การเตรียมอนุภาคโคออร์ดิเนชันระดับนาโนเมตรชนิดใหม่จากการรวมตัวกันเองของ สารลดแรงตึงผิวและไอออนกาโดลิเนียมเพื่อทำให้อนุพันธ์เคอร์คูมินเสถียรในสารละลายบัฟเฟอร์

นางสาวชลธิชา สาหับ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2556 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

PREPARATION OF NOVEL SELF-ASSEMBLED COORDINATION NANOPARTICLES FROM SURFACTANTS AND GADOLINIUM ION TO STABILIZE CURCUMIN DERIVATIVES IN BUFFERED SOLUTION

Miss Chonticha Sahub

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Chemistry Department of Chemistry Faculty of Science Chulalongkorn University Academic Year 2013 Copyright of Chulalongkorn University

Thesis Title	PREPARATION OF NOVEL SELF-ASSEMBLED
	COORDINATION NANOPARTICLES FROM SURFACTANTS
	AND GADOLINIUM ION TO STABILIZE CURCUMIN
	DERIVATIVES IN BUFFERED SOLUTION
Ву	Miss Chonticha Sahub
Field of Study	Chemistry
Thesis Advisor	Professor Thawatchai Tuntulani, Ph. D.
Thesis Co-advisor	Assistant Professor Boosayarat Tomapatanaget, Ph. D.

(Professor Thawatchai Tuntulani, Ph.D.)

B. Tompratency 1 Thesis Co-advisor

(Assistant Professor Boosayarat Tomapatanaget, Ph.D.)

Seyn M. Examiner

(Associate Professor Supason Wanichwecharungruang, Ph.D.)

Gamolwan Tuncharern, Ph.D.)

ชลธิชา สาหับ : การเตรียมอนุภาคโคออร์ดิเนชันระดับนาโนเมตรชนิดใหม่จากการรวมตัว กันเองของสารลดแรงตึงผิวและไอออนกาโดลิเนียมเพื่อทำให้อนุพันธ์เคอร์ดูมินเสถียรใน สารละลายบัฟเฟอร์. (PREPARATION OF NOVEL SELF-ASSEMBLED COORDINATION NANOPARTICLES FROM SURFACTANTS AND GADOLINIUM ION TO STABILIZE CURCUMIN DERIVATIVES IN BUFFERED SOLUTION) อ.ที่ปรึกษาวิทยานิพนธ์หลัก : ศ. คร.ธวัชชัย ดันฑุลานิ, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม : ผศ. คร.บุษยรัตน์ ธรรมพัฒนกิจ, 121 หน้า.

เคอร์คูมินเป็นสารธรรมชาติจำพวกโพลีฟีนอล พบในรงควัตถุหลักที่สกัคได้จากเหง้าของ งมิ้นชั้น (ชื่อวิทยาศาสตร์คือ *Curcuma longa* Linn.) มีฤทธิ์ในการยับยั้งการเจริญเติบโตของเซลล์มะเร็ง ได้ก่อนข้างสูง แต่ข้อเสียของเกอร์คูมินได้แก่ การไม่ละลายและไม่เสถียรในน้ำ ส่งผลให้มีชีวปริมาณการ ออกฤทธิ์ที่ค่ำ ในงานวิจัยนี้คณะผู้วิจัยได้รายงานการเตรียมอนุภาคโคออร์ดิเนชันระดับนาโนเมตรชนิด ใหม่จากการรวมตัวกันเองของสารลดแรงตึงผิวและไอออนกาโคลิเนียมและบัฟเฟอร์เพื่อทำให้อนุพันธ์ เกอร์คมินเสถียรในสารละลายบัฟเฟอร์ การศึกษาผลของชนิดของบัฟเฟอร์ที่ประกอบด้วย HEPES MOPS Tris และ phosphate และผลของชนิดของสารลดแรงตึงผิวชนิด SDS CTAB และ Triton X-100 ที่มีต่อ ลักษณะโครงสร้างภายนอกและสมบัติของโครงสร้างโมเลกุล โคยใช้เทคนิคอินฟราเรคสเปกโทรสโกปี กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราค (SEM) กล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน (TEM) การ ดูดกลืนรังสีเอ็กซ์ (XAS) อะตอมมิกสเปกโทรสโกปีจากการใช้พลาสมา (ICP-AES) และเอ็กซ์เรย์คิฟ แฟรกชัน (XRD) พบว่า การเกิดอนุภาค โคออร์ดิเนชันระคับนาโนเมตรจาก Gd³⁺, SDS และ HEPES ที่มี ้ชื่อว่า GdSH ให้โครงสร้างที่มีลักษณะทรงกลมและเหมาะสมในการทคลองงานค้านชีวภาพ นอกจากนี้ ้อนพันธ์เคอร์คมินที่ถกห่อหุ้มด้วยอนุภาคระดับนาโนถูกตรวจสอบด้วยเทคนิดยุวี-วิซิเบิล ฟลูออเรสเซนซ์ และอินฟราเรคสเปกโทรสโกปี จากนั้นศึกษาความเสถียรของอนุพันธ์เคอร์ดูมินค้วยเทคนิคยูวี-วิชิเบิล และฟลออเรสเซนซ์สเปกโทรสโกปี พบการลคลงของความเข้มของการคายพลังงาน (normalized fluorescence intensity) ของเคอร์คูมินในอนุภาคนาโนน้อยกว่าเคอร์คูมินที่ไม่ถูกห่อหุ้มด้วยอนุภาคนาโน ้ถึง 2 เท่า เมื่อเวลาผ่านไป 2 ชั่วโมง ซึ่งสอดคล้องกับผลของการทคสอบฤทธิ์ทางชีวภาพ ที่บ่งชี้ว่าอนุภาค GdSH สามารถเพิ่มสมบัติในการยับยั้งเซลล์มะเร็งลำใส้ใหญ่ SW620 เมื่อเปรียบเทียบกับเคอร์คูมิน ธรรมดาทั้งในสารละลาย DMSO และ HEPES buffer ด้วยก่า IC50 ในรูปแบบของเคอร์ดูมินที่มีปริมาณ ้เท่ากันเท่ากับ 8.0, 10.3 μg/mL และ ไม่เป็นพิษ ตามลำคับ นอกจากนี้ภาพถ่ายแบบคอน โฟคอลฟลูออเรส เซนซ์แสดงให้เห็นว่าเกอร์คูมินที่อยู่ภายในอนุภาก GdSH สามารถเข้าไปภายในเซลล์ได้อย่างรวคเร็วและ เพิ่มความสว่างแสงฟลูออเรสเซนซ์ได้อีกด้วย จากผลการทดลองกาดว่างานวิจัยนี้จะมีประโยชน์ในการ พัฒนากวามเสถียรของเคอร์ดูมินเพื่อใช้ประโยชน์ในงานด้านชีวภาพต่อไป

