สารออกฤทธิ์ทางชีวภาพจากฝักพุดทุ่ง Holarrhena curtisii และผลแตงแพะ Gymnema griffithii

นายสุพงษ์พันธ์ ศรีสุริฉัน

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาเคมี ภาควิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2556 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

BIOACTIVE COMPOUNDS FROM Holarrhena curtisii PODS AND Gymnema griffithii FRUITS

.

Mr. Suphongphan Srisurichan

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Chemistry Department of Chemistry Faculty of Science Chulalongkorn University Academic Year 2013 Copyright of Chulalongkorn University

14

Thesis Title	BIOACTIVE COMPOUNDS FROM Holarrhena
	curtisii PODS AND Gymnema griffithii FRUITS
Ву	Mr. Suphongphan Srisurichan
Field of Study	Chemistry
Thesis Advisor	Associate Professor Surachai Pornpakakul, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral Degree

Journay bean of the Faculty of Science

(Professor Supot Hannongbua, Dr.rer.nat.)

THESIS COMMITTEE

Winnihim Chawinim Chairman (Assistant Professor Warinthorn Chavasiri, Ph.D.) Supechal Professor Surachai Pornpakakul, Ph.D.) Sanch Rengmerk Examiner (Associate Professor Somchai Pengprecha, Ph.D.) MMM MMM Examiner (Associate Professor Thumnoon Nhujak, Ph.D.) MMM Externat Examiner (Pofessor Sophon Roengoumran, Ph.D.) สุพงษ์พันธ์ ศรีสุริฉัน : สารออกฤทธิ์ทางชีวภาพจากฝักพุดทุ่ง *Holarrhena curtisii* และผลแตงแพะ *Gymnema griffithii*. (BIOACTIVE COMPOUNDS FROM *Holarrhena curtisii* PODS AND *Gymnema griffithii* FRUITS) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: รศ. ดร.สุรชัย พรภคกุล , 252 หน้า.

้งานวิจัยนี้ได้ศึกษาองค์ประกอบทางเคมีของแตงแพะ G. griffithii และพุดทุ่ง H. curtisii ซึ่งทั้งคู่อยู่ในวงศ์ ตีนเปิด ในการแยกสารโดยเทคนิคทางโครมาโทกราฟีจากสารสกัดเมทานอลของผลแตงแพะ สามารถแยกสารใหม่ใน กลุ่มของสเตอรอยด์ไกลโคไซด์ที่มีหมู่ออร์โธอะซิเตทบนโครงสร้างเพรกเนนสเตอรอยด์ได้ 8 สาร คือ eymnemoeriffithoside A-H การพิสูจน์โครงสร้างทางเคมีของสารบริสุทธิ์ที่แยกได้โดยวิธีการทางสเปกโทรสโกปี (1D, 2D NMR, HR-ESIMS และ FTIR) พบว่าสารที่แยกได้นั้นมีโครงสร้างในส่วนสเตอรอยด์อย่ 2 ลักษณะ สาร eymnemogriffithoside A-F มีโครงสร้างสเตอรอยด์แบบ dihydrosarcostin-7,14,18-orthoacetate และสาร gymnemogriffithoside G และ H มีโครงสร้างสเตอรอยด์แบบ dihydrosarcostin-14,17,18-orthoacetate การ พิสูจนโครงสร้างสัมบูรณ์ส่วนสเตอรอยด์ของสาร gymnemogriffithoside A โดยวิธีการทางสเปกโทรสโกปีร่วมกับ วิธีการของ Mosher พบว่า<mark>สารมีลักษณะโครงส</mark>ร้างสัมบูรณ์แบบ 35*, 55*, 85*, 9*R**, 105*, 12*R**, 13*R**, 14*R**, 175*, 205* สารสเตอรอยด์ไกลโคไซด์ทั้งหมดที่แยกได้จากผลแตงแพะ มีน้ำตาลไตรแซ็กคาไรด์ 2 ลักษณะ คือ $Om{eta}$ -Dthe vetopyranosyl- $(1 \rightarrow 4)$ -O- β -D-oleandropyranosyl- $(1 \rightarrow 4)$ -O- β -D-digitoxopyransyl และ OBDthevetopyranosyl-(1→4)-O-**β**-D-canaropyranosyl-(1→4)-O-**β**-D-digitoxopyranosyl ต่อเข้ากับคาร์บอน ตำแหน่งที่ 3 ของสเตอรอยด์ จากการนำสารบริสุทธิ์ที่แยกได้ไปทำการทดสอบความเป็นพิษต่อเซลล์มะเร็ง 5 ชนิด (มะเร็งเต้านม BT 474, มะเร็งปอด Chago, มะเร็งดับ Hep-G2, มะเร็งกระเพาะอาหาร KATO-III และ มะเร็งลำไส้ SW620) พบว่า สาร gymnemogriffithoside C และ F ที่มีหมู่ ทิกโกอิล แทนที่อยู่บนคาร์บอนอะตอมตำแหน่งที่ 20 ของสเตอรอยด์ แสดงความเป็นพิษต่อเซลล์มะเร็งเล็กน้อยในช่วงความเข้มข้น 40-70 ไมโครโมลาร์ ในขณะที่สารตัวอื่น ไม่แสดงความเป็นพิษต่อเซลล์มะเร็ง แสดงให้เห็นว่าหมู่ทิกโกอิลมีความสัมพันธ์ต่อความเป็นพิษต่อเซลล์มะเร็งของสารใน กลุ่ม สเตอรอย์ดไกลโคไซล์ นอกจากนี้ยังได้นำสารบริสุทธิ์ที่แยกได้ไปทำการทดสอบฤทธิ์ในการยับยั้ง เอมไซม์แอลฟา ึกลูโคซิเดสโดยพบว่า สารที่แยกได้ไม่มีฤทธิ์ในการยับยั้งเอมไซม์แอลฟากลูโคซิเดส ในขณะที่สารสเตอรอยด์ ที่ได้จากการ ตัดสายน้ำตาลออกจาก cymnemocriffithoside A และ G จะมีฤทธิ์ในระดับปานกลาง แสดงให้เห็นว่าโครงสร้างในส่วน ของน้ำตาลจะส่งผลให้ฤทธิ์ในการยับยั้งเอมไซม์แอลฟากลูโคซิเดสลดลง

