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CHAPTER 4

EXPERIMENTAL RESULTS AND ANALYSIS

เท o rd e r to  investigate suggested oversam pting techn iques, i.e. triangu lar 

SMOTE, re loca ting  sa fe -leve l SMOTE and a dap tive  ne ighbor SMOTE, m ay im prove  th e  

classification p erfo rm ance  in th e  class im ba lance  p ro b le m , em p irica l experim ents  are 

co n d u c te d  and th e  com parison  and analysis o f  th e ir resu lts  are p resen ted  in this 

chapter. เท th e  firs t part o f  th e  chap ter, th e  d escrip tion  o f  ben ch m a rk  datasets and 

th e  e xp e rim e n ta l setting and th e  re la te d  sta tis tica l tes t are described. Then, the  

results o f  oversam pling  techn iques  against o th e r existing oversam pling  techn iques  

are show n. The n u m b e r o f cases each te c h n iq u e  achieves th e  best and to p  th ree  

highest ranks fo r F-m easure, geom etric  m ean and  ad jus ted  g-m ean is co u n te d . The 

second part o f  ch a p te r covers th e  sta tis tica l tests to  s h o w  th e  significant 

im p ro v e m e n t o f  these  algorithm s.

4.1 Datasets and e xp e rim e n ta l settings

4.1.1 T he  d e sc rip tio n  o f  benchm ark  datasets

For th is  d issertation, expe rim ents  are p e rfo rm ed  on  9 datasets fro m  UCI 

repos ito ry  [91]; eco li, glass, le tte r  recogn ition , haberm an, LandSat(satimage), 

segm entation , yeast, optd ig its  and ve h ic le , and 5 datasets fro m  PROMISE repos ito ry

[92]; c m l,  jm l ,  k c l,  kc2 and p c i.  These datasets are num erica l and co n ta in  no 

missing values. M oreover, th e y  are e ith e r b inary class datasets w ith  an u ne q u a l class 

d is trib u tion  o r m u lt ip le  class datasets w h ich  can be tra n s fo rm e d  in to  th e  b inary class 

dataset w ith  an u ne q u a l class d is trib u tio n  by se lecting  one  class as pos itive  and 

treating  o the rs  as negative. The d escrip tion  a b o u t th e  n u m b e r o f  instances, the  

n um be r o f  a ttr ib u te s , the  n u m b e r o f  pos itive  instances and th e  percentage o f 

positive  instances are show n in ta b le  6 b e low .
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T ab le  6 : The  de sc rip tio n  o f  datasets used in th e  exp e rim e n ts .

Name Instances A ttrib u te s Positive % o f pos itive

instances instances

c m l 498 21 49 10.91

Ecoli 336 8 20 5.95

Glass 214 11 76 35.51

H aberm an 306 4 81 26.47

L e tte r (H)1 20,000 17 734 3.67

jm l 10,880 21 2,103 23.96

k c l 2,109 21 326 18.28

kc2 522 21 107 25.78

O ptd ig its (o)1 5,620 64 554 10.94

p c i 1,109 21 77 7.46

Satimage (4)1 6,435 37 626 9.73

Segm ent (WIN)1 2,310 20 330 14.29

veh ic le 846 18 218 34.71

Yeast (ME3)1 1,484 9 163 10.98

4.1.2 E xpe rim en ta l settings

The expe rim ents  are co n d u c te d  fo r five  classifiers; decis ion tre e  (C4.5) [32], 

naïve Bayes classifier [8], m u ltila y e r p e rcep tro n  [9], su pp o rt v e c to r m ach ine  [10] w ith  

th e  linear square ke rn e l and /(-nearest ne ighbor [11] (w ith  k = 3). These classifiers are 

standard  a lgorithm s in classification and th e y  are in c lu d ed  in m o s t data m ining 

softwares. D iffe rent classifiers are used as cand ida tes fo r various fram ew ork. The 

oversam pling  tech n iq ue s  in tro du ce d  in ch ap te r 3 are e xpe cted  to  p e rfo rm  w e ll in a ll 

classifiers. The se tting  fo r a classifier uses its d e fa u lt se tting  fro m  th e  data  m ining 

softw are, KNIME [34], The  perfo rm ance  is e va lua ted  th rough  th e  tra in -te s t eva lua tion. 

The tra in ing set is s tra tified  sam p led  fro m  70% o f  each benchm ark  da tase t and 30%

For multiclass datasets, the name of class shown in the parenthesis next to the name of 

dataset is the one used as positive in this experiment, all other classes of that dataset are used 
as negative.
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is used as th e  te s t set. Each dataset is sam p led  50 tim es giving 50 d iffe re n t pairs o f  

tra in ing-test datasets. The tra in ing set fro m  each sam pling te c h n iq u e  is used to  

generate syn th e tic  m in o rity  instances th rou g h  oversam pling  techn iques  in R 

program m ing e n v iro n m e n t [33], For RSLS and ANS w h ich  have an a d d itio n a l process 

o f  m in o rity  ou tcas t handling, th e  m in o rity  ou tca s t d e te c tio n  is pe rfo rm ed .

The n u m b e r o f  m in o rity  outcasts d epends on  th e  va lu e  o f  c. เท o rd e r to  find  

an a pp rop ria te  v a lu e  o f  c, an expe rim e n t is co n d u c te d  on each benchm ark  dataset 

by running c-nearest ne ighbor on it. The va lu e  o f  c  is varied  fro m  1 to  20 and th e  

n u m b e r o f  m in o rity  outcasts fo r  each va lu e  o f  c  in each d a ta se t is co un ted . The 

percentage o f  outcasts  to  a to ta l n u m b e r o f  pos itive  instances in a ll 14 datasets used 

fo r th is  e xp e rim e n t is p lo tte d . The darker line  is th e  p lo t  o f  average percentages. The 

graph is p resen ted  in figure 20.

kill — kc:2 — letter —  optdigits — pci
-satimage segment vehicle yeast — Average

Figure 20: The graph showing th e  percentage o f  o u tc a s t instances in each

da tase t w hen  th e  va lue  o f  c is varied.

