ลักษณะสมบัติทางชีวเคมีของซูเปอร์ออกไซด์ดิสมิวเทสจากรากหนอนตายหยาก Stemona tuberosa Lour

นางสาวพลอยพัฒณ์ นิยมพลอย

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาเทคโนโลยีชีวภาพ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2556 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

BIOCHEMICAL CHARACTERIZATION OF SUPEROXIDE DISMUTASE FROM THE ROOTS OF Stemona tuberosa

Miss Ploypat Niyomploy

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Biotechnology Faculty of Science Chulalongkorn University Academic Year 2013 Copyright of Chulalongkorn University

Thesis Title	BIOCHEMICAL CHARACTERIZATION OF SUPEROXIDE
	DISMUTASE FROM THE ROOTS OF Stemona
	tuberosa
Ву	Miss Ploypat Niyomploy
Field of Study	Biotechnology
Thesis Advisor	Associate Professor Polkit Sangvanich, Ph.D.
Thesis Co-Advisor	Assistant Professor Aphichart Karnchanatat, Ph.D.
	Ruethairat Boonsombat, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral Degree

Dean of the Faculty of Science

THESIS COMMITTEE

Warmhan Chiwmin Chairman

(Assistant Professor Warinthorn Chavasiri, Ph.D.) Polkit Sangunaich Thesis Advisor

(Associate Professor Polkit Sangvanich, Ph.D.)

Aphichart Karnchanatat Thesis Co-Advisor

(Assistant Professor Aphichart Karnchanatat, Ph.D.)

Ruthanat Boon probat Thesis Co-Advisor

(Ruethairat Boonsombat, Ph.D.)

(Associate Professor Amorn Petsom, Ph.D.)

Chargen Charcheo Examiner

(Associate Professor Chanpen Chanchao, Ph.D.)

Charling Snonser External Examiner

(Chantragan Srisomsap, Ph.D.)

⁽Professor Supot Hannongbua, Dr.rer.nat.)

พลอยพัฒณ์ นิยมพลอย : ลักษณะสมบัติทางชีวเคมีของชูเปอร์ออกไซด์ดิสมิวเทสจากราก หนอนตายหยาก Stemona tuberosa Lour. (BIOCHEMICAL CHARACTERIZATION OF SUPEROXIDE DISMUTASE FROM THE ROOTS OF Stemona tuberosa) อ.ที่ปรึกษา วิทยานิพนธ์หลัก: รศ. ดร. พลกฤษณ์ แสงวณิช, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: ผศ. ดร. อภิชาติ กาญจนทัต, อ. ดร. ฤทัยรัตน์ บุญสมบัติ, **114** หน้า

