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CHAPTER |

INTRODUCTION

1.1 Problem and background

Surface-enhanced Raman scattering (SERS) spectroscopy is a rapid and
ultrasensitive technique for detecting the vibrational signatures of target molecules.
This technique has dramatically gained considerable attention in recent years due to
its versatility and high selectivity and sensitivity’*. To enhance Raman scattering
efficiency, a target molecule should diffuse close proximity to a surface of metallic
nanostructures such as Ag, Au or Pt. > The appropriate types of metal should
complementally depend on the frequency of a laser light source in order to generates
strong local electromagnetic near-field. %4 Although SERS has the potential to be
used as a general sensing platform, but its poor selectivity is an important limitation

for quantifying the target analytes in the complex matrices.

To overcome the limitation, an integration step with separation of the sample
was employed to circumvent this issue. However, this additional separation step
involves complicated route, time-consuming and some of analytes might be lost
during the process™>*’. Therefore, functionalization of the nano-surface with selective
and specific capping agents has been preferred and successfully employed to deal
with the limitation'* 121, The capping agent should be designed to contain functional
groups which easily interact with the target analyte. Due to the interaction, the signal
patterns between the capping agents and the target analyte can be either partially or
completely overlapped. From SERS measurement, the combination signals of the
capping agent and the target analyte were obviously occurred. Therefore, the
functional groups of capping agents and the analyte must be carefully considered and
chosen. In the case, if the affinity and absorptivity of the analyte to the metal surface
is abundant to overcome the signal generated from the capping agents, its
quantification might be performed even presenting overlapping bands by curve fitting
and some multivariate data analysis methods® 222> However, amount of the capping
agent is particularly excessively added to fully cover an extensive surface of SERS
substrate (metal surface) and the analyte is usually in trace amount as shown in Figure
1.1. Therefore, to quantify the signal selectively to the target analyte might be



complicated and difficult. It is not possible to obtain only analyte information by
either directly measuring of peak intensity or using conventional background

subtraction?® 24,

Surface modification step

YYYY

Capping agent
—

Analyte immobilization step

yYYY . xYYY

Enhanced near electric field

SERS detection
Badly overlapped signal

i YYYY Acq”isétig’:alsERS ( ) Y CAP+ANA
e VVYY

—-

Y cap

Figure 1.1 Problematic observation in SERS measurement in order to quantify amount
of target analyte when excessive amount of capping agent is used and the overlapped

SERS signals between the capping agent and the target analyte are occurred

To solve the problem stated above, chemometrics provides the great advantage
to discover and extract analytical information from a complex mixture using the
statistical and mathematical approaches. Conventional linear analysis such as Multiple
Linear Regression (MLR) 262 and Principal Component Regression (PCR) 262 are
commonly employed to interpret the relationships between the independent
variables(Raman spectra in the case) and dependent variable (the analyte

concentration) 3%,



Although they are easy to program, simple and provide good predictive
performance but they do not properly handle any collinearity presented in the data and
they risks to overfit problems?® %°. Therefore, Partial Least Square regression (PLSR)
is probably the most popular multivariate calibration techniques employed in
quantitative analysis?® 444, The golden aim of PLSR is to establish a calibration
model of multivariate data to predict the analyte concentrations even in the presence
of interferences. Thus, PLSR usually provides high predictive accuracy for
spectroscopic data but it lacks of the capability to reveal any qualitative information
about the analytes e.g. vibrational modes of functional groups and spectral pattern of
the target molecule. Moreover, from analytical point of view, the standard
performance indices such as the limit of detection (LOD) and limit of quantitation
(LOQ) of the multivariate calibration model are difficult to be defined by PLSR *°. To
prevent the problems, Multivariate curve resolution-alternative least square (MCR-
ALS) can better overcome the problems and provide significant advantages relative to

univariate analyses? 4651,

Raman shift (cm™")

Min. Conc

Data matrix

(X

Cy S,
ﬂl
|
M \ 1l
I I\ A ]
. '\‘J\,‘/n\,‘"\-" VAV RN
— s,
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Higher Conc

C is concentration profiles

S is spectral profiles

¢, is concentration profiles of the first component

¢, is concentration profiles of the second component
s, is spectral profiles of the first component

s, is spectral profiles of the second component

Figure 1.2 Schematic of the MCR-ALS techniques



The main advantages of MCR-ALS are to estimate the bilinear decomposition
of mixed experimental data into concentration and absorptivity profiles of the
respective chemical species presented in the sample which represents to quantitative
and qualitative information, respectively as shown in Figure 1.2. This could increase
signal-to noise ratios (S/N ratio) which lead to better visualization of chemical
distribution and selectivity which better describes chemical information of each specie
154 - Although MCR-ALS models has revealed a highly efficient method to resolve
overlapping spectroscopic bands but there are a few works about its application in
SERS sensing 23 485051 A correlation constrained MCR-ALS method was developed
to resolve overlapping SERS bands to quantify physiologically relevant
concentrations of the bioanalytes in complex media *°. The standard addition method
combined with MCR-ALS were applied to compensate the matrix effects to resolve
overlapping bands between uric acid and interference SERS spectra 2. Combination
of the high detectability and specificity of the SERS technique with MCR-ALS was
used to obtain hyperspectral images to quantify the distribution of polymeric
microfilms loaded with paracetamol as an active compound “® SERS and MCR-ALS
was used as a label-free method to quantify urinary adenosine (a potential cancer
biomarker) 1. In most case of SERS detection, the MCR-ALS was mainly used to
extract the chemical information of main component and to exclude the signal from
interferences (minor components) which might originate from the sample matrix.
More cases of the applications of chemometrics method on SERS information are
concluded in Table 1.1. As it already discussed in Figure 1.1 that the interferences
from capping agent in SERS measurement could be possibly considered as a major
component instead of the target analytes. Therefore, the application on MCR-ALS to
extract information of the minor components with excluding the main components