ภาควิชา	เกมี	ลายมือชื่อนิสิค	<i>สลัธ</i> า	สาขัญ		
สาขาวิชา	เกมี	ลายมือชื่อ อ.ที่ปรึกษ	มาวิทยานิพน	ธ์หลัก	201580	RIAMAN A
ปีการศึกษา	2556	ลายมือชื่อ อ.ที่ปรึกษ	มาวิทยานิพน	ธ์ร่วม_	Mulin	NIZATIN

5372401523 : MAJOR CHEMISTRY

KEYWORDS : SELF-ASSEMBLY/ COORDINATION NANOPARTICLES/ GADOLINIUM ION/ SURFACTANT/ BUFFER/ CURCUMIN DERIVATIVES

CHONTICHA SAHUB: PREPARATION OF NOVEL SELF-ASSEMBLED COORDINATION NANOPARTICLES FROM **SURFACTANTS** AND GADOLINIUM ION TO **STABILIZE** CURCUMIN DERIVATIVES IN BUFFERED SOLUTION. ADVISOR: PROF. THAWATCHAI TUNTULANI, Ph. D., CO-ADVISOR: ASST. PROF. BOOSAYARAT TOMAPATANAGET, Ph.D., 121 pp.

Curcumin is a natural polyphenol found as a major pigment extracted from turmeric rhizomes (Curcuma longa Linn.). Effective inhibition of the growth of cancer cells by curcumin is relatively high. However, the disadvantages of curcumin derivatives are water-insolubility and instability resulting in exceedingly poor bioavailability. In this study, we have reported novel coordination nanoparticles prepared by self-assembly of surfactants and gadolinium ion (Gd^{3+}) to stabilize curcumin derivatives in buffer solution. Effects of various buffers including HEPES, MOPS, Tris and phosphate and various surfactants including SDS, CTAB and Triton X-100 towards the morphology and structural properties of the nanoparticles were investigated by FT-IR, SEM, TEM, XAS, ICP-AES and XRD techniques. It was found that the formation of coordination nanoparticles from Gd³⁺, SDS and HEPES, namely, GdSH CNPs showed excellently uniform spherical nanoparticles and a possibly suitable candidate for biological tasks. Moreover, the curcumin derivatives encapsulated in self-assembled coordination nanopariticles were prepared and then characterized by UV-visible, fluorescence and FT-IR spectroscopies. The stability of curcumin derivatives was also examined by both of UV-visible and fluorescence spectroscopies and the results showed that the decrease of the normalized fluorescence intensity of curcumin incorporated in coordination nanoparticles was less than 2-fold that of free curcumin during the 2 h period. As compared to the corresponding cytotoxicity assay studies of free curcumin in DMSO and HEPES buffer solution with IC₅₀ values of 10 µg/mL and non-toxicity, respectively, GdSH CNPs can enhance in vitro anti-cancer activity of curcumin to SW620 colon cancer cells with IC₅₀ values of 8.0 µg/mL in term of cucumin-equivalent dose. Additionally, as the results of the confocal fluorescence images, the curcumin immobilized GdSH CNPs could be immediately taken to cancer cells and enhanced the fluorescence brightness. In these approaches, our novel nanoparticles would be beneficial to further development of stability of curcumin for biological tasks.

Department : Chemistry	Student's Signature Chorticha Sahub
Field of Study : <u>Chemistry</u>	Advisor's Signature J. Turnt nam
Academic Year : 2013	Co-advisor's Signature : B. Tumpalingat

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my thesis supervisors Prof. Dr. Thawatchai Tuntulani and Asst. Prof. Dr. Boosayarat Tomapatanaget for the opportunity, guidance, numerous helpful, suggestions, encouragement, inspiration in this research and introducing the new knowledge about supramolecular and nano chemistry. In addition, I would like to thank Asst. Prof. Dr. Warinthorn Chavasiri, Assoc. Prof. Dr. Supason Wanichwecharungruang and Dr. Gamolwan Tumcharern for their valuable suggestions and comments as thesis committee and thesis examiner.