เอนไซม์ซุปเปอร์ออกไซด์ดิสมิวเทสและไซโคลไทด์ซึ่งเป็นเปปไทด์ที่มีฤทธิ์ทางชีวภาพถูก ้ค้นพบครั้งแรกจากรากของต้นหนอนตายหยากและใบของต้นหงษ์ร่อนตามลำดับ ส่วนสกัดหยาบโปรตีน จากรากของหนอนตายหยากแสดงฤทธิ์ของเอนไซม์ซุปเปอร์ออกไซด์ดิสมิวเทสสูงที่สุดเมื่อเปรียบเทียบ กับส่วนสกัดหยาบโปรตีนของพืชอีกสิบชนิด ดังนั้นส่วนสกัดหยาบโปรตีนดังกล่าวถูกนำไปใช้ในการ ทดลองสองชนิด โดยการทดลองแรกเกี่ยวกับการพัฒนาเทคนิคอิเล็กโตรโฟรีซิสในสองมิติควบคู่กับการ ย้อมเพื่อหาตำแหน่งของเอนไซม์ซุปเปอร์ออกไซด์ดิสมิวเทสบนแผ่นเจลโดยใช้เอนไซม์ซุปเปอร์ออกไซด์ ดิสมิวเทสจากเม็ดเลือดแดงของวัวเป็นตัวควบคุม ผลการทดลองพบว่าเทคนิคดังกล่าวสามารถแยก เอนไซม์ชุปเปอร์ออกไซด์ดิสมิวเทสที่มีลักษณะบางประการแตกต่างกันได้ ในการทดลองที่สองเกี่ยวกับ การทำให้บริสุทธิ์และหาลักษณะสมบัติของเอนไซม์ซุปเปอร์ออกไซด์ดิสมิวเทส ผลการทดลองพบว่า เอนไซม์ชุปเปอร์ออกไซด์ดิสมิวเทสบริสุทธิ์ชื่อว่า ST-1 มีค่ากิจกรรมของเอนไซด์ชุปเปอร์ออกไซด์ดิสมิว ้เทสดังกล่าวสูงที่สุดเมื่อเปรียบเทียบกับเอนไซม์ชุปเปอร์ออกไซด์ดิสมิวเทสตัวอื่นๆจากรากของหนอน ตายหยากนี้ และเป็นเอนไซม์ที่มีแมงกานีสเป็นองค์ประกอบในโมเลกุล นอกจากนี้ส่วนสกัดหยาบโปรตีน จากด้นหงษ์ร่อนถูกนำมาทำให้บริสุทธิ์และพบไซโคลไทด์ 4 ชนิด ไซโคลไทด์ทั้งหมดถูกนำมาทดสอบ ้ความเป็นพิษต่อเซลล์มะเร็งชนิดต่างๆ ผลการทดลองพบว่าไซโคลไทด์ชื่อว่า cycloviolacin O2 มีฤทธิ์ การต้านเซลล์มะเร็งสูงที่สุด ในขณะที่ไซโคลไทด์ชื่อว่า kalata S ไม่พบรายงานโครงสร้างแบบทุติยภูมิจึง ได้ทำการวิเคราะห์โดยใช้เทคนิคเอ็นเอ็มอาร์ ผลการทดลองพบว่า kalata S มีโครงสร้างทุติยภูมิ คล้ายคลึงกับ kalata B1 ซึ่งเป็นไซโคลไทด์ที่ในปัจจุบันนำมาประยุกต์ใช้ในการออกแบบยา

สาขาวิชา เทคโนโลยีชีวภาพ ปีการศึกษา 2556

5273831823 : MAJOR BIOTECHNOLOGY

KEYWORDS: SUPEROXIDE DISMUTASE / CYCLOTIDE / CHARACTERIZATION / STEMONA TUBEROSA / VIOLA SUMATRANA

PLOYPAT NIYOMPLOY: BIOCHEMICAL CHARACTERIZATION OF SUPEROXIDE DISMUTASE FROM THE ROOTS OF *Stemona tuberosa*. ADVISOR: ASSOC. PROF. POLKIT SANGVANICH, Ph.D., CO-ADVISOR: ASST. PROF. APHICHART KARNCHANATAT, Ph.D., RUETHAIRAT BOONSOMBAT, Ph.D., **114** pp.

Superoxide dismutase (SOD) and bioactive cyclotide were firstly discovered from the root of Stemona tuberosa and the leaves of Viola sumatrana, respectively. Crude protein from S. tuberosa was determined SOD activity and showed the highest SOD activity compared to other ten plants. The crude protein was then performed in two experimental developments. The first experiment is the development of nondenaturing two dimensional gel electrophoresis coupled with SOD staining activity using bovine erythrocyte as a positive control. This technique can be used for the separation of different SOD isozymes. The second experiment was a purification and characterization of SOD from S. tuberosa. The purified SOD (ST-1) which has the highest SOD activity compared to other SODs in this plant was characterized as a purified Mn-SOD. In addition, crude protein from leaves of V. sumatrana was also purified and yielded four bioactive cyclotides. The cyclotides were determined their cytotoxicity on four different human cancer cell lines. The result showed that cyclotide called cycloviolacin O2 showed the most potency on cell cytotoxicity. While, cyclotide called kalata S which lack of secondary structure data then it was identified using NMR experiment. The NMR results showed that the secondary structure of kalata S is similar to kalata B1 which is a well-known cyclotide using as a drug design application.

