## CHAPTER VI

## $\operatorname{PRISM}\left(S_{n}\right)$

In this chapter, we show that the prism of star $S_{n}$ is an edge-odd graceful graph for every $n \geq 3$.

Definition 6.1 Let $n \geq 3$ and $S_{n}$ be a star. Let $S_{n}^{\prime}$ be a copy of $S_{n}$. Define $\operatorname{Prism}\left(S_{n}\right)$, called the prism of $S_{n}$, by joining $u$ of $S_{n}$ to the corresponding vertex $u^{\prime}$ of $S_{n}^{\prime}$ and each $u_{i}$ of $S_{n}$ to the corresponding vertex $u_{i}^{\prime}$ of $S_{n}^{\prime}$ for all $i \in$ $\{1,2,3, \ldots, n\}$. Thus,

$$
E\left(\operatorname{Prism}\left(S_{n}\right)\right)=E\left(S_{n}\right) \cup E\left(S_{n}^{\prime}\right) \cup\left\{u_{i} u_{i}^{\prime} \mid i \in\{1,2,3, \ldots, n\}\right\} \cup\left\{u u^{\prime}\right\}
$$

Example 6.1 From Definition 6.1, we have Prism $\left(S_{4}\right)$, shown in Figure 6.1.


Figure 6.1 $\operatorname{Prism}\left(S_{4}\right)$.

## Algorithm 6.1

Let $n>3$ be an even integer. Let $G$ denote $\operatorname{Prism}\left(S_{n}\right)$. Then, $q=3 n+1$.

Define $f: E(G) \rightarrow\{1,3,5, \ldots, 6 n+1\}$ by

$$
\begin{aligned}
& 1.1 f\left(u_{i} u_{i}^{\prime}\right)=2 i-1, \text { for } i \in\{1,2,3, \ldots, n\} ; \\
& 1.2 f\left(u_{i} u\right)=2 n+4 i-3, \text { for } i \in\{1,2,3, \ldots, n\} ; \\
& 1.3 f\left(u_{i}^{\prime} u^{\prime}\right)=2 n+4 i-1, \text { for } i \in\{1,2,3, \ldots, n\} ; \\
& 1.4 f\left(u u^{\prime}\right)=6 n+1
\end{aligned}
$$

Example 6.2 From Algorithm 6.1, we can label each edge of $\operatorname{Prism}\left(S_{6}\right)$ as shown in Figure 6.2.


Figure 6.2 Edge-labeling for Prism $\left(S_{6}\right)$.

## Chulalongkorn University

## Algorithm 6.2

Let $n>3$ be an integer of the form $n=6 k-1$ for some $k \in \mathbb{N}$. Let $G$ denote $\operatorname{Prism}\left(S_{n}\right)$. Then, $q=3 n+1$. Define $f: E(G) \rightarrow\{1,3,5, \ldots, 6 n+1\}$ by

$$
\begin{aligned}
& 2.1 f\left(u_{i} u_{i}^{\prime}\right)=2 n+2 i-1 \text {, for } i \in\{1,2,3, \ldots, n\} ; \\
& 2.2 f\left(u_{n} u\right)=1 ; \\
& 2.3 f\left(u_{i} u\right)=2 i+1 \text {, for } i \in\{1,2,3, \ldots, n-1\} ; \\
& 2.4 f\left(u_{i}^{\prime} u^{\prime}\right)=4 n+2 i-1, \text { for } i \in\{1,2,3, \ldots, n\} ;
\end{aligned}
$$

$$
2.5 f\left(u u^{\prime}\right)=6 n+1
$$

Example 6.3 From Algorithm 6.2, since $5=6(1)-1$, we can label each edge of $\operatorname{Prism}\left(S_{5}\right)$ as shown in Figure 6.3.


Figure 6.3 Edge-labeling for Prism $\left(S_{5}\right)$.

## Algorithm 6.3

Let $n>3$ be an integer of the form $n=6 k+1$ for some $k \in \mathbb{N}$. Let $G$ denote $\operatorname{Prism}\left(S_{n}\right)$. Then, $q=3 n+1$. Define $f: E(G) \rightarrow\{1,3,5, \ldots, 6 n+1\}$ by

$$
\begin{aligned}
& 3.1 f\left(u_{i} u_{i}^{\prime}\right)=4 n+2 i+1 \text {, for } i \in\{1,2,3, \ldots, n\} ; \\
& 3.2 f\left(u_{i} u\right)=2 i+1, \text { for } i \in\{1,2,3, \ldots, n\} \\
& 3.3 f\left(u_{1}^{\prime} u^{\prime}\right)=1 ; \\
& 3.4 f\left(u_{i}^{\prime} u^{\prime}\right)=2 n+2 i+1, \text { for } i \in\{2,3,4, \ldots, n\} ; \\
& 3.5 f\left(u u^{\prime}\right)=2 n+3 .
\end{aligned}
$$

Example 6.4 From Algorithm 6.3, since $7=6(1)+1$, we can label each edge of $\operatorname{Prism}\left(S_{7}\right)$ as shown in Figure 6.4.