I would like to thank Assoc. Prof. Dr. Tanapat Palaga and his student, Miss Wipawee Wongchana for their advice and assistance in biological studies as well as Assoc. Prof. Dr. Sanong Ekgasit and his student, Mr. Prasert Sornprasit for their assistance in morphology studies by using the scanning electron microscopy (SEM) as well as Assoc. Prof. Dr. Supason Wanichwecharungruang for assistance for confocal laser scanning microscopy (CLSM) experiment as well as Dr. Gamolwan Tumcharern for assistance in Dynamic light scattering (DLS) measurement as well as Assistant Professor Dr. Narong Praphairaksit for inductively coupled plasma-atomic emission spectroscopy (ICP-AES) experiment. I would like to acknowledge the beamline BL8 of Synchrotron Light Research Institute (SLRI) especially, Dr. Wantana Klysubun, Dr. Chanapa Kongmark for assistance in X-ray absorption spectroscopy (XAS) measurement.

I would like to thank all members in the Supramolecular Chemistry Research Unit (SCRU) and members in 2015(403) microbiology department, especially, Mr. Anusak Chaicham for their friendship, support, suggestion and assistance. I wish like to express my sincere thanks to Miss Wanlapa Wongsan, Miss Valentine Juasakul and Miss Siriboon Mukdasai for their useful recommendation and encouragement. Additionally, I would like to acknowledge Department of Chemistry, Chulalongkorn University, TRF&CHE (RSA5680015 and RTA5380003) and Development and Promotion of Science and Technology Talents Project (DPST) for financial supports.

Finally, I would like to express my deepest gratitude to my parents and my sisters, for their love, care, kindness, encouragement and other supports throughout my life.

CONTENTS

Page

Abstract in Thai	iv
Abstract in English	v
Acknowledgements	vi
Contents	vii
List of Tables	x
List of Figures	xii
List of Schemes	xvii
List of Abbreviations and Symbols	xix
CHAPTER I INTRODUCTION	1
1.1 Research objectives	2
1.2 Scope of this research.	3
1.3 Benefits of this research	3
CHAPTER II THEORY AND LITERATURE REVIEWS	4
2.1 Supramolecular chemistry	4
2.2 Nanoparticles	5
2.3 Curcumin	6
2.4 Gadolinium ion	8
2.5 X-Ray Method	9
2.5.1 X-ray absorption (XAS)	9
2.5.2 X-ray diffraction (XRD)	11
2.6 Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES)	12
2.7 Enhanced permeability and retention (EPR) effect	13
2.8 Literature reviews	14
2.8.1 Literature reviews of difluoroboron complex of curcumin 2.8.2 Literature reviews of nanocarriers for delivery of curcumin to cancer	14
cells	15
2.8.3 Literature reviews of lanthanide ion particles	17
2.9 Hypothesis of this research.	21
CHAPTER III EXPERIMENTAL SECTION	22
3.1 General procedures	22
3.1.1 Analytical measurements	22

Page

3.1.2 Materials	23
3.2 Synthesis of curcumin derivatives	24
3.2.1 Synthesis of curcumin borondifluoride (CurBF ₂) 3.2.2 Synthesis of tosylation curcumin borondifluoride (CurBF ₂ OTs and	24
CurBF ₂ (OTs) ₂) 3.2.3 UV-visible studies of Cur, CurBF ₂ , CurBF ₂ OTs and	24
CurBF ₂ (OTs) ₂	26
in butters solution	27
2.2.2. Marchalance for the time and ticks	27
3.3.2 Morphology of coordination nanoparticles	28
3.3.3 Inductively coupled plasma-atomic emission spectroscopy 3.3.4 UV-Vis and Fluorescence measurements of coordination	29
3.4 Self-assembled coordination nanoparticles from surfactants and gadolinium	52
to stabilize curcumin derivatives in buffers solution	33
3.4.1 The effects of various surfactants and various buffers to the curcumin derivative (CurBE ₂) encapsulated in CNPs	33
3.4.2 The effect of various concentrations of SDS surfactant to the	55
curcumin derivative (CurBF ₂) encapsulated in CNPs	34
solution	35
3.4.4 The stability of curcumin derivatives encapsulated in GdSH CNPs	35
3.4.5 Entrapment efficiency and loading efficiency	37
3.4.6 Drug release studies	37
3.5 Cytotoxic assay	38
3.5.1 Cell line and media	38
3.5.2 Cell preservations	38
3.5.3 Cell preparation	38
3.5.4 MTT assay	39
3.5.5 Statistical Analysis	39
3.6 Cellular uptake of GdSH-Cur CNPs	40
CHAPTER IV RESULTS AND DISCUSSION	41
 4.1 Design and synthesis of curcumin derivatives 4.1.1 Synthesis and characterization of curcumin borondifluoride 	41
 4.1.2 Synthesis and characterization of curcumin boron-difluoride mono- tosylation (CurBF₂OTs) and di-tosylation borondifluoride (CurBF₂(OTs)₂) 	43

