REFERENCES

- Grätzel, M. Recent advances in sensitized mesoscopic solar cells. Accounts of Chemical Research. 42 (2009): p. 1788-1798.
- 2. Lewis, N. S. Toward cost-effective solar energy use. <u>Science</u>. 15 (2007): p. 798-801.
- 3. Casey, H. J. Heterostructure lasers. 2012: Elsevier.
- Wong, W. Y. and Ho, C. L. Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes. <u>Accounts of</u> <u>Chemical Research</u>. 43 (2010): p. 1246-1256.
- 5. Wright, M. and Uddin, A. Organic—inorganic hybrid solar cells: A comparative review. <u>Solar Energy Materials and Solar Cells</u>. 107 (2012): p. 87-111.
- Kukrek, A., Wang, D., Hou, Y., Zong, R. and Thummel, R. Photosensitizers containing the 1, 8-naphthyridyl moiety and their use in dye-sensitized solar cells. <u>Inorganic</u> <u>Chemistry</u>. 45 (2006): p. 10131-10137.
- Mahapatra, A. K., Hazra, G., Das, N., Sahoo, P., Goswami, S. and Fun, H. A highly sensitive and selective ratiometric fluorescent probe based on conjugated donoracceptor-donor constitution of 1, 8-naphthyridine for Hg²⁺. <u>Journal of</u> <u>Photochemistry and Photobiology A: Chemistry</u>. 222 (2011): p. 47-51.
- Duan, Y. L., Shi, Y. G., Chen, J. H., Wu, X. H., Wang, G. K., Zhou, Y. and Zhang, J. F.
 1,8-Naphthyridine modified rhodamine B derivative and Cu²⁺ complex: colorimetric sensing of thiols in aqueous media. <u>Tetrahedron Letters</u>. 53 (2012): p. 6544-6547.
- 9. Shibayama, N. and Abe M., Pigment sensitization solar cell. 2014, Google Patents.
- Koizumi, T. and Tanaka, K. Synthesis, chemical-and electrochemical properties of ruthenium (II) complexes bearing 2, 6-bis (2-naphthyridyl) pyridine. <u>Inorganica</u> <u>Chimica Acta</u>. 358 (2005): p. 1999-2004.
- 11. Zong, R. and Thummel R. A new family of Ru complexes for water oxidation. Journal of the American Chemical Society. 127 (2005): p. 12802-12803.
- 12. Chamberlain, G. Organic solar cells: a review. Solar Cells. 8 (1983.): p. 47-83.
- Günster, S., Siebentritt, S. and Meissner D. Charge Carrier Photogeneration and Transport in Phthalocyanine/Perylene Thin Film Solar Cells. <u>Molecular Crystals and</u> <u>Liquid Crystals</u>. 229 (1993): p. 111-116.

- Tang, C.W. Two-layer organic photovoltaic cell. <u>Applied Physics Letters</u>. 48 (1986): p. 183-185.
- 15. Hiramoto, M., Fujiwara, H. and Yokoyama, M. p-i-n like behavior in three-layered organic solar cells having a co-deposited interlayer of pigments. Journal of Applied <u>Physics</u>. 72 (1992): p. 3781-3787.
- Lee, C., Yu, G., Moses, D., Pakbaz, K., Zhang, C., Sariciftci, N., Heeger, A. and Wudl, F. Sensitization of the photoconductivity of conducting polymers by C 60: photoinduced electron transfer. <u>Physical Review B</u>. 48 (1993): p. 15425.
- Morita, S., Zakhidov, A. A. and Yoshino, K. Doping effect of buckminsterfullerene in conducting polymer: change of absorption spectrum and quenching of luminescene. <u>Solid State Communications</u>. 82 (1992): p. 249-252.
- Morita, S., Kiyomatsu, S., Yin, X. H., Zakhidov, A. A., Noguchi, T., Ohnishi, T. and Yoshino, K. Doping effect of buckminsterfullerene in poly (2, 5-dialkoxy-pphenylene vinylene). Journal of Applied Physics. 74 (1993): p. 2860-2865.
- Sariciftci, N., Braun, D., Zhang, C., Srdanov, V. I., Heeger, A. J., Stucky, G. and Wudl, F. Semiconducting polymer-buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells. <u>Applied Physics Letters</u>. 62 (1993): p. 585-587.
- 20. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. and Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. <u>Science-AAAS-Weekly Paper Edition</u>. 270 (1995): p. 1789-1790.
- Yang, C. and Heeger, A. Morphology of composites of semiconducting polymers mixed with C₆₀ <u>Synthetic Metals</u>. 83 (1996): p. 85-88.
- 22. O'regan, B. and Grfitzeli, M. A low-cost, high-efficiency solar cell based on dyesensitized. <u>Nature</u>. 353 (1991): p. 737-740.
- 23. Grätzel, M. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology. <u>Photochemistry Reviews</u>. 4 (2003): p. 145-153.
- 24. Marinado, T. Photoelectrochemical studies of dye-sensitized solar cells using organic dyes. 2009.
- Scharber, M. and Sariciftci, N. Efficiency of bulk-heterojunction organic solar cells. <u>Progress in polymer science</u>. 38 (2013): p. 1929-1940.

