CHAPTER II

PRELIMINARIES

Throughout, let $\mathbb{F}_{q}[x]$ be the ring of polynomials over the finite field \mathbb{F}_{q} of characteristic p where q is a power of p, and let $\mathbb{F}_{q}(x)$ denote the quotient field of $\mathbb{F}_{q}[x]$. We begin with the definition of a valuation on an arbitrary field.

Definition 2.1. [5] A valuation |- on a field K is a real valued function with the following properties:

1. for all $\alpha \in K,|\alpha| \geq 0$ and $|\alpha|=0$ if and only if $\alpha=0$,
2. for all $\alpha, \beta \in K,|\alpha \beta|=|\alpha||\beta|$.
3. for all $\alpha, \beta \in K,|\alpha+\beta| \leq|\alpha|+|\beta|$

Definition 2.2. [5] A valuation |• + on a field K is non-archimedean if the condition 3. in Definition 2.1 is replaced by a stronger condition, called the strong triangle inequality

$$
|\alpha+\beta| \leq \max \{|\alpha|,|\beta|\}
$$

for all $\alpha, \beta \in K$. Any other valuation on K is called archimedean.

Example 2.3.

1. The usual absolute value $|\cdot|$ is an archimedean valuation on \mathbb{Q}.
2. Define $|\cdot|$ on $\mathbb{F}_{q}(x)$ by $|0|=0$ and for all $A, B \in \mathbb{F}_{q}[x] \backslash\{0\}$,

$$
\left|\frac{A}{B}\right|=q^{\operatorname{deg} A-\operatorname{deg} B} .
$$

Then $|\cdot|$ is a non-archimedean valuation on $\mathbb{F}_{q}(x)$ called the degree valuation.

Definition 2.4. (5) A function field $\mathbb{F}_{q}((1 / x))$ is a completion of $\mathbb{F}_{q}(x)$ with respect to the degree valuation $|\cdot|$. that is,

$$
\mathbb{F}_{q}\left(\left(\frac{1}{x}\right)\right)=\left\{\left.a_{k} x^{k}+\cdots+a_{1} x+a_{0}+\frac{a_{-1}}{x}+\frac{a_{-2}}{x^{2}}+\cdots \right\rvert\, a_{i} \in \mathbb{F}_{q} \cdot k \in \mathbb{Z}\right\}
$$

2.1 The polynomials $\psi_{k}(t)$ and $G_{k}(t)$

In [1], Carlitz defined the polynomial $\psi_{k}(t)$ in $\left(\mathbb{F}_{q}[x]\right)[t]$ which plays the role analogous to the binomial expansion and derived its property in the following theorem.

Definition 2.5. [1] Define $\psi_{0}(t)=t$ and for $k \in \mathbb{N}$, define

$$
\psi_{k}(t)=\prod_{\operatorname{deg} M<k}(t-M)
$$

where the product $\epsilon x t e n d s$ over all polynomials M (including 0) in an indeterminate x with coefficients in \mathbb{F}_{q} of degree less than k.

Carlitz derived the formula of $\psi_{k}(t)$ as a polynomial in an indeterminate t whose coefficients are some certain polvnomials.

Definition 2.6. [1] Define $F_{0}=1$ and $L_{0}=1$. For $k \in \mathbb{N}$. define

$$
\begin{aligned}
F_{k} & =[k][k-1]^{q}[k-2]^{q^{2}} \cdots[1]^{q^{k-1}}, \\
L_{k} & =[k][k-1][k-2] \cdots[1],
\end{aligned}
$$

where $[r]=x^{q^{r}}-x$ for all $r \in \mathbb{N}$.

Theorem 2.7. [1] Let $k \in \mathbb{N}$. Then

$$
\psi_{k}(t)=\sum_{i=0}^{k}(-1)^{k-2}\left[\begin{array}{l}
k \\
i
\end{array}\right] t^{q^{z}}
$$

where

$$
\left[\begin{array}{c}
k \\
i
\end{array}\right]=\frac{F_{k}}{F_{i} L_{k-i}^{q^{2}}} .
$$

As mentioned in [1],

$$
\psi_{k}\left(x^{k}\right)=\psi_{k}(M)=F_{k}
$$

for each monic polynomial M of degree k, F_{k} is the product of all monic polynomials in $\mathbb{F}_{q}[x]$ of degree k, and L_{k} is the least common multiple of all polynomials in $\mathbb{F}_{q}[x]$ of degree k.

