เอซาคราวน์อีเทอร์เชื่อมกับ 1,4-ไดไฮโดรพิริดีนเพื่อเป็นฟลูออเรสเซนซ์คีโมเซ็นเซอร์ชนิดใหม่



นายวโรธร ไพรสุวรรณ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2556 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย



## AZACROWN ETHER LINKED WITH 1,4-DIHYDROPYRIDINE AS NEW FLUORESCENCE CHEMOSENSORS

Mr. Waroton Paisuwan

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Chemistry Department of Chemistry Faculty of Science Chulalongkorn University Academic Year 2013 Copyright of Chulalongkorn University

| Thesis Title      | AZACROWN ETHER LINKED WITH 1,4-               |
|-------------------|-----------------------------------------------|
|                   | DIHYDROPYRIDINE AS NEW FLUORESCENCE           |
|                   | CHEMOSENSORS                                  |
| Ву                | Mr. Waroton Paisuwan                          |
| Field of Study    | Chemistry                                     |
| Thesis Advisor    | Anawat Ajavakom, Ph.D.                        |
| Thesis Co-Advisor | Associate Professor Mongkol Sukwattanasinitt, |
|                   | Ph.D.                                         |

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Hammighua Dean of the Faculty of Science

(Professor Supot Hannongbua, Dr.rer.nat.)

THESIS COMMITTEE Chairman (Assistant Professor Varawut Tangpasuthadol, Ph.D.) Marst Ajavakon, Thesis Advisor (Anawat Ajavakom, Ph.D.) (Associate Professor Mongkol Sukwattanasinitt, Ph.D.) (Associate Professor Mongkol Sukwattanasinitt, Ph.D.) Examiner (Luxsana Dubas, Ph.D.) Boon-IL Yryy manylul External Examiner (Assistant Professor Boon-ek Yingyongnarongkul, Ph.D.) วโรธร ไพรสุวรรณ : เอซาคราวน์อีเทอร์เชื่อมกับ 1,4-ไดไฮโดรพิริดีนเพื่อเป็นฟลูออเรส เซนซ์คีโมเซ็นเซอร์ชนิดใหม่. (AZACROWN ETHER LINKED WITH 1,4-DIHYDROPYRIDINE AS NEW FLUORESCENCE CHEMOSENSORS) อ.ที่ปรึกษา วิทยานิพนธ์หลัก: อ. ดร.อนวัช อาชวาคม, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: รศ. มงคล สุข วัฒนาสินิทธิ์, 85 หน้า.