เท th is  d isserta tion , 10% o f pos itive  instances are set as th e  p re fe r n u m b e r o f 

outcasts. The graph leads to  th e  va lue  o f  c  e q u a l to  5. It co inc ides w ith  th e  se tting  o f 

c  in sa fe -leve l SMOTE [28] w h ich  a lso  equa ls to  5. Therefore , th e  va lu e  o f  c  as 5 is 

a pp lied  fo r each oversam pling  te ch n iq u e  w h ich  conta ins th e  c-nearest neighbor 

process in th is d issertation.

A fte r positive  instances w h ich  are n o t m in o rity  o u tca s t instances in th e  

tra in ing set are sent to  each oversam pling  te c h n iq u e  to  syn th e tize  instances, th e  

resu lting  syn the tic  instances are added in to  th e  orig inal tra in ing set a long w ith  a set
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o f m in o rity  o u tca s t instances w h ich  is ex trac te d  as a part o f  RSLS and  ANS algorithm . 

This syn th e tic  ba lanced  tra in ing set fro m  each oversam pling  te c h n iq u e  and a set o f  

o u tca s t instances are sent in to  KNIME to  perfo rm  th e  classifica tion  w ith  five 

classifiers.

เท RSLS and ANS, a set o f  m ino rity  outcasts is co m b in e d  w ith  a set o f negative 

instances fro m  each tra in ing set to  tra in  a 1-nearest ne ighbor m o d e l as th e  process o f 

m in o rity  ou tcas t handling. This m o d e l is a p p lie d  on  unknow n  instances in th e  test 

set a fte r th e  classification stage as m e n tio n e d  in ch ap te r 3. The  eva lua tion  o f 

c lassifica tion  on  various perfo rm ance  m easures are a lso p e rfo rm e d  in KNIME [34], 

P erfo rm ance m easures used fo r  evaluating  th e  perfo rm ance  are F-m easure w hich 

takes a ccou n t o f  b o th  reca ll and precision, g eom etric  m ean and ad jus ted  g-m ean 

[31] w h ich  consider th e  p re d ic tion  rate in b o th  classes s im u lta n eo u s ly . The results in 

te rm  o f  geom etric  m ean and ad justed  g-m ean are re p o rte d  in th e  append ix.

The diagram o f th e  e xpe rim e n ta l process in each e xp e rim e n ta l round  in one 

case o f  a classifier and a benchm ark dataset is show n in figure 21.
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Figure 21: The diagram  o f  th e  e x p e rim e n ta l process in  each ro u n d  o f 

tra in -te s t sam pling

From  th is  setting, th e  to ta l num be r o f  cases o f  orig ina l da tase t and classifier is 

70 (14 datasets X 5 classifiers). There are 50 rounds o f  tra in -te s t sam pling in each

case.
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4.1.3 W ilcoxon  signed-rank tes t

The W ilcoxon  signed-rank tes t [30] is a non -p a ra m etric  s ta tis tica l hypothesis 

te s t used w hen  com paring tw o  re la te d  sam ples, m a tch e d  sam ples, o r repea ted  

m easurem ents  on  a single sam ple  to  eva lua te  w h e th e r th e ir  p o p u la tio n  m ean ranks 

d iffer. It can be used as an a lte rn a tive  to  th e  paired S tu d e n t’s t- te s t, t- te s t fo r 

m a tche d  pairs, o r th e  t-te s t fo r d e p e n d e n t sam ples w hen  th e  p o p u la tio n  ca nn o t be 

assum ed to  be n o rm a lly  d is tribu ted . The W ilcoxon  signed-rank te s t assum ptions are

1. Data are paired and com e  fro m  th e  sam e p o p u la tion .

2. Each pair is chosen ra n d o m ly  and in d e p e n d e n t and th e  o rd e r o f  pair has no  

significance

3. The data does n o t require  being n o rm a lly  d is trib u ted  b u t th e y  are m easured on an 

o rd ina l, in te rva l, o r ra tio  scale.

4. The d is trib u tio n  o f  th e  d iffe rences is sym m etric  a round  th e  m ed ian.

The n u ll hypothesis  fo r th e  tw o -ta ile d  W ilcoxon  signed-rank te s t is usua lly  

th a t th e  m ed ian  d iffe rence  be tw een  pairs o f  observa tions is zero. N ote  th a t th is  is 

d iffe re n t fro m  th e  n u ll hypothesis  o f  th e  paired t-te s t, w h ich  is th a t th e  m ean 

d iffe rence  b e tw e e n  pairs is zero, o r th e  n u ll hypothesis  o f  th e  sign test, w h ich  is th a t 

th e  num bers o f  d iffe rences in each d irec tion  are equa l. The n u ll hypo theses fo r the  

tw o -ta ile d  te s t and each ta il o f o n e -ta ile d  te s t and th e ir  co u n te rp a rt a lte rna tive  

hypotheses are show n in th e  fo llo w in g  tab le .

T ab le  7: T he  ทนน and a lte rn a tive  hypotheses in  each ty p e  o f  W ilcoxon  

signed-rank te s t

T w o -ta ile d  Test O ne-ta iled  tes t in th e  lo w e r ta il O ne-ta iled  te s t in th e  uppe r ta il

" o : / V = °

H 1 : / %  *  0

The basic p ro ced u re  o f  th e  W ilcoxon  signed-rank te s t is (1) se tting  th e  significant 

le v e l oc, (2) extracting  th e  sam ple , (3) co m p u tin g  th e  v a lu e  o f  th e  W ilcoxon  tes t 

statistic  พ  and com paring  it w ith  th e  c ritica l u ppe r b o u n d  and  lo w e r b o u n d  va lues 

w h ich  d ep e nd  on  w h e th e r th e  te s t is tw o -ta ile d  o r o ne -ta ile d . If th e  c o m p u te d  พ  

te s t statistic equa ls  to  or is greater than  th e  upper c ritica l v a lu e  (fo r tw o -ta ile d  tes t 

and o n e -ta ile d  te s t in th e  uppe r ta il) or equals to  or less th a n  th e  lo w e r c ritica l va lue
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(fo r tw o -ta ile d  te s t and o n e -ta ile d  te s t in th e  lo w e r ta il), th e  n u ll hypothesis  is 

re jected . The process to  co m p u te  th e  va lue  o f th e  W ilcoxon  te s t statis tic  พ  is given 

be low .