In [2], Carlitz generalized $\psi_{k}(t)$ to the polynomial $G_{k}(t)$ and F_{k} to g_{k}.
Definition 2.8. Define $d(0):=0$ and for all $k \in \mathbb{N}$, if k is expressed with respect to the base q as

$$
k=\alpha_{0}+\alpha_{1} q+\alpha_{2} q^{2}+\cdots+\alpha_{m} q^{m} .
$$

where $0 \leq \alpha_{i}<q$ and $\alpha_{m} \neq 0$. then we define $d(k):=m$. The number $d(k)$ is called the upper q-index $d(k)$ of k for all $k \in \mathbb{N}_{0}$.

Definition 2.9. [2] Define $G_{0}(t)=1$ and $g_{0}=1$. For $k \in \mathbb{N}$. define

$$
G_{k}(t)=\psi_{0}^{\alpha_{0}}(t) \psi_{1}^{\alpha_{1}}(t) \cdots \psi_{d(k)}^{\alpha_{d(k)}}(t)
$$

and

$$
\text { CHUL } g_{k}=F_{1}^{\alpha_{1}} \cdots F_{d(k)}^{\alpha_{d(k)}} \text {. }
$$

Remark 2.10.

1. For each $k \in \mathbb{N}$. we have $k<q^{d(k)+1}$ and $d(k)=\left\lfloor\log _{q} k\right\rfloor$.
2. For $0 \leq i<2 q$, we have $d(i)=0$ or 1 and

$$
i=\alpha_{0}+\alpha_{1} q .
$$

If $d(i)=0$, then $\alpha_{1}=0$ and so

$$
L_{d(\imath)}=1=F_{0}=F_{0}^{\alpha_{0}}=g_{\imath} .
$$

If $d(i)=1$, then $\alpha_{1}=1$ and so

$$
L_{d(2)}=[1]=F_{1}=F_{0}^{\alpha_{0}} F_{1}^{\alpha_{1}}=g_{1} .
$$

3. From the definition of $G_{k}(t)$, we have

$$
G_{\alpha \cdot q^{i}}(t)=\psi_{i}^{\alpha}(t),
$$

where $0 \leq \alpha<q$. Moreover, for $k \in \mathbb{N}$. we have

$$
\operatorname{deg} G_{k}=\alpha_{0} \cdot \operatorname{deg} \psi_{0}+\alpha_{1} \cdot \operatorname{deg} \psi_{1}+\cdots+\alpha_{d(k)} \cdot \operatorname{deg} \psi_{d(k)}=k
$$

Definition 2.11. (2) Define $G_{0}^{\prime}(t)=1$. For $k \in \mathbb{N}$, if k is expressed with respect to the base q as

$$
k=\alpha_{0}+\alpha_{1} q+\alpha_{2} q^{2}+\cdots+\alpha_{d(k)} q^{d(k)} \quad\left(0 \leqslant \alpha_{2}<q\right) .
$$

then we define

$$
G_{k}^{\prime}(t)=\prod_{i=0}^{d(i)} G_{\alpha_{i} \cdot q^{i}}^{\prime}(t)
$$

where

$$
G_{\alpha \cdot q^{i}}^{\prime}(t)= \begin{cases}\psi_{i}^{\alpha}(t) & \text { for } 0 \leq \alpha<q-1, \\ \psi_{i}^{\alpha}(t)-F_{i}^{\alpha} & \text { for } \alpha=q-1 .\end{cases}
$$

Theorem 2.12. [2] Let $k \in \mathbb{N}_{0}$. For each $K \in \mathbb{F}_{q}[x]$, the expressions $\frac{G_{k}(K)}{g_{k}}$ and $\frac{G_{k}^{\prime}(K)}{g_{k}}$ are in $\mathbb{F}_{q}[x]$.