ฟลูออเรสเซ็นต์เซ็นเซอร์ที่มีสมบัติการละลายน้ำที่ดีเป็นที่นิยมนำมาประยุกต์ใช้ในการ ตรวจวัดไอออนของโลหะในตัวทำละลายน้ำ งานวิจัยนี้จึงสังเคราะห์โมเลกุลที่ประกอบด้วยหน่วย ของ 1,4-ไดไฮโดรพิริดีน (DHP) ทำหน้าที่เป็นหน่วยให้สัญญาณฟลูออเรสเซ็นต์และหน่วยของเอ ชาคราวน์อีเทอร์ทำหน้าที่เป็นหน่วยจับที่มีสมบัติในการละลายน้ำที่ดี การสังเคราะห์อนุพันธ์ 1,4-ไดไฮโดรพิริดีนที่เชื่อมกับวงเอซาคราวน์อีเทอร์สามารถเตรียมได้ภายใน 3 ขั้นตอน เริ่มต้นจากการ ปิดวงแบบไซโคลไตรเมอไรเซชันของเบต้าอะมิโนอคริเลทได้เป็น Et-DHP-OH ต่อด้วยการเปลี่ยน หมู่ไฮดรอกซิลเป็นหมู่ทอซิเลตผ่านปฏิกิริยาทอซิลเลชันได้เป็น Et-DHP-OTs ตามด้วยปฏิกิริยา การแทนที่ด้วยเอซาคราวน์อีเทอร์ได้เป็น Et-DHP-AC(1-3) จากการศึกษาสมบัติทางกายภาพเชิง แสงในน้ำมิลลิคิว พบว่าค่าการดูดกลืนแสงสูงสุดที่ความยาวคลื่น 367, 369, และ 362 นาโนเมตร และค่าการคายแสงสูงสุดที่ความยาวคลื่นเหมือนกันที่ 439 นาโนเมตรที่ประสิทธิภาพการคายแสง (**∲**f) ที่ 0.41, 0.45, และ 0.46 ตามลำดับ พบว่า Et-DHP-AC(3) มีความจำเพาะกับทอง(Ⅲ) ที่ ความเข้มข้นต่ำสุด 50 µM ด้วยการระงับสัญญาณฟลูออเรสเซ็นต์ซึ่งคาดว่าเกิดออกซิเดชันของวง ไดไฮโดรพิริดีน กลายเป็นวงพิริดิเนียมตามผลที่แสดงใน 1H NMR ยิ่งไปกว่านั้น Et-DHP-AC(1-3) ยังใช้เป็นฟลูออเรสเซ็นต์เซ็นเซอร์ในตัวทำละลายผสมระหว่างเตตระไฮโดรฟิวแรนหรืออะซิโตไน ไตรล์กับน้ำมิลลิคิวซึ่งส่งผลทำให้สัญญาณฟลูออเรสเซ็นต์เพิ่มขึ้น จากผลการศึกษาพบว่า Et-DHP-AC(2) แสดงการเพิ่มสัญญาณฟลูออเรสเซ็นต์กับโครเมียม(III) อย่างจำเพาะเจาะจงมากที่สุดแล้ว เกิดเป็นสารประกอบเชิงซ้อนด้วยอัตราส่วนระหว่าง Et-DHP-AC(2):Cr3+ เท่ากับ 3:1 ในเตตระ ไฮโดรฟิวแรนกับน้ำมิลลิคิว (อัตราส่วนปริมาตร 1:1)

ภาควิชา เคมี สาขาวิชา เคมี ปีการศึกษา 2556 ลายมือชื่อนิสิต <u>วิโรธร</u> <u>รรรราง</u> ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก Out ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม # # 5472094623 : MAJOR CHEMISTRY

KEYWORDS: ACID INDUCED CYCLOTRIMERIZATION / AZACROWN ETHER / 1-4 DHP / FLUORESCENT CHEMOSENSORS / METAL ION DETECTION

WAROTON PAISUWAN: AZACROWN ETHER LINKED WITH 1,4-DIHYDROPYRIDINE AS NEW FLUORESCENCE CHEMOSENSORS. ADVISOR: ANAWAT AJAVAKOM, Ph.D., CO-ADVISOR: ASSOC. PROF. MONGKOL SUKWATTANASINITT, Ph.D., 85 pp.

Water soluble fluorescent sensors are of interest for sensing the metal ion in aqueous media. The target molecules possessing a DHP moiety as fluorophore and azacrown ring as a receptor and water soluble moiety were synthesized. The synthetic preparation of the series of 1,4-dihydropyridine (DHP) derivatives linked with various sizes of azacrown ring involves 3 steps of reaction. Firstly, Et-DHP-OH can be obtained from the cyclotrimerization of  $\beta$ -amino acrylates. Then, the hydroxyl group of Et-DHP-OH was tosylated followed by the substitution with the azacrown ether (n=1-3) to afford the corresponding Et-DHP-AC(1-3). According to the investigation results of photophysical property in milliQ water, these Et-DHP-AC(1-3) exhibited the absorption maxima at 367, 369, and 362 nm and the similar emission peak at 439 nm with the florescence quantum efficiencies ( $\mathbf{\Phi}$ f) of 0.41, 0.45, and 0.46, respectively. The Et-DHP-AC(3) showed selective fluorescence quenching by gold(III) with the the lowest detectable concentration of 50 µM. The fluorescence guenching occurred through the oxidation reaction of the DHP into a pyridinium ring also confirmed by the 1H NMR results. Moreover, when Et-DHP-AC(1-3) were used as sensors in THF or acetonitrile and milliQ water, they gave fluorescence enhancement signals. As a result, Et-DHP-AC(2) was found to demonstrate the best selective enhancement with chromium(III) that formed complexation with the ratio of Et-DHP-AC(2):Cr3+ equal to 3:1 in THF/milliQ water (v/v=1:1).

