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CHAPTER I

INTRODUCTION

1.1 Background and Motivation

The proliferation of software application has involved in various facets of daily living to

the extent that many undertakings cannot do without it. As such, reliability is utmost

important to the operations of software application. Software reliability is the probability

of failure free operations of a computer program executing in a specified environment

for a specified time [1]. Software reliability is considered a software quality factor that

aids in predicting software quality using standard predictive models. There are many

approaches for predicting software quality, most of which yield some forms of quality

indicators. One popular indicator is known as software fault. Software fault prediction

utilizes historical and development data to arrive at a conclusive decision whether the

software in question is at fault.

Software faults have plagued the quality and reliability of software systems since their

inception. Despite a consensus in the imperfect software process, software faults can

be reduced with precautionary efforts. Numerous ”fault-free” endeavors ranging from

software inspection, cleanroom development to formal methods have been instituted to

improve software reliability. It is, therefore, essential that these faults be detected, lo-

cated, and eventually removed from the software, whereby enhancing software reliability

to an acceptable level. Unfortunately, the above reliable and rigorous approaches are not

practical in large software development system due to human error. As a consequence,
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some forms of automated fault prediction mechanisms must be devised to accommodate

such short falls.

Recent research and development in fuzzy logic and neural networks have improved

the accuracy and efficiency of fault prediction considerably. Fuzzy Logic provides a

means for determining whether the indecisive circumstance is right or wrong. Neural

Networks, on the other hand, offers an automated means for carrying out desired oper-

ation without human intervention. As a consequence, the two techniques are utilized in

this research work to arrive at the proposed software fault detection method.

1.2 Dissertation Overview

This dissertation proposed an approach for software fault prediction as done in con-

ventional manual inspection. However, the principal difference is that the proposed

approach employs machine learning modelling to construct a prototype for automatic

software fault prediction. This permits large scale inspection where voluminous code

(that would otherwise be impossible to carry out manually) is inspected, whereby po-

tential faults can be collected, compiled, and analyzed for the causes. The prediction

process starts from measuring software components with software metrics. Then fault

prediction is performed applying predictive model based on software metric values as

demonstrated in Figure 1.1. The proposed process can be divided into four stages,

namely, (1) fault-prone prediction, (2) fault type prediction, (3) dynamic fault predic-

tion, and (4) fault locating as demonstrated in Figure 1.2. The fault-prone prediction

is the first stage where software components (hereafter referred as classes) are explored

whether they are faulty or fault-free classes [2]. Then the faulty classes are further an-

alyzed to identify fault type, namely, SDA, SDI, SVA, SDIH, and IISD [3] in the stage

of fault type prediction [4, 5]. Since both earlier stages predict software faults based on
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Figure 1.1: Diagram of software fault prediction approach

software metric gathered from source code, they are considered as a static fault analysis.

However, there exists faults which occur at runtime and may not be detected at

static fault analysis stage. Consequently, the predicted fault-free classes from the first

stage are passed to dynamic fault prediction stage. At this stage, software classes are

represented by a set of graphs. Some metrics are extracted from those graphs and applied

to faultiness prediction.

In addition to faultiness, the location of fault is also investigated by finding faulty

methods and attributes based on a set of method and attribute metrics. Details of

software prediction process are described in the chapters that follow.

1.3 Objectives

The objectives of this dissertation are

1. To develop an approach to predict fault in production software using fuzzy logic

and neural network techniques

2. To propose a guideline for locating software fault in software development process
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5

1.4 Scope of Work

This dissertation focuses on C++ programs developed based on both structured and

object-oriented programming approaches as case studies. The case study programs were

written in simple style. Some software faults due to inheritance are also considered. The

programming language and tools employed in this study are Matlab, free/commercial

software metrics and graph tools.

1.5 Contributions

The proposed software fault prediction approach contributes to software development

system as follows:

(1) Furnish faultiness predictive model for detecting fault-prone software;

(2) Provide fault type identification model for identifying fault type;

(3) Represent software as a set of graphs and extract metrics from those graphs;

(4) Locate the cause of fault by finding faulty methods and attributes; and

(5) Gauge how important each metric is conducive toward the cause of faultiness by

means of a proposed algorithm and sensitivity analysis.

1.6 Dissertation Organization

The remainder of the dissertation is organized as follows. Chapter 2 presents existing

related works. Chapter 3 describes theoretical background. The first phase of software

fault prediction. Fault-prone prediction is detailed in Chapter 4. Fault type identifica-

tion is subsequently explained in Chapter 5. Chapter 6 presents dynamic fault prediction.

Some conclusive results and future work are summarized in Chapter 7.



CHAPTER II

RELATED WORKS

There have been a number of researches employing neural networks and fuzzy logic to

predict software error or software fault. Some empirical comparative studies in neural

network versus statistical methods are presented in [6–10]. Evidence of research data are

collected from many sources such as parameter values released from executed system [11],

software metrics [10, 12–15], and software change history [16].

Fuzzy logic and neural network techniques are primarily used to analyze data and

infer the relationship among them. Pedrycz, Succi, Reformat, Musilek and Bai [17] used

Self Organizing Maps (SOM) to divide software into clusters to explicitly capture rela-

tionships between the software measures and quantify these dependencies for larger and

less homogeneous clusters of software modules. Khoshgoftaar used back-propagation

learning algorithm and Principal Component Analysis (PCA) technique [18, 19] to pre-

dict software faults. Yuan [20] applied fuzzy subtractive clustering technique with fuzzy

inferences and some statistical techniques to predict software quality.

Toshihiro Kamiya et al. [21] proposed a method to estimate the fault-proneness of

software classes in the early phase using several complexity metrics and multivariate lo-

gistic regression analysis. They introduced four checkpoints into the analysis/design/im-

plementation phase, and estimated the fault-prone classes using applicable metrics at

each checkpoint.

In Briand [22], a fault-proneness prediction model was built based on a set of object-
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oriented measures using data collected from a mid-size Java system with the help of

logistic regression analysis.

P. Kokol et al. [23] introduced some methods for reliability prediction based on a large

database of modules in C language using a set of selected software metrics. The results

and methods were compared. They found that statistical and mathematical methods

accurately predicted the reliability of software modules, whilst black box approach could

not explain the reasons behind the prediction.

In Aljahdali [9], neural networks were proposed as an alternative technique to build

software reliability growth models. A comparison between regression parametric model

and neural network model was carried out and concluded that neural networks were

able to provide models with small Sum-Squared Error (SSE) better than the regression

model in all considered cases.

Mie Mie Thet Thwin and Tong-Seng Quah [24] presented the application of neural

networks for predicting the number of faults in three industrial real-time systems based

on object-oriented design metrics. Ward Network which is a back-propagation network

was applied to construct a neural network model. They concluded that neural network

model could predict the number of faults more accurately than multiple regression model

for software engineering data.

Khaled El Emam et al. [25] employed univariate logistic regression analysis for se-

lecting some object-oriented design metrics. The proper metrics were applied with mul-

tivariate logistic analysis to construct a model for use in predicting if future releases of

a commercial Java classes would be faulty.

Lionel C. Briand et al. [26] empirically explored the relationships between existing

object-oriented coupling, cohesion, inheritance measures, and the probability of fault

detection in system classes during testing. Principal Component Analysis and logistic

regression were applied to select the proper metrics and built a prediction model.
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D. Glasberg et al. [27] performed an empirical study with the data obtained from

a commercial Java application using logistic regression technique. They found that

Depth of Inheritance Tree (DIT) was a good measure of familiarity and had a quadratic

relationship with fault-proneness.

Yida Mao, H.A. Sahroui, and Hakim Lounis [28] presented an experiment to verify

three hypotheses about the impact of three internal characteristics (inheritance, cou-

pling, and complexity) of object-oriented applications on reusability. The verification

was done through a machine-learning approach and the experimental results showed that

the selected metrics could predict with high level of accuracy on potentially reusable

classes.

Ping Yu and Tarja Systä [29] empirically validated a set of object-oriented metrics in

terms of their usefulness in predicting fault-proneness. Eight hypotheses on the correla-

tions of the metrics with fault-proneness were given and tested on a system written in

Java. Validation was statistically carried out using regression analysis and discriminant

analysis.

F. Fioravanti and P. Nesi [30] analyzed more than 200 different object-oriented met-

rics extracted from the literature with the aim of identifying suitable models for detecting

fault-prone classes. The work was focused on identifying models that could detect as

many faulty classes as possible based on a manageable small set of metrics. To reach

their goal, Principal Component Analysis was applied to find the subset of metrics,

whereby multivariate logistic regression analysis was subsequently applied to construct

the models. Besides the prediction of fault-proneness in object-oriented software, fault

type is also detected in [31]. Roger T. Alexander et al. [31] defined a set of experiments,

encompassing relative effectiveness of several coupling-based O-O testing criteria and

branch coverage. All O-O testing criteria were more effective at detecting faults due to

the use of inheritance than branch coverage.



CHAPTER III

THEORETICAL BACKGROUND

3.1 Software Reliability and Prediction Models

The proliferation of computer technology has brought about increasingly complicated

software demand. As complexity grows, so does quality needs. Unfortunately, com-

plexity works against quality, thus resulting in low reliability. New software develop-

ment paradigms are employed to cope with such stringent requirements, for example,

zero-defect software quality assurance, software fault detection, and software reliability

measurement, etc.

Software reliability involves various precautions to guard against faulty operations,

ranging from testing, production, and maintenance. As it is generally known that ex-

haustive test is in no way practical, failure is thus inevitable. In principle, software

failure is defined as the departure of the external results of program operation from

equipments. Such discrepancies are referred to as faults.

A fault is the defect in the program that causes failure [1]. Faults can be classified

based on [32] as follows:

• Locality which includes atomic component faults, composite component faults,

system level faults (i.e., operator faults, replication faults), and external faults

(i.e., environment faults, user faults);

• Effect which includes value faults (a result from a computation that does not
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meet the system specification), timing faults (a processor or service which is not

delivered or completed within the specified time interval);

• Cause which includes immediate cause (such as resource depletion faults that in-

volve a section of the system being unable to obtain the resources required to

perform its task, logic faults that result from the system not behaving according

to specification, physical faults that are caused by hardware breaks or mutation in

executable software), ultimate cause (specification faults, configuration faults);

• Duration which includes persistent faults (that remain active for a significant pe-

riod of time), transient faults (that remain active for a short period of time); and

• Effect on system state which is characterized by faults describing the system states.

A study [1] shows that there are two principal factors that affect the behavior of

failure. The first factor is the number of faults in the software being executed, and

the second factor concerns with the execution environment or operational profile of

execution. The fact that software development process is still a human-oriented activity

makes it impossible to produce fault-free software products. As such, faults are usually

introduced when the code is being developed by programmers, during original design,

adding new features or design changes, or fault repair. Various efforts have been taken

to remove new faults being introduced during maintenance, namely, regression test,

cleanroom technique, etc. The removal process often take places when the first fault is

detected. This process, from a practical standpoint, is dependent on the efficiency which

faults are found and removed.

To assess how effective the above approach is to software reliability, it is necessary

that some quantification analyses be instituted. Such an assessment measure is known

as software reliability measure. One simple approach to measure software reliability is
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to count the number of failures occurred within a specified time. This number is used

to predict the cause of failures through software fault prediction model. Construction of

the prediction model is based on historical information which is the data collected from

past software products properties. The model so constructed should encompass some

essential characteristics as follows [1]:

• gives good predictions of future failure behavior,

• computes useful quantities,

• is simple,

• is widely applicable, and

• is based on sound assumptions.

To model software reliability, we considered the process involving the above principal

factors from three viewpoints, namely, fault introduction, fault removal, and the environ-

ment. Fault introduction depends primarily on the characteristics of the developed code

(code created or modified for the application) and characteristics of the development

process [1]. The most significant code characteristic is size, whereas the development

process characteristics encompass software engineering technologies, tools, and levels

of experience of personnel. Such a software reliability model specifies a general fail-

ure process dependency based on the aforementioned factors. This dependency can be

defined by establishing the parameters of the model through estimation or prediction.

The former rests on statistical techniques being applied to failure data taken from the

programs, whereas the latter determines the properties of software product quality and

the development process using fuzzy logic or neural network techniques.

The prediction approach often incorporates future failure behavior to anticipate un-

foreseen faults. Unfortunately, the primary assumption requires that the model’s param-
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eters not change for the period of prediction. If any change is made to the parameters,

the result of the prediction will not be accurate. Thus, many software reliability models

are based on stable program executing in the underlying constant environment.

Fault removal uses verification and testing techniques to locate faults, thus enabling

the necessary changes to be made to the system [32]. Fault removal cannot occur without

the ability to detect faults in the first place. Thus fault removal is dependent on the

detection efficiency which faults are found and removed [1].

The environment is described by the operational profile which is defined as a set

of run types that a program can execute, along with the probability the run type will

occur [1]. The term ’run’ is generally associated with some functions that the program

performs.

The benefits from software reliability can be further applied in many software activ-

ities such as [1]

• evaluate software engineering technology quantitatively,

• evaluate development status during the test phases of a project,

• monitor the operational performance of software,

• control new features added and design changes made to software, and

• view insight the software product and the software development process.

In this dissertation, the count of software fault and selected software fault prediction

parameters (or metrics) were employed as the bases for the proposed reliability model.

Software reliability analyses can then be carried out by means of the proposed model

operating on sample code.
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3.2 Software Metrics

Software is a complex artifact which requires elaborate methods of measurement to gauge

its complexity. The measured results are often applied to further software development

and improvement quantitatively and qualitatively.

Basically, there are three classes of metrics used in conventional software measure-

ment, namely, process metrics, product metrics, and resource metrics [33]. The process

metrics focus on any software related activities which may be part of the software devel-

opment cycle, maintenance, and retirement. Further applications of the process metrics

in recent team development such as the maturing process of software development or-

ganizations, personal software development process, and small team development such

as eXtreme Programming. Process metrics can be further classified into subclasses as

follows [10]:

• Maturity Metrics

• Management Metrics

• Life Cycle Metrics

The product metrics generally describes the characteristics of software products in

terms of size, complexity, design features, performance, and quality level. We shall

expand some of these metrics classifications below [10].

• Size Metrics

• Architecture Metrics

• Structure Metrics

• Quality Metrics



14

• Complexity Metrics

The final metric, the resource metrics, encompasses anything that involves the ac-

tivities in the software production process including personnel, materials, and methods.

They are [10]:

• Personnel Metrics

• Software Metrics

• Hardware Metrics

Since object-oriented aspect has been applied to software development for decades,

metrics for object-oriented software have been proposed. Object-oriented metrics are de-

veloped to realize the structure and characteristics of object-oriented programs by many

researchers such as Chidamber and Kemerer [34]. Some of their metrics are described

below:

Inheritance related measures

• Depth of Inheritance Tree (DIT) of a class is the length of the longest

path from the class to the root in the inheritance hierarchy. This determines

the complexity of a class based on its ancestors, since a class with many

ancestors is likely to inherit much of their complexity. The deeper a class

is in the hierarchy, the greater the number of methods it is likely to inherit.

This makes it difficult to predict the class behavior.

• Number of Children (NOC) measures the number of immediate descen-

dants of a particular class. This measures an amount of potential reuse of the

class. The more reuse a class might have, the more complex it may be, and

the more classes are directly affected by changes in its implementation.
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Coupling measures. Coupling metrics measure the degree of inter-dependence among

the components of a software system. High coupling makes a system more complex

and harder to understand, change, or correct.

• Coupling Between Objects (CBO) is defined as the number of other

classes to which it is coupled.

• Response For a Class (RFC) is the number of methods that can poten-

tially be executed in response to a message received by an object of that class.

The response set of a class consists of the set of M methods of the class, and

the set of methods directly or indirectly invoked by methods in M.

Complexity measures

• Weighted Methods per Class (WMC) is defined as being the number of

all member functions and operators defined in each class.

3.3 Object-Oriented Concepts

Objects are the physical and conceptual things found in the universe. Hardware, soft-

ware, documents, human beings, and even concepts are all examples of objects. Object-

oriented software is all about objects. An object is a ”black box” which receives and

sends messages. A black box actually contains code (sequences of computer instruc-

tions) and data (information on which the instructions operates). Class is an abstract

representation of a particular type of object and often described as a plan or blueprint

for an object, as opposed to the actual object itself. There are many object-oriented

concepts introduced for object-oriented software development. Application of object-

oriented concepts can lead to fault occurrence in software [35]. As a consequence, this

dissertation focuses on the object-oriented concepts relevant to software fault as follows:
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3.3.1 Inheritance

Inheritance is the property where one class incorporates another class methods and/or

attributes. The original class is called the superclass of the inherited or extending

class, and the extending class is called the subclass of the superclass. Since a subclass

contains all data and methods of the superclass plus additional resources it creates,

it is more specific; conversely, since the superclass lacks some of the resources defined

in the subclass, it is more general or abstract, albeit less detailed than its subclasses.

Inheritance comes in two forms, namely, single inheritance and multiple inheritance [36].

In single inheritance, each subclass inherits from no more than one superclass. On the

other hand, multiple inheritance allows the subclass to inherit from more than one

immediate superclass or parent. The rules for defining multiple inheritance must handle

any conflicts which may arise. For example, naming conflicts can arise where the same

name may be used to represent different attributes or methods in two different parents

and both these attributes or methods are inherited by the same child class. Many

object-oriented programming languages can handle this naming conflict, except when

some kind of naming conflicts occur in a subclass defining an attribute or method with

the same name as inherited attribute or method from its ancestor classes [3, 35].

3.3.2 Association

An association relationship between two classes means that one class members can be

used in the other’s members. The “uses” class sends a message or its instance to an

instance or a member function of the “used” class [37, 38]. There are four types of

association relationships [39]:

• Friend member function association

• Friend class association
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• Friend operation association is the association between classes through a global

function.

• Ordinary association is the association established through parameter passing of

an instance of one class to a member function of another class.

More details of two above concepts, namely, inheritance and association, are de-

scribed in Chapter 6.

3.4 Fuzzy Subtractive Clustering

Fuzzy logic is an extension of standard Boolean logic [40]. The fundamental concepts is

a fuzzy set in which each element in the set is characterized by its grade of membership

of the set [41]. A membership function maps an element of the set in a given domain to

an appropriate membership grade value, ranging between zero and one. Typical mem-

bership functions are the Gaussian distribution function, the sigmoid curve quadratic,

cubic polynomial curve, and etc.

A cluster is a group of entities with similar properties [42]. Entities from different

clusters cannot be similar. Thus, a set of points can be grouped into one or more

clusters, depending on the properties of those points. Usually, the obvious property

is the distance among the points. Unfortunately, separating these points into clusters

is, in many cases, not straightforward since there are points that lie between different

clusters of points which could belong to either adjacent clusters. This is where fuzzy

clustering comes into play. To determine if a point belongs to a given cluster, every

point in the cluster must lie within a given proximity. Thus, the distance between the

point in question and its neighboring points must be smaller than the distance to the

rest of the points. In addition, points in different clusters are assigned different grades

of membership based on the selected membership function. Such an assignment calls
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for an algorithm that must be able to compute the membership grade value in a finite

number of iterations. This is a tall order that ordinary distance algorithmic approaches

cannot accomplish

There are many fuzzy clustering techniques to group data points into clusters. One

popular technique is Fuzzy C-Means clustering which is a simple and straightforward

approach. This technique, however, requires predefined number of clusters where every

data point membership depends on a membership grade. The subtractive clustering,

on the other hand, does not require a predefined number of clusters. The subtractive

clustering is a fast, one-pass algorithm for estimating the number of clusters and cluster

centers in a set of data [42]. Each data point is considered a potential cluster center,

which is calculated from the density of the surrounding data points [20]. Given a group of

data points {x1, x2, . . . , xn}, all data points are normalized with respect to each variable

(vector) associated with xi, the initial potential value of the data point xi is defined

as [43]

Pi =
n∑

j=1

e−α‖xi−xj‖
2

(3.1)

where α = 4
r2
a

‖ · ‖ is the Euclidean distance

ra is a positive constant

The constant ra is effectively a normalized radius defining a neighborhood, data points

outside this radius have little influence on the potential. The data point with the highest

potential value is selected to be the first cluster center.

Let x∗
1 be the first cluster location with the potential value P ∗

1 . The potential value
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of each data point xi is revised according to Equation (3.1).

Pi = Pi − P ∗
1 e−β‖xi−x∗

1‖
2

(3.2)

where β = 4
r2
b

, rb is a positive constant.

The constant rb is normally larger than ra (suggested to be 1.25 [44]) to avoid ob-

taining closely spaced cluster centers. The potential value of each data point near the

first cluster center thereby is reduced by Equation (3.2) so that they will unlikely be

chosen as the next cluster center [43].

The data point with the highest remaining potential is obtained and set as the next

cluster center. The potential of the remaining data points is then recalculated according

to their distance to the new cluster center. The general potential revision formula [43]

can be expressed according to Equation (3.3).

Pi = Pi − P ∗
k e−β‖xi−x∗

k‖
2

(3.3)

where x∗
k is the location of the kth cluster center, P ∗

k is its potential value.

The procedure of finding a new cluster center is repeated until a sufficient number

of cluster centers are generated. The stopping criterion is that the remaining potential

of all data points are lower than some fractions of the first cluster center potential P ∗
1

which is usually set to P ∗
k < 0.15P ∗

1 as suggested in [43, 44].

3.5 Supervised-Learning Neural Network

3.5.1 Multilayer Perceptron Network

Multilayer perceptrons are multilayer feedforward networks. The network consists of a

set of sensory units that constitute an input layer, one or more hidden layers of compu-

tation nodes, and an output layer of computation nodes as demonstrated in Figure 3.1.
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The input signal propagates through the network in a forward direction, on a layer-by-

layer basis.

Figure 3.1: Architecture of multi-layer perceptron

There are two kinds of signals in this network.

1. Function signals. A function signal is an input signal that comes in at the input

end of the network propagating forward (neuron by neuron) through the network

and emerges at the output end of the network as an output signal. When a

function signal passes each node, the entering signal is transformed according to

the associated weights of the input arc to that node. The transformed signal is

further processed by an activation function of that node, resulting in an output

function signal emerging out of that node. At the output layer, the output signal

function becomes the output of the network.

2. Error signals. An error signal originates at an output neuron of the network, and

propagates backward (layer by layer) through the network. The hidden or output

neuron of a multilayer perceptron performs two computations
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(a) A continuous nonlinear function of the input signal and synaptic weights

associated with that neuron.

(b) An estimate of gradient vector which is needed for the backward pass through

the network.

Multilayer perceptron is the most widely used neural network and has also been

applied to solve some difficult problems by algorithmically training them in a super-

vised manner. There are many learning algorithms that are developed for multilayer

perceptron networks, notably one of those is back-propagation learning algorithm.

Back-propagation Learning Algorithm

Error back-propagation learning consists of two passes through the different layers of

network, namely, forward pass and backward pass as described below.

1. Forward pass. An activity pattern is applied to the input node of the network. Its

effect propagates through the network layer by layer. Upon the existing network,

a set of outputs is produced as the actual response of the network.

2. Backward pass. An error signal is produced by subtract the actual response of

the network from the desired response and is then propagated backward through

the network. The synaptic weights which are all fixed in the forward pass, are

adjusted to minimize the difference between the actual response and the desired

response of the network.

For any given successive layers, the input to each node is the sum of the scalar products

of the incoming vector components with their respective weights. Thus the input to a

node j (Figure 3.1) is given by

inputj =
∑

i

wj,i · outi (3.4)



22

where wij is the weight connecting node i to node j and outi is the output from node i.

The output of a node j is determined by

outj = f(inputj) (3.5)

and this output is sent to all nodes in the following layer. This computation is continued

through all the layers of the network until the output layer is reached and the output

vector is produced.

The function f is an activation function of each node. For this work, sigmoid acti-

vation function is used which can be expressed as

f(x) =
1

1 + exp(−x)
(3.6)

where x = inputj . So the node acts like a thresholding device according to the sigmoidal

curve illustrated in Figure 3.2.

Figure 3.2: The sigmoid activation function.

In learning phase, a set of input patterns (training set) initialized with small random

values are presented at the input layer, together with their corresponding desired output
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patterns. Each input pattern is then passing through the input layer, where the weights

attached to the connections are adjusted accordingly. This reduces the difference be-

tween the network’s output and the desired output for that input pattern. The weights

between the output layer and the proceeding layer (hidden layer) are adjusted by the

generalized delta rule (to be described later) based on the difference error term or δ term

in the output layer as follows:

wkj(n + 1) = wkj(n) + η(δkoutk) (3.7)

where wkj(n+1) and wkj(n) are the weights connecting nodes k and j at iteration (n+1)

and n, respectively, η is a learning rate parameter. Subsequently, the δ term for hidden

layer nodes are computed and the weights connecting the hidden layer with the previous

layer (another hidden layer or input layer) are updated. This calculation is repeated

until all weights in the last layer have been adjusted.

