CHAPTER VI PRISM(S_n)

In this chapter, we show that the prism of star S_n is an edge-odd graceful graph for every $n \ge 3$.

Definition 6.1 Let $n \ge 3$ and S_n be a star. Let S'_n be a copy of S_n . Define $Prism(S_n)$, called the prism of S_n , by joining u of S_n to the corresponding vertex u' of S'_n and each u_i of S_n to the corresponding vertex u'_i of S'_n for all $i \in \{1, 2, 3, ..., n\}$. Thus,

 $E(\operatorname{Prism}(S_n)) = E(S_n) \cup E(S'_n) \cup \{u_i u'_i \mid i \in \{1, 2, 3, \dots, n\}\} \cup \{uu'\}.$

Example 6.1 From Definition 6.1, we have $Prism(S_4)$, shown in Figure 6.1.

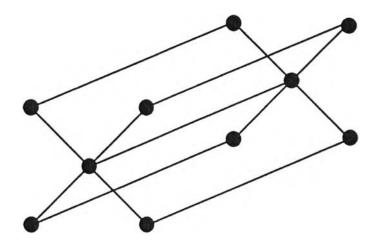


Figure 6.1 $Prism(S_4)$.

Algorithm 6.1

Let n > 3 be an even integer. Let G denote $Prism(S_n)$. Then, q = 3n + 1.

Define $f: E(G) \rightarrow \{1, 3, 5, \dots, 6n + 1\}$ by

1.1	$f(u_iu_i')$	=	$2i - 1$, for $i \in \{1, 2, 3,, n\}$;
1.2	$f(u_i u)$	=	$2n + 4i - 3$, for $i \in \{1, 2, 3,, n\}$;
1.3	$f(u_i'u')$	=	$2n + 4i - 1$, for $i \in \{1, 2, 3,, n\}$;
1.4	f (uu')	=	6n + 1.

Example 6.2 From Algorithm 6.1, we can label each edge of $Prism(S_6)$ as shown in Figure 6.2.

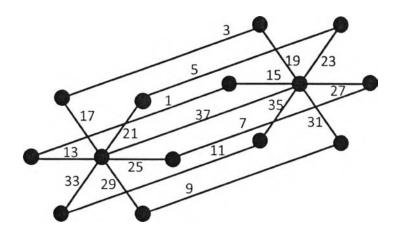


Figure 6.2 Edge-labeling for $Prism(S_6)$.

Algorithm 6.2

Let n > 3 be an integer of the form n = 6k - 1 for some $k \in \mathbb{N}$. Let G denote $Prism(S_n)$. Then, q = 3n + 1. Define $f: E(G) \rightarrow \{1, 3, 5, ..., 6n + 1\}$ by

2.1 $f(u_{i}u_{i}') = 2n + 2i - 1$, for $i \in \{1, 2, 3, ..., n\}$; 2.2 $f(u_{n}u) = 1$; 2.3 $f(u_{i}u) = 2i + 1$, for $i \in \{1, 2, 3, ..., n - 1\}$; 2.4 $f(u_{i}'u') = 4n + 2i - 1$, for $i \in \{1, 2, 3, ..., n\}$;

2.5
$$f(uu') = 6n + 1$$
.

Example 6.3 From Algorithm 6.2, since 5 = 6(1) - 1, we can label each edge of $Prism(S_5)$ as shown in Figure 6.3.

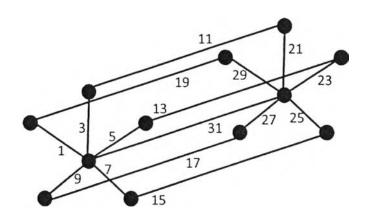


Figure 6.3 Edge-labeling for $Prism(S_5)$.

Algorithm 6.3

Let n > 3 be an integer of the form n = 6k + 1 for some $k \in \mathbb{N}$. Let G denote $Prism(S_n)$. Then, q = 3n + 1. Define $f: E(G) \rightarrow \{1, 3, 5, ..., 6n + 1\}$ by

3.1 $f(u_i u_i')$ $= 4n + 2i + 1, \text{ for } i \in \{1, 2, 3, ..., n\};$ 3.2 $f(u_i u)$ 2i + 1, for $i \in \{1, 2, 3, ..., n\}$; = $f(u_1'u')$ 3.3 = 1; $f(u_i'u')$ 2n + 2i + 1, for $i \in \{2, 3, 4, \dots, n\}$; 3.4 = f(uu') = 2n+3.3.5

Example 6.4 From Algorithm 6.3, since 7 = 6(1) + 1, we can label each edge of $Prism(S_7)$ as shown in Figure 6.4.

