miracle berry (*Synsepalum dulcificum*) and antioxidant activity of its extracts. <u>Food Chemistry</u> 153(1) (2014): 279-284.
- [48] Momtaza, S., Mapunyaa, B.M., Houghtonb, P.J., Edgerlyb, C., Husseina, A., Naidooc, S., and Lalla, N. Tyrosinase inhibition by extracts and constituents of

*Sideroxylon inerme* L. stem bark, used in South Africa for skin lightening. Journal of Ethnopharmacology 119(3) (2008): 507-512.

- [49] Kuete, V., Tangmouob, J.G., Benga, V.P., Ngounoub, F.N., and Lontsi, D. Antimicrobial activity of the methanolic extract from the stem bark of *Tridesmostemon omphalocarpoides* (Sapotaceae). <u>Journal of</u> <u>Ethnopharmacology</u> 104(1-2) (2006): 5-11.
- [50] Einbond, L.S., Reynertson, K.A., Luo, X.D., Basile, M.J., and Kennelly, E.J. Anthocyanin antioxidants from edible fruits. <u>Food Chemistry</u> 28(1) (2005): 23-28.
- [51] Misra, G., and Mitra, C.R. *Mimusops hexandra*-ll. Constituents of bark and seed. <u>Phytochemistry</u> 5(3) (1966): 535-538.
- [52] Misra, G., and Mitra, C.R. *Mimusops manilkara*, contituents of fruit and seed. <u>Phytochemistry</u> 8(1) (1969): 249-252.
- [53] França, C.V., Perfeito, J.P.S., Resck, I.S., Gomes, S.M., Fagg, C.W., Castro, C.F.S., Simeoni, L.A., and Silveira, D. Potential radical-scavenging activity of *Pouteria caimito* leaves extracts. Journal of Applied Pharmaceutical Science 6(7) (2016): 184-188.
- [54] Sotes, G.J., Urzu, A., and Sebastia, B. Chemistry of *Pouteria splendens* and its ecological situation. <u>Biochemical Systematics and Ecology</u> 34(4) (2006): 338-340.
- [55] Perfeito, J.P., Santos, M.L., López, K.S.E., Paula, J.E., and Silveira, D. Characterization and biological properties of *Pouteria torta* extracts: a preliminary study. <u>Revista Brasileira de Farmacognosia Brazilian Journal of</u> <u>Pharmacognosy</u> 15(3) (2005): 183-186.
- [56] Costa, D.L.M.G., Rinaldo, D., Varanda, E.A., Sousa, J.F., Nasser, A.L.M., Silva, A.C.Z., Baldoqui, D.C., Vilegas, W., and Santos, L.C. Flavonoid detection in hydroethanolic extract of *Pouteria torta* (Sapotaceae) leaves by HPLC-DAD and the determination of its mutagenic activity. Journal of Medicainal Food 17(10) (2014): 1103-1112.
- [57] Zhang, J., Kurita, M., Shinozaki, T., Ukiya, M., Yasukawa, K., Shimizu, N., Tokuda, H., Masters, E.T., Akihisa, M., and Akihisa, T. Triterpene glycosides and other polar constituents of shea (*Vitellaria paradoxa*) kernels and their bioactivities. <u>Phytochemistry</u> 108(1) (2014): 157-170.
- [58] Rao, G.V., Sahoo, M.R., Madhavi, M.S.L., and Mukhopadhyay, T. Phytoconstituents from the leaves and seeds of *Manilkara zapota* Linn. <u>Der</u> <u>Pharmacia Lettre</u> 6(2) (2014): 69-73.
- [59] Chunhakant, S. <u>Tyrosinase inhibitors from sapodilla plum Manilkara zapota</u> <u>L</u>. Doctoral dissertation, Program in Biotechnology, Graduate School, Chulalongkorn University, 2017.
- [60] Wang, H.M., Chou, Y.T., Hong, Z.L., Chen, H.A., Chang, Y.C., Yang, W.L., Chang, H.C., Mai, C.T., and Chen, C.Y. Bioconstituents from stems of

*Synsepalum dulcificum* Daniell (Sapotaceae) inhibit human melanoma proliferation, reduce mushroom tyrosinase activity and have antioxidant properties. Journal of the Taiwan Institute of Chemical Engineers 42(2) (2011): 204-211.

- [61] Ainsworth, E.A., and Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. <u>Nature Protocols</u> 2(4) (2007): 875-877.
- [62] Tohidi, B., Rahimmalek, M., and Arzani, A. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of *Thymus* species collected from different regions of Iran. Food Chemistry 220 (2017): 153-161.
- [63] Thaiponga, K., Boonprakoba, U., Crosbyb, K., Zevallosc, L.C., and Byrnec, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. <u>Journal of Food Composition</u> <u>and Analysis</u> 19(1) (2006): 669–675.
- [64] Benzie, I.F.F., and Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of "Antioxidant Power": The FRAP assay. <u>Analytical</u> <u>Biochemistry</u> 239(1) (1996): 70-76.
- [65] Ishihara, A., Ide, Y., Bito, T., Ube, N., Endo, N., Sotome, K., Maekawa, N., Ueno, K., and Nakagiri, A. Novel tyrosinase inhibitors from liquid culture of *Neolentinus lepideus*. <u>Bioscience, Biotechnology and Biochemistry</u> 82(1) (2018): 22-30.
- [66] Mathur, R., and Vijayvergia, R. Determination of total flavonoid and phenol content in *Mimosops elengi* Linn. <u>International Journal of Pharmaceutical</u> <u>Sciences and Research</u> 8(12) (2017): 5282-5285.
- [67] Dakiche, H., Khali, M., Abu-el-Haija, A.K., Al-Maaytah, A., and Al-Balas, Q.A. Biological activities and phenolic contents of *Argania spinosa* L. (Sapotaceae) leaf extract. <u>Tropical Journal of Pharmaceutical Research</u> 15(12) (2016): 2563-2570.
- [68] Kothari, V., Pathan, S., and Seshadri, S. Antioxidant activity, free radical scavenging activity, phenol and flavonoid contents of *Manilkara zapota* and *Citrus limon* seeds. Journal of Natural Remedies 10(1) (2010): 175-180.
- [69] Uysal, S., Ugurlu, A., Zengin, G., Baloglu, M.C., Altunoglu, Y.C., Mollica, A., Custodio, L., Neng, N.R., Nogueira, J.M.F., and Mahomoodally, M.F. Novel *in vitro* and *in silico* insights of the multi-biological activities and chemical composition of *Bidens tripartita* L. Food and Chemical Toxicology 111(1) (2018): 525-536.
- [70] Saltos, M.B.V., Puente, B.F.N., Milella, L., Tommasi, N.D., Piaz, F.D., and Braca, A. Antioxidant and free radical savenging activity of phenolics from *Bidens humilis*. <u>Planta Medica Journal</u> 81(12-13) (2015): 1-9.
- [71] Sulaiman, S.F., Yusoff, N.A.M., Eldeen, I.M., Seow, E.M., Sajak, A.A.B., Supriatno, and Ooi, K.L. Correlation between total phenolic and mineral