have not been discussed and discovered.
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In this work, we propose an alternative way to enrich the power of MCR-ALS
in order to eliminate the signal backgrounds, which is Raman signal from the capping
agent, to remain only the analyte information. This methodology involves initially
building MCR-ALS models with sample insertion constraint. The constraint is
performed by simply adding external spectra of capping agent to obtain the bilinear
chemical information of species which is concentration and absorptivity profiles. It
starts with low number of added spectra and systematically increasing the number of
added spectra until both the estimated quantitative correlation and “lack of fit” of the
analyte is satisfactory. The constraint is a crucial step to completely excludes the main
signal (from capping agent) from the spectral data. Using this approach, only the
chemically relevant specie (even they are minor component) can be determined and
might be well matched with the “true” intrinsic Raman profiles. In order to evaluate
our methodology, the modified MCR-ALS algorithm was performed on the simulated
spectra which were generated by several conditions such as overlapping levels, and
the peak intensity ratios (between capping agent and analyte). From the test, it
provides some evidences to further support an impact application on the real acquired
Raman signal. Then, the developed method was performed on the experimental
Raman dataset which involve the detection of carbofuran via diazotization-coupling
reaction with p-aminothiophenol (p-ATP) on silver nanoparticles as SERS substrate .°
Using this methodology, MCR-ALS can be more widely utilized by the scientific
community for the analysis of SERS data in a data-driven and quantitative platform

1.2 Objective
The objective of this work is developed the chemometric method (MCR-ALYS)
to extract the analyte signals from SERS spectra to increase the sensitivity and

selectivity of the quantification.



1.3 Scope of this work

The MCR-ALS was modified with sample insertion methods. The developed
protocol was tested with the simulated spectra generated by using only Gaussian
distribution. After validation with the simulated spectra, the efficiency of the
developed program was performed on the real SERS spectra on the determination of
carbofuran by the azo-dye coupling reaction between carbofuran and p-

aminothiophenol.



CHAPTER I
THEORITICAL BACKGROUND

2.1 Raman Spectroscopy

Raman spectroscopy is an analytical technique used to reveal chemical
fingerprint of target molecule through their vibrational spectrum patterns, while
infrared (IR) spectroscopy detects the functional groups of sample molecule. The
pattern of IR bands is originated from a change in the dipole moment of a molecule
whereas pattern of Raman bands is initiated from a change in the polarizability of the
molecule due to the deformation of electric field surrounding the molecule. By
measuring the absorbance (or transmittance) of the light which passes through a
sample, the frequency of the scattered light usually smaller than the original incident
light. This interaction between molecule and incident light is called Stokes scattering,
as illustration in Figure 2.1. On the other hand, if the frequency of the scattered light

is higher than the incident light, it was called anti-Stokes shift>®>7.

Virtual states
e " — - - e - -
hu, hu, hv, h(vg-v;) hv, h(vy+v,)
v,
v, h 4 v
Rayleigh Scattering Stokes Scattering Anti-Stokes Scattering

(Elastic Scattering)
L J

I

Raman Scattering
(Inelastic Scattering)

Figure 2.1 Energy level diagram involving Rayleigh scattering and Raman scattering.
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The advantages of the Raman spectroscopy are 1) The Raman scattering of
water and carbon dioxide (CO2) molecules are weak, which make them not be
considered as interference I1) Few or not needed in the sample preparation step I11)
Inexpensive of sample holder or carrier. The Raman spectroscopy can be detecting the
signal of the chemical molecule in any phases. However, the low intensity of the
scattered light was obtained in the Raman spectroscopy. So, the low concentration of

the samples is hard to be operated®-°,

2.2 Localized surface plasmon resonance (LSPR)

The nanostructure of the precise metal (such as Au, Ag, Pt ) in the size
between 1-100 nm or nanoparticles (NPs) provides some properties with uncommon
characteristics, which cannot be detected in the bulk materials, including mechanical,
electrical, thermal, chemical and optical properties. To consider the unique optical
properties phenomenon, surface plasmon (SP) are involved with delocalized electron
oscillation at the surface of metal-dielectric interface. The movement of the oscillating
electron can always generate the electromagnetic near-field around the surface of the

nanoparticle.

According to the size of the nanoparticles which smaller than the wavelength
of incident light, the frequency of incident light probably resonance the natural
frequency of electron oscillating on the surface of NPs. This phenomenon called
“Localized surface plasmon resonance (LSPR)” which can be locally occurred around
the NPs as shown in Figure 2.2%°. By the plasmon resonance that was generated is
depended on the size of the NPs and it can resonance with the matched light source
from the Raman laser. The excitation source can be tuned to get the maximum
enhancement with the peak of the plasmon resonance. Because of the strong
enhancement of surface electric field. The use of Raman spectroscopy combined with
LSPR from the metal nanoparticles to enhance the Raman signals. This technique is

called “Surface enhanced Raman spectroscopy”
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Electric field

Metal sphere

Electron cloud

Figure 2.2 Localized surface plasmon resonance (LSPR)

2.3 Surface-enhanced Raman scattering (SERS)

Surface-enhanced Raman scattering (SERS) is a technique which enhances the
Raman signal intensity. This technique has widely used in trace analysis to detect the
analyte whether it be biomolecule such as tuberculosis °, chlorpyrifos in tea %%or
chemical molecules such as polycyclic aromatic hydrocarbon®. By using metal
nanoparticles (MNPs), such as silver nanoparticles (AgNPs) or gold nanoparticles
(AuNPs), as a SERS substrate. The SERS technique is descending the amplification
of the Raman signal by the localized surface plasmon resonance. Depending of the
material of the SERS substrate, the electromagnetic enhancement can be calculated to
reach factor of 10'° — 10'. Another mechanism involving signal enhancement is
chemical enhancement with charge transfer mechanism. The chemical enhancement
factors from the charge transfer are up to 10%. The SERS can be used to detect the
analyte molecules by depositing them on the surface of the MNPs which generate the
intense electromagnetic fields. This phenomenon leads to the enhancement capability
of Raman measurement when the target molecules are in “hot spot” of nanoparticles.
The high sensitivity and the selectivity of the SERS was obtained and could be
increased by modified the surface of the nanoparticles to induce the analyte molecules
immobilizing closely the hotspot 8%, The hot spot in the SERS technique is generally
located between the gap of the MNPs that was used as the SERS substrate. The area
of hot spot and the enhancement factor of the hot spot is shown in Figure 2.3. The hot

spot is related with the enhancement ability. If the gap of the MNPs is closet in the
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range of sub-nanoscale (2-20nm), the signal of SERS is highest enhanced. So, the

closer of the analyte molecules within the hot spot, the higher obtained SERS signal
66