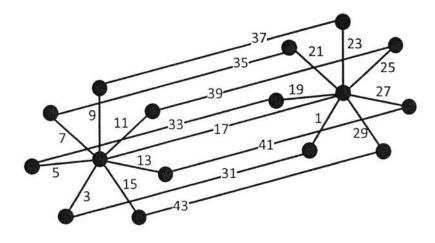


Figure 6.4 Edge-labeling for $Prism(S_7)$.

Algorithm 6.4

Let n > 3 be an integer of the form n = 6k + 3 for some $k \in \mathbb{N}$. Let G denote $Prism(S_n)$. Then, q = 3n + 1. Define $f: E(G) \rightarrow \{1, 3, 5, ..., 6n + 1\}$ by

4.1	$f(u_iu_i')$	=	$4n + 2i + 1$, for $i \in \{1, 2, 3,, n\}$;
4.2	$f(u_i u)$	=	$2i + 1$, for $i \in \{1, 2, 3,, n\}$;
4.3	$f(u_i'u')$	=	$2n + 2i + 1$, for $i \in \{1, 2, 3,, n\}$;
4.4	f(uu')	=	1.

Example 6.5 From Algorithm 6.4, since 9 = 6(1) + 3, we can label each edge of $Prism(S_9)$ as shown in Figure 6.5.

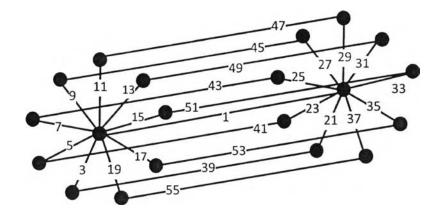


Figure 6.5 Edge-labeling for $Prism(S_9)$.

Next, we show that if $n \ge 3$ and n is even, then $Prism(S_n)$ is an edge-odd graceful graph.

Lemma 6.1 Let $n \ge 3$ be even. $Prism(S_n)$ is an edge-odd graceful graph.

Proof Let $n \ge 3$ be an even integer. We first prove that the function f defined in Algorithm 6.1 is a bijection from E(G) to $\{1, 3, 5, ..., 6n + 1\}$.

From Algorithm 6.1(1.1), we have

$$A = \{f(u_i u_i') \mid i \in \{1, 2, 3, \dots, n\}\} = \{1, 3, 5, \dots, 2n - 1\}.$$

From Algorithm 6.1(1.2), we have

$$B = \{f(u_i u) | i \in \{1, 2, 3, ..., n\}\}$$
$$= \{2n + 1, 2n + 5, 2n + 9, ..., 6n - 3\}$$

From Algorithm 6.1(1.3), we have

$$C = \{f(u_i u') \mid i \in \{1, 2, 3, ..., n\}\}$$
$$= \{2n + 3, 2n + 7, 2n + 11, ..., 6n - 1\}.$$

From Algorithm 6.1(1.4), we have

$$D = \{f(uu')\} = \{6n+1\}.$$

We can see clearly that A, B, C and D are disjoint and

$$f(E(Prism(S_n))) = A \cup B \cup C \cup D = \{1, 3, 5, ..., 6n + 1\}.$$

Next, we will show that the induced vertex-labels from the edge-labels using Algorithm 6.1 are in $\{0, 1, 2, ..., 6n + 1\}$ and all distinct. From Algorithm 6.1, we have

$$f^{+}(u_{i}) = (f(u_{i}u_{i}') + f(u_{i}u)) \pmod{6n+2}$$
$$= ((2i-1) + (2n+4i-3)) \pmod{6n+2}$$
$$= (2n+6i-4) \pmod{6n+2}, \text{ for } i \in \{1,2,3,\dots,n\}.$$

$$f^{+}(u'_{i}) = (f(u_{i}u'_{i}) + f(u'_{i}u')) \pmod{6n+2}$$
$$= ((2i-1) + (2n+4i-1)) \pmod{6n+2}$$
$$= (2n+6i-2) \pmod{6n+2}, \text{ for } i \in \{1,2,3,\dots,n\}.$$

$$f^{+}(u) = \left(\sum_{i=1}^{n} f(u_{i}u) + f(uu')\right) \pmod{6n+2}$$

= $\left(\sum_{i=1}^{n} (2n+4i-3) + 6n+1\right) \pmod{6n+2}$
= $\left((2n^{2} + (2n^{2} + 2n) - 3n) + 6n+1\right) \pmod{6n+2}$
= $\left(4n^{2} + 5n + 1\right) \pmod{6n+2}$.