contents with antioxidant activity of eight Malaysian bananas (*Musa* sp.). Journal of Food Composition and Analysis 24(1) (2011): 1-10.

- [72] Chen, C.H., Chan, H.C., Chu, Y.T., Ho, H.Y., Chen, P.Y., Lee, T.H., and Lee, C.K. Antioxidant activity of some plant extracts towards xanthine oxidase, lipoxygenase and tyrosinase. <u>Molecules</u> 14(8) (2009): 2947-2958.
- [73] Chompoo, J., Upadhyay, A., Gima, S., Fukuta, M., and Tawata, S. Antiatherogenic properties of acetone extract of *Alpinia zerumbet* seeds. <u>Molecules</u> 17(6) (2012): 6237-6248.
- [74] Chaita, E., Lambrinidis, G., Cheimonidi, C., Agalou, A., Beis, D., Trougakos, I., Mikros, E., Skaltsounis, A.L., and Aligiannis, N. Anti-melanogenic properties of Greek plants. A novel depigmenting agent from *Morus alba* wood. <u>Molecules</u> 22(4) (2017).
- [75] Zhang, L., Tao, G., Chen, J., and Zheng, Z.P. Characterization of a new flavone and tyrosinase inhibition constituents from the twigs of *Morus alba* L. <u>Molecules</u> 21(9) (2016): 1-9.
- [76] Quispe, Y.N.G., Hwang, S.H., Wang, Z., and Lim, S.S. Screening of peruvian medicinal plants for tyrosinase inhibitory properties: Identification of tyrosinase inhibitors in *Hypericum laricifolium* Juss. <u>Molecules</u> 22(402) (2017): 1-15.
- [77] Sarkhail, P., Sarkheil, P., Khalighi-Sigaroodi, F., Shafiee, A., and Ostad, N. Tyrosinase inhibitor and radical scavenger fractions and isolated compounds from aerial parts of *Peucedanum knappii* Bornm. <u>Natural Product Research</u> 27(10) (2013): 896-899.
- [78] Chang, T.S. An updated review of tyrosinase inhibitors. <u>International Journal</u> of <u>Molecular Sciences</u> 10(6) (2009): 2440-2475.
- [79] Oladoye, S.O., Ayodele, E.T., Abdul-Hammed, M., and Idowu, O.T. Characterisation and identification of taraxerol and taraxer-14-en-3-one from *Jatropha tanjorensis* (Ellis and Saroja) leaves. <u>Pakistan Journal of Science and</u> <u>Industrial Research</u> 58(1) (2015): 46-50.
- [80] Ebajo, V.D., Brkljača, R., Urban, S., and Ragasa, C.Y. Chemical constituents of *Hoya buotii* Kloppenb. Journal of Applied Pharmaceutical Science 5(11) (2015): 69-72.
- [81] Versteegh, G.J.M., Schefub, E., Dupont, L., Marret, F., and Jansen, J.H.F. Taraxerol and *Rhizophora* pollen as proxies for tracking past mangrove ecosystems. <u>Geochimica et Cosmochimica Acta</u> 68(3) (2004): 411-422.
- [82] Sharma, K., and Zafar, R. Simultaneous estimation of taraxerol and taraxasterol in root callus cultures of *Taraxacum officinale* weber. <u>International Journal of Pharmacognosy and Phytochemical Research</u> 6(3) (2014): 540-546.
- [83] Saeed, M.T., Agarwal, R., Khan, M.W.Y., Ahmad, F., Osman, S.M., Akihisa, T., Suzuki, K., and Matsumoto, T. Unsaponifiable lipid constituents of ten

Indian seed oils. Journal of the American Oil Chemists Society 68(3) (1991): 193-197.