Figure 6.4 Edge-labeling for $\operatorname{Prism}\left(S_{7}\right)$.

## Algorithm 6.4

Let $n>3$ be an integer of the form $n=6 k+3$ for some $k \in \mathbb{N}$. Let $G$ denote $\operatorname{Prism}\left(S_{n}\right)$. Then, $q=3 n+1$. Define $f: E(G) \rightarrow\{1,3,5, \ldots, 6 n+1\}$ by

$$
\begin{array}{rl}
4.1 & f\left(u_{i} u_{i}^{\prime}\right) \\
\text { 4.2 } f\left(u_{i} u\right) & =2 n+2 i+1, \text { for } i \in\{1,2,3, \ldots, n\} ; \\
4.3 f\left(u_{i}^{\prime} u^{\prime}\right) & =2 n+2 i+1, \text { for } i \in\{1,2,3, \ldots, n\} ; \\
4.4 & f\left(u u^{\prime}\right) \\
& =1 .
\end{array}
$$

Example 6.5 From Algorithm 6.4, since $9=6(1)+3$, we can label each edge of $\operatorname{Prism}\left(S_{9}\right)$ as shown in Figure 6.5.


Figure 6.5 Edge-labeling for Prism $\left(S_{9}\right)$.

Next, we show that if $n \geq 3$ and $n$ is even, then Prism $\left(S_{n}\right)$ is an edge-odd graceful graph.

Lemma 6.1 Let $n \geq 3$ be even. $\operatorname{Prism}\left(S_{n}\right)$ is an edge-odd graceful graph.

Proof Let $n \geq 3$ be an even integer. We first prove that the function $f$ defined in Algorithm 6.1 is a bijection from $E(G)$ to $\{1,3,5, \ldots, 6 n+1\}$.

From Algorithm 6.1(1.1), we have

$$
A=\left\{f\left(u_{i} u_{i}^{\prime}\right) \mid i \in\{1,2,3, \ldots, n\}\right\}=\{1,3,5, \ldots, 2 n-1\} .
$$

From Algorithm 6.1(1.2), we have

$$
\begin{aligned}
B \quad & =\left\{f\left(u_{i} u\right) \mid i \in\{1,2,3, \ldots, n\}\right\} \\
& =\{2 n+1,2 n+5,2 n+9, \ldots, 6 n-3\} .
\end{aligned}
$$

From Algorithm 6.1(1.3), we have

$$
\begin{aligned}
C \quad & =\left\{f\left(u_{i} u^{\prime}\right) \mid i \in\{1,2,3, \ldots, n\}\right\} \\
& =\{2 n+3,2 n+7,2 n+11, \ldots, 6 n-1\} .
\end{aligned}
$$

From Algorithm 6.1(1.4), we have

$$
D=\left\{f\left(u u^{\prime}\right)\right\}=\{6 n+1\} .
$$

We can see clearly that $A, B, C$ and $D$ are disjoint and

$$
f\left(E\left(\operatorname{Prism}\left(S_{n}\right)\right)\right)=A \cup B \cup C \cup D=\{1,3,5, \ldots, 6 n+1\}
$$

Next, we will show that the induced vertex-labels from the edge-labels using Algorithm 6.1 are in $\{0,1,2, \ldots, 6 n+1\}$ and all distinct. From Algorithm 6.1, we have

$$
\begin{aligned}
f^{+}\left(u_{i}\right) & =\left(f\left(u_{i} u_{i}^{\prime}\right)+f\left(u_{i} u\right)\right)(\bmod 6 n+2) \\
& =((2 i-1)+(2 n+4 i-3))(\bmod 6 n+2) \\
& =(2 n+6 i-4)(\bmod 6 n+2), \text { for } i \in\{1,2,3, \ldots, n\} . \\
f^{+}\left(u_{i}^{\prime}\right) & =\left(f\left(u_{i} u_{i}^{\prime}\right)+f\left(u_{i}^{\prime} u^{\prime}\right)\right)(\bmod 6 n+2) \\
& =((2 i-1)+(2 n+4 i-1))(\bmod 6 n+2) \\
& =(2 n+6 i-2)(\bmod 6 n+2), \text { for } i \in\{1,2,3, \ldots, n\} .
\end{aligned}
$$

$$
\begin{aligned}
f^{+}(u) \quad & =\left(\sum_{i=1}^{n} f\left(u_{i} u\right)+f\left(u u^{\prime}\right)\right)(\bmod 6 n+2) \\
& =\left(\sum_{i=1}^{n}(2 n+4 i-3)+6 n+1\right)(\bmod 6 n+2) \\
& =\left(\left(2 n^{2}+\left(2 n^{2}+2 n\right)-3 n\right)+6 n+1\right)(\bmod 6 n+2) \\
& =\left(4 n^{2}+5 n+1\right)(\bmod 6 n+2) .
\end{aligned}
$$

