การออกแบบและพัฒนาฟลูออเรสเซนต์โพรบสำหรับการรับรู้น้ำตาล

นางสาวสุขาดา นาวงศ์ศรี

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2556 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

DESIGN AND DEVELOPMENT OF FLUORESCENT PROBE FOR SUGAR SENSING

Miss Suchada Nawongsri

338731505

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Chemistry Department of Chemistry Faculty of Science Chulalongkorn University Academic Year 2013 Copyright of Chulalongkorn University

DESIGN AND DEVELOPMENT OF FLUORESCENT
PROBE FOR SUGAR SENSING
Miss Suchada Nawongsri
Chemistry
Assistant Professor Boosayarat Tomapatanaget,
Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Dean of the Faculty of Science

(Professor Supot Hannongbua, Dr.rer.nat.)

THESIS COMMITTEE

Norman Chairman (Assistant Professor Warinthorn Chavasiri, Ph.D.) B. Tompatanaget Thesis Advisor (Assistant Professor Boosayarat Tomapatanaget, Ph.D.) Num Market (Numpon Insin, Ph.D.) Roon-K. Yngyngnarorgkul External Examiner

(Assistant Professor Boon-ek Yingyongnarongkul, Ph.D.)

สุขาดา นาวงศ์ศรี : การออกแบบและพัฒนาฟลูออเรสเซนต์โพรบสำหรับการรับรู้ น้ำตาล. (DESIGN AND DEVELOPMENT OF FLUORESCENT PROBE FOR SUGAR SENSING) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ผศ. ดร.บุษยรัตน์ ธรรมพัฒนกิจ, 100 หน้า.

เป้าหมายของงานวิจัยนี้คือ การสังเคราะห์ฟลูออเรสเซนต์เซ็นเซอร์ Cum B ที ประกอบด้วยคูมารินเป็นหมู่ฟลูออโรฟอร์และกรดโบโรนิกเป็นหน่วยเกิดปฏิกิริยาและเซ็นเซอร์ NBDB AuNPs ประกอบด้วยหมู่แนฟทาลิไมด์เป็นหมู่ฟลูออโรฟอร์ กรดโบโรนิกเป็นหน่วย ้เกิดปฏิกิริยากับน้ำตาลและหมูโดพามีนเป็นตัวเชื่อมระหว่างแนฟทาลิไมด์และกรดโบโรนิก ในช่วง แรกได้ศึกษาคุณสมบัติการเป็นเซ็นเซอร์ของ Cum B เพื่อใช้ในการตรวจวัดน้ำตาล ในตัวทำ ละลายผสมของไดเมททิลซัลฟอกไซด์กับฟอสเฟตบัฟเฟอร์ที่ pH 7.4 โดยใช้เทคนิคฟลูออเรสเซ็นต์ ้สเปกโตรโฟโตเมทรี พบว่าเซ็นเซอร์ Cum B มีความจำเพาะเจาะจงกับน้ำตาลฟรุตโตสมากกว่า น้ำตาลชนิดอื่นๆ สังเกตุจากการลดลงของสัญญาณฟลูออเรสเซนต์ ด้วยกระบวนการ PET และ พบว่าค่าคงที่การจับ (log Ks) และขีดจำกัดต่ำสุดของการตรวจวัดของเซ็นเซอร์ Cum B กับ น้ำตาลฟรุตโตสเท่ากับ 3.6 และ 2.83 มิลลิโมลาร์ ตามลำดับ สำหรับเซ็นเซอร์ NBDB พบว่ามีการ เปลี่ยนแปลงสัญญาณฟลูออเรสเซนต์น้อยมากและไม่มีความจำเพาะเจาะจงกับน้ำตาลชนิดใดๆ เพื่อปรับปรุงความสามารถในการตรวจวัดน้ำตาลของเซ็นเซอร์นี้ จึงได้ดัดแปรเซ็นเซอร์ NBDB บน อนุภาคทองคำระดับนาโน (AuNPs) ทำให้เกิดการถ่ายโอนพลังงานจากเซ็นเซอร์ NBDB ไปยัง AuNPs ทำให้สัญญาณฟลูออเรสเซนต์ต่ำลง เมื่อ NBDB จับกับน้ำตาลฟรุกโตส ทำให้ NBD หลุด ออกจาก AuNPs จะเกิดการยับยั้งการถ่ายโอนพลังงานทำให้เห็นสัญญาณฟลูออเรสเซนต์ของ NBD เพิ่มสูงขึ้นอย่างมาก จากหลักการนี้พบว่าสามารถตรวจวัดน้ำตาลฟรุกโตสได้อย่างจำเพาะ เจาะจงและมีความว่องไวสูง โดยมีค่าคงที่ในการตรวจวัดน้ำตาลฟรุกโตสด้วยค่า log Ks เท่ากับ 4.35 และขีดจำกัดต่ำสุดของการตรวจวัดท่ากับ 1.50 มิลลิโมลาร์ ดังนั้น NBDB AuNPs สามารถ ตรวจวัดน้ำตาลฟรุกโตสได้อย่างประสิทธิภาพมากกว่า Cum B

