CHAPTER III

$\operatorname{PRISM}\left(C_{n}\right)$

In this chapter, we show that the prism of a cycle C_{n}, where $n \geq 3$, is an edge-odd graceful graph.

Definition 3.1 Let $n \geq 3$ and C_{n} be an n-cycle $u_{1} u_{2} u_{3} \cdots u_{n} u_{1}$. Let $C_{n}^{\prime}: u_{1}^{\prime} u_{2}^{\prime} u_{3}^{\prime}$ $\cdots u_{n}^{\prime} u_{1}^{\prime}$ be a copy of C_{n}. Define $\operatorname{Prism}\left(C_{n}\right)$, called the prism of C_{n}, by joining each corresponding vertex u_{i} of C_{n} to u_{i}^{\prime} of C_{n}^{\prime}. That is

$$
E\left(\operatorname{Prism}\left(C_{n}\right)\right)=E\left(C_{n}\right) \cup E\left(C_{n}^{\prime}\right) \cup\left\{u_{i} u_{i}^{\prime} \mid i \in\{1,2,3, \ldots, n\}\right\}
$$

Note that $\left\{u_{i} u_{i}^{\prime} \mid i \in\{1,2,3, \ldots, n\}\right\}$ is the set of bridges between C_{n} and C_{n}^{\prime}
$\operatorname{Prism}\left(C_{n}\right)$ can be viewed as $C_{n} \square P_{2}$, a cartesian product of a cycle C_{n} and a path P_{2}.

Example 3.1 From Definition 3.1, we have Prism $\left(C_{4}\right)$ as seen in Figure 3.1.

Figure 3.1 $\operatorname{Prism}\left(C_{4}\right)$.

First, Figure 3.2 shows one example on edge-labeling of $\operatorname{Prism}\left(C_{3}\right)$.

Figure 3.2 Edge-labeling for $\operatorname{Prism}\left(C_{3}\right)$.

Next, for any $n \geq 4$, we can label/the edges of $\operatorname{Prism}\left(C_{n}\right)$ by using the following algorithm.

Algorithm 3.1

Let G denote Prism $\left(C_{n}\right)$, where $n \geq 4$. Then, $q=3 n$. Define $f: E(G) \rightarrow\{1,3,5, \ldots$, $6 n-1\}$ by

$$
\begin{aligned}
& 1.1 f\left(u_{i-1} u_{i}\right)=4 n-2 i+1 \text {, for } i \in\{2,3,4, \ldots, n\} \text {; } \\
& 1.2 f\left(u_{1} u_{n}\right)=4 n-1 \text {; } \\
& 1.3 f\left(u_{i-1}^{\prime} u_{i}^{\prime}\right)=6 n-2 i+1 \text {, for } i \in\{2,3,4, \ldots, n\} \text {; } \\
& 1.4 f\left(u_{1}^{\prime} u_{n}^{\prime}\right)=6 n-1 \text {; } \\
& 1.5 f\left(u_{i} u_{i}^{\prime}\right)=2 i-1 \text {, for } i \in\{1,2,3, \ldots, n\} \text {. }
\end{aligned}
$$

Example 3.2 From Algorithm 3.1, we can label each edge of $\operatorname{Prism}\left(C_{6}\right)$ as shown in Figure 3.3.

Figure 3.3 Edge-labeling for Prism $\left(C_{6}\right)$.

Next, we show that if $n \geq 3$, then Prism $\left(C_{n}\right)$ is an edge-odd graceful graph.

Theorem 3.1 $\operatorname{Prism}\left(C_{n}\right)$ is an edge-odd graceful graph whenever $n \geq 3$.

Proof. From Figure 3.2, we can see immediately that the induced vertex-labeling is shown in Figure 3.4.

Figure 3.4 The vertex-labeling is induced from the edge-labeling in Figure 3.2.

Therefore, it is obvious from Figures 3.2 and 3.4 that $\operatorname{Prism}\left(C_{3}\right)$ is an edge-odd graceful graph.

Let $n \geq 4$. We first prove that the function f defined in Algorithm 3.1 is a bijection from $E(G)$ to $\{1,3,5, \ldots, 6 n-1\}$. From Algorithm 3.1(1.1 and 1.2), we have

$$
\begin{aligned}
A & =\left\{f\left(u_{i-1} u_{i}\right), f\left(u_{1} u_{n}\right) \mid i \in\{2,3,4, \ldots, n\}\right\} \\
& =\{2 n+1,2 n+3,2 n+5, \ldots, 4 n-3,4 n-1\}
\end{aligned}
$$

From Algorithm 3.1(1.3 and 1.4), we have

$$
\begin{aligned}
B & =\left\{f\left(u_{i-1}^{\prime} u_{i}^{\prime}\right), f\left(u_{1}^{\prime} u_{n}^{\prime}\right) \mid i \in\{2,3,4, \ldots, n\}\right\} \\
& =\{4 n+1,4 n+3,4 n+5, \ldots, 6 n-3,6 n-1\}
\end{aligned}
$$