Department: Chemistry Field of Study: Chemistry Academic Year: 2013

Student's Signature Navolan Paisuwan Advisor's Signature Anany, Agu Co-Advisor's Signature

#### ACKNOWLEDGEMENTS

.

The accomplishment of this thesis can be attributed to the assistance and support from Dr. Anawat Ajavakom as my thesis advisor. I would like to express my sincere gratitude to him for valuable advice, guidance and encouragement throughout the course of this research.

I would like to deeply thank my co-advisor, Associate Professor Dr. Mongkol Sukwattanasinitt for his generous assistance, precious guidance and kindness throughout this research. I also would like to thank Associate Professor Dr. Paitoon Rashatasakhon and Assistant Dr. Sumrit Wacharasindhu for his attention and suggestion in our group meeting.

I would like to appreciate many members of Material Advancement and Proficient Synthesis (MAPS) Group; Mr. Thirawat Sirijindalert, Mr. Oran Pinrat, Ms. Daranee Homraruen, Mr. Watcharin Ngampueng, Ms. Pornpat Sam-ang and Ms. Kanoktorn Boonkitpatarakul for their helpful suggestion, Mr. Akachai Khumsri, and everyone in MAPS group for a greatest relationships and kind encouragement.

In particular, I am thankful to the National Nanotechnology Center for supporting my thesis.

Finally, I would like to specially thank my family and friends for their encouragement and understanding throughout. I would not be able to reach this success without them.

## CONTENTS

| P                                                              | age    |
|----------------------------------------------------------------|--------|
| THAI ABSTRACTi                                                 | V      |
| ENGLISH ABSTRACT                                               | .V     |
| ACKNOWLEDGEMENTS                                               | vi     |
| CONTENTSv                                                      | /11    |
| LIST OF TABLES                                                 | .×     |
| LIST OF FIGURES                                                | xi     |
| LIST OF SCHEMES                                                | $\sim$ |
| LIST OF ABBREVIATIONS                                          | vi     |
| CHAPTER I INTRODUCTION                                         | 1      |
| 1.1 Introduction of 1,4-dihydropyridines                       | 1      |
| 1.2 Introduction of fluorometry                                | 4      |
| 1.3 Fluorescence chemosensor                                   | 5      |
| 1.4 The operation of fluorescence chemosensor                  | 6      |
| 1.4.1 Photo induced electron transfer (PET)                    | 6      |
| 1.4.2 Intramolecular charge transfer (ICT)                     | 6      |
| 1.4.3 Fluorescence resonance energy transfer (FRET)            | 7      |
| 1.5 Allosteric                                                 | 8      |
| 1.6 Applications of fluorescence chemosensors                  | 0      |
| 1.6.1 Fluorescence chemosensors containing azacrown ether unit | 0      |
| 1.6.2 Au <sup>3+</sup> sensors                                 | 2      |
| 1.6.3 DHP sensors                                              | .4     |
| 1.7 Statement of problem1                                      | 4      |
| 1.8 Objectives of this research1                               | 5      |
| CHAPTER II EXPERIMENTAL 1                                      | .6     |
| 2.1 Materials and chemicals1                                   | .6     |
| 2.2 Analytical instruments                                     | 6      |
| 2.3 Synthetic procedures1                                      | .7     |