C om puting  th e  W ilcoxon  signed-ranks

1. For each ite m  in a sam ple  o f  ก  item s, c o m p u te  a d iffe rence  score, D„ 

b e tw e e n  th e  tw o  paired values.

2. N eglect th e  + and -  signs and lis t th e  set o f  ท  a b so lu te  d iffe rences, ID. I .

3. O m it any a bso lu te  d iffe rence  score o f zero  fro m  fu r th e r analysis, th e re b y  

y ie ld ing  a set o f  ท' nonzero  a b so lu te  d iffe rence  scores, w here  ก '^  ท. A fte r 

va lues w ith  a bso lu te  d iffe rence  scores o f  zero  are re m o ve d , reset ท' to  be 

th e  a c tu a l sam ple  size.

4. Assign ranks fro m  1 to  ท' to  each o f th e  |d .| such th a t th e  sm a llest a bso lu te  

d iffe ren ce  score gets rank 1 and th e  largest score gets rank ท '. If tw o  or m ore  

Id . I are equa l, assign each o f  th e m  th e  m ean o f  th e  ranks th e y  w o u ld  have 

been  assigned ind iv idua lly .

5. Reassign th e  sym b o l + o r - to  each o f th e  ท' ranks, Rh depend ing  on w h e th e r 

Dj was o rig ina lly  positive or negative.

6. C o m p u te  th e  W ilcoxon te s t statistic, พ ,  as th e  sum  o f th e  positive  ranks

พ  = z  R (; ]

o r ก '<. 20, th e  critica l u p p e r b o u n d  and lo w e r b o u n d  va lues can be lo o ke d  

up fro m  a given ta b le  in figure 22.
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ONE-TAIL a  = .05 a  -  .025 a  = .01 a  = .005
TWO-TAIL a  = .10 a  =ะ .05 a  = .02 a  = .01

ท (Lower, Upper)

0,15
2,196 0*21 * *

7 3,25 2,26 0(2$ -- ,--
8 5,31 3,33 1,35 0,36
9 8,37 5,40 3,42 1,44

10 10,45 8,47 5 ( 5 0 3(ร2
11 13,53 10,56 7,59 5,61
12 17,61 13,65 10,68 7,71
13 21,70 17,74 12,79 10,81
14 25,80 21,84 16,89 13,92
15 30,90 2 5 ( 9 5 19,101 16,104
16 35,101 29,107 23,113 19,117
17 41,112 34,119 27,126 23,130
18 47,124 40,131 32,139 27,144
19 53,137 46,144 37,153 32,158
20 60,150 52,158 : 4 3 (1 67 37,173

Source: Adapted from Table 2 of F. Wilcoxon and R. A. Wilcox, Some Rapid Approximate Statistical Procedures
(Pearl River, NY: Lederle laboratories, 1964), with permission of the American Cyanamid Company.

. . . ' . . . . ไ '  .  .

Figure 22: T he  ta b le  o f  th e  c ritica l u p p e r and  low er b o u n d  va lues o f  

พ  w hen ก  is no  m ore  th a n  2 0 .

For samples with ท ' > 20, the test statistic พ  value is normally distributed 

with the mean y . w  and standard deviation G w . The mean of the test statistic พ  is

ท '(ก ' + 1)
เ ^ พ  =

4

And the standard deviation of the test statistic พ  is

°  พ =
ท '(ท ' + 1X2๙ + 1)

24

Then, the large-sample approximation formula with calculated พ  when ท ' >  20 is 

achieved as

พ  ■
ก ,( ก '+ 1 )

ŜTAT ท'(ท' + 1 )(2 ก ’ + 1 )

24

If the computed ZSTAT falls in the critical region (For oc 

is between ±1.96 which means the value outside this 

ทนน hypothesis is rejected.

= 0.05, the confidence interval 

range is the critical value), the
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For R programming, the function w ilcox .tes t() is used for performing the test. 

The function provides the median difference and the p-value. If this p-value is less 

than oc, the ทนแ hypothesis is rejected. It can perform either one-tailed test or two- 

tailed test by assigned the desired alternate hypothesis in one of its arguments.

4.2 T he  re su lt analysis

4.2.1 T riangu la r m in o r ity  oversam pling  te ch n iq u e

เท this section, the experiment on triangular minority oversampling technique 

(TMOT) which is introduced in chapter 3 is performed to compare its performance on 

generating balanced dataset that can train classifiers to classify minority class 

effectively against the original imbalanced dataset and the balanced dataset from 

SMOTE [25], The average of F-measure results from each oversampling technique in 

50 rounds of experiment is compared between datasets and classifiers. Figure 23- 

Figure 27 are plotted among the result from the original imbalanced dataset (ORIG), 

the balanced dataset from SMOTE and TMOT.

F-measure comparison in decision tree

i l

Figure 23: T he  com parison 

and TM O T using a decis ion

o f  th e  average F-m easure 

tre e  as a classifier

fro m  ORIG, SMOTE
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Figure 24: T he  com parison o f  th e  average F-m easure fro m  ORIG, SMOTE 

and TM O T using a naïve Bayes c lassifier as a classifier

F-measure comparison in multilayer perceptron

' ส ิ .ร*

Figure 25: The com parison o f  th e  average F-m easure fro m  ORIG, SMOTE 

and TM O T using a m u ltila y e r p e rce p tro n  as a classifier
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F-measure comparison in support vector machine
1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