ในการแยกสารจากฝักพุดทุ่ง สามารถแยกสารใหม่ในกลุ่มของไตรเทอร์ปีนอยด์ได้ 2 ชนิด คือ 3 β hydroxy-11 α -hydroperoxyursan-12-en-28-oic acid และ 3 β -hydroxy-11 α -hydroperoxyolean-12-en-28-oic acid และสารที่มีการรายงานมาก่อน 12 ชนิดคือ squalene, α -amyrin acetate, β -amyrin acetate, lupeol acetate, lupeol, cycloeucalenol, 24-methylenepollinastanol, lanosta-7,24-dien-3 β -ol, ursolic acid, oleanolic acid, (-)-catechin และ (-)-gallocatechin จาการนำสารที่แยกได้จากฝักพุดทุ่งไปทดสอบฤทธิ์การยับยั้ง เอมไซม์แอลฟากลูโคซิเดสพบว่าสาร ursolic acid, oleanolic acid, 3 β -hydroxy-11 α -hydroperoxyursan-12-en-28-oic acid และ 3 β -hydroxy-11 α -hydroperoxyursan-12-en-28-oic acid และ 3 β -hydroxy-11 α -hydroperoxyursan-12-en-28-oic acid และ 3 β -hydroxy-11 α -hydroperoxyolean-12-en-28-oic acid มีฤทธิ์ในการยับยั้งเอมไซม์แอลฟา กลูโคซิเดสที่ดี ในช่วงความเซ้มซัน 10-80 ไมโครโมลาร์ เมื่อเทียบกับสารมาตรฐานที่ใช้ในการทดสอบ acarbose (IC₅₀ = 884.6 ไมโครโมลาร์)

ภาควิชา เคมี สาขาวิชา เคมี ปีการศึกษา 2556

5172515223 : MAJOR CHEMISTRY

KEYWORDS: APOCYNACEAE / PREGNANE / STEROIDAL GLYCOSIDES / DIHYDROSARCOSTIN / ORTHOACETATE / MOSHER'S METHOD / TRITERPENOIDS / CYTOTOXICITY / GYMNEMA GRIFFITHII CRAIB / HOLARRHENA CURTISII KING & AMP; GAMBLE / ALPHA-GLUCOSIDASE INHIBITOR / FLAVANOL

SUPHONGPHAN SRISURICHAN: BIOACTIVE COMPOUNDS FROM *Holarrhena curtisii* PODS AND *Gymnema griffithii* FRUITS. ADVISOR: ASSOC. PROF. SURACHAI PORNPAKAKUL, Ph.D., 252 pp.

In a phytochemical investigation of bioactive compounds from Apocynaceae family, Gymnema griffithii Craib. and Holorrheno curtisii King & Gamble. were selected to investigate their phytochemical components. The chromatographic separation of methanolic extract of G. griffithii fruits was performed and led to the isolation of 8 new pregnane-type steroidal glycosides substituted with orthoacetate groups, named gymnemogriffithoside A-H. Their structures were established by spectroscopic analysis (1D and 2D NMR, HR-ESIMS and FTIR). The steroidal skeleton of gymnemogriffithoside A-F was deduced to be a dihydrosarcostin-8,14,18-orthoacetate while the steroidal skeleton of gymnemogriffithoside G and H was deduced to be a dihydrosarcostin-14,17,18orthoacetate. The absolute stereochemistry of the steroidal skeleton of gymnemogriffithoside A was established as 35*, 55*, 85*, 9R*, 105*, 12R*, 13R*, 14R*, 175*, 205* using both spectroscopic and Mosher's method. All eight steroidal glycosides isolated from G. griffithii fruits had two types of $O \beta$ -D-thevetopyranosyl-(1 \rightarrow 4) $O \beta$ -D-oleandropyranosyl-(1 \rightarrow 4)- $O \beta$ -Dmoieties, trisaccharide $O\beta$ -D-thevetopyranosyl (1 \rightarrow 4)- $O\beta$ -D-canaropyranosyl-(1 \rightarrow 4)- $O\beta$ -Ddigitoxopyransyl and digitoxopyranosyl at the C-3 of their aglycones. All compounds were evaluated for their in vitro cytotoxic effects against five human tumor cell lines (BT 474, Chago, Hep-G2, KATO-III and SW620). Gymnemogriffithoside C and F, containing a tigloyl moiety at C-20, showed a slight cytotoxicity against all tested cell lines in 40-70 μ M range while the others were inactive at 100 μ M, suggesting that the presence of the tigloyl moiety influenced the cytotoxic activity of the compounds in this type. In addition, the α -glucosidase inhibitory activity of all compounds was also tested. However, only aglycone of gymnemogriffithoside A and G showed moderate α -glucosidase inhibitory activity.