The previous equation can be referred as the rate of change of error with respect to

the input to node k, and can be written as

δk = (dk − outk)f
′(inputk) (3.8)

for nodes in the output layer, and

δj = f ′(inputk)
∑

k

δkwkj (3.9)

for nodes in the hidden layers, where dk is the desired output for node k.

The concepts behind back-propagation algorithm is a gradient descent optimization

procedure which minimizes the mean squared error between network’s output and the

desired output for all input patterns P , that is,
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E =
1

2P

∑
p

∑
k

(dk − Outk)
2 (3.10)

The training set is presented iteratively to the network as the weights are updated until

their value are stable and the following criteria are reached:

• a user defined error-tolerance is achieved, or

• a maximum number of iterations is completed.

Summary of training procedure for multilayer perceptron feed-forward neural networks

is shown in Figure 3.3.

Figure 3.3: Training procedure for multilayer perceptron network.

Experimental data are prepared in two sets, namely, training set and test set. The

training set is used to establish various network parameters, while the test set is used

to adjust those parameters, as well as to assess the performance of the network during
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and after training. Once trained, the configuration so established is saved for use in

classification phase.

The Generalized Delta Rule

Opertion of the network requires that the weights be adjusted iteratively in order

to minimize the mean-squared error. The procedure corresponding to such action is a

gradient descent optimization in weight space. Consider the symbols in Figure 3.1, when

a pattern p is presented to the network, the weight changes are given by

Δwkj = −η
∂Ep

∂wkj
(3.11)

where Ep is the squared error for input pattern p and is given by

Ep =
1

2

∑
k

(dk − outk)
2 (3.12)

and E =
∑

p Ep is the mean squared error as given in Equation (3.10). Applying chain

rule to right hand side terms of Equation (3.11) becomes

−
∂Ep

∂wkj
= −

∂Ep

∂inputk

∂inputk

∂wkj
(3.13)

This means that the weight changes can be expressed as the product of two terms. From

Equation (3.4), the rate of change of error with respect to input to node k and the change

of input to node k with respect to a change in weight between nodes k and j.

∂inputk

∂wkj

=
∂

∂wkj

∑
wkjoutj = outj (3.14)

Let δk = − ∂Ep

∂inputk
, then Equation (3.11) becomes
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Δwkj = −ηδkoutj (3.15)

The term δk can be expressed as the following equation by using chain rule,

δk = −
∂Ep

∂inputk
= −

∂Ep

∂outj

∂outk

∂inputk
(3.16)

From Equation (3.5)

∂outk

∂inputk
= f ′(inputk) (3.17)

Substituting Equation (3.12) and (3.17) in Equation (3.16) become

δk = (dk − outk)f
′(inputk) (3.18)

for any output layer node k and a given pattern p. Using chain rule, a node in any

hidden layer is expressed as

δj = f ′(inputj)
∑

k

δkwkj (3.19)

Applying Cross Validation to Stopping Criteria

In a neural network training phase, the important goal is to obtain optimal generalization

performance. Generalization performance means small errors on samples will not be

seen during training. Unfortunately, standard neural network architectures such as

the multilayer perceptron are prone to overfitting. This phenomenon takes place during

training as the network seems to perform better (the error on the training set decreases),

at some point it reverts to get worse again (the error on unseen examples increases).
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There are two ways to overcome overfitting, the first way is reducing the number of

dimensions of the parameter space or the effective size of each dimension. The other

way is early stopping. Early stopping can be used either interactively based on human

judgement, or automatic stopping criterion.

Figure 3.4: Idealized training and generalization error curves

Figure 3.4 shows the evolution overtime of the per-example error on training set and

test set. From the behavior shown in the figure, the following steps describe how to

apply cross validation to early stopping:

• split the training data into a training set and a cross validation set,

• train only on the training set and evaluate the per-example error on the validation

set once in a while,

• stop training as soon as the error on the cross validation set is higher than the last

time the error was cross validated, and

• use the weights of the network obtained from the previous training run.
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This method uses the cross validation set to simulate the behavior on the test set,

assuming that the errors of both sets are similar.

There are a number of plausible proposed stopping criteria proposed that can be

classified into three classes by Lutz Prechelt [45]. From this paper, some definitions are

defined. Let

• E be the objective function (error function) of the training algorithm,

• Etr(t) be the average error per example over the training set, measured after epoch

t,

• Eva(t) be the corresponding error on the validation set and be used by the stopping

criterion,

• Ete(t) be the corresponding error on the test set,

• Eopt(t) be the lowest validation set error obtained in epochs up to t: Eopt(t) =

mint′≤t Eva(t
′)

The generalization loss at epoch t is the relative percentage increase of validation error

over the minimum-so-far (in percent) [45]:

GL(t) = 100 ×

(
Eva(t)

Eopt(t)
− 1

)
(3.20)

A high generalization loss directly indicates overfitting, which is the reason to stop

training. Consequently, the first class of stopping criteria is defined as (GLα): stop as

soon as the generalization loss exceeds a given threshold; alternatively, GLα: stop after

first epoch t with GL(t) > α.

When training error rate decreases quickly, no overfitting takes place. As the rate

levels out, overfitting shapes up. A training strip of length k is defined as a sequence of
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k epochs numbered n + 1, ..., n + k, where n is divisible by k. The training progress (in

per thousand) measured after such a training strip is

Pk = 1000 ×

( ∑t
t′=t−k+1 Etr(t

′)

k × mint
t′=t−k+1 Etr(t′)

− 1

)
(3.21)

This means that how much the average training error during the strip was larger than

the minimum training error during the strip

The second class of stopping criteria is defined as the quotient of generalization loss

and progresses as follows [45]:

PQα: stop after first end-of-strip epoch t with GL(t)
Pk(t)

> α

The cross validation error is measured only at the end of each strip.

The third class of stopping criteria is defined depending on the sign of changes in

the generalization. The rationale is to stop when generalization errors increases in s

successive steps.

UPs: stop after epoch t if UPs−1 stops after epoch t − k and Eva(t) > Eva(t − k)

UP1: stop after first end-of-strip epoch t with Eva(t) > Eva(t − k)

This definition means that when the validation error has increased not only once, but

during s consecutive strips and assume that such increases indicate the beginning of

final overfitting, independent of how large the increases actually are.

From all classes (GL, PQ, and UP ), the class PQ is employed as the stopping

criterion of the training with back-propagation learning approach.
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3.5.2 Radial-Basis Function Network

The Interpolation Problem

The radial-basis function networks (RBFN) mention that the problem of curve-fitting is

approximation in high dimensional spaces. In this case, the learning process is equivalent

to finding an interpolating surface in the multidimensional space that provides the best

fit to the training data, measured by pre-selected statistical criteria.

The curve-fitting or interpolation problem can be stated as follows:

Given a set of N different points {xi ε Rm0 |i = 1, 2, ..., N } and a corresponding set

of N real numbers {di ε R1 |i = 1, 2, ..., N }, find a function F : RN → R1 that satisfies

the interpolation condition:

F(xi) = di i = 1, 2, . . . , N (3.22)

Radial-Basis Functions

The radial-basis functions (RBF) technique suggests that the interpolation function F

should be constructed in the following form

F(x) =

N∑
i=1

wiϕ(‖x − xi‖) (3.23)

where {ϕ(‖x − xi‖) |i = 1, 2, . . . , N } is a set of N arbitrary (generally nonlinear) func-

tions; radial-basis functions; and ‖·‖ is the Euclidean norm. The known data points

{xi ε Rm0 |i = 1, 2, ..., N } are defined to be the centers of the radial-basis functions.

Inserting the interpolation conditions of Equation (3.22) in Equation (3.23), a set of

simultaneous linear equations for the coefficients (weights) of the unknown wi are ex-

panded as follows:
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ11 ϕ12 . . . ϕ1N

ϕ21 ϕ22 . . . ϕ2N

...
...

...

ϕN1 ϕN2 . . . ϕNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1

w2

...

wN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

d2

...

dN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.24)

where

ϕji = ϕ(‖xj − xi‖) (j, i) = 1, 2, . . . , N (3.25)

Let

d = [d1, d2, . . . , dN ]T the desired output vector

w = [w1, w2, . . . , wN ]T linear weight vector

N be the size of the training sample

Φ denote an N-by-N matrix with element ϕji

Φ = {ϕji |(j, i) = 1, 2, . . . , N } (3.26)

This matrix is called the interpolation matrix and Equation (3.26) can be written in

compact form

Φw = d (3.27)

The unknown weights(w) can be obtained by solving the following linear equation:

w = Φ+d (3.28)

where Φ+ is the pseudo-inverse of Φ : Φ+ = (ΦT Φ)−1ΦT

There are many functions to be used in RBF such as
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1. Multiquadrics

ϕ(r) = (r2 + c2)
1
2 for some c > 0 and rεR

2. Inverse multiquadrics

ϕ(r) = 1

(r2+c2)
1
2

for some c > 0 and rεR

3. Gaussian functions

ϕ(r) = e

(
− r2

2σ2

)
for some σ > 0 and rεR

The multivariate Gaussian function gives two important properties that make the func-

tion a proper choice for building an RBF: translation and rotation invariant. The mul-

tivariate Gaussian function with these properties is also called Green’s function of the

following form:

G(x, xi) = exp(−
‖x − xi‖

2

2σ2
i

) (3.29)

RBF Network Structure

The most basic form of RBF network consists of three layers with different roles:

• input layer passes the input vectors to the next layers,

• hidden layer applies a non-linear transformation function to the input vectors and

distributes them to other high-dimensional hidden space,

• output layer applies a linear transformation to the activation pattern fed to the

input layer.
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Figure 3.5: Radial-basis function network.

Regularization Networks

Refer to the RBF network structure, the regularization network consists of three layers:

• input layer is composed of input nodes that is equal to the dimension m0 of the

input vector x,

• hidden layer is composed of nonlinear units that are connected directly to all nodes

in the input layer,

• output layer consists of a single linear unit fully connected to the hidden layer.
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There is one hidden unit for each data point xi, i = 1, 2, . . . , N , where N is the size of

the training sample. Green’s function is used as the activation function of individual

hidden units. Therefore the output of the ith hidden unit is G(x, xi). The output of the

network is a linearly weighted sum of the outputs of the hidden units.

The regularization network models the interpolation function F as a linear superpo-

sition (linear weighted sum) of multivariate Gaussian functions whose size is equal to

the number of the given sample input N:

F (x) =

N∑
i=1

wiG(x, xi) (3.30)

or,

F (x) =
N∑

i=1

wiexp(−
‖x − xi‖

2

2σ2
i

) (3.31)

where wi are the weights.

The regularization network provides three important characteristics:

• it is a universal approximator in that it can approximate arbitrarily well any mul-

tivariate continuous function on a compact set, given a sufficiently large number

of units;

• it has the best approximation property in that given an unknown nonlinear function

there always exists a choice of coefficients that approximates the function better

than all other choices; and

• it produces optimal solutions that minimize the functional approximation which

measures how much the solution deviates from its true value as represented by the

training samples.
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Figure 3.6: Regularization network.

Generalized RBF Networks

In the regularization networks, the number of Green functions is equal to the number of

the training examples. This causes computationally inefficient in practice, in the sense

that it may require a very large number of basis functions.

In real world practical situations, finding the linear basis function weights needs

to invert a very large N × N matrix which is computationally complex. To over-

come this problem, the network complexity needs to be reduced to find a solution that

approximates the solution produced by the regularization network. Let F ∗(x) be the

approximated solution,

F ∗(x) =

m1∑
i=1

wiϕ(x) (3.32)
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where {ϕ(x |i = 1, 2, . . . , m1)} is a new set of basis functions. Typically, the number of

basis functions is less than the number of data points (m1 ≤ N), and wi forms a new

set of weights. Then,

ϕi(x) = G(‖x − ti‖), i = 1, 2, . . . , m1 (3.33)

where the set of centers {ti |i = 1, 2, . . . , m1} is to be determined. Then F ∗(x) can be

refined as

F (x) =

m1∑
i

wiG(x, ti) =

m1∑
i=1

wiG(‖x − ti‖) (3.34)

The RBFN is constructed and trained by the following training algorithm.

RBF Training Algorithm

Initialization: given (xe, ye) e = 1, 2, . . . , N . Consider

• the network structure having a number n of basis functions ϕi, i = 1, 2, . . . , n

• the basis function centers xi, i = 1, 2, . . . , n

• the basis function variances σ2, i = 1, 2, . . . , n

Training:

• compute the outputs from each eth sample with the Gaussian basis functions:

ϕei = exp(−‖xe−xi‖
2

2σ2
i

) at each ith hidden unit, where i = 1, 2, . . . , n; e = 1, 2, . . . , N

• calculate the correlation matrix: ΦT Φ, and perform the summation: ΦT Φ + I

• invert the matrix: (ΦT Φ + I)−1
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• compute the vector: ΦT y

• estimate the weight: w = (ΦT Φ + I)−1ΦT y



CHAPTER IV

FAULT-PRONE PREDICTION

This chapter presents a new approach to predict software faults by means of fuzzy clus-

tering and radial-basis function techniques. Fuzzy subtractive clustering was employed

to divide historical and development data into clusters. Next the radial-basis function

network was applied to predict software faults that occurred in the component residing

in each cluster. In so doing, software faults prediction was accomplished reasonably

accurate by Mahaweerawat, et al [2]

4.1 Data and Metric Preparation

The experimental data are collected from 27 business applications by Lanubile [7] and

the students at the University of Bari, Italy. The resulting software systems range in

size from 1100 to 9400 lines of Pascal source code. There are total 118 components,

ranging in size from 60 to 530 lines of code, randomly selected.

The data were tallied and measured using different software metrics, namely, lines of

code (LOC), non-comment lines of code (NCLOC), Halstead program length (N), Hal-

stead volume (V ), McCabe cyclomatic complexity (V (G)), Halstead number of unique

operands (n2), Halstead total number of operands (N2), Henry&Kafura fan-in (fanin),

Henry&Kafura fan-out (fanout), Henry&Kafura information flow (IF ), and density of

comments (DC). These software metrics are derived from the following program pa-

rameters:
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• McCabe cyclomatic complexity (V (G))

V (G) = e − n + 2p

where

G = graph of the flow of program

e = number of edges

n = number of nodes

p = number of unconnected paths of the graph

• fanin: the fan-in of a module M is the number of local flows that terminates at

M , plus the number of data structures from which information is retrieved by M .

• fanout: the fan-out of a module M is the number of local flows that emanates from

M , plus the number of data structures that is updated by M .

• IF: the information flow is measured by (fanin × fanout)

• Halstead’s software science

Length (N) = N1 + N2 = n1log2(n1) + n2log2(n2)

Volume (V ) = Nlog2(n) = Nlog2(n1 + n2)

where

n1 = the number of distinct operators that appears in a program

n2 = the number of distinct operands that appears in a program

N1 = the total occurrences of distinct operator

N2 = the total occurrences of distinct operand

• DC: density of comments = CLOC
LOC

where CLOC is the number of comment lines of program text.

The data are divided into training (88 software components) and test (30 software

components) sets. A component is represented as a data point consisting of 11
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variables for 11 software metrics (this means a point in 11-dimensional space) and

each variable value is normalized as:

vnew =
vold − vmin

vmax − vmin
(4.1)

where vnew is new value of the considered variable for the data point, vold is old

value of the considered variable, vmin is the minimum value of all data point, and

the vmax is the maximum value of all data point.

4.2 Fault-Prone Predictive Model

Two models were constructed to classify software artifacts as either high-risk which

were likely to contain faults, or low-risk which were likely to be fault free. The first

model utilized multilayer perceptron (MLP) with back-propagation algorithm, whereas

the second model employed RBFN.

4.2.1 The Multilayer Perceptron Network Model

The first model is constructed from multilayer perceptron (MLP) network with back-

propagation learning algorithm. The training data set is randomly divided into two

parts, i.e., 59 data points for training part and 29 data points for validation part. The

training part is used to adjust the weights, whereas the validation part is for error

evaluation during training process. The criteria for automatic early stopping in training

phase are the PQα class [45] described in Section 3.5.1 of Chapter 3.

The MLP for this model consists of 11 input nodes in the input layer, 100 nodes in

the hidden layer, and 1 output node in the output layer as shown in Figure 4.1. Each

hidden node and output node has a bias input which is equal to 1.
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The output expected from the model is zero (y = 0) for the fault-free class (low-risk

class) and one (y = 1) for the fault-prone class (high-risk class). The learning rate (0.65)

and the sigmoid function are used in weight adjustment. The criteria are attained at

the 250th training iteration with PQ = 0.0323.

When the training process is complete, the model is re-applied to classify the test

data set. The output values so obtained range between 0 and 1 which are indecisive

for component classification. Applying a predefined acceptance ratio of 0.55, if the

calculated output is greater than or equal to 0.55, the component is a high-risk class.

Otherwise, it is a low-risk class. The approach yields a 60% accurate prediction of the

test data.

Figure 4.1: Fault-prone predictive model with multilayer perceptron network
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4.2.2 The Radial-Basis Function Network Model

In the work of Yuan, et al [20], cluster centers are used to construct fuzzy rules with

Sugeno-type. Assuming that the data point is in 2-dimension space (x1, x2) and y is a

dependent variable or output. Given a cluster center (x∗
1, x

∗
2, y

∗), fault-proneness can be

predicted according to the following premises:

IF x1 IS CLOSE TO x∗
1 AND x2 IS CLOSE TO x∗

2 THEN y = a0 + a1x1 + a2x2

The relation IS CLOSE TO is implemented as a Gaussian membership function,

while the parameter aj is approximated by linear least squares estimation. This method

groups the data points in to proper clusters in which they belong. The output can be

calculated using the equation

y(x) =
66∑
i=1

wiG(‖x − ti‖) (4.2)

From the above equation, it is apparent that Euclidean distance, along with proper

weight, serves as the model’s IS CLOSE TO relation. Since the calculated output value

is a real number close to 0 or 1, it is rounded to the nearest integer (0 for low-risk or

1 for high-risk). Figure 4.2 depicts the structure of this network consisting of 11 input

nodes in input layer, 66 hidden nodes and 3 output nodes in hidden and output layers,

respectively. This simple adjustment yields an 83% prediction accuracy of the test data.

4.3 Model Evaluation

As both models yield acceptable prediction, it is imperative that their performance be

known for subsequent assessment and application. A number of evaluation criteria are

considered such as misclassification rate,quality achieved, and verification cost.
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Figure 4.2: The RBFN model

4.3.1 Misclassification rate

There are two types of misclassification errors. A type I error occurs when a high-risk

component is classified as low-risk, while a type II denotes a low-risk component being

classified as high-risk.

Proportion of Type I : P1 = nhl

ntot

Proportion of Type II : P2 = nlh

ntot

Proportion of Type I + Type II : P12 = nhl+nlh

ntot

(4.3)
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where nhl is number of type I errors,

nlh is number of type II errors, and

ntot is number of predicted of software components used in the prediction.

4.3.2 Quality achieved

If all the high-risk components are properly classified, all defected will be removed by

the extra verification, and perfect quality will be achieved.

The quality completeness measure is carried out according to the equation

C =
nhh

nrh

(4.4)

where nhh is number of faulty components that have been actually classified

as such by the model, and

nrh is total faulty components.

4.3.3 Verification cost

Two indicators are used to measure the verification cost, inspection and wasted inspec-

tion. Inspection (I) measures the overall cost by considering the percentage of compo-

nents that should be verified. Waste inspection (WI) is the percentage of components

that do not contain faults but have actually been verified because they were incorrectly

classified as faulty.

I =
nph

ntot

WI = nlh

nph

(4.5)
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Table 4.1: Results from model evaluations

Criterion Fault predictive model

MLP model RBF model

Misclassification rate P1 = 0 P1 = 6.67

P2 = 40.00 P2 = 10.00

P12 = 40.00 P12 = 16.67

Quality achieved C = 100 C = 88.24

Verification cost I = 96.67 I = 60.00

WI = 41.38 WI = 16.67

where nph is number of components that have been classified as high-risk class,

nlh is number of low-risk components that have been classified as

high-risk class, and

ntot is number of all components.

The results of model evaluations can be interpreted in Table 4.1:

From the above results, misclassification rate of the fault-prone MLP model is higher

than that of the fault-prone RBF model. The rate at which a low-risk component is

misclassified as a high-risk component is high in the MLP model, while there is no

high-risk component misclassified as low-risk class. Although the completeness of the

MLP model is higher than the RBF model, it expends more wasted cost of inspection.

The more important aspect, perhaps, is that the RBF model can accurately predict

fault-prone component up to 83% as oppose to 60% by the MLP model.



CHAPTER V

FAULT TYPE PREDICTION

To remain competitive in the dynamic world of software development, organizations

must optimize the use of their limited resources to deliver quality products on time and

within budget. This requires prevention of fault introduction and quick discovery and

repair of residual faults.

In this chapter, a new model [4, 5], called MASP, for predicting and identifying of

faults in object-oriented software systems is introduced. In particular, faults due to

the use of inheritance are considered as they account for significant portion of faults in

object-oriented systems.

The proposed MASP model acts as a fault metric selector that gathers relevant fil-

tering metrics suitable for specific fault types employing coarse-grained and fine-grained

metric selection algorithms. A fault predictor is subsequently established to identify the

fault type of individual fault classification.

5.1 Fault Categories

Inheritance provides many benefits in creativity, efficiency and reuse but they can cause

a number of anomalies and faults [35]. This study focuses on five fault types caused

by the use of inheritance as introduced in [35] and are summarized in Table 5.1. The

following descriptions of fault types use the concepts of class extension and refinement

defined in [35] as follows. A class extends its parent classes if it introduces a new method
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name and does not override any methods in its ancestor classes. A class refines the parent

classes if it provides new behaviors not presented in the overridden method, does not

call the overridden method, and its behavior is semantically consistent with that of the

overridden method.

State definition anomaly (SDA). An anomaly will exist if the refining methods im-

plemented in the descendant that provides definitions for the inherited state vari-

ables. The definitions must be inconsistent with those in the overridden method

or any extension method that is called by a refining method. Consequently, the

inherited variables so defined are inconsistent with those of the ancestor’s current

state.

State definition inconsistency due to state variable hiding (SDIH). This fault

is due to the introduction of an indiscriminately named local state variable v. If a

local variable is introduced to a class definition where the name of variable is the

same as an inherited variable from its ancestor, the inherited variable is hidden

from the scope of the descendant as the variable is implicitly referred causing faults

to occur.

State defined incorrectly (SDI). When an overriding method defines the same state

variable v as defined in the overridden method, but the computation performed

by the overriding method is not semantically equivalent to the computation of the

overridden method with respect to v, then the fault will result.

Indirect inconsistent state definition (IISD). A descendant class D adds an ex-

tension method e() that defines an inherited state variable v. A method m() in

its ancestor class T cannot directly call the extension method e() unless the de-

scendant class D inherit the method m(). Then the inherited method D::m() can
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Table 5.1: Fault and anomalies due to inheritance

Acronym Fault/Anomaly

SDA State Definition Anomaly

(possible post-condition violation)

SDIH State Definition Inconsistency

(due to state variable hiding)

SDI State Definition Incorrectly

(possible post-condition violation)

IISD Indirect Inconsistent State Definition

SVA State Visibility Anomaly

call the method e(). An IISD will occur if the extension method e() defines a

state variable v of the ancestor class T that yields the state of the ancestor class

incorrectly.

State visibility anomaly (SVA). The state variables v in an ancestor class A are

declared private and subsequently defined by a polymorphic method A::m(), i.e.,

A::v. Suppose that B is a descendant of A, and C of B. Both class B and C provide

an overriding definition of A::m(). Class C has to call A::m() to modify v. The

SVA will be introduced if class C calls B::m() instead of A::m() and class B has

refined the method m() and yields inconsistent state with respect to v.

5.2 Software Metrics and Parameters

In general, software metrics provide quantitative descriptions of certain characteristics

of software products and processes. Code metrics, as a specific type of product metrics,

provide such descriptions for elements of software systems, e.g., classes in case of object-

oriented systems. Table 5.2 lists a set of metrics [24] provided by the software tool

“Understand for C++” [46] are employed to measure the above software faults.
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Table 5.2: Software metrics from a software tool

Software Metrics

AvgCyclomatic

AvgCyclomaticModified

AvgCyclomaticStrict

AvgLine

AvgLineCode Average line code

CountClassBase

CountClassCoupled (CBO)

CountClassDerived (NOC)

CountDeclClass

CountDeclInstanceMethod (NIM)

CountDeclInstanceVariable (NIV)

CountDeclInstanceVariablePrivate

CountDeclInstanceVariableProtected

CountDeclInstanceVariablePublic

CountDeclMethod (WMC)

CountDeclMethodAll (RFC)

CountDeclMethodFriend

CountDeclMethodPrivate

CountDeclMethodProtected

CountDeclMethodPublic

CountLine

CountLineCode

MaxCyclomatic

MaxCyclomaticModified

MaxCyclomaticStrict

MaxInheritanceTree (DIT)

PercentLackOfCohesion (LCOM)

Number of Parents(NOP)

Number of Direct Base classes(DirBase)

Number of Indirect Base Classes (IndBase)

Number of Descendants (NOD)
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The number of syntactic fault patterns [3] in object-oriented programs according

to the fault types in Section 5.1 has been used as additional parameters. Table 5.3

summarizes those patterns whose definitions are as follows:

• Extension method Calls another Extension method (ECE). Descendant

classes that use ECE mechanism can cause SDA anomalies if the called extension

method c defines inherited state variables or calls inherited methods that defines

inherited state variables. Method c can yield an anomaly if a method that is

subsequently called depends in some way on the state defined by c.