ภาควิชา เคมี สาขาวิชา เคมี ปีการศึกษา 2556 ลายมือชื่อนิสิต ที่ชาก หาวอี่จงไ ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก 4 HV สามนักเพ

5372413023 : MAJOR CHEMISTRY

KEYWORDS: BORONIC ACID / SACCHARIDES / FLUORESCENCE SENSOR / GOLD NANOPARTICLES / CUMARIN / NAPTHALIMIDE

> SUCHADA NAWONGSRI: DESIGN AND DEVELOPMENT OF FLUORESCENT PROBE FOR SUGAR SENSING. ADVISOR: ASST. PROF. BOOSAYARAT TOMAPATANAGET, Ph.D., 100 pp.

An aim of this research is to synthesize the fluorescence sensors Cum B consisting a coumarin as fluorophore and boronic acid as active site and sensor NBDB AuNPs containing napthalimide as fluorophore, boronic acid as binding site and dopamine as linker. Initially, the complexation properties of sensor Cum B toward saccharides in DMSO: phosphate buffer pH 7.4 were investigated by fluorescence spectrophotometry. It was found that sensor Cum B showed high selectivity with fructose over other saccharides under PET process and also the log Ks values and detection limit of Cum B with fructose were 3.6 and 2.83 mM, respectively. For sensor NBDB, it showed a poor fluorescence change and no selectivity with all saccharides. To improve the sensing ability of this sensor, the fabrication of NBDB on AuNPs was performed to improve the significant change of fluorescence. This approach is based on the energy transfer from NBDB to AuNPs resulting in the fluorescence quenching. As anticipated, the suitable saccharides bind to boronic ester to separate NBD and AuNPs inducing fluorescence enhancement of NBD. As a result, fructose was found to induce a large fluorescence enhancement of NBDB AuNPs system under the inhibition of the energy transfer process from NBDB to AuNPs. The sensor NBDB AuNPs demonstrates more excellently sensing ability toward fructose than sensor Cum B with log Ks values of 4.35 and detection limit of 1.50 mM for NBDB AuNPs.

Department: Chemistry Field of Study: Chemistry Academic Year: 2013

Student's Signature	Sechada Na.
Advisor's Signature	B. Tomperteneget

ACKNOWLEDGEMENTS

I would like to express my deep appreciation toward my advisor, Assistant Professor Dr. Boosayarat Tomapatanaget for the whole work carried out under her direction and guidance, kindnesses, suggestions and supports throughout my master career. Moreover, I would like to sincerely thank Assistant Professor Dr. Warinthorn Chavasiri, Assistant Professor Dr. Boon-ek Yingyongnarongkul and Dr. Numpon Insin for their time, valuable comments and suggestions as thesis committee and thesis examiner.

I would like to acknowledge the financial support for my study from the Ratchadaphiseksomphot Endowment Fund of Chulalongkorn University (RES560530126-AM). I gratefully acknowledge the Thailand Research Fund, Commission on Higher Education and Chulalongkorn University (RMU5380003 and RTA5300083) and The 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund) for research support.