The pods of *H. curtisii* provided 2 new tritepenoids identified as 3β -hydroxy-11 α -hydroperoxyursan-12-en-28-oic acid and 3β -hydroxy-11 α -hydroperoxyolean-12-en-28-oic acid, along with 12 know compounds, squalene, α -amyrin acetate, β -amyrin acetate, lupeol acetate, lupeol, cycloeucalenol, 24-methylenepollinastanol, lanosta-7,24-dien- 3β -ol, ursolic acid, oleanolic acid, (-)-catechin and (-)-gallocatechin. All compounds, except squalene, were evaluated for their α -glucosidase inhibitory activity. Among of them, ursolic acid, oleanolic acid, 3β -hydroxy-11 α -hydroperoxyursan-12-en-28-oic acid and 3β -hydroxy-11 α -hydroperoxyolean-12-en-28-oic acid, processed with pentacyclic triterpenoid acid skeleton showed significant α -glucosidase inhibitory activity in the range of 10-80 μ M comparable to standard control acarbose (IC₅₀ = 884.6 μ M).

Department: Chemistry Field of Study: Chemistry Academic Year: 2013

Student's Signature Suphon Sisurichon Advisor's Signature

. .

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my advisor, Associate Professor Dr. Surachai Pornpakakul, Department of Chemistry, Faculty of Scinece, Chulalongkorn Univesity, for his guidance, inspiration, suggestions, criticism and financial support throughout the course of my research and studies.

I would like to thank my thesis committee members, Assistant Professor Dr. Warinthorn Chavasiri, Professor Dr. Sophon Roengsumran, Associate Professor Dr. Somjai Pengpreecha and Associate Professor Dr. Thumnoon Nhujak, for all their discussion and guidance.

I also wish to thank Mrs. Songchan Puthong, Institute of Biotechnology and Genetic Engineering Chulalongkorn University, for cytotoxicity test.

I would like to give special thanks to Mr. Thanesuan Nuanyai, Mr. Thirawat Sirijindalert, Mr. Apiratt Thitimon, Mrs. Sunisa Suwancharoen and the members of Research Centre for Bioorganic Chemistry (RCBC), Department of Chemistry, Faculty of Science, Chulalongkorn University, for their friendship, kindness, suggestion and encouragement.

Finally, I am so grateful to my family for their love, encouragement and understanding throughout my study.

CONTENTS

	Page
THAI ABSTRACT	iv
ENGLISH ABSTRACT	V
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS	xxvi
CHAPTER I INTRODUCTION	1
CHAPTER II BOTANICAL AND CHEMICAL PROFILES OF THE PLANTS	4
2.1 Botanical Characteristic of Gymnema griffithii Craib	4
2.2 Botanical Characteristic of Holarrhena curtisii King & Gamble	6
2.3 Chemical constituents of <i>Gymnema</i> spp	8
2.4 Chemical constituents of <i>Holarrhena</i> spp	
CHAPTER III EXPERIMENTAL	
3.1 Plant materials	
3.2 General experimental procedures	14
3.2.1 Nuclear magnetic resonance spectrometer (NMR)	14
3.2.1.1 14	
3.2.2 Mass spectrometer (MS)	14
3.2.3 Fourier transforms infrared spectrophotometer (FTIR)	
3.2.4 Optical rotation	
3.2.5 Ultraviolet-visible spectrophotometer (UV-vis)	
3.2.6 Melting point	
3.2.7 High-performance liquid chromatography (HPLC)	
3.2.8 Microplate spectrophotometer	
3.3 Chemical	
3.4 Extraction and isolation	

		Page
	3.4.1 Pericarps of <i>G. griffithii</i>	. 16
	3.4.2 Pod of H. curtisii	. 17
3.5	Physical and spectral data of the isolated compounds from G. griffithii	. 18
	3.5.1 Gymnemogriffithoside A (61)	. 18
	3.5.2 Gymnemogriffithoside B (62)	. 19
	3.5.3 Gymnemogriffithoside C (63)	. 20
	3.5.4 Gymnemogriffithoside D (64)	. 21
	3.5.5 Gymnemogriffithoside E (65)	. 22
	3.5.6 Gymnemogriffithoside F (66)	. 23
	3.5.7 Gymnemogriffithoside G (67)	. 24
	3.5.8 Gymnemogriffithoside H (68)	. 25
3.6	Acid hydrolysis and methanolysis of steroidal glycoside from G. griffithii	. 26
	3.6.1 Acid hydrolysis of crude steroidal glycoside from G. griffithii	. 26
	3.6.1.1 Steroid 61a	. 26
	3.6.1.2 Steroid 67a	. 27
	3.6.1.3 D-digitoxose (69)	. 28
	3.6.1.4 D-oleandose (71)	. 29
	3.6.1.5 D-thevetose (72)	. 29
	3.6.1.6 $meta$ -D-thevetopyranosyl-(1 $ ightarrow$ 4)-O-D-canaropyranoside (73)	30
	3.6.1.7 $m eta$ -D-thevetopyranosyl-(1 $ ightarrow$ 4)-O-D-oleandropyranoside (74)	31
	3.6.2 Acid hydrolysis of 61, 64 and 67	32
	3.6.3 Methanolysis of crude steroidal glycoside from G. griffithii	32
	3.6.3.1 O-methoxy- Q -D-digitoxofuranose (75)	32
	3.6.3.2 O-methoxy- eta -D-digitoxopyranse (76)	33
	3.6.3.3 eta -D-thevetopyranosyl-(1 $ ightarrow$ 4)-O-methoxy- $m{lpha}$ -D-canaropyranosic	de
	(77)	33

1.4

.