From Algorithm 3.1(1.5), we have

$$
C=\left\{f\left(u_{i} u_{i}^{\prime}\right) \mid i \in\{1,2,3, \ldots, n\}\right\}=\{1,3,5, \ldots, 2 n-1\}
$$

We can see clearly that A, B and C are disjoint and

$$
f\left(E\left(\operatorname{Prism}\left(C_{n}\right)\right)\right)=A \cup B \cup C=\{1,3,5, \ldots, 6 n-1\}
$$

Next, we will show that the induced vertex-labels from the edge-labels using algorithm 3.1 are in $\{0,1,2, \ldots, 6 n-1\}$ and all distinct. From Algorithm 3.1, we have

$$
\begin{aligned}
f^{+}\left(u_{1}\right) & =\left(f\left(u_{1} u_{1}^{\prime}\right)+f\left(u_{1} u_{n}\right)+f\left(u_{1} u_{2}\right)\right)(\bmod 6 n) \\
& =(1+(4 n-1)+(4 n-3))(\bmod 6 n) \\
& =2 n-3 \\
f^{+}\left(u_{n}\right) & =\left(f\left(u_{n} u_{n}^{\prime}\right)+f\left(u_{1} u_{n}\right)+f\left(u_{n-1} u_{n}\right)\right)(\bmod 6 n) \\
& =((2 n-1)+(4 n-1)+(2 n+1))(\bmod 6 n) \\
& =2 n-1 ; \\
& =\left(f\left(u_{i} u_{i}^{\prime}\right)+f\left(u_{i-1} u_{i}\right)+f\left(u_{i} u_{i+1}\right)\right)(\bmod 6 n)
\end{aligned}
$$

$$
\begin{aligned}
= & ((2 i-1)+(4 n-2 i+1)+(4 n-2(i+1)+1)) \\
& (\bmod 6 n) \\
= & 2 n-2 i-1, \text { for } i \in\{2,3,4, \ldots, n-1\} ; \\
f^{+}\left(u_{1}^{\prime}\right)= & \left(f\left(u_{1} u_{1}^{\prime}\right)+f\left(u_{1}^{\prime} u_{n}^{\prime}\right)+f\left(u_{1}^{\prime} u_{2}^{\prime}\right)\right)(\bmod 6 n) \\
= & (1+(6 n-1)+(6 n-3))(\bmod 6 n) \\
= & 6 n-3 ; \\
f^{+}\left(u_{n}^{\prime}\right)= & \left(f\left(u_{n} u_{n}^{\prime}\right)+f\left(u_{1}^{\prime} u_{n}^{\prime}\right)+f\left(u_{n-1}^{\prime} u_{n}^{\prime}\right)\right)(\bmod 6 n) \\
= & ((2 n-1)+(6 n-1)+(4 n+1))(\bmod 6 n) \\
= & 6 n-1 ; \\
f^{+}\left(u_{i}^{\prime}\right)= & \left(f\left(u_{i} u_{i}^{\prime}\right)+f\left(u_{i-1}^{\prime} u_{i}^{\prime}\right)+f\left(u_{i}^{\prime} u_{i+1}^{\prime}\right)\right)(\bmod 6 n) \\
= & ((2 i-1)+(6 n-2 i+1)+(6 n-2(i+1)+1)) \\
& (\bmod 6 n) \\
= & 6 n-2 i-1, \text { for } i \in\{2,3,4, \ldots, n-1\} .
\end{aligned}
$$

We can see that

$$
\begin{aligned}
\left\{f^{+}\left(u_{i}\right)\right. & \mid i \in\{1,2,3, \ldots, n\}\} \\
& =\{2 n-3\} \cup\{2 n-1\} \cup\{2 n-5,2 n-7,2 n-9, \ldots, 5,3,1\} \\
& =\{1,3,5, \ldots, 2 n-5,2 n-1,2 n-3\}
\end{aligned}
$$

and
$\left\{f^{+}\left(u_{i}^{\prime}\right) \mid i \in\{1,2,3, \ldots, n\}\right\}$
$=\{6 n-3\} \cup\{6 n-1\} \cup\{6 n-5,6 n-7,6 n-9, \ldots, 4 n+5,4 n+3,4 n+1\}$
$=\{4 n+1,4 n+3,4 n+5, \ldots, 6 n-5,6 n-3,6 n-1\}$.
It is clear that if $n \geq 4$, these two sets are disjoint and both are subsets of $\{0,1,2, \ldots, 6 n-1\}$.

Therefore, the function f defined in Algorithm 3.1 is an edge-odd graçeful labeling and $\operatorname{Prism}\left(C_{n}\right)$ is an edge-odd graceful graph for all $n \geq 3$.

Example 3.3 From the edge-labeling in Example 3.2, the induced vertex-labeling of $\operatorname{Prism}\left(C_{6}\right)$ is shown in Figure 3.5.

Figure 3.5 The vertex-labeling is induced from the edge-labeling in Example 3.2.