- [84] Hernández-Chávez, I., Torres-Tapia, L.W., Simá-Polanco, P., Cedillo-Rivera, R., Moo-Puc, R., and Peraza-Sánchez, S.R. Antigiardial activity of *Cupania dentata* bark and its constituents. <u>Journal of the Mexican Chemical Society</u> 56(2) (2012): 105-108.
- [85] Amir, F., Wong, K.C., Eldeen, I., Asmawi, M.Z., and Osman, H. Evaluation of biological activities of extracts and chemical constituents of *Minusops elengi*. <u>Tropical Journal of Pharmaceutical Research</u> 12(4) (2013): 591-596.
- [86] Mokoka, T.A., McGaw, L.J., Mdee, L.K., Bagla, V.P., Iwalewa, E.O., and Eloff, J.N. Antimicrobial activity and cytotoxicity of triterpenes isolated from leaves of *Maytenus undata* (Celastraceae). <u>BMC Complementary and Alternative Medicine</u> 13(111) (2013): 1-9.
- [87] Awaad, A.S., Al-Jaber, N.A., Moses, J.E., El-Meligy, R.M., and Zain, M.E. Antiulcerogenic activities of the extracts and isolated flavonoids of *Euphorbia cuneata* Vahl. <u>Phytotherapy Research</u> 27(1) (2013): 126-130.
- [88] Zhang, H., Li, X., Wu, K., Wang, M., Liu, P., Wang, X., and Deng, R. Antioxidant activities and chemical constituents of flavonoids from the flower of *Paeonia ostii*. <u>Molecules</u> 22(5) (2017): 1-15.
- [89] Punyasiri, P.A.N., Abeysinghe, I.S.B., Kumar, V., Treutter, D., Duy, D., Gosch, C., Martens, S., Forkmann, G., and Fischer, T.C. Flavonoid biosynthesis in the tea plant *Camellia sinensis*: properties of enzymes of the prominent epicatechin and catechin pathways. <u>Archives of Biochemistry and Biophysics</u> 431(1) (2004): 22-30.
- [90] Tian, L., Blount, J.W., and Dixon, R.A. Phenylpropanoid glycosyltransferases from osage orange (*Maclura pomifera*) fruit. <u>Federation of European</u> <u>Biochemical Societies</u> 580(30) (2006): 6915-6920.
- [91] Lukacin, R., Wellmann, F., Britsch, L., Martens, S., and Matern, U. Flavonol synthase from *Citrus unshiu* is a bifunctional dioxygenase. <u>Phytochemistry</u> 62(3) (2003): 287-292.
- [92] Oliveir, A.B., Oliveira, G.G., Carazza, F., and Maia, J.G.S. Geovanine, a new azaanthiracene alkaloid from *Annona ambotay* Aubl. <u>Phytochemistry</u> 26(9) (1987): 2650-2651.
- [93] Neacsu, M., Eklund, P.C., Sjoholm, R.E., Pietarinen, S.P., Ahotupa, M.O., Holmbom, B.R., and Willfor, S.M. Antioxidant flavonoids from knotwood of Jack pine and European aspen. <u>European Journal of Wood and Wood Products</u> 65(1) (2007): 1-6.
- [94] Xiang, M., Su, H., Hu, J., and Yan, Y. Isolation, identification and determination of methyl caffeate, ethyl caffeate and other phenolic compounds from *Polygonum amplexicaule* var. sinense. <u>Journal of Medicinal Plants</u> <u>Research</u> 5(9) (2011): 1685-1691.

- [95] Meechai, I., Phupong, W., Chunglok, W., and Meepowpan, P. Anti-radical activities of xanthones and flavonoids from *Garcinia schomburgkiana*. <u>International Journal of Pharmacy and Pharmaceutical Sciences</u> 8(9) (2016): 235-238.
- [96] Wang, W.X., Qian, J.Y., Wang, X.J., Jiang, A.P., and Jia, A.Q. Anti-HIV-1 activities of extracts and phenolics from *Smilax china* L. <u>Pakistan Journal of</u> <u>Pharmaceutical Sciences</u> 27(1) (2014): 147-151.
- [97] Zheng, Z.P., Tan, H.Y., Chen, J., and Wang, M. Characterization of tyrosinase inhibitors in the twigs of *Cudrania tricuspidata* and their structure-activity relationship study. <u>Fitoterapia</u> 84(1) (2013): 242-247.
- [98] Fujiwara, M., Yagi, N., and Miyazawa, M. Tyrosinase inhibitory constituents from the bark of *Peltophorum dasyrachis* (yellow batai). <u>Natural Product</u> <u>Research</u> 25(16) (2011): 1540-1548.
- [99] Khan, M.T.H., Khan, S.B., and Ather, A. Tyrosinase inhibitory cycloartane type triterpenoids from the methanol extract of the whole plant of *Amberboa ramosa* Jafri and their structure–activity relationship. <u>Bioorganic and</u> <u>Medicinal Chemistry</u> 14(4) (2006): 938-943.
- [100] Ullah, F., Hussain, H., Hussain, J., Bukhari, I.A., Khan, M.T.H., Choudhary, M.I., Gilani, A.H., and Ahmad, V.U. Tyrosinase inhibitory pentacyclic triterpenes and analgesic and spasmolytic activities of methanol extracts of *Rhododendron collettianum*. <u>Phytotherapy Research</u> 21(11) (2007): 1076-1081.



Chulalongkorn University



1. Preparation of reagents for quantitative analysis of total phenolic content assay

1.1 Preparation of 350 mM Na<sub>2</sub>CO<sub>3</sub> solution

3.71 g of Na<sub>2</sub>CO<sub>3</sub> was dissolved in 100 mL of DI water.

1.2 Preparation of 10% Folin-Ciocalteu reagent

5 mL of Folin–Ciocalteu reagent was dissolved in 45 mL of DI water.

1.3 Preparation of 10 mM gallic acid stock solution

0.0188~g of Gallic acid monohydrate was dissolved in 10 mL of methanol:water (19:1 v/v).

1.4 Preparation of standard calibration curve

Gallic acid was used as a standard for calculation of total phenolic content. Serial dilution was performed for the preparation of 1000, 900, 800, 700, 600, 500, 400, 300, 200 and 100  $\mu$ M of gallic acid concentration (Table A).