$$f^{+}(u') = \left(\sum_{i=1}^{n} f(u'_{i}u') + f(uu')\right) \pmod{6n+2}$$

= $\left(\sum_{i=1}^{n} (2n+4i-1) + 6n+1\right) \pmod{6n+2}$
= $\left((2n^{2} + (2n^{2} + 2n) - n) + 6n+1\right) \pmod{6n+2}$
= $\left(4n^{2} + 7n + 1\right) \pmod{6n+2}$.

Next, we will show that $f^+(u_i)$, $f^+(u_i')$, $f^+(u)$ and $f^+(u')$ are distinct by using the contradiction argument. Let $i, j \in \{1, 2, 3, ..., n\}$ and $i \neq j$, we first suppose that $f^+(u_i) \equiv f^+(u_j) \pmod{6n+2}$ and $f^+(u_i') \equiv f^+(u_j') \pmod{6n+2}$.

Since $f^+(u_i) \equiv f^+(u_j) \pmod{6n+2}$,

$$2n + 6i - 4 \equiv 2n + 6j - 4 \pmod{6n + 2}$$

This implies that $6(i - j) \equiv 0 \pmod{6n + 2}$, which is a contradiction.

Since $f^+(u'_i) \equiv f^+(u'_i) \pmod{6n+2}$,

$$2n + 6i - 2 \equiv 2n + 6j - 2 \pmod{6n + 2}$$
.

This implies that $6(i - j) \equiv 0 \pmod{6n + 2}$, which is a contradiction.

Second, let $i \in \{1, 2, 3, ..., n\}$ and suppose that $f^+(u_i) \equiv f^+(u_i') \pmod{6n+2}$. Then,

$$2n + 6i - 4 \equiv 2n + 6i - 2 \pmod{6n + 2}$$
.

This implies that $2 \equiv 0 \pmod{6n+2}$, which is a contradiction.

Next, let $i, j \in \{1, 2, 3, ..., n\}$ and $i \neq j$ suppose that $f^+(u_i) \equiv f^+(u'_j) \pmod{6n} + 2$. Then, $2n + 6i - 4 \equiv 2n + 6j - 2 \pmod{6n} + 2$. This implies that

$$3(i-j) \equiv 1 \pmod{3n+1}.$$

Since $3(2n + 1) \equiv 1 \pmod{3n + 1}$ and for $i, j \in \{1, 2, 3, ..., n\}$, $(i - j) \pmod{3n + 2} \in \{1, 2, 3, ..., n - 1, 2n + 2, 2n + 3, 2n + 4, ..., 3n\}$, we get a contradiction.

Finally, suppose that $f^+(u) \equiv f^+(u') \pmod{6n+2}$. Then,

$$4n^2 + 5n + 1 \equiv 4n^2 + 7n + 1 \pmod{6n + 2}$$

This implies that $2n \equiv 0 \pmod{6n+2}$, which is a contradiction.

Thus, $f^+(u_i)$, $f^+(u_i)$, $f^+(u)$ and $f^+(u')$ are all distinct and all are subsets of $\{0, 1, 2, ..., 6n + 1\}$. Therefore, the function f defined in Algorithm 6.1 is an edge-odd graceful labeling.

Lemma 6.2 $Prism(S_3)$ is an edge odd graceful labeling.

Proof. we can label edge by Figure 6.1.

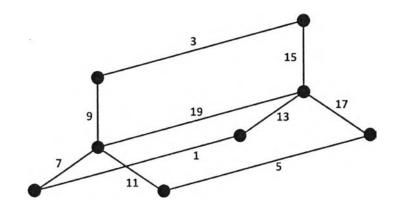


Figure 6.6 Edge-labeling for $Prism(S_3)$.

The vertices of $Prism(S_3)$ induced by edge labeling shown in Figure 6.7

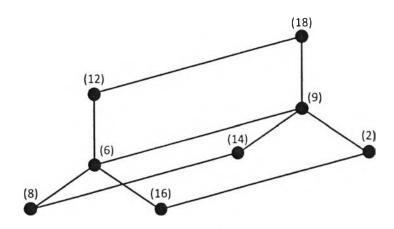


Figure 6.7 The vertex-labeling for $Prism(S_3)$ induced by Figure 6.6.