ix Page

	0
4.2 Self-assembly of coordination nanoparticles (CNPs)	45
4.2.1 Size and structural morphology characterizations	46
 4.2.2 Infrared spectroscopy. 4.2.3 The effects of various surfactants and various buffers to the curcumin derivative (CurBF₂) encapsulated in CNPs 4.2.4 The effect of various concentrations of SDS surfactant to the 	52 55
curcumin derivative (CurBF ₂) encapsulated in CNPs	57
4.2.5 X-ray absorption near-edge structure (XANES) spectra 4.2.6 Inductively-coupled plasma atomic emission spectroscopy (ICP-	59
ASE)	61
4.2.7 X-ray Diffraction (XRD)	64
4.3 Self-assembly of curcumin derivatives encapsulated in GdSH-Cur CNPS4.3.1 Infrared Spectra of curcumin encapsulated in coordination	65
nanoparticles (GdSH-Cur CNPS)	65
coordination nanoparticles (GdSH-Cur CNPs) 4.3.3 The stability studies of curcumin encapsulated in coordination	66
nanoparticles (GdSH-Cur CNPs)	68
nanoparticles (GdSH-CurBF ₂ CNPs)	70
4.3.5 The stability studies of CurBF ₂ OTs encapsulated in coordination nanoparticles (GdSH-CurBF ₂ OTs CNPs)	72
4.3.6 The stability studies of CurBF ₂ (OTs) ₂ encapsulated in coordination nanoparticles (GdSH-CurBF ₂ (OTs) ₂ CNPs)	74
4.3.7 Entrapment efficiency and loading efficiency	75
4.3.8 Drug release studies	76
4.4 Cytotoxicity assay	77
4.5 Cellular uptake of GdSH-Cur CNPs by SW620 cells	84
CHAPTER V CONCLUSION	90
5.1 Conclusion	90
5.2 Suggestions for future works	92
References	93
Appendix	101
Vita	119

LIST OF TABLES

Table 2.1 Main luminescence transition of trivalent lanthanide aquo ionsTable 3.1 Amounts of Cur, CurBF2, CurBF2OTs and CurBF2(OTs)2 used	8
in spectrophotometry studies and their absorption wavelengths	26
Table 3.2 Composition of samples prepared at room temperature Table 3.3 Amount of SDS, Gd ³⁺ , DMSO and Milli-Q water that used in ICP-	27
AES studies. Table 3.4 Amount of SDS, Gd ³⁺ , DMSO and 0.1 M HEPES buffer solution pH 7.4 that used in LCP. AES studies	30
ph 7.4 that used in ICP-AES studies	51
Table 3.5 Dyed-doped samples name and their componentsTable 3.6 Amount of SDS, Gd ³⁺ , CurBF ₂ and 0.1 M HEPES buffer solutionpH 7.4 that used in the study effect of SDS concentration	33 34
Table 3.7 The final concentration of the components to the prepared CNPs Table 4.1 Identification, composition of the samples prepared at room	36
temperature	46
Table 4.2 Average sizes of the samples prepared at room temperature were determined by TEM and DLS technique	47
Table 4.3 SDS assignment mode, in the absence in the presence of Gd nenometricles	51
Table 4.4 Results from linear combination fitting of XANES spectra tool in the Athena Program.	54 60
Table 4.5 Loading efficiency (%) and entrapment efficiency (%) of curcumin	
derivatives calculated by using equation (1) and (2)	75
Table 4.6 The IC ₅₀ values towards L929 (normal cells) and SW620 (cancer	
cells) of curcumin derivatives equivalent dose (IC_{50-Ceq}) and coordination nanoparticles ($IC_{50-CNPs}$), calculated using loading contents	82
Table 4.7 Bright field image and fluorescence images of SW620 at 40x incubated with 10 μg/ml Cur in 10% DMSO/0.1 M HEPES buffer pH 7.4 solution (left), 10 μg/ml curcumin-equivalent dose of GdSH-Cur CNPs (middle) and 25 μg/ml curcumin-equivalent dose of GdSH-Cur CNPs 0.1 M HEPES buffer pH 7.4 solution (right) for 1, 2, 4, 6, 24 and 48 h.	84
Table A1 Independent Samples Test of IC ₅₀ values of Cur and GdSH-Cur	113
Table A2 Independent Samples Test of % cell viability of Cur (in DMSO) at	
various concentration to normal cells compared with cancer cells Table A3 Independent Samples Test of % cell viability of Cur in CNPs (in HEPES) at various concentration to normal cells compared with	113
Table A4 Independent Samples Test of % cell viability of Cur (in DMSO)	113
compared with Cur in CNPs (in HEPES) to normal cells at various	
concentration	114

Page

xi

Table A5 Independent Samples Test of % cell viability of Cur (in DMSO)	I age
compared with Cur in CNPs (in HEPES) to cancer cells at various	11/
Table A6 Independent Samples Test of % cell viability of Cur (in HEPES) compared with Cur in CNPs (in HEPES) to cancer cells at various	114
Table A7 Independent Samples Test of % cell viability of CNPs (in HEPES)	115
at various concentration to normal cells compared with cancer cells.	115
Table A8 Independent Samples Test of IC50 values of CurBF2 and GdSH-	
CurBF ₂	116
Table A9 Independent Samples Test of % cell viability of CurBF2 (in DMSO) at various concentration to normal cells compared with	
cancer cells.	116
Table A10 Independent Samples Test of % cell viability of CurBF2 in CNPs (in HEPES) at various concentration to normal cells compared	
with cancer cells	117
Table A11 Independent Samples Test of % cell viability of CurBF2 (in DMGO	
cells at various concentration	117
Table A12 Independent Samples Test of % cell viability of CurBF2 (in DMSO) compared with CurBF2 in CNPs (in HEPES) to cancer	
cells at various concentration	118