$$
f^{+}\left(u^{\prime}\right)=\left(\sum_{i=1}^{n} f\left(u_{i}^{\prime} u^{\prime}\right)+f\left(u u^{\prime}\right)\right)(\bmod 6 n+2)
$$

$$
=\left(\sum_{i=1}^{n}(2 n+4 i-1)+6 n+1\right)(\bmod 6 n+2)
$$

$$
=\left(\left(2 n^{2}+\left(2 n^{2}+2 n\right)-n\right)+6 n+1\right)(\bmod 6 n+2)
$$

$$
=\left(4 n^{2}+7 n+1\right)(\bmod 6 n+2)
$$

Next, we will show that $f^{+}\left(u_{i}\right), f^{+}\left(u_{i}^{\prime}\right), f^{+}(u)$ and $f^{+}\left(u^{\prime}\right)$ are distinct by using the contradiction argument. Let $i, j \in\{1,2,3, \ldots, n\}$ and $i \neq j$, we first suppose that $f^{+}\left(u_{i}\right) \equiv f^{+}\left(u_{j}\right)(\bmod 6 n+2)$ and $f^{+}\left(u_{i}^{\prime}\right) \equiv f^{+}\left(u_{j}^{\prime}\right)(\bmod 6 n+2)$.

Since $f^{+}\left(u_{i}\right) \equiv f^{+}\left(u_{j}\right)(\bmod 6 n+2)$,

$$
2 n+6 i-4 \equiv 2 n+6 j-4(\bmod 6 n+2)
$$

This implies that $6(i-j) \equiv 0(\bmod 6 n+2)$, which is a contradiction.
Since $f^{+}\left(u_{i}^{\prime}\right) \equiv f^{+}\left(u_{j}^{\prime}\right)(\bmod 6 n+2)$,

$$
2 n+6 i-2 \equiv 2 n+6 j-2(\bmod 6 n+2)
$$

This implies that $6(i-j) \equiv 0(\bmod 6 n+2)$, which is a contradiction.

Second, let $i \in\{1,2,3, \ldots, n\}$ and suppose that $f^{+}\left(u_{i}\right) \equiv f^{+}\left(u_{i}^{\prime}\right)(\bmod 6 n+2)$. Then,

$$
2 n+6 i-4 \equiv 2 n+6 i-2(\bmod 6 n+2)
$$

This implies that $2 \equiv 0(\bmod 6 n+2)$, which is a contradiction.

Next, let $i, j \in\{1,2,3, \ldots, n\}$ and $i \neq j$ suppose that $f^{+}\left(u_{i}\right) \equiv f^{+}\left(u_{j}^{\prime}\right)(\bmod 6 n+$ 2). Then, $2 n+6 i-4 \equiv 2 n+6 j-2(\bmod 6 n+2)$. This implies that

$$
3(i-j) \equiv 1(\bmod 3 n+1)
$$

Since $3(2 n+1) \equiv 1(\bmod 3 n+1)$ and for $i, j \in\{1,2,3, \ldots, n\},(i-j)(\bmod 3 n+$ 2) $\in\{1,2,3, \ldots, n-1,2 n+2,2 n+3,2 n+4, \ldots, 3 n\}$, we get a contradiction.

Finally, suppose that $f^{+}(u) \equiv f^{+}\left(u^{\prime}\right)(\bmod 6 n+2)$. Then,

$$
4 n^{2}+5 n+1 \equiv 4 n^{2}+7 n+1(\bmod 6 n+2) .
$$

This implies that $2 n \equiv 0(\bmod 6 n+2)$, which is a contradiction.

Thus, $f^{+}\left(u_{i}\right), f^{+}\left(u_{i}^{\prime}\right), f^{+}(u)$ and $f^{+}\left(u^{\prime}\right)$ are all distinct and all are subsets of $\{0,1,2, \ldots, 6 n+1\}$. Therefore, the function $f$ defined in Algorithm 6.1 is an edgeodd graceful labeling.

Lemma 6.2 $\operatorname{Prism}\left(S_{3}\right)$ is an edge odd graceful labeling.

Proof. we can label edge by Figure 6.1.


Figure 6.6 Edge-labeling for Prism $\left(S_{3}\right)$.

The vertices of Prism $\left(S_{3}\right)$ induced by edge labeting shown in Figure 6.7


Figure 6.7 The vertex-labeling for Prism $\left(S_{3}\right)$ induced by Figure 6.6.

Thus, $\operatorname{Prism}\left(\mathrm{S}_{3}\right)$ is an edge-odd graceful graph.

Lemma 6.3 Let $n \geq 3$. If $n=6 k-1$ for some $k \in \mathbb{N}$, then $4 \mid a$ and $4 \mid b$, where $a=n^{2}-1(\bmod 6 n+2)$ and $b=5 n^{2}-1(\bmod 6 n+2)$.

