CHAPTER I

INTRODUCTION

In the classical case, an integer-valued function on the ring of integers has been defined for a long time. It is the function $f(t)$ that sends the set of non-negative integers $\left(\mathbb{N}_{0}\right)$ to the set of integers. It is obvious that the ring of polynomials over \mathbb{Z} is a subset of the set of integer-valued functions. Moreover, for each $m, n \in \mathbb{N}_{0}$, the binomial coefficients $\binom{m}{n}=\frac{m(m-1) \cdots(m-n+1)}{n!}$, $n \neq 0$ and $\binom{m}{0}=1$, are integers, so the function from \mathbb{N}_{0} defined by $\binom{t}{n}=$ $\frac{t(t-1) \cdots(t-n-1)}{n!}, n \neq 0$ and $\binom{t}{0}=1$, is an integer-valued function. This implies that the linear combination over \mathbb{Z} of the binomial functions, $\sum_{i=1}^{n} b_{2}\binom{t}{i}$, where $b_{i} \in \mathbb{Z}$ is an integer-valued function. Indeed, each integer-valued function $f(t)$ can be uniquely represented by an interpolation series

$$
f(t)=b_{0}+\sum_{i=1}^{\infty} b_{i}\binom{t}{i}
$$

where $b_{i} \in \mathbb{Z}$. This series is well-defined because for each $m \in \mathbb{N}_{0},\binom{m}{i}=0$ if $m<i$, so $\sum_{i=1}^{\infty} b_{2}\binom{m}{i}$ becomes a finite sum and the representation is interpreted as yielding the same value of $f(m)$.

Based on the definition of an integer-valued function. de Bruijn [3] defined a universal function by adding the congruence condition as follows. An integervalued function $f(t)$ is called a universal function if it satisfies

$$
f(t+m)-f(t) \equiv 0 \quad(\bmod m)
$$

for all $t \in \mathbb{N}_{0}$ and $m \in \mathbb{N}$. Note that every polynomial over \mathbb{Z} is a universal function. From the definition, a universal function is also an integer-valued function. By using the previous interpolation series with some additional condition on coefficients, de Bruijn obtained the explicit shapes of universal functions states that, for each integer-valued function $f(t)$, it is a universal function if and only if it can be written in the form

$$
f(t)=c_{0}+\sum_{i=1}^{\infty} c_{i} s_{i}\binom{t}{i}
$$

where $c_{i} \in \mathbb{Z}$ and $s_{\imath}=\operatorname{lcm}(1,2, \ldots, i)$ for all positive integers i. If $f(t)$ is given, then the c_{2} 's are uniquely determined.

De Bruijn also defined a modular function as follows. A modular function $f(t)$ is a function from the set of all integers to itself satisfying

$$
f(t+m)-f(t) \equiv 0(\bmod m)
$$

for all $t \in \mathbb{Z}$ and $m \in \mathbb{Z} \backslash\{0\}$. Since the domain of the universal function is extended. the previous interpolation series is not available. However, de Bruijn obtained the certain interpolation series that represented a modular function. He showed that, for each $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(t)$ is a modular function if and only if it has the form

$$
f(t)=c_{0}+\sum_{i=1}^{\infty} c_{i} s_{i}\binom{t+\left\lfloor\frac{i}{2}\right\rfloor}{ i}
$$

where $c_{i} \in \mathbb{Z}$ and $s_{i}=\operatorname{lcm}(1,2, \ldots, i)$. If $f(t)$ is given, then the c_{i} 's are uniquelv determined.

Hall [4] worked on universal functions but referred to them as pseudo-polynomials. and proved some result of de Bruijn. In addition, he also studied some algebraic structures of the set of all pseudn-polynomials. He used an asymptntic motation to characterize polvnomials in this set. Moreover, he showed the set of all pseudopolynomials is an integral domain but it is not a unique factorization domain.

For the case of function fields, let \mathbb{F}_{q} be the finite field of q elements, $\mathbb{F}_{q}[x]$ the ring of polynomials over \mathbb{F}_{q}, and $\mathbb{F}_{q}(x)$ its field of quotients. Carlitz [1] started his
work on function fields by defining polynomials

$$
\psi_{0}(t)=t \quad \text { and } \quad \psi_{k}(t)=\prod_{\operatorname{deg} M<k}(t-M)
$$

for $k \in \mathbb{N}$ which play the role analogous to the binomial expansion and derived their properties. Later, Wagner [6], making use of Carlitz's preparatory work, defined a linear pseudo-polynomial over $\mathbb{F}_{q}[x]$ as a function $f: \mathbb{F}_{q}[x] \rightarrow \mathbb{F}_{q}[x]$ satisfying the congruence equation

$$
f(M+K) \equiv f(M)(\bmod K)
$$

for all $M \in \mathbb{F}_{q}[x]$ and $K \in \mathbb{F}_{q}[x] \backslash\{0\}$ and the linear properties

$$
f(c M)=c f(M) \text { and } f(M+K)=f(M I)+f(K)
$$

for all $c \in \mathbb{F}_{q}$ and $M, K \in \mathbb{F}_{q}[x]$. By linear properties on the \mathbb{F}_{q} - vector space $\mathbb{F}_{q}[x]$, the previous congruence equation can be reduced to

$$
f(K) \equiv 0(\bmod K)
$$

Wagner also presented some properties of linear pseudo-polynomials over $\mathbb{F}_{q}[x]$ resembling the results in the classical case of de Bruijn and Hall. He showed that any linear pseudo-polynomial over $\mathbb{F}_{q}[x]$ can be uniquely represented into the interpolation series by using Carlitz's polynomials $\psi_{k}(t)$ as follows. For any linear function $f(t)$ over $\mathbb{F}_{q}[x]$, it is a pseudo-polynomial over $\mathbb{F}_{q}[x]$ if and only if it can be represented by the interpolation series

$$
f(t)=\sum_{i=0}^{\infty} A_{i} L_{i} \frac{\psi_{i}(t)}{F_{i}}
$$

where F_{\imath} is a product of all monic polynomials over $\mathbb{F}_{q}[x]$ of degree i, and L_{2} is the least common multiple of all polynomials over $\mathbb{F}_{q}[x]$ of degree 2 . For the
algebraic structures, he showed that the set of all linear pseudo-polynomials is a non-commutative ring under addition and composition and has no zero divisor.

In our work, we extend among other things the result of Wagner generalizing the pseudo-polynomials.

Chapter II consists of some notation, definitions and related theorems, mainly withnut pronfs, from [1], [2], [5]: [6] and [7], that will be used throughnut this thesis.

In Chapter III, we obtain some arithmetic properties of the set of all pseudopolynomials over $\mathbb{F}_{q}[x]$ including the representation by the certain interpolation series, the factorization and algebraic properties of pseudo-polynomials over $\mathbb{F}_{q}[x]$. Finally, the sets of the difference and higher order differences of pseudo-polynomials over $\mathbb{F}_{q}[x]$ generalized the sets introduced by Wagner $[7]$ are studied. The interpolation series representing their elements are established.