2nm

Nanoparticle Nanoparticle
108
107
108
10°
Enhancement
Factors

Figure 2.3 lllustration of a hot spot generated between the gap of the nanoparticles. The
SERS enhancement related with the gap size of the connected nanoparticles

2.4 Multivariate Curve Resolution-Alternative Least Square (MCR-ALYS)
Multivariate curve resolution-alternative least square (MCR-ALS) is an
iterative algorithm that can be solve the mixture analysis problem into the pure
contributions from the individual information of an original data matrix of the mixed
measurement. The multicomponent data set (X) consisting of r rows of wavelength

(nm) or spectral channels and ¢ column of samples.
X111 X12-  X1ine 2.1
X21  X22. X2nc
X = : : :

X nr,1 X nr,2 X nr,nc

The symbol xij represent the data point represents the data point associated with it

and j™ column of the matrix
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In the spectroscopy technique, the absorbance data can be explanation with the
Beer Lambert’s law. So, the data point (xi;) of the spectroscopic can be extracted in

term of the absorptivity (si;j) and the concentration (ci;). The xi;jcan be expressed as:

“ 2.2
— T
Xij = Z CrjS ik T €ij
k=1

Where e;j; is the noise of the data matrix.

From the egs 2.2 the classical equation of the MCR-ALS of the bilinear data
model including concentration profiles (C) and pure spectra profiles (S) is shown in
general matrix form (eqs 2.3). By the overall process was shown in Figure 1.2.

X=CST+E 2.3
When E is the error or variance matrix
The steps of the MCR-ALS algorithm are detailed®’
1. Determinations of the number of components

The number of components of the data set can be known or determined from
principal component analysis (PCA). The MCR-ALS and PCA methods describing by
the variance to consider the number of the components. By the first rank chemical
component is the maximum of the variance value. In this work, only one component
which might relate to capping agent was selected and extracted from the MCR-ALS

algorithm.

2. Generation of initial estimates of C or ST

Initial estimates in MCR-ALS can be concentration profile or pure spectra.
Normally, the initial estimates are the profiles of the components that want to be
recovery. It can be based on the previous knowledge, such as, the spectra of the
component in data set, spectra at maximum chromatographic peaks. In this work, the
mean spectra of the capping agent were selected to the initial estimates of the pure

spectrum.
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3. Iterative alternating least square optimization of C and ST under constraint until

convergence is achieved

The constraints are the essential part of the MCR-ALS algorithm. The
beneficial of the constraint are 1) introducing chemical and mathematical information
to afford the chemical meaning to the concentration profiles and the pure spectra and
2) suppressing the ambiguity related to the MCR solutions. The most common and
applicable constraints in MCR-ALS are non-negativity, unimodality, closure,
selectivity and local rank, and equality constraints. In this work, the non-negative
least square (nnls) ®8 was selected, due to the non-negativity of the output spectra are

similar as spectroscopic spectra®’.

The nnls constraint was calculated the coefficients (a) are not allowed to

become negative. The argument of the nnls can be written form
min || Xa -Y]||, 2.4
Subjecttoa= 0

Where the X is intensity of the spectroscopic data in m x n dimension, Y is
response in m dimension, a is coefficient, min is argument to minimize the

calculation, and | I.is the Euclidean norm denotes.

From the egs 2.4, the spectroscopic spectra were forced to the non-negative
values in both the concentration and pure spectra profiles. The negative values were
forced to zero with this constraint. It should be avoided in certain kinds of
spectroscopic profiles that provide some of negative values or when working with the
derivative spectra. So, the nnls be appropriate to use in this work due to the

subtraction of the stronger signal®®.

The MCR-ALS algorithm that was used is MCR-ALS toolbox (version GUI
2.0)%. This GUI perform under MATLAB (version R2018a).



Replace S,, with S,

Input data (X)

Y

Determination of
component

Scal = XC+caI

Constraint : nnls

Initial estimates
Scap(average spectra for
capping agent)

Calculated C_

Xals = Ccals+cap

X = spectrain m x n dimension
m is the experiment spectra
n is wavenumber

Principal component analysis (PCA)

ccal = S+capx

Where S, is pseudo-inverse
of the purest capping agent
spectra X is the spectral data
matrix

LOF = \/Zm,n(x\’mn— Xals,mn)z /Z - B 100

No

LOF <0.1%

Yes

scap ’ Ccap

Figure 2.4 Scheme of the step of MCR-ALS GUI that was used in this work
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CHAPTER Il
EXPERIMENTAL SECTION

3.1 Spectrum simulation

In order to elucidate the features and reliability of MCR-ALS with sample
insertion constraint, the proposed method was performed on the series of simulated
spectra. The pure spectra with independent peaks and intensity variations are

generated using a Gaussian function.

A w-w?* (3.1)

Where A, v, 1, and o are the peak intensity, spectral variables, peak position,
and standard deviation, respectively. Generally, the parameter values especially peak
position and peak width could be assigned to any values, but they were adjusted to be
closet in the range of real Raman spectra. The peak position of the capping agent was
fixed at 1715 cm™, the peak width of the capping agent and the analyte were fixed at
75 and 45, respectively. The peak position of the analyte was varied from 1632, 1671,
1687, 1700, and 1715 cm™. It has been assumed that peak intensity (A) only depends
on a function of wavenumber (Raman shift). Each spectrum consists of two
independent peaks which represent the Raman signal of a capping agent and a target
analyte, respectively. The spectrum was modified closet to the real Raman spectral
peaks by adjusting different overlapping conditions and intensity ratios between the

analyte and the capping agent.