Figure 26: The com parison  o f th e  average F-m easure fro m  ORIG, SMOTE 

and TM O T using a s u p p o rt vec to r m ach ine  as a classifier

F-measure comparison in k-nearest neighbor

f

Figure 27: T he  com parison  o f  th e  average F-m easure fro m  ORIG, SMOTE 

and TM O T using a /c-nearest ne ighbor as a classifier

Figure 23 to figure 27 show the bar charts of the mean comparison of F- 

measure each oversampling technique achieves in each classifier where ORIG refers 

to the result of a classifier performing on an original imbalanced dataset, SMOTE 

refers to the result of a classifier performing on the balanced dataset applying
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synthetic minority oversampling technique and TMOT refers to the result of a 

classifier performing on the balanced dataset applying triangular minority 

oversampling technique. There are 21 cases which TMOT achieves the average F- 

measure higher than both SMOTE and ORIG. Most cases occur when support vector 

machine is chosen as a classifier. There are another 26 cases which TMOT can defeat 

ORIG but still has the lower average F-measure than SMOTE. It achieves a higher 

average F-measure than SMOTE but its average is lower than one from ORIG in 14 

cases. TMOT has a lower average F-measure than both algorithms in only 9 cases.

เท order to clarify whether TMOT is an effective oversampling technique 

comparing with SMOTE, the Wilcoxon signed-rank test is performed to test whether 

the difference between the F-measure from two algorithms are significant. The null 

hypothesis of the test is set as the median of difference is less than or equal to zero, 

so if a p-value o f test is less than 0.05, then the alternative hypothesis which is the 

median of difference between the controlled algorithm (TMOT in this case) and the 

other compared algorithm are positive. Using the results from every round of 

experiments regardless of various classifiers and datasets through R programming 

environment [33], the test results are shown in table 8.

T ab le  8: T he  W ilcoxon  signed-rank te s t o n  F-measures fro m  TM O T against 

ones fro m  ORIG and SMOTE

TMOT
Median of 

Difference
p-value

The number of 

nonzero difference 

pairs

sum of 

positive rank

against ORIG 0.0228 0.0000 3371 3919117

against SMOTE -0.0005 0.9997 2977 2055314

It could be seen that the median of difference o f F-measure from TMOT and 

F-measure from ORIG is significantly positive. It implies that using TMOT provides the 

better F-measure than using the original imbalanced dataset to build the classifier. 

Flowever, the result comparing with SMOTE is not significantly different. The median 

of their difference is less than zero and the p-value is higher than 0.05. This means 

SMOTE and TMOT are not different in term of the performance. Note that TMOT uses 

more arithmetic calculation for creating a new synthetic instance but it yields the 

same result as SMOTE, It can be concluded that SMOTE is a more preferable 

oversampling technique in this regard.
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4.2.2 R elocating sa fe -leve l SMOTE

เท this section, the performance of relocating safe-level SMOTE (RSLS) is 

compared with other predecessor sampling techniques. As the extension from safe- 

level SMOTE [28], it is expected that RSLS should provide the better accuracy 

performance than one from safe-level SMOTE. เท order to measure the performance, 

F-measure value of each classification via datasets from each oversampling 

techniques is focused. เท each round of experiments, there are 6 different training 

sets; the original imbalanced training set without performing any sampling techniques 

(ORIG), the balanced training set containing synthetic instances from synthetic 

minority oversampling technique (SMOTE) [25], the balanced training set containing 

synthetic instances from adaptive synthetic sampling (ADASYN) [26], the balanced 

training set containing synthetic instances from safe-level SMOTE (SLS) [28], the 

balanced training set containing synthetic instances from density-based synthetic 

minority oversampling technique (DBSMOTE) [29] and the balanced training set 

containing synthetic instances from relocating safe-level SMOTE (RSLS) to  build the 

classification model with each designated classifier. The resulting models from these 

training sets with respect to each classifier and dataset are evaluated using the same 

test set. For RSLS, minority outcast handling process is also performed.

The average F-measure values from 50 rounds of experiments in each 

classifier and dataset are shown and ranked in table 24 in appendix 1. เท table 24, 

the dark gray shade highlights the F-measure value which is the highest value among 

F-measure from all oversampling techniques from the same classifier and dataset, 

while the light gray shade highlights the F-measure value which is one of the top 

three of oversampling techniques from the same classifier and dataset. The number 

of cases each technique can achieve the best F-measure is summarized as the bar 

chart in figure 28.
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#  of datasets each technique achieves the best 
F-measure
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Figure 28: T he  bar ch a rt o f  th e  n u m b e r o f  datasets each oversam pling  

te c h n iq u e  achieves th e  best F-m easure

The comparison of F-measure presented in table 24 and summarized in table 

10 shows that RSLS provides relatively good performance on F-measure generally as 

it achieves top three F-measure from 60 out of 70 cases and the highest value from 

35 cases after compared with other 5 oversampling techniques. From these 35 cases, 

6 of them are achieved when C4.5 is used as the classifier. 7 of them come from 

naïve Bayes classifier. RSLS achieves the best F-measure value when multilayer 

perceptron is a classifier in 8 datasets. For both support vector machine and k- 

nearest neighbor, RSLS get the best F-measure in 7 datasets. The number of datasets 

RSLS can achieve the best F-measure is distributed nearly equally in each classifier 

showing that RSLS does not bias to one classifier. The list of datasets RSLS provide 

the best, second best and third best F-measure is shown in table 9 and the number 

of cases each oversampling technique achieves the best, second best and third best 

F-measure is shown in table 10.
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T a b le  9: T he  lis t o f  da tase t nam es w hich RSLS achieves th e  best, second 

best and th ird  best F-m easure in each classifier.