• Extension method Calls Inherited methods (ECI). An SDA anomaly will

exist if the inherited method i which defines and uses a state variable (in the

ancestor’s context) is called out of sequence with respect to the current state

by an extension method. An SVA fault can also appear due to ECI if a state

variables v in an ancestor class A are declared private and subsequently defined

by a polymorphic method A::m(), i.e., A::v. Suppose that B is a descendant of A,

and C of B. Both class B and C provide an overriding definition of A::m(). Class

C has to call A::m() to modify v. Then class C calls B::m() instead of A::m() and

class B has refined the method m() and yields inconsistent state with respect to

v. If an extension method c of class C calls the inherited method C::m() but the

method B::m() is refined in some way that is inconsistent with A::m(), then an

ECI fault occurs.

• Extension method Calls Refining method (ECR). If a refining method r

defines inherited variables, an SDA anomaly can occur if a subsequently called

method depends upon the ancestor’s state in some way that has been affected by

r. In addition, a fault can exist if r defines the state variable incorrectly or uses

the state variable and is called out of sequence with respect to the current state
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of the ancestor.

• Extension method Defines Inherited state Variable (EDIV). An SDA

anomaly will be introduced if the extension method defines an inherited variable v

at a time that is inconsistent with the current state of the ancestor. Furthermore,

an SDI fault can appear if the definition given to v is not consistent with how the

variable is defined by ancestor methods.

• Refining method Calls Extension method (RCE). A refining method man-

ifests SDA by failing to define the same set of the ancestor’s state variables as

the overridden method does. Although the refining method defines the right state

variables, it can cause an SDI fault if the refining method defines them incorrectly.

An IISD can occur if the refining method r calls one of the descendant’s extension

methods.

• Refining method Calls other Inherited method (RCI). An SDA anomaly

can exist if a refining method that calls an inherited method i (instead of the

overridden method o) and the inherited method i defines different set of state

variables as the overridden method o does. However, if i defines the same set of

state variables as o does, it can cause an SDI fault if the semantics of the resulting

definition are different. An SVA fault can also appear due to RCI. Given the state

variables in an ancestor class A are declared private, and a method A::m() defines

A::v. Suppose B is a descendant of A, and C of B. The descendant class C calls

the inherited method C::m() which, in turns, is inherited from B::m() to modify v.

If a refining method r of class C calls the inherited method C::m() but the method

B::m() is refined in some way that is inconsistent with A::m(), then an SVA fault

occurs.
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• Refining method Calls another Refining method (RCR). The effects of

a refining method calling another refining method are similar to refining method

calling an extension method (RCI). It can cause both SDA anomalies and SDI

faults.

• Refining method Calls Overridden Method (RCOM). If a refining method

r calls the overridden method o and defines additional state variables not defined

by o or redefines those defined by o, then SDA anomalies and SDI faults occur.

• Refining method Defines/Uses Inherited state Variable (RDIV/RUIV).

RDIV can causes both SDA anomalies and SDI faults. If a refining method does

not define the same state variables as the overridden method, then an SDA anomaly

will occur. If the refining method defines the same state variables as the overridden

method but in a manner that is inconsistent with how the overridden method

defines, then an SDI fault will exist. Moreover, RUIV can introduce an SDIH

anomaly if the refining method r declares a local state variable v whose name is

identical to one that is inherited and r uses v to define an inherited state variable.

Besides the number of the patterns and software metrics described in [3, 34], addi-

tional parameters are defined for use in this study as follows:

• Number of inherited methods (NMI). This parameter can be used with ECI,

EDIV, RCI, RDIV, and RUIV [3] patterns to detect SDA, SDI, SDIH, and SVA

faults.

• Number of extension methods (NME). This parameter can be used with

ECE, ECI, ECR, EDIV, and RCE [3] patterns to detect SDA, SDI, IISD, and

SVA faults.
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Table 5.3: Syntactic inheritance patterns.

Acronym Syntactic Pattern

ECE Extension method Calls another Extension method

ECI Extension method Calls Inherited methods

ECR Extension method Calls Refining method

EDIV Extension method Defines Inherited state Variable

RCE Refining method Calls Extension method

RCI Refining method Calls other Inherited method

RCR Refining method Calls another Refining method

RCOM Refining method Calls Overridden Method

RDIV Refining method Defines Inherited state Variable

RUIV Refining method Uses Inherited state Variable

• Number of refining methods (NMR). This parameter can be used with ECR,

RCE, RCI, RCR, RCOM, RDIV, and RUIV [3] patterns to detect SDA, SDI,

SDIH, IISD, and SVA faults.

• Number of methods dependent on the inherited variable which is defined

in the descendant class (DepIV). This parameter can be used with ECE, ECI,

ECR, EDIV, and RCE [3] patterns to detect faults of SDA type. If an extension

method defines a state variable v and there is another method that depends on v,

then an SDA exists.

• Number of portions that the inherited variable is defined differently

in the inherited method from the overridden method in the indirect

base class (DiffOvrrI). This parameter can be used with the RCI [3] pattern

to detect faults of SDI type. If a refining method calls an inherited method i

instead of the overridden method o and i defines the same state variable as those

in the overridden method but the result of definition is different, then an SDI fault

appears.
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• Number of portions that the inherited variable is defined differently

from the ancestor (DiffDef). This parameter can aid EDIV, RCE, RCR,

RDIV, and RCOM [3] patterns to detect an SDI fault. If an extension method e

or a refining method r defines an inherited variable in the manner that is different

from its ancestor, then an SDI fault occurs. If a refining method calls the extension

method e or the refining method r, an SDI fault also appears.

Comparisons between state variables in the ancestor class and those in the descendant

class are as follows:

• Number of variable types defined in the ancestor method which is re-

fined in the descendant class (NDTRAM)

• Number of variables defined in the ancestor method which is refined in

the descendant class (NDVRAM)

• Number of variable types defined in the refining method of the descen-

dant class (NDTRM)

• Number of variables defined in the refining method of the descendant

class (NDVRM)

All four parameters above can be used with ECR, RCR, RDIV, and RCOM [3]

patterns to detect the SDA and SDI faults. If a refining method r does not define the

same set of state variables as in the ancestor class, an SDA fault appears. An SDA fault

also exists if an extension method or another refining method calls the refining method

r. Moreover, if the refining method r calls an overridden method o and defines additional

state variables not defined by o, the SDA fault will be introduced.

If r defines the same set of state variables as the overridden method o does but the

definition is different, then an SDI fault occurs.
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• Number of overridden methods of the indirect base class (OvrrMet).

This parameter can help the RCI [3] pattern detect SDA and SDI fault types

when the inherited methods are called instead of the overridden methods.

Comparisons between state variables in the inherited methods and those in the over-

ridden methods are as follows:

• Number of variable types defined in the inherited method which are

called instead of the overridden method (NTIMet)

• Number of variable types defined in the overridden method of the indi-

rect base class (NTOVrrMet)

• Number of variables defined in the inherited method which is called

instead of the overridden method (NVIMet)

• Number of variables defined in the overridden method of the indirect

base class (NVOVrrMet)

All four parameters above can be used with the RCI [3] pattern to detect the faults

of SDA and SDI types. If a refining method r calls an inherited method i instead of an

overridden method o and the method i does not define the same set of state variables

as in the method o, then an SDA fault exists.

However, if i defines the same set of state variables as o does but the definition is

different, an SDI fault appears.

• Number of identical name variables (IdenVar). This parameter can be used

with RDIV and RUIV [3] patterns to detect an SDIH fault.

• Number of implicit references of the identical name variable (ImRef).

This parameter can be used with RDIV and RUIV [3] patterns and the parameter
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IdenVar to detect an SDIH fault. If there is a state variable v whose name is

identical to one that is inherited and is defined by a refining method, an SDIH

fault exists. An SDIH fault will also occur if a refining method uses v to define an

inherited state variable with the implicit reference.

• Number of called inherited methods that define or use private variable

(IPriV). This parameter can be used with the RCI [3] pattern to detect an SVA

fault. If a refining method r calls an inherited method i to modify a state variable

which is declared private in the indirect base class, an SVA fault is likely to occur.

• Number of refining methods in the ancestor class that are inherited to

the descendant class (RIpriV). This parameter can be used with the RCI [3]

pattern and the parameter IPriV to detect an SVA fault. If a refining method r

calls an inherited method i to modify a state variable which is declared private in

an indirect base class and the method of the direct base class which inherited i is

refined but not consistent with the original method in the indirect base class, then

an SVA fault appears.

The parametric measurements are categorized according to the five fault types shown

in Table 5.4.

5.3 Fault Analysis

In this study, a set of source code is examined to analyze faults that exist in software

systems. Fault analysis encompasses two processes, namely, faultiness prediction and

fault type identification.

A faultiness predictive model is constructed based on software characteristics, such as

fan-in/fan-out, modularity, and cohesion, that are measured by selected software metrics
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Table 5.4: Fault/anomaly types identified by syntactic patterns and parameters.

Pattern/ Fault Type

Parameter SDA SDIH SDI IISD SVA

ECE X

ECI X X

ECR X

EDIV X X X

RCE X X X

RCI X X X

RCR X X

RCOM X X

RDIV X X X

RUIV X

NMI X X X X

NME X X X X

NMR X X X X X

DepIV X

DiffOvrrI X

DiffDef X

NDTRAM X X

NDVRAM X X

NDTRM X X

NDVRM X X

OVrrMet X X

NTIMet X X

NVIMet X X

NTOVrrMet X X

NVOVrrMet X X

IdenVar X

ImRef X

IPriV X

RIpriV X
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to predict whether the considered software is faulty or fault-free. A set of predetermined

software metrics are used as the principal characterization attributes of software, while

neural network techniques are utilized to build the predictive model. In a preliminary

investigation [2], two faultiness predictive models were built based on eleven software

metrics with the help of multilayer perceptron (MLP) for the first model and Radial-

basis function network (RBFN) for the second model. The results yielded prediction

accuracy of 60% and 83%, respectively. Since some software metrics used in prior work

are suitable only for structured software, additional object-oriented software metrics

have been employed. A fault identification model named MASP is introduced. The

MASP model consists of two stages, namely, faultiness prediction (or coarse-grained)

stage and fault type identification (or fine-grained) stage. This is depicted in Figure 5.1.

Coarse-grained
metric selection

Faultiness prediction:
MLP with back-propagation

learning algorithm

Fault type identification:
Radial-Basis Function

Network

Relevant metrics

Irrelevant
metrics

Faulty classes

Fault-free
classes

Faultiness prediction

Fault type identification

Fault types

All metrics of both
faulty and fault-free classes

in the training set

Fine-grained
metric selection Relevant metrics

Irrelevant
metrics

Software classes

Figure 5.1: Diagram of MASP fault identification model construction.

In the faultiness prediction stage, a coarse-grained metric selection algorithm is pro-

posed to extract the vital fault metrics that affect fault proneness. A faultiness predictive

model is then applied to extract faulty classes using MLP with back-propagation learning

algorithm.

Since the metrics selected by coarse-grained method do not contain adequate trace

provisions for identifying fault type from the faulty classes so obtained, a fine-grained

metric selection algorithm is presented to enhance trace identification capability with
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the help of other relevant metrics. A fault type identification model is constructed using

RBFN. The MASP approach identifies not only fault type residing in the faulty classes,

but also determines the degree of various impacts on which each fault type has. This is

carried out by means of an algorithm which considers the metrics associating with the

hidden nodes in the hidden layer of the model and their corresponding weights. Details

on how the algorithm works will be elucidated in the sections that follow.

5.4 Faultiness Prediction–A Coarse-Grained Approach

A coarse-grained approach employs selected metrics from a coarse-grained metric selec-

tion algorithm to construct a faultiness predictive model.

The experiments have been carried out using 3,000 C++ classes from different

sources: complete applications, individual algorithms, sample programs, and various

other sources on the Internet. The classes were written by different developers. The

size of the classes varied between 100 and 500 lines of code. Such combinations of

experimental data provided a good mixture necessary for obtaining general predictive

models.

Of all the 3,000 classes, half of them were representatives of faulty samples and the

other half were fault-free samples. The faulty samples were divided into five groups of

300 classes, having each fault type code listed in Table 5.1 inserted according to syntactic

patterns in [3]. All faulty and fault-free samples were measured with 60 software metrics

and fault parameters given in [3, 46].

The data were normalized to 0 and 1, and randomly grouped into three sets, namely,

A, B, and C. Each group was divided into an 800-class training set and a 200-class test

set. Table 5.5 shows the number of software classes in each fault type per set.

All 60 software metrics and fault parameters were applied to the experimental data.
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Table 5.5: Training and test data sets.

Fault A B C

Category training test training test training test

Fault-free 400 100 273 75 284 87

SDA 80 20 95 33 98 22

SDIH 80 20 116 14 91 21

SDI 80 20 91 31 126 25

IISD 80 20 102 27 112 19

SVA 80 20 123 20 89 26

Total 800 200 800 200 800 200

However, not all software metrics and fault parameters contributed to faultiness of the

software classes. Therefore, it was necessary to select only the relevant metrics and

fault parameters in order to filter out the irrelevant ones. Some researches [22,25,26,29,

30] employed univariate logistic regression analysis and Principal Component Analysis

(PCA) as a preprocessing scheme to extract only suitable object-oriented metrics for

predictive model construction. Because statistical and mathematical methods are black

box which cannot explain the reasoning behind the metric selection [23], a new algorithm

to select the relevant attributes is proposed. In the following discussion, both software

metrics and fault parameters are simply referred to as metrics.

1. Separate the training set into two sets, namely, fault-free set for fault-free classes

and faulty set for faulty classes.

2. In fault-free set, calculate the average value of each metric.

AvgNFMi =
∑p

j=1 xj
i

p

where AvgNFMi is the average value of metric i in the fault-free set, i = {1, 2, . . . , m},

m is the number of metrics, j = {1, 2, . . . , p}, p is the number of fault-free classes

in the fault-free set, and x
j
i is the value of metric i of the fault-free class j.
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3. In faulty set, calculate the average value of each metric.

AvgFTMi =
∑q

k=1 yk
i

q

where AvgFTMi is the average value of metric i in the faulty set, i = {1, 2, . . . , m},

m is the number of metrics, k = {1, 2, . . . , q}, q is the number of faulty classes in

the faulty set, and yk
i is the value of metric i of the faulty class k.

4. Calculate the relative difference of the average value of each metric between the

fault-free and faulty sets.

DiffAvgMi = |AvgNFMi−AvgFTMi|
(AvgNFMi+AvgFTMi)

× 100

where DiffAvgMi is the relative difference of the average value of metric i between

the fault-free and faulty sets.

5. Select the metrics having the average relative difference above the selected thresh-

old.

Applying the above selection algorithm using the threshold value of 50 to the training

set A, eleven metrics were obtained.

There are feature selection techniques used in [22,25,26,29,30], i.e., univariate logistic

regression, multivariate logistic regression, PCA, and an unsupervised method presented

in [47]. Different techniques were applied to find a subset of proper metrics, including

the above pre-selected metrics, for faultiness predictive model using MLP with back-

propagation learning algorithm based on the above pre-selected metrics. Performance

of MASP model was compared with other approaches. The objective was to fine tune

the proposed model to correctly classify the data points into fault-free and fault groups.

The structure of faultiness predictive model consisted of input nodes with respect to the

selected metrics in the input layer, 15 hidden nodes in the hidden layer, and 1 output

node in the output layer.
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Table 5.6: Results from faultiness predictive models based on sets of metrics obtained

from different metric selection techniques

Metric selection technique Test set

A B C

Univariate logistic regression 90.00% 87.20% 88.00%

Multivariate logistic regression 92.50% 88.10% 88.20%

Principal component analysis 77.50% 74.60% 72.50%

An unsupervised method [Mitra] 68.50% 70.40% 67.20%

Random selection 76.00% 75.10% 74.40%

The proposed coarse-grained algorithm 95.50% 94.90% 95.40%

The expected output value computed from the output node of the model would be

zero for the fault-free class and one for the faulty class. The actual output was carried

out during the training process. Each output value was computed from sigmoid function

in batch mode using a 0.35 learning rate value, along with the adjusted weights (in ac-

cordance with the delta rule without a momentum term), and input values. The training

process terminated when the error was less than 0.001 or reached 1000 epoches. The

output values so obtained ranging between 0 and 1 were indecisive for data classification.

Setting an acceptance ratio at 0.55, a data point could be classified as a faulty class if

the output of MLP was greater than this value. Otherwise, it was a fault-free class.

The comparative results of the experiments are depicted in Table 5.6. Each faultiness

predictive model was built from the training set A and re-applied to the test set A,

both training and test sets B and C. The experiments were carried out on Matlab V6.0.

Three models applying the sets of metrics obtained from univariate logistic regression,

multivariate logistic regression, and the proposed coarse-grained algorithm are shown in

Table 5.7.

The highest correctness percentage was accomplished by the proposed model and

was subsequently evaluated through some measurement criteria [7] as follows:
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Table 5.7: The selected metrics obtained from applying univariate logistic regression,

multivariate logistic regression, and the proposed coarse-grained algorithm to training

set A.
Univariate Multivariate The proposed coarse-grained

logistic logistic algorithm

regression regression

ImRef NOD NOC

DiffDef ImRef CountDeclInstanceVariableProtected

DiffOVrrI DiffDef CountDeclMethodProtected

RIpriV DepIV NOD

RIpriV ECE

ECR

ImRef

DiffDeff

DiffOVrrI

DepIV

RIpriV

• Type I error (T1): This error occurs when a faulty class is classified as fault-free;

T1 = 2.81%

• Type II error (T2): This error occurs when a fault-free class is classified as

faulty; T2 = 2%

• Quality achieved (C): If all faulty classes are properly classified, defects will be

removed by extra verification to see if they are indeed faulty; C = 95.51%

• Inspection (I): Inspection measures the overall verification cost by considering

the percentage of classes that should be verified; I = 61.95%

• Waste Inspection (WI): Waste inspection is the percentage of classes that do

not contain faults but are verified because they have been classified incorrectly;

WI = 3.23%
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5.5 Fault Type Identification–A Fine-Grained Approach

A fine-grained metric selection algorithm is proposed. The algorithm is based on relative

difference between the value of each metric applied to faulty and fault-free classes in the

training set.

1. Set initial weight of each metric to accentuate its importance.

W
(t)
i = 0

where W
(t)
i is the weight value of metric i at iteration t, i = {1, 2, . . . , m}, m is

the number of metrics, and t is the iteration number.

2. Establish a pair of fault-free and faulty classes from the training set, each of which

consists of the same corresponding set of metrics.

X = {x1, x2, . . . , xm} , Y = {y1, y2, . . . , ym}

where X is a faulty class consisting of m metrics, Y is a fault-free class consisting

of m metrics, xi is the value of metric i of the faulty class, and yi is the value of

metric i of the fault-free class.

3. Calculate the relative difference of each metric pair from step 2.

Di = |xi−yi|
(xi+yi)

× 100

where Di is the relative difference of metric i among their respective classes, xi is

the value of metric i of the faulty class, yi is the value of metric i of the fault-free

class. This will prevent metric intermixing among their corresponding applicable

domains.

4. Adjust the weight value of each metric according to the following conditions:

IF Di ≥ β THEN W
(t)
i = W

(t−1)
i + 1

ELSE W
(t)
i = W

(t−1)
i − 1
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where β = 50 (in percentage) is a predefined threshold value.

5. Repeat step 2 through step 4 until all fault-free classes match with all faulty classes

of the training set.

6. Consider the weight value of each metric, replacing negative values with zero

IF Wi < 0 THEN Wi = 0

7. Normalize all weight values

Wi = Wi−min
max−min

where max and min are the maximum and minimum weight values, respectively.

8. Select the metrics with weight values above the selected threshold.

After applying the selection algorithm using a threshold value of 0.5, thirty-four

relevant metrics were obtained from set A, B, and C. The metric union of all three sets

yielded a combined 35 metrics, where all metrics from set A and C were identical, but B

differed by only one. Note in Table 5.8 that the thirty-five fine-grained selected metrics

were composed of the same eleven metrics obtained from the coarse-grained algorithm

in Section 5.4 and the newly added twenty-four metrics.

The construction of fault type identification model is based on RBFN technique and

the fine-grained selected metrics as mentioned earlier. The model consists of 35 input

nodes in the input layer, a number of hidden nodes in the hidden layer (this number is

determined during the training process), and five output nodes in the output layer that

form an output vector. The output vector denotes the type of fault in binary format as

’10000’, ’01000’, ’00100’, ’00010’, and ’00001’, representing SDIH, IISD, SVA, SDA, and

SDI faults, respectively.

During the experiment, training data were used to generate weights between the

hidden layer and the output layer. If the network yielded low accuracy, the number
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Table 5.8: The combined filtered metrics.
Metrics from coarse-grained Metrics from fine-grained

algorithm algorithm

NOC RUIV

CountDeclInstanceVariableProtected NDTRAM

CountDeclMethodProtected NDVRM

NOD CountDeclInstanceVariablePublic

ECE CountDeclMethodPrivate

ECR OVrrMet

ImRef CountDeclInstanceVariablePrivate

DiffDef NDVRAM

DiffOvrrI ECI

DepIV RCOM

RIpriV NDTRM

CBO

IndBase

IdenVar

EDIV

NTIMet

RCE

NVIMet

RCI

NTOVrrMet

RCR

NVOVrrMet

RDIV

IPriV
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Table 5.9: Results from applying the fault type predictive model to predict faulty classes.

Fault Predicted Fault Type

Category SDA SDIH SDI IISD SVA

SDA 180 3 17 3 3

SDIH 5 246 6 2 3

SDI 20 6 261 4 2

IISD 13 4 11 243 9

SVA 5 2 2 5 264

Fault-Free 40 0 0 0 4

of hidden nodes would be incremented by one. This restructuring by node-plus-one

progression continued until the desired accuracy was acquired or the number of hidden

nodes reached the number of training data points.

Based on the above procedures, the proposed model yielded a 91.38% prediction

accuracy on faulty classes of test data from set A, all data from data sets B and C.

The model was reapplied to the predicted faulty classes obtained from the faultiness

predictive model and yielded the prediction accuracy of 87.60%. The reason behind lower

accuracy was that some fault-free classes were incorrectly classified as faulty classes by

the faultiness predictive model presented in Section 5.5. The results shown in Table 5.9

relate the actual number of each fault type and classification. Note that the effects of

erroneous prediction become apparent as the fault-free classes are inferred to have SDA

and SVA faults. Such caveats will impede future identification of the occurrence of these

two fault types.

From the structure of the model, weights are assigned to the hidden layer and the

output layer of fault type model. The weight value of each hidden node designates on

which output node it would have an effect. The maximum weight value obtained from all

hidden nodes that exert on a given output node indicates the dominance of the hidden

node.
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To explore which metric among all 35 that dominates fault type of a given hidden

node, an algorithm is proposed as follows:

1. Choose a fault type to find a set of representative metrics.

2. Among the hidden nodes, find the one that has the most effect on fault type

according to the weight values between the hidden nodes and the output nodes.

3. Identify the set of classes from training data where the selected fault is originated.

4. For each metric, calculate the difference between metric values of a training class

and a hidden node (each of which contains 35 metrics).

V
(j,k)
i =

∣∣ck
i − h

j
i

∣∣
where V

(j,k)
i is the difference of metric i among training class k and the hidden

node j, ck
i is the value of metric i of class k, and h

j
i is the value of metric i of

hidden node j.

5. Repeat step 4 for the selected fault type until all classes and hidden nodes are

considered.

6. For each fault type, calculate the total difference of each metric value from Step 5.

TotVi =
∑m

j=1

∑n
k=1 V

(j,k)
i

where TotVi is the total difference of metric i among all classes and hidden nodes,

V
(j,k)
i is the difference of metric i among training class k and hidden node j, m

is the number of hidden nodes for the selected fault type, and n is the number of

training classes for the same selected fault type.

7. Normalize all total difference values by

TotVi = TotVi−min
max−min
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where max and min are the maximum and minimum total difference values, re-

spectively.

8. Repeat Steps 1-7 above until all fault types are considered.

Figure 5.2 and Figure 5.3 show the effects of IISD and SDA metrics have on particular

fault types. The zero total difference value means that the corresponding metrics of that

training class and hidden node are the same and thus has no effect on the fault type.