The resolution (RS) between the two peaks was adjusted to be 0 (completely
overlap) to 1.5 (non-overlap). The value of RS is directly corresponding to the

overlapping level of the two peaks. By the RS values were calculated by eqgs 3.2

_ z(pana — DPcap ) (3.2)
(Wana + Wcap)

When pana is peak position of the analyte, pcap IS peak position of the capping

RS

agent, Wana is width of the analyte peak, and wcqp is width of the capping agent peak.
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The value of RS is directly corresponding to the overlapping level of these two
peaks. The higher value of RS, the lower overlapping level. On the other hand, the
low RS value express the high overlapping level of these two peaks. The overlapping
level and the combined peaks at different RS values are shown in Figure 3.1. The
position of the analyte peak was changed by the vary of the mean values of the
analyte signal at 1632 (RS = 1.5), 1671 (RS =0.8), 1687 (RS = 0.5), 1700 (RS = 0.2),
and 1715 (RS = 0), while the peak position of capping agent equal to 1715.

‘ m— RS=15

08 RS=08
5 \ RS=05
< os I ; RS=02
g ‘ RS=0
; ] | o
g CAP

|
U
!5:)3 1[:‘.(] 1600 VLA‘,O 1700 175% ‘EAIA
Wavenumber (cm'')
BI)RS=15 B2)RS=08 B3)RS=0.5 B4)RS=0.2 BS)RS=0
ANA,CAP

ANA CAP | il ANA CAP| i ANA cap| i| ANA CAP:

Figure 3.1 (A) pure spectra of analyte (sana) at the different RS values compared with
pure spectra of capping agent (scap) (blue line) when the red, green, cyan, purple, and
yellow line represent the sanaat RS = 1.5, 0.8, 0.5, 0.2, and 0, respectively. (B1) — (B5) the
combined of Sana and Scap at the RS values = 1.5, 0.8, 0.5, 0.2, and 0, respectively. The
decrease of the RS values the peak of the analyte moved closer to the peak of the capping
agent and more overlapped. ANA and CAP are represent analyte and capping agent,

respectively.

The simulated spectra of capping agent (Xcap) can be computed by the
multiplication of concentration vector of capping agent (Ccap ) With %RSD is 10% by
simulated concentration profiles of capping agent with 10% of capping agent
concentration using normal distribution calculated. The eqgs of the %RSD as

1 _(w-my? (3.3)

e 202

F(x) =

ovV2m



18

While m is mean = 500 and ois standard deviation = 10%
while the spectra of an analyte (Xana) Were computed by multiplication of
concentration (Cana) and the pure spectra (Saa) as shown below. In our case, the

concentration value of analyte was constantly constrained without any added %RSD.

Xcap = Ceap - Scap and Xana = Cana . Sana (3.4)
Resolution
RS=1.5 RS=0.8 RS=0.5 RS=0.2 RS=0
= Al) A2) A3) Ad) AS)
S . = n ' ANA+ CAP
] ) car | carl | i
% T aNa car | 1T anacar | 1] N | ANA'\. A H
g i | i. TR ~ P. \ i .
< S L e R e Mo o N
S , - R P — L._ v P
- e ) e - e © gy R 55 e
g . 2 .
CI> - o i
<
=
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= . )
N 2
g S ,
5 = i |
S = 4l
S Il —
< 5 e
5 =
> g
Ol - -3
SEEEEE A Al I
|O| — \L.. _‘_‘_‘.__z';‘b — —_— o ____j N ._______/" N
& ) d i W S . =
- 23 2,
N
= wl
~ i i A
s o \ ) A
? —n S e A A e
5 e oty T ooy cemberier -

Figure 3.2 The simulated spectra from A) — E) the ratio of the concentration of the
analyte were varied form 0.01-0.20, 0.21-0.40, 0.41-0.60, 0.61-0.80, and 0.81-1.00and 1) -
5) the RS values were varied from 1.5, 0.8, 0.5, 0.2, and 0, respectively. The red, blue and
grey line represent the highest, lowest and moderate concentration of the analyte. ANA

and CAP represent the analyte and capping agent peaks, respectively.

Moreover, the intensity ratio between the analyte was set to 0.01- 1.5
compared to the intensity of the capping agent. To simplify the definition, the
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intensity ratio of 0.01 refer to the average intensity of the analyte is approximately 1%

compared to the average intensity of the capping agent.

Despite to SERS, it is a scattering technique, therefore, it normally provides
some fluctuated SERS signals with %RSD between 1-10%. In simulated spectra, the
%RSD of the signal from capping agent was adjusted to 10%. In the last step, the
0.5% of the random noise was added to the spectra in order to include part of non-
linear in the synthetic spectra (the random light scattering from the small particle and
external rays). The random noises were estimated from the baseline intensity of
polystyrene as a reference. The simulated spectra of two independent peaks with
different overlapping levels and different intensity ratio are shown in Figure 3.2

3.2 Removal of Main components in SERS signal

In SERS signal, the traces of analytes can be hidden by the major species,
particularly corresponds to the large amount of surface capping agent on the metal
surface. However, because of their relative abundance, the SERS signal of major
species are difficult to be determined and removed to remain only the signal from the
traces. This goal of the data analysis is to pursue with uses of MCR-ALS techniques®
%051 The method assumes that each spectrum can be described as a bilinear
combination of the signal of pure component spectra (S) and its concentration (C).

The relationship can be written as.

X=C.ST+E (3.5)
Where the data matrix X (set of Raman spectra) with rows corresponding to sample
and columns corresponding to the Raman shift (cm ), C is the concentration profiles
of all species detected, and S is representing their pure spectral profiles. At the
beginning of the MCR-ALS original algorithm, the first guess of the concentration or
the spectral profiles was estimated for each component. In the study, a first guess on
the pure spectra and then the concentration profile can be estimated by the

pseudoinverse as follows:

C=X.5".(5. §T)* (3.6)

and in turn, the concentration matrix C can be updated to
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§=(CT.cHYLC".X (3.7)
Where S and C are the estimates and the T symbol denotes as transposition. The ALS
algorithm iterates between eqs 3.6 and 3.7 until reconstructed matrix from the
estimates minimize the error between and calculated X (= € . §7) and original data
matrix X. During the ALS calculation, a non-negative least square (nnls) % constraints

of both concentration and pure spectrum profiles are also performed.