- 26. Gadisa, A. Studies of charge transport and energy level in solar cells based on polymer/fullerene bulk heterojunction. 2006.
- Eberson, L. Electron-transfer reactions in organic-chemistry. 2. an analysis of alkyl halide reduction by electron-transfer reagents on the basis of the Marcus theory. <u>Acta Chemica Scandinavica. B.</u> 36 (1982): p. 533-543.
- Yu, S.C., Hou, S. and Chan, W. K. Synthesis and properties of polyamides and polyesters on the basis of 2, 2'-bipyridine-5, 5'-dicarboxylic acid and the corresponding polymer-ruthenium complexes. <u>Macromolecules</u>. 33 (2000): p. 3259-3273.
- Howáth, G., Rusa, C., Köntös, Z., Gerencsér, J. and Huszthy, P. A new efficient method for the preparation of 2, 6-pyridinedihiethyl ditosylates from dimethyl 2,6-Pyridinedicarboxylates. <u>Synthetic Communications</u>. 29 (1999): p. 3719-3731.
- Renaud de la Faverie, A., Hamon, F., Di Primo, C., Largy, E., Dausse, E., Delaurière, L., Landras-Guetta, C., Toulmé, J., Teulade-Fichou, M. and Mergny, J. L. Nucleic acids targeted to drugs: SELEX against a quadruplex ligand. <u>Biochimie</u>. 93 (2011): p. 1357-1367.
- 31. Chavarot, M., Socquet, S., Kotera, M. and Lhomme, J. Synthesis of an adeninepyridinaldoxime-acridine conjugate for recognition of abasic site lesions in DNA. <u>Tetrahedron</u>. 53 (1997): p. 13749-13756.
- 32. Su, B., Zhao, J., Cui, Y., Liang, Y., Sun, W. Controlled synthesis of 2-acetyl-6carbethoxypyridine and 2,6-diacetylpyridine from 2,6-dimethylpyridine. <u>Synthetic</u> <u>Communications</u>. 35 (2005): p. 2317-2324.
- 33. Ongayi, O., Gottumukkala, V., Fronczek, F. R., Vicente, M. H. Synthesis and characterization of a carboranyl-tetrabenzoporphyrin. <u>Bioorganic & medicinal</u> <u>chemistry letters</u>. 15 (2005): p. 1665-1668.
- Gajardo, J., Araya, J. C., Moya, S. A., Pardey, A. J., Guerchais, V., Bozec, H. L., Aguirre,
 P. New polynuclear carbonyl ruthenium (II) complexes derived from 1, 8naphthyridine. <u>Applied Organometallic Chemistry</u>. 20 (2006): p. 272-276.
- Wolpher, H., Sinha, S., Pan, J., Johansson, A., Lundqvist, M. J., Persson, P., Lomoth,
 R., Bergquist, J., Sun, L., Sundström, V. Synthesis and electron transfer studies of

. .

ruthenium-terpyridine-based dyads attached to nanostructured TiO₂. <u>Inorganic</u> <u>Chemistry</u>. 46 (2007): p. 638-651.

- 36. BLACK, G., E. DEPP, and B. Corson, Oxidation of certain methylpyridines to pyridine carboxylic acids. <u>The Journal of Organic Chemistry</u>. 14 (1949.): p. 14-21.
- 37. Shen, Y., B. Maliwal, and J. Lakowicz, Red-emitting Ru (II) metal-ligand complexes. Journal of Fluorescence. 13 (2003): p. 163-168.