On the other hand, if the total difference metric between the training classes and the

hidden nodes is high, that metric will likely contribute to the fault prediction of the

software. As depicted in Figure 5.3, the 29th metric represents the effect of SDA fault

due to the number of variable types defined in the inherited method being called instead

of the overridden method (NTIMet). In contrast, Figure 5.2 shows that this metric has

less effect on IISD fault.

Figure 5.4 demonstrates how important all metrics are in each fault type. There

are many metrics affecting SDA fault with high scale of the total difference value, while

other metrics affect IISD and SVA faults at low scale of the total difference value. The

importance of each metric for all fault types is shown in Figure 5.5. Notice that the 18th

metric shows the highest effect of number of appearances of the pattern refining method

(RDIV) [3] has on all fault types, while the 6th metric depicts less effect of the number

of private methods declared in a class (CountDeclMethodPrivate) [46] has on every fault

type.

The proposed coarse-grained software metric attribute selection algorithms of MASP

proved to be effective in determining the significance of each metric and characterization

of software faultiness. Based on the selected metrics and MLP with back-propagation

learning algorithm, the proposed approach is able to predict faultiness of a class with

more than 90% accuracy. According to the evaluation criteria, the faulty classes can be
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Figure 5.2: The total difference of each metric between hidden nodes and training classes

having IISD fault.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
0

0.2

0.4

0.6

0.8

1
SDA

Metric

T
o
t
a
l 
d
if
f
e
r
e
n
c
e
 
v
a
lu

e

Figure 5.3: The total difference of each metric between hidden nodes and training classes

having SDA fault.

Table 5.10: Results of fault type identification model obtained from the coarse-grained

and fine-grained selected metric sets.

Test set Metric set

Coarse-grained selected metrics Fine-grained selected metrics

faulty classes predicted faulty classes predicted

faulty classes faulty classes

A 87.00% 81.55% 92.00% 86.41%

B 88.80% 85.60% 90.59% 89.20%

C 83.46% 80.19% 91.09% 86.15%

detected in 95.51% of test cases, the inspection cost for verification is 61.95%, and the

waste cost is 3.23%. Only 2.81% of faulty classes are undetected.
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Figure 5.4: The total difference of all metrics between hidden nodes and training classes

for each fault type.

The proposed MASP’s coarse-grained metric selection demonstrates slight advan-

tages of fault-metric classification over conventional statistical and PCA approaches.

However, only the coarse-grained selected fault metrics were not enough for fault type

identification, a fine-grained metric selection algorithm was proposed to further extract

additional relevant metrics that affect the corresponding fault type. Such preprocessing

ground work establishes an effective filtering mechanism that permits higher accuracy of

subsequent fault type identification as depicted in Table 5.10. The fault type predictive

model applying the coarse-grained selected metrics yields an average of 85% and 82%

accuracy on faulty classes and predicted faulty classes, respectively. In contrast, the

predictive model obtained from the fine-grained metrics yields an average of 91% and

87% accuracy on faulty classes and predicted faulty classes, respectively. Moreover, the

primary cause of contributing fault types can also be identified by MASP’s pair-wise

metric comparison algorithm in Section 5.5. In so doing, this two-stage fault prediction

technique offers not only high accuracy fault prediction outcomes, but also the corre-

sponding fault types that contribute to the designated faults. It is envisioned that some

forms of fine grained metric preprocessing for each particular fault type should be car-
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Figure 5.5: The total difference of all metrics between hidden nodes and training classes

for all fault types.

ried out to alleviate the aforementioned caveats (as shown in Table 5.9 and 5.10) and

consequently reduce the costs incurred.



CHAPTER VI

DYNAMIC FAULT PREDICTION

Software faults have been widely studied in both procedural and object-oriented pro-

gramming, where most researches utilize static metrics obtained from source code to

predict the faultiness. However, there exists faults which occur at run time and may

not be detected by static metrics. In this chapter, dynamic fault analysis is employed

to probe those faults in object-oriented programming. Each object-oriented program is

represented as graphs, along with some fault metrics extracted from those graphs are

proposed. Fault prediction process is performed based on the fault metrics so obtained

using neural network techniques. The cause and location of predicted faults are then

determined from the proposed graphs with the help of sensitivity analysis technique.

6.1 Software Model

Investigation of dynamic faults calls for an in-depth dichotomy of program behavior. In

this study, a graphical model to denote an object-oriented program in a series of graphs

has been established. Each graph contains different nodes and edges corresponding to

what they represent such as class, method, membership relation, etc. These represen-

tative graphs have general definitions that may encompass additional information given

in [37, 48] as follows:

Definition 6.1: A digraph G is a pair (V, E), where V is a finite, nonempty set of
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vertices, and E ⊆ V × V is a set of distinct ordered pairs V . Elements of E are called

directed edges. For an edge e ∈ E from a vertex v1 to a vertex v2, v1 is the tail and

called the initial vertex of e, denoted as IV (e), and v2 is the head and called the terminal

vertex of e, denoted as TV (e).

Definition 6.2: A multi-digraph is an n + 1 tuple (V, E1, E2, . . . , En) such that for

all i, 1 ≤ i ≤ n, (V, Ei) is a digraph. A path in the graph is a sequence of edges

(e1, e2, . . . , ek) such that TV (ei) = IV (ei+1), for 1 ≤ i ≤ k − 1, and ej ∈
⋃n

p=1 Ep, for

1 ≤ j ≤ k. Let vI = IV (e1) and vT = TV (ej). The connection is called a path from vI

to vT , denoted by vI → vT for short.

Definition 6.3: Let e1, e2, . . . , and ek be a set of edges in a multi-digraph

G(V, E1, E2, . . . , En), vI be the initial vertex of e1, and vT be the terminal vertex of ek.

(e1, e2, . . . , ek) is a path in the graph if and only if the terminal vertex of ei is the initial

vertex of ei+1 for 1≤ i ≤ k − 1. Denote the path from vI to vT as vI → vT . For a path

vp → vq = (e1, e2, . . . , en)Vp−−−−−−−−−−−→Ex∪Ey∪...∪Ez
Vq means that ∀j, 1 ≤ j ≤ n, ej ∈ Ex∪Ey∪. . .∪Ez .

Definition 6.4: A tagged multi-digraph is a tuple (V, ( E1, E2, . . . , En), T ) such that

(V, E1, E2, . . . , En) is a multi-digraph, where

1. V is a finite set of vertices,

2. Ei ⊆ V × V is a finite set of directed edges, for 1 ≤ i ≤ n, and

3. T is a finite set of vertex tags; T =
⋃m=|V |

i=1 T (Xi), where T (Xi) is a set of vertex

tags associated with vertex Xi, Xi ∈ V, i = {1, 2, . . . , m}.

An object-oriented program analysis approach is introduced, encompassing five as-

pects, namely, program structure, class inheritance, association, and control flow. For
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Table 6.1: Symbols in graphs

Symbol Abbreviation Description

Vc Class

Va Attribute

Vm Method

Vari Referred inherited attribute

Vmri Referred inherited method

<OPsi,OP bi> T(X) Vertex tag

Vgf Global function

Vsec Source code section

Epri Private membership

Epro Protected membership

Epub Public membership

Eh Class inheritance

Emh Member inheritance

Em Method invocation

d/u
Eda/Eua Attribute access

Ehpri Private inheritance

Ehpro Protected inheritance

Ehpub Public inheritance

Efa Friend association

T/F
Ectl Control flow

Einv involving

EIHp Inheritance path

EASSp Association path

clarity, a list of symbols and graphs used in this article is given in Table 6.1.

6.1.1 Program Structure

An object-oriented program structure can be represented by a Program Structure Graph

(PSG) [37]. A PSG is a multi-digraph, where vertices represent classes, methods, and

attributes; multiple edge sets represent class inheritance, public-/protected-/private-

memberships, declarations, attribute access, and method invocation. To apply PSG to

this study, some definitions on inherited attribute and method are established and the
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original PSG descriptions are redefined as follows:

Definition 6.5: Let P be an object-oriented program. A PSG of P is defined as

GPSG(P ) = (V, E), where

1. V = Vc ∪ Vm ∪ Va ∪ Vmri ∪ Vari such that

• Vc is a set of vertices representing classes,

• Vm is a set of vertices representing methods,

• Va is a set of vertices representing attributes,

• Vmri is a set of vertices representing inherited methods which are redefined or

referred in the class, and

• Vari is a set of vertices representing inherited attributes which are redefined

or referred in the class.

2. E = (Eh, Epub, Epro, Epri, Em, Eda, Eua) such that

• Eh ⊆ Vc × Vc is a set of edges from a class to its immediate subclass repre-

senting class inheritance,

• Epub ⊆ (Vm ∪ Va ∪ Vmri ∪ Vari) × Vc is a set of edges from an attribute or a

method to its defining class representing public-membership,

• Epro ⊆ (Vm ∪ Va ∪ Vmri ∪ Vari) × Vc is a set of edges from an attribute or a

method to its defining class representing protected-membership,

• Epri ⊆ (Vm ∪ Va ∪ Vmri ∪ Vari) × Vc is a set of edges from an attribute or a

method to its defining class representing private-membership,

• Em ⊆ (Vm ∪ Vmri × (Vm ∪ Vmri) is a set of edges from a source method to

another method invoking the source method,
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Figure 6.1: Class A, B, and C

• Eda ⊆ (Va∪Vari)× (Vm∪Vmri) is a set of edges from an attribute to a method

defining the attribute value, and

• Eua ⊆ (Va∪Vari)× (Vm∪Vmri) is a set of edges from an attribute to a method

using the attribute value.

Figure 6.1 and 6.2 show example programs containing six classes. A PSG can be

constructed from the example programs as shown in Figure 6.3. All attribute accesses

and method invocations of a class are also demonstrated in attribute access graphs and

method invocation graphs shown in Figure 6.4 through 6.10.

6.1.2 Class Inheritance

An inheritance relationship between one class and its subclasses means that the sub-

classes can possess members of the class and be identified according to declarations of
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1 class E;
2 class D: public A, public B
3 {
4 friend void func1(D&,E&);
5 public:
6 float d1; 
7 char d2; 
8  void setd1() 
9  { b2 = b2*0.1; 
10    d1 = b2 + a1; 
11  } 
12  void display() 
13  { displayint(d1); 
14    displaychar(d2); 
15  } 
16 protected:
17  void set(int x){a1=x+1;}
18 };

19 class E
20 {
21 friend void func1(D&,E&);
22 public:
23
24 int e2; 
26 void plusval() 
27 { 
28   e2 = e2+e4; 
29 } 
30
31 private:
32 int e4; 
33 };

34 static class F: private D
35{
36  public:
37  void compute()
38  { A::set(2);
39    f1 = (a1 + b2) * d1;
40  }
41 void write()
42  {  cout <<"\n a1: ";
43      cout << a1;
44      cout <<"\n b2: ";
45      cout << b2;
46      cout <<"\n d1: ";
47      cout << d1;
48      cout <<"\n f1: ";
49      cout << f1;
50  }
51  void setd1(float d){F::d1 = d;}
52  void setb2(float b){F::b2 = b;}
53  F();
54
55 private:
56 float f1; 
57
58 };
59 F::F(){};
60 int B::funcb2(C& c){return c.c1;}
61 void func1(D& d,E&e){d.set(e.e4);}

Figure 6.2: Class D, E, and F
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the following forms:

class ClassP : ClassQ

class ClassP : public ClassQ

class ClassP : protected ClassQ

class ClassP : private ClassQ

An Inheritance Flow Graph (IFG) [49] is employed to represent inheritance relation-

ship among classes and to identify flow operations which are either defined or used in

association with other members of the class. The notion is then applied in this research

with the help of some added and redefined definitions as follows:

Definition 6.6: Type and structure of an attribute are denoted in its signature but

does not contain a body.

Definition 6.7: Type, number, and order of in/out parameters of a method are denoted

in the signature of the method while the body of the method holds the statements or

other implementation details.

Definition 6.8: An operation on a member of a class is either a signature-inheritance

define (Dsi) or signature-inheritance use (Usi).

1. a Dsi on a member means that the signature of the member is originated in the

class,

2. a Usi on a member means that the signature of the member is inherited from a

superclass, i.e., the class processes the signature without defining it.

Definition 6.9: An operation on the body of a member in a class is either body-
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inheritance define (Dbi), body-inheritance use (Ubi), or null (Nbi).

1. a Dbi on a member means that the body of the member is newly defined or redefined

in the class,

2. a Ubi on a member means that the body of the member exists, no new definition

is specified in the class,

3. an Nbi on a member means that neither Dbi nor Ubi constitutes the body of the

member, i.e., the body does not exist.

A pair of operations on a member of a class in inheritance flow are a combination

of {Dsi, Dui} × {Dbi, Ubi, Nbi}. There are six combinations, but only five of them are

applied. The operation pair (Dsi, Ubi) are excluded because no member can redefine the

signature while its body is kept unchanged.

Definition 6.10: Let P be an object-oriented program. An Inheritance Flow Graph

(IFG) of P is defined as GIFG(P ) = (V, E, T ), where (V, E, T ) are tagged multi-digraphs,

and

1. V = Vc ∪ Vm ∪ Va ∪ Vmri ∪ Vari as defined earlier in definition 6.5

2. E = (Ehpub, Ehpro, Ehpri, Epub, Epro, Epri, Emh, Em, Eda, Eua) such that

• Ehpub ⊆ Vc × Vc is a set of edges from a class to its immediate subclass

representing public inheritance,

• Ehpro ⊆ Vc × Vc is a set of edges from a class to its immediate subclass

representing protected inheritance,

• Ehpri ⊆ Vc × Vc is a set of edges from a class to its immediate subclass

representing private inheritance,
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• Emh ⊆ ((Va ∪ Vari) × Vari) ∪ ((Vm ∪ Vmri) × Vmri) is a set of edges from

an attribute (referred inherited attribute) or a method (referred inherited

method) defining signature/body inheritance of a superclass to a referred

inherited attribute or method of a subclass, and

• Epub, Epro, Epri, Em, Eda, Eua as defined earlier in definition 6.5

3. T =
⋃m

i=1 T (Xi), where T (Xi) is a pair of vertex tags. Denote 〈a, b〉 as a pair of

flow operations on the signature and body of a member associating with Xi, where

Xi ∈ Va ∪ Vm ∪ Vari ∪ Vmri, i = {1, 2, . . . , m}, m = |Va ∪ Vm ∪ Vari ∪ Vmri|

An implicit member is a member inherited from a superclass without any change,

denoted by a pair of vertex tags 〈Usi, Ubi〉 or 〈Usi, Nbi〉. This member is represented as

Vari or Vmri in an IFG if it is referred in a class. Figure 6.11 illustrates class inheritance

from all classes of the example program in Figure 6.1 and 6.2.

Definition 6.11: Let q1 and q2 be two class vertices in an IFG. A flow path from vertex

q1 to vertex q2 is an inheritance flow path, denoted as q1 −−−−→
IHF

q2, if and only if one of

the following holds:

1. q1 → q2 ∈ Ehpub ∪ Ehpro ∪ Epri, or

2. ∃α, α ∈ Vc such that q1 → α ∈ Ehpub ∪ Ehpro ∪ Ehpri and α −−−−→
IHF

q2.

The inheritance flow graph and inheritance flow path are depicted in Figure 6.11 and 6.12,

respectively.

6.1.3 Association

An association relationship between two classes means that one class members can be

used in the other’s members. The “use” class sends a message or its instance to an
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instance or a member function of the “used” class [37, 38]. There are four types of

association relationships [39]:

• Friend member function association is identified according to declarations of the

following form

class ClassP {

/ / . . .

friend return type ClassQ::f(. . .);

/ / . . .

};

• Friend class association is identified according to declarations of the following form
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class ClassP {

/ / . . .

friend class ClassQ;

/ / . . .

};

• Friend operation association is the association between classes through a global

function. For example,

class date;

class time {

/ / . . .

friend char *timedate(time, date);

/ / . . .

};

class date {

/ / . . .

friend char *timedate(time, date);

/ / . . .

};

char *timedate(time t, date d) {. . .};

• Ordinary association is the association established through parameter passing of

an instance of one class to a member function of another class.

In the ordinary association, execution of a method in an instance of one class might

send a message to an instance of another class to invoke the designated method. A

method might be invoked by a number of other methods. The method invocation se-

quence along with association relationships form the association flow. Thus, an as-
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sociation flow path is a sequence of association relationships. The corresponding flow

operations on the members of associated classes along the path are defined as follows [37]:

Definition 6.15: An operation on a member of a class is a define association (Das) or

a use association (Uas).

1. A Das on a member means that the class owns the member,

2. A Uas on a member means that the class contains a message that might access or

invoke the member.

A member with the operation Das means that the class explicitly defines or inherits

the member from other classes. A Uas on a member means that the member might be

invoked by some messages associating with the class.

Definition 6.16: Let P be an object-oriented program. An Association Graph (ASG)

of P is defined as GASG(P ) = (V, E), where (V, E) is a multi-digraph, and

1. V = Vc ∪ Vm ∪ Va ∪ Vari ∪ Vmri ∪ Vgf such that

• Vgf is a set of vertices representing global functions,

• Vc, Vm, Va, Vari, Vmri as defined earlier in definition 6.5, and

2. E = (Epub, Epro, Epri, Em, Eda, Eua, Efa) such that

• Efa ⊆ Vc × (Vc ∪ Vm ∪ Vgf) is a set of edges from a class to a class, a method,

or a global function,

• Epub, Epro, Epri as defined earlier in definition 6.13, and

• Em, Eda, Eua as defined earlier in definition 6.5.
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Definition 6.17: Let q1 and q2 be two class vertices in an ASG. A flow path from vertex

q1 to vertex q2 is an association flow path, denoted as q1 −−−−→
ASF

q2, if and only if one of

the following holds:

1. ∃δ, δ ∈ Vm ∪ Va, and ∃χ, χ ∈ Vm such that δ −−−−−−−−−−−−−→
Epub∪Epro∪Epri

q1 ∧ δ −−−→
Em

χ ∧

χ −−−−−−−−−−−−−→
Epub∪Epro∪Epri

q2, or

2. ∃α, α ∈ Vc, ∃ δ′, δ′ ∈ Vm ∪ Va, and ∃χ′, χ′ ∈ Vm, such that δ′ −−−−−−−−−−−−−→
Epub∪Epro∪Epri

q1 ∧

δ′ −−−→
Em

χ′ ∧ χ′ −−−−−−−−−−−−−→
Epub∪Epro∪Epri

α, and α −−−−→
ASF

q2.

The association graph and association flow paths of the example program are depicted

in Figure 6.13 and 6.14.
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6.1.4 Control Flow

Control flow is a sequence of method invocation and related attributes which involve

classes, methods, and attributes in the sequence.

Definition 6.18: Let P be an object-oriented program. A Control Flow Graph (CFG)

of P is defined as GCFG(P ) = (V, E), where (V, E) is a directed graph, and

1. V = Vsec ∪ Vc ∪ Vm ∪ Va ∪ Vmri ∪ Vari such that

• Vsec is a set of vertices representing source code sections, and

• Vc, Vm, Va, Vmri, Vari as defined earlier in definition 6.5.

2. E = (Ectl, Einv, Epub, Epro, Epri, Em) such that

• Ectl is a set of edges from a source code section to another source code section,

• Einv is a set of edges from an involved class, attribute, or method to a source

code section, and
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Table 6.2: Object-Oriented program analysis graphs

Abbreviation Graph name

PSG Program Structure Graph

AAG Attribute Access Graph

MIG Method Invocation Graph

IFG Inheritance Flow Graph

ASG Association Graph

CFG Control Flow Graph

• Epub, Epro, Epri, Em as defined earlier in definition 6.5.

In a CFG, an edge from a class to a source code section (Einv) means that an object

of the class is only initiated without implementation as appeared on line 3 and 5-6 of the

example program in Figure 6.15. Figure 6.16 shows a control flow graph of the program.

Table 6.2 summarizes all the graphs so defined.

6.2 Static Fault and Dynamic Fault Analyses

In Mahaweerawat’s, et al, previous work [4, 5], fault prediction was performed using

software metrics obtained from source code measurement. The proposed MASP model

acts as a fault metric selector that gathers relevant filtering metrics suitable for spe-

cific fault types. The coarse-grained algorithm selects important metrics for faultiness

prediction while the fine-grained algorithm incorporates additional metrics which are

essential for fault type identification. Since fault prediction was accomplished based on

metrics gathered from source code, it was considered a static fault analysis.

However, there exists faults which occur at run time and may not be detected at static

fault analysis stage. Consequently, dynamic fault analysis is employed to accommodate

those faults by means of graphs. Each object-oriented program is represented by a set

of graphs according to program structure, control flow, inheritance, association. The

analyses start from coarse-grained to fine-grained stage to determine any dynamic faults
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1   int main() 
2   { 

3    C Cobj; 
4    D Dobj; 
5    E Eobj; 
6    F Fobj; 
7    float d1,b2; 
8    Cobj.inival(); 

9   cout << "\n\n enter value for Dobj.a1: "; cin >> Dobj.a1; 
10   cout << "\n enter value for Dobj.b2: "; cin >> Dobj.b2; 
11   cout << "\n enter value for Dobj.d2: "; cin >> Dobj.d2; 

12 if (Dobj.b2 > 0) 
13        {  Dobj.setd1(); 
14                      Dobj.display(); 
15 } 

16   cout << "\n\n enter value for Eobj.e2: "; cin >> Eobj.e2; 
17
18   Eobj.plusval(); 

19   cout << "\n\n enter value for Fobj.b2: "; cin >> b2; 
20   Fobj.setb2(b2); 
21   cout << "\n enter value for Fobj.d1: "; cin >> d1; 
22   Fobj.setd1(d1); 
23    if(d1>0) 
24     { Fobj.compute(); 
25       Fobj.write(); 
26        return 1; 
27     } 

Section 1 (S1) 

Section 2 (S2) 

Section 3 (S3) 

Section 1 (S4) 

Section 5 (S5) 

Section 6 (S6) 

Figure 6.15: Main function
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S1
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S4

S5

S6

S3

Start

End

Source code section Control flow

T

T

F

F

T/F

C

D

E

F

Class

Involving

inival()

float b2

char d2

int a1

display()setd1()

int e2

plusval()

float d1

float b2

setdb2(float)

setd1(float)

compute()

write()

Method 

Attribute
Referred inherited attribute

Private membership

Public membership

Protected membership

Referred inherited method

Figure 6.16: Control flow graph of main function

and the corresponding cause of fault that might exist. In the coarse-grained stage,

control flow graph, attribute access graph, method invocation graph, and inheritance

flow graph are employed to select relevant classes, attributes, and methods. The control

flow graph is used to determine which classes and their members attribute to the control

flow path in question, while the inheritance flow graph is used to extract additional

classes that have inheritance relationship with the classes obtained from the control flow

graph. In the fine-grained stage, the association graph are employed to explore other

classes that might have association relationship, respectively, to the classes obtained

from the control flow graph in the coarse-grained stage.

In addition to the classes and their members examined, all related fault metrics

to those classes are also taken into account. The fault metrics are obtained from the

implemented graphs and described in Section 6.3.
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Table 6.3: Fault and anomalies due to inheritance

Acronym Fault/Anomaly

SDA State Definition Anomaly

(possible post-condition violation)

SDIH State Definition Inconsistency

(due to state variable hiding)

SDI State Definition Incorrectly

(possible post-condition violation)

IISD Indirect Inconsistent State Definition

SVA State Visibility Anomaly

6.3 Fault Metrics

This study focuses on five fault types incurred by the use of inheritance and polymor-

phism shown in Table 6.3. These metrics are established as a fault-tracer that will

lead to locate the possible source of errors. Details on each fault type are described

in [35]. A set of object-oriented software metrics and parameters [3,4,34,46] are applied

to measure the source code under investigation. These metrics are summarized in Ta-

ble 6.4, 6.5, 6.6, 6.7 and 6.8. The following sections elaborated the definition of each

fault type.