In the case under investigation, the goal is simpler because X is largely
dominated by the presence of a single compound (capping agent on the metal surface)
that is required to be modelled and removed and that appears as a very strong signal
compared to the signal from the analyte. Therefore, the initial rank is determined as 1,
a guess of the spectral profile (average spectrum of capping agent) is taken as the
initial profile of the most abundant signal in Raman spectrum. Calculation on egs. 3.6
and 3.7 will leads to a Ccap and Scap Which characterize as the major component of
capping agent in the case. The principal of the developed method is to seek for pure
vectors of capping agent and then subtracted from the original data matrix to remain

only the analyte signal (Xana) calculated as

Xana=X—Céap)) Scap” (3.8)

It should be noted that some of the information held in Xana may still relate to

some residual interferences. However, if the capping agent signal was not completely
removed, this will strongly disturb the underlying quantitative information of the
analyte signal. To completely exclude the capping agent signal, an additional
constraint of sample insertion is applied. The external spectra of capping agent (Xcap)
was added to the data matrix X to obtain Xc (= [X; Xcap]) prior to perform MCR-ALS.
The generated Xc were used instead of X in the iterative eqs 3.6 and .3.7 until it
converges. The number of added spectra is monitored to reveal the completely
elimination of capping agent signal. Since Xana has been extracted, it is used to build
models of univariate calibration directly from the extracted spectra. In the case, a
calibration curve is individually built for each set of samples after including known
analyte concentration. The intensity of the analyte is plotted against its concentrations,
thereby obtaining the standard calibration curve used to calculate the analyte

concentration in an unknown sample.
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Figure 3.3 Scheme describe the extraction of capping agent signal by using sample
insertion constraint with MCR-ALS method and Remove the signal of capping agent
and construct the standard calibration curve from the analyte signal which then is used

to predict the test samples

This protocol provides the capability to predict analyte concentration even in
the presence of unknown interferences. Thus, the identification of the interferences is
not required as SERS with capping agent is already designed to be selective to the
target analyte. Moreover, the calibration and test samples can be either arranged in the
same matrix or the different matrix before applying the MCR-ALS algorithm. The
correlation coefficient (R?) and the Mean average percentage error (MAPE) was used
to evaluate the calibration model. In this work, multivariate data analysis was
performed using MATLAB (version R2018a) and MCR-ALS toolbox (version GUI

2.0)%°. The overall calculation scheme is displayed in Figure.3.3.
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3.3 Performance Indices

The R? and MAPE values were used to evaluate the calculation model. The R?
value was calculated the coefficient of the determination by proportion of the variance
in the dependent variable that is predictable from the independent variables. The
relation of the intensity and presetting concentration. The higher value of the R? value
(close to 1) shows the small differences and unbiases between the preset values and
the predicted values. Unbiased means that the fitted values are not systematically too
high or too low in the observation space.

The MAPE value was calculated the difference between the predicted
concentration (Concca) and the presetting concentration (Concpre) by the MAPE value
was calculated from the absolute subtraction between the predicted concentration and
the presetting concentration divided by presetting concentration. After that multiply
by 100 and average this value, it can be written as follow.

Concca) — Concpre

x 100 (3.9)

MAPE =~ 31

Concpre
The predicted concentration was calculated by linear regression equation the intensity
of analyte plot with presetting concentration can be written as follow.

Intensity = slope x concentration + intercept (3.10)
When, intercept and slope were obtained from the calibration curve.

In the part of the real system, the root-mean-square error (RMSE) value was
reveals difference between the predicted concentration and the presetting
concentration. The RMSE value was calculated by square root of the mean of square
value of difference between predicted concentration and actual concentration. It can

be written as follow

(3.11)

n C C 2

RMSE — Z ( ONCeqr — oncpre)
n

1

The lower of the RMSE value refer to the smaller error of the concentration

prediction

The Euclidean distance used to reveal the similarity of the extracted capping

agent spectra and the pure capping agent spectra. It can calculate the distance between
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two datasets of the observed capping agent spectra (Sons) that were obtained from the
calculation and the capping agent spectra (Xcap). By the Euclidean distance calculation
from equation 3.12

Euclidean Distance = (X, — S,) (X, —Sp,)T  (3.12)

When, n is spectra. The lower value of the Euclidean distance (close to 0) shows the
higher similarity of the extracted pure capping agent spectra and the capping agent

spectra

3.4 Real system (quantify carbofuran using SERS)

The detection of carbofuran though the diazotization-coupling reaction was
used as a real experimental SERS system. Briefly, silver nanoparticles (AgNPs) as
SERS substrate were prepared by conventional procedure’™. The reduction of AgNO3
with NasCsHsO7 was occurred to obtain the uniform AgNPs with in-plane plasmon
resonance band at 450 nm indicating an average size of approximately 50 nm. > Prior
to SERS measurement, carbofuran was converted to carbofuran phenol by hydrolysis
reaction. The hydrolysis reaction was prepared by diluting carbofuran by KOH
solution and then was incubated at 50°C for 3 hours to obtain carbofuran phenol. In
another batch, diazonium ion was prepared by adding 5% NaNO: into a solution of p-
ATP in HCI at 0°C for 1 min. The diazonium coupling reaction was immediately
attained by mixing with the solution with the carbofuran phenol in alkaline condition
at 0°C for 1 min. After the diazo-coupling reaction, each sample was combined with
silver colloid solution for 5 min. The mixture was dropped on a virgin aluminum
plate. SERS spectra were collected using a DXR Raman microscope (Thermo
Scientific) with a 780-nm excitation laser of 14 mW laser power. The signal
acquisition was operated under a 10X-objective lens with a laser spot of 3.1 um.
SERS spectra were obtained using a 2-sec exposure time with 8 accumulations. The
details of experiment were described elsewhere®. The overview scheme of SERS
measurement of carbofuran though diazo-coupling reaction with p-ATP when AgNPs

colloidal solution was used as SERS substrate is demonstrated in Figure 3.4
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2) + Tri-sodium citrate
3) Stir 30 min
HS N*=N e erts
o—<|:|—r~|—<:|-|3
(o]
v Diazonium ion Carbofuran phenol