Classifier Datasets in 1st Datasets in 2nd Datasets in 3rd The total 
number

Decision tree 

(C4.5)

ecoli, haberman, 
jml, optdigits, pci, 
vehicle

cml, kcl glass, kc2, yeast 11

Naïve Bayes 
classifier

ecoli, jml, kcl, kc2, 
optdigits, satimage, 
yeast

glass, haberman, 
letter, segment

cml, pci, vehicle 14

Multilayer

perceptron
cml, ecoli, 
haberman, jml, kcl, 
letter, optdigits, 
yeast

glass, pci, 
segment, vehicle

12

Support vector 
machine

glass, haberman, 
jml, kcl, letter, 
optdigits, yeast

ecoli, pci, cml, kc2, 

satimage, 
segment, vehicle

14

K-nearest
neighbor

ecoli, haberman, 
jml, kcl, optdigits, 
vehicle, yeast

glass cml 9

T ab le  10: The n u m b e r o f  cases each te c h n iq u e  achieves th e  average F-m easure 

in th e  ranking 1st -3rd

# of cases as ORIG SMOTE ADASYN SLS DBSMOTE RSLS

1st 15 4 7 2 7 35

2nd 5 15 9 22 10 9

3rd 3 18 7 19 7 16

Total in 1st -3rd 23 37 23 43 24 60
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The Wilcoxon signed-rank test is performed to verify the difference o f F- 

measure from RSLS against other oversampling techniques. First, every experimental 

result from RSLS is used to compare pairwise with F-measure from each 

oversampling technique. The null hypothesis of the test is set as the median of 

difference is less or equal than zero, so if a p-value of test is less than 0.05, then the 

alternative hypothesis which is the median of difference between the controlled 

oversampling technique (RSLS in this case) and other compared oversampling 

techniques are positive. The results of these statistical tests against each 

oversampling technique are shown in table 11.

T a b le  11: T he  W ilcoxon  signed-rank o f  th e  d iffe re n c e  o f  F-m easure fro m  

RSLS against o th e r sam pling techn iqu es

RSLS against The median 

of difference

p-value

ORIG 0.0441 5.5100 X 10'167

SMOTE 0.0170 8.9000 X 10 110

ADASYN 0.0255 1.9400 X 10'161

SLS 0.0117 3.8300 X 1072

DBSMOTE 0.0272 4.4100 X 10'129

เท table 11, it shows that the p-value from the Wilcoxon signed-rank test is 

lower than 0.05 with all five techniques. By these p-values, the null hypothesis for 

each comparison is rejected. Consequently, the alternate hypothesis which is the 

median of difference is positive will be accepted. This result suggests that every 

difference of F-measure between RSLS and other oversampling techniques are 

significantly positive.

เท table 12, the resutts are separated based on classifiers and performed the 

Wilcoxon signed-rank test in order to see whether there are significant difference of 

F-measure in each classifier. The result in the table shows that there is significantly 

positive difference of F-measure when comparing RSLS with other oversampling 

techniques in every classifier since every p-value in each test is less than 0.05.

•W vty......^ ™ . . . ^ . £ 2 £ „ . . .

ท ะ เ ฆ ํย น . . . . . . . , . ...........
• A r i l
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T a b le  12: The W ilcoxon  signed-rank o f  th e  d iffe re n c e  o f  F-m easure fro m  

RSLS against o th e r sam pling  te ch n iq u e s  in each classifier

Classifier RSLS against Median of Difference p-va lue

DT ORIG 0.0339 2.4800 X 10'38

SMOTE 0.0111 1.0500 X 10-09

ADASYN 0.0108 3.9200 X lo "9

SLS 0.0120 1.7300 X 10‘13

DBSMOTE 0.0298 1.1100 X 10‘3°

NB ORIG 0.0448 4.6600 X 10'M

SMOTE 0.0152 5.2000 X 10'2°

ADASYN 0.0254 1.3500 X 10‘32

SLS 0.0186 1.3800 X 10-48

DBSMOTE 0.0847 2.0900 X 10-89

MLP ORIG 0.0290 1.1200 X 10‘13

SMOTE 0.0175 1.6700 X 10‘16

ADASYN 0.0288 1.1900 X 10'36

SLS 0.0090 1.9000 X lo "7

DBSMOTE 0.0177 2.0000 X 10'10

SVM ORIG 0.1124 1.9000 X 10'7°

SMOTE 0.0265 1.0500 X 10‘60

ADASYN 0.0363 4.0000 X 10'7°

SLS 0.0083 8.4700 X 10'31

DBSMOTE 0.0059 1.8200 X 10w

KNN ORIG 0.0151 6.1300 X 1015

SMOTE 0.0145 1.3200 X 10‘26

ADASYN 0.0229 2.5300 X lO'41

SLS 0.0036 1.9300 X lO'05

DBSMOTE 0.0081 5.0300 X 10'12

4.2.3 A d a p tive  ne ighbors SMOTE

Similar with the comparison setting with RSLS, the average F-measure values 

from 50 rounds of experiments respect to each oversampling technique under the 

same classifier and benchmark dataset are compared. Each technique generates
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synthetic instances which are added into the same original imbalanced dataset, 

making it the balanced dataset. These resulting datasets are used to train classifier. 

Resulting classifiers are evaluated with the same test set in each round. Additionally, 

the minority outcast handling process is applied to improve the classification result 

of ANS model. The results from ANS models; the one with minority outcast handling 

(labeled as ANS2) and the one without minority outcast handling (labeled as ANSI) 

are both collected for comparison. The average F-measure value of ANSI and other 

5 oversampling techniques are ranked. Then, the number of datasets each technique 

provides the best F-measure and provides the top three F-measure of each case is 

counted and reported as bar charts in figure 29 to figure 30. The similar comparison 

is presented with the result of ANS2 in figure 31 to figure 32.

#  o f datasets each technique achieves the best 
F-measure

Figure 29: T he  bar ch a rt o f  th e  n u m b e r o f  datasets w h ich  AN SI and each 

oversam pling  te c h n iq u e  achieves th e  b es t F-m easure

Figure 29 shows the bar chart which counts the number of datasets which ANS 

without outcast handling (ANSI) and other existing oversampling techniques can 

provide the best F-measure. It shows that ANSI achieves the best F-measure in 18 

cases out of total 70 cases which is the most among these 6 techniques. (Original 

wins 17, SMOTE wins 7, ADASYN wins 12, safe-level SMOTE wins 7 and DBSMOTE wins 

9). ANSI is the technique with the highest number of datasets with best F-measure in 

3 classifiers and has the highest total number of datasets. The datasets which ANSI 

has the best, second best and third best F-measures in each classifier are shown in 

table 13.
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If achieving the top three F-measure is used to indicate the consistency of 

performance, it is presented as the bar chart in figure 30. The bar chart shows that 

the number of cases which ANS without minority outcast handling achieves the top 

F-measure is 46 which is 65% of the total number of cases. Flowever, ANSI is not the 

oversampling technique which has the highest number of cases on achieving the top 

three. As shown in table 14, it is defeated by safe-level SMOTE which has 52 cases. 