APPENDIX A

Figure A.2 ¹³C-NMR spectrum of compound 1

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 δ(ppm)

Figure A.4 ¹³C-NMR spectrum of compound 2

3815213942

Figure A.6 ¹³C-NMR spectrum of compound 3

Figure A.8 ¹¹H-NMR spectrum of compound 5

Figure A.9 ¹³C-NMR spectrum of compound 5

Mass Spectrum List Report

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	erapysis Ban	w OSC	UB5766290	90 L d				2	coulsition Date	6/30/2014 12 0n 12 PL1	
arangie Name okcione Listerie cquisition Prozenter 	Method SKE Fine fow positive				20130204 m			C	perator	Administrator	
And Hards Normal And Hards 1, x Home Add Hards 1, x Home <	Sample Name – diketone Diretone								strument	micrOTOF /2	
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	Lowiston	Paramete							2.1.2. (1.2.10)	0	
zer Herging n.a	surce Luse	= Si			on Polariti - Hostiva				Sof Pulsar Prus d'Arr		
Spr. Degn Normal Normal Spr. P Spr. P <td>can Panne</td> <td>1.6</td> <td></td> <td></td> <td>Jenar.</td> <td>221</td> <td>1.10.6</td> <td></td> <td>Ser Pulsar D</td> <td>usn Beëly</td>	can Panne	1.6			Jenar.	221	1.10.6		Ser Pulsar D	usn Beëly	
Sam End 3200 r.s. Genrame 1: revenue 455 c. 350 ° Sam Engel Lung: Set Detector TCF 9200 ° Mont:: x10 ²	car begin	50 m	50 miz 3060 miz			mexapole RF 2001			Set Reflector 1300 V		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	can End	3000				Seanmer 1			Set Flight Tu	De 5000 V	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					leater	÷ 1	25 G V		Set Detector	TGF 1946 V	
$\begin{array}{c} 132^{2} \\ 132^{2} \\ 242^{2} \\ 252^{2} \\$	nter	15.1								•M5_0 9-0 9mm # 54-66	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	×1	64- J				1.1					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		19				133.6	754				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							4	51 3424		457 1735	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		56	100	154	2	00	250	309	350 4	10 456 m.;	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		m/2		1.5	S/N	EWHM	Res				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 16 06 1	45939	s -	350.2	0.0395	5840				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	119.0952	1641	0.5	35.4	0.0303	5516			1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	197 0587	7642	0.3	€0 0	0.0332	5941			1	
$ \begin{array}{c} 6 & 201 \ 0713 \\ 6 & 202 \ 0731 \\ 7 & 1751 \\ 7 & 071 \\ 7 & 071 \\ 7 & 0735 \\ 8 & 230 \ 0756 \\ 8 & 230 \ 0756 \\ 8 & 230 \ 0756 \\ 8 & 230 \ 0756 \\ 8 & 230 \ 0756 \\ 8 & 27585 \\ 7 & 7 & 231 \ 0751 \\ 7 & 331 \ 0551 \\ 7 & 231 \ 0751 \\ 7 & 331 \ 0551 \\ 7 & 231 \ 0751 \\ 7 & 331 \ 0551 \\ 7 & 231 \ 0751 \\ 7 & 331 \ 0551 \\ 7 & 231 \ 0551 \\ 7 & 231 \ 0551 \\ 7 & 231 \ 0551 \\ 7 & 231 \ 0551 \\ 7 & 231 \ 0551 \\ 7 & 231 \ 0551 \\ 7 & 231 \ 0551 \\ 7 & 231 \ 0551 \\ 7 & 231 \ 0551 \\ 7 & 231 \ 0551 \\ 7 & 231 \ 0551 \\ 7 & 231 \ 0551 \\ 7 & 231 \ 0551 \\ 7 & 231 \ 0551 \\ 7 & 231 \ 0551 \\ 7 & 231 \ 0551 \\ 7 & 231 \ 0551 \\ 7 & 251 $	4	200.0691	2475494	100.0	19433 9	0 0394	5081				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	201 0713	274331	11.1	2152.0	0.0350	5741			í N	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	202 0731	17511	0.7	137 1	0.0336	6019				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	205 5448	:0061	6.4	78.5	0.0348	5582			K. K. /	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	230 0759	476935	10.3	3666 4	8550.0	5937		Ϋ́	NY	