Field of Study: Biotechnology Academic Year: 2013

Student's Signature	Ploypat N	lyomaoy
Advisor's Signature	Polkit Sang	raniel
Co-Advisor's Signature	Aphichart	Karnchanatal
Co-Advisor's Signature	Ructharvat	Bachsonnbor

ACKNOWLEDGEMENTS

I would like first of all to thank my advisor, Associate Professor Dr. Polkit Sangvanich, and Co-advisors, Assistant Professor Dr. Aphrichart Karnchanatat and Dr. Ruethairat Boonsombat for their valuable advice and aid throughout my education and research at Chulalongkorn University. I can truly say that without their advice and enthusiasm this thesis would not have been possible. Furthermore, I would like to thank Dr. Chantrakarn Srisomsap and Dr. Apaporn Boonmee for providing so many helpful suggestions throughout my research, and for always providing the motivation and guidance in both my work and my life. I also would like to thank Miss Daranee Chockchaichumnankit for teaching me various methods in two-dimensional gel electrophoresis and using equipments.

I'm appreciated Dr. Alun Jones, Dr. Peta Harvey and Mr. Oliver Cheneval from The Institute for Molecular Bioscience, Queensland, Australia for their help and suggestion about mass spectrometry, nuclear magnetic resonance and peptide synthesis respectively and also thank to Mr. Bob Harwood for collecting plant material. I would like to thank The Royal Golden Jubilee Ph.D program ,Thailand research fund (Grant No. PHD/0013/2552) and Bruker company for fianacial suppot. I also thank to program in Biotechnology, Faculty of Science, Chulalongkorn University. It is truly an honor to be part of such an exceptional institution. And I am grateful for everything Chulalongkorn University has offered me.

And last of all, I would like to thank my family for their spiritual care and protection, for their amazing love and support, and for financing my education and my future. Words truly cannot express my appreciation for their unconditional support and encouragement. During moments of weakness, my parents are both incredible sources of inspiration for me, and both motivate me to consistently work hard and persist through all my endeavors. I am truly grateful to be apart of this family, my love will always be firmly imbedded within them. I dedicate this work and my future success to them.

CONTENTS

P	age
THAI ABSTRACTi	V
ENGLISH ABSTRACT	V
ACKNOWLEDGEMENTS	vi
CONTENTSv	ίi
LIST OF TABLEx	ai
LIST OF FIGURE	iii
LIST OF ABBREVIATIONS	⁄ii
CHAPTER I INTRODUCTION	1
1.1 RESEARCH CONNECTION	1
1.2 RESEARCH RATIONALE	2
1.3 OBJECTIVES	6
1.4 SCOPE OF DISSERTATION	6
1.5 EXPECTED RESULTS	8
CHAPTER II	9
RESEARCH THEORETICAL	9
2.1 Antioxidant enzyme	9
2.2 Cyclic-peptide	0
2.3 Ion exchange chromatography1	1
2.4 High performance liquid chromatography1	4
2.5 Two-dimensional gel electrophoresis1	6
2.6 Mass spectrometry for peptide sequencing1	8
2.6.1 Electrospray quadrupole time of flight (ESI-QTOF)2	0
2.6.2 Matrix-assisted laser desorption/ionization-time of flight/time of flight (MALDI –TOF/TOF)2	.2
2.7 Nuclear magnetic resonance (NMR)2	3
2.8 Polymerase chain reaction (PCR)2	5
2.8 MTT assay	6

CHAPTER III	. 28
Superoxide dismutase isozyme detection using two-dimensional gel electrophoresi	S
zymograms	. 28
3.1 INTRODUCTION	. 28
3.2 MATERIALS AND METHODS	. 30
3.2.1. Isolation and extraction of SOD from <i>S. tuberosa</i>	. 30
3.2.2. Resolution and detection of SOD isozymes	. 31
3.2.2.1 One dimensional reducing sodium dodecyl sulphate- polyacrylamide gel electrophoresis (1D-SDS-PAGE)	. 31
3.2.2.2 Non-denaturing two-dimensional polyacrylamide gel electrophoresis (2D-GE)	.32
3.2.3. Gel washing procedures and SOD staining activity assay.	33
3.2.4. SOD isozyme identification by in-gel trypsin digestion and tryptic peption mass spectrometry analysis	de . 33
3.2.5. SOD characterization by liquid chromatography tandem mass spectrometry (LC-MSMS)	.34
3.3 RESULTS AND DISCUSSIONS	34
3.3.1 Evaluation of the 2D-GE method using the bovine erythrocyte CuZn-SC isozyme as a known standard)D .34
3.3.2. SOD isoform separation from a crude protein extract of <i>S. tuberosa</i> tubers	. 38
3.3.3. The key feature for improving the developed 2D-GE method resolution	ר 42.
3.4 CONCLUSION	43
CHAPTER IV	44
A superoxide dismutase purified from the root of Stemona tuberosa Lour	44
4.1 INTRODUCTION	44
4.2 Materials and methods	46
4.2.1 Plant material	46

.