Proof. Let $n \geq 3$ and there is $k \in \mathbb{N}$ such that $n=6 k-1$. Then,

$$
\begin{aligned}
a & =n^{2}-1=(6 k-1)^{2}-1=36 k^{2}-12 k \\
& \equiv-8 k(\bmod 36 k-4) \\
& \equiv 28 k-4(\bmod 36 k-4) \\
& \equiv 4(7 k-1)(\bmod 36 k-4)
\end{aligned}
$$

and

$$
\begin{aligned}
b & =5 n^{2}-1=5(6 k-1)^{2}-1=180 k^{2}-60 k+4 \\
& \equiv-40 k+4(\bmod 36 k-4) \\
& \equiv 32 k-4(\bmod 36 k-4) \\
& \equiv 4(8 k+1)(\bmod 36 k-4) .
\end{aligned}
$$

That is, $4 \mid a$ and $4 \mid b$, where $a=n^{2}-1(\bmod 6 n+2)$ and $b=5 n^{2}-1(\bmod 6 n+$ 2).


Lemma 6.4 Let $n \geq 3$. If $n=6 k-1$ for some $k \in \mathbb{N}$, then $\operatorname{Prism}\left(S_{n}\right)$ is an edge-odd graceful graph.

Proof. Let $n \geq 3$ and there is $k \in \mathbb{N}$ such that $n=6 k-1$. We first prove that the function $f$ defined in Algorithm 6.2 is a bijection from $E(G)$ to $\{1,3,5, \ldots, 6 n+1\}$.

From Algorithm 6.2(2.1), we have

$$
\begin{aligned}
A \quad & =\left\{f\left(u_{i} u_{i}^{\prime}\right) \mid i \in\{1,2,3, \ldots, n\}\right\} \\
& =\{2 n+1,2 n+3,2 n+5, \ldots, 4 n-1\} .
\end{aligned}
$$

From Algorithm 6.2(2.2 and 2.3), we have

$$
B=\left\{f\left(u_{i} u\right) \mid i \in\{1,2,3, \ldots, n-1\}\right\} \cup\left\{f\left(u_{n} u\right)\right\}
$$

$$
=\{3,5,7, \ldots, 2 n-1\} \cup\{1\} .
$$

From Algorithm 6.2(2.4), we have

$$
\begin{aligned}
C \quad & =\left\{f\left(u_{i} u^{\prime}\right) \mid i \in\{1,2,3, \ldots, n\}\right\} \\
& =\{4 n+1,4 n+3,4 n+5, \ldots, 6 n-1\} .
\end{aligned}
$$

From Algorithm 6.2(2.5), we have

$$
D=\left\{f\left(u u^{\prime}\right)\right\}=\{6 n+1\} .
$$

We can see clearly that $A, B, C$ and $D$ are disjoint and

$$
f\left(E\left(\operatorname{Prism}\left(S_{n}\right)\right)\right)=A \cup B \cup C \cup D=\{1,3,5, \ldots, 6 n+1\} .
$$

Next, we will show that the induced vertex-labels from the edge-labels using Algorithm 6.2 are in $\{0,1,2, \ldots, 6 n+1\}$ and all distinct. From Algorithm 6.2, we have

$$
\begin{aligned}
f^{+}\left(u_{i}\right) & =\left(f\left(u_{i} u_{i}^{\prime}\right)+f\left(u_{i} u\right)\right)(\bmod 6 n+2) \\
& =((2 n+2 i-1)+(2 i+1))(\bmod 6 n+2) \\
& =2 n+4 i, \text { for } i \in\{1,2,3, \ldots, n-1\} ; \\
f^{+}\left(u_{n}\right) & =\left(f\left(u_{n} u_{n}^{\prime}\right)+f\left(u_{n}^{\prime} u^{\prime}\right)\right)(\bmod 6 n+2) \\
& =((2 n+2 n-1)+1)(\bmod 6 n+2) \\
& =4 n ; \\
f^{+}\left(u_{i}^{\prime}\right) & =\left(f\left(u_{i} u_{i}^{\prime}\right)+f\left(u_{i}^{\prime} u^{\prime}\right)\right)(\bmod 6 n+2) \\
& =((2 n+2 i-1)+(4 n+2 i-1))(\bmod 6 n+2) \\
& =(6 n+4 i-2)(\bmod 6 n+2) \\
& =4 i-4, \text { for } i \in\{1,2,3, \ldots, n\} ;
\end{aligned}
$$

$$
\begin{aligned}
f^{+}(u) & =\left(\sum_{i=1}^{n} f\left(u_{i} u\right)+f\left(u u^{\prime}\right)\right)(\bmod 6 n+2) \\
& =\left(\sum_{i=1}^{n}(2 i-1)+(6 n+1)\right)(\bmod 6 n+2) \\
& =\left(n^{2}+(6 n+1)\right)(\bmod 6 n+2) \\
& =\left(n^{2}-1\right)(\bmod 6 n+2) ; \\
f^{+}\left(u^{\prime}\right) & =\left(\sum_{i=1}^{n} f\left(u_{i}^{\prime} u^{\prime}\right)+f\left(u u^{\prime}\right)\right)(\bmod 6 n+2) \\
& =\left(\sum_{i=1}^{n}(4 n+2 i-1)+(6 n+1)\right)(\bmod 6 n+2) \\
& =\left(\left(4 n^{2}+\left(n^{2}+n\right)-n\right)+(6 n+1)\right)(\bmod 6 n+2) \\
& =\left(5 n^{2}+6 n+1\right)(\bmod 6 n+2) \\
& =\left(5 n^{2}-1\right)(\bmod 6 n+2) .
\end{aligned}
$$