Class

1. Program Structure: Let c be a class vertex in a PSG or AAG. The metrics of class

c are described as follows:

• Number of new methods (NnewM); NnewM is the number of methods m ∈

Vm, m → c ∈ Epri ∪ Epro ∪ Epub

• Number of new attributes (NnewA) NnewA is the number of attributes a ∈

Va, a → c ∈ Epri ∪ Epro ∪ Epub

• Number of private attributes (NpriA); NpriA is the number of paths α → c ∈

Epri and α ∈ Va ∪ Vari
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Table 6.4: Object-Oriented metrics for fault prediction

Metric Description Domain of application

NnewM Number of new methods Class/Program structure

NnewA Number of new attributes Class/Program structure

NpriA Number of private attributes Class/Program structure

NpubA Number of public attributes Class/Program structure

NproA Number of protected attributes Class/Program structure

NpriM Number of private methods Class/Program structure

NpubM Number of public methods Class/Program structure

NproM Number of protected methods Class/Program structure

Nmdiav Number of new methods which define inherited attribute value Class/Program structure

Nmuiav Number of new methods which use inherited attribute value Class/Program structure

Nihp Number of inheritance paths Class/Inheritance

Nanc Number of ancestors Class/Inheritance

Nriaa Number of referred inherited attributes from ancestors Class/Inheritance

Nriap Number of referred inherited attributes from parents Class/Inheritance

Nima Number of inherited methods which are originally defined by ancestors Class/Inheritance

Nimp Number of inherited methods which are originally defined by parents Class/Inheritance

Nrima Number of referred inherited methods from ancestors Class/Inheritance

Nrimp Number of referred inherited methods from parents Class/Inheritance

NDSria Number of referred inherited attributes with signature-inheritance define Class/Inheritance

NDSrim Number of referred inherited method with signature-inheritance define Class/Inheritance

NDBrim Number of referred inherited methods with body-inheritance define Class/Inheritance

NUrim Number of referred inherited methods with signature and body inheritance use Class/Inheritance

NiaDsbmin Number of methods with signature and body inheritance define

which are members of ancestors in the considered inheritance path

and invoked by the considered class Class/Inheritance

NiaUsDbmin Number of methods with signature inheritance use and body inheritance define

which are members of ancestors in the considered inheritance path

and invoked by the considered class Class/Inheritance

NiaUsbmin Number of methods with signature and body inheritance use

which are members of ancestors in the considered inheritance path

and invoked by the considered class Class/Inheritance

NipDsbmin Number of methods with signature and body inheritance define

which are members of parent in the considered inheritance path

and invoked by the considered class Class/Inheritance

NipUsDbmin Number of methods with signature inheritance use and body inheritance define

which are members of parent in the considered inheritance path

and invoked by the considered class Class/Inheritance

NipUsbmin Number of methods with signature and body inheritance use

which are members of parent in the considered inheritance path

and invoked by the considered class Class/Inheritance

NiaDsa Number of attributes with signature inheritance define

which are members of ancestors in the considered inheritance path

and accessed by the considered class Class/Inheritance

NiaUsa Number of attributes with signature inheritance use

which are members of ancestors in the considered inheritance path

and accessed by the considered class Class/Inheritance

NipDsa Number of attributes with signature inheritance define

which are members of parent in the considered inheritance path

and accessed by the considered class Class/Inheritance
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Table 6.5: Object-Oriented metrics for fault prediction (continued)

Metric Description Domain of application

NipUsa Number of attributes with signature inheritance use

which are members of parent in the considered inheritance path

and accessed by the considered class Class/Inheritance

Npar Number of parents Class/Inheritance

Nriaatot Number of referred inherited attributes from ancestors of all inheritance paths Class/Inheritance

Nriaptot Number of referred inherited attributes from parents of all inheritance paths Class/Inheritance

Nrimatot Number of referred inherited methods from ancestors of all inheritance paths Class/Inheritance

Nrimptot Number of referred inherited methods from parents of all inheritance paths Class/Inheritance

Nimatot Number of inherited methods from ancestors of all inheritance paths Class/Inheritance

Nimptot Number of inherited methods from parents of all inheritance paths Class/Inheritance

NiaDsbmintot Number of methods with signature and body inheritance define

which are members of ancestors and invoked by the considered class Class/Inheritance

NiaUsDbmintot Number of methods with signature inheritance use and body inheritance define

which are members of ancestors and invoked by the considered class Class/Inheritance

NiaUsbmintot Number of methods with signature and body inheritance use

which are members of ancestors and invoked by the considered class Class/Inheritance

NipDsbmintot Number of methods with signature and body inheritance define

which are members of parents and invoked by the considered class Class/Inheritance

NipUsDbmintot Number of methods with signature inheritance use and body inheritance define

which are members of parents and invoked by the considered class Class/Inheritance

NipUsbmintot Number of methods with signature and body inheritance use

which are members of parents and invoked by the considered class Class/Inheritance

NiaDsatot Number of attributes with signature inheritance define

which are member of ancestors and accessed by the considered class Class/Inheritance

NiaUsatot Number of attributes with signature inheritance use

which are member of ancestors and accessed by the considered class Class/Inheritance

NipDsatot Number of attributes with signature inheritance define

which are member of parents and accessed by the considered class Class/Inheritance

NipUsatot Number of attributes with signature inheritance use

which are member of parents and accessed by the considered class Class/Inheritance

DIT Depth of inheritance Class/Inheritance

NDSriatot Number of referred inherited attributes with signature-inheritance define

from all inheritance paths Class/Inheritance

NDSrimtot Number of referred inherited methods with signature-inheritance define

from all inheritance paths Class/Inheritance

NDBrimtot Number of referred inherited methods with body-inheritance define

from all inheritanc paths Class/Inheritance

NUrimtot Number of referred inherited methods with signature and body inheritance use

from all inheritanc paths Class/Inheritance

NASOmin Number of methods which invoke other methods or access attributes in other classes

with ordinary association Class/Association

NASF min Number of methods which invoke other methods or access attributes in other classes

with friend member function association Class/Association

NASCmin Number of methods which invoke other methods or access attributes in other classes

with friend class association Class/Association

NASOmout Number of methods which are invoked by other methods in other classes

with ordinary association Class/Association

NASF mout Number of methods which are invoked by other methods in other classes

with friend member function association Class/Association

NASCmout Number of methods which are invoked by other methods in other classes

with friend class association Class/Association
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Table 6.6: Object-Oriented metrics for fault prediction (continued)

Metric Description Domain of application

NASPmout Number of methods which are invoked by global functions

with friend operation association Class/Association

NASOa Number of attributes which are accessed by methods in other classes

with ordinary association Class/Association

NASF a Number of attributes which are accessed by methods in other classes

with friend member function association Class/Association

NASCa Number of attributes which are accessed by methods in other classes

with friend class association Class/Association

NASPa Number of attributes which are accessed by global functions

with friend operation association Class/Association

NASF cin Number of associated classes whose members are invoked/accessed

by the considered class with friend class association Class/Association

NASF o Number of associated classes in friend operation association Class/Association

NASF cmin Number of associated classes whose members are invoked/accessed

by the considered class with friend member function association Class/Association

NASOcin Number of associated classes whose members are invoked/accessed

by the considered class with ordinary association Class/Association

NASF cout Number of associated classes whose members invoke/access members

of the considered class with friend class association Class/Association

NASF cmout Number of associated classes whose members invoke/access members

of the considered class with friend member function association Class/Association

NASOcout Number of associated classes whose members invoke/access members

of the considered class with ordinary association Class/Association

AMtype Membership type of the considered attribute; private/protected/public Attribute/Program structure

Natac Number of accesses via method invocation within the class Attribute/Program structure

NnewMdef Number of new methods which define the considered attribute value Attribute/Program structure

NnewMuse Number of new methods which use the considered attribute value Attribute/Program structure

NDiffmet Number of inherited methods which implement the considered attribute

in different way from the overridden method do Attribute/Program structure

SOperA Signature-operation on the consider attribute Attribute/Inheritance

Anw/ih whether the considered attribute is newly defined or inherited from a superclass Attribute/Inheritance

NmDsbdef Number of inherited methods with signature and body inheritance define

which define the considered attribute value Attribute/Inheritance

NmUsDbdef Number of inherited methods with signature inheritance use and

body inheritance define which define the considered attribute value Attribute/Inheritance

NmUsbdef Number of inherited methods with signature and

body inheritance use which define the considered attribute value Attribute/Inheritance

NmDsbuse Number of inherited methods with signature and

body inheritance define which use the considered attribute value Attribute/Inheritance

NmUsDbuse Number of inherited methods with signature inheritance use and

body inheritance define which use the considered attribute value Attribute/Inheritance

NmUsbuse Number of inherited methods with signature and body inheritance use

which use the considered attribute value Attribute/Inheritance

Lodefa Level of class that originally defines the considered attribute Attribute/Inheritance

NAoras Number of accesses via ordinary association Attribute/Association

NAfmas Number of accesses via friend member function association Attribute/Association

NAfcas Number of accesses via friend class association Attribute/Association

NAfoas Number of access via friend operation association Attribute/Association

MMtype Membership type of the considered method; private/protected/public Method/Program structure
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Table 6.7: Object-Oriented metrics for fault prediction (continued)

Metric Description Domain of application

Naacm Number of attributes accessed by the considered method within the same class Method/Program structure

Nmivin Number of other methods invoked by the considered method within the same class Method/Program structure

Nnewmivin Number of other new methods invoked by the considered method

with in the same class Method/Program structure

Nmivout Number of other methods which invoke the considered method

within the same class Method/Program structure

Nnewmivout Number of other new methods which invoke the considered method

within the same class Method/Program structure

Ndiffatt Number of inherited attributes which are implemented by the considered method

in different way from the overridden method do Method/Program structure

SBOperM Signature-operation and Body-operation on the considered method; define/use Method/Inheritance

Mnw/ih whether the considered method is newly defined or inherited from a superclass Method/Inheritance

NaDsdef Number of inherited attribute with signature inheritance define

which their values are defined by the considered method Method/Inheritance

NaUsdef Number of inherited attribute with signature inheritance use

which their values are defined by the considered method Method/Inheritance

NaDsuse Number of inherited attributes with signature inheritance define

which their values are used by the considered method Method/Inheritance

NaUsuse Number of inherited attributes with signature inheritance use

which their values are used by the considered method Method/Inheritance

NDsbmivin Number of other inheritance methods with signature and

body inheritance define which are invoked by the considered method

with in the same class Method/Inheritance

NUsDbmivin Number of other inheritance methods

with signature inheritance use and body inheritance define

which are invoked by the considered method with in the same class Method/Inheritance

NUsbmivin Number of other inheritance methods with signature and body inheritance use

which are invoked by the considered method with in the same class Method/Inheritance

NDsbmivout Number of other inheritance methods with signature

and body inheritance define which invoke the considered method

with in the same class Method/Inheritance

NUsDbmivout Number of other inheritance methods

with signature inheritance use and body inheritance define

which invoke the considered method with in the same class Method/Inheritance

NUsbmivout Number of other inheritance methods with signature and body inheritance use

which invoke the considered method with in the same class Method/Inheritance

NactDsbmin Number of methods with signature and body inheritance define

which are members of ancestors and invoked by the considered method Method/Inheritance

NactUsDbmin Number of methods with signature inheritance use and body inheritance define

which are members of ancestors and invoked by the considered method Method/Inheritance

NactUsbmin Number of methods with signature and body inheritance use

which are members of ancestors and invoked by the considered method Method/Inheritance

NactDsatt Number of attributes with signature inheritance define

which are member of ancestors and accessed by the considered method Method/Inheritance

NactUsatt Number of attributes with signature inheritance use

which are member of ancestors and accessed by the considered method Method/Inheritance

NparDsbmin Number of methods with signature and body inheritance define

which are members of parents and invoked by the considered method Method/Inheritance
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Table 6.8: Object-Oriented metrics for fault prediction (continued)

Metric Description Domain of application

NparUsDbmin Number of methods with signature inheritance use and body inheritance define

which are members of parents and invoked by the considered method Method/Inheritance

NparUsbmin Number of methods with signature and body inheritance use

which are members of parents and invoked by the considered method Method/Inheritance

NparDsatt Number of attributes with signature inheritance define

which are member of parents and accessed by the considered method Method/Inheritance

NparUsatt Number of attributes with signature inheritance use

which are member of parents and accessed by the considered method Method/Inheritance

Lodefm Level of class that originally defines the considered method Method/Inheritance

NMoriv Number of invocations via ordinary association Method/Association

NMfmiv Number of invocations via friend member function association Method/Association

NMfciv Number of invocations via friend class association Method/Association

NMfoiv Number of invocations via friend operation association Method/Association

NMasoin Number of other methods invoked by the considered method

via ordinary association Method/Association

NMasfin Number of other methods invoked by the considered method

via friend member function association Method/Association

NMascin Number of other methods invoked by the considered method

via friend class association Method/Association

• Number of public attributes (NpubA); NpubA is the number of paths α → c ∈

Epub and α ∈ Va ∪ Vari

• Number of protected attributes (NproA); NproA is the number of paths α →

c ∈ Epro and α ∈ Va ∪ Vari

• Number of private methods (NpriM); NpriM is the number of paths α → c ∈

Epri and α ∈ Vm ∪ Vmri

• Number of public methods (NpubM); NpubM is the number of paths α → c ∈

Epub and α ∈ Vm ∪ Vmri

• Number of protected methods (NproM); NproM is the number of paths α →

c ∈ Epro and α ∈ Vm ∪ Vmri

• Number of new methods which define inherited attribute values (Nmdiav);

Nmdiav is the number of methods m ∈ Vm, m → c ∈ Epri ∪ Epro ∪ Epub and
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∃ δ ∈ Vari, δ → c ∈ Epub ∪ Epro ∪ Epri and the following conditions are true:

(i) δ → m ∈ Eda, or

(ii) ∃ p, p ∈ Vmri ∪ Vm and p → c ∈ Epri ∪ Epro ∪ Epub and p → m ∈ Em and

δ → p ∈ Eda

• Number of new methods which use inherited attribute values (Nmuiav); Nmuiav

is the number of methods m ∈ Vm, m → c ∈ Epri ∪ Epro ∪ Epub and ∃ δ ∈

Vari, δ → c ∈ Epub ∪ Epro ∪ Epri and the following conditions are true:

(i) δ → m ∈ Eua, or

(ii) ∃ p, p ∈ Vmri ∪ Vm and p → c ∈ Epri ∪ Epro ∪ Epub and p → m ∈ Em and

δ → p ∈ Eua

2. Inheritance: Let c be a class vertex in an IFG. The metrics of class c are described

as follows:

• Number of inheritance paths (Nihp); Nihp is the number of class vertices δ ∈ Vc

and there exists a path δ → c ∈ Ehpub ∪ Ehpro ∪ Ehpri and for all α ∈ Vc,

α → δ ∈ Ehpub ∪ Ehpro ∪ Ehpri = ∅

• For each inheritance path:

– Number of ancestors (Nanc); Nanc is the number of class vertices α ∈ Vc

which have a path from itself to the considered class c; α → c ∈ Ehpub ∪

Ehpro ∪ Ehpri

– Number of referred inherited attributes from ancestors (Nriaa); Nriaa is

the number of referred inherited attribute vertices a ∈ Vari and a → c ∈

Epub ∪ Epro ∪ Epri and p ∈ Va ∪ Vari, p → a ∈ Emh and α ∈ Vc, p → α ∈

Epub ∪ Epro and α → c ∈ Ehpup ∪ Ehpro ∪ Ehpri
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– Number of referred inherited attributes from parents (Nriap); Nriap is the

number of referred inherited attribute vertices a ∈ Vari and a → c ∈

Epub ∪ Epro ∪ Epri and p ∈ Va ∪ Vari, p → a ∈ Emh and α ∈ Vc, p → α ∈

Epub ∪ Epro and ∃ α → c ∈ Ehpub ∪ Ehpro ∪ Ehpri

– Number of inherited methods which are originally defined by ancestors

(Nima); Nima is the number of method vertices m ∈ Vm and α ∈ Vc, m →

α ∈ Epub ∪ Epro ∪ Epri and α → c ∈ Ehpub ∪ Ehpro ∪ Ehpri

– Number of inherited methods which are originally defined by parents

(Nimp); Nimp is the number of method vertices m ∈ Vm and α ∈ Vc, m →

α ∈ Epub ∪ Epro ∪ Epri and ∃ α → c ∈ Ehpub ∪ Ehpro ∪ Ehpri

– Number of referred inherited methods from ancestors (Nrima); Nrima is

the number of referred inherited method vertices m ∈ Vmri and m →

c ∈ Epub ∪ Epro ∪ Epri and k ∈ Vm, k → m ∈ Emh and α ∈ Vc, k → α ∈

Epub ∪ Epro and α → c ∈ Ehpup ∪ Ehpro ∪ Ehpri

– Number of referred inherited methods from parents (Nrimp); Nrimp is the

number of referred inherited method vertices m ∈ Vmri and m → c ∈

Epub ∪ Epro ∪ Epri and k ∈ Vm, k → m ∈ Emh and α ∈ Vc, k → α ∈

Epub ∪ Epro and ∃ α → c ∈ Ehpub ∪ Ehpro ∪ Ehpri

– Number of referred inherited attributes with signature-inheritance define

(NDSria); NDSria is the number of referred inherited attribute vertices

a ∈ Vari and a → c ∈ Epub ∪ Epro ∪ Epri and T (TV (c → a)) = 〈Dsi, Nbi〉

– Number of referred inherited methods with signature-inheritance define

(NDSrim); NDSrim is the number of referred inherited method vertices

m ∈ Vmri and m → c ∈ Epub ∪ Epro ∪ Epri and T (TV (c → m)) =

〈Dsi, Dbi〉
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– Number of referred inherited methods with body-inheritance define

(NDBrim); NDBrim is the number of referred inherited method vertices

m ∈ Vmri and m → c ∈ Epub ∪ Epro ∪ Epri and T (TV (c → m)) ∈

{〈Dsi, Dbi〉 , 〈Usi, Dbi〉}

– Number of referred inherited methods with signature-inheritance use and

body-inheritance use (NUrim); NUrim is the number of referred inherited

method vertices m ∈ Vmri and m → c ∈ Epub ∪ Epro ∪ Epri and

T (TV (c → m)) = 〈Usi, Ubi〉

– Number of methods with signature and body inheritance define (〈Ds, Db〉)

which are members of ancestors in the considered inheritance path and

invoked by the considered class (NiaDsbmin); NiaDsbmin is the number of

methods m, m ∈ Vm ∪ Vmri, T(m) = 〈Ds, Db〉, ∃ α ∈ Vc, m → α ∈

Epro ∪Epub and ∃ δ ∈ Vm ∪Vmri, δ → c ∈ Epub ∪Epro ∪Epri, m → δ ∈ Em

and ∃ α−−−−−−−−−−−−−−→
Ehpub∪Ehpro∪Ehpri

c

– Number of methods with signature-inheritance use and body inheritance

define (〈Us, Db〉) which are members of ancestors in the considered inheri-

tance path and invoked by the considered class (NiaUsDbmin); NiaUsDbmin is

the number of methods m, m ∈ Vm∪Vmri, T(m) = 〈Us, Db〉, ∃α ∈ Vc, m →

α ∈ Epro ∪ Epub and ∃δ ∈ Vm ∪ Vmri, δ → c ∈ Epub ∪ Epro ∪ Epri, m →

δ ∈ Em and ∃ α−−−−−−−−−−−−−−−−→
Ehpub ∪ Ehpro ∪ Ehpri

c

– Number of methods with signature and body inheritance use (〈Us, Ub〉)

which are members of ancestors in the considered inheritance path and

invoked by the considered class (NiaUsbmin); NiaUsbmin is the number of

methods m, m ∈ Vm ∪ Vmri, T(m) = 〈Us, Ub〉, ∃ α ∈ Vc, m → α ∈

Epro ∪Epub and ∃ δ ∈ Vm ∪Vmri, δ → c ∈ Epub ∪Epro ∪Epri, m → δ ∈ Em
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and ∃ α−−−−−−−−−−−−−−→
Ehpub∪Ehpro∪Ehpri

c

– Number of methods with signature and body inheritance define (〈Ds, Db〉)

which are members of parent in the considered inheritance path and in-

voked by the considered class (NipDsbmin); NipDsbmin is the number of

methods m, m ∈ Vm ∪ Vmri, T(m) = 〈Ds, Db〉, ∃ α ∈ Vc, m → α ∈

Epro ∪Epub and ∃ δ ∈ Vm ∪Vmri, δ → c ∈ Epub ∪Epro ∪Epri, m → δ ∈ Em

and α → c ∈ Ehpub ∪ Ehpro ∪ Ehpri

– Number of methods with signature-inheritance use and body-inheritance

define (〈Us, Db〉) which are members of parent in the considered inheri-

tance path and invoked by the considered class (NipUsDbmin); NipUsDbmin

is the number of methods m, m ∈ Vm ∪ Vmri, T(m) = 〈Ds, Db〉, ∃ α ∈

Vc, m → α ∈ Epro ∪ Epub and ∃ δ ∈ Vm ∪ Vmri, δ → c ∈ Epub ∪ Epro ∪

Epri, m → δ ∈ Em and α → c ∈ Ehpub ∪ Ehpro ∪ Ehpri

– Number of methods with signature and body inheritance use (〈Us, Ub〉)

which are members of parent in the considered inheritance path and

invoked by the considered class (NipUsbmin); NipUsbmin is the number of

methods m, m ∈ Vm ∪ Vmri, T(m) = 〈Ds, Db〉, ∃ α ∈ Vc, m → α ∈

Epro ∪Epub and ∃ δ ∈ Vm ∪Vmri, δ → c ∈ Epub ∪Epro ∪Epri, m → δ ∈ Em

and α → c ∈ Ehpub ∪ Ehpro ∪ Ehpri

– Number of attributes with signature-inheritance define (〈Ds, Nb〉) which

are members of ancestors in the considered inheritance path and accessed

by the considered class (NiaDsa); NiaDsa is the number of attributes a, a ∈

Va ∪ Vari, T(a) = 〈Ds, Nb〉, ∃α ∈ Vc, a → α ∈ Epro ∪Epub and ∃ δ ∈ Vm ∪

Vmri, δ → c ∈ Epub∪Epro∪Epri, a → δ ∈ Eda∪Eua and ∃α−−−−−−−−−−−−−−→
Ehpub∪Ehpro∪Ehpri

c
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– Number of attributes with signature-inheritance use (〈Us, Nb〉) which are

members of ancestors in the considered inheritance path and accessed by

the considered class (NiaUsa); NiaUsa is the number of attributes a, a ∈

Va ∪ Vari, T(a) = 〈Ds, Nb〉, ∃α ∈ Vc, a → α ∈ Epro ∪Epub and ∃ δ ∈ Vm ∪

Vmri, δ → c ∈ Epub∪Epro∪Epri, a → δ ∈ Eda∪Eua and ∃α−−−−−−−−−−−−−−→
Ehpub∪Ehpro∪Ehpri

c

– Number of attributes with signature-inheritance define (〈Ds, Nb〉) which

are members of parent in the considered inheritance path and accessed

by the considered class (NipDsa); NipDsa is the number of attributes a, a ∈

Va ∪ Vari, T(a) = 〈Ds, Nb〉, ∃ α ∈ Vc, a → α ∈ Epro ∪ Epub and ∃ δ ∈

Vm ∪ Vmri, δ → c ∈ Epub ∪ Epro ∪ Epri, a → δ ∈ Eda ∪ Eua and α → c ∈

Ehpub ∪ Ehpro ∪ Ehpri

– Number of attributes with signature-inheritance use (〈Us, Nb〉) which are

members of parent in the considered inheritance path and accessed by

the considered class (NipUsa); NipUsa is the number of attributes a, a ∈

Va ∪ Vari, T(a) = 〈Us, Nb〉, ∃ α ∈ Vc, a → α ∈ Epro ∪ Epub and ∃ δ ∈

Vm ∪ Vmri, δ → c ∈ Epub ∪ Epro ∪ Epri, a → δ ∈ Eda ∪ Eua and α → c ∈

Ehpub ∪ Ehpro ∪ Ehpri

• Number of parents (Npar); Npar is the number of class vertices α ∈ Vc and

∃ α → c ∈ Ehpub ∪ Ehpro ∪ Ehpri

• Number of referred inherited attributes from ancestors of all inheritance paths

(Nriaatot); Nriaatot =
∑Nihp

j=1 N
j
riaa, N

j
riaa is number of referred inherited at-

tributes from ancestors of the inheritance path j, j = {1, 2, . . . , Nihp}

• Number of referred inherited attributes from parents of all inheritance paths

(Nriaptot); Nriaptot =
∑Nihp

j=1 N
j
riap, N

j
riap is number of referred inherited at-

tributes from parent of the inheritance path j, j = {1, 2, . . . , Nihp}
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• Number of referred inherited methods from ancestors of all inheritance paths