In addition, this accomplishment could not occur without the support from Chulalongkorn University. Special thanks are due to all members of Supramolecular Chemistry Research Unit at Department of Chemistry, Chulalongkorn Unitversity for all help, their kindnesses, encouragement and supports.

Finally, I would like to express my deepest gratitude to my parent and my sisters, for their love, care, kindness, encouragement and other supports throughout my life.

CONTENTS

Page
THAI ABSTRACTiv
ENGLISH ABSTRACTv
ACKNOWLEDGEMENTS
CONTENTS
LIST OF TABLES
LIST OF FIGURES
LIST OF SCHEMES
LIST OF ABBREVATIONS
CHAPTER INTRODUCTION 1
1.1 Concept of supramolecular chemistry1
1.2 The complexation between boronic acid based sensor and saccharides
1.2.1 Photoinduced Electron Transfer (PET) 4
1.2.2 Fluorescence sensors for saccharide based on intramolecular charge transfer (ICT)
1.3 Gold nanoparticles (AuNPs)
1.3.2 The surface plasmon band (SPB)
1.4 Formation of 1:1 complex
1.5 Determination of the stoichiometry of a complex by the method of continuous variations (Job's method)
1.6 Limit of detection
CHAPTER II LITERATURE REVIEWS
2.1 Literature reviews
2.1.1 Determination of saccharides based on boronic acid
2.1.2 Determination of saccharides using the modified AuNPs
2.2 Objective and scope of this research
CHAPTER III EXPERIMENTAL
3.1 General procedures

3.1.1 Analytical measurements and materials28
3.2 Experimental procedure
3.2.1 Synthesis of coumarin based sensor
3.2.1.1 Preparation of 7-diethylamino-2-oxo-2H-chromen-3-carboxylic chloride (1)
3.2.1.2 Preparation of 3-(7-(diethylamino)-2-oxo-2H-chromene-3- carboxamido) phenylboronic acid (2) (Cum_B)
3.2.2 Synthesis of naphthalimide based sensor
3.2.2.1 Preparation of N-tert-Butoxycarbonyl-3,4- dihydroxiphenylethylamine (3)
3.2.2.2 Preparation of N-tert-Butoxycarbonyl-3,4- dibenzyloxyphenylethylamine (4)
3.2.2.3 Preparation of 2-(3,4-Bis-benzyloxy-phenyl)-ethylamine (5)
3.2.2.4 Preparation of compound 6
3.2.2.5 Preparation of compound 7
3.2.2.6 Preparation of compound NBD
3.2.3 Synthesis of gold nanoparticles
3.3 The complexation studies of sensor Cum_B by fluorescent spectrophotometry
3.3.1 Complexation studies of sensor Cum_B with various saccharides
3.3.2 Determination of the stoichiometry of sensor Cum_B with saccharides complexes by Job's method
3.3.3 Determination of detection limit of sensor Cum_B
3.3.4 Complexation studies of sensor Cum_B with saccharide by fluorescence titration
3.4 The complexation studies of sensor NBDB by fluorescent spectrophotometry 41
3.4.1 Complexation studies of sensor NBDB

Page

3.4.2 Complexation studies of sensor NBDB with various saccharides	42
3.4.3 Study on the concentration effect of modified gold nanoparticles by NBDB	43
3.4.4 Complexation studies of modified of gold nanoparticles by NBDB (NBDB_AuNPs) with various saccharides	45
3.4.5 Determination of detection limit of sensor NBDB_AuNPs	45
3.4.6 Complexation studies of sensor NBDB_AuNPs with saccharide by fluorescence titration	46
3.4.7 Determinations of loading efficiency of NBDB capped gold nanoparticle	es 48
CHAPTER IV RESULTS AND DISCUSSIONS	49
4.1 Design and developed of molecular sensors for saccharides	49
4.2 The sensing studies of saccharide by Cum_B	50
4.2.1 Synthesis of Cum_B	50
4.3 Complexation studies	52
4.3.1 Complexation studies of sensor Cum_B with various saccharides	52
4.3.2 Complexation studies of sensor Cum_B with saccharides by fluorescer spectrophotometric titration technique	ice 54
4.4 The complexation study of new sensor NBD with saccharide in aqueous solution	59
4.4.1 Synthesis of NBD	59
4.5 The properties of gold nanoparticles	62
4.6 Complexation studies	63
4.6.1 Complexation studies of sensor NBDB with saccharides	63
4.6.2 Complexation studies of sensor NBDB capped gold nanoparticles with saccharides	65
4.6.2.1 Modification of gold nanoparticles with NBDB in aqueous solut	ion 66