 $\epsilon \sim 10^{-10}$

Page

3.6.3.4 $meta$ -D-thevetopyranosyl-(1 $ ightarrow$ 4)-O-methoxy- $meta$ -D-canaropyrano	oside
(78)	33
3.6.3.5 β -D-thevetopyranosyl-(1 \rightarrow 4)-O-methoxy- α -D-oleandropyranoside (79)	34
3.6.3.6 β -D-thevetopyranosyl-(1 \rightarrow 4)-O-methoxy- β -D-oleandropyranoside (80)	34
3.7 Preparation of the (R)- or (S)-Mosher acid ester of steroid 1a	35
3.7.1 Preparation of the (R)- or (S)-MTPACL from (R)- or (S)-MTPA	35
3.7.2 (R)-MTPA ester derivative of Steroid 61a (61 a_R)	35
3.7.3 (S)-MTPA ester derivative of Steroid 61a ($61a_s$)	
3.8 Physical and spectral data of the isolated compounds from H. curtisii	37
3.8.1 3 $oldsymbol{eta}$ -hydroxy-11 $oldsymbol{lpha}$ -hydroperoxyolean-12-en-28-oic acid (81)	37
3.8.2 3 eta -hydroxy-11 $m{lpha}$ -hydroperoxyursan-12-en-28-oic acid (82)	38
3.8.3 Squalene (83)	39
3.8.4 $oldsymbol{eta}$ -Amyrin acetate (84)	39
3.8.5 <i>Q</i> -Amyrin acetate (85)	40
3.8.6 Lupeol acetate (86)	
3.8.7 Lupeol (57)	
3.8.8 Lanosta-7,24-dien-3 $oldsymbol{eta}$ -ol (87)	
3.8.9 Cycloeucalenol (88)	
3.8.10 24-methylenepollinastanol (89)	
3.8.11 Oleanolic acid (90)	44
3.8.12 Ursolic acid (91)	45
3.8.13 (-)-Catechin (92)	46
3.8.14 (–)-Gallocatechin (93)	46
3.9 MTT Cytotoxicity assay	47
3.10 $\boldsymbol{\alpha}$ -glucosidase inhibition assay	

-

P	,age
CHAPTER IV RESULTS AND DISCUSSION	19
4.1 Isolation and structure elucidation of the isolated compounds from <i>G. griffithii</i>	19
4.2 Isolation and structure elucidation of the isolated compounds from H. curtisii8	31
4.3 Cytotoxic activity of the isolated compounds from G. griffithii	38
4.4 Anti <i>Q</i> -glucosidase activity of the isolated compounds from <i>G. griffithii</i> and <i>H.</i>	09
CHAPTER V CONCLUSION	11
REFERENCES	13
APPENDIX	20
VITA	52

3

•

х

LIST OF TABLES

Table		Page
4.1	NMR data of compound 61 in CDCl ₃	54-55
4.2	NMR data of compound 61a in CDCl ₃	56
4.3	NMR data of compound 67a in CDCl ₃	57
4.4	NMR data of compounds 61a, 61a _R , and 61a _S in CDCl ₃	58
4.5	NMR data of compound 62 in CDCl ₃	60-61
4.6	NMR data of compound 63 in CDCl ₃	63 -6 4
4.7	NMR data of compound 64 in CDCl ₃	66-67
4.8	NMR data of compound 65 in CDCl ₃	69-70
4.9	NMR data of compound 66 in CDCl ₃	72-73
4.10	NMR data of compound 67 in CDCl ₃	75-76
4.11	NMR data of compound 68 in CDCl ₃	78-79
4.12	NMR data of compound 81 in CDCl ₃ :CD ₃ OD (10:1)	84
4.13	NMR data of compound 82 in CDCl ₃ :CD ₃ OD (10:1)	86
4.14	NMR data of compound 83 in CDCl ₃	87
4.15	NMR data of compound 84 in CDCl ₃	89
4.16	NMR data of compound 85 in CDCl ₃	91
4.17	NMR data of compound 86 in CDCl ₃	93
4.18	NMR data of compound 57 in CDCl ₃	95
4.19	NMR data of compound 87 in CDCl ₃	97
4.20	NMR data of compound 88 in CDCl ₃	99
4.21	NMR data of compound 89 in CDCl ₃	101
4.22	NMR data of compound 90 in CDCl ₃ :CD ₃ OD (10:1)	103
4.23	NMR data of compound 91 in CDCl ₃ :CD ₃ OD (10:1)	105
4.24	NMR data of compound 92 in CD ₃ OD	106
4.25	NMR data of compound 93 in CD ₃ OD	107

.

-

LIST OF TABLES

Table		Page
4.26	In vitro cytotoxicity data for compounds 61-68, 61a and 67a	108
1 27	In vitro anti α -glucosidase activity data for compounds 57, 61–68,	
4.21	61a, 67a, 81, 82 and 84–93	110

. .