LIST OF FIGURES

Page

Figure 2.1	Comparison between the scope of molecular and supramolecular chemistry according to Lehn	4
Figure 2.2	Design and preparation of nanoparticle-stabilized capsules (NPSCs)	5
Figure 2.3	Chemical structures and optimized structures of curcumin in enol-keto tautomeric equilibrium	6
Figure 2.4 Figure 2.5	Common commercial Gd(III) contrast agents (a) Mass-absorption coefficients for lead, copper, and aluminum as a function of wavelength. (b) K-edge x-ray absorption spectra of iron in $K_3Fe(CN)_6$ and $K_4Fe(CN)_6$	8
Figure 2.6	Diffraction of X-ray from a set of crystal planes	11
Figure 2.7 Figure 2.8	Plasma Torch. Schematic representation of differences in vascular anatomy of normal tissue (A) and tumor tissue (B)	12
Figure 2.9	The ICT process (A) and colorimetric changes of $CurBF_2$ (B) (0.01 mM) in CH ₃ CN/H ₂ O (4:1,v/v) upon the addition of (a) 0, (b) (15), (c) 22, (d) 24, (e) 29, (f) 36, (g) 43, (h) 50, and (i) 57	1.7
Figure 2.10	(A) Chemical structure of <i>O</i> -CMC. (B) Water-solubility of (a) curcumin (b) <i>O</i> -CMC Nps (c) curcumin- <i>O</i> -CMC Nps. (C) fluorescent image of MCF-7 at 100× of MCF-7 cancer cells treated with 5mg/ml curcumin- <i>O</i> -CMC Nps. (D) Cell viability of normal cells (L929) (E) breast cancer cells (MCF-7) and (F) prostate cancer cells (PC-3) treated with <i>O</i> -CMC Nps, curcumin	14
Figure 2.11	and curcumin-O-CMC Nps Acid catalyzed hydrolysis of PCurc8 (a). Cytotoxicities of PCurc8 compared with free curcumin to various cancer cell lines (b). Confocal fluorescence images of SKOV-3 cells were treated by PCurc8 for 2 (a) and 24 bra (d)	15
Figure 2.12	(A) schematic phase of water-oil microemulsion. (B) Chemical structure of CTAB, Triton x-100 and SDS. (C) TEM images of YbClSDS and NdClSDS. (D) Summarized particle size of	10
Figure 2.13	samples determined by DLS Synthesis mechanism of biocompatible UCNPs by a modified hydrothermal microemulsion route (A). HR-TEM images of NaYF4:Yb,Er samples (B). Green channel (C) and red channel confocal images (D) of HeLa cells incubated with UCNPs-FA by using LSUCLM with CW 980-nm laser. <i>In vivo</i> up-conversion luminescence imaging of subcutaneous HeLa tumor-bearing athymic nude mice (E) (pointed by white arrows) after intravenous injection of UCNPs-FA	17

х	i	i	i	

		Page
Figure 2.14	(a) A schematic illustration of nanoparticle formation through the self-assembly of 5'-AMP and Gd ³⁺ ions in 0.1 M HEPES buffer. (b) SEM image of 5'-AMP/Gd ³⁺ nanoparticles. (c) Luminescent and (d) MR imaging abilities of nucleotide/	10
Figure 2.15	(a) Chemical structures of guest dyes. (b) Binding ratio (%) of various dyes to 5'-AMP/Gd ³⁺ NPs. (c) Photographs of powder samples of solid dyes 1, 2, and 3 (left) and 1, 2, and 3-doped 5'-AMP/Lu ³⁺ nanoparticles (right). Samples were illuminated by the 365 nm UV light. (d) Schematic illustration of adaptive dye encapsulation in supramolecular networks	20
Figure 4.1	The ¹ H-NMR spectrum of $CurBF_2$ in DMSO-d ₆	43
Figure 4.2	¹ H -NMR spectrum of CurBF₂OTs in CD ₃ Cl	44
Figure 4.3	¹ H -NMR spectrum of $CurBF_2(OT_s)_2$ in CD_3Cl_1	44
Figure 4.4 Figure 4.5	Chemical structures of surfactants and buffers TEM images of GdCH (a), GdTxH (b), GdSH (c) and GdSH-	45
Figure 4.6	TEM images of GdSH (a), GdSM (b), GdST (c) and SEM image of GdSP (d)	47
Figure 4.7	Structures of Micell, Microemulsion, Emulsion and Reverse	10
Figure 4.8	FT-IR spectra of the three pure surfactants and CNPs from the	49
Figure 4.9	respective surfactants. FT-IR spectra of the pure SDS, pure $Gd(NO_3)_{3.6}H_2O$, four pure buffer and CNPs from the respective buffer	52
Figure 4.10	Color changes of CurBF ₂ incorporated in GdSM (a), GdST (b), GdSP (c), GdSH (d), GdTH (e), and GdCH CNPs (f) and supernatants of CurBF ₂ after centrifuge at 10000 rpm x 10 min of GdSM (f), GdST (h), GdSP (i), GdSH (j), GdTH (k), and	
	GdCH CNPs (l).	55
Figure 4.11	GdSH, GdSM, GdST, GdSP, GdTH and GdCH CNPs	56
Figure 4.12	UV-Vis spectra of supernatant after the centrifugation of GdSH - CurBF₂ CNPs by using SDS at 0.25-5.00 mM in 0.1 M HEPES	
Figure 4.13	buffer pH 7.4 The absorption intensity at λ_{ab} 507.9 nm of supernatant after the centrifugation of GdSH-CurBF ₂ CNPs , which were based on	57
Figure 4.14	using SDS at 0.25-5.00 mM in 0.1 M HEPES buffer pH 7.4 Color changes of the supernatant after the centrifugation of GdSH-CurBF ₂ CNPs, which were based on using SDS at 0.25-	58
Figure 4.15	5.00 mM in 0.1 M HEPES buffer pH 7.4 Gd L_{III} edge XANES spectra of sample GdSH and reference (a).	58
	Linear combination fitting of XANES spectra of Gd (b)	59