(Nrimatot); Nrimatot =
∑Nihp

j=1 N
j
rima, N

j
rima is number of referred inherited

methods from ancestors of the inheritance path j, j = {1, 2, . . . , Nihp}

• Number of referred inherited methods from parents of all inheritance paths

(Nrimptot); Nrimptot =
∑Nihp

j=1 N
j
rimp, N

j
rimp is number of referred inherited

methods from parents of the inheritance path j, j = {1, 2, . . . , Nihp}

• Number of inherited methods which are originally defined by ancestors from

all inheritance paths (Nimatot); Nimatot =
∑Nihp

j=1 N
j
ima, N

j
ima is number of inher-

ited methods from ancestors of the inheritance path j, j = {1, 2, . . . , Nihp}

• Number of inherited methods which are originally defined by parents from all

inheritance paths (Nimptot); Nimptot =
∑Nihp

j=1 N
j
imp, N

j
imp is number of inherited

methods from parent of the inheritance path j, j = {1, 2, . . . , Nihp}

• Number of methods with signature and body inheritance define (〈Ds, Db〉)

which are members of ancestors and invoked by the considered class

(NiaDsbmintot); NiaDsbmintot =
∑Nihp

j=1 N
j
iaDsbmin, N

j
iaDsbmin is the number of

methods with 〈Ds, Db〉 which are members of ancestors in the inheritance

path j and invoked by the considered class, j = {1, 2, . . . , Nihp}

• Number of methods with signature inheritance use and body inheritance de-

fine (〈Us, Db〉) which are members of ancestors and invoked by the considered

class (NiaUsDbmintot); NiaUsDbmintot =
∑Nihp

j=1 N
j
iaUsDbmin, N

j
iaUsDbmin is the

number of methods with 〈Us, Db〉 which are members of ancestors in the in-

heritance path j and invoked by the considered class, j = {1, 2, . . . , Nihp}

• Number of methods with signature and body inheritance use (〈Us, Ub〉) which

are members of ancestors and invoked by the considered class (NiaUsbmintot);

NiaUsbmintot =
∑Nihp

j=1 N
j
iaUsbmin, N

j
iaUsbmin is the number of methods with
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〈Us, Ub〉 which are members of ancestors in the inheritance path j and invoked

by the considered class, j = {1, 2, . . . , Nihp}

• Number of methods with signature and body inheritance define (〈Ds, Db〉)

which are members of parents and invoked by the considered class (NipDsbmintot);

NipDsbmintot =
∑Nihp

j=1 N
j
ipDsbmin, N

j
ihDsbmin is the number of methods which are

members of parent in the inheritance path j and invoked by the considered

class, j = {1, 2, . . . , Nihp}

• Number of methods with signature inheritance use and body inheritance de-

fine (〈Us, Db〉) which are members of parents and invoked by the considered

class (NipUsDbmintot); NipUsDbmintot =
∑Nihp

j=1 N
j
ipUsDbmin, N

j
ihUsDbmin is the

number of methods which are members of parents in the inheritance path j

and invoked by the considered class, j = {1, 2, . . . , Nihp}

• Number of methods with signature and body inheritance use (〈Us, Ub〉) which

are members of parents and invoked by the considered class (NipUsbmintot);

NipUsbmintot =
∑Nihp

j=1 N
j
ipUsbmin, N

j
ihUsbmin is the number of methods which

are members of parent in the inheritance path j and invoked by the considered

class, j = {1, 2, . . . , Nihp}

• Number of attributes with signature-inheritance define (〈Ds, Nb〉) which are

members of ancestors and accessed by the considered class (NiaDsatot); NiaDsatot

=
∑Nihp

j=1 N
j
iaDsa, N

j
iaDsa is the number of attributes with 〈Ds, Nb〉 which are

members of ancestors in the inheritance path j and accessed by the considered

class, j = {1, 2, . . . , Nihp}

• Number of attributes with signature-inheritance use (〈Us, Nb〉) which are

members of ancestors and accessed by the considered class (NiaUsatot); NiaUsatot

=
∑Nihp

j=1 N
j
iaUsa, N

j
iaUsa is the number of attributes with 〈Us, Nb〉 which are
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members of ancestors in the inheritance path j and accessed by the considered

class, j = {1, 2, . . . , Nihp}

• Number of attributes with signature-inheritance use (〈Us, Nb〉) which are

members of parents and accessed by the considered class (NipUsatot); NipUsatot

=
∑Nihp

j=1 N
j
ipUsa, N

j
ipUsa is the number of attributes with 〈Us, Nb〉 which are

members of parent in the inheritance path j and accessed by the considered

class, j = {1, 2, . . . , Nihp}

• Number of attributes with signature-inheritance define (〈Ds, Nb〉) which are

members of parents and accessed by the considered class (NipDsatot); NipDsatot

=
∑Nihp

j=1 N
j
ipDsa, N

j
ipDsa is the number of attributes with 〈Ds, Nb〉 which are

members of parent in the inheritance path j and accessed by the considered

class, j = {1, 2, . . . , Nihp}

• Depth of inheritance (DIT); DIT = maxj N j
anc, where N j

anc is number of

ancestors of inheritance path j, j = {1, 2, . . . , Nihp}

• Number of referred inherited attributes with signature-inheritance define from

all inheritance paths (NDSriatot); NDSriatot =
∣∣∣⋃Nihp

j=1 Aj
∣∣∣, Aj is a set of re-

ferred inherited attributes with signature-inheritance define from all inheri-

tance paths j, j = {1, 2, . . . , Nihp}

• Number of referred inherited methods with signature-inheritance define from

all inheritance paths (NDSrimtot); NDSrimtot =
∣∣∣⋃Nihp

j=1 M j
s

∣∣∣, M j
s is a set of

referred inherited methods with signature-inheritance define from all inheri-

tance paths j, j = {1, 2, . . . , Nihp}

• Number of referred inherited methods with body-inheritance define from all

inheritance paths (NDBrimtot); NDBrimtot =
∣∣∣⋃Nihp

j=1 M
j
b

∣∣∣, M
j
b is a set of referred

inherited methods with body-inheritance define from all inheritance paths j,
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j = {1, 2, . . . , Nihp}

• Number of referred inherited methods with signature-inheritance use and

body-inheritance use from all inheritance paths (NUrimtot);

NUrimtot =
∣∣∣⋃Nihp

j=1 M j
u

∣∣∣, M j
u is a set of referred inherited methods with

signature-inheritance use and body-inheritance use from all inheritance paths

j, j = {1, 2, . . . , Nihp}

3. Association: Let c be a class vertex in an ASG. The metrics of class c are described

as follows:

• Number of methods which invoke other methods or access attributes in other

classes with ordinary association (NASOmin); NASOmin is the number of meth-

ods or referred inherited method vertices m ∈ Vm ∪ Vmri, m → c ∈ Epub ∪

Epro ∪ Epri and ∃ k ∈ Vm ∪ Vmri ∪ Va ∪ Vari, k → m ∈ Em ∪ Eda ∪ Eua and

∀ α ∈ Vc and k → α ∈ Epub and α−−→
Efa

c = ∅ and α−−→
Efa

m = ∅

• Number of methods which invoke other methods or access attributes in other

classes with friend member function association (NASFmin); NASFmin is the

number of methods or referred inherited method vertices m ∈ Vm ∪ Vmri, m →

c ∈ Epub∪Epro∪Epri and ∃k ∈ Vm∪Vmri∪Va∪Vari, k → m ∈ Em∪Eda∪Eua

and ∀ α ∈ Vc, k → α ∈ Epri ∪ Epro ∪ Epub and α → m ∈ Efa

• Number of methods which invoke other methods or access attributes in other

classes with friend class association (NASCmin); NASCmin is the number of

method vertices m ∈ Vm ∪ Vmri, m → c ∈ Epub ∪ Epro ∪ Epri and ∃ k ∈ Vm ∪

Vmri∪Va∪Vari, k → m ∈ Em∪Eda∪Eua and ∀α ∈ Vc, k → α ∈ Epri∪Epro∪Epub

k → δ ∈ Epub and α → c ∈ Efa

• Number of methods which are invoked by other methods in other classes with

ordinary association (NASOmout); NASOmout is the number of method vertices
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m ∈ Vm ∪ Vmri, m → c ∈ Epub and ∃ k ∈ Vm ∪ Vmri, m → k ∈ Em and

∀ α ∈ Vc, k → α ∈ Epri ∪ Epro ∪ Epub and c−−→
Efa

α = ∅ and c−−→
Efa

k = ∅

• Number of methods which are invoked by other methods in other classes with

friend member function association (NASFmout); NASFmout is the number of

method vertices m ∈ Vm ∪ Vmri, m → c ∈ Epri ∪ Epro ∪ Epub and ∃ k ∈

Vm ∪ Vmri, m → k ∈ Em and ∃ α ∈ Vc, k → α ∈ Epri ∪ Epro ∪ Epub and

c → k ∈ Efa

• Number of methods which are invoked by other methods in other classes

with friend class association (NASCmout); NASCmout is the number of method

vertices m ∈ Vm∪Vmri, m → c ∈ Epri∪Epro∪Epub and ∃k ∈ Vm∪Vmri, m →

k ∈ Em and ∀ α ∈ Vc, k → α ∈ Epri ∪ Epro ∪ Epub and c → α ∈ Efa

• Number of methods which are invoked by global functions with friend op-

eration association (NASPmout); NASPmout is the number of methods m ∈

Vm ∪ Vmri, m → c ∈ Epri ∪ Epro ∪ Epub and ∃ k ∈ Vgf , m → k ∈ Em and

c → k ∈ Efa

• Number of attributes which are accessed by methods in other classes with

ordinary association (NASOa); NASOa is the number of attribute vertices a ∈

Va ∪ Vari, a → c ∈ Epub and ∃ k ∈ Vm ∪ Vmri, a → k ∈ Eda ∪ Eua and

∀ α ∈ Vc, k → α ∈ Epri ∪ Epro ∪ Epub and c−−→
Efa

α = ∅ and c−−→
Efa

k = ∅

• Number of attributes which are accessed by methods in other classes with

friend member function association (NASFa); NASFa is the number of attribute

vertices a ∈ Va ∪ Vari, a → c ∈ Epri ∪ Epro ∪ Epub and ∃ k ∈ Vm ∪ Vmri,

a → k ∈ Eda ∪Eua and ∀α ∈ Vc, k → α ∈ Epri∪Epro∪Epub and c → k ∈ Efa

• Number of attributes which are accessed by methods in other classes with

friend class association (NASCa); NASCa is the number of attribute vertices
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a ∈ Va∪Vari, a → c ∈ Epri∪Epro∪Epub and ∃k ∈ Vm∪Vmri, a → k ∈ Eda∪Eua

and ∀ α ∈ Vc, k → α ∈ Epri ∪ Epro ∪ Epub and c → α ∈ Efa

• Number of attributes which are accessed by global functions with friend

operation association (NASPa); NASPa is the number of attribute vertices

a ∈ Va ∪ Vari, a → c ∈ Epri ∪ Epro ∪ Epub and ∃ k ∈ Vgf , a → k ∈ Eda ∪ Eua

and c → k ∈ Efa

• Number of associated classes whose members are invoked/accessed by the

considered class c with friend class association (NASFcin); NASFcin is the

number of class vertices α ∈ Vc and ∃ k ∈ Vm ∪ Vmri ∪ Va ∪ Vari, k →

α ∈ Epri ∪ Epro ∪Epub and ∃ m ∈ Vm ∪ Vmri, m → c ∈ Epri ∪Epro ∪ Epub and

k → m ∈ Em and α → c ∈ Efa

• Number of associated classes in friend operation association (NASFo); NASFo

is the number of class vertices α ∈ Vc, there exists a global function f ∈ Vgf

and α → f ∈ Efa and c → f ∈ Efa

• Number of associated classes whose members are invoked/accessed by the con-

sidered class c with friend member function association (NASFcmin); NASFcmin

is the number of class vertices α ∈ Vc, ∃ k ∈ Vm ∪ Vmri ∪ Va ∪ Vari, k → α ∈

Epri ∪ Epro ∪ Epub and ∃ m ∈ Vm ∪ Vmri, m → c ∈ Epub ∪ Epro ∪ Epri and

k → m ∈ Em ∪ Eda ∪ Eua and α → m ∈ Efa

• Number of associated classes whose members are invoked/accessed by the

considered class c with ordinary association (NASOcin); NASOcin is the number

of class vertices α ∈ Vc, ∃ k ∈ Vm ∪ Vmri ∪ Va ∪ Vari, k → α ∈ Epub and

m ∈ Vm ∪ Vmri, m → c ∈ Epub ∪Epro ∪Epri and k → m ∈ Em ∪Eda ∪Eua and

α−−→
Efa

c = ∅ and α−−→
Efa

m = ∅
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• Number of associated classes whose members invoke/access members of the

considered class c with friend class association (NASFcout); NASFcout is the

number of class vertices α ∈ Vc and ∃k ∈ Vm∪Vmri, k → α ∈ Epri∪Epro∪Epub

and ∃ m ∈ Vm ∪ Vmri ∪ Va ∪ Vari, m → c ∈ Epri ∪ Epro ∪ Epub and m → k ∈

Em ∪ Eda ∪ Eua and c → α ∈ Efa

• Number of associated classes whose members invoke/access members of the

considered class c with friend member function association (NASFcmout); NASFcmout

is the number of class vertices α ∈ Vc, ∃ k ∈ Vm ∪Vmri, k → α ∈ Epri ∪Epro ∪

Epub and ∃ m ∈ Vm ∪ Vmri ∪ Va ∪ Vari, m → c ∈ Epub ∪ Epro ∪ Epri and

m → k ∈ Em ∪ Eda ∪ Eua and c → k ∈ Efa

• Number of associated classes whose members invoke/access members of the

considered class c with ordinary association (NASOcout); NASOcout is the num-

ber of class vertices α ∈ Vc, ∃ k ∈ Vm ∪ Vmri, k → α ∈ Epri ∪ Epro ∪ Epub and

m ∈ Vm ∪ Vmri ∪ Va ∪ Vari, m → c ∈ Epub and m → k ∈ Em ∪ Eda ∪ Eua and

c−−→
Efa

α = ∅ and c−−→
Efa

k = ∅

Attribute

1. Program Structure, attribute access, and method invocation: Let a be an attribute

vertex or a referred inherited attribute vertex and c be a class vertex in a PSG, an

AAG, or an MIG. The metrics of attribute a are described as follows:

• Membership Type; private/public/protected (AMtype): Determine whether

membership relation of the consider attribute is private, public, or protected.

An attribute a is said to be a private member of class c if and only if there

exists an edge from the class vertex c to attribute vertex a; ∃ c → a and

c → a ∈ Epri. Public and protected membership are defined similarly using
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Epub and Epro, respectively.

• Number of accesses via method invocation within the class (Natac): Natac is

the number of edges from attribute a to method m; a → m ∈ Eda ∪ Eua

• Number of new methods which define the considered attribute value (NnewMdef);

NnewMdef is the number of methods m ∈ Vm, a → m ∈ Eda and ∃ c ∈ Vc, a →

c ∈ Epri ∪ Epro ∪ Epub, m → c ∈ Epri ∪ Epro ∪ Epub

• Number of new methods which use the considered attribute value (NnewMuse);

NnewMuse is the number of method m ∈ Vm, a → m ∈ Eua and ∃ c ∈ Vc, a →

c ∈ Epri ∪ Epro ∪ Epub, m → c ∈ Epri ∪ Epro ∪ Epub

• Number of inherited methods which implement the considered attribute in

different way from the overridden methods do (NDiffmet);NDiffmet is the num-

ber of inherited methods which access the considered attribute or call other

methods accessing the considered attribute to yield a net effect on the consid-

ered attribute not equivalent to that of the inherited attribute of the ancestors

made by the overridden methods [35].

2. Inheritance: Let a be an attribute vertex or a referred inherited attribute vertex

in an IFG, MIG, and AAG. The metrics of attribute a are described as follows:

• Signature-operation (SOperA); define/use: Determine the vertex tag of the

considered attribute vertex a whether T (a) is 〈Dsi, Nbi〉 or 〈Usi, Nbi〉

• new/inherited (Anw/ih); whether it is newly defined or inherited from a su-

perclass. An attribute a is newly defined if T (a) = 〈Dsi, Nbi〉. Otherwise

the attribute a is inherited from a superclass, i.e., T (a) = 〈Usi, Nbi〉

• Number of inherited methods with signature and body inheritance define

(〈Ds, Db〉) which define the considered attribute value (NmDsbdef); NmDsbdef
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is the number of inherited methods m ∈ Vmri, T (m) = 〈Ds, Db〉 , a → m ∈ Eda

and ∃ c ∈ Vc, a → c ∈ Epri ∪ Epro ∪ Epub and m → c ∈ Epri ∪ Epro ∪ Epub

• Number of inherited methods with signature inheritance use and body inheri-

tance define (〈Us, Db〉) which define the considered attribute value (NmUsDbdef);

NmUsDbdef is the number of inherited methods m ∈ Vmri, T (m) = 〈Us, Db〉 , a →

m ∈ Eda and ∃c ∈ Vc, a → c ∈ Epri∪Epro∪Epub and m → c ∈ Epri∪Epro∪Epub

• Number of inherited methods with signature and body inheritance use (〈Us, Ub〉)

which define the considered attribute value (NmUsbdef ); NmUsbdef is the num-

ber of inherited methods m ∈ Vmri, T (m) = 〈Us, Ub〉 , a → m ∈ Eda and

∃ c ∈ Vc, a → c ∈ Epri ∪ Epro ∪ Epub and m → c ∈ Epri ∪ Epro ∪ Epub

• Number of inherited methods with signature and body inheritance define

(〈Ds, Db〉) which use the considered attribute value (NmDsbuse); NmDsbuse is

the number of inherited methods m ∈ Vmri, T (m) = 〈Ds, Db〉 , a → m ∈ Eua

and ∃ c ∈ Vc, a → c ∈ Epri ∪ Epro ∪ Epub and m → c ∈ Epri ∪ Epro ∪ Epub

• Number of inherited methods with signature inheritance use and body inher-

itance use (〈Us, Db〉) which define the considered attribute value (NmUsDbuse);

NmUsDbuse is the number of inherited methods m ∈ Vmri, T (m) = 〈Us, Db〉 , a →

m ∈ Eua and ∃ c ∈ Vc, a → c ∈ Epri ∪ Epro ∪ Epub and m → c ∈

Epri ∪ Epro ∪ Epub

• Number of inherited methods with signature and body inheritance use (〈Us, Ub〉)

which define the considered attribute value (NmUsbuse); NmUsbuse is the num-

ber of inherited methods m ∈ Vmri, T (m) = 〈Us, Ub〉 , a → m ∈ Eua and

∃ c ∈ Vc, a → c ∈ Epri ∪ Epro ∪ Epub and m → c ∈ Epri ∪ Epro ∪ Epub

• Level of class that originally defines the considered attribute (Lodefa): Let c1

and c2 be class vertices in an IFG; {c1, c2} ⊆ Vc. Let the considered attribute
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a be a member of class c1, a → c1 ∈ Epri ∪ Epub ∪ Epro. c2 is said to be the

class that originally defines attribute a if and only if the following conditions

are true:

(i) a → c2 ∈ Epub ∪ Epro and T (TV (c2 → a)) = 〈Dsi, Nbi〉

(ii) T (TV (c1 → a)) = 〈Usi, Nbi〉

(iii) c2 −−−−−−−−−−−−−−→
Ehpri∪Ehpro∪Ehpub

c1 and

(iv) for all α, α ∈ Vc ∧ c2 −−−−−−−−−−−−−−→
Ehpri∪Ehpro∪Ehpub

α ∧ α −−−−−−−−−−−−−−→
Ehpri∪Ehpro∪Ehpub

c1, such that

T (TV (α → a)) = 〈Usi, Nbi〉

Lodefa is the number of classes along the path c2 −−−−−−−−−−−−−−→
Ehpri∪Ehpro∪Ehpub

c1 which

includes c2 but excludes c1.

3. Association: Let a be an attribute vertex or a referred inherited attribute vertex

and c be a class vertex in an ASG. The attribute a is a member of class c, a →

c ∈ Epri ∪ Epro ∪ Epub. The metrics of attribute a are described as follows:

• Number of accesses via ordinary association (NAoras): NAoras is the number

of edges from a to k; a → k ∈ Eda ∪ Eua, k ∈ Vm ∪ Vmri and a → c ∈ Epub

and ∀ α ∈ Vc, k → α ∈ Epri ∪ Epro ∪ Epub and c−−→
Efa

α = ∅ and c−−→
Efa

k = ∅

• Number of accesses via friend member function association (NAfmas): NAfmas

is the number of edges from a to k; a → k ∈ Eda ∪ Eua, k ∈ Vm ∪ Vmri and

a → c ∈ Epri ∪ Epro ∪ Epub and ∃ α ∈ Vc, k → α ∈ Epri ∪ Epro ∪ Epub and

c → k ∈ Efa

• Number of accesses via friend class association (NAfcas): NAfcas is the number

of edges from a to k; a → k ∈ Eda ∪ Eua, k ∈ Vm ∪ Vmri and a → c ∈

Epri ∪ Epro ∪ Epub and ∃ α ∈ Vc, k → α ∈ Epri ∪ Epro ∪ Epub and

c → α ∈ Efa
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• Number of accesses via friend operation association (NAfoas): NAfoas is the

number of edges from a to k; a → k ∈ Eda ∪ Eua, k ∈ Vgf and a → c ∈

Epri ∪ Epro ∪ Epub and c → k ∈ Efa

Method

1. Program Structure, attribute access, and method invocation: Let m be a method

vertex or a referred inherited method vertex and c be a class vertex in a PSG, an

AAG, or an MIG. The metrics of method m are described as follows:

• Membership Type; private/public/protected (MMtype): Determine whether

membership relation of the considered method is private, public, or protected.

A method m is said to be a private member of class c if and only if there

exists an edge from the class vertex c to method vertex m; ∃ c → m and

c → m ∈ Epri, Natac is the number of edges from attribute a to method m;

a → m ∈ Em. Public and protected membership type are defined similarly

using Epub and Epro, respectively.

• Number of attributes accessed by the considered method within the same

class (Naacm); Naacm is the number of edges from attribute a ∈ Va ∪Vari, a →

c ∈ Epri ∪ Epro ∪ Epub to the considered method m ∈ Vm ∪ Vmri, m → c ∈

Epri ∪ Epro ∪ Epub; a → m ∈ Eda ∪ Eua

• Number of other methods invoked by the considered method within the same

class (Nmivin); Nmivin is the number of edges from a method k ∈ Vm∪Vmri, k →

c ∈ Epri ∪ Epro ∪ Epub to the considered method m ∈ Vm ∪ Vmri, m → c ∈

Epri ∪ Epro ∪ Epub; k → m ∈ Em

• Number of other new methods invoked by the considered method within the

same class (Nnewmivin); Nnewmivin is the number of method k ∈ Vm, k → m ∈
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Em, k → c ∈ Epri ∪ Epro ∪ Epub, m → c ∈ Epri ∪ Epro ∪ Epub

• Number of other methods which invoke the considered method within the

same class (Nmivout); Nmivout is the number of edges from the considered

method m ∈ Vm ∪ Vmri, m → c ∈ Epri ∪ Epro ∪ Epub to a method k ∈

Vm ∪ Vmri, k → c ∈ Epri ∪ Epro ∪ Epub; m → k ∈ Em

• Number of other new methods which invoke the considered method within

the same class (Nnewmivout); Nnewmivout is the number of method k ∈ Vm, m →

k ∈ Em, k → c ∈ Epri ∪ Epro ∪ Epub, m → c ∈ Epri ∪ Epro ∪ Epub

• Number of inherited attributes which are implemented by the considered

method in a different way from the overridden method (Ndiffatt); Ndiffatt

is the number of inherited attributes which are accessed by the considered

method or other methods called by the considered method to yield the net

effect on the inherited attributes not equivalent to those of the inherited

attributes of the ancestors made by the overridden method [35].