0°C
1 min

N OH
o
HiC CHy

Carbofuran-derived azo compound

Diazo-coupling reaction

v

AgNPs
Room temperature
5 min
—SON: N OH
(o]
HsC CHy
Capping agent Analyte

Figure 3.4 SERS measurement of carbofuran via diazo-coupling reaction with p-ATP
when AgNPs colloid is used as SERS substrate
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CHAPTER IV
RESULTS AND DISCUSSION

4.1 Spectral simulation

Three different criteria involving background subtraction, classical MCR-ALS
and MCR-ALS with sample insertion constraint were performed on the simulated
datasets with different overlapping levels at the various intensity ratios. The
calibration curve was constructed similar to a univariate calibration involving
intensity and concentration of the analyte peak. The index of R? value was used to
estimate the prediction accuracy of the calibration curve generated by the three
criteria. The contour mapping of R?value at different RS and different intensity ratios
are shown in Figure 4.1A. The contour areas with grey color reveal the calibration
curve with satisfied R? (> 0.99) while yellow-red color represent badly prediction

accuracy (R? < 0.5).

In case of using background subtraction, the expected results of the R? value
are satisfactory when RS is higher than 0.5. However, the R? value is improper when
RS is lower than 0.3 (badly overlapped peaks). By using original MCR-ALS, the peak
of analyte considered as minor component could not be possibly extracted as the R?
values of the calibration curve are unsatisfied in all cases (R? value < 0.3). Based on
the theory, the MCR-ALS could not appropriately be used to monitor either the

interferences or a minor component (an analyte in the case) in the system.

To improve the prediction, the sample insertion criterion was modified in the
beginning step of MCR-ALS calculation. In order to completely remove the capping
agent peaks considered as a major component, the virgin spectra of this capping
specie should be much higher than the set of mixture spectra. Therefore, MCR-ALS
could identify them as the first rank component utterly. By using the sample insertion
criteria, it can be seen that the R? value is dramatically improved and is acceptable in
all conditions especially when the peaks are highly overlapped (RS<0.5). Figure 4.1B

shows the calibration plot of the condition at position (1)-(V) on the contour map of R?
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value (Figure 4.1A). From the scatter plots, it can be clearly seen that the calibration
curve produced by using MCR-ALS modified with sample insertion constraint is
noticeably improved especially in the case of low RS (high overlapped conditions).
The scatter plot of the analyte signal and concentration shows the good correlation
compared with the other criteria. This suggests that the sample insertion constraint is
crucial and necessary to be applied with MCR-ALS calculation in order to completely
exclude the dominate unnecessary large peak. Inset Figures show the extracted
analyte peak after the capping agent peak was removed by the three criteria. By
classical MCR-ALS, it could be clearly seen that the combination peaks between
capping agent and analyte were occurred, while the analyte peak was completely
isolated by using the MCR-ALS modified by sample insertion constrain. The number
of added capping agent spectra in each condition was optimized as shown in Figure
4.2A1.

In this section, the number of spectrum (of capping agent) required to be
inserted in the MCR-ALS calculation is monitored, optimized and investigated. The
extra set of the capping agent spectra were added as the constraint with the ratio of the
number of capping agent spectra divided by the number of calibration spectra between
2-100 times. An appropriate ratio of the added capping agent spectra was
automatically determined by the change of mean absolute percentage error (MAPE)

which is less than 5% as follows.

MAPE; — MAPE;_,

1
MAPE, x100 <5

Where i is the step of ratio.

The indicator of MAPE was used instead of root mean square error (RMSE)
because MAPE could be calculated in term of percentage. In the data simulation, the
peak intensity is shown in arbitrary unit (a.u.), therefore, the MAPE index is more

appropriated rather than RMSE which was normally used to display the actual value.
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Figure 4.1(A) The contour map of R? value of the calibration curve calculated from

analyte peak extracted by criterion (I) background subtraction, (I1I) MCR-ALS and (I11)

MCR-ALS with sample insertion constrain. (B) the calibration curve plot from point (1),

(I, (1n, (1v), and (V) on the contour map with the inset Figures as the analyte peak

after extraction. All Figures are in the same scale of intensity and concentration (a.u.).
Scatter plot of the RS = 0 and 0.20 were shown in APPENDIX
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Figure 4.2A1 shows the mapping of the sample ratio which appropriately
added to the data matrix in order to completely eliminate the capping agent peak.
Surprisingly, the number of added samples is not strongly related to the overlapping
levels, but the added ratio tends to significantly increase when the intensity ratio is
high. This observation suggests that the system contains the target analyte with large
peak intensity, it requires more added capping spectra. On the other hand, only small
amount of adding spectra is needed for the system with low peak intensity of the
analyte. The relation of intensity ratio of the analyte might be strongly correlated to
the selection of the chemical rank. In the developed algorithm, the signal from the
capping agent should be selected as the first chemical rank as it will further be
eliminated in the next calculation step. However, if the intensity ratio of the analyte is
approximately close to the peak intensity of the capping agent, it is possible that the
capping agent could not be determined as the first chemical rank. Therefore, the
added number of capping agent spectra should be increased in the simulated data with
high peak intensity ratio of the analyte. After the number of added spectra was
determined, the prediction accuracy from the calibration set and the validation set was
revealed in term of MAPE values shown in Figure 4.2A2 - 4.2A3.

From MAPE map, they show that most of the conditions give the acceptable
percentage error of prediction (MAPE < 10) in both calibration and validation sets. To
get the insight information, the scatter plots of the predictive concentrations against
the actual concentrations at various conditions, e.g. RS = 0, 0.2 and 0.5 with intensity
ratio of 0.5 was shown in Figure 4.2B1 — 4.2B3. The results were extracted by using
the optimized added samples of capping agent spectra shown in Figure 4.2A1. In the
scatter plots, the black circle plot represents the results from the calibration model and
the red circle demonstrates the prediction of the validation set. In case of RS > 0,
fulfilled R? value of the prediction from calibration and validation is higher than 0.99.
The spectra shown in inset Figures display the original simulated spectra of
calibration set (black), the simulated spectra for validation set (grey), the extracted
spectra of calibration set (blue) and the extracted spectra of validation set (red),

respectively.
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Figure 4.2 (Al) The contour map of the sample ratio appropriately added to the data

matrix to completely removed the capping agent peak. The map of mean absolute

percentage error (MAPE) of calibration set (A2) and validation set (A3) at different

conditions. (B1-B3) Plot of the MCR-ALS predicted concentrations versus actual

concentrations using the sample insertion constraint for RS = 0,0.2 and 0.5 respectively.