Thus, $Prism(S_3)$ is an edge-odd graceful graph.

Lemma 6.3 Let $n \ge 3$. If n = 6k - 1 for some $k \in \mathbb{N}$, then 4|a and 4|b, where $a = n^2 - 1 \pmod{6n + 2}$ and $b = 5n^2 - 1 \pmod{6n + 2}$.

Proof. Let $n \ge 3$ and there is $k \in \mathbb{N}$ such that n = 6k - 1. Then,

$$a = n^{2} - 1 = (6k - 1)^{2} - 1 = 36k^{2} - 12k$$
$$\equiv -8k \pmod{36k - 4}$$
$$\equiv 28k - 4 \pmod{36k - 4}$$
$$\equiv 4(7k - 1) \pmod{36k - 4}$$

and

$$b = 5n^{2} - 1 = 5(6k - 1)^{2} - 1 = 180k^{2} - 60k + 4$$

$$\equiv -40k + 4 \pmod{36k - 4}$$

$$\equiv 32k - 4 \pmod{36k - 4}$$

$$\equiv 4(8k + 1) \pmod{36k - 4}.$$

That is, 4|a and 4|b, where $a = n^2 - 1 \pmod{6n + 2}$ and $b = 5n^2 - 1 \pmod{6n + 2}$.

Lemma 6.4 Let $n \ge 3$. If n = 6k - 1 for some $k \in \mathbb{N}$, then $Prism(S_n)$ is an edge-odd graceful graph.

Proof. Let $n \ge 3$ and there is $k \in \mathbb{N}$ such that n = 6k - 1. We first prove that the function f defined in Algorithm 6.2 is a bijection from E(G) to $\{1, 3, 5, ..., 6n + 1\}$.

From Algorithm 6.2(2.1), we have

$$A = \{f(u_i u_i') \mid i \in \{1, 2, 3, \dots, n\}\}$$
$$= \{2n + 1, 2n + 3, 2n + 5, \dots, 4n - 1\}.$$

From Algorithm 6.2(2.2 and 2.3), we have

$$B = \{f(u_i u) \mid i \in \{1, 2, 3, \dots, n-1\}\} \cup \{f(u_n u)\}$$

$$= \{3, 5, 7, \dots, 2n - 1\} \cup \{1\}.$$

From Algorithm 6.2(2.4), we have

$$C = \{f(u_i u') \mid i \in \{1, 2, 3, ..., n\}\}$$
$$= \{4n + 1, 4n + 3, 4n + 5, ..., 6n - 1\}$$

From Algorithm 6.2(2.5), we have

$$D = \{f(uu')\} = \{6n + 1\}.$$

We can see clearly that A, B, C and D are disjoint and

$$f(E(Prism(S_n))) = A \cup B \cup C \cup D = \{1, 3, 5, ..., 6n + 1\}.$$

Next, we will show that the induced vertex-labels from the edge-labels using Algorithm 6.2 are in $\{0, 1, 2, ..., 6n + 1\}$ and all distinct. From Algorithm 6.2, we have

$$f^{+}(u_{i}) = (f(u_{i}u_{i}') + f(u_{i}u)) \pmod{6n+2}$$
$$= ((2n+2i-1) + (2i+1)) \pmod{6n+2}$$
$$= 2n + 4i, \text{ for } i \in \{1, 2, 3, ..., n-1\};$$

$$f^{+}(u_{n}) = (f(u_{n}u'_{n}) + f(u'_{n}u')) \pmod{6n+2}$$
$$= ((2n+2n-1)+1) \pmod{6n+2}$$
$$= 4n;$$

$$f^{+}(u'_{i}) = (f(u_{i}u'_{i}) + f(u'_{i}u')) \pmod{6n+2}$$

= $((2n+2i-1) + (4n+2i-1)) \pmod{6n+2}$
= $(6n+4i-2) \pmod{6n+2}$
= $4i - 4$, for $i \in \{1, 2, 3, ..., n\}$;

$$f^{+}(u) = \left(\sum_{i=1}^{n} f(u_{i}u) + f(uu')\right) \pmod{6n+2}$$
$$= \left(\sum_{i=1}^{n} (2i-1) + (6n+1)\right) \pmod{6n+2}$$
$$= \left(n^{2} + (6n+1)\right) \pmod{6n+2}$$
$$= (n^{2} - 1) \pmod{6n+2};$$

