
4

CHAPTER II

RELATED WORKS

2.1 General distributed task scheduling approaches

Parallel or distributed task scheduling problems have been studied by many

researchers [15], [16], [17], [18] and a number of algorithms for solving these

problems have been proposed [19], [20], [21], [22], [23], Each proposed algorithm has

different advantages or limitations. Example interesting algorithms for solving

distributed task scheduling problems can be categorized in three kinds, namely, task

duplication heuristics, clustering heuristics, and list scheduling heuristics. Task

duplication heuristics (TDH) approach is employed to reduce computing time. The

algorithm reduces the communication time between tasks by pushing redundant

tasks to different servers [24] and [25]. This method, however, can be very complex

and requires high energy consumption and execution cost as redundant tasks are

executed on different servers. As the overhead to find an optimal solution is high, it

is only effective in the case that the system has a high ratio of communication and

execution cost.

Clustering heuristics (CH) approach focuses on the reduction of transmission

cost. เท this approach, tasks are grouped into clusters based on their transmission

edge before mapping each group to appropriate servers [18], [23], [26], [27], An

example of CH algorithm is introduced by Liou and Palis in 1997 [27], For this

algorithm the scheduling is achieved in four steps; clustering all tasks into groups,

merging clusters to a number of servers, mapping individual cluster to a server, and

determining the order of task execution. The cluster of tasks which has the highest

communication cost will be assigned first. Then the process continues until all

clusters are assigned. This way, the computing load on clusters or servers and

communication traffic among the clusters can be balanced.

5

List scheduling heuristics (LSH) is considered the most common scheduling

algorithm [28], [29], and [19]. This type of algorithm generally contains two parts; task

prioritization and server selection. เท the first part, a score is assigned to each task

based on its computation cost. The tasks are then prioritized according to the ranking

of the score. เท the second part, the execution time for each task on every server is

evaluated. Tasks are then assigned to the servers which give the least execution time

for that task. The Min-Min algorithm proposed by Li et al. in 2011 [19] is a good

example of task scheduling algorithm employing LSH approach. This algorithm has

been modified from the original Min-Min algorithm in such a way that each task are

considered to be dependent. The earliest finishing time for the tasks on every device

is calculated. The tasks are then assigned to the devices which give the shortest

earliest finishing time.

2.2 Selected prominent distributed task scheduling algorithms

Other related task scheduling algorithms which are referred to in this study

are described as follows. The algorithms include the Heterogeneous Earliest Finish

Time (HEFT) algorithm, the low complexity Performance Effective Task Scheduling

(PETS) algorithm, the Lookahead algorithm, the Constrained Earliest Finish Time

(CEFT) algorithm, and the Predict Earliest Finish Time (PEFT) algorithm.

The HEFT algorithm was proposed by Topcuoglu et al. [30], The algorithm

yields a time complexity of 0 (v2x /?), where vis the number of vertices or tasks

and p is the processing units. For this algorithm, two phase process, namely task

prioritizing and processor selection, are employed. เท the first phase, tasks are

prioritized based on their computation and communication costs. เท the next phase,

earliest execution finish time for all tasks is calculated using insertion-based policy.

The tasks are then assigned to an idle time slot that lies between the already

scheduled tasks on a processing unit.

The PETS algorithm was proposed by llavarasan and Thambidurai [31]. The

algorithm yields a time complexity of o (v 2"j(pxlog v), where vis the number of

vertices or tasks and p is the processing units. For this algorithm, a priority queue is

6
constructed by sorting each task in each scheduling level according to their average

computation cost, data transfer cost, and rank of predecessor tasks. Earliest finish

time of each task is then computed and the tasks are assigned by using insertion-

based policy in an idle time slot between the already scheduled tasks on a

processing unit.

The Lookahead algorithm was proposed by Bittencourt et al. [32], The

algorithm is based on the HEFT algorithm [30] having the time complexity to be

0 (v 3x p 2/ /) , where V is the number of vertices or tasks and p is the processing

units. This is greater than that of the original HEFT by a factor of (p x c) , where c is

the number of the average number of children per task. เท the HEFT with Lookahead

algorithm. The estimated finish time of all children of the considered task in queue is

calculated. Thus, the algorithm looks up the forwarding step to compute the

shortest finish time in subsequent tasks. เท the case where tasks are spread evenly

on every level of scheduling graph, the average number of children must not exceed

V / / , where / is the number of level in the graph.

The CEFT algorithm was proposed by Khan [33], เท this algorithm, a

constrained critical path is determined from the average execution cost, transmission

weight, and weight of predecessor of each task. Calculation begins from the start task

of the tasks along constrained critical paths and prunes downward to the exit task of

the graph. Nodes are scheduled following a traversal of the critical path in a round-

robin scheme by moving them from the adjacent constrained critical path to the

longest constrained critical path. The processing unit which gives the minimum finish

time for the scheduled node in the constrained critical paths is then assigned to all

remaining nodes. The time complexity for this algorithm is <9(v3 Xp Y where vis the

number of vertices or tasks and p is the processing units.

The PEFT was proposed by Arabnejad and Barbosa [34], This algorithm is

based on optimistic cost table. The algorithm contains two phases, computing task

prioritization and processor selection. Task prioritization is determined from sorted

average of optimistic cost table on each processor. Processors selection are taken

7
from the results of task optimistic earliest finish time (Ol71,7.) which is determined

from the minimal summation of optimistic cost tables and earliest finish time. The

tasks are then scheduled to each server using insertion-based policy. The time

complexity of this algorithm is in the order of 0(v2 X p) for V vertices or number of

tasks and p processing units.

For this work, scheduling algorithms with an emphasis on energy saving

aspect were studied. It was found from the study that the overall communication

energy could be reduced by grouping tasks to be executed using the same server. As

some tasks could not be executed or clustered on the same server due to their

inherent restrictions, such a scenario would be further elaborated with details of

problem formulation, constraints of task characteristics, and server competency. It

was also found from this study that when energy consumption was considered,

important aspects which should be addressed include algorithm overhead and wait

time of the main processing unit before all tasks were executed. Problem

formulation and all pertinent issues of this study are described in the sections that

follow.

	CHAPTER II RELATED WORKS
	2.1 General distributed task scheduling approaches
	2.2 Selected prominent distributed task scheduling algorithms