Inset Figures of B1-B3 demonstrate the original simulated spectra of calibration set

(black), the simulated spectra for validation set (grey), the extracted spectra of

calibration set (blue) and the extracted spectra of validation set (red).
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The dissimilarity of the capping agent and the extracted spectra at the different
number of added capping agent spectra were shown in the Figure 4.3. The
dissimilarity between the preset spectra and the extracted spectra of the capping agent
was calculated using the Euclidean distance at the RS =0.5. From the Figure 4.3A, the
dissimilarity of the preset and the extracted spectra of the capping agent were
decreased when the number of the added spectra were increased. The dissimilarity
was insignificantly changed when the number of added capping agent spectra are
larger than 40 times compared to the number of the analyte spectra. Figure 4.3B-F
shows the pure spectra and the extracted pure spectra of the capping agent from the
condition of RS = 0.5 at the sample ratio of 10, 40 and 100 times. From the inset
Figure, the differences between the preset spectra and the extracted spectra are small
at the lowest analyte concentration (Figure 4.3B) compared with the condition of high
concentration ratio (Figure 4.3F). For condition with low concentration ratio, only 10
times of sample insertion is adequate for MCR-ALS to extract the pure spectra of
capping agent, while 100 times of sample insertion ratio is required for the system
with high concentration ratio. From the observations, it confirms that the number of
added spectra strongly affect the determination of the chemical rank in the system.
High number of capping agent spectra in the system tend to provide the first chemical
rank of the capping agent to be extracted. Therefore, the smaller number of added
spectra for the system with low concentration ratio is required, while the larger

number of added spectra is necessary when the concentration ratio is getting larger.

The results express that the capping agent peaks was completely eliminated
from both calibration set, and validation set when the appropriate number of capping
agent spectra was added as constraint in MCR-ALS calculation. The developed
method is very powerful as it can solve even the spectra with very high overlapped
peaks (RS~0). Furthermore, the method is fully automating on either generate set of
capping agent spectra or optimize the appropriate number of added spectra. From this
section, it is now ready to elucidate the performance of developed method with the

real experimental spectra on SERS measurement.
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Figure 4.3 (A) The Euclidean distance of the preset spectra and the extracted spectra of

capping agent at the various number of the added capping agent. The black square, red

circle, blue triangle, green triangle, and purple diamond are the distance at the different
concentration ratios from 0.01-0.20, 0.21-0.40, 0.41-0.60, 0.61-0.80, and 0.81-1.00,
respectively. (B) the preset spectra (black line) and the extracted spectra of the capping
agent using sample insertion at 10 (red dash line), 40 (blue dash line) and 100 (green
dash line) times, respectively. The inset Figures show the spectra at the 1700 cm™ with
condition of RS = 0.5.



32

4.2 Real system (quantify carbofuran using SERS)

The detection of carbofuran using the diazotization-coupling reaction between
p-ATP (capping agent) on the AgNPs and derivative of carbofuran phenol (target
analyte) was used as a real experimental SERS system. Figure 4.4 shows the SERS
spectra of the diazonium ion and the carbofuran-derived azo compounds on AgNPs as
SERS substrate. The peaks at 1075, 1327, 1429 and 1570 cm™ represent the typical
bands of C-S stretching, CCH, NCC (phenyl-N) in-plane bending, C-H and O-H
bending and finally C-C stretching in phenol ring, respectively. In this system, the
diazonium ion are not stable and can change to the para-mercaptophenol form which,
can be detected by the SERS measurement. So, para-mercaptophenol are the same
function as the capping agent species. The C-C stretching in phenol ring of the
capping agent and the analyte are appeared as shown in the same wavenumber at 1571
cm™. The table of the peak assignment was shown in Table 4.1. These observations
confirm the chemical adsorption and the formation of the carbofuran-derived azo
compound molecules on the AgNPs surface. From SERS technique, the efficiency of
adsorption in a high near electric field is critically affects to the sensitivity of the
SERS signal. Therefore, amount of capping agent and analyte diffused close to
AgNPs surface is directly proportion to the SERS intensity. 0.1 ppm to 100 ppm.
However, only peak of C-C stretching in phenol ring (1570 cm™) display the

characteristic peaks of the analyte derivates from the capping agent.

Due to the high similarity of chemical structures between p-ATP and
carbofuran, the intensity of those assigned peaks was increased when the amount of

carbofuran was increased from 0.1 — 100 ppm.

Firstly, the number of added capping agent spectra was optimized in order to
obtain the best calibration model (R? value). The R? value of the calibration model at
the different sample insertion ratio is shown in Figure 4.5. It can be seen that the R?
value was reached to 0.99 when the sample ratio at 100 times was used as the
constraint in MCR-ALS calculation. Therefore, in the real sample part, the ratio of

added capping agent was used at 100 times for extracted the capping agent spectra
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Table 4.1 SERS peak assignment for p-mercaptophenol and carbofuran-derived azo

compound
Raman shift/cm*
para- Carbofuran-derived SERS assignment
mercaptophenol azo compound
1075 1075 C-S stretching
1201 C-N stretching, CCN (phenyl-N) in-plane bending, C-H and
O-H bending, C-C stretching from phenol group
1327 1333 CCH bending
NCC bending with phenyl ring
1410 -N=N- strectching
1429 C-H and O-H bending from phenol group
1571 1571 C-C stretching within phenol

10000 cps
CC stretching
within phenol

— /

J 10 ppm
M\—’wf\f/\/v
0.1 ppm

CHandO-H
CCHand NCC
bending with
pheryl rings

C-S stretching

bending

100 ppm

50 ppm

Diazonium ion

1600

1
1400 1200 1000

Raman shift (cm™)