$$f^{+}(u') = \left(\sum_{i=1}^{n} f(u'_{i}u') + f(uu')\right) \pmod{6n+2}$$

= $\left(\sum_{i=1}^{n} (4n+2i-1) + (6n+1)\right) \pmod{6n+2}$
= $\left((4n^{2} + (n^{2} + n) - n) + (6n+1)\right) \pmod{6n+2}$
= $(5n^{2} + 6n + 1) \pmod{6n+2}$
= $(5n^{2} - 1) \pmod{6n+2}$.

Next, we will show that $f^+(u_i)$, $f^+(u_i')$, $f^+(u)$ and $f^+(u')$ are distinct. Since

$$\{f^+(u_i) | i \in \{1, 2, 3, \dots, n-1\} \} \cup \{f^+(u_n)\}$$

= $\{2n + 4, 2n + 8, 2n + 12, \dots, 6n - 4\} \cup \{4n\}$

and

$$\{f^+(u_i') | i \in \{1,2,3,\ldots,n\}\} = \{0,4,8,\ldots,4n-4\},\$$

 $\{f^+(u_i) | i \in \{1, 2, 3, ..., n\}\}$ and $\{f^+(u'_i) | i \in \{1, 2, 3, ..., n\}\}$ are disjoint. By Lemma 6.3, we have $4|f^+(u)$ and $4|f^+(u')$. Then, if we need $f^+(u_i)$, $f^+(u'_i)$, $f^+(u)$ and $f^+(u')$ to be distinct, we must show that the values of $f^+(u)$ and $f^+(u')$ under the integers modulo 6n + 2 are greater than $4n \pmod{6n + 2}$. Since n = 6k - 1, 6n + 2 = 36k - 4, $n^2 - 1 = 36k^2 - 12k$ and $5n^2 - 1 = 180k^2 - 60k + 4$. Then,

$$f^{+}(u) = (n^{2} - 1) \pmod{6n + 2}$$
$$= (36k^{2} - 12k) \pmod{36k - 4}$$

$$\equiv -8k \pmod{36k - 4}$$
$$\equiv (28k - 4) \pmod{36k - 4}$$
$$> (24k - 4) \pmod{36k - 4}$$
$$= 4n \pmod{6n + 2},$$

and

$$f^{+}(u') = (5n^{2} - 1) \pmod{6n + 2}$$

= (180k² - 60k + 4) (mod 36k - 4)
$$\equiv (-40k + 4) \pmod{36k - 4}$$

$$\equiv -4k \pmod{36k - 4}$$

$$\equiv (32k - 4) \pmod{36k - 4}$$

> (24k - 4) (mod 36k - 4)
$$\equiv 4n \pmod{6n + 2}.$$

Hence, $f^+(u_i)$, $f^+(u_i')$, $f^+(u)$ and $f^+(u')$ are distinct and they are subsets of $\{0, 1, 2, ..., 6n + 1\}$. Therefore, the function f defined in Algorithm 6.2 is an edge-odd graceful labeling for each n = 6k - 1 with $k \in \mathbb{Z}$.

Lemma 6.5 Let $n \ge 3$. If n = 6k + 1 for some $k \in \mathbb{N}$, then $Prism(S_n)$ is an edge-odd graceful graph.

Proof. Let $n \ge 3$. Assume that there is $k \in \mathbb{N}$ such that n = 6k + 1. We first prove that the function f defined in Algorithm 6.3 is a bijection from E(G) to $\{1, 3, 5, ..., 6n + 1\}$.

From Algorithm 6.3(3.1), we have

$$A = \{f(u_i u_i') \mid i \in \{1, 2, 3, \dots, n\}\}$$
$$= \{4n + 3, 4n + 5, 4n + 7, \dots, 6n + 1\}.$$

From Algorithm 6.3(3.2), we have

 $B = \{f(u_i u) \mid i \in \{1, 2, 3, \dots, n\}\} = \{3, 5, 7, \dots, 2n + 1\}.$

From Algorithm 6.3(3.3 and 3.4), we have

$$C = \{f(u'_1u')\} \cup \{f(u'_iu') \mid i \in \{2, 3, 4, \dots, n\}\}$$
$$= \{1\} \cup \{2n + 5, 2n + 7, 2n + 9, \dots, 4n + 1\}.$$