4.6.2.2	Complexation studies of sensor NBDB modified gold	
	nanoparticles with saccharides (NBDB_AuNPs) in aqueous	
	solution	68
CHAPTER V CONCLU	JSION	74
5.1 Conclusion		74
REFERENCES		76
VITA		100

LIST OF TABLES

338731505	

Table 2.1	Determination of fructose in food15
Table 2.2	The stability constants, K (coefficient of determination; r^2) for saccharide
	of compound 117
Table 2.3	The association constants (K_a) of sensor 3
Table 2.4	The association constants (K_a) and fluorescence intensity changes (I/ I_0)
	of dyad 4 with different saccharides23
Table 3.1	Mole fraction and volume of sensor Cum_B (5x10 ⁻⁵ M) and saccharide
	in the stock solution (5x10 ⁻⁵ M) for Job's method
Table 3.2	The concentration of saccharide used in complexation studies with
	sensor Cum_B
Table 3.3	Volume of NBD with 3-aminophenylboronia acid stock solution $(1 \times 10^{-3}$
	M) and final concentration of NBD with 3-aminophenylboronic acid (m -
	BA)
Table 3.4	Volume of the stock solution of gold nanoparticles (1.4x10 ⁻⁴ M) and the
	final concentration of gold nanoparticles in 2 ml
Table 3.5	The concentration of saccharide used in complexation studies with
	sensor NBDB_AuNPs
Table 4.1	Binding constant of sensor Cum_B with different saccharides
Table 4.2	Fluorescence intensity of sensor Cum_B at 480 nm for 10 times
	repettion and its standard deviation57
Table 4.3	Fluorescence intensity data of free sensor NBDB_AuNPs at 375 nm for
	10 times repeatition and its standard deviation72

LIST OF FIGURES

	Page
Figure 1.1	The PET process in terms of molecular orbitals of the fluorophore 4
Figure 1.2	PCT process of connecting together with donor group and acceptor
	group6
Figure 1.3	Properties of AuNPs and schematic demonstration of a AuNPs-based
	detection process
Figure 1.4	The schematic diagram of the density of states for gold transferring
	from the bulk state towards atomic state [64]
Figure 1.5	Origin of surface plasmon resonance caused by coherent interaction
	with the electrons on the conduction band with light [65]10
Figure 1.6	Job's plots method for a 1:1 complex13
Figure 2.1	Fluorescence intensity versus pH profile of DAPB (1.0 \times 10 $^{-5}$ M) in
	aqueous solution with (\blacktriangle) and (\blacksquare) without fructose (1.5 x 10 ⁻³ M)15
Figure 2.2	Proposed structures of compounds 1
Figure 2.3	Fluorescence spectra of sensor 1 versus different amounts of fructose in
	MeOH (52.1 wt%) with phosphate buffer at pH 8.2116
Figure 2.4	Proposed structure of probe 2 and mechanism of 2/ eta -CyD complex
	with saccharides under PET process
Figure 2.5	a) Absorption spectra of 2 b) fluorescence spectra of 2 at $\lambda_{\scriptscriptstyle ext{ex}}$ = 328 nm
	in DMSO with 0.015 M phosphate buffer at pH 7.5: (1) 2% DMSO/98%
	buffer solution (v/v), (2) 25% DMSO/75% buffer solution (v/v), (3) 2%
	DMSO/98% buffer solution (v/v) containing 5.0 mM $oldsymbol{eta}$ -CyD