Page

viii

	Page
4.2.2 Chemicals	46
4.2.3 Isolation and extraction of SOD from <i>S. tuberosa</i>	46
4.2.4 Purification of SOD from <i>S. tuberosa</i>	47
4.2.5 SOD assay activity	47
4.2.6 Protein content determination	48
4.2.7 Determination of the SOD enzyme purity on Native-PAGE	49
4.2.8 SOD characterization by tandem mass spectrometry	49
4.2.9 Determination of molecular weight by SDS-PAGE	50
4.2.10 Determination of optimum pH and pH stability	50
4.2.11 Determination of optimum temperature and thermal stability	50
4.2.12 Effect of bivalent metal ions and SDS on the SOD activity	51
4.2.13 Effect of riboflavin and NBT on SOD activity	51
4.2.14 Partial nucleotide sequences of SOD from <i>S. tuberosa</i>	51
4.3 Results and discussions	52
4.3.1 Isolation and purification of SOD enzyme from <i>S. tuberosa</i>	52
4.3.2 SOD characterization by tandem mass spectrometry	59
4.3.3 Determination of the molecular weight of the SOD enzyme by reducir SDS-PAGE	ng 59
4.3.4 The optimum pH and pH stability of the Mn-SOD enzyme from <i>S. tuberosa</i> roots	62
4.3.5 The optimum temperature and thermal stability of SOD enzyme	63
4.3.6 Determination of the effect of different bivalent metal ions on the SO activity	D 64
4.3.7 Evaluation of the effect of riboflavin and NBT on SOD activity	69
4.3.8 Partial nucleotide sequences of SOD from S. tuberosa	69
4.4 CONCLUSION	72
CHAPTER V	73

х

Discovery, isolation and structural characterization of cyclotides from Viala	
sumatrana Miq	73
5.1 INTRODUCTION	73
5.2 MATERIALS AND METHODS	76
5.2.1 Plant material	76
5.2.2 Isolation and extraction of cyclotides from V. sumatrana	77
5.2.3 Solid-phase extraction (SPE) and RP-HPLC purification	77
5.2.4 Reduction and alkylation of cyclotides	78
5.2.5 Enzymatic digestion coupled with nanospray and MALDI-TOF MSMS sequencing	78
5.2.6 NMR sample analysis	79
5.2.7 Evaluation of cell cytotoxic activity using MTT assay	79
5.3 RESULTS AND DISCUSSIONS	80
5.3.1 Isolation, purification and mass spec sequencing of cyclotides from V. sumatrana	80
5.3.2 Structural analysis of kalata S by NMR	86
5.3.3 Cytotoxicity activity	91
5.4 CONCLUSION	95
CHAPTER VI	96
CONCLUSIONS	96
6.1 CONCLUSIONS	96
6.2 RESEARCH LIMITATAION	97
6.3 SUGGESTION FOR FUTURE WORK	97
REFERENCES	98
APPENDICS	109
APPENDIX A	110
	110
APPENDIX B	111

APPENDIX	х с	
APPENDI>	X D	
VITA		

Page

LIST OF TABLE

page

Table 4. 1 Purification procedures of SOD from S. tuberosa.	54
Table 4. 2 IC50 value of SOD from S. tuberosa compared to other plants	55
Table 5. 1 Amino acid sequences of cyclotides from V. sumatrana	83
Table 5. 2 Chemical shifts of kalata S, at 298K, pH 3.29	87
Table 5. 3 Cytotoxic activity of known cyclotides (kalata B1, kalata S, cycloviolacin C	2
and O12) against non-cancerous and cancer cells	93