From Algorithm 6.3(3.5), we have

$$D = \{f(uu')\} = \{2n+3\}.$$

We can see clearly that A, B, C and D are disjoint and

$$f(E(Prism(S_n))) = A \cup B \cup C \cup D = \{1, 3, 5, ..., 6n + 1\}.$$

Next, we will show that the induced vertex-labels from the edge-labels using Algorithm 6.3 are in $\{0, 1, 2, ..., 6n + 1\}$ and all distinct. From Algorithm 6.3, we have

$$f^{+}(u_{i}) = (f(u_{i}u_{i}') + f(u_{i}u)) \pmod{6n+2}$$
$$= ((4n+2i+1) + (2i+1)) \pmod{6n+2}$$
$$= (4n+4i+2) \pmod{6n+2}, \text{ for } i \in \{1,2,3,\dots,n\};$$

$$f^{+}(u) = \left(\sum_{i=1}^{n} f(u_{i}u) + f(uu')\right) \pmod{6n+2}$$
$$= \left(\sum_{i=1}^{n} (2i+1) + 2n+3\right) \pmod{6n+2}$$
$$= \left((n^{2}+n+n) + 2n+3\right) \pmod{6n+2}$$
$$= (n^{2}+4n+3) \pmod{6n+2};$$

$$f^{+}(u_{1}') = (f(u_{1}u_{1}') + f(u_{1}'u')) \pmod{6n+2}$$
$$= ((4n+3)+1) \pmod{6n+2}$$

$$= 4n + 4$$

$$f^{+}(u'_{i}) = (f(u_{i}u'_{i}) + f(u'_{i}u')) \pmod{6n + 2}$$

= $((4n + 2i + 1) + (2n + 2i + 1)) \pmod{6n + 2}$
= $(6n + 4i + 2) \pmod{6n + 2}$
= $4i$, for $i \in \{2, 3, 4, ..., n\}$;

$$f^{+}(u') = \left(\sum_{i=2}^{n} f(u'_{i}u') + f(u'_{1}u') + f(uu')\right) \pmod{6n+2}$$

= $\left(\sum_{i=2}^{n} (2n+2i+1) + 1 + (2n+3)\right) \pmod{6n+2}$
= $\left((2n^{2} + (n^{2} + 2n) - 2n - 3) + 1 + 2n + 3\right) \pmod{6n+2}$
= $(3n^{2} + 2n + 1) \pmod{6n+2}$.

Next, we will show that $f^+(u_i)$, $f^+(u_i')$, $f^+(u)$ and $f^+(u')$ are distinct.

Since $f^+(u_i) = 4n + 4i + 2 \pmod{6n + 2}$ for $i \in \{1, 2, 3, ..., n\}$ and n = 6k + 1, $\{f^+(u_i) \mid i \in \{1, 2, 3, ..., n\}\}$ can be divided into two sets as follows.

$$\begin{cases} f^+(u_i) \middle| i \in \{1, 2, 3, \dots, \frac{n-1}{2}\} \} \cup \begin{cases} f^+(u_i) \middle| i \in \{\frac{n+1}{2}, \frac{n+3}{2}, \frac{n+5}{2}, \dots, n\} \end{cases}$$

= $\{4n + 6, 4n + 10, 4n + 14, \dots, 6n\} \cup \{2, 6, 10, \dots, 2n\}$
= $\{24k + 10, 24k + 14, 24k + 18, \dots, 36k + 6\} \cup \{2, 6, 10, \dots, 12k + 2\}$
and we have
 $\{f^+(u_i') \middle| i \in \{1, 2, 3, \dots, n\}\} = \{8, 12, 16, \dots, 4n, 4n + 4\}$

$$= \{8, 12, 16, \dots, 4n, 4n + 4\}$$
$$= \{8, 12, 16, \dots, 24k + 4, 24k + 8\}.$$

Since n = 6k + 1, 6n + 2 = 36k + 8, $n^2 + 4n + 3 = 36k^2 + 36k + 8$ and $3n^2 + 2n + 1 = 108k^2 + 48k + 6$. Then,

$$f^+(u) = (n^2 + 4n + 3) \pmod{6n + 2}$$

$$= (36k^2 + 36k + 8) \pmod{36k + 8}$$
$$= 28k + 8.$$

and

$$f^{+}(u') = (3n^{2} + 2n + 1) \pmod{6n + 2}$$
$$= (180k^{2} + 48k + 6) \pmod{36k + 8}$$
$$= 24k + 6.$$

Hence, $f^+(u_i)$, $f^+(u_i')$, $f^+(u)$ and $f^+(u')$ are distinct and they are subsets of $\{0, 1, 2, ..., 6n + 1\}$. Therefore, the function f defined in Algorithm 6.3 is an edge-odd graceful labeling for all n = 6k + 1 for all $k \in \mathbb{Z}$.