Theorem 2.13. [2] Let $p(t)$ be a polynomial over $\mathbb{F}_{q}[x]$ in an indeterminate t of
degree less than k. Then we have the unique representation

$$
p(t)=\sum_{i=0}^{k} A_{i} G_{i}(t)
$$

Let $q^{m}>i$. Then the coefficient A_{i} is determined by

$$
(-1)^{m} \frac{F_{m}}{L_{m}} A_{i}=\sum_{\operatorname{deg} K<m} G_{q^{m}-1-i}^{\prime}(K) f(K)
$$

Theorem 2.14. [2] With the same notation as in Theorem 2.13, the coefficient A_{i} is also given by

$$
(-1)^{m} \frac{F_{m}}{L_{m}} A_{t}=\sum_{\substack{\text { deg } K=m \\ K i s \text { monic }}} G_{q^{m-1-i}}^{\prime}(K) f(K)
$$

2.2 Integer-valued Differences for Polynomials

This section introduces the integral-valued differences for polynomials over $\mathbb{F}_{q}(x)$. In [7], Wagner defined the set \bar{I}_{r} as follows.

Definition 2.15. [7] Let $p(t) \in\left(\mathbb{F}_{q}(x)\right)[t]$. For $M \in \mathbb{F}_{q}[x] \backslash\{0\}$. define the difference of a polynomial $p(t)$ as

$$
\Delta_{M} p(t)=\frac{p(t+M)-p(t)}{M}
$$

and for nonzero elements $M_{1}, M_{2}, \ldots M_{r}$ of $\mathbb{F}_{q}[x]$, let $r^{\text {th }}$ difference of a polynomial $p(t)$ be

$$
\Delta_{M_{1}, M_{2}, \ldots, M_{r}} p(t)=\Delta_{M_{r}}\left(\Delta_{M_{1}, \Lambda I_{2}, \ldots, M_{r-1}} p(t)\right)
$$

Definition 2.16. [7] For any positive integer r. we define

$$
\begin{aligned}
& I_{0}=\left\{p(t) \in\left(\mathbb{F}_{q}(x)\right)[t] \mid p(d) \in \mathbb{F}_{q}[x] \text { for all } d \in \mathbb{F}_{q}[x]\right\} . \\
& I_{r}=\left\{p(t) \in\left(\mathbb{F}_{q}(x)\right)[t] \mid \Delta_{m_{1}, m_{2}, \cdots, m_{r}} p(t) \in I_{0} \text { for } m_{1}, m_{2}, \ldots m_{r} \in \mathbb{F}_{q}[x] \backslash\{0\}\right\} . \\
& \bar{I}_{r}=I_{0} \cap I_{1} \cap \cdots \cap I_{r} .
\end{aligned}
$$

Note that I_{0} is the set of integral-valued polynomials. In [2], Carlitz derived the explicit shapes of elements in I_{0} in the following theorem.

Theorem 2.17. (2) Let $p(t) \in I_{0}$ of degree n. Then we may write

$$
p(t)=\sum_{i=0}^{n} A_{i} \frac{G_{i}(t)}{g_{i}}
$$

where the A_{i} 's are uniquely determined elements of $\mathbb{F}_{q}[x]$.

In [7], Wagner gave the necessary and sufficient conditions for polynomial $p(t)$ belonging to \bar{I}_{1} and \bar{I}_{r} for all $r \geq 1$ as stating in next two theorems.

Theorem 2.18. [7] Let $p(t) \in I_{0}$ be as in the form in Theorem 2.17. Then $p(t) \in I_{1}$ if and only if. for all $\imath \geq 1$,

$$
L_{e^{*}(2)} \mid A_{1} .
$$

where

$$
\begin{aligned}
e(i) & =\max \left\{k \mid i \text { is divisible by } q^{k}\right\}, \\
e^{*}(i) & =\max \{e(j) \mid 1 \leq j \leq i\} .
\end{aligned}
$$

Theorem 2.19. |7| Let $p(t)$ be given by Theorem 2.17. Then $p(t) \in I_{r}$ if and only if for all $i \geq r$,

$$
\frac{A_{i}}{L_{e\left(i_{1}\right)} L_{e\left(i_{2}\right)} \cdots L_{e\left(i_{r}\right)}} \in \mathbb{F}_{q}[x] .
$$

whenever $i_{1} . i_{2} \ldots, i_{r}>0, i_{1}+i_{2}+\cdots+i_{r} \leq i$ and the multinomial coefficient
$\frac{i!}{i_{1}!i_{2}!\cdots i_{r}!\left(i-i_{1}-i_{2}-\cdots-i_{r}\right)!}$ is prime to p.

Remark 2.20. For a non-negative integer i, we have $e^{*}(\imath)$ and the upper q index $d(i)$ of i are equal.