**Table A** Serial dilutions of gallic acid equivalent

| Concentration (µM) | Gallic acid stock solution | 1000 µM Gallic acid solution | Methanol:water<br>(19:1 v/v) |
|--------------------|----------------------------|------------------------------|------------------------------|
| 1000               | 1 mL                       | <u></u>                      | 9 mL                         |
| 900                |                            | 900 μL                       | 100 µL                       |
| 800                |                            | 800 μL                       | 200 µL                       |
| 700                | /_ <u></u>                 | 700 µL                       | 300 µL                       |
| 600                | N STreace Stone            | 600 µL                       | 400 µL                       |
| 500                | CALLER AN                  | 500 µL                       | 500 μL                       |
| 400                |                            | 400 µL                       | 600 µL                       |
| 300                |                            | 300 µL                       | 700 µL                       |
| 200                |                            | 200 µL                       | 800 μL                       |
| 100                | พาสงก <u>รณ</u> มห         | 100 µL                       | 900 μL                       |

HULALONGKORN UNIVERSIT

2. Preparation of reagents for quantitative analysis of total flavonoid content assay 2.1 Preparation of 1 M NaOH

40.00 g of NaOH was dissolved in 1 L of DI water.

2.2 Preparation of 5% NaNO<sub>3</sub> solution

5 g of NaNO<sub>3</sub> was dissolved in 100 mL of DI water.

2.3 Preparation of 10% AlCl<sub>3</sub> solution

10 g of AlCl<sub>3</sub> was dissolved in 100 mL of DI water.

2.4 Preparation of standard calibration curve

Quercetin was used as a standard for the calculation of total flavonoid content. Serial dilutions were performed for the preparation of 1000, 900, 800, 700, 600, 500, 400, 300, 200 and 100  $\mu$ g/mL of quercetin concentration (Table B).

| Concentration | Quercetin | 1000 µg/mL         | Methanol |
|---------------|-----------|--------------------|----------|
| (µg/mL)       |           | quercetin solution |          |
| 1000          | 10 mg     | -                  | 10 mL    |
| 900           | -         | 900 μL             | 100 µL   |
| 800           | -         | 800 µL             | 200 µL   |
| 700           | -         | 700 µL             | 300 µL   |
| 600           | -         | 600 µL             | 400 µL   |
| 500           | -         | 500 μL             | 500 μL   |
| 400           | -         | 400 µL             | 600 µL   |
| 300           | -         | 300 µL             | 700 μL   |
| 200           | N Miles   | 200 μL             | 800 µL   |
| 100           |           | 100 µL             | 900 μL   |

Table B Serial dilutions of quercetin equivalent

3. Preparation of reagents for quantitative analysis of DPPH radical scavenging assay 3.1 Preparation of 0.6 mM DPPH stock solution

12 mg of DPPH was dissolved in 50 mL of methanol (in the dark) and filtered with No.1 filter paper. The solution was stored at -20  $^{\circ}$ C.

3.2 Preparation of DPPH working solution

10 mL of 0.6 mM DPPH stock solution was dissolved in 45 mL of methanol:water (19:1 v/v).

3.3 Preparation of 10 mM trolox stock solution

2.5 mg of Trolox was dissolved in 1 mL of methanol:water (19:1 v/v) 3.4 Preparation of trolox equivalent for standard calibration curve.

Trolox was used as a standard for the calculation of DPPH radical scavenging activity. Serial dilutions were performed for the preparation of 1000, 800, 600, 400, 200, 100, 50 and 25  $\mu$ M of trolox concentration (Table C).

4. Preparation of reagents for quantitative analysis of FRAP assay

4.1 Preparation of 300 mM acetate buffer, pH 3.6

3.10 g of NaCH<sub>3</sub>COO·3H<sub>2</sub>O was added 16 mL of glacial acetic acid and dissolved in 1 L of DI water. Then the soluble was adjusted to pH 3.6 and stored at 4  $^{\circ}$ C.

4.2 Preparation of 20 mM FeCl<sub>3</sub>·6H<sub>2</sub>O

0.0541 g of FeCl<sub>3</sub>·6H<sub>2</sub>O was dissolved in 10 mL of DI water.

4.3 Preparation of 1M HCl

16.47 mL 0f 37% HCl was dissolved in 183.53 mL of DI water.

4.4 Preparation of 40 mM HCl

8 mL of 1 M HCl was dissolved in 192 mL of DI water.

4.5 Preparation of 10 mM TPTZ

0.031 g of TPTZ was dissolved in 10 mL of 40 mM HCl at 50 °C.

4.6 Preparation of FRAP working solution

FRAP working solution was contained 10 mL of 300 mM acetate buffer, 1 mL of 20 mM  $FeCl_3 \cdot 6H_2O$  solution and 1 mL of 10 mM TPTZ solution.

4.7 Preparation of trolox equivalent for standard calibration curve.

Trolox was used as a standard for the calculation of FRAP scavenging activity. Serial dilutions were performed for the preparation of 1000, 800, 600, 400, 200, 100, 50 and 25  $\mu$ M of trolox concentration (Table C).

| Concentration (µM) | Trolox stocks solution | 1000 µM trolox<br>solution | Methanol:water<br>(19:1 v/v) |
|--------------------|------------------------|----------------------------|------------------------------|
| 1000               | 100 µL                 | 12                         | 900 mL                       |
| 800                | - Como                 | 80 µL                      | 20 µL                        |
| 600                |                        | 60 µL                      | 40 µL                        |
| 400                |                        | 40 µL                      | 60 µL                        |
| 200                |                        | 20 µL                      | 80 µL                        |
| 100                |                        | 10 µL                      | 90 μL                        |
| 50                 | -//AQ                  | 50 µL                      | 950 μL                       |
| 25                 |                        | 25 μL                      | 975 μL                       |

Table C Serial dilutions of trolox equivalent

5. Preparation of reagents for quantitative analysis of tyrosinase inhibitory assay

5.1 Preparation of 0.1 M phosphate buffer, pH 6.5

12.48 g of NaH<sub>2</sub>PO<sub>4</sub>·H<sub>2</sub>O and 3.20 g of Na<sub>2</sub>HPO<sub>4</sub>·H<sub>2</sub>O were dissolved in 1 L of DI water. Then the soluble was adjusted slightly as necessary to pH 6.5 using 40 mM HCl or 1 M NaOH.