LIST OF FIGURE

Figure 1. 1 The diagram shows the three parts (chapter III-V) of this study	1
Figure 1. 2 The taxonomy of <i>S. tuberosa</i>	3
Figure 1. 3 The taxonomy of V. sumatrana	5
Figure 1. 4 Diagram of the scope of this study	7
Figure 2. 1 Diagram of the reaction of antioxidant enzymes	10
Figure 2. 2 Schematic of cyclic peptides found in many organisms ³¹	11
Figure 2. 3 Q-resin and DEAE resin as anion exchange resin	13
Figure 2. 4 S-resin and CM-resin as cation exchange resin	14
Figure 2. 5 The HPLC instrument consists of an injection, a pump, a column and a	
detector	16
Figure 2. 6 Schematic of two-dimensional gel electrophoresis	17
Figure 2. 7 Schematic of mass spectrometry for peptide sequencing	19
Figure 2. 8 The pattern of peptide fragmentation after pass collision cell	20
Figure 2. 9 Schematic of electrospray ionization	21
Figure 2. 10 Schematic of ESI-Q-TOF	22
Figure 2. 11 Schematic of MALDI-TOF/TOF	23
Figure 2. 12 Schematic of NMR experiments	24
Figure 2. 13 1D ¹ H spectrum of foled and unfoled of protein	25
Figure 2. 14 Schematic of polymerase chain reaction (PCR)	26
Figure 2. 15 The principle of MTT assay. The tetrazolium rings of the yellow MTT are	е
splited by mitochondria reductase enzyme to be purple formazan	27

Figure 4. 3 SOD activity zymograms used to identify the type of SOD from S. tuberosa roots in terms of its sensitivity to KCN and H2O2 inhibition. ST-1 (10 μ g / lane) was

Figure 4. 7 The effect of temperature on the enriched MnSOD from S. tuberosa roots showing:- (A) the relative SOD activity level at different temperatures, and (B) the thermal stability of the enzyme after 10-120 min pre-incubation at different temperatures. In all cases the data, reported as the relative activity where the highest seen was set at 100%, are shown as the mean + 1 SD and are derived from 3 independent repeats (B) The effect of appropriate temperature from optimum

temperature range at 10-120 min. (●); 40° C, (■); 50° C, (▲); 60° C and (○); 70°
Figure 4. 8 Kinetics, shown as a double reciprocal (Lineweaver-Burk) plots, of the
enriched SOD activity from S. tuberose with different concentrations of (A) NBT and
(B) riboflavin as substrates
Figure 5. 1 Chromatograms of crude extract and cyclotides (kalata S, cycloviolacin O9,
cycloviolacin O12 and cycloviolacin O22) isolated from V. sumatrana. Retention times
for each known cyclotide were labeled in each chromatogram
Figure 5. 2 Completed sequence of kalata S (A) derived from MS/MS spectrum of
kalata S after reduction, alkylation and enzyme digestion using Endo-GluC (B) and
trypsin (C) enzymes
Figure 5. 3 The TOCSY spectrum of kalata S
Figure 5. 4 The fingerprint of NOESY spectrum of kalata S
Figure 5. 5 μ H secondary chemical shifts comparisonof kalata S and kalata 1H NMR
spectra were recorded at 298K and the μH secondary shifts were calculated by
substracting the random coil 1H NMR chemical shifts of Wishart et al.143 from the

experimental µH chemical shifts......90

LIST OF ABBREVIATIONS

μg	microgram
μι	microliter
µg / µl	microgram per microliter
μΜ	microMolar
°C	Degree Celsius
cm	centimeters
cDNA	Recombinant DNA
DNA	Deoxyribonucleic acid
Da	Dalton
DEAE	Diethylaminoethyl
DMEM	Delbecco Modified Eagle's Medium
DMSO	Dimethylsulfoxide
g	gram
h	hour
HPLC	High performance liquid chromatography
mg	milligram
mg/ml	milligram per milliliter
min	minute
mm	millimeter
mM	milimolar
MTT	(3,(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

nm	nanometer
RNA	Ribonucleic acid
rpm	round per minute
TFA	trifluoroacetic acid
w/w	weight by weight

148 (1) xviii