CHAPTER VI

Conclusion

Altogether, this study revealed that ctl and alrc2 genes isolated from Clitoria ternatea L. and Artocarpus lakoocha Rox., respectively, encoded HPT enzyme which is an important enzyme in α -tocopherol biosynthesis. Both genes were identified and characterized based on their protein structure which appeared to consist of 9 transmembrane α -helixes, N-signaling transit peptide at N-terminal and Asp rich regions as substrate binding site. Both genes were highly expressed at 1 dpa and their proteins were highly expressed at 3 dpa in transient tomato. These overexpression genes in tomato leaves resulted in the increase of MPBQ (the product of HPT activity) and DMPBQ and consequently enhance α -tocopherol accumulation The MPBQ and DMPBQ that are the intermediates in pathway were also detected to be increased by GC-MS chromatogram. Furthermore, the overexpression of CTL and ALRC2 induced chlorophyll degradation and released free phyltol that is the precursor of α -tocopherol.