5.2 Preparation of 2.5 mM *L*-tyrosine

0.45 mg of *L*-tyrosine was dissolved in 1 mL of 0.1 M phosphate buffer, pH 6.5.

5.3 Preparation of 2.5 mM L-DOPA

 $0.49~{\rm mg}$  of *L*-DOPA was dissolved in 1 mL of 0.1 M phosphate buffer, pH 6.5.

5.4 Preparation of mushroom tyrosinase (14.7 Units/mg)

 $1.2~{\rm mg}$  of mushroom tyrosinase was dissolved in 1 mL of 0.1 M phosphate buffer pH 6.5.

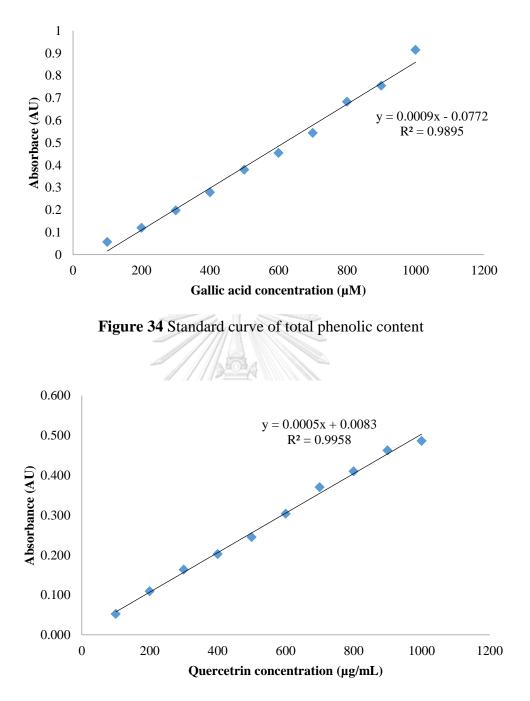
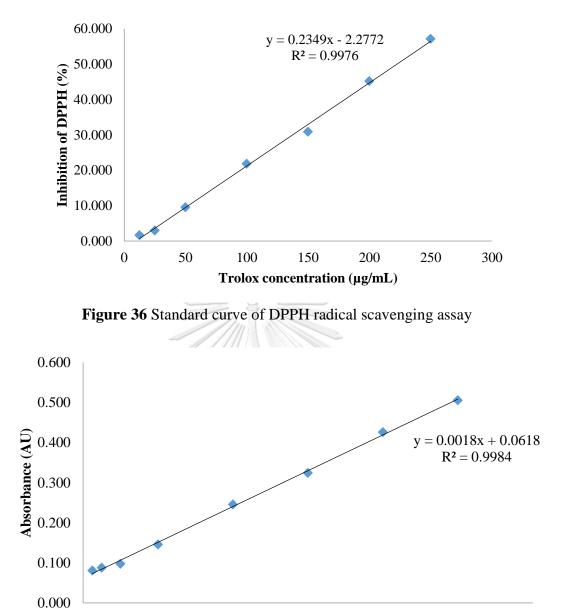
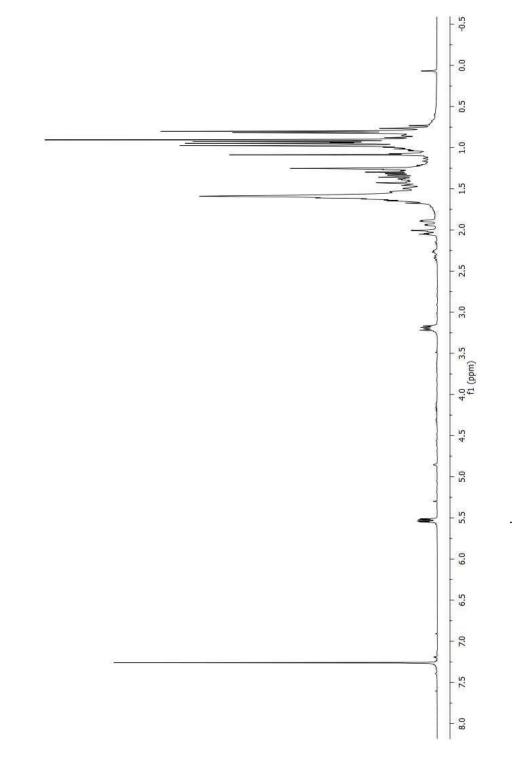





Figure 35 Standard curve of total flavonoid content

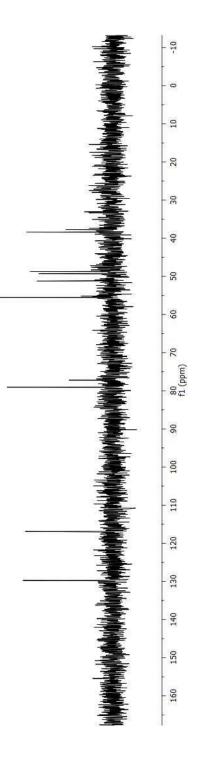


Trolox concentration (µg/mL)