Next, we will show that $f^{+}\left(u_{i}\right), f^{+}\left(u_{i}^{\prime}\right), f^{+}(u)$ and $f^{+}\left(u^{\prime}\right)$ are distinct. Since

$$
\begin{aligned}
\left\{f^{+}\left(u_{i}\right) \mid i\right. & \in\{1,2,3, \ldots, n-1\}\} \cup\left\{f^{+}\left(u_{n}\right)\right\} \\
& =\{2 n+4,2 n+8,2 n+12, \ldots, 6 n-4\} \cup\{4 n\}
\end{aligned}
$$

and

$$
\left\{f^{+}\left(u_{i}^{\prime}\right) \mid i \in\{1,2,3, \ldots, n\}\right\}=\{0,4,8, \ldots, 4 n-4\}
$$

$\left\{f^{+}\left(u_{i}\right) \mid i \in\{1,2,3, \ldots, n\}\right\}$ and $\left\{f^{+}\left(u_{i}^{\prime}\right) \mid i \in\{1,2,3, \ldots, n\}\right\}$ are disjoint. By Lemma 6.3, we have $4 \mid f^{+}(u)$ and $4 \mid f^{+}\left(u^{\prime}\right)$. Then, if we need $f^{+}\left(u_{i}\right), f^{+}\left(u_{i}^{\prime}\right), f^{+}(u)$ and $f^{+}\left(u^{\prime}\right)$ to be distinct, we must show that the values of $f^{+}(u)$ and $f^{+}\left(u^{\prime}\right)$ under the integers modulo $6 n+2$ are greater than $4 n(\bmod 6 n+2)$. Since $n=6 k-1$, $6 n+2=36 k-4 \cdot n^{2}-1=36 k^{2}-12 k$ and $5 n^{2}-1=180 k^{2}-60 k+4$. Then,

$$
\begin{aligned}
f^{+}(u) & =\left(n^{2}-1\right)(\bmod 6 n+2) \\
& =\left(36 k^{2}-12 k\right)(\bmod 36 k-4)
\end{aligned}
$$

$$
\begin{aligned}
& \equiv-8 k(\bmod 36 k-4) \\
& \equiv(28 k-4)(\bmod 36 k-4) \\
& >(24 k-4)(\bmod 36 k-4) \\
& =4 n(\bmod 6 n+2),
\end{aligned}
$$

and

$$
\begin{aligned}
f^{+}\left(u^{\prime}\right) & =\left(5 n^{2}-1\right)(\bmod 6 n+2) \\
& =\left(180 k^{2}-60 k+4\right)(\bmod 36 k-4) \\
& \equiv(-40 k+4)(\bmod 36 k-4) \\
& \equiv-4 k(\bmod 36 k-4) \\
& \equiv(32 k-4)(\bmod 36 k-4) \\
& >(24 k-4)(\bmod 36 k-4) \\
& \equiv 4 n(\bmod 6 n+2) .
\end{aligned}
$$

Hence, $f^{+}\left(u_{i}\right), f^{+}\left(u_{i}^{\prime}\right), f^{+}(u)$ and $f^{+}\left(u^{\prime}\right)$ are distinct and they are subsets of $\{0,1,2, \ldots, 6 n+1\}$. Therefore, the function $f$ defined in Algorithm 6.2 is an edgeodd graceful labeling for each $n=6 k-1$ with $k \in \mathbb{Z}$.

Lemma 6.5 Let $n \geq 3$. If $n=6 k+1$ for some $k \in \mathbb{N}$, then $\operatorname{Prism}\left(S_{n}\right)$ is an edge-odd graceful graph.

Proof. Let $n \geq 3$. Assume that there is $k \in \mathbb{N}$ such that $n=6 k+1$. We first prove that the function $f$ defined in Algorithm 6.3 is a bijection from $E(G)$ to $\{1,3,5, \ldots, 6 n+1\}$.