Lemma 6.6 Let $n \ge 3$. If n = 6k + 3 for some $k \in \mathbb{N}$, then $Prism(S_n)$ is an edge-odd graceful graph.

Proof. Let $n \ge 3$. Assume that there is $k \in \mathbb{N}$ such that n = 6k + 3. We first prove that the function f defined in Algorithm 6.4 is a bijection from E(G) to $\{1, 3, 5, ..., 6n + 1\}$.

From Algorithm 6.4(4.1), we have

$$A = \{f(u_i u_i') \mid i \in \{1, 2, 3, \dots, n\}\}$$
$$= \{4n + 3, 4n + 5, 4n + 7, \dots, 6n + 1\}.$$

From Algorithm 6.4(4.2), we have

$$B = \{f(u_i u) \mid i \in \{1, 2, 3, \dots, n\}\} = \{3, 5, 7, \dots, 2n + 1\}.$$

From Algorithm 6.4(4.3), we have

$$C = \{f(u'_iu') \mid i \in \{1, 2, 3, ..., n\}\}$$
$$= \{2n + 3, 2n + 5, 2n + 7, ..., 4n + 1\}.$$

From Algorithm 6.4(4.4), we have

$$D = \{f(uu')\} = \{1\}.$$

We can see clearly that A, B, C and D are disjoint and

$$f(E(Prism(S_n))) = A \cup B \cup C \cup D = \{1, 3, 5, ..., 6n + 1\}.$$

Next, we will show that the induced vertex-labels from the edge-labels using Algorithm 6.4 are in $\{0, 1, 2, ..., 6n + 1\}$ and disjoint. From Algorithm 6.4, we have

$$f^{+}(u_{i}) = (f(u_{i}u_{i}') + f(u_{i}u)) \pmod{6n+2}$$
$$= ((4n+2i+1) + (2i+1)) \pmod{6n+2}$$
$$= (4n+4i+2) \pmod{6n+2}, \text{ for } i \in \{1,2,3,\ldots,n\};$$

$$f^{+}(u) = \left(\sum_{i=1}^{n} f(u_{i}u) + f(uu')\right) \pmod{6n+2}$$
$$= \left(\sum_{i=1}^{n} (2i+1) + 1\right) \pmod{6n+2}$$
$$= \left((n^{2}+n+n) + 1\right) \pmod{6n+2}$$
$$= (n^{2}+2n+1) \pmod{6n+2};$$

$$f^{+}(u'_{i}) = (f(u_{i}u'_{i}) + f(u'_{i}u')) \pmod{6n + 2}$$

= $((4n + 2i + 1) + (2n + 2i + 1)) \pmod{6n + 2}$
= $(6n + 4i + 2) \pmod{6n + 2}$
= $4i$, for $i \in \{1, 2, 3, ..., n\}$;

$$f^{+}(u') = \left(\sum_{i=1}^{n} f(u'_{i}u') + f(uu')\right) \pmod{6n+2}$$

= $\left(\sum_{i=1}^{n} (2n+2i+1) + 1\right) \pmod{6n+2}$
= $\left((2n^{2} + (n^{2} + n) + n) + 1\right) \pmod{6n+2}$
= $(3n^{2} + 2n + 1) \pmod{6n+2}$.

Next, we will show that $f^+(u_i)$, $f^+(u_i)$, $f^+(u)$ and $f^+(u')$ are distinct.