| Page |
|------|
|------|

| 2.3.1 Synthesis of 1,4-dihydropyridine (R-DHP-OH)                                             | 17 |
|-----------------------------------------------------------------------------------------------|----|
| 2.3.2 Synthesis and of 1,4-dihydropyridine tosylate (R-DHP-OTs)                               | 18 |
| 2.3.3 Synthesis of brominated 1,4-dihydropyridine (Et-DHP-Br)                                 | 19 |
| 2.3.4 Synthesis of 1,4-dihydropyridine azacrown ether derivatives (Et-DHP-AC(                 | 1- |
| 3))                                                                                           | 20 |
| 2.4 Analytical experiment                                                                     | 23 |
| 2.4.1 Photophysical property study                                                            | 23 |
| i) UV-Visible spectroscopy                                                                    | 23 |
| ii) Fluorescence spectroscopy                                                                 | 23 |
| iii) Molar extinction coefficient ( $\mathcal{E}$ )                                           | 23 |
| iv) Fluorescence quantum yield ( $oldsymbol{\Phi}_{	extsf{F}}$ )                              | 24 |
| 2.4.2 Metal ion sensor                                                                        | 24 |
| 2.4.3 Nitroaromatic sensor                                                                    | 25 |
| CHAPTER III RESULTS AND DISCUSSION                                                            | 26 |
| 3.1 Synthesis and characterization of 1,4-dihydropyridine azacrown ether                      | 26 |
| 3.2 Synthesis of 1,4-dihydropyridine diethylamine (Et-DHP-NEt <sub>2</sub> )                  | 29 |
| 3.3 Characterization                                                                          | 29 |
| 3.3.1 <sup>1</sup> H NMR of Et-DHP-OTs and Et-DHP-AC(1-3)                                     | 29 |
| 3.3.2 <sup>1</sup> H NMR of Et-DHP-NEt <sub>2</sub>                                           | 30 |
| 3.3.3 HRMS of Et-DHP-OTs, Et-DHP-AC(1-3), and Et-DHP-NEt <sub>2</sub>                         | 31 |
| 3.4 Photophysical property study                                                              | 32 |
| 3.6 Metal ion sensor of Et-DHP-AC(3)                                                          | 34 |
| 3.6.1 Fluorescence emission of Et-DHP-AC(1-3) response against metal ions                     | 34 |
| 3.6.2 Reaction time with $Au^{3+}$ of Et-DHP-AC(1-3), Et-DHP-OH and Et-DHP-NEt <sub>2</sub> . | 36 |
| 3.6.3 UV-Vis spectral responses of Et-DHP-AC(3) to Au <sup>3+</sup>                           | 40 |
| 3.6.4 <sup>1</sup> H NMR experiment                                                           | 41 |
| 3.6.5 Fluorescence titration of Et-DHP-AC(3) to Au <sup>3+</sup>                              | 43 |

ix

| 3.6.6 Competitive experiments over other metal ions                                            | 44           |
|------------------------------------------------------------------------------------------------|--------------|
| 3.6.7 Job's method                                                                             | 46           |
| 3.6.8 Metal detection of Et-DHP-AC(3)                                                          | 46           |
| i) Study of solvent effect on fluorescence enhancement                                         | 46           |
| ii) Metal ion sensing with Et-DHP-AC(3)•Ba <sup>2+</sup>                                       | 49           |
| iii) Comparison of enhancing intensity of Et-DHP-OH, Et-DHP-NEt <sub>2</sub> , an<br>DHP-AC(3) | nd Et-<br>52 |
| 3.7 Metal ion sensor of Et-DHP-AC(2)                                                           | 53           |
| 3.7.1 Selectivity study                                                                        | 53           |
| 3.7.2 Fluorescence response                                                                    | 54           |
| 3.7.3 Stability study of Et-DHP-AC(2) after enhancing monitoring                               | 56           |
| 3.7.4 Competitive experiments over other metal ions                                            | 57           |
| 3.7.5 Job's method                                                                             |              |
| 3.8 Nitroaromatic explosive sensor                                                             | 59           |
| CHAPTER IV CONCLUSION                                                                          | 62           |
| 4.1 Conclusion                                                                                 | 62           |
| 4.2 Suggestion for future work                                                                 | 63           |
| REFERENCES                                                                                     | 64           |
| APPENDIX                                                                                       | 69           |
| VITA                                                                                           | 85           |

### LIST OF TABLES

| Table 3.1 Photophysical property of Et-DHP-AC(1-3) and Et-DHP-NEt $_2$ in aqueou                        |
|---------------------------------------------------------------------------------------------------------|
| solution                                                                                                |
| <b>Table 3.2</b> %Fluorescence enhancement of Et-DHP-AC(3) $K^{+}$ , $Sr^{2+}$ , and $Ba^{2+}$ in milli |
| water (MQ) and organic solvent                                                                          |
| Table 3.3 %Fluorescence enhancement of Et-DHP-AC(3) $K^{+}$ , $Sr^{2+}$ , and $Ba^{2+}$ at various      |
| ratio of MQ and ACN                                                                                     |