Figure		Page
2.1	Gymnema griffithii Craib (Apocynaceae)	5
2.2	Holarrhena curtisii King & Gamble (Apocynaceae)	7
2.3	Isolated compounds from G. sylvestre	8
2.4	Isolated compounds from G. sylvestre	8
2.5	Isolated compounds from G. alternifolium	9
2.6	Isolated compounds from G. sylvestre	10
2.7	Isolated compounds from G. inodorum	11
2.8	Isolated compounds from H. pubescens	11
2.9	Isolated compounds from H. curtisii	12
2.10	Isolated compounds from <i>H. floribunda</i>	12
2.11	Isolated compounds from <i>H. antidysenterica</i>	13
2.12	Isolated compounds from <i>H. pubescens</i>	13
4.1	Isolated compounds from pericarp of G. Griffithii fruits	49
4.2	Key COSY, HMBC and NOESY correlations of 61	51
4.3	Key NOESY correlations of 61a and 67a	52
4.4	a) ¹ H NMR spectra of 61a , 61a _{<i>R</i>} and 61a _{<i>s</i>} , b) Significant anisotropic chemical shift shielding effects of 61a _{<i>R</i>} and 61a _{<i>s</i>} , and c) Values of	
	$\Delta\delta_{ m SR}$ ($\delta_{ m S}$ - $\delta_{ m R}$) obtained from 61a _R and 61a _S	53
4.5	Key COSY, HMBC and NOESY correlations of 62	59
4.6	Key COSY, HMBC and NOESY correlations of 63	62
4.7	Key COSY, HMBC and NOESY correlations of 64	65
4.8	Key COSY, HMBC and NOESY correlations of 65	68
4.9	Key COSY, HMBC and NOESY correlations of 66	71
4.10	Key COSY, HMBC and NOESY correlations of 67	74
4.11	Key COSY, HMBC and NOESY correlations of 68	77

.

×iii

.

Figure		Page
4.12	Proposed acid catalyzed isomerization-cyclization mechanism of	
	61a and 67a	80
4.13	Isolated compounds from pods of <i>H. curtisii</i>	81
4.14	Key COSY, HMBC and NOESY correlations of 81	83
4.15	Key COSY, HMBC and NOESY correlations of 82	85
4.16	Key COSY and HMBC correlations of 83	87
4.17	Key COSY and HMBC correlations of 84	88
4.18	Key COSY and HMBC correlations of 85	90
4.19	Key COSY and HMBC correlations of 86	92
4.20	Key COSY and HMBC correlations of 57	94
4.21	Key COSY and HMBC correlations of 87	96
4.22	Key COSY and HMBC correlations of 88	98
4.23	Key COSY and HMBC correlations of 89	100
4.24	Key COSY and HMBC correlations of 90	102
4.25	Key COSY and HMBC correlations of 91	104
4.26	Key COSY and HMBC correlations of 92	106
4.27	Key COSY and HMBC correlations of 93	107
5.1	Isolated compounds from G. Griffithii and H. curtisii	112
A1	ATR-FTIR spectrum of compound 61	121
A2	HR-ESIMS spectrum of compound 61	121
A3	¹ H NMR spectrum of compound 61	122
A4	¹ H NMR spectrum of compound 61 (Expansion)	122
A5	¹³ C NMR spectrum of compound 61	123
A6	¹³ C NMR spectrum of compound 61 (Expansion)	123
A7	HSQC spectrum of compound 61	124

.

. . .

xiv

÷

Figure		Page
A8	HSQC spectrum of compound 61 (Expansion)	124
A9	HSQC spectrum of compound 61 (Expansion)	125
A10	COSY spectrum of compound 61	125
A11	HMBC spectrum of compound 61	126
A12	HMBC spectrum of compound 61 (Expansion)	126
A13	HMBC spectrum of compound 61 (Expansion)	127
A14	HMBC spectrum of compound 61 (Expansion)	127
A15	HMBC spectrum of compound 61 (Expansion)	128
A16	HMBC spectrum of compound 61 (Expansion)	128
A17	NOESY spectrum of compound 61	129
A18	NOESY spectrum of compound 61 (Expansion)	129
A19	ATR-FTIR spectrum of compound 62	130
A20	HR-ESIMS spectrum of compound 62	130
A21	¹ H NMR spectrum of compound 62	131
A22	¹ H NMR spectrum of compound 62 (Expansion)	131
A23	¹³ C NMR spectrum of compound 62	132
A24	¹³ C NMR spectrum of compound 62 (Expansion)	132
A25	HSQC spectrum of compound 62	133
A26	HSQC spectrum of compound 62 (Expansion)	133
A27	HSQC spectrum of compound 62 (Expansion)	134
A28	COSY spectrum of compound 62	134
A29	HMBC spectrum of compound 62	135
A30	NOESY spectrum of compound 62	135
A31	ATR-FTIR spectrum of compound 63	136
A32	HR-ESIMS spectrum of compound 63	136

î

XV

.

Figure		Page
A33	¹ H NMR spectrum of compound 63	137
A34	¹ H NMR spectrum of compound 63 (Expansion)	137
A35	¹³ C NMR spectrum of compound 63	138
A36	¹³ C NMR spectrum of compound 63 (Expansion)	138
A37	HSQC spectrum of compound 63	139
A38	HSQC spectrum of compound 63 (Expansion)	139
A39	HSQC spectrum of compound 63 (Expansion)	140
A40	COSY spectrum of compound 63	140
A41	HMBC spectrum of compound 63	141
A42	NOESY spectrum of compound 63	141
A43	ATR-FTIR spectrum of compound 64	142
A44	HR-ESIMS spectrum of compound 64	142
A45	¹ H NMR spectrum of compound 64	143
A46	¹ H NMR spectrum of compound 64 (Expansion)	143
A47	¹³ C NMR spectrum of compound 64	144
A48	¹³ C NMR spectrum of compound 64 (Expansion)	144
A49	HSQC spectrum of compound 64	145
A50	HSQC spectrum of compound 64 (Expansion)	145
A51	HSQC spectrum of compound 64 (Expansion)	146
A52	COSY spectrum of compound 64	146
A53	HMBC spectrum of compound 64	147
A54	NOESY spectrum of compound 64	147
A55	ATR-FTIR spectrum of compound 65	148
A56	HR-ESIMS spectrum of compound 65	148
A57	¹ H NMR spectrum of compound 65	149