This result may occur because safe-level SMOTE uses the safe-level value to 

effectively control the suitable location of synthetic instance and ANSI does not use 

the entire minority instances to build the model.

Figure 30: The bar ch a rt o f  th e  n u m b e r o f  datasets w h ich  AN SI and each 

oversam p ling  te ch n iq u e  achieves th e  to p  th re e  F-m easure

#  o f datasets each technique achieves to p  3 
F-measure

« KNN 
» SVM 
» MLP 
■  NB 
» DT
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T ab le  13: T he  lis t o f  da tase t nam es w hich  ANSI achieves th e  best, second 

best and  th ird  best F-m easure in  each classifier.

Classifier Datasets in 1st Datasets in 2nd Datasets in 3rd The total 

number

Decision tree 

(C4.5)

ecoli, jml, kcl, 

vehicle

cml, kcl, pci, 

satimage, yeast

9

Naive Bayes 

classifier

kcl cml, ecoli, glass, 

haberman

kc2, optdigits, 

segment, yeast

9

Multilayer

perceptron

jml, kcl haberman, 

optdigits, pci

cml, glass, 

segment, vehicle, 

yeast

10

Support vector 

machine

glass, haberman, 

kcl, yeast

jml, kc2, pci letter, optdigits, 

satimage

10

K-nearest neighbor glass, haberman, 

jml, kcl, optdigits, 

vehicle, yeast

cml 8

T ab le  14: The n u m b e r o f  cases each oversam pling  te c h n iq u e  achieves th e  F- 

m easure in th e  ranking 1st -3rd

# of cases as ORIG SMOTE ADASYN SLS DBSMOTE ANSI

1st 17 7 12 7 9 18

2ทd
4 20 6 17 8 15

3rd 2 10 9 28 8 13

Total in 1st -3rd 23 37 27 52 25 46

To improve the performance of ANS with the minority outcast handling 

process, it is expected that ANS with minority outcast handling process or ANS2 

provides the better accuracy performance over ANSI. The results are collected in 

order to compare the average F-measure values from each dataset and classifier to
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ones from other oversampling techniques. Similar with the previous comparison, the 

number of cases that each technique achieves the best F-measure and the top three 

F-measure is ranked and counted. The outcome of ranking is represented as the bar 

chart counting the number of datasets in figure 31 and figure 32.

ะf tะ of datasets each technique achieves the best 
F-measure

40

35

30

•25

20
15

10
5

0

■  KNN 
•a SVM 
*  MLP
■  NB 
III! DT

Figure 31: The bar ch a rt o f  th e  n u m b e r o f  datasets w hich  ANS2 and  each 

oversam pling  te ch n iq u e  achieves th e  best F-m easure

#  o f datasets each technique achieves top  3 
F-measure

70
60
50

a KNN 

a SVM 
ร MLP 

■  NB
la DT

Figure 32: The bar ch a rt o f  th e  n u m b e r o f  datasets w hich  ANS2 and each 

oversam pling  te ch n iq u e  achieves th e  to p  th re e  F-m easure
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The bar chart from figure 31 shows the number of datasets which ANS and other 

oversampling techniques achieve the best F-measure. It shows that ANS2 is much 

more effective and has the highest number of datasets achieving the best F-measure 

in every classifier. ANS2 has the best F-measure from 39 cases, the highest and more 

than the combined number of cases from other oversampling techniques. Moreover, 

if the scope of consideration is expended to the top three F-measure, figure 32 

shows that ANS2 achieves the top three F-measures from over 80 % of cases (57 out 

of 70) which is the highest percentage among oversampling techniques. The list of 

dataset names that ANS2 gets the best, second best and third best F-measures in 

each classifier is shown in table 15 while the number of cases each technique 

achieves the F-measure in the 1st, 2nd and 3rd rank is shown in table 16.
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T a b le  15: T he  lis t o f  da tase t nam es w h ich  ANS2 achieves th e  best, 

second bes t and  th ird  best F-m easure in  each classifier.

Classifier Datasets in 1st Datasets in 2nd Datasets in 3rd The total 

number

Decision tree 

(C4.5)

ecoli, glass, 

haberman, jm l, 

kcl, optdigits, pci, 

satimage, vehicle, 

yeast

cm l, letter 1 2

Naive Bayes 

classifier

ecoli, glass, 

haberman, jm l, 

kcl, kc2, optdigits, 

satimage, yeast

cml segment, vehicle 1 2

Multilayer

perceptron

glass, haberman, 

jm l, kcl, letter, 

optdigits, yeast.

ecoli cm l, pci, 

satimage, 

segment, vehicle

13

Support vector 

machine

glass, haberman, 

jm l, kcl, optdigits, 

yeast

kc2, pci, satimage letter, vehicle 11

K-nearest neighbor glass, haberman, 

jm l, kcl, optdigits, 

vehicle, yeast

ecoli cml 9

T a b le  16: The n u m b e r o f  cases each oversam p ling  te c h n iq u e  achieves th e  F- 

m easure in  th e  ranking 1st -3rd

# of cases as ORIG SMOTE ADASYN SLS DBSMOTE ANS2

1st 15 3 4 2 7 39
2ทd 4 15 13 21 10 7

3rd 4 19 6 23 7 11

Total in 1st -3rd 23 37 23 46 24 57
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Similar with RSLS, the Witcoxon signed-rank test with ANSI and ANS2 is also 

conducted in order to verify whether the positive differences of F-measure caused 

by ANSI and ANS2 against other oversampling techniques are significant. เท the first 

part of this section, F-measure values from each round of experiments from ANSI 

and ANS2 are compared with F-measure value from other oversampling techniques 

in the same sampling training and test set and the same classifier. Then, the positive 

median of difference in each comparison is tested for its significance. The null 

hypothesis of each test is set as the median of difference is less than or equal to 

zero. The confidence level is set at 95%, so if a p-value of test is less than 0.05, then 

the alternative hypothesis which is the median of difference between the controlled 

algorithm (ANSI and ANS2, respectively) and the other compared algorithm are 

positive. Using the results from every round of experiments regardless of various 

classifiers and datasets, the test result is shown in the table below.