## LIST OF FIGURES

| Page |
|------|
|------|

| Figure 1.1 Basic structure of 1,4-dihydropyridine (DHP)1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 1.2 Bioactive DHP derivatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Figure 1.3 The synthetic scheme of compound 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Figure 1.4 The synthetic scheme of compound 2 and 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Figure 1.5 The synthetic scheme of compound 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Figure 1.6 The synthetic scheme of DHP derivatives 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Figure 1.7 Jablonski diagram illustrating the fluorescence processes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Figure 1.8 Schematic illustration of a fluorescence sensor device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Figure 1.9 Photoinduced electron transfer (PET)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Figure 1.10 Intramolecular charge transfer (ICT) process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Figure 1.11 Jablonski diagram showing the energy transfer between the fluorescence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| donor and acceptor concerned with FRET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Figure 1.12 Heterotropic allosteric of binding between Na $^{+}$ and calix [4] arene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Figure 1.13 Heterotropic allosteric of binding between $Na^{\dagger}$ and porphyrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure 1.14 a) Synthesis of rodamine-azacrown ether 7 b) Fluorescence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| enhancement of 7 with $Fe^{3+}$ and $Hg^{2+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Figure 1.15 a) Chromofluorophore compound 8. b) Fluorescence emission series of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\int C = \frac{1}{2} \int C = \frac{1}{2} $ |
| spectra of compound 8 on incremental addition of Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure 1.16 a) Intramolecular sandwich complex of azacrown ether. b) Fluorescence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>Figure 1.16</b> a) Intramolecular sandwich complex of azacrown ether. b) Fluorescence<br>enhancement of bis(aza-15-crown-5)ether-2,2'-biantracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Figure 1.16 a) Intramolecular sandwich complex of azacrown ether. b) Fluorescence<br>enhancement of bis(aza-15-crown-5)ether-2,2'-biantracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Figure 1.16 a) Intramolecular sandwich complex of azacrown ether. b) Fluorescence<br>enhancement of bis(aza-15-crown-5)ether-2,2'-biantracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Figure 1.16 a) Intramolecular sandwich complex of azacrown ether. b) Fluorescenceenhancement of bis(aza-15-crown-5)ether-2,2'-biantracene.12Figure 1.17 Highly selective fluorescence probe 9 for Au <sup>3+</sup> based on spirocyclic ringopening followed the cyclization of propargylamide.12Figure 1.18 Color and structural change of compound 11 for Hg <sup>2+</sup> and Au <sup>3+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure 1.16 a) Intramolecular sandwich complex of azacrown ether. b) Fluorescence<br>enhancement of bis(aza-15-crown-5)ether-2,2'-biantracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Spectra of compound 8 on incremental addition of Cu11Figure 1.16 a) Intramolecular sandwich complex of azacrown ether. b) Fluorescenceenhancement of bis(aza-15-crown-5)ether-2,2'-biantracene.12Figure 1.17 Highly selective fluorescence probe 9 for Au14based on spirocyclic ring12opening followed the cyclization of propargylamide.12Figure 1.18 Color and structural change of compound 11 for Hg13Figure 1.19 Fluorescence images of HeLa cells and adipocytes treated with Au131313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| spectra of compound 8 on incremental addition of Cu11Figure 1.16 a) Intramolecular sandwich complex of azacrown ether. b) Fluorescenceenhancement of bis(aza-15-crown-5)ether-2,2'-biantracene.12Figure 1.17 Highly selective fluorescence probe 9 for Au <sup>3+</sup> based on spirocyclic ringopening followed the cyclization of propargylamide.12Figure 1.18 Color and structural change of compound 11 for Hg <sup>2+</sup> and Au <sup>3+</sup> 13Figure 1.19 Fluorescence images of HeLa cells and adipocytes treated with Au <sup>3+</sup> and13Figure 1.20 a) Structure of DHP fluorescence sensor 14 b) its selectivity toward Hg <sup>2+</sup> 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| spectra of compound 8 on incremental addition of Cu       11         Figure 1.16 a) Intramolecular sandwich complex of azacrown ether. b) Fluorescence       12         enhancement of bis(aza-15-crown-5)ether-2,2'-biantracene.       