338731505

xii

- Figure 2.6 a) Fluorescence spectra of $2/\beta$ -CyD with different amounts of fructose in 2% DMSO with 0.015 M phosphate buffer at pH 7.5. b) the relative fluorescence intensity of 2 with concentration of fructose: (1) 2% DMSO/98% buffer solution (v/v), (2) 25% DMSO/75% buffer solution (v/v), (3) 2% DMSO/98% buffer solution (v/v) containing 5.0 mM β -CyD
- Figure 2.8 a) proposed interaction of dyad 4 with saccharide in aqueous solution
 b) fluorescence spectra of dyad 4 with different concentration of
 fructose in THF/H₂O (1:1, v/v) with 0.033 M phosphate buffer at pH 7.3

XIII

- Figure 2.11 a) fluorescence intensity of dyad 5 with different amounts of fructose in THF/H₂O (1:1, v/v) with 0.033 M phosphate buffer at pH 7.3 and excitation wavelength 370 nm; the inset shows the relative fluorescence intensity at 419 nm of dyad 5 with different concentration of saccharides in THF/H₂O (1:1, v/v) with 0.033 M Figure 2.12 Fluorescence spectra of a) RBITC b) RBITC@AuNPs in aqueous solution Figure 2.13 Fluorescence intensity of a) RBITC@AuNPs in the presence of glucose b) RBITC@AuNPs in the presence of glucose in real tear fluids......26 Figure 2.14 Structure of fluorescence sensor Cum B and NBDB AuNPs......27 The ¹H-NMR spectrum of **Cum B** in DMSO-d₆ (400 MHz)_____51 Figure 4.1 Figure 4.2 Fluorescence spectral changes of Cum_B with different sugars in 5 % DMSO with 0.1 M phosphate buffer at pH 7.4____53 Relative fluorescence intensity ratios at 480 nm (I/Io) of Cum $\,B\,\left(1{\times}10^{^{-5}}\right.$ Figure 4.3 M) in the presence of 0-40 equiv. of difference saccharides in 5% DMSO: 0.1M phosphate buffer pH 7.4.....55

XİV

Figure 4.5	Linear plots of fluorescence intensity between Cum_B with various
	concentrations of fructose in 5 % DMSO with 0.1 M phosphate buffer
	at pH 7.4
Figure 4.6	Job's plot of the complexation between Cum_B (10 ⁻⁵ M) and
	fructose
Figure 4.7	The ¹ H-NMR spectrum of NBD in DMSO-d ₆ (400MHz)62
Figure 4.8	UV-Visible spectrum of gold nanoparticles using citrate as stabilizer in
	H ₂ O
Figure 4.9	Emission spectra of NBD and NBDB in 10 % DMSO with 0.1 M
	phosphate buffer at pH 7.464
Figure 4.10	Fluorescence spectral changes of NBDB with various saccharides in
	10 %DMSO with 0.1 M phosphate buffer at pH 7.4
Figure 4.11	UV-visible spectra of modified gold nanoparticles with NBDB in 10 $\%$
	DMSO with 0.1 M phosphate buffer at pH 7.467
Figure 4.12	Fluorescence spectra of NBDB with varying the concentration of
	gold nanoparticles in 10 % DMSO with 0.1 M phosphate buffer
	at pH 7.4
Figure 4.13	Calibration curve of complexation between NBD and 3-aminoboronic
	acid in 10 % DMSO with 0.1 M phosphate buffer at pH 7.468
Figure 4.14	Fluorescence spectrum of NBDB bind gold nanoparticles in the
	presence of different saccharides in 10 % DMSO with 0.1 M phosphate