From Algorithm 6.3(3.1), we have

$$
\begin{aligned}
A & =\left\{f\left(u_{i} u_{i}^{\prime}\right) \mid i \in\{1,2,3, \ldots, n\}\right\} \\
& =\{4 n+3,4 n+5,4 n+7, \ldots, 6 n+1\}
\end{aligned}
$$

From Algorithm 6.3(3.2), we have

$$
B \quad=\left\{f\left(u_{i} u\right) \mid i \in\{1,2,3, \ldots, n\}\right\}=\{3,5,7, \ldots, 2 n+1\}
$$

From Algorithm 6.3(3.3 and 3.4), we have

$$
\begin{aligned}
C & =\left\{f\left(u_{1}^{\prime} u^{\prime}\right)\right\} \cup\left\{f\left(u_{i}^{\prime} u^{\prime}\right) \mid i \in\{2,3,4, \ldots, n\}\right\} \\
& =\{1\} \cup\{2 n+5,2 n+7,2 n+9, \ldots, 4 n+1\}
\end{aligned}
$$

From Algorithm 6.3(3.5), we have

$$
D=\left\{f\left(u u^{\prime}\right)\right\}=\{2 n+3\}
$$

We can see clearly that $A, B, C$ and $D$ are disjoint and

$$
f\left(E\left(\operatorname{Prism}\left(S_{n}\right)\right)\right)=A \cup B \cup C \cup D=\{1,3,5, \ldots, 6 n+1\}
$$

Next, we will show that the induced vertex-labels from the edge-labels using Algorithm 6.3 are in $\{0,1,2, \ldots, 6 n+1\}$ and all distinct. From Algorithm 6.3, we have

$$
\begin{aligned}
f^{+}\left(u_{i}\right)= & \left(f\left(u_{i} u_{i}^{\prime}\right)+f\left(u_{i} u\right)\right)(\bmod 6 n+2) \\
= & ((4 n+2 i+1)+(2 i+1))(\bmod 6 n+2) \\
= & (4 n+4 i+2)(\bmod 6 n+2), \text { for } i \in\{1,2,3, \ldots, n\} ; \\
& \text { CHULALONGKORNUNIVERSITY } \\
f^{+}(u)= & \left(\sum_{i=1}^{n} f\left(u_{i} u\right)+f\left(u u^{\prime}\right)\right)(\bmod 6 n+2) \\
= & \left(\sum_{i=1}^{n}(2 i+1)+2 n+3\right)(\bmod 6 n+2) \\
= & \left(\left(n^{2}+n+n\right)+2 n+3\right)(\bmod 6 n+2) \\
= & \left(n^{2}+4 n+3\right)(\bmod 6 n+2) ; \\
& =\left(f\left(u_{1} u_{1}^{\prime}\right)+f\left(u_{1}^{\prime} u^{\prime}\right)\right)(\bmod 6 n+2) \\
f^{+}\left(u_{1}^{\prime}\right) & ((4 n+3)+1)(\bmod 6 n+2)
\end{aligned}
$$

$$
=4 n+4
$$

$$
\begin{aligned}
f^{+}\left(u_{i}^{\prime}\right) & =\left(f\left(u_{i} u_{i}^{\prime}\right)+f\left(u_{i}^{\prime} u^{\prime}\right)\right)(\bmod 6 n+2) \\
& =((4 n+2 i+1)+(2 n+2 i+1))(\bmod 6 n+2) \\
& =(6 n+4 i+2)(\bmod 6 n+2) \\
& =4 i, \text { for } i \in\{2,3,4, \ldots, n\} ;
\end{aligned}
$$

$$
\begin{aligned}
f^{+}\left(u^{\prime}\right) & =\left(\sum_{i=2}^{n} f\left(u_{i}^{\prime} u^{\prime}\right)+f\left(u_{1}^{\prime} u^{\prime}\right)+f\left(u u^{\prime}\right)\right)(\bmod 6 n+2) \\
& =\left(\sum_{i=2}^{n}(2 n+2 i+1)+1+(2 n+3)\right)(\bmod 6 n+2) \\
& =\left(\left(2 n^{2}+\left(n^{2}+2 n\right)-2 n-3\right)+1+2 n+3\right)(\bmod 6 n+2) \\
& =\left(3 n^{2}+2 n+1\right)(\bmod 6 n+2) .
\end{aligned}
$$

Next, we will show that $f^{+}\left(u_{i}\right), f^{+}\left(u_{i}^{\prime}\right), f^{+}(u)$ and $f^{+}\left(u^{\prime}\right)$ are distinct.
Since $f^{+}\left(u_{i}\right)=4 n+4 i+2(\bmod 6 n+2)$ for $i \in\{1,2,3, \ldots, n\}$ and $n=6 k+1$, $\left\{f^{+}\left(u_{i}\right) \mid i \in\{1,2,3, \ldots, n\}\right\}$ can be divided into two sets as follows.
$\left\{f^{+}\left(u_{i}\right) \left\lvert\, i \in\left\{1,2,3, \ldots, \frac{n-1}{2}\right\}\right.\right\} \cup\left\{f^{+}\left(u_{i}\right) \left\lvert\, i \in\left\{\frac{n+1}{2}, \frac{n+3}{2}, \frac{n+5}{2}, \ldots, n\right\}\right.\right\}$
$=\{4 n+6,4 n+10,4 n+14, \ldots, 6 n\} \cup\{2,6,10, \ldots, 2 n\}$
$=\{24 k+10,24 k+14,24 k+18, \ldots, 36 k+6\} \cup\{2,6,10, \ldots, 12 k+2\}$
and we have
$\left\{f^{+}\left(u_{i}^{\prime}\right) \mid i \in\{1,2,3, \ldots, n\}\right\}=\{8,12,16, \ldots, 4 n, 4 n+4\}$