xvi

Figure		Page
A58	¹ H NMR spectrum of compound 65 (Expansion)	149
A59	¹³ C NMR spectrum of compound 65	150
A60	¹³ C NMR spectrum of compound 65 (Expansion)	150
A61	HSQC spectrum of compound 65	151
A62	HSQC spectrum of compound 65 (Expansion)	151
A63	HSQC spectrum of compound 65 (Expansion)	152
A64	COSY spectrum of compound 65	152
A65	HMBC spectrum of compound 65	153
A66	NOESY spectrum of compound 65	153
A67	ATR-FTIR spectrum of compound 66	154
A68	HR-ESIMS spectrum of compound 66	154
A69	¹ H NMR spectrum of compound 66	155
A70	¹ H NMR spectrum of compound 66 (Expansion)	155
A71	¹³ C NMR spectrum of compound 66	156
A72	¹³ C NMR spectrum of compound 66 (Expansion)	156
A73	HSQC spectrum of compound 66	157
A74	HSQC spectrum of compound 66 (Expansion)	157
A75	HSQC spectrum of compound 66 (Expansion)	158
A76	COSY spectrum of compound 66	158
A77	HMBC spectrum of compound 66	159
A78	NOESY spectrum of compound 66	159
A79	ATR-FTIR spectrum of compound 67	160
A80	HR-ESIMS spectrum of compound 67	160
A81	¹ H NMR spectrum of compound 67	161
A82	¹ H NMR spectrum of compound 67 (Expansion)	161

xvii

÷.

Figure		Page
A83	¹³ C NMR spectrum of compound 67	162
A84	¹³ C NMR spectrum of compound 67 (Expansion)	162
A85	HSQC spectrum of compound 67	163
A86	HSQC spectrum of compound 67 (Expansion)	163
A87	HSQC spectrum of compound 67 (Expansion)	164
A88	COSY spectrum of compound 67	164
A89	HMBC spectrum of compound 67	165
A90	NOESY spectrum of compound 67	165
A91	ATR-FTIR spectrum of compound 68	166
A92	HR-ESIMS spectrum of compound 68	166
A93	¹ H NMR spectrum of compound 68	167
A94	¹ H NMR spectrum of compound 68 (Expansion)	167
A95	¹³ C NMR spectrum of compound 68	168
A96	¹³ C NMR spectrum of compound 68 (Expansion)	168
A97	HSQC spectrum of compound 68	169
A98	HSQC spectrum of compound 68 (Expansion)	169
A99	HSQC spectrum of compound 68 (Expansion)	170
A100	COSY spectrum of compound 68	170
A101	HMBC spectrum of compound 68	171
A102	NOESY spectrum of compound 68	171
A103	ATR-FTIR spectrum of compound 61a	172
A104	HR-ESIMS spectrum of compound 61a	172
A105	¹ H NMR spectrum of compound 61a	173
A106	¹³ C NMR spectrum of compound 61a	173
A107	HSQC spectrum of compound 61a	174

.

Figure		Page
A108	HSQC spectrum of compound 61a (Expansion)	174
A109	HSQC spectrum of compound 61a (Expansion)	175
A110	COSY spectrum of compound 61a	175
A111	HMBC spectrum of compound 61a	176
A112	NOESY spectrum of compound 61a	176
A113	ATR-FTIR spectrum of compound 67a	177
A114	HR-ESIMS spectrum of compound 67a	177
A115	¹ H NMR spectrum of compound 67a	178
A116	¹³ C NMR spectrum of compound 67a	178
A117	HSQC spectrum of compound 67a	179
A118	HSQC spectrum of compound 67a (Expansion)	179
A119	HSQC spectrum of compound 67a (Expansion)	180
A120	COSY spectrum of compound 67a	180
A121	HMBC spectrum of compound 67a	181
A122	NOESY spectrum of compound 67a	181
A123	¹ H NMR spectrum of compound 61a _R	182
A124	¹³ C NMR spectrum of compound 61a _R	182
A125	HSQC spectrum of compound 61a _R	183
A126	HSQC spectrum of compound 61a _R (Expansion)	183
A127	HSQC spectrum of compound 61a _R (Expansion)	184
A128	COSY spectrum of compound 61a _R	184
A129	HMBC spectrum of compound 61a _R	185
A130	NOESY spectrum of compound 61a _R	185
A131	¹ H NMR spectrum of compound 61a _s	186
A132	¹³ C NMR spectrum of compound 61as	186

ì.

