CHAPTER III

$PRISM(C_n)$

In this chapter, we show that the prism of a cycle C_n , where $n \ge 3$, is an edge-odd graceful graph.

Definition 3.1 Let $n \ge 3$ and C_n be an *n*-cycle $u_1u_2u_3 \cdots u_nu_1$. Let $C'_n: u'_1u'_2u'_3 \cdots u'_nu'_1$ be a copy of C_n . Define $Prism(C_n)$, called the prism of C_n , by joining each corresponding vertex u_i of C_n to u'_i of C'_n . That is

$$E(\operatorname{Prism}(C_n)) = E(C_n) \cup E(C'_n) \cup \{u_i u'_i \mid i \in \{1, 2, 3, \dots, n\}\}.$$

Note that $\{u_iu_i' \mid i \in \{1, 2, 3, ..., n\}\}$ is the set of bridges between C_n and C'_n

 $Prism(C_n)$ can be viewed as $C_n \Box P_2$, a cartesian product of a cycle C_n and a path P_2 .

Example 3.1 From Definition 3.1, we have $Prism(C_4)$ as seen in Figure 3.1.

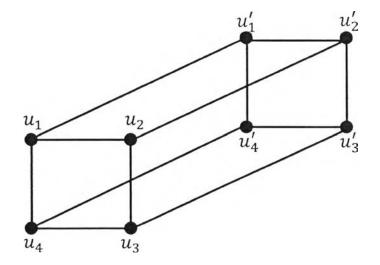


Figure 3.1 $Prism(C_4)$.

First, Figure 3.2 shows one example on edge-labeling of $Prism(C_3)$.

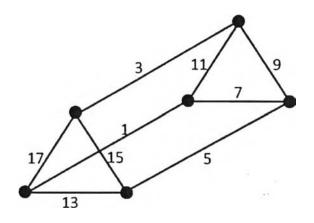


Figure 3.2 Edge-labeling for $Prism(C_3)$.

Next, for any $n \ge 4$, we can label the edges of $Prism(C_n)$ by using the following algorithm.

Algorithm 3.1

Let G denote $Prism(C_n)$, where $n \ge 4$. Then, q = 3n. Define $f: E(G) \rightarrow \{1, 3, 5, ..., 6n - 1\}$ by

1.1 $f(u_{i-1}u_i) = 4n - 2i + 1$, for $i \in \{2, 3, 4, ..., n\}$; 1.2 $f(u_1u_n) = 4n - 1$; 1.3 $f(u'_{i-1}u'_i) = 6n - 2i + 1$, for $i \in \{2, 3, 4, ..., n\}$; 1.4 $f(u'_1u'_n) = 6n - 1$; 1.5 $f(u_iu'_i) = 2i - 1$, for $i \in \{1, 2, 3, ..., n\}$.

Example 3.2 From Algorithm 3.1, we can label each edge of $Prism(C_6)$ as shown in Figure 3.3.

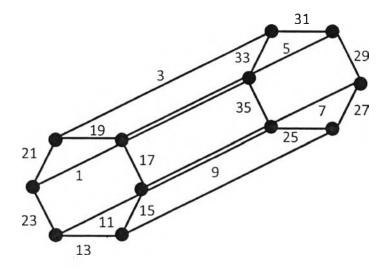


Figure 3.3 Edge-labeling for $Prism(C_6)$.

Next, we show that if $n \ge 3$, then $Prism(\mathcal{C}_n)$ is an edge-odd graceful graph.

Theorem 3.1 Prism (C_n) is an edge-odd graceful graph whenever $n \ge 3$.

Proof. From Figure 3.2, we can see immediately that the induced vertex-labeling is shown in Figure 3.4.

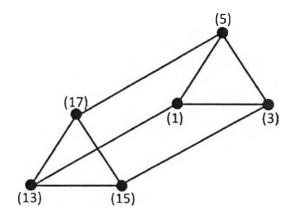


Figure 3.4 The vertex-labeling is induced from the edge-labeling in Figure 3.2.

Therefore, it is obvious from Figures 3.2 and 3.4 that $Prism(C_3)$ is an edge-odd graceful graph.