		Page
Figure 4.16 Figure 4.17	Concentration of Gd ³⁺ in supernatant upon various concentration ratios of SDS/Gd ³⁺ (0-18 mM) in water (a). The initial concentration of Gd ³⁺ was 1 mM. Concentration of Gd ³⁺ complex versus the molar fraction of SDS in water (b), the solid line showed the Lorentz equation fitting Concentration of Gd ³⁺ in supernatant upon various concentration ratios of SDS/Gd ³⁺ (0-18 mM) in 0.1 M HEPES buffer pH 7.4 (a). The initial concentration of Gd ³⁺ was 1 mM. Concentration of Gd ³⁺ complex versus the molar fraction of SDS in HEPES buffer solution (b), the solid line showed the Lorentz equation fitting	61
Figure 4.18	The solubility of the Gd^{3+} (a), SDS surfactant (b) and GdSDS (c) in Milli O water	62
Figure 4.19	The solubility of the Gd^{3+} (a), SDS surfactant (b) and GdSH CNPs (c) in 0.1 M HEPES buffer solution pH 7.4	63
Figure 4.20 Figure 4.21	XRD patterns of GdSDS, SDS, GdSH CNPs , HEPES and Gd ³⁺ FT-IR spectra of free Cur , Cur-containing GdSH-Cur and	64
Figure 4.22	GdSH CNPs UV-Vis spectra of free Cur in 10% DMSO/0.1 M HEPES buffer solution pH 7.4, GdSH-Cur and GdSH CNPs in 0.1 M HEPES	65
Figure 4.23	buffer solution pH 7.4 Fluorescence spectra of free Cur in 10% DMSO/0.1 M HEPES buffer solution pH 7.4, GdSH-Cur and GdSH CNPs in 0.1 M	66
Figure 4.24	HEPES buffer solution pH 7.4 (λ_{ex} at 445 nm) Normalized fluorescence intensity at $\lambda_{en} = 553$ nm of 1×10^{-5} M Cur dissolved in 10 % DMSO/0.1 M HEPES buffer solution pH 7.4 and at $\lambda_{em} = 532$ nm of GdSH-Cur CNPs redispersed in 0.1	67
Figure 4.25	M HEPES buffer solution pH 7.4 Color changes of 1×10^{-5} M Cur dissolved in 10 % DMSO/0.1 M HEPES buffer solution pH 7.4 for 1 min (a) and 240 min (b) and color changes of GdSH-Cur CNPs redispersed in 0.1 M HEPES	69
Figure 4.26	Fluorescence spectra of 1×10^{-5} M CurBF ₂ in 10% DMSO/0.1 M HEPES buffer solution pH 7.4 for 0 to 70 min, at $\lambda_{ex} = 517$ nm,	69
Figure 4.27	Slit = 10, pmt = 800. Fluorescence spectra of GdSH-CurBF₂ CNPs dissolved in 0.1 M HEPES buffer solution pH 7.4 for 0 to 7 days, at $\lambda_{ex} = 517$	70
Figure 4.28	nm, slit = 10, pmt = 700 Normalized fluorescence intensity at $\lambda_{em} = 553$ nm of 1×10^{-5} M CurBF ₂ dissolved in 10 % DMSO/0.1 M HEPES buffer solution pH 7.4 and at $\lambda_{em} = 532$ nm of GdSH-CurBF ₂ CNPs redispersed in 0.1 M HEPES buffer solution pH 7.4. Inset picture showed	70
Figure 4.29	normalized fluorescence intensity for 0-70 min Color solution of 1×10^{-5} M CurBF ₂ dissolved in 10 % DMSO/0.1 M HEPES buffer solution pH 7.4 for 1 min (a) and 70 min (b) and color solution of GdSH-CurBF ₂ CNPs redispersed in 0.1 M HEPES buffer solution pH 7.4 for 1 min (c)	71
	and 7 days (d)	71