xix

-

Figure		Page
A133	HSQC spectrum of compound $61a_5$	187
A134	HSQC spectrum of compound 61as (Expansion)	187
A135	HSQC spectrum of compound 61a ₅ (Expansion)	188
A136	COSY spectrum of compound 61as	188
A137	HMBC spectrum of compound $61a_5$	189
A138	NOESY spectrum of compound 61as	189
A139	¹ H NMR spectrum of compound 69	190
A140	¹ H NMR spectrum of compound 69 (Expansion)	190
Aİ41	¹³ C NMR spectrum of compound 69	191
A142	HSQC spectrum of compound 69	191
A143	COSY spectrum of compound 69	192
A144	HMBC spectrum of compound 69	192
A145	¹ H NMR spectrum of compound 71	193
A146	¹ H NMR spectrum of compound 71 (Expansion)	193
A147	¹³ C NMR spectrum of compound 71	194
A148	¹ H NMR spectrum of compound 72	194
A149	¹ H NMR spectrum of compound 72 (Expansion)	195
A150	¹³ C NMR spectrum of compound 72	195
A151	¹ H NMR spectrum of compound 73	196
A152	¹ H NMR spectrum of compound 73 (Expansion)	196
A153	¹³ C NMR spectrum of compound 73	197
A154	¹ H NMR spectrum of compound 74	197
A155	¹ H NMR spectrum of compound 74 (Expansion)	198
A156	¹³ C NMR spectrum of compound 74	198
A157	¹ H NMR spectrum of compound 75	199

.

XX

Figure		Page
A158	¹³ C NMR spectrum of compound 75	199
A159	¹ H NMR spectrum of compound 76	200
A160	¹³ C NMR spectrum of compound 7 6	200
A161	¹ H NMR spectrum of compound 77	201
A162	¹³ C NMR spectrum of compound 77	201
A163	¹ H NMR spectrum of compound 78	202
A164	¹³ C NMR spectrum of compound 78	202
A165	¹ H NMR spectrum of compound 79	203
A166	¹³ C NMR spectrum of compound 79	203
A167	¹ H NMR spectrum of compound 8 0	204
A168	¹³ C NMR spectrum of compound 80	204
A169	ATR-FTIR spectrum of compound 81	205
A170	HR-ESIMS spectrum of compound 81	205
A171	¹ H NMR spectrum of compound 8 1	206
A172	¹³ C NMR spectrum of compound 81	206
A173	¹³ C NMR spectrum of compound 81 (Expansion)	207
A174	HSQC spectrum of compound 81	207
A175	COSY spectrum of compound 81	208
A176	HMBC spectrum of compound 81	208.
A177	HMBC spectrum of compound 81 (Expansion)	209
A178	HMBC spectrum of compound 81 (Expansion)	209
A179	NOESY spectrum of compound 81	210
A180	ATR-FTIR spectrum of compound 82	210
A181	HR-ESIMS spectrum of compound 82	211
A182	¹ H NMR spectrum of compound 82	211

.

xxi

.

Figure		Page
A183	¹³ C NMR spectrum of compound 82	212
A184	¹³ C NMR spectrum of compound 82 (Expansion)	212
A185	HSQC spectrum of compound 82	213
A186	COSY spectrum of compound 82	213
A187	HMBC spectrum of compound 82	214
A188	HMBC spectrum of compound 82 (Expansion)	214
A189	HMBC spectrum of compound 82 (Expansion)	215
A190	NOESY spectrum of compound 82	215
A191	¹ H NMR spectrum of compound 83	216
A192	¹³ C NMR spectrum of compound 83	216
A193	HSQC spectrum of compound 83	217
A194	COSY spectrum of compound 83	217
A195	HMBC spectrum of compound 83	218
A196	ATR-FTIR spectrum of compound 84	218
A197	¹ H NMR spectrum of compound 84	219
A198	¹³ C NMR spectrum of compound 84	219
A199	HSQC spectrum of compound 84	220
A200	COSY spectrum of compound 84	220
A201	HMBC spectrum of compound 84	221
A202	ATR-FTIR spectrum of compound 85	221
A203	¹ H NMR spectrum of compound 85	222
A204	¹³ C NMR spectrum of compound 85	222
A205	HSQC spectrum of compound 85	223
A206	COSY spectrum of compound 85	223
A207	HMBC spectrum of compound 85	224

.

-

xxii

Figure		Page
A208	ATR-FTIR spectrum of compound 86	224
A209	¹ H NMR spectrum of compound 86	225
A210	¹³ C NMR spectrum of compound 86	225
A211	HSQC spectrum of compound 86	226
A212	COSY spectrum of compound 86	226
A213	HMBC spectrum of compound 86	227
A214	ATR-FTIR spectrum of compound 57	227
A215	¹ H NMR spectrum of compound 57	228
A216	¹³ C NMR spectrum of compound 57	228
A217	HSQC spectrum of compound 57	22 9
A218	COSY spectrum of compound 57	229
A219	HMBC spectrum of compound 57	230
A220	ATR-FTIR spectrum of compound 87	230
A221	¹ H NMR spectrum of compound 87	231
A222	¹³ C NMR spectrum of compound 87	231
A223	HSQC spectrum of compound 87	232
A224	COSY spectrum of compound 87	232
A225	HMBC spectrum of compound 87	233
A226	ATR-FTIR spectrum of compound 88	233
A227	¹ H NMR spectrum of compound 88	234
A228	¹³ C NMR spectrum of compound 88	234
A229	HSQC spectrum of compound 88	235
A230	COSY spectrum of compound 88	235
A231	HMBC spectrum of compound 88	236
A232	ATR-FTIR spectrum of compound 89	236