buffer at pH 7.4.....69

Figure 4.15	The fluorescence spectral changes of NBDB_AuNPs in the presence of	of
	different fructose concentration (0-4 mM) in 10 % DMSO with 0.1 M	
	phosphate buffer at pH 7.4	. 70
Figure 4.16	Benesi-Hidebrand plots of NBDB_AuNPs in the presence of different	
	fructose concentration (0-4 mM) in 10 % DMSO with 0.1 M phosphate	
	buffer at pH 7.4	.71
Figure 4.17	Linear plots of fluorescence intensity of NBDB_AuNPs versus	
	concentration of fructose in 10 % DMSO with 0.1 M phosphate buffer	
	at pH 7.4	. 73
Figure A.1	The ¹ H-NMR spectrum of 1 in DMSO- d_6 at 400 MHz	90
Figure A.2	The ¹³ C-NMR spectrum of 1 in CDCl ₃ at 400 MHz	. 90
Figure A.3	The ¹³ C-NMR spectrum of Cum_B in CDCl ₃ at 400 MHz	. 91
Figure A.4	IR spectrum of sensor Cum_B	. 91
Figure A.5	MALDI-TOF mass spectrum of sensor Cum_B shown at 380.373 m/z	. 92
Figure A.6	The ¹ H-NMR spectrum of 3 in DMSO- d_6 at 400 MHz	. 92
Figure A.7	The ¹³ C-NMR spectrum of 3 in CDCl ₃ at 400 MHz	. 93
Figure A.8	The 1 H-NMR spectrum of 4 in DMSO- d_{6} at 400 MHz	. 93
Figure A.9	The ¹³ C-NMR spectrum of 4 in CDCl ₃ at 400 MHz	. 94
Figure A.10	The ¹ H-NMR spectrum of 5 in DMSO- d_6 at 400 MHz	. 94
Figure A.11	The ¹ H-NMR spectrum of 6 in DMSO- d_6 at 400 MHz	. 95
Figure A.12	The ¹³ C-NMR spectrum of 6 in CDCl ₃ at 400 MHz	. 95
Figure A.13	The ¹ H-NMR spectrum of 7 in DMSO- d_6 at 400 MHz	. 96
Figure A.14	The ¹³ C-NMR spectrum of 7 in CDCl ₃ at 400 MHz	96

xvi

Figure A.15	MALDI-TOF mass spectrum of 7 shown at 543.422 m/z	97
Figure A.16	The ¹ H-NMR spectrum of NBD in DMSO- <i>d</i> ₆ at 400 MHz	97
Figure A.17	The 13 C-NMR spectrum of NBD in DMSO- d_6 at 400 MHz	98
Figure A.18	IR spectrum of sensor NBD	98
Figure A.19	Fluorescence spectral changes of NBD with various saccharides in 10	%
	DMSO with 0.1 M phosphate buffer at pH 7.4	99
Figure A.20	UV-Visible spectrum of NBDB_ AuNPs a) before centrifuge, b)	
	supernatant and C) after centrifuge	99

LIST OF SCHEMES

		Page
Scheme 1.1	Ester formation with boronic acid reaction in aqueous media	3
Scheme 1.2	Equilibrium for the boronic acid that reacts with diol in aqueous	
	media	3
Scheme 4.1	Synthesis pathway of sensor Cum_B	. 50
Scheme 4.2	Photoelectrochemical model used to illustrate PET fluorescence	
	quenching and interaction between saccharide and Cum_B	53
Scheme 4.3	Synthesis pathway of sensor NBD	59
Scheme 4.4	Structure of designed receptor based on napthalimide and	
	phenylboronic acid	64
Scheme 4.5	The conceptually proposed structure and saccharides sensing by g	gold
	nanoparticles via energy transfer (ET)	66

LIST OF ABBREVATIONS

¹ H-NMR	Proton nuclear magnetic resonance	
¹³ C-NMR	Carbon nuclear magnetic resonance	
Hz	Hertz	
J	Coupling constant	
δ	Chemical shift	
m/z	Mass per charge ratio	
L	Litre	
μ	Micro	
μĹ	Microliter	
μM	Micromolar	
β	Beta	
ppm	Part per million	
rpm	Revolutions per minute	
°C	Degree Celsius	
nm	Nanometer	
equiv.	Equivalent	
mmol	Millimole	
Μ	Molar	
Mg	Milligram	
mL	Milliliter	
s, d, t, m	Splitting patterns of ¹ H-NMR (singlet, doublet, triplet,	
	multiplet)	
EA	Elemental Analysis	

Anal. Calcd.	Analysis calculated
DMSO	Dimethylsulfoxide
CH ₂ Cl ₂	Dichloromethane
МЕОН	Methanol
ICT	Intramolecular charge transfer
PET	Photoinduced electron transfer
Ks	Stability constant
AuNPs	Gold nanoparticles