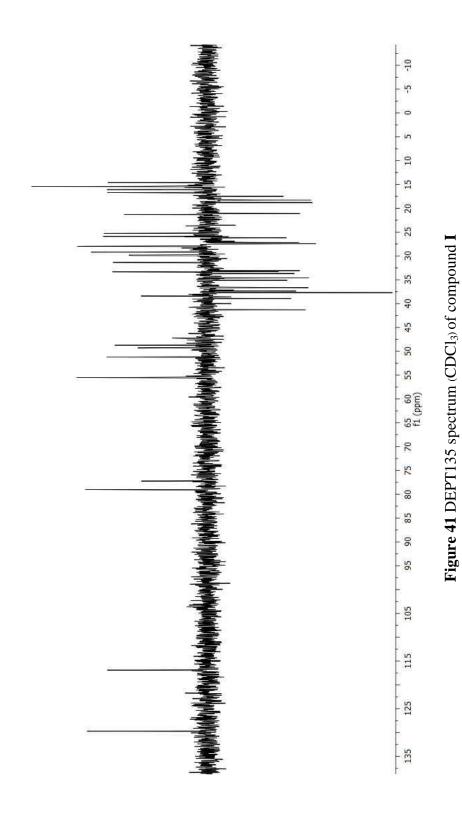
Figure 37 Standard curve of FRAP assay



DID3LD

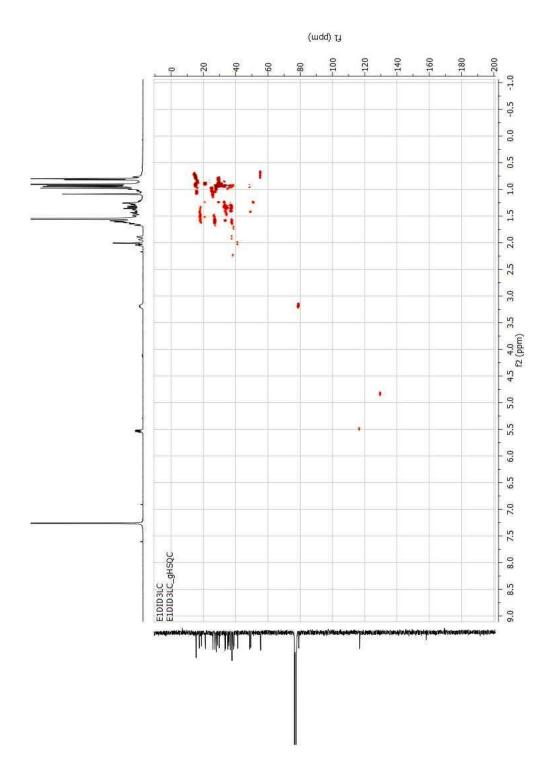





01D3LD






EIDID3LC\_DEPT90









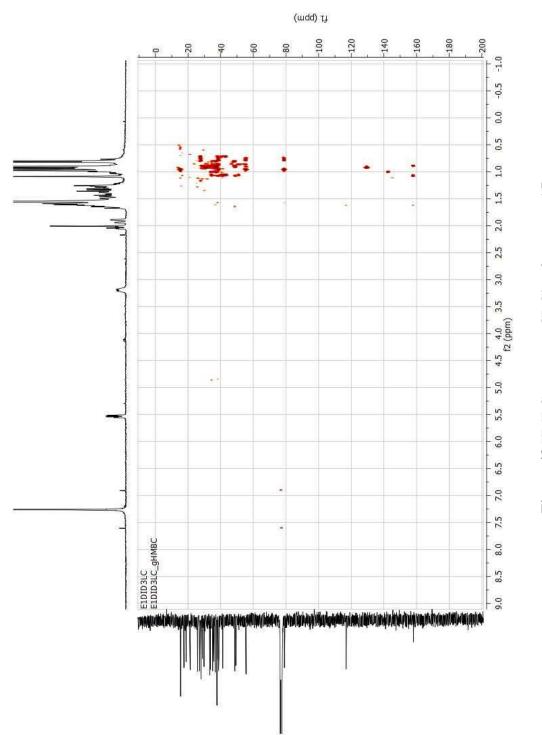
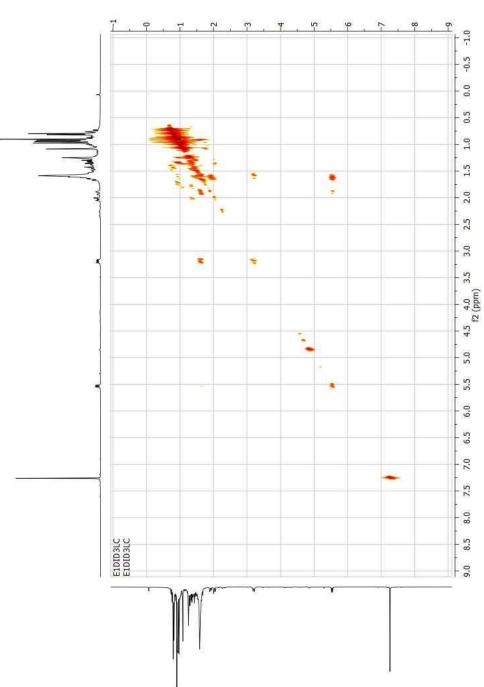