12         Figure 1.17 Highly selective fluorescence probe 9 for Au <sup>3+</sup> based on spirocyclic ring       12         Figure 1.17 Highly selective fluorescence probe 9 for Au <sup>3+</sup> based on spirocyclic ring       12         Figure 1.18 Color and structural change of compound 11 for Hg <sup>2+</sup> and Au <sup>3+</sup> .       13         Figure 1.19 Fluorescence images of HeLa cells and adipocytes treated with Au <sup>3+</sup> and       13         Figure 1.20 a) Structure of DHP fluorescence sensor 14 b) its selectivity toward Hg <sup>2+</sup> ion.       14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Figure 3.1 <sup>1</sup> H NMR (400) MHz of Et-DHP-OTs and Et-DHP-AC(1-3)                                                 |
|--------------------------------------------------------------------------------------------------------------------------|
| Figure 3.2 <sup>1</sup> H NMR (400) MHz of Et-DHP-OTs and Et-DHP-NEt <sub>2</sub>                                        |
| Figure 3.3 HRMS of Et-DHP-OTs, Et-DHP-AC(1-3), and Et-DHP-NEt <sub>2</sub> .                                             |
| Figure 3.4 a) Absorption spectra b) Fluorescence spectra of 10 $\mu$ M Et-DHP-AC(1-3                                     |
| and Et-DHP-NEt <sub>2</sub> in milliQ water                                                                              |
| Figure 3.5 Fluorescence quenching profile of Et-DHP-AC(3) (10 $\mu$ M), 10 minutes afte                                  |
| addition of each metal ion (100 $\mu$ M) in milliQ water ( $\lambda_{ex}$ = 362 nm)                                      |
| Figure 3.6 Fluorescence response ( $I_0/I$ )-1 of Et-DHP-AC(3) (10 $\mu$ M), 20 minutes afte                             |
| addition of each metal ion (100 $\mu$ M) in milliQ water ( $\lambda_{ m ex}$ = 362 nm). The photo shows                  |
| fluorescence appearance under black light of Et-DHP-AC(3) (10 $\mu$ M) upon addition o                                   |
| metal ion (100 μM)                                                                                                       |
| Figure 3.7 Fluorescence spectra of 10 $\mu$ M Et-DHP-AC(1) and 100 $\mu$ M Au $^{3+}$ in milliC                          |
| water                                                                                                                    |
| Figure 3.8 Fluorescence spectra of 10 $\mu$ M Et-DHP-AC(2) and 100 $\mu$ M Au $^{3+}$ in milliC                          |
| water                                                                                                                    |
| Figure 3.9 Fluorescence spectra of 10 $\mu$ M Et-DHP-AC(3) and 100 $\mu$ M Au $^{3+}$ in milli                           |
| water                                                                                                                    |
| Figure 3.10 Fluorescence spectra of 10 $\mu$ M Et-DHP-OH and 100 $\mu$ M Au $^{3+}$ in million                           |
| water                                                                                                                    |
| Figure 3.11 Fluorescence spectra of 10 $\mu$ M Et-DHP-NEt <sub>2</sub> and 100 $\mu$ M Au <sup>3+</sup> in milli         |
| water                                                                                                                    |
| Figure 3.12 Fluorescence quencing profile of Et-DHP-AC(1-3) (10 $\mu$ M) 0 to 60 minute                                  |
| after addition of Au $^{^{3+}}$ 0 and 10 equiv in milliQ water ( $\lambda_{\mathrm{ex}}$ = 362, 369, and 367 nn          |
| respectively)                                                                                                            |
| Figure 3.13 UV-Vis spectra of Et-DHP-AC(1-3) (30 $\mu$ M) 1 to 30 minutes after addition                                 |
| of Au <sup>3</sup> (300 μM) in milliQ water                                                                              |
| Figure 3.14 <sup>1</sup> H NMR spectra of Et-DHP-AC(3) in D <sub>2</sub> O, 25 min adding of 1 equiv Au <sup>3+</sup> 42 |
| Figure 3.15 MALDI-TOF of pyridinium ring42                                                                               |
| <b>Figure 3.16</b> Fluorescence change of Et-DHP-AC(3) (5 $\mu$ M) with the addition of Au <sup>3+</sup> 43              |
| Figure 3.17 Fluorescence change of Et-DHP-AC(3) (5 $\mu$ M) with the addition of Au <sup>3+</sup> 44                     |