xv

		Page
Figure 4.30	Fluorescence spectra of 1×10^{-5} M GdSH-CurBF ₂ OTs in 0.1 M	
	HEPES buffer solution pH 7.4 for 1, 10 min and 2 days at $\lambda_{ex} =$	
	506 nm	72
Figure 4.31	Normalized absorbance at $\lambda_{ab} = 464 \text{ nm of } 1 \times 10^{-5} \text{ M}$ free	
	CurBF ₂ OTs in 10 % DMSO/0.1 M HEPES buffer solution pH	
	7.4 and at λ_{ab} = 509 nm of GdSH-CurBF ₂ OTs CNPs	
	redispersed in 0.1 M HEPES buffer solution pH 7.4. Inset picture	
	showed color solution of 1×10^{-5} M free CurBF ₂ OTs dissolved in	
	10 % DMSO/0.1 M HEPES buffer solution pH 7.4 for 1 min (a)	
	and 6 days (b) and color solution of GdSH-CurBF ₂ OIs CNPs	
	redispersed in 0.1 M HEPES burner solution pH 7.4 for 1 min (c)	72
Figure 4.22	Normalized intensity of $\lambda = 614 \text{ pm of } 1 \times 10^{-5} \text{ M}$	15
rigure 4.52	Normalized intensity at $\lambda_{em} = 0.14$ hill of 1X10 M CurBE (OTc), discolved in 10 % DMSO/0.1 M HEPES buffer	
	solution pH 7.4 and at $\lambda = 605$ nm of CdSH-CurBE.(OTs).	
	CNPs redispersed in 0.1 M HEPES buffer solution pH 7.4 Inset	
	picture showed color solution of 1×10^{-5} M CurBF ₂ (OTs) ₂	
	dissolved in DMSO for 1 min (a), in 10 % DMSO/0.1 M HEPES	
	buffer solution pH 7.4 for 1 min (b) and 240 min (c), and color	
	solution of GdSH- CurBF ₂ (OTs) ₂ CNPs in 0.1 M HEPES	
	buffer solution pH 7.4 for 240 min (d)	74
Figure 4.33	Drug release of curcumin from GdSH CNPs in HEPES buffer	
	solution pH 6.5 and 7.4 for 2, 4, 6, 24, 48, 72, 96 h	76
Figure 4.34	Cell viability of SW620 cancer cells treated with Cur, CurBF ₂ ,	
	CurBF ₂ OTs and CurBF ₂ (OTs) ₂ in range 0.25-4 μ g/ml (in	
Figure 4.25	Coll visbility of SW620 concer colls treated with Cur (in DMSO	//
Figure 4.55	and 0.1 M HEPES buffer solution pH 7.4 with the cell culture	
	media) and CurBE ₂ (OTs) ₂ (in DMSO with the cell culture	
	media) in range 2 5-20 µg/ml for 4 days	78
Figure 4.36	Cell viability of SW620 cancer cells treated with GdSH-Cur	10
	CNPs and GdSH CNPs in range of 50-1500 µg/ml dissolved in	
	0.1 M HEPES buffer solution pH 7.4 with the cell culture media,	
	the initial prepared concentration of curcumin in GdSH-Cur	
	CNPs was 10x10 ⁻⁵ M	79
Figure 4.37	Cell viability of L292 normal cells and SW620 cancer cells	
	treated with GdSH CNPs and GdSH-Cur CNPs in range 50-	
	400 μ g/ml (dissolved in 0.1 M HEPES buffer solution pH 7.4	
	with the cell culture media) for 4 days, the initial prepared	
F: (20	concentration of Cur in GdSH-Cur CNPs was 10x10 ⁻⁷ M	80
Figure 4.38	Cell viability of L292 normal cells and SW620 cancer cells	
	huffer solution pH 7.4 with the cell culture modia) and their Curr	
	equivalent dose in range 2.5.20 µg/ml (dissolved in DMSO and	
	0.1 M HEPES huffer solution nH 7.4 with the cell culture media)	
	for 4 days	81
	10. ·	

;