T ab le  17: T he  W ilcoxon  signed-rank o f  th e  d iffe re n c e  o f  F-m easure fro m  

AN SI and ANS2 against o th e r oversam pling  te ch n iq u e s

A N S I  a g a in s t M e d ia n  o f  
D i f f e r e n c e

p - v a lu e A N S 2  a g a in s t M e d ia n  o f  
D i f f e r e n c e

p - v a lu e

O r ig in a l 0 .0 3 2 1 7 .1 4 3 5  X 1 0  116 O r ig in a l 0 .0 4 5 9 4 .9 4 9 6  X 1 0  156

S M O T E 0 .0 0 5 1 1 .0 3 8 6  X 1 0 ° 9 S M O T E 0 .0 1 7 6 6 .4 2 3 3  X 1 0 75

ADASYN 0 .0 1 3 8 1.2541 X 1 0 67 ADASYN 0 .0 2 7 1 1 .4 8 0 7  X 10 151

S LS 0 .0 0 0 3 7 .3 2 7 0  X 1 0 01 SLS 0 .0 1 0 9 2 .3 3 7 8  X l o " 1

D B S M O T E 0 .0 1 5 5 9 .1 3 0 4  X 1 0 '71 D B S M O T E 0 .0 2 9 2 2 .4 9 1 4  X 1 0 '139

A N S I 0 .0 1 7 0 6 .5 5 4 2  X 1 0  124

It can be seen from the results in table 17 that ANSI and ANS2 both achieve 

significantly positive differences against other oversampling techniques except when 

ANSI is compared against SLS which is the only case that its p-value is more than 

0.05. As already seen in table 14, safe-level SMOTE has slightly more cases achieving 

the top three than ANSI, so this result is expected. But after adding the minority 

outcast handling process as in ANS2, it could be seen that ANS2 has significantly 

positive difference of F-measure against all other oversampling techniques as p- 

values are all less than 0.05.
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T ab le  18: T he  W ilcoxon signed-rank o f  th e  d iffe re n c e  o f  F-m easure fro m  

AN SI and ANS2 against o th e r sam pling te ch n iq u e s  in  each classifier

Classifier ANSI

against

Median of 

Difference

p-value ANS2

against

Median of 

Difference

p-value

DT ORIG 0.0241 2.1900 X 10'26 ORIG 0.0359 3.4400 X 10"2

SMOTE 0.0011 0.1718 SMOTE 0.0137 3.2000 X 10-17

ADASYN 0.0011 0.1209 ADASYN 0.0137 1.4600 X 10'17

SLS 0.0011 4.1461 X 10-02 SLS 0.0132 5.4700 X 10'18

DBSMOTE 0.0161 2.1800 X 10'21 DBSMOTE 0.0299 1.3900 X 10-45

ANSI 0.0251 3.2400 X lO'61

NB ORIG 0.0208 2.5800 X 10'27 ORIG 0.0437 4.8000 X 10-49

SMOTE -0.0098 1 SMOTE 0.0089 9.8767 X lo "2

ADASYN 0.0108 3.3100 X 10'10 ADASYN 0.0286 8.8800 X 10'28

SLS -0.0041 1 SLS 0.0122 3.5300 X 10"07

DBSMOTE 0.0603 5.0300 X 10‘80 DBSMOTE 0.0876 5.6600 X 10'97

ANSI 0.0263 6.0900 X 10"75

MLP ORIG 0.0258 1.3200 X 10'09 ORIG 0.0308 1.7600 X 10'15

SMOTE 0.0076 1.0700 X 10"6 SMOTE 0.0230 1.4400 X 10'24

ADASYN 0.0188 1.7100 X 10‘22 ADASYN 0.0306 2.2600 X 10"6

SLS 0.0001 0.26821 SLS 0.0110 5.5500 X 10'13

DBSMOTE 0.0095 1.0540 X 10'04 DBSMOTE 0.0174 1.1900 X 10'15

ANSI 0.0122 7.1400 X 10‘13

SVM ORIG 0.1042 5.2200 X 10‘65 ORIG 0.1066 3.8800 X 10'67

SMOTE 0.0158 1.1100 X 10'27 SMOTE 0.0274 4.6100 X 10'52

ADASYN 0.0244 7.0300 X 10'35 ADASYN 0.0372 3.6600 X 10'58

SLS 0.0042 2.0819 X 10"03 SLS 0.0117 3.1700 X 10'20

DBSMOTE -0.0020 0.67452 DBSMOTE 0.0063 9.6200 X 10~°6

ANSI 0.0179 3.7900 X 10'56
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Classifier ANSI

against

Median of 

Difference

p-value ANS2

against

Median of 

Difference

p-value

KNN ORIG 0.0143 3.9300 X 10'10 ORIG 0.0192 2.4600 X 10"9

SMOTE 0.0094 7.5700 X 10'13 SMOTE 0.0162 1.2500 X 10‘12

ADASYN 0.0164 2.8700 X 10'25 ADASYN 0.0220 4.1800 X 10'21

SLS 0.0014 0.10058 SLS -0.0004 2.8819 X lO'02

DBSMOTE 0.0032 2.7500 X 10"05 DBSMOTE 0.0148 9.1800 X 10"07

ANSI -0.0020 0.42596

Based on these Wilcoxon signed-rank test results separated by classifiers 

shown in table 18, ANSI cannot achieve positive difference against some 

oversampling techniques in some classifier. For decision tree, ANSI has p-values 

larger than 0.05 when it is compared against SMOTE and ADASYN and barely smaller 

than 0.05 against safe-level SMOTE. This could imply that ANSI cannot overcome 

SMOTE, ADASYN and safe-level SMOTE clearly in this classifier. However, the test 

with ANS2, the p-values against every oversampling technique is less than 0.05. So, 

this can be concluded that ANS2 has better performances than other oversampling 

techniques in this classifier. เท naïve Bayes classifier, ANSI has p-values larger than 

0.05 and negative difference against SMOTE and safe-level SMOTE. This shows that it 

cannot provide better performance over these two oversampling techniques. 