xiii

| Figure 3.18 Competitive experiments in the Et-DHP-AC(3) with $Au^{3+}$ system with                                               |
|----------------------------------------------------------------------------------------------------------------------------------|
| interfering metal ions (Mn+). [Et-DHP-AC(3)] = 10 $\mu$ M, [Au <sup>-1</sup> ] = 100 $\mu$ M, and [M <sup>-1</sup> ] =           |
| 500 μM in milliQ water                                                                                                           |
| <b>Figure 3.19</b> Job's plot of Et-DHP-AC(3) in 1:1 stoichiometry with Au <sup>3+</sup>                                         |
| Figure 3.20 Fluorescence enhancing profile of Et-DHP-AC(3) (10 $\mu$ M) after addition of                                        |
| each metal ion (1,000 $\mu\text{M}\text{)}.$ a) THF and milliQ water 85:15, b) acetonitrile and milliQ                           |
| water 85:15                                                                                                                      |
| <b>Figure 3.21</b> Fluorescence intensity of Et-DHP-AC(3)·Ba <sup>2+</sup> (10 μM:1,000 μM), 10 minutes                          |
| after addition of each metal ion (100 $\mu\text{M})$ in acetonitrile and milliQ water (70:30), $\lambda_{ex}$                    |
| = 362 nm                                                                                                                         |
| Figure 3.22 Fluorescence intensity of Et-DHP-AC(3) $\cdot$ Sr <sup>2+</sup> (10 $\mu$ M:1,000 $\mu$ M), 10 minutes               |
| after addition of each metal ion (100 $\mu\text{M})$ in acetonitrile and milliQ water (70:30), $\lambda_{ex}$                    |
| = 362 nm                                                                                                                         |
| <b>Figure 3.23</b> Fluorescence intensity of Et-DHP-AC(3)•K <sup>+</sup> (10 μM:1,000 μM), 10 minutes                            |
| after addition of each metal ion (100 $\mu\text{M})$ in acetonitrile and milliQ water (70:30), $\lambda_{ex}$                    |
| = 362 nm                                                                                                                         |
| Figure 3.24 Fluorescence intensity of Et-DHP-AC(3) with Au <sup>3+</sup> in acetonitrile and                                     |
| milliQ water (70:30)                                                                                                             |
| Figure 3.25 Fluorescence intensity of Et-DHP-OH, Et-DHP-NEt <sub>2</sub> , and Et-DHP-AC(3) (10                                  |
| $\mu M$ ), 10 minutes after addition of K $^{^{\star}}$ , Sr $^{^{2+}}$ , and Ba $^{^{2+}}$ (1,000 $\mu M$ ) in acetonitrile and |
| milliQ water (70:30)                                                                                                             |
| Figure 3.26 Fluorescence enhanching profile of Et-DHP-AC(2) (10 $\mu$ M) after addition of                                       |
| each metal ion (1000 $\mu M)$ in THF and milliQ water (v/v = 1:1) ( $\lambda_{ex}$ = 369 nm)                                     |
| Figure 3.27 Fluorescence enhanching profile of Et-DHP-AC(2) (10 $\mu\text{M})$ after addition of                                 |
| each metal ion (100 $\mu M$ ) in THF and milliQ water (v/v = 1:1) ( $\lambda_{ex}$ = 369 nm)54                                   |
| Figure 3.28 Fluorescence change of Et-DHP-AC(2) (10 $\mu$ M) with the addition of Cr <sup>3+</sup> . 55                          |
| Figure 3.29 Fluorescence change of Et-DHP-AC(2) (10 $\mu$ M) with the addition of Cr <sup>3+</sup> 55                            |
| Figure 3.30 Effect of time on the fluorescence enhancing reaction between Et-DHP-                                                |
| AC(2) (10 μM) and chromium(III) (1,000 μM)                                                                                       |