Figure 4.4 SERS spectra of azo compounds derived from carbofuran of 0.1-100 ppm.
The yellow highlight is the region that was used to examine the relationship between the
intensity and concentration. The yellow highlight is the selected peaks to quantify the

amount of cabofuran
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Figure 4.5 The R? values of the calibration model using sample insertion constraint with
the added capping agent at ratio of 5, 10, 50, 100, and 150 times

To examine the relationship between concentration and intensity of SERS
signal, only intensity from the peak at 1570 cm™ (yellow highlight) was used. From
Figure 4.6A, the calibration plot using the intensity against the concentration of
carbofuran was directly performed from the original SERS spectra (Figure 4.4) The
plot can be fitted by linear equation of A7 = 42.6 C + 5702.6 where C is the
concentration of carbofuran in ppm unit with R?> = 0.731. The limit of detection
(LOD) can be calculated as 125.19 ppm. Due to the high overlapping peak, the
correlation coefficient (R?) calculated directly from the peak intensity is not satisfied.
In the case, the SERS spectra was projected to our propose method in order to extract
the signal from capping agent to remain only the analyte signal. Figure 4.6B shows
the extracted SERS spectra of the analyte. The calibration curve elucidated from peak
at 1570 cm* against the carbofuran concentration give a promising R? up to 0.99 with
the linear equation of Aips7 = 28.3 C + 245.3. The limit of detection (LOD) can be
calculated as 28.19 ppm.



35

A 15000 12000

12000 | 9000 -

A

T

9000 -
6000 -

Intensity (cps)

6000 |
3p00 - R2=0.731

Intensity at 1570 cmt

3000

S 0

. ” - N " " L L .
1680 1640 1600 1560 1520 1480 o W w e =@
Wavenumber (cm™') Concentration (ppm)

G000
B 4500

& 4000} 3000

| 1500 |-
|
2000 n f .

R?=0.990

Intensity (cps)
Intensity at 1570 cmt

. —
1680 1640 1600

Wavenumber (cm™)

1 5I20 1480 <I1 zlo 40 slu alo 0
Concentration (ppm)

Figure 4.6 (A) SERS spectra of azo compounds at peak 1570 cm™ and the calibration
curve with R? = 0.731. (B) SERS spectra after MCR-ALS extraction with sample
insertion constraint and the calibration curve with R? = 0.990. The yellow highlight is

the peaks corresponding to amount of carbofuran

The concentration of the carbofuran in the calibration and validation set was
predicted by the intensity of the extracted spectra and it was shown in Figure 4.7. The
relationship between the predicted concentration and the presetting concentration
were shown. From the results, the high R? values of predicted concentration were
obtained in both of calibration (R? = 0.98) and validation sets (R? = 0.97). The error of
the prediction in the both sets were reported by using root-mean-square error (RMSE)
value. From the results, the RMSE = 0.188 and 2.109 were obtained from calibration
and validation set, respectively. The error of the concentration is in the acceptable
range. It can be seen that the developed algorithm can eliminate capping agent peak
and can be used to quantify the concentration of analyte with high precision and

accuracy.

From the results, it shows that the MCR-ALS with sample insertion constraint

can be used to exclude the interrupted signal from capping agent in SERS detection
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system. This generates the higher correlation coefficient and sensitivity of SERS

techniques without any requirement of additional experiments.
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Figure 4.7 Predicted concentration versus presetting concentration in the carbofuran

derived azo-compound at the 1570 cm™ peaks the black square and red circle represent

the calibration and validation set, respectively by the RMSEC is the RMSE values of
calibration and RMSEP is the RMSE of the validation sets.
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CHAPTER V
CONCLUSION

The MCR-ALS method was successfully modified with sample insertion
constraint in order to extract the analyte signal which represents as minor component
in SERS measurement. The developed program was elucidated with the simulated
spectral data. The simulated spectral data was generated using gaussian distribution
function with different overlapping level (RS = O(completely overlapped) — 1.5
(completely separated) and different concentration ratios between intensity of capping
agent and analyte in the range of 0.01 — 1.00. By using MCR-ALS with sample
insertion constraint, the calibration model of the analyte peak in the all conditions,
including highly-low overlapping levels, can be generated with high precision (R? >
0.95) and high accuracy with MAPE < 20. Moreover, the influences of the number of
spectra which had been added in the calculation were monitored and investigated. The
suitable added spectra need to be carefully considered in order to completely exclude
the unwanted signals which is capping agent spectra in the case. The appropriate
number of added spectra was automatically optimized by using the change of MAPE
which less than 5%. Interestingly, it was found that the smaller number of added
spectra is required in the system with high concentration ratio, while the large number
of added spectra is needed for the condition with low concentration ratio.

In the part of the real experiment on SERS measurement, the carbofuran
(analyte) derived azo-coupling with p-ATP (capping agent) acquisition was used to
validate the developed algorithms. The peaks of the carbofuran overlapped with the
azo-compound at 1570 cm™ (The C-C stretching within phenol) was monitored. By
using conventional background subtraction technique, the calibration model of the
carbofuran was obtained with unsatisfied results of R?> = 0.73 and LOD = 125.19 ppm.
The R? value of the model were raised to 0.99 and LOD was down to 28.19 ppm when
the modified MCR-ALS with sample insertion constraint was used. To inspect the
prediction performance, the validation set of spectra were used and the concentrations
of carbofuran of the validation set were quantified by the calibration model built from
our developed program. It was found that the R? value of validation set equal to 0.97

and RMSE with only 2.109 was satisfactory obtained.
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Figure 1 the calibration curve plot from analyte peak extracted by criterion (I)
background subtraction, (1) MCR-ALS and (I111) MCR-ALS with sample insertion
constrain on the RS = 0 at the various concentration ratio of the analyte
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Figure 2 the calibration curve plot from analyte peak extracted by criterion (I)
background subtraction, (11) MCR-ALS and (I111) MCR-ALS with sample insertion
constrain on the RS = 0.2 at the various concentration ratio of the analyte
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