Let $n \ge 4$. We first prove that the function f defined in Algorithm 3.1 is a bijection from E(G) to $\{1, 3, 5, ..., 6n - 1\}$. From Algorithm 3.1(1.1 and 1.2), we have

$$A = \{f(u_{i-1}u_i), f(u_1u_n) \mid i \in \{2, 3, 4, \dots, n\}\}$$
$$= \{2n + 1, 2n + 3, 2n + 5, \dots, 4n - 3, 4n - 1\}$$

From Algorithm 3.1(1.3 and 1.4), we have

$$B = \{f(u'_{i-1}u'_i), f(u'_1u'_n) \mid i \in \{2, 3, 4, \dots, n\}\}$$
$$= \{4n + 1, 4n + 3, 4n + 5, \dots, 6n - 3, 6n - 1\}.$$

From Algorithm 3.1(1.5), we have

$$C = \{f(u_i u_i') \mid i \in \{1, 2, 3, \dots, n\}\} = \{1, 3, 5, \dots, 2n - 1\}.$$

We can see clearly that A, B and C are disjoint and

$$f(E(Prism(C_n))) = A \cup B \cup C = \{1, 3, 5, ..., 6n - 1\}$$

Next, we will show that the induced vertex-labels from the edge-labels using algorithm 3.1 are in $\{0,1,2,...,6n-1\}$ and all distinct. From Algorithm 3.1, we have

$$f^{+}(u_{1}) = (f(u_{1}u_{1}') + f(u_{1}u_{n}) + f(u_{1}u_{2})) \pmod{6n}$$
$$= (1 + (4n - 1) + (4n - 3)) \pmod{6n}$$
$$= 2n - 3;$$

$$f^{+}(u_{n}) = (f(u_{n}u_{n}') + f(u_{1}u_{n}) + f(u_{n-1}u_{n})) \pmod{6n}$$
$$= ((2n-1) + (4n-1) + (2n+1)) \pmod{6n}$$
$$= 2n - 1;$$

$$f^{+}(u_{i}) = (f(u_{i}u_{i}') + f(u_{i-1}u_{i}) + f(u_{i}u_{i+1})) \pmod{6n}$$

$$= ((2i - 1) + (4n - 2i + 1) + (4n - 2(i + 1) + 1))$$

(mod 6n)
$$= 2n - 2i - 1, \text{ for } i \in \{2, 3, 4, ..., n - 1\};$$

$$f^{+}(u'_{1}) = (f(u_{1}u'_{1}) + f(u'_{1}u'_{n}) + f(u'_{1}u'_{2})) \pmod{6n}$$
$$= (1 + (6n - 1) + (6n - 3)) \pmod{6n}$$
$$= 6n - 3;$$

$$f^{+}(u'_{n}) = (f(u_{n}u'_{n}) + f(u'_{1}u'_{n}) + f(u'_{n-1}u'_{n})) \pmod{6n}$$
$$= ((2n-1) + (6n-1) + (4n+1)) \pmod{6n}$$
$$= 6n - 1;$$

$$f^{+}(u'_{i}) = (f(u_{i}u'_{i}) + f(u'_{i-1}u'_{i}) + f(u'_{i}u'_{i+1})) \pmod{6n}$$

= $((2i - 1) + (6n - 2i + 1) + (6n - 2(i + 1) + 1))$
(mod 6n)
= $6n - 2i - 1$, for $i \in \{2, 3, 4, ..., n - 1\}$.

We can see that

$$\{f^+(u_i) \mid i \in \{1, 2, 3, \dots, n\} \}$$

= $\{2n - 3\} \cup \{2n - 1\} \cup \{2n - 5, 2n - 7, 2n - 9, \dots, 5, 3, 1\}$
= $\{1, 3, 5, \dots, 2n - 5, 2n - 1, 2n - 3\}$

and

$$\{f^+(u'_i) \mid i \in \{1, 2, 3, \dots, n\} \}$$

= $\{6n - 3\} \cup \{6n - 1\} \cup \{6n - 5, 6n - 7, 6n - 9, \dots, 4n + 5, 4n + 3, 4n + 1\}$

 $= \{4n + 1, 4n + 3, 4n + 5, \dots, 6n - 5, 6n - 3, 6n - 1\}.$

It is clear that if $n \ge 4$, these two sets are disjoint and both are subsets of $\{0, 1, 2, ..., 6n - 1\}$.

Therefore, the function f defined in Algorithm 3.1 is an edge-odd graceful labeling and $Prism(C_n)$ is an edge-odd graceful graph for all $n \ge 3$.

Example 3.3 From the edge-labeling in Example 3.2, the induced vertex-labeling of $Prism(C_6)$ is shown in Figure 3.5.

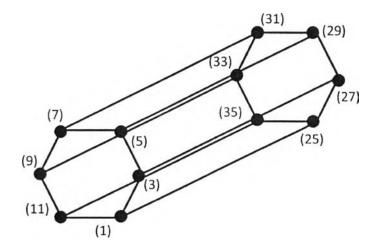


Figure 3.5 The vertex-labeling is induced from the edge-labeling in Example 3.2.