| Figure 3.31 Competitive experiments in the Et-DHP-AC(2) system with interfering                                              |
|------------------------------------------------------------------------------------------------------------------------------|
| metal ions. [Et-DHP-AC(2)] = 10 $\mu$ M, [Cr <sup>3+</sup> ] = 100 $\mu$ M, and [M <sup>n+</sup> ] = 1000 $\mu$ M in THF and |
| milliQ water (v/v = 1:1) ( $\lambda_{ex}$ = 369 nm)                                                                          |
| Figure 3.32 Job's plot of Et-DHP-AC(2) in 3:1 stoichiometry with Cr <sup>3+</sup>                                            |
| Figure 3.33 All of nitroaromatic explosive compounds used in the study                                                       |
| Figure 3.34 Fluorescence quenching profile of Et-DHP-AC(3) (10 $\mu$ M), after addition of                                   |
| each nitroaromatic compound (100 $\mu$ M) in milliQ ( $\lambda_{ex}$ = 362 nm)60                                             |
| Figure 3.35 Fluorescence quenching profile of Et-DHP-AC(3) (10 $\mu\text{M})$ with Ba $^{2+}$ (1,000                         |
| $\mu M)$ after addition of each nitroaromatic compound (100 $\mu M)$ in mixture solvent                                      |
| between acetonitrile and milliQ water (70:30) ( $\lambda_{ex}$ = 362 nm)60                                                   |

### LIST OF SCHEMES

| Scheme 3.1 Synthesis of 1,4-dihydropyridine azacrown ether (Et-DHP-AC(1-3)) | . 26 |
|-----------------------------------------------------------------------------|------|
| Scheme 3.2 Possible reaction pathway                                        | . 27 |
| Scheme 3.3 Bromination of Et-DHP-OH.                                        | . 28 |
| Scheme 3.4 Substitution of Et-DHP-OH with azacrown ether                    | . 28 |
| Scheme 3.5 Substitution of Et-DHP-OH with diethlyamine                      | . 29 |
| Scheme 3.6 Proposed mechanism for the formation of 1 and 2.                 | 41   |

#### LIST OF ABBREVIATIONS

| ACN                             | acetonitrile                              |
|---------------------------------|-------------------------------------------|
| Ar                              | aryl group                                |
| a.u.                            | arbitrary unit                            |
| calcd                           | calculated                                |
| <sup>13</sup> C NMR             | carbon-13 nuclear magnetic resonance      |
| CDCl <sub>3</sub>               | deuterated chloroform                     |
| CH <sub>2</sub> Cl <sub>2</sub> | methylene chloride                        |
| DHP                             | 1,4-dihydropyridine                       |
| $D_2O$                          | deuterium oxide                           |
| d                               | doublet (NMR)                             |
| dd                              | doublet of doublet (NMR)                  |
| ESI                             | electrospray ionization mass spectrometry |
| EtOAc                           | ethyl acetate                             |
| equiv                           | equivalent (s)                            |
| FT-IR                           | fourier transform infrared spectroscopy   |
| g                               | gram (s)                                  |
| <sup>1</sup> H NMR              | proton nuclear magnetic resonance         |
| Hz                              | hertz                                     |
| HRMS                            | high resolution mass spectrum             |
| h                               | hour (s)                                  |
| IR                              | Infrared                                  |
| J                               | coupling constant                         |
| m                               | multiplet (NMR)                           |
| mg                              | milligram (s)                             |
| mL                              | milliliter (s)                            |
| mM                              | millimolar                                |
| mmol                            | millimole (s)                             |

| xvii |      |
|------|------|
|      | xvii |

| m/z     | mass per charge           |
|---------|---------------------------|
| M.W.    | molecular weight          |
| Μ       | molar                     |
| MHz     | megahertz                 |
| nm      | nanometer (s)             |
| q       | quartet (NMR)             |
| R       | alkyl group               |
| rt      | room temperature          |
| S       | singlet (NMR)             |
| t       | triplet (NMR)             |
| THF     | tetrahydrofuran           |
| TLC     | thin layer chromatography |
| UV      | ultraviolet               |
| δ       | chemical shift            |
| °C      | degree Celsius            |
| μL      | microliter (s)            |
| μM      | micromolar (s)            |
| 3       | molar absorptivity        |
| λ       | wavelength                |
| Φ       | quantum yield             |
| % yield | percentage yield          |