10 2240912 223623 $1 2367$ $0 3262$ 6049 12 236642 24367 $0 3362$ 60413 6244 13 2602628 16656 $0 4$ 80^{-1} $0 0413$ 6244 14 2526956 6700^{-1} $1 502^{-1}$ $0 0456$ 6564 15 270472 8075^{-1} $3 602^{-1}$ $0 0456$ 6564 16 207420 10050^{-1} $4 1$ 7382^{-1} $0 0456$ 6564 16 207420 10050^{-1} $4 1$ 7382^{-1} $0 0456$ 657^{-1} 16 300470 5506^{-1} $2 4^{-1}$ $0 0457^{-1}$ 6589 27 314425^{-1} 2134^{-1} $0 9^{-1}$ 54^{-1} $0 047^{-1}$ 6589 27 314425^{-1} 2134^{-1} $0 9^{-1}$ 54^{-1} $0 047^{-1}$ 6589 27 314425^{-1} 2134^{-1} $0 9^{-1}$ 54^{-1} $0 047^{-1}$ 6589 27 3134425^{-1} 2134^{-1} $0 9^{-1}$ 54^{-1} $0 047^{-1}$ 6589 27 3134425^{-1} 2134^{-1} $0 4^{-1}$ 29^{-1} 6342^{-1} 6589 27 3134425^{-1} 2134^{-1} $0 4^{-1}$ 29^{-1} 6042^{-1} 6589 27 312520376^{-1} 8773^{-1} 2^{-1} 43^{-1} $0 047^{-1}$ 6589 27 312445^{-1} 505^{-1} 0^{-1} 22^{-1} $0 047^{-1}$ 6589 27 3224325^{-1} 3145^{-1} 4^{-1} 29^{-1} 6042^{-1} 6477^{-1} 28 3271494^{-1} 1036^{-1} 4^{-7} 29^{-1} 6062^{-1} 6477^{-1} 26 4071494^{-1} 305^{-1} 0^{-1} 213^{-1} 0062^{-1} 6452^{-1} 27 $463^{-1}690^{-1}$ 1542^{-1} 0^{-1} 128^{-1} 106^{-1} 6652^{-1} 27 $463^{-1}690^{-1}$ 1542^{-1} 0^{-1} 128^{-1} 106^{-1} 062^{-1} 6629^{-1} 29 4371733^{-1} 7366^{-1} 3^{-1} 6917^{-1} 00726^{-1} 6023^{-1} 30 $43^{-1}765^{-1}$ 1566^{-1} 0^{-1} -396^{-1} 00726^{-1} 6023^{-1}	9	/31 0791	45123	1.9	ງຕິນ ນິ 	0.0000	0310		11	11	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	232 5212	2:5453		2.14.5	0.0364	5355		0	0	
1326026306130730740740741426269566700150204015033152701623807536020406666416297126410050141738204656651412981331100501417382046766767162071260353155.2425.164556514171042260353155.2425.16452203141354130500.24477686321315136936155.228.13045763432232263768773743650451656323322132686713652645765712528416056571351365650656926427161375573665406652656127458156710.3513656506529264271665215620.6662627436156710.6128.4106526621284271665215620.6128.4128.428427137.312.6128.4106.560213643175.5156010.6136.40.072660233643<	17	253 004 1	2616	0.3	64.8	0.0413	6744				
14262 5656150501350216413535315270 16728075036020 6406656416207 12041005614173820 6456657417208 1331136500.5 875 0.456657416306 121055050.24010 452656420314 1354213440.95470 645065712253155.24.21 344265802115138936551.24.21 3443222326877374.30 045723322 138541460.222.60 345724377 1494103670.47.800 6620274631 450556710.25130 6525264671613733733.0606246564274327 7494102670 1285658428427 304745230.242.30 6625264571613733733.06062465642745230.242.30 6625654229431 173373653.169170 72636156710.639.60 720602337360.242.30 662528437 173373653.169170 72636156710.639.60 720602337	13	200 0000	10676	6.4	PO -	0.0413	6264				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.1	200.0606	6700	2.1	50.2	0410	5363				
1629120100501417389006661630617100501053417389006616306105000024010066717104260365160.242.51342.66656420314125.4213340.9154.700.47663432131203766.37731743.60.426.7645322132654.460.229.60.647.764532332213854.460.229.60.647.7645324103650.47.290.657.264576453253244005867.10.351.30.6550659926467.1613733733.0606.50.66296650274521.56271.5621.5627663428427.307445930.242.30.0625684229437.173377.3653.1507.26602336137.6561.56710.6129.60.0726602336137.6561.56710.6129.60.0726602337136136.65670.6139.60.0726602336137.6561.56710.6129.6	14	202 3350	8075	0.3	66.2	0.0405	6664				
12981331190.005 37.5 30.476 5767 16300171059500.240.10.0453657717314135421340.9154.70.0453656320314135421340.9154.70.0477658321315138936150.72.81.04276583223220376677372.43.0427634323322138541460.92.26.66571243771494109670.47.800.6526569252641613753733.060510.6526559264671613753733.060520.6526564274637155421.21.20.652656428427304745930.24.23.062568422943117337.3653.169170.07266023361361.06.072060236023	16	297 :294	100501	4 1	7382	0.0456	6514				
163601710 650° 0240 t10450967 t12104263351151.242 t1.042658221314125411340.91542.0417658221315132935151.228 t1.04576343223220376637374.340.0457643323322132541460.229 t0.045764772437114941096*0.47.890.0672645725264460565710.351.30.56500559264671613735733.0666340.6629065627458106540.64250.657605410.652628437173373663.16057660242943717551.56610.6139.60.07203643217551.56610.6139.60.0720	17	258 (351)	81965	0.5	87.5	0.0476	6202				