2. Inheritance: Let m be a method vertex or a referred inherited method vertex and

c be a class vertex in a IFG, an AAG, or an MIG. The metrics of method m are

described as follows:

• Signature-operation and Body-operation (SBOperM); define/use: Deter-

mine whether the vertex tag of the considered method vertex m, T (m), is

〈Dsi, Dbi〉, 〈Usi, Dbi〉, or 〈Usi, Ubi〉

• new/inherited (Mnw/ih): whether it is newly defined or inherited from a su-

perclass. A method m is newly defined if T (m) = 〈Dsi, Dbi〉. Otherwise, the

method m is inherited from a superclass, i.e., T (m) = 〈Usi, Dbi〉 or 〈Usi, Ubi〉,
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• Number of inherited attribute with signature inheritance define (〈Ds, Nb〉)

whose values are defined by the considered method (NaDsdef); NaDsdef is the

number of inherited attributes a ∈ Vari, T (a) = 〈Ds, Nb〉 , a → m ∈ Eda and

∃ c ∈ Vc, a → c ∈ Epri ∪ Epro ∪ Epub and m → c ∈ Epri ∪ Epro ∪ Epub

• Number of inherited attributes with signature inheritance use (〈Us, Nb〉) whose

values are defined by the considered method (NaUsdef); NaUsdef is the num-

ber of inherited attributes a ∈ Vari, T (a) = 〈Us, Nb〉 , a → m ∈ Eda and

∃ c ∈ Vc, a → c ∈ Epri ∪ Epro ∪ Epub and m → c ∈ Epri ∪ Epro ∪ Epub

• Number of inherited attributes with signature inheritance define (〈Ds, Nb〉)

whose values are used by the considered method (NaDsuse); NaDsuse is the

number of inherited attributes a ∈ Vari, T (a) = 〈Ds, Nb〉 , a → m ∈ Eua and

∃ c ∈ Vc, a → c ∈ Epri ∪ Epro ∪ Epub and m → c ∈ Epri ∪ Epro ∪ Epub

• Number of inherited attributes with signature inheritance use (〈Us, Nb〉) whose

values are used by the considered method (NaUsuse); NaUsuse is the num-

ber of inherited attributes a ∈ Vari, T (a) = 〈Us, Nb〉 , a → m ∈ Eua and

∃ c ∈ Vc, a → c ∈ Epri ∪ Epro ∪ Epub and m → c ∈ Epri ∪ Epro ∪ Epub

• Number of other inherited methods with signature and body inheritance de-

fine (〈Ds, Db〉) which are invoked by the considered method within the same

class (NDsbmivin); NDsbmivin is the number of methods k ∈ Vmri, T (k) =

〈Ds, Db〉 , k → c ∈ Epri ∪ Epro ∪ Epub and m → c ∈ Epri ∪ Epro ∪ Epub, k →

m ∈ Em

• Number of other inherited methods with signature inheritance use and body

inheritance define (〈Us, Db〉) which are invoked by the considered method

within the same class (NUsDbmivin); NUsDbmivin is the number of methods

k ∈ Vmri, T (k) = 〈Us, Db〉 , k → c ∈ Epri ∪ Epro ∪ Epub and m → c ∈
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Epri ∪ Epro ∪ Epub, k → m ∈ Em

• Number of other inherited methods with signature and body inheritance

use (〈Us, Ub〉) which are invoked by the considered method within the same

class (NUsbmivin); NUsbmivin is the number of methods k ∈ Vmri, T (k) =

〈Us, Ub〉 , k → c ∈ Epri ∪ Epro ∪ Epub and m → c ∈ Epri ∪ Epro ∪ Epub, k →

m ∈ Em

• Number of other inherited methods with signature and body inheritance

use (〈Us, Ub〉) which invoke the considered method within the same class

(NUsbmivout); NUsbmivout is the number of methods k ∈ Vmri, T (k) = 〈Us, Ub〉 ,

k → c ∈ Epri ∪ Epro ∪ Epub and m → c ∈ Epri ∪ Epro ∪ Epub, m → k ∈ Em

• Number of other inherited methods with signature and body inheritance de-

fine (〈Ds, Db〉) which invoke the considered method within the same class

(NDsbmivout); NDsbmivout is the number of methods k ∈ Vmri, T (k) = 〈Ds, Db〉 ,

k → c ∈ Epri ∪ Epro ∪ Epub and m → c ∈ Epri ∪ Epro ∪ Epub, m → k ∈ Em

• Number of other inherited methods with signature inheritance use and body

inheritance define (〈Us, Db〉) which invoke the considered method within the

same class (NUsDbmivout); NUsDbmivout is the number of methods k ∈ Vmri,

T (k) = 〈Us, Db〉 , k → c ∈ Epri ∪ Epro ∪ Epub and m → c ∈ Epri ∪ Epro ∪

Epub, m → k ∈ Em

• Number of methods with signature and body inheritance define (〈Ds, Db〉)

which are members of ancestors and invoked by the considered method

(NactDsbmin); NactDsbmin is the number of methods δ ∈ Vm ∪ Vmri,

T (δ) = 〈Ds, Db〉 , δ → m ∈ Em and ∃ α ∈ Vc, δ → α ∈ Epub ∪ Epro and

∃ α−−−−−−−−−−−−−−→
Ehpub∪Ehpro∪Ehpri

c
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• Number of methods with signature inheritance use and body inheritance

define (〈Us, Db〉) which are members of ancestors and invoked by the con-

sidered method (NactUsDbmin); NactUsDbmin is the number of methods δ ∈

Vm ∪ Vmri, T (δ) = 〈Us, Db〉 , δ → m ∈ Em and ∃ α ∈ Vc, δ → α ∈ Epub ∪ Epro

and ∃ α−−−−−−−−−−−−−−→
Ehpub∪Ehpro∪Ehpri

c

• Number of methods with signature and body inheritance use (〈Us, Ub〉) which

are members of ancestors and invoked by the considered method (NactUsbmin);

NactUsbmin is the number of methods δ ∈ Vm ∪ Vmri, T (δ) = 〈Us, Ub〉 , δ →

m ∈ Em and ∃ α ∈ Vc, δ → α ∈ Epub ∪ Epro and ∃ α−−−−−−−−−−−−−−→
Ehpub∪Ehpro∪Ehpri

c

• Number of attributes with signature inheritance define (〈Ds, Nb〉) which are

members of ancestors and accessed by the considered method (NactDsatt);

NactDsatt is the number of attributes δ ∈ Va ∪Vari, T (δ) = 〈Ds, Nb〉 , δ → m ∈

Eda ∪ Eua and ∃ α ∈ Vc, δ → α ∈ Epub ∪ Epro and ∃ α−−−−−−−−−−−−−−→
Ehpub∪Ehpro∪Ehpri

c

• Number of attributes with signature inheritance use (〈Us, Nb〉) which are

members of ancestors and accessed by the considered method (NactUsatt);

NactUsatt is the number of attributes δ ∈ Va ∪ Vari, T (δ) = 〈Us, Nb〉 , δ →

m ∈ Eda ∪ Eua and ∃ α ∈ Vc, δ → α ∈ Epub ∪ Epro and ∃ α−−−−−−−−−−−−−−→
Ehpub∪Ehpro∪Ehpri

c

• Number of methods with signature and body inheritance define (〈Ds, Db〉)

which are members of parents and invoked by the considered method

(NparDsbmin); NparDsbmin is the number of methods δ ∈ Vm ∪ Vmri, T (δ) =

〈Ds, Db〉 , δ → m ∈ Em and ∃ α ∈ Vc, δ → α ∈ Epub ∪ Epro and α → c ∈

Ehpub ∪ Ehpro ∪ Ehpri

• Number of methods with signature inheritance use and body inheritance

define (〈Us, Db〉) which are members of parents and invoked by the con-

sidered method (NparUsDbmin); NparUsDbmin is the number of methods δ ∈
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Vm ∪ Vmri, T (δ) = 〈Us, Db〉 , δ → m ∈ Em and ∃ α ∈ Vc, δ → α ∈ Epub ∪ Epro

and α → c ∈ Ehpub ∪ Ehpro ∪ Ehpri

• Number of methods with signature and body inheritance use (〈Us, Ub〉) which

are members of parents and invoked by the considered method (NparUsbmin);

NparUsbmin is the number of methods δ ∈ Vm ∪ Vmri, T (δ) = 〈Us, Ub〉 , δ →

m ∈ Em and ∃α ∈ Vc, δ → α ∈ Epub ∪Epro and α → c ∈ Ehpub ∪Ehpro ∪Ehpri

• Number of attributes with signature inheritance define (〈Ds, Nb〉) which are

members of parents and accessed by the considered method (NparDsatt); NparDsatt

is the number of attributes δ ∈ Va∪Vari, T (δ) = 〈Ds, Nb〉 , δ → m ∈ Eda∪Eua

and ∃ α ∈ Vc, δ → α ∈ Epub ∪ Epro and α → c ∈ Ehpub ∪ Ehpro ∪ Ehpri

• Number of attributes with signature inheritance use (〈Us, Nb〉) which are

members of parents and accessed by the considered method (NparUsatt); NparUsatt

is the number of attributes δ ∈ Va∪Vari, T (δ) = 〈Us, Nb〉 , δ → m ∈ Eda∪Eua

and ∃ α ∈ Vc, δ → α ∈ Epub ∪ Epro and α → c ∈ Ehpub ∪ Ehpro ∪ Ehpri

• Level of class that originally defines the considered method (Lodefm): Let c1

and c2 be class vertices in an IFG; {c1, c2} ⊆ Vc. Let the considered method

m be a member of class c1, m → c1 ∈ Epri ∪Epub ∪Epro. c2 is said to be the

class that originally defines method m if and only if the following conditions

are true:

(i) m → c2 ∈ Epub ∪ Epro and T (TV (c2 → m)) = 〈Dsi, Dbi〉

(ii) T (TV (c1 → m)) = 〈Usi, Dbi〉 or 〈Usi, Ubi〉

(iii) c2 −−−−−−−−−−−−−−→
Ehpri∪Ehpro∪Ehpub

c1 and

(iv) for all α, α ∈ Vc ∧ c2 −−−−−−−−−−−−−−→
Ehpri∪Ehpro∪Ehpub

α ∧ α −−−−−−−−−−−−−−→
Ehpri∪Ehpro∪Ehpub

c1, such that

T (TV (α → m)) = 〈Usi, Dbi〉 or 〈Usi, Ubi〉
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Lodefm is the number of classes along the path c2 −−−−−−−−−−−−−−→
Ehpri∪Ehpro∪Ehpub

c1 which

includes c2 but excludes c1.

3. Association: Let m be a method vertex or a referred inherited method vertex and

c be a class vertex in an ASG. The method m is a member of class c; m → c ∈

Epri ∪ Epro ∪ Epub. The metrics of method m are described as follows:

• Number of invocations via ordinary association (NMoriv): NMoriv is the num-

ber of edges from m to k; m → k ∈ Em, k ∈ Vm ∪ Vmri and m → c ∈ Epub

and ∀ α ∈ Vc, k → α ∈ Epri ∪ Epro ∪ Epub and c−−→
Efa

α = ∅ and c−−→
Efa

k = ∅

• Number of invocations via friend member function association (NMfmiv):

NMfmiv is the number of edges from m to k; m → k ∈ Em, k ∈ Vm ∪ Vmri

and m → c ∈ Epri ∪Epro ∪Epub and ∃α ∈ Vc, k → α ∈ Epri ∪Epro ∪Epub and

c → k ∈ Efa

• Number of invocations via friend class association (NMfciv): NMfciv is the

number of edges from m to k; m → k ∈ Em, k ∈ Vm ∪ Vmri and m → c ∈

Epri ∪Epro ∪Epub and ∃ α ∈ Vc, k → α ∈ Epri ∪Epro ∪Epub and c → α ∈ Efa

• Number of invocations via friend operation association (NMfoiv): NMfoiv is

the number of edges from m to k; m → k ∈ Em, k ∈ Vgf and m → c ∈

Epri ∪ Epro ∪ Epub and c → k ∈ Efa

• Number of other methods invoked by the considered method via ordinary

association (NMasoin); NMasoin is the number of edges from k to m; k → m ∈

Em, k ∈ Vm∪Vmri and m → c ∈ Epri∪Epro∪Epub and ∀α ∈ Vc, k → α ∈ Epub

and α−−→
Efa

c = ∅ and α−−→
Efa

m = ∅

• Number of other methods invoked by the considered method via friend mem-

ber function association (NMasfin); NMasfin is the number of edges from k
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to m; k → m ∈ Em, k ∈ Vm ∪ Vmri and m → c ∈ Epri ∪ Epro ∪ Epub and

∃ α ∈ Vc, k → α ∈ Epri ∪ Epro ∪ Epub and α → m ∈ Efa

• Number of other methods in other classes invoked by the considered method

via friend class association (NMascin); NMascin is the number of edges from k

to m; k → m ∈ Em, k ∈ Vm ∪ Vmri and m → c ∈ Epri ∪ Epro ∪ Epub and

∃ α ∈ Vc, k → α ∈ Epri ∪ Epro ∪ Epub and α → c ∈ Efa

Fault metrics and associating graphs are depicted in Table 6.9, 6.10, and 6.11.

6.4 Model Deployment

To clarify how to employ the proposed model, an example is presented based on some

selected code fragments as demonstrated in Figure 6.17 to Figure 6.23. These code

fragments are taken from a simple program which performs as an address book. The

process of model deployment are described as follows:

1. Software modelling: representing software by a set of graphs. There are

four classes from the code example, namely, Contact, CoworkerContact, OtherCon-

tact, and Profile as shown in Figure 6.17 to Figure 6.18. The CoworkerContact is

a descendant class of Contact and OtherContact of CoworkerContact. The Profile

class call method stringCheck() from CoworkerContact. Two inherited methods in

class CoworkerContact, namely, setvalue() and stringcheck() are refined as demon-

strated in Figure 6.19 to Figure 6.20. The inherited method setvalue() in class

OtherContact, invoked by the method add() shown in line 12 of Figure 6.21, can

lead to an SVA fault because the method setvalue() has been redefined in the

CoworkerContact class. The classes and their members are represented by a series

of corresponding graphs, namely, program structure graph (PSG), attribute access
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Table 6.9: Object-Oriented metrics and associating graphs

Metric Associating graph

PSG AAG MIG IFG ASG

NnewM
√

NnewA
√

NpriA
√

NpubA
√

NproA
√

NpriM
√

NpubM
√

NproM
√

Nmdiav
√

Nmuiav
√

Nihp
√

Nanc
√

Nriaa
√

Nriap
√

Nima
√

Nimp
√

Nrima
√

Nrimp
√

NDSria
√

NDSrim
√

NDBrim
√

NUrim
√

NiaDsbmin
√

NiaUsDbmin
√

NiaUsbmin
√

NipDsbmin
√

NipUsDbmin
√

NipUsbmin
√

NiaDsa
√

NiaUsa
√

NipDsa
√

NipUsa
√

Npar
√

Nriaatot
√

Nriaptot
√

Nrimatot
√

Nrimptot
√

Nimatot
√

Nimptot
√

NiaDsbmintot
√

NiaUsDbmintot
√

NiaUsbmintot
√

NipDsbmintot
√

NipUsDbmintot
√

NipUsbmintot
√

NiaDsatot
√

NiaUsatot
√

NipDsatot
√

NipUsatot
√

DIT
√
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Table 6.10: Object-Oriented metrics and associating graphs (continued)

Metric Associating graph

PSG AAG MIG IFG ASG

Nihamintot
√

Nihpmintot
√

Nihaatot
√

Nihpatot
√

NDSriatot
√

NDSrimtot
√

NDBrimtot
√

NUrimtot
√

NASOmin
√

NASF min
√

NASCmin
√

NASOmout
√

NASF mout
√

NASCmout
√

NASP mout
√

NASOa
√

NASF a
√

NASCa
√

NASP a
√

NASF cin
√

NASF o
√

NASF cmin
√

NASOcin
√

NASF cout
√

NASF cmout
√

NASOcout
√

AMtype
√

Natac
√

NnewMdef
√

NnewMuse
√

NDiffmet
√ √ √ √ √

SOperA
√

Anw/ih
√ √

NmDsbdef
√ √

NmUsDbdef
√ √

NmUsbdef
√ √

NmDsbuse
√ √

NmUsDbuse
√ √

NmUsbuse
√ √

Lodefa
√

NAoras
√

NAfmas
√

NAfcas
√

NAfoas
√
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Table 6.11: Object-Oriented metrics and associating graphs (continued)

Metric Associating graph

PSG AAG MIG IFG ASG

MMtype
√

Naacm
√

Nmivin
√

Nnewmivin
√

Nmivout
√

Nnewmivout
√

Ndiffatt
√ √ √ √ √

SBOperM
√

Mnw/ih
√ √

NaDsdef
√ √

NaUsdef
√ √

NaDsuse
√ √

NaUsuse
√ √

NDsbmivin
√ √

NUsDbmivin
√ √

NUsbmivin
√ √

NDsbmivout
√ √

NUsDbmivout
√ √

NUsbmivout
√ √

NactDsbmin
√

NactUsDbmin
√

NactUsbmin
√

NactDsatt
√

NactUsatt
√

NparDsbmin
√

NparUsDbmin
√

NparUsbmin
√

NparDsatt
√

NparUsatt
√

Lodefm
√

NMoriv
√

NMfmiv
√

NMfciv
√

NMfoiv
√

NMasoin
√

NMasfin
√

NMascin
√
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graph (AAG), method invocation graph (MIG), inheritance flow graph (IFG) with

inheritance path, association graph (ASG) with association path, as depicted in

Figure 6.24 to Figure 6.29. Figure 6.24 shows the structure of three classes, while

the detail of attribute access and method invocation within each class is demon-

strated in Figure 6.25 to Figure 6.27. The inheritance and association relationships

among those classes are represented in Figure 6.28 and Figure 6.29, respectively.

2. Class selection: selecting classes to consider. All the classes so implemented

will be participating in software fault prediction. The code fragments in Fig-

ure 6.22 to Figure 6.23 demonstrate the actual implementation of these classes.

Due to class-only category implementation, only its respective inputdata() and

checkprofile() functions are represented by control flow graphs in Figure 6.30 to

Figure 6.32.

3. Metric extraction. Derive metrics of selected classes, attributes, and methods

from graphs employing metric definition in Section 6.3.

4. Fault prediction. Employ fault predictive models of class with appropriate ex-

tracted metrics to predict whether the class is faulty or fault-free. Faulty classes are

further explored to locate the cause of faults, faulty methods and attributes of the

faulty class are examined using fault predictive models for method and attribute,

respectively. Details of the proposed fault prediction algorithm is described in the

next section.

6.5 Algorithm

The proposed fault prediction algorithms of this study consist of two phases, namely,

fault predictive model construction and fault prediction. In the predictive model con-
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  1 class  Contact 
  2 {
  3   public:
  4
  5 char  name[25]; 
  6 char  address[50]; 
  7 char  telephone[15]; 
  8 Category ptype; 
  9 bool  stringCheck( char *, int ); 
10 bool  CategoryCheck( int ); 
11 void  add( int ); 
12 bool  compare( char *); 
13 void  display(); 
14 void  setvalue( char *, int ); 
15  };

  1 class CoworkerContact : public Contact
  2 {
  3
  4 public:
  5 char duty[100]; 
  6 void add(int); 
  7 void display(); 
  8 void getnote(); 
  9 void setvalue(char*,int); 
10 bool stringCheck(char*,int); 
11 };

(a) (b)

Figure 6.17: (a) Code for Contact class. (b) Code for CoworkerContact class.

  1 class  OtherContact :  public  CoworkerContact 
  2 {
  3
  4
  5 public : 
  6 void  add( int ); 
  7 void  display(); 
  8 void  getnote(); 
  9
10 };

  1 class  Profile 
  2 { 
  3 public : 
  4   char  name[25]; 
  5   char  telephone[15]; 
  6   char  homeaddress[50]; 
  7    char  officeaddress[50]; 
  8    void  addprofile(); 
  9   bool  checktext( char *, int ); 
10 }; 
11 
12  bool  Profile::checktext( char  *tt, int  ft) 
13  { 
14    return CoworkerContact::stringCheck(tt,ft); 
16   } 

(a) (b)

Figure 6.18: (a) Code for OtherContact class. (b) Code for Profile class.
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  1 void  Contact::setvalue( char * value, int  n) 
  2 { 
  3 int  i; 
  4 if  (n==1) 
  5 { 
  6 for  (i=0;i<25;i++) 
  7 { 
  8 name[i]= value[i]; 
  9 } 
10 } 
11 else if  (n == 2) 
12 { 
13 for  (i=0;i<50;i++) 
14 { 
15 address[i] = value[i]; 
16 } 
17 } 
18 else if  (n==3) 
19 { 
20 for  (i=0;i<15;i++) 
21 { 
22 telephone[i]= value[i]; 
23 } 
24 } 
25 
26 } 

  1 void  CoworkerContact::setvalue( char * value, int  n) 
  2 // insert SVA fault 
  3 {
  4 int  i; 
  5 if  (n==3)  // changed from n==1 
  6 { 
  7    for(i=0;i<50;i++) 
  8    { name[i]=value[i]; 
  9
10    } 
11 } 
12 else if  (n == 2) 
13 { 
14 for  (i=0;i<50;i++) 
15 { 
16 address[i] = value[i]; 
17 } 
18 } 
19 else if  (n==1) 
20 { 
21 for  (i=0;i<15;i++) // changed from n==3 
22 { 
23 telephone[i]= value[i]; 
24 } 
25 } 
26
27 }

(a) (b)

Figure 6.19: (a) Code for Contact::setvalue(char*,int). (b) Code for CoworkerCon-

tact::setvalue(char*,int).
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  1 bool  Contact::stringCheck( char * s, int  n) 
  2 { 
  3 unsigned int  i; 
  4 
  5 if  (n==1) 
  6 { 
  7 if  (strlen(s)==0 || strlen(s) > 25) 
  8 { 
  9 cout << "\nName cannot be empty or more than 25 characters"; 
10 return false ; 
11 } 
12 else 
13 return true ; 
14 } 
15 
16 if  (n==2) 
17 { 
18 if  (strlen(s)==0 || strlen(s) > 50) 
19 { 
20 cout << "\nAddress cannot be empty or more than 50 characters"; 
21 return false ; 
22 } 
23 else 
24 return true ; 
25 } 
26 
27 if  (n==3) 
28 { 
29 
30 for  (i = 0; i < strlen(s); i++) 
31 { 
32 if  (isalpha(s[i])) 
33 { 
34 cout << "\nAlphabets not allowed"; 
35 return false ; 
36 } 
37 
38 } 
39 
40 if  (strlen(s)==0 || strlen(s) > 15) 
41 { 
42 cout << "\nTelephone cannot be empty or more than 15 characters\n"; 
43 return false ; 
44 } 
45 else 
46 return true ; 
47 } 
48 
49 else 
50 return true ; 
51 
52 } 

  1 bool  CoworkerContact::stringCheck( char * s, int  n) 
  2 { 
  3 unsigned int  i; 
  4 
  5 if  (n==1) 
  6 { 
  7 if  (strlen(s)==0 || strlen(s) > 30) // changed from 25 
  8 { 
  9 cout << "\nName cannot be empty or more than 25 characters"; 
10 return false ; 
11 } 
12 else 
13 return true ; 
14 } 
15 
16 if  (n==2) 
17 { 
18 if  (strlen(s)==0 || strlen(s) > 50) 
19 { 
20 cout << "\nAddress cannot be empty or more than 50 characters"; 
21 return false ; 
22 } 
23 else 
24 return true ; 
25 } 
26 
27 if  (n==3) 
28 { 
29 
30 for  (i = 0; i < strlen(s); i++) 
31 { 
32 if  (isalpha(s[i])) 
33 { 
34 cout << "\nAlphabets not allowed"; 
35 return false ; 
36 } 
37 
38 } 
39 
40 if  (strlen(s)==0 || strlen(s) > 15) 
41 { 
42 cout << "\nTelephone cannot be empty or more than 15 characters\n"; 
43 return false ; 
44 } 
45 else 
46 return true ; 
47 } 
48 
49 else 
50 return true ; 
51 
52 } 

(a) (b)

Figure 6.20: (a) Code for Contact::stringCheck(char*,int). (b) Code for CoworkerCon-

tact::stringCheck(char*,int).
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  1 void  OtherContact::add( int  flag) 
  2 { int  g; 
  3 while  (!cin.get()) {}; 
  4
  5 if  (flag==1) 
  6 { 
  7 do 
  8 { cout << "\n Enter name of other person : "; 
  9 cin.clear(); 
10 cin.getline(name,25,'\n'); 
11 strupr(tname); 
12 setvalue(name,1); 
13 } while  (!stringCheck(tname,1)); 
14
15 do 
16 { cout << "\n Enter address of other person : "; 
17 cin.getline(address,50,'\n'); 
18 strupr(address); 
19 } while (!stringCheck(address,2)); 
20
21 do 
22 { cout << "\n Enter telephone of other person : "; 
23 cin.getline(telephone,15,'\n'); 
24 } while  (!stringCheck(telephone,3)); 
25
26 do 
27 { 
28 g=3; 
29 } while  (!CategoryCheck(g)); 
30
31 getnote(); 
32 } 
33 else 
34 { 
35 do 
36 { cout << "\n Enter new address of other person : "; 
37 cin.getline(address,50,'\n'); 
38 strupr(address); 
39 } while (!stringCheck(address,2)); 
40
41 do 
42 { cout << "\n Enter new telephone of other person : "; 
43 cin.getline(telephone,15,'\n'); 
44 } while  (!stringCheck(telephone,3)); 
45
46 getnote(); 
47 } 
48 }

Figure 6.21: Code for OtherContact::add()
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  1 void  inputData( char  ch) 
  2 {
  3 char  continueAdding='Y'; 
  4
  5
  6 if  (ch=='1') 
  7 { 

8 ………. 
  9
10 } 
11 else if  (ch == '2') 
12   {
13  CoworkerContact cperson; 
14  ofstream dataIn("addressBookc.dat",ios::ate); //create binary file 
15
16 do 
17  { 
18 system("CLS"); 
19 cout << "New coworker person entry"; 
20 cout << "\n------------------------\n"; 
21 cperson.add(1); 
22
23 dataIn.write(( char *) (&cperson), sizeof  (cperson)); 
24
25 cout << "\nDo you want to add another coworker person? [Y/N] :"; 
26 cin >>continueAdding; 
27 continueAdding = toupper(continueAdding); 
28
29  } while  (continueAdding!='N'); 
30
31  dataIn.close(); //close file stream 
32 } 
33 else if  (ch == '3') 
34   {
35  OtherContact operson; 
36  ofstream dataIn("addressBooko.dat",ios::ate); //create binary file 
37
38 do 
39  { 
40 system("CLS"); 
41 cout << "New other person entry"; 
42 cout << "\n------------------------\n"; 
43 operson.add(1); 
44
45 dataIn.write(( char *) (&operson), sizeof  (operson)); 
46
47 cout << "\nDo you want to add another other person? [Y/N] :"; 
48 cin >>continueAdding; 
49 continueAdding = toupper(continueAdding); 
50
51  } while  (continueAdding!='N'); 
52
53  dataIn.close(); //close file stream 
54 } 
55 }