Since $f^+(u_i) = 4n + 4i + 2 \pmod{6n + 2}$ for $i \in \{1, 2, 3, ..., n\}$ and n = 6k + 3, $\{f^+(u_i) \mid i \in \{1, 2, 3, ..., n\}$ can be divided into two sets as follows.

$$\left\{ f^{+}(u_{i}) \middle| i \in \left\{ 1, 2, 3, \dots, \frac{n-1}{2} \right\} \right\} \cup \left\{ f^{+}(u_{i}) \middle| i \in \left\{ \frac{n+1}{2}, \frac{n+3}{2}, \frac{n+5}{2}, \dots, n \right\} \right\}$$
$$= \left\{ 4n + 6, 4n + 10, 4n + 14, \dots, 6n \right\} \cup \left\{ 2, 6, 10, \dots, 2n \right\}$$
$$= \left\{ 24k + 18, 24k + 22, 24k + 26, \dots, 36k + 18 \right\} \cup \left\{ 2, 6, 10, \dots, 12k + 6 \right\}$$
and

$$\{f^+(u_i') \mid i \in \{1, 2, 3, ..., n\}\} = \{4, 8, 12, ..., 4n\} = \{4, 8, 12, ..., 24k + 12\}$$

Since n = 6k + 3, 6n + 2 = 36k + 20, $n^2 + 2n + 1 = 36k^2 + 48k + 16$ and $3n^2 + 2n + 1 = 108k^2 + 120k + 34$. Then, we have

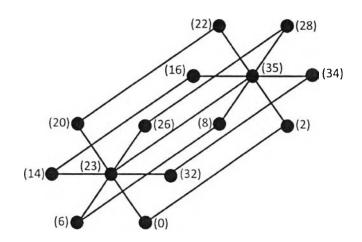
$$f^{+}(u) = (n^{2} + 2n + 1) \pmod{6n + 2}$$
$$= (36k^{2} + 48k + 16) \pmod{36k + 20}$$
$$= 28k + 16$$

and

$$f^{+}(u') = (3n^{2} + 2n + 1) \pmod{6n + 2}$$
$$= (108k^{2} + 120k + 34) \pmod{36k + 20}$$
$$= 24k + 14.$$

Hence, $f^+(u_i)$, $f^+(u_i')$, $f^+(u)$ and $f^+(u')$ are distinct and they are subsets of $\{0, 1, 2, ..., 6n + 1\}$. Therefore, the function f defined in Algorithm 6.4 is an edge-odd graceful labeling each n = 6k + 3 with $k \in \mathbb{Z}$.

From Lemmas 6.1, 6.2, 6.4, 6.5 and 6.6, we conclude our result as in the following theorem.



Example 6.6 From the edge-labeling in Example 6.2, the induced vertex-labeling of $Prism(S_6)$ is shown in Figure 6.8.

Figure 6.8 The vertex-labeling is induced from the edge-labeling in Figure 6.2.

Example 6.7 From the edge-labeling in Example 6.3, the induced vertex-labeling of $Prism(S_5)$ is shown in Figure 6.9.

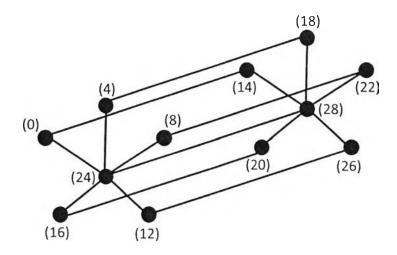


Figure 6.9 The vertex-labeling is induced from the edge-labeling in Figure 6.3.

Example 6.8 From the edge-labeling in Example 6.4, the induced vertex-labeling of $Prism(S_7)$ is shown in Figure 6.10.

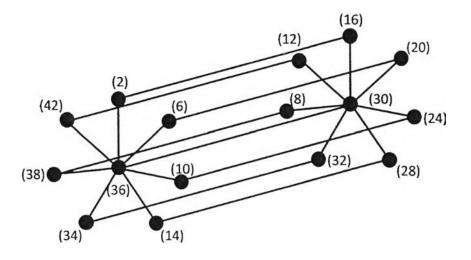


Figure 6.10 The vertex-labeling is induced from the edge-labeling in Figure 6.4.

Example 6.9 From the edge-labeling in Example 6.5, the induced vertex-labeling of $Prism(S_9)$ is shown in Figure 6.11.

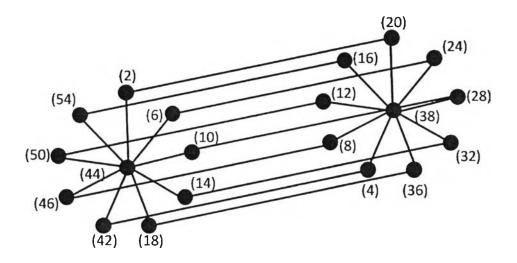


Figure 6.11 The vertex-labeling is induced from the edge-labeling in Figure 6.5.