$$
=\{8,12,16, \ldots, 24 k+4,24 k+8\} .
$$

Since $n=6 k+1,6 n+2=36 k+8, n^{2}+4 n+3=36 k^{2}+36 k+8$ and $3 n^{2}+$ $2 n+1=108 k^{2}+48 k+6$. Then,

$$
f^{+}(u)=\left(n^{2}+4 n+3\right)(\bmod 6 n+2)
$$

$$
\begin{aligned}
& =\left(36 k^{2}+36 k+8\right)(\bmod 36 k+8) \\
& =28 k+8
\end{aligned}
$$

and

$$
\begin{aligned}
f^{+}\left(u^{\prime}\right) & =\left(3 n^{2}+2 n+1\right)(\bmod 6 n+2) \\
& =\left(180 k^{2}+48 k+6\right)(\bmod 36 k+8) \\
& =24 k+6
\end{aligned}
$$

Hence, $f^{+}\left(u_{i}\right), f^{+}\left(u_{i}^{\prime}\right), f^{+}(u)$ and $f^{+}\left(u^{\prime}\right)$ are distinct and they are subsets of $\{0,1,2, \ldots, 6 n+1\}$. Therefore, the function $f$ defined in Algorithm 6.3 is an edgeodd graceful labeling for all $n=6 k+1$ for all $k \in \mathbb{Z}$.

Lemma 6.6 Let $n \geq 3$. If $n=6 k+3$ for some $k \in \mathbb{N}$, then $\operatorname{Prism}\left(S_{n}\right)$ is an edge-odd graceful graph.

Proof. Let $n \geq 3$. Assume that there is $k \in \mathbb{N}$ such that $n=6 k+3$. We first prove that the function $f$ defined in Algorithm 6.4 is a bijection from $E(G)$ to $\{1,3,5, \ldots, 6 n+1\}$.

From Algorithm 6.4(4.1), we have

$$
\begin{aligned}
A & =\left\{f\left(u_{i} u_{i}^{\prime}\right) \mid i \in\{1,2,3, \ldots, n\}\right\} \\
& =\{4 n+3,4 n+5,4 n+7, \ldots, 6 n+1\}
\end{aligned}
$$

From Algorithm 6.4(4.2), we have

$$
B \quad=\left\{f\left(u_{i} u\right) \mid i \in\{1,2,3, \ldots, n\}\right\}=\{3,5,7, \ldots, 2 n+1\}
$$

From Algorithm 6.4(4.3), we have

$$
\begin{aligned}
C \quad & =\left\{f\left(u_{i}^{\prime} u^{\prime}\right) \mid i \in\{1,2,3, \ldots, n\}\right\} \\
& =\{2 n+3,2 n+5,2 n+7, \ldots, 4 n+1\} .
\end{aligned}
$$

From Algorithm 6.4(4.4), we have

$$
D \quad=\left\{f\left(u u^{\prime}\right)\right\}=\{1\} .
$$

We can see clearly that $A, B, C$ and $D$ are disjoint and

$$
f\left(E\left(\operatorname{Prism}\left(S_{n}\right)\right)\right)=A \cup B \cup C \cup D=\{1,3,5, \ldots, 6 n+1\} .
$$

Next, we will show that the induced vertex-labels from the edge-labels using Algorithm 6.4 are in $\{0,1,2, \ldots, 6 n+1\}$ and disjoint. From Algorithm 6.4, we have

$$
\begin{aligned}
& f^{+}\left(u_{i}\right)=\left(f\left(u_{i} u_{i}^{\prime}\right)+f\left(u_{i} u\right)\right)(\bmod 6 n+2) \\
&=((4 n+2 i+1)+(2 i+1))(\bmod 6 n+2) \\
&=(4 n+4 i+2)(\bmod 6 n+2), \text { for } i \in\{1,2,3, \ldots, n\} ; \\
& f^{+}(u)=\left(\sum_{i=1}^{n} f\left(u_{i} u\right)+f\left(u u^{\prime}\right)\right)(\bmod 6 n+2) \\
&=\left(\sum_{i=1}^{n}(2 i+1)+1\right)(\bmod 6 n+2) \\
&=\left(\left(n^{2}+n+n\right)+1\right)(\bmod 6 n+2) \\
&=\left(n^{2}+2 n+1\right)(\bmod 6 n+2) ; \\
&=\left(f\left(u_{i} u_{i}^{\prime}\right)+f\left(u_{i}^{\prime} u^{\prime}\right)\right)(\bmod 6 n+2) \\
&=((4 n+2 i+1)+(2 n+2 i+1))(\bmod 6 n+2) \\
& f^{+}\left(u_{i}^{\prime}\right) \\
&=(6 n+4 i+2)(\bmod 6 n+2) \\
&=4 i, \text { for } i \in\{1,2,3, \ldots, n\} ; \\
&=\left(\sum_{i=1}^{n} f\left(u_{i}^{\prime} u^{\prime}\right)+f\left(u u^{\prime}\right)\right)(\bmod 6 n+2) \\
&=\left(\sum_{i=1}^{n}(2 n+2 i+1)+1\right)(\bmod 6 n+2) \\
&=\left(\left(2 n^{2}+\left(n^{2}+n\right)+n\right)+1\right)(\bmod 6 n+2) \\
& f^{+}\left(u^{\prime}\right) \\
&=\left(3 n^{2}+2 n+1\right)(\bmod 6 n+2) .
\end{aligned}
$$