Figure 6.22: Code fragment for InputData() function
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  1 void searchData(char ch)
  2 {
  3 char string[45]; 
  4 int found = 0; 
  5
  6 system("CLS"); 
  7 cout << "\n\nSearch contact person "; 
  8 cout << "\n--------------------------"; 
  9
10 cout << "\n Enter name :"; 
11
12 while (!cin.get()) 
13 {  …..       } 
14 cin.getline(string,45); 
15 strupr(string); 
16
17 ………………. 
18
19 Checkprofile(string); 
20
21 ………………. 
22
23
24  }
25
26
27 void CheckProfile{char* persondat}
28 {
29 bool chkresult1; 
30 bool chkresult2; 
31 bool chkresult3; 
32
33 ………………. 
33
35 Profile oprofile; 
36
37 ………………. 
38
39 chkresult1 = oprofile.checktext(persondat,1); 
40 chkresult2 = oprofile.checktext(persondat,2); 
41 chkresult3 = oprofile.checktext(persondat,3); 
42
43 ………………. 
44
45 }

Figure 6.23: Code fragment for SearchData() function
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  1 void  inputData( char  ch) 
  2 {
  3 char  continueAdding='Y'; 
  4
  5
  6 if  (ch=='1') 
  7 { 

8 ………. 
  9
10 } 
11 else if  (ch == '2') 
12   {
13  CoworkerContact cperson; 
14  ofstream dataIn("addressBookc.dat",ios::ate); //create binary file 
15
16 do 
17  { 
18 system("CLS"); 
19 cout << "New coworker person entry"; 
20 cout << "\n------------------------\n"; 
21 cperson.add(1); 
22
23 dataIn.write(( char *) (&cperson), sizeof  (cperson)); 
24
25 cout << "\nDo you want to add another coworker person? [Y/N] :"; 
26 cin >>continueAdding; 
27 continueAdding = toupper(continueAdding); 
28
29  } while  (continueAdding!='N'); 
30
31  dataIn.close(); //close file stream 
32 } 
33 else if  (ch == '3') 
34   {
35  OtherContact operson; 
36  ofstream dataIn("addressBooko.dat",ios::ate); //create binary file 
37
38 do 
39  { 
40 system("CLS"); 
41 cout << "New other person entry"; 
42 cout << "\n------------------------\n"; 
43 operson.add(1); 
44
45 dataIn.write(( char *) (&operson), sizeof  (operson)); 
46
47 cout << "\nDo you want to add another other person? [Y/N] :"; 
48 cin >>continueAdding; 
49 continueAdding = toupper(continueAdding); 
50
51  } while  (continueAdding!='N'); 
52
53  dataIn.close(); //close file stream 
54 } 
55 }

Section 1 (S1) 

Section 2 (S2) 

Section 3 (S3) 
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Section 5 (S5) 

Section 6 (S6) 

Section 7 (S7) 
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Section 9 (S9) 

Figure 6.30: Code fragment for InputData() function with divided sections
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  1 void CheckProfile{char* persondat} 
  2 { 
  3 bool chkresult1; 
  4 bool chkresult2; 
  5 bool chkresult3; 
  6 
  7 ………………. 
  8 
  9 Profile oprofile; 
10 
11 ………………. 
12 
13 chkresult1 = oprofile.checktext(persondat,1); 
14 chkresult2 = oprofile.checktext(persondat,2); 
15 chkresult3 = oprofile.checktext(persondat,3); 
16 
17 ………………. 
18 
19 } 

Section 1 (S1) 

S1 

Start 

End 

Profile 

bool 
checktext(char*,int) 

Figure 6.32: Control flow graph (CFG) for CheckProfile function

struction, neural network techniques are employed to construct three models which are

used for fault prediction in class, method, and attribute, respectively. Then the pre-

dictive models are applied to classes, methods, and attributes to detect faultiness in

the fault prediction phase. Fault prediction results are analyzed to find the cause and

location of faults.

6.5.1 Fault predictive model construction

The predictive models were constructed using multilayer perceptron (MLP) with back-

propagation learning algorithm [50]. Three MLP models were constructed, namely,

class model, method model, and attribute model, to represent faults in class, method,

and attribute, respectively. The objective of separating the model representation is to

categorically determine if class, method, and attribute are faulty or fault-free within each

model. The structure of each predictive model encompasses input, hidden, and output

layers, where by measurement metrics of class, method, and attribute in Section 6.3 are
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Table 6.12: Selected metrics employed as input of predictive models

No. Class’s fault Class’s fault Method’s fault Attribute’s fault

predictive model predictive model predictive model predictive model

from [4,5]

1 CountDeclInstance NpubA Nmivin SOperA

V ariableProtected

2 CountDeclMethod NproA Nmivout Anw/ih

Protected

3 ECE NpriM Mnw/ih NAoras

4 ECR NproM NMoriv NAfmas

5 ImRef NASOmin NMfmiv NAfcas

6 DiffDeff NASF min NMfciv NAfoas

7 DiffOvrrl NASCmin NMfoiv NnewMdef

8 DepIV NASOmout NMasoin NnewMuse

9 RIpriV NASF mout NMasfin NmDsbdef

10 NOD NASCmout NMascin NmUsDbdef

11 NOC NASPmout Nnewmivin NmDsbuse

12 NASOa Nnewmivout NmUsDbuse

13 NASF a Ndiffatt NmUsbuse

14 NASCa NaDsdef NDiffmet

15 NASPa NaUsdef

16 NASF cin NaDsuse

17 NASF o NaUsuse

18 NASF cmin NDsbmivin

19 NASOcin NUsDbmivin

20 NASF cout NUsbmivin

21 NASF cmout NUsbmivout

22 NASOcout NDsbmivout

23 NDSriatot NUsDbmivout

24 NDSrimtot NactDsbmin

25 Nmdiav NactUsDbmin

26 Nmuaiv NactUsbmin

27 NiaUsDbmintot NactDsatt

28 NipUsDbmintot NactUsatt

29 NipUsbmintot NparDsbmin

30 NiaDsatot NparUsDbmin

31 NiaUsatot NparUsbmin

32 NipDsatot NparDsatt

33 NipUsatot NparUsatt

selected as input of the models using the metric selection algorithm [4]. The expected

output value computed from the output node of each model would be zero for the fault-

free class (method or attribute) and one for the faulty class (method or attribute). Three

selected metric sets for three fault predictive models are listed in Table 6.12.
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Figure 6.33: Diagram of fault predictive model for class.

The configuration of fault predictive model for class is made up of 33 input nodes in

input layer, 15 hidden nodes in hidden layer, and 1 output node in output layer. This is

an extension of the static predictive model employed in [4, 5] having 11 input nodes in

input layer, 5 hidden nodes in hidden layer, and 1 output node in output layer. Fault

prediction was performed in two stages, namely, static and dynamic fault predictions.

The input is a collection of software classes are first fed into the static fault predictive

model. This model classifies the input software classes into faulty and fault-free classes.

Then the fault-free classes are further passed onto the dynamic fault predictive model.

In so doing, the misclassified faulty classes which are predicted as fault-free classes by

the static fault predictive model are procedurally detected. The process of class fault

predictive model is shown in Figure 6.33.

Similarly, the fault predictive model for method and attribute consists of 33 input

nodes in input layer, 15 hidden nodes in hidden layer, and 1 output node in output

layer, 14 input nodes in input layer, 5 hidden nodes in hidden layer, and 1 output

node in output layer, respectively. The model construction was carried out in the same

manner as that of class.
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6.5.2 Fault prediction

A comprehensive two-stage fault predictive algorithm is proposed in this study to pin-

point the cause and location of faults in the participating classes, methods, and at-

tributes. The following procedures elaborate the operation of the algorithm.

1. Select classes, methods, and attributes to participate in a two-stage process, namely,

coarse-grained and fine-grained stage.

(1) Coarse-grained stage: A control flow graph (CFG), attribute access graph

(AAG), method invocation graph (MIG), and inheritance flow graph (IFG)

of the investigated system are employed. All classes, methods, and attributes

which appear in the CFG are chosen. The methods called by the considered

methods and the methods calling the considered methods in MIG are also

included, along with the attributes accessed by the considered methods that

meet the definition given below.

Definition 6.19: Let m and a be a method and an attribute in an MIG and

an AAG. Let Vselect be a set of selected classes, methods, and attributes. The

method m and attribute a will be considered if the following conditions are

true:

i. ∃ δ ∈ (Vm ∪ Vmri ∪ Va ∪ Vari) ∩ Vselect, m → δ ∈ Em, δ → m ∈ Em,

a → m ∈ Eda ∪ Eua

In the IFG, superclasses or ancestors, methods, and attributes which are in-

herited by the considered classes, methods, and attributes from the CFG,

AAG, and MIG are defined as follows.
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Definition 6.20: Let c, m, and a be a class, a method or referred inherited

method, and an attribute or referred inherited attribute in an IFG, respec-

tively. The method m and the attribute a are members of class c. Let Vselect

be a set of selected classes, methods, and attributes. The class c, method m,

and attribute a will be considered if the following conditions are true:

i. ∃ α ∈ Vc ∩ Vselect, c −−−−→
IHF

α and

ii. ∃ δ ∈ (Vm ∪ Vmri ∪ Va ∪ Vari) ∩ Vselect, m → δ ∈ Emh, a → δ ∈ Emh

(2) Fine-grained stage: An association graph (ASG) is employed to further in-

vestigate the classes, methods, and attributes which relate in some forms of

association to the selected classes, methods, and attributes from the coarse-

grained stage.

Definition 6.21: Let c, m, and a be a class, a method or referred inherited

method, and an attribute or referred inherited attribute in an association

graph, respectively. The method m and the attribute a are members of class

c. The class c, method m, and attribute a will be considered if the following

conditions are true:

i. ∃ α ∈ Vc ∩ Vselect, c −−−−→
ASF

α and

ii. ∃ δ ∈ (Vm ∪ Vmri ∪ Va ∪ Vari) ∩ Vselect, m → δ ∈ Em, δ → m ∈ Em,

a → δ ∈ Eda ∪ Eua

The selected classes, methods, and attributes from example graphs from Fig-

ure 6.4 through 6.16 are depicted in Table 6.13.

2. Apply the selected classes, methods, and attributes to the predictive models.

3. Find the cause and location of fault using sensitivity analysis and graphs.
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Table 6.13: Selected classes from coarse-grained and fine-grained stages

Coarse-grained stage Fine-grained stage

CFG IFG ASG

C A

D A,B A,C

E A,B

F A,B,D

Table 6.14: Selected methods from coarse-grained and fine-grained stages

Coarse-grained stage Fine-grained stage

CFG MIG IFG ASG

C:inival()

D:setd1()

D:display() D:displaychar(char),D:displayint(int)

E:plusval() A:plus(int),B:display(int)

F:setb2(float)

F:setd1(float)

F:compute() F:set(int)

F:write() A:write()

Table 6.15: Selected attributes from coarse-grained and fine-grained stages

Coarse-grained stage Fine-grained stage

CFG AAG IFG ASG

D:d2,D:b2 D:b2,D:a1,D:d1,D:d2 A:a1

E:e3,E:e2 E:e1,E:e2,E:e3

F:d1,F:b2 F:a1,F:b2,F:f1,F:d1 A:a1,D:d1,B:b2
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Figure 6.34: The two-stage fault predictive algorithm process

Figure 6.34 summarizes the process of the proposed algorithm.

6.6 Sensitivity Analysis

As parametric modeling is being applied to solve real world problems, the inherent effects

of parameter value change are crucial for the execution of the model. Unfortunately,

it is difficult to identify which input parameters actually have influence on the output

of model. Sensitivity Analysis (SA) is an approach designed to serve the purpose. The

technique estimates the rate of change in the output of a model caused by the changes of

the model inputs [51]. If a tiny change of an input leads to great changes in the output,

the model is highly sensitive to that input [52]. Thus, the aims of sensitivity analysis

are [53]:
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• Find the parameters which have great effect on the outputs of a model;

• Study the possible changes of those parameters;

• Determine how those parameters affect the final decision-making; and

• Identify what activities will lighten the effects.

There are many sensitivity analysis methods which can be divided into three cate-

gories [54].

1) Mathematical methods

Mathematical methods assess sensitivity of a model output to the range of variation

of an input. They can assess the impact of range of variation in the input variables

on the output, so they can be helpful in finding the most important inputs. Math-

ematical methods include nominal range sensitivity analysis, break-even analysis,

difference-in-log-odds ratio, and automatic differentiation.

2) Statistical methods

Statistical methods involve conducting simulations in which inputs are assigned

probability distributions and assessing the impact of variation in inputs on the

output distribution. Depending on the method, one or more inputs are varied at

a time. Statistical methods allow identifying the effect of interactions among mul-

tiple inputs. Statistical methods include regression analysis, analysis of variance,

response surface methods, fourier amplitude sensitivity test, and mutual informa-

tion index.

3) Graphical methods

Graphical methods give representation of sensitivity in the form of graphs or charts.

Generally, graphical methods are used to give visual indication of how an output
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is affected by variation in inputs. Graphical methods can be quite helpful before

further analysis of a model or to describe complex dependencies between inputs

and outputs. Graphical methods can also be used to complement the results of

mathematical and statistical methods.

In this study, a mathematical sensitivity analysis technique from the mathemati-

cal category was employed. The technique was developed by Zurada, Malinowski and

Cloete [55] based on neural network model. They first defined a metric for the individual

input-output sensitivities, and then showed how this metric could be used to determine

the sensitivities of each output over the entire training set. This technique is described

as below.

6.6.1 Input-output sensitivities

Only a three layer network is adequate to explain the way to find input-output sensitiv-

ities, although the extension of sensitivity analysis to neural networks with more layers

is straightforward.

Consider a three layer feedforward neural network, where �z = (z1, . . . , zi, . . . , zI), �y =

(y1, . . . , yj, . . . , yJ) and �o = (o1, . . . , ok, . . . , oK), denote the input, hidden, and out-

put layers, respectively. Define a training pair p as the tuple p = (�z(p),�t(p)), where

�t = (t1, . . . , tk, . . . , tK) denotes as the target vector. Given any training pair p, define

the sensitivity S
p
ki of a trained output ok with respect to an input zi as

S
p
ki =

∂ok

∂zi

= ók

J∑
j=1

wkj
∂yj

∂zi

= ók

J∑
j=1

wkjýjvji (6.1)

where yj denotes the output of the j-th hidden neuron of the hidden layer �y, ók is the

value of the derivative of the output layer activation function
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ok = f(
J∑

j=1

wkjyj) (6.2)

and ýj is the value of the derivative of the hidden layer activation function

yj = f(
I∑

i=1

vjizi) (6.3)

where wkj denotes the weight value between hidden neuron yj and output ok, and vji is

the weight value between input zi and hidden neuron yj.

Equation (6.1) only defines the sensitivity of one output ok with respect to one input

zi for pattern p. For training pattern p, define the pattern sensitivity matrix S(p) which

consists of entries S
p
ki, as

S(p) = ÓW Ý V (6.4)

where W (K × J) and V (J × I) are respectively the output and hidden layer weight

matrices, and Ó(K × K) and Ý (J × J) are defined as

Ó ≈ diag(ó1, . . . , óK) (6.5)

Ý ≈ diag(ý1, . . . , ýJ) (6.6)

6.6.2 Sensitivity measures over entire training set

Equation (6.5) defines the sensitivity matrix for a specific training pattern p. However,

each training pair p produces a different sensitivity matrix S(p). In order to apply
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sensitivity analysis, the sensitivity matrix S(p) must be evaluated over the entire training

set. Consequently, three different metrics over the entire training set are defined as

follows [55]:

• The mean square average sensitivity matrix Savg

Ski,avg ≈

√√√√∑P
p=1

[
S

(p)
ki

]2

P
(6.7)

• The absolute value average sensitivity matrix Sabs

Ski,abs ≈

∑P
p=1

∣∣∣S(p)
ki

∣∣∣
P

(6.8)

• The maximum sensitivity matrix Smax

Ski,max ≈ maxp=1,...,P

{
S

(p)
ki

}
(6.9)

Any one of the sensitivity measure matrices above is sufficient to assess the relative

significance of each input to each output. In addition, inputs and outputs are needed to

be scaled to the same range in order to allow accurate comparison among inputs. If the

original inputs and outputs are not scaled to the same range before training, the scaling

equation (6.10) has to be applied.

Ski,avg = Ski,avg

(
maxp=1,...,P

{
z

(p)
i

}
− minp=1,...,P

{
z

(p)
i

})
(
maxp=1,...,P

{
o

(p)
k

}
− minp=1,...,P

{
o

(p)
k

} ) (6.10)

Sensitivity analysis has been applied in various fields, such as marketing. SA is em-

ployed to discover important variables that influence sales performance of color television
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(CTV) sets in Singapore market, civil engineering [56]. The significance of independent

factors for concreting productivity are explored using SA [57], Software Engineering; SA

is applied to determine which component affects the reliability of the system most [58].

Software measures are ranked to identify the best software reliability indicators and

changes in the system behavior due to changes in system parameters or variables are

computed using SA [59,60].

6.7 Experiment

The experiment was carried out using 560 C++ classes from different sources: complete

applications, individual algorithms, sample programs, and various other sources on the

Internet. The classes were written by different developers. The size of the classes varies

between 100 and 500 lines of code. Such combinations of experimental data provide a

good mixture necessary for obtaining general predictive models.

For the purpose of this study, faults have been inserted to 320 classes according to

syntactic patterns in [3] while the remaining 240 classes are assumed fault-free. All

classes were measured by 55 metrics described in Section 6.3 and 11 metrics/parameters

from [4]. There were 790 methods and 760 attributes collected for this experiment. All

methods and attributes were measured by 40 metrics and 19 metrics from Section 6.3

and Section 6.3, respectively.

The values of class metrics, method metrics, and attribute metrics are normalized

to 0 and 1, and randomly grouped into training set and test set for each predictive

models in Section 6.5.1. The training sets were used to trained the predictive models

and the test sets were applied to test the models. The predictive models were evaluated

by means of some measurement criteria [7] as follows:

• Type I error (T1): This error occurs when a faulty class is classified as fault-free.
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Table 6.16: Results from fault predictive models

Criterion Fault predictive model

Class Method Attribute

Correctness percentage 94.64% 92.40% 91.45%

Type I error (T1) 3.57% 4.43% 5.26%

Type II error (T2) 1.78% 3.16% 3.29%

Quality achieved (C) 94.20% 90.00% 84.61%

Inspection (I) 59.82% 43.67% 33.55%

Waste Inspection (WI) 2.98% 7.35% 9.80%

• Type II error (T2): This error occurs when a fault-free class is classified as

faulty.

• Quality achieved (C): If all faulty classes are properly classified, defects will be

removed by extra verification.

• Inspection (I): Inspection measures the overall verification cost by considering

the percentage of classes that should be verified.

• Waste Inspection (WI): Waste inspection is the percentage of classes that do

not contain faults but are verified because they have been classified incorrectly.

Table 6.16 shows the result from model testing and evaluation.

By applying the algorithm of fault prediction in Section 6.5.2, a set of selected 40

classes are considered whether they are faulty or fault-free. Thirty-eight classes or 95.0%

of the set are correctly predicted by the predictive model. Two fault-free classes are pre-

dicted as faulty classes while the rest 20 classes and 18 classes are correctly predicted



151

as faulty and fault-free classes, respectively. Fifty-one methods and 63 attributes in-

volved those selected classes are determined to find which ones are faulty by applying

the respective method’s predictive model and attribute’s predictive model. Five faulty

methods are incorrectly predicted as fault-free with 90.19% of accuracy. The attribute’s

predictive model can predict the faultiness of those selected attributes with 90.48% of

accuracy, where 2 faulty attributes and 4 fault-free attributes are incorrectly predicted.

To find the significance of each input parameter of the fault predictive models, partial-

derivative sensitivity measure as mentioned in Section 6.6 is applied. For this study, the

absolute average sensitivity is computed and demonstrated by graphs in Figure 6.35 to

Figure 6.38. Consider the class predictive models, the 9th metric (RIpriV ) in Figure 6.35

and the 28th metric (NipUsDbmintot) in Figure 6.36 have the highest sensitivity value, which

means that the number of methods with signature inheritance use and body inheritance

define which are members of parents and invoked by the considered class. The outcomes

also indicate the number of refining methods in the ancestor classes that inherited to

the descendant class [5] has highest effect on the faultiness of class. Figure 6.37 shows

that the 13th metric (Ndiffatt) has the most effect on faultiness of method. By the same

token, faultiness of attribute is highly dependent on the third metric (NAoras) which

yields the highest sensitivity value as depicted in Figure 6.38.

When a faulty class is identified, the location of fault is determined by tracing the

faulty method (or attribute) which can be reached from the considered faulty class

through a sequence of edges from the graphs (PSG, AAG, MIG, IFG, and ASG). Then

the cause of fault is determined based on the methods or attributes of that class and

all the associated metrics. The order of computation starts from the highest sensitivity

metric yield to the lowest one. A guide line for locating fault is established as the

followings:
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Figure 6.35: The absolute average sensitivity of input for class’s predictive model con-

structed based on metrics from [4, 5]

• Pass a class to the class fault predictive model

• Apply methods and attributes of the faulty class to the method and attribute

predictive models, respectively

• The faulty methods and attributes are the fault location of the faulty class

• Employ sensitivity analysis to fault predictive models for class, method, and at-

tribute.

• The metric (input of the fault predictive model) with highest sensitivity value has

the most effect on fault
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Figure 6.36: The absolute average sensitivity of input for class’s predictive model con-

structed based on the proposed selected class metrics
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Figure 6.37: The absolute average sensitivity of input for method’s predictive model

constructed based on the proposed selected method metrics
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Figure 6.38: The absolute average sensitivity of input for attribute’s predictive model

constructed based on the proposed selected attribute metrics



CHAPTER VII

CONCLUSION

7.1 Discussion

The proposed software fault prediction approach can predict fault-proneness in both

procedural and object-oriented software using faultiness predictive models. The proce-

dural software model yields 83% accuracy while over 90% accuracy is obtained by the

object-oriented software model. The reason behind such high yielding results is due to

the application of a methodical two-stage process that selects proper metrics to predict

and identify fault type.

However, there are faulty software classes being predicted as fault-free because they

do not incorporate compile-time or static faults, but possess various recalcitrant dy-

namic faults. Thus, a set of analytical graphs were employed to accommodate appro-

priate metrics for dynamic fault prediction, namely, program structure graph (PSG),

inheritance flow graph (IFG), attribute access graph (AAG), method invocation graph

(MIG), control flow graph (CFG), and association graph (ASG). A dynamic class fault-

iness predictive model is introduced to assess such faults. Moreover, the locations of

faults are also investigated by finding faulty methods and attributes with 92.40% and

91.45% accuracy, respectively.

Prediction results were further analyzed by sensitivity analysis technique to deter-

mine the impact of various fault type parameters. Class fault type was fairly accurate

in all aspects, i.e., correctness, type I, type II, quality achieved, inspection, and waste
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inspection. As fault location was further refined, the accuracy diminished slightly. This

was due to some experimental data that were downloaded from different sources con-

tained unidentified faults not being detected by the model. Consequently, individual

metric can be gauged to see how it attributes to faultiness.

7.2 Conclusion

In the domain of software fault prediction, many techniques, i.e., neural networks and

fuzzy logic, are applied with enormous amounts of data to construct predictive models.

Those models focus on software faultiness without attempting to identify fault type and

fault location. This dissertation proposed a systematic fuzzy logic and neural network

approach [2, 4, 5] to predicting software fault in software system without test run based

on software metrics. This approach can predict fault-proneness and fault type due to

inheritance in software system with high prediction accuracy by means of a set of relevant

metrics established by the proposed MASP model. To complement the fault prediction,

dynamic faults and their corresponding location are determined using a set of graphs

and metrics extracted from those graphs. The resulting metrics are subsequently used

as a clue for investigating cause of fault.

7.3 Future Work

Besides inheritance, residual faults in software may associate with other object-oriented

aspects, such as polymorphism and aggregation, which are beyond the scope of this

dissertation. Existing researches concerning these issues are still not extensive enough

to be used as a basis for polymorphic and aggregation fault predictions. Consequently,

further study of software fault due to polymorphism and aggregation is necessary to

create a frame work for predicting those faults.
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