		Page
Figure 4.39	Cell viability of L292 normal cells and SW620 cancer cells	C
	treated with GdSH-CurBF ₂ CNPs (dissolved in 0.1 M HEPES	
	buffer solution pH 7.4 with the cell culture media) and their	
	$CurBF_2$ equivalent dose in range 0.3125-2.5 µg/ml (dissolved in	
	DMSO with the cell culture media) for 4 days	83
Figure 4.40	Bright field image (a) and fluorescence image (b) of controlled	
	SW620 cell at 40x incubated with 10% DMSO/RPMI 1640	
	medium for 24 h.	84
Figure 4.41	Contocal images of SW620 cells by using contocal fluorescence	
	microscopy were incubated in GdSH-Cur CNPs (a), free Cur	0.0
Eigung A 1	(b), Gash CNPs (c) and control cells (d)	88
rigure Al	SEM Image of GUCH CNPs (a), GUTXH CNPS (b), GUSH CNPs (c), $CdSM CNPs$ (d), $CdST CNPs$ (e), $CdSP CNPs$ (f)	
	$CdSH_Cur CNPs (a)$	102
Figure A2	Particle size distributions of GdCH CdTyH CdSH CdSM	102
I Igui e A2	GdST GdSP and GdSH-Cur CNPs obtained from DLS	
	technique	103
Figure A3	Fluorescence spectra of 1×10^{-5} M curcumin in DMSO for 0 to 5	
0	days, λ_{ex} at 429 nm	104
Figure A4	Fluorescence spectra of 1x10 ⁻⁵ M Cur in 10% DMSO/HEPES	
-	buffer solution for 0 to 7 days, λ_{ex} at 445 nm	104
Figure A5	Fluorescence spectra of GdSH-Cur CNPs in HEPES buffer	
	solution for 0 to 7 days, λ_{ex} at 445 nm	105
Figure A6	UV-Vis spectra of 1×10^{-5} M CurBF ₂ OTs in 10% DMSO/HEPES	
	buffer solution for 0 to 6 days	105
Figure A7	UV-Vis spectra of 1×10^{-5} M CurBF ₂ OTs in GdSH CNPs in	
T! .	HEPES buffer solution for 0 to 6 days	106
Figure A8	Normalized Absorbance of CurBF ₂ OTs $1\times10^{\circ}$ M in 10 %	
	DMSO/HEPES and GdSH-CurBF ₂ (OTS) ₂ CNPS (in 100 %) HEPES) for 0 to 1.5 hr	106
Figure A0	Electron 0 to 1.5 III	100
Figure A9	0 to 7 days λ at 440 pm	107
Figure A10	Fluorescence spectra of 1×10^{-5} M CurBE ₂ (OTs) in 10%	107
i iguite //ito	DMSO/HEPES buffer solution for 0 to 7 days $\lambda_{\rm c}$ at 440 nm	107
Figure A11	Eluorescence spectra of 1×10^{-5} M CurBF ₂ (OTs) ₂ in GdSH CNPs	107
	dissolved in HEPES buffer solution for 0 to 7 days λ_{ax} at 440	
	nm	108
Figure A12	The linear plot between absorbance (a.u.) and concentration of	
C	curcumin (M) in methanol.	108
Figure A13	The linear plot between absorbance (a.u.) and concentration of	
	curcumin (M) in 10% DMSO/HEPES buffer solution	109
Figure A14	The linear plot between absorbance (a.u.) and concentration of	
	CurBF ₂ (M) in 10% DMSO/HEPES buffer solution	109
Figure A15	The linear plot between absorbance (a.u.) and concentration of	110
	CurBF₂OIs (M) in 10% DMSO/HEPES butter solution	110
rigure A16	The linear plot between absorbance (a.u.) and concentration of $C_{\rm HP} \mathbf{E} = (\mathbf{M} \mathbf{E})$ (M) in 10% DMSO/UEDES buffer column	110
	Curdr ₂ (O1S) ₂ (IVI) III 10% DIVISO/HEPES DUITER Solution	110

xvii

		Page
Figure A17	Confocal images of SW620 cells incubated GsSH-Cur CNPs at	
	the concentration of 25 μ g/ml curcumin equivalence dose for 0.5	
	h (a) and 1 h	111
Figure A18	Confocal images of SW620 cells incubated in 25 μ g/ ml	
	curcumin for 0.5 h (a) and 1 h	112

LIST OF SCHEMES

Synthetic pathway of curcumin derivatives	42
Postulated structure of GdSH CNPs and GdSM CNPs	50
Schematic illustration of GdSH-Cur CNPs delivered to cancer cell via EPR effect	51
The possible formation mechanism of GdSH nanoparticles in the 0.1 M pH 7.4 HEPES buffer solution, which represent a	
monolayer protected nanoparticles.	55
Postulated formation mechanism of GdSH-Cur CNPs in the 0.1 M HEPES buffer solution pH 7.4	68
Dissociation mechanism of HEPES at pKa 7.5 Design and preparation of GdSH-Cur CNPs containing Gd ³⁺ , SDS, HEPES and curcumin and proposed delivery mechanism to	76
cancer cells via the EPR effect	91
	Synthetic pathway of curcumin derivatives Postulated structure of GdSH CNPs and GdSM CNPs Schematic illustration of GdSH-Cur CNPs delivered to cancer cell via EPR effect The possible formation mechanism of GdSH nanoparticles in the 0.1 M pH 7.4 HEPES buffer solution, which represent a monolayer protected nanoparticles Postulated formation mechanism of GdSH-Cur CNPs in the 0.1 M HEPES buffer solution pH 7.4 Dissociation mechanism of HEPES at pKa 7.5 Design and preparation of GdSH-Cur CNPs containing Gd ³⁺ , SDS, HEPES and curcumin and proposed delivery mechanism to cancer cells via the EPR effect

xviii

LIST OF ABBREVIATIONS AND SYMBOLS

¹ H-NMR	Proton nuclear magnetic resonance
equi.	Equivalent
g	Gram
μg	Microgram
h	Hour
min	minute
Hz	Hertz
J	Coupling constant
mmol	Millimole
mL	Milliliter
nm	Nanometer
М	Molar
mM	Milimolar
δ	Chemical Shift
ppm	Part per million
ppb	Part per billion
s, d, t, m	Splitting patterns of ¹ H-NMR (singlet,
	doublet, triplet, multiplet
CNPs	Coordination Nanoparticles
DLS	Dynamic light scattering
SEM	Scanning Electron Microscopy
TEM	Transmission Electron Microscopy
JCP-AES	Inductively Coupled Plasma-Atomic Emission
	Spectroscopy
FT-IR	Fourier transform infrared spectroscopy
XAS	X-ray absorption
XANES	X-ray absorption near-edge structure
XRD	X-ray diffraction patterns
CLSM	Confocal laser scanning microscopy