Next, we will show that $f^{+}\left(u_{i}\right), f^{+}\left(u_{i}^{\prime}\right), f^{+}(u)$ and $f^{+}\left(u^{\prime}\right)$ are distinct.

Since $f^{+}\left(u_{i}\right)=4 n+4 i+2(\bmod 6 n+2)$ for $i \in\{1,2,3, \ldots, n\}$ and $n=6 k+3$, $\left\{f^{+}\left(u_{i}\right) \mid i \in\{1,2,3, \ldots, n\}\right\}$ can be divided into two sets as follows.

$$
\begin{aligned}
& \left\{f^{+}\left(u_{i}\right) \left\lvert\, i \in\left\{1,2,3, \ldots, \frac{n-1}{2}\right\}\right.\right\} \cup\left\{f^{+}\left(u_{i}\right) \left\lvert\, i \in\left\{\frac{n+1}{2}, \frac{n+3}{2}, \frac{n+5}{2}, \ldots, n\right\}\right.\right\} \\
& =\{4 n+6,4 n+10,4 n+14, \ldots, 6 n\} \cup\{2,6,10, \ldots, 2 n\} \\
& =\{24 k+18,24 k+22,24 k+26, \ldots, 36 k+18\} \cup\{2,6,10, \ldots, 12 k+6\}
\end{aligned}
$$

and

$$
\left\{f^{+}\left(u_{i}^{\prime}\right) \mid i \in\{1,2,3, \ldots, n\}\right\}=\{4,8,12, \ldots, 4 n\}=\{4,8,12, \ldots, 24 k+12\}
$$

Since $n=6 k+3,6 n+2=36 k+20 n^{2}+2 n+1=36 k^{2}+48 k+16$ and $3 n^{2}+$ $2 n+1=108 k^{2}+120 k+34$. Then, we have

$$
\begin{aligned}
f^{+}(u) & =\left(n^{2}+2 n+1\right)(\bmod 6 n+2) \\
& =\left(36 k^{2}+48 k+16\right)(\bmod 36 k+20) \\
& =28 k+16
\end{aligned}
$$

and

$$
\begin{aligned}
f^{+}\left(u^{\prime}\right) & =\left(3 n^{2}+2 n+1\right)(\bmod 6 n+2) \\
& =\left(108 k^{2}+120 k+34\right)(\bmod 36 k+20) \\
& =24 k+14
\end{aligned}
$$

Hence, $f^{+}\left(u_{i}\right), f^{+}\left(u_{i}^{\prime}\right), f^{+}(u)$ and $f^{+}\left(u^{\prime}\right)$ are distinct and they are subsets of $\{0,1,2, \ldots, 6 n+1\}$. Therefore, the function $f$ defined in Algorithm 6.4 is an edgeodd graceful labeling each $n=6 k+3$ with $k \in \mathbb{Z}$.

From Lemmas 6.1, 6.2, 6.4, 6.5 and 6.6, we conclude our result as in the following theorem.

Theorem 6.1 Let $n \geq 3$. $\operatorname{Prism}\left(S_{n}\right)$ is an edge-odd graceful graph.


จุฬาลงกรณ์มหาวิทยาลัย
Chilmilonekorn \|mivercity

Example 6.6 From the edge-labeling in Example 6.2, the induced vertex-labeling of $\operatorname{Prism}\left(S_{6}\right)$ is shown in Figure 6.8


Figure 6.8 The vertex-labeling is induced from the edge-labeling in Figure 6.2.

Example 6.7 From the edge-labeling in Example 6.3, the induced vertex-labeling of Prism $\left(S_{5}\right)$ is shown in Figure 6.9


Figure 6.9 The vertex-labeling is induced from the edge-labeling in Figure 6.3.

Example 6.8 From the edge-labeling in Example 6.4, the induced vertex-labeling of $\operatorname{Prism}\left(S_{7}\right)$ is shown in Figure 6.10.


Figure 6.10 The vertex-labeling is induced from the edge-labeling in Figure 6.4.

Example 6.9 From the edge-labeling in Example 6.5, the induced vertex-labeling of $\operatorname{Prism}\left(S_{9}\right)$ is shown in Figure 6.11.


Figure 6.11 The vertex-labeling is induced from the edge-labeling in Figure 6.5.