xxiii

-

Figure		Page
A233	¹ H NMR spectrum of compound 89	237
A234	¹³ C NMR spectrum of compound 89	237
A235	HSQC spectrum of compound 89	238
A236	COSY spectrum of compound 89	238
A237	HMBC spectrum of compound 89	239
A238	ATR-FTIR spectrum of compound 90	239
A239	¹ H NMR spectrum of compound 90	240
A240	¹³ C NMR spectrum of compound 90	240
A241	HSQC spectrum of compound 90	241
A242	COSY spectrum of compound 90	241
A243	HMBC spectrum of compound 90	242
A244	ATR-FTIR spectrum of compound 91	242
A245	¹ H NMR spectrum of compound 91	243
A246	¹³ C NMR spectrum of compound 91	243
A247	HSQC spectrum of compound 91	244
A248	COSY spectrum of compound 91	244
A249	HMBC spectrum of compound 91	245
A250	ATR-FTIR spectrum of compound 92	245
A251	¹ H NMR spectrum of compound 92	246
A252	¹³ C NMR spectrum of compound 92	246
A253	HSQC spectrum of compound 92	247
A254	COSY spectrum of compound 92	247
A255	HMBC spectrum of compound 92	248
A256	ATR-FTIR spectrum of compound 93	248
A257	¹ H NMR spectrum of compound 93	249

.

xxiv

Figure		Page
A258	¹³ C NMR spectrum of compound 93	
A259	HSQC spectrum of compound 93	250
A260	COSY spectrum of compound 93	250
A261	HMBC spectrum of compound 93	251

÷

. .

LIST OF ABBREVIATIONS

-

$\left[\alpha\right]_{D}^{25}$	Specific rotation at 25 °C and using the wavelength of light at 589 nm (sodium D line) for the observation
δ	Chemical shift (NMR)
δ_{c}	Chemical shift of carbon (NMR)
$\delta_{\!\scriptscriptstyle m H}$	Chemical shift of proton (NMR)
λ_{\max}	Wavelength of maximum absorption (UV)
μL	Microliter (s)
μg	Microgram (s)
μM	Micromolar
μm	Micrometer (s)
v_{max}	Reciprocal wavelength at the highest signal in IR spectroscopy
°C	Degree Celsius
¹ H NMR	Proton nuclear magnetic resonance spectroscopy
¹³ C NMR	Carbon-13 nuclear magnetic resonance spectroscopy
2D NMR	Two-dimensional nuclear magnetic resonance spectroscopy
Ac	Acetyl
amu	Atomic mass unit
A ₀	Absorbance of the control
A ₁	Absorbance of the test sample
ATR-FTIR	Attenuated total reflectance-Fourier transformed infrared
Ba(OH) ₂	Barium hydroxide
br	broad (NMR)
Bz	Benzyl
С	Concentration
calcd	Calculated
Can	Canarsoe

.

cat.	Catalyst
СС	Column chromatography
CDCl ₃	Deuterated chloroform
CD ₃ OD	Deuterated methanol
Ce(SO ₄) ₂	Cerium(IV) sulfate
CH ₂ Cl ₂	Dichloromethane
cm	Centimeter (s)
cm ⁻¹	Unit of reciprocal wavelength (or wavenumber) in IR
COSY	Correlation spectroscopy (NMR)
d	Doublet (NMR)
D	Dextrorotatory rotation (turned clockwise of the plane of polarization)
D ₂ O	Deuterium oxide
dd	Doublet of doublet (NMR)
ddd	Doublet of doublet of doublet (NMR)
Dig	Digitoxose
DMF	N,N-dimethylformamide
DMFCl	Chloride-N,N-dimethylformamide
DMSO	Dimethyl sulfoxide
dq	Doublet of quartet (NMR)
dt	Doublet of triplet (NMR)
EtOH	Ethanol
EtOAc	Ethyl acetate
v/v	Volume per volume
g	Gram (s)
h	Hour (s)
H ₂ SO ₄	Sulfuric acid
H ₂ O	Water
Hz	Hertz (s)

xxvii

•

HMBC	Heteronuclear multiple-bond correlation spectroscopy
HRESIMS	High-resolution electrospray ionization mass spectrometry
HPLC	High-performance liquid chromatography
HSQC	Heteronuclear single quantum correlation spectroscopy
sp.	Species
sp ³	sp ³ hybridisation
MTPA	lpha-methoxy- $lpha$ -trifluoromethylphenylacetic acid
MTPACL	lpha-methoxy- $lpha$ -trifluoromethylphenylacetyl chloride
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
IC ₅₀	Half maximal inhibitory concentration
J	Coupling constant
L	Liter (s)
L	Levorotatory rotation
lit	Literature
m	Multiplet (NMR)
m	Meter (s)
Μ	Molar
MeOH	Methanol
mg	Milligram (s)
MHz	Megahertz (s)
mm	Millimeter (s)
mM	Millimolar (s)
mmol	Millimole (s)
mp.	Melting point
m/z	Mass per charge ratio
$[M+H]^{+}$	Protonated molecule ion
[M+Na]⁺	Pseudo-molecular ion
nm	Nanometer (s)

. *

xxviii

(NH ₄) ₆ Mo ₇ O ₂₄	Ammonium molybdate
NOESY	Nuclear Overhauser effect spectroscopy
Ole	Oleandrose
PNPG	p-nitrophenyl-a-D-glucopyranoside
ppm	Parts per million
q	Quartet (NMR)
qd	Quartet of doublet (NMR)
RP-18	Reverse phase C18 column
R	Rectus for right (configuration)
rt	Room temperature
S	Singlet (NMR)
5	Sinister for left (configuration)
t	Triplet (NMR)
td	Triplet of doublet (NMR)
Thv	Thevetose
Tig	Tigloyl
TLC	Thin layer chromatography
t _R	Retention time
U	Unit

•