Figure 43 HMBC spectrum (CDCl<sub>3</sub>) of compound I





(mqq) fì

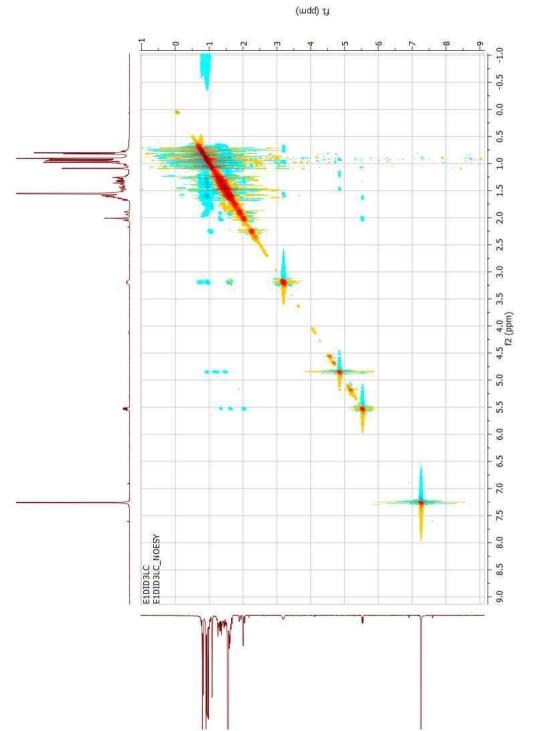



Figure 45 NOESY spectrum (CDCl<sub>3</sub>) of compound I

118

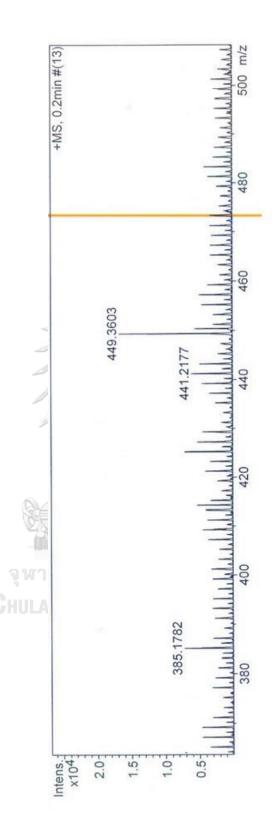
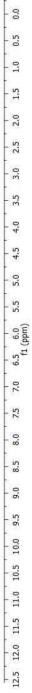
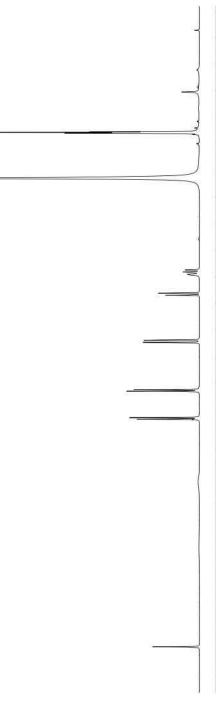





Figure 46 HR-ESI-MS spectrum of compound I







EINCS

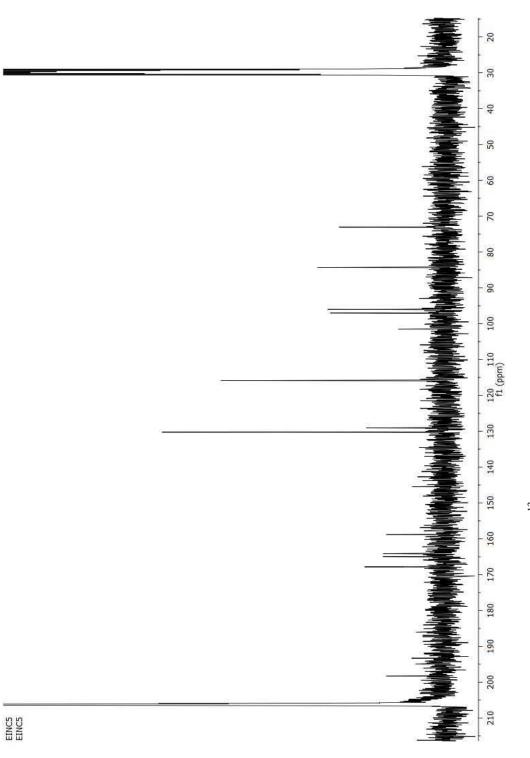
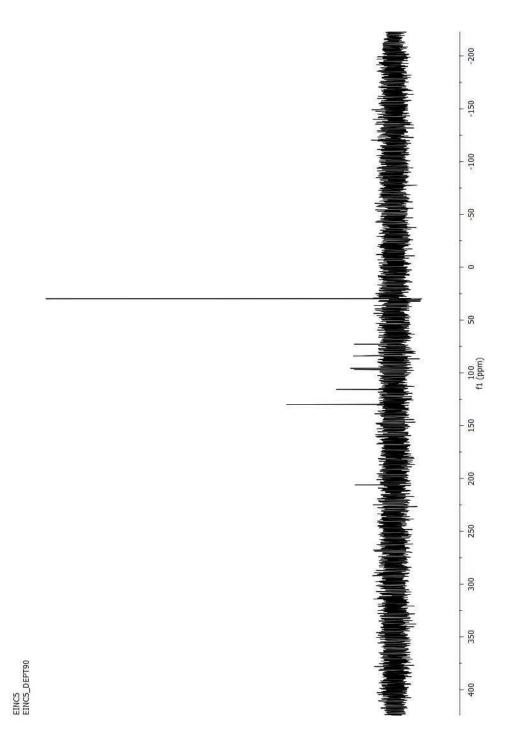
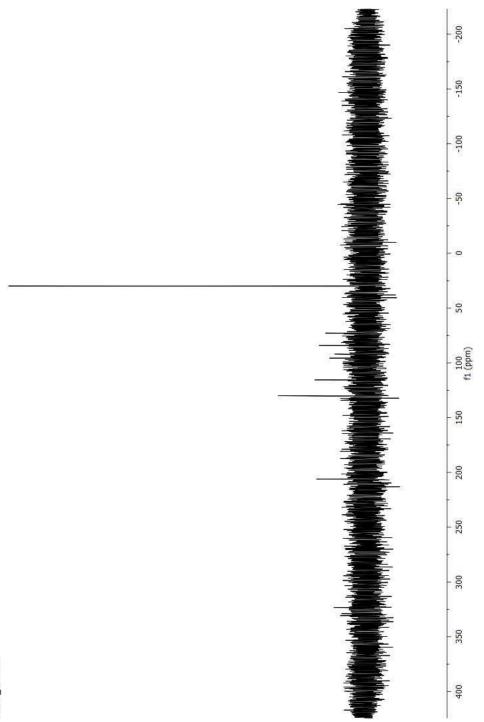





Figure 48 <sup>13</sup>C-NMR spectrum (CD<sub>3</sub>COCD<sub>3</sub>) of compound II