However, ANS2 still provides a better performance against all oversampling 

techniques in this classifier. This could mean minority outcast handling help 

improving the classification performance of ANSI in naïve Bayes classifier.

For multilayer perceptron, the similar situation occurs as ANSI can provide 

the positive difference in almost every comparison with other oversampling 

technique significantly except safe-level SMOTE. ANS2 which minority outcast 

handling process is included can overcome and has positive difference in every test 

against other oversampling techniques with p-values less than 0.05. ANSI also 

provides the positive difference in every test against other oversampling techniques 

except DBSMOTE when it is trained with support vector machine. It requires the 

minority outcast handling to achieve the positive difference against every 

oversampling technique significantly. However, ANS2 does not work better than safe- 

level SMOTE significantly whether minority outcast handling is included in k-nearest
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neighbor, as it got p-value more than 0.05 against safe-level SMOTE while it can 

achieve p-value less than 0.05 against any other oversampling techniques.

The concern in this dissertation is whether adaptive neighbor process or 

minority outcast handling process is a factor for the improving performance. To 

answer this concern, experiments on 70 cases of 14 UCI datasets and 5 classifiers 

from SMOTE whose outcasts are removed (SMOTEO) and adaptive neighbor SMOTE 

(ANS) are performed. There are two versions of SMOTEO and ANS in this 

experimental setting, i.e., ones without minority outcast handling (SMOTEO-1 and 

ANSI) and one with minority outcast handling (SMOTEO-2 and ANS2). The results 

represented as the average F-measure values are reported in table 27 and 

summarized in table 19. The parameter k  is set as 5 which is the setting used for 

SMOTE in the original paper of SMOTE and related research papers. The results from 

techniques that do not apply minority outcast handling, i.e., SMOTEO-1 and ANSI, 

are paired. The number of cases which ANSI achieves higher F-measure than one 

from SMOTEO-1 is 37 which is more than half of total cases. Similarly, the results 

from two techniques that apply minority outcast handling, i.e., SMOTEO-2 and ANS2, 

are also paired. The number of cases which ANS2 achieves higher F-measure than 

one from SMOTEO-1 is 40. The number of cases which SMOTEO-1 has better F- 

measure than ANSI but ANS2 has better F-measure than SMOTEO-2 is only 6. This 

implies that there are only few cases which minority outcast can overturn the result 

between these two oversampling techniques. Most cases (34) that ANS can 

overcome SMOTE happen when ANSI has already higher F-measure than SMOTEO-1. 

So, it can conclude that adaptive neighbor SMOTE can provide the better 

classification performance over original SMOTE with its dynamic k  process. Moreover, 

when ANS is more effective than SMOTE, minority outcast process helps improving 

the result further.

T ab le  19: The n u m b e r o f  cases w h ich  averaged F-m easure o f  AN SI or 

ANS2 is h igherA ow er th a n  one o f  SMOTEO-1 or SMOTEO-2.

ANSI > SMOTEO-1 SMOTEO-1 > ANSI Total by rows

ANS2 > SMOTEO-2 34 6 40

SMOTEO-2 > ANS2 3 27 30

Total by columns 37 33 70
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To further investigate the effect of adaptive neighbor approach and minority 

outcast handling, the analysis of variance is also performed on this experimental 

result. The significant level for this test is set as 0.95 which means that if the p-value 

is less than 0.05, there is significant difference between the F-measure mean of two 

groups. The ANOVA result between the F-measure values from SMOTE with the fixed 

k  =  5 and the ones from ANS is shown in table 20.

T ab le  20: T he  ANOVA ta b le  be tw een  F-m easure va lues fro m  SMOTE w ith  

th e  fixe d  k = 5 and th e  ones fro m  ANS

Df Sum Square Mean Square F value Pr( > F)

SMOTEO vs ANS 1 0 0.00053 0.011 0.916

Residuals 13998 663 0.04736

The ANOVA table shown in table 20 displays that the p-value is 0.916 which 

is more than the critical value 0.05. It implies that the mean of F-measure from 

SMOTE with the fixed k  =  5  and adaptive neighbor SMOTE is not significantly 

different. Fiowever, the fixed k  = 5 is required the tuning of a parameter k in order to 

find the optimal value which costs more time and resources than adaptive neighbor 

while yielding the similar overall classification result based on ANOVA.

The effect of minority outcast handling applied in SMOTE and adaptive 

neighbor SMOTE is also investigated by ANOVA. With the significant level at 0.05, the 

ANOVA test is conducted to compare the mean of F-measure from two groups, ie, a 

group of sampling techniques without applying the minority outcast handling and a 

group of sampling techniques applying the minority outcast handling. The result of 

ANOVA is shown in table 21.

T ab le  21: The ANOVA ta b le  be tw een  F-m easure va lues fro m  

oversam pling  te ch n iq u e s  w ith o u t app ly ing  m in o r ity  o u tca s t hand ling  and 

th e  ones w ith  m in o r ity  ou tcas t hand ling

Df Sum Square Mean Square F value Pr( > F)

w/o vs with outcast 1 0.6 0.5776 12.21 4.78 X  10‘3

Residuals 13998 662.4 0.0473

The ANOVA table shown in table 21 displays that the p-value is 4.78 X  104 

which is less than 0.05. This implies that the mean of F-measure from oversampling
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techniques without minority outcast handling and oversampling techniques with 

minority outcast handling is significantly different. This can be affirmed that minority 

outcast handling can effectively enhance the classification performance in the class 

imbalance problem with the significant improvement.
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