19 104 2003 6006 0.2 42.6 10402 6686 20 314 1254 2134 0.9 154.7 0.0417 6869 21 151 139 9515 0.2 28.7 0.0497 6843 22 122 0376 6773 27 43.6 0.0497 6931 22 322 1385 4146 0.2 29.6 0.0672 6167 23 322 1385 4146 0.2 29.6 0.0672 6167 24 327 1494 10305 0.4 78.9 0.6672 6167 25 324.1805 5671 0.3 51.3 6.0559 9559 26 26 467.1613 73373 3.0 60652 0.6629 6654 27 458.1600 1554.2 0.4 128.5 0.6625 6842 28 427.3047 4593 0.2 42.3 0.0625 6842 29 437.1733 17.365 21 691.7 0.0	15	300 1210	5506	02	40 :	0.0450	667 ·				
20 314 354 2 154 7 0.0417 6889 21 515 1529 3615 1 2.647 6345 22 322 1325 6145 1 7 43.6 0.0457 6451 23 322 1325 4146 0.2 25.6 0.0457 6477 24 377 494 1001 0.4 7.89 0.667 6477 25 26.4 605 6571 0.2 513 6.059 6539 25 467 1613 73373 3.0 60631 0.6629 6660 27 4621 15542 1.2 0.6625 6842 28 427 3047 4593 0.2 4.2 3.0625 6842 29 431 1733 7.366 3.1 6917 0.0726 6021 36 1.964 0.964 0.966 0.6021 6623 6624 29 431 1733 7.366 3.1 6917 0.0726 <td< td=""><td>12</td><td>104 2603</td><td>6865</td><td>5.2</td><td>425</td><td>0.6462</td><td>6586</td><td></td><td></td><td></td></td<>	12	104 2603	6865	5.2	425	0.6462	6586				
21 11 1329 3516 1,2 281 0.0497 6313 22 1322 1325 6173 7 436 0.0457 6471 23 322 1325 4146 0.2 296 0.0497 6477 24 371 1096 0.4 729 0.0612 6467 24 371 1096 0.4 729 0.0612 6467 25 64 10366 0.7 13 0.0520 6569 26 467 1613 73573 3.0 6662 0666 27 458 10.657 0.25 6634 6422 27 458 0.6 128 0.0525 6642 28 427 3.7 7365 3.1 6917 0.0726 6023 36 15601 0.6 739.6 0.0720 6083 0.0720 6083	20	314 1354	21334	6.9	154.2	0.0417	6589				
22 322 (3376) AT73 27 43.6 C.0423 C.6433 23 322 (336) 4146 C.2 26 C.0423 C.477 24 377 (494) (305) C.4 78.9 O.652 6167 25 324 (1805) 5671 C.3 51.3 C.0529 6569 26 467 (613) 75373 3.0 608.1 C.6557 6634 26 427 3047 4593 C.2 423 C.0625 6842 29 437 1733 77365 3.1 6.0626 6021 36 437 1733 77365 3.1 6.0623 6021 36 437 1765 1.5661 0.6 839.6 C.0720 6023 37 1765 1.5661 0.6 839.6 C.0720 6023	23	315 1389	3615	5.2	28 1	0.0497	6343				
23 322 3365 446 0.2 296 0.047 6477 24 377 4594 10307 0.4 789 0.0672 6467 25 284 1605 5571 0.3 513 0.0590 5509 26 467 1613 73373 3.0 508 1.06659 6650 27 458 459 15542 0.6 125 9.0525 6634 28 427 3047 4593 0.2 42 3 0.0625 6634 29 433 1733 77365 3.1 5917 0.0726 6021 36 438 1755 15661 0.6 139.6 0.0726 6023	âî	122 0375	8773	1	43.6	0.0491	5553				
24 327 14944 1036* 0.4 72.0 0.06*2 6167 26 324 1603 6571 0.3 613.1 0.0559 0559 26 407 1613 73573 3.0 6063.1 0.6659 6660 27 406 1650 15542 0.4 125.4 10.655* 6642 28 427 324.7 4293 0.026.26 6042 29 437 1733 77365 3.1 60726 6023 30 432 1565 1.566.1 0.6 1720 6023 - - - - - - -	23	322 1385	4145	6.2	29€	0.0497	6,477				
26 2841805 8571 93 513 0559 9559 26 4571613 73573 30 655 0656 9656 27 4581950 15548 0.6 128 9 0655 6684 28 4273047 4593 0.2 423 06825 6842 29 4371733 77365 31 5917 00726 6021 36 4371755 15901 0.6 139.6 00726 6023	24	377 1494	:025*	0.4	15.0	0.0612	5157				
20 407 1613 73343 3.0 60831 0.6602 6650 27 362 1650 15542 0.6125 6624 28 427 3047 4593 0.2 42.3 0.6625 6842 29 431 1733 17365 3.1 6917 0.0726 6021 36 432 1755 15601 0.6 130.6 0.0726 6023	25	264 1605	5571	9.2	513	0.0590	5509				
24 4021002 11542 75 1285 7565 884 28 4273047 4593 02 423 00625 6842 29 4371733 77365 31 5917 00726 6021 30 4381755 15601 06 7366 00720 6083	20	457 1613	/3373	30	506 1	0.0609	0690				
26 427 5047 4093 02 423 00665 5642 29 437 5730 21 6917 00726 6021 30 437 1735 15601 0.6 H39.6 0.9720 6083	27	402 1650	15546	0.5	128.9	0.059	5234				
20 404 1700 11000 21 5017 00720 0021 30 408 1765 15601 0.6 30.6 00720 6083	28	427 3047	4593	02	42 J 66-1 7	0.0525	0042				
	29 30	438 1765	17390 1560 1	06	5917 5917	0.0720	6023				