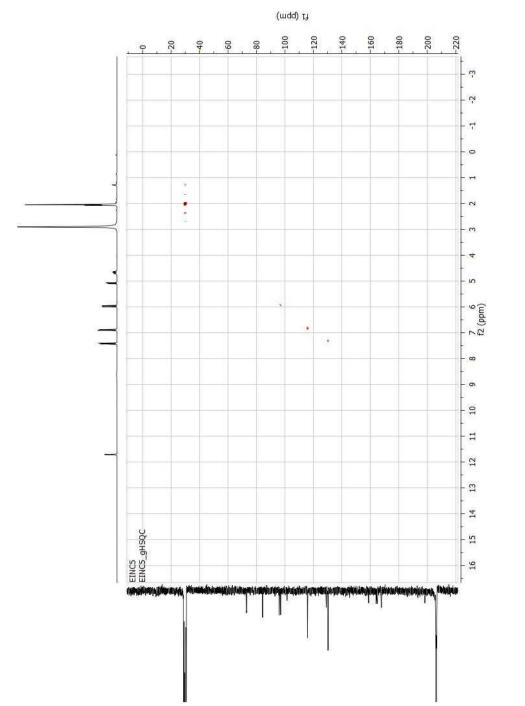
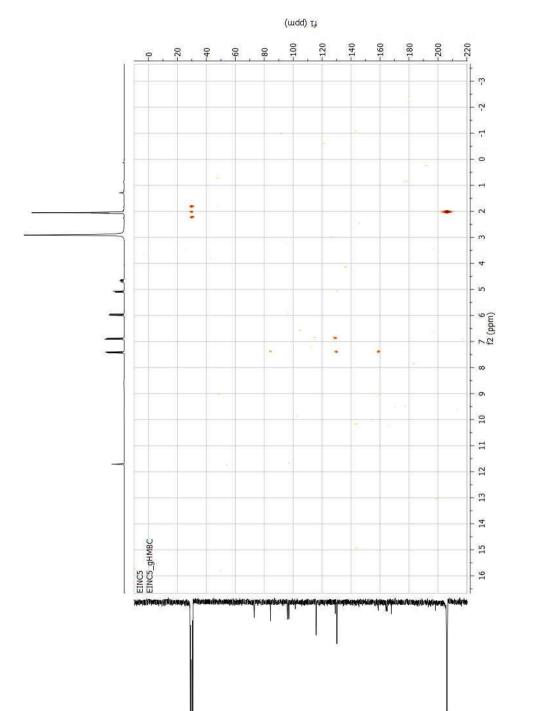
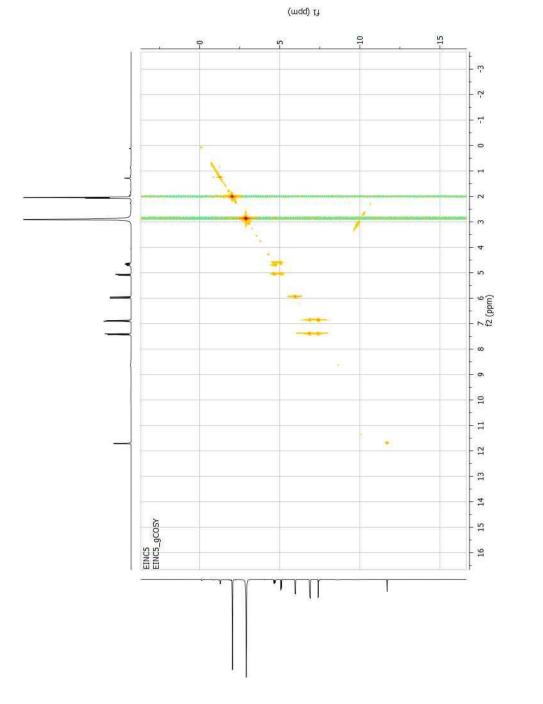





Figure 51 HSQC spectrum (CD<sub>3</sub>COCD<sub>3</sub>) of compound II









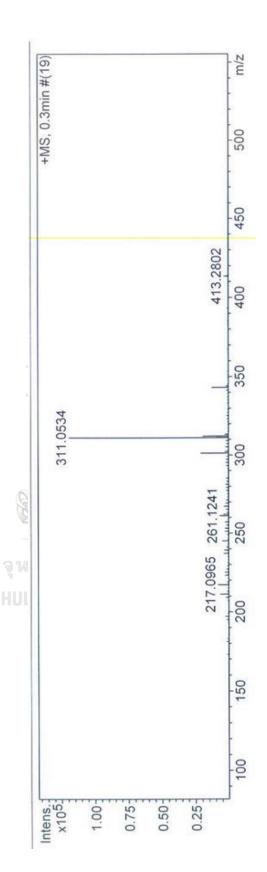



Figure 54 HR-ESI-MS spectrum of compound II

VITA

Ms. Sirinada Srisupap was born on December 21st, 1991 in Nongkhai, Thailand She graduated high school from Pathumthepwittayakarn School, Nongkhai province in 2009. She received her Bachelor's degree of Science in Biotechnology from King Mongkut's Institute of Technology Ladkrabang in 2014. After that, she was admitted Master's degree of Program in Biotechnology, Faculty of Science, Chulalongkorn University in 2014.

Ms. Sirinada Srisupap attended the 6th Burapha University International Conference 2017 scheduled on August 3-4, 2017 at Pattaya, Thailand for poster presentation. She is going to attend the 13th International Symposium in Science and Technology at Cheng Shiu University 2018 schedule on August 9-11, 2018 at Kaohsiung, Taiwan for oral presentation. Moreover, she submitted a manuscript to Pharmacognosy magazine in the title "Total phenolic and flavonoid contents, antioxidant and antityrosinase activities of Manilkara kauki (L.) Dubard".

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University