13 12 11 10 9 8 7 6 5 4 3 2 1 0 -i δ(ppm)

Figure A.12 ¹H-NMR spectrum of compound 6 (DMSO- d_6)

Figure A.14 IR spectra of compound 6

Mass Spectrum List Report

Bruker Daltonics DataAnalysis 3.3

.

printed 8/20/2013 5 11 39 Pt.

Page 1 of 1

Figure A.15 High resolution mass spectrum of compound 6

Figure A.18 IR spectra of compound 7

•

Mass Spectrum List Report

Figure A.20 High resolution mass spectrum of compound 8

Figure A.21 IR spectra of compound 8

.

APPENDIX B

Figure B.1 Absorption spectrum of compound 6 in DMSO

Figure B.2 Calibration curve for the quantitative determination of compound 6 in DMSO (λ_{abs} = 337 nm)

Figure B.3 Emission spectrum of compound 6 in DMSO (λ_{ex} = 350 nm)

=

Figure B.4 Absorption spectrum of compound 7 in DMSO (λ_{abs} = 340 nm)

Figure B.5 Calibration curve for the quantitative determination of compound 7 in DMSO (λ_{abs} = 340 nm)

Figure B.6 Emission spectrum of compound 7 in DMSO (λ_{ex} = 350 nm)

Figure B.7 Absorption spectrum of compound 8 in DMSO (λ_{abs} = 340 nm)

Figure B.8 Calibration curve for the quantitative determination of compound 8 in DMSO (λ_{abs} = 340 nm)

AUNG (3W. 2756 .ลขทะเบียน..... **วันเดือนปี....**

Figure B.9 Emission spectrum of compound 8 in DMSO (λ_{ex} = 350 nm)

VITA

Miss Kobkun Sae-pang was born on July 30, 1987 in Phetchabun, Thailand. She got a Bachelor Degree of Petrochemical and Polymer engineering from Faculty of Engineering at Silpakorn University, Nakornprathom in 2008. Then, she was admitted into a Master Degree in the major Petrochemical and Polymer science, Faculty of Science, Chulalongkorn University, Bangkok in 2009 and completed the program in 2013.

