CHAPTER III

MAIN RESULTS

In this chapter, we begin with the definitions of integer-valued functions and general pseudo-polynomials nver $\mathbb{F}_{q}[x]$ which are analogous to Hall's and de Bruijn's by reducing the linear condition of Wagner's results. Then Wagner's interpolation series that representing linear pseudo-polynomial is generalized to general pseudopolynomial over $\mathbb{F}_{q}[x]$. Section 3.2 provides some algebraic structures for \mathcal{P}. The difference and higher order differences of integer-valued functions are studied in the last section.

3.1 Interpolation series for integer-valued polynomials and pseudo-polynomials over $\mathbb{F}_{q}[x]$

Definition 3.1. An integer-valued function over $\mathbb{F}_{q}[x]$ is a function from the set $\mathbb{F}_{q}[x]$ to $\mathbb{F}_{q}[x]$.

Definition 3.2. A pseudo-polynomial over $\mathbb{F}_{q}[x]$ is an integer-valued function over $\mathbb{F}_{q}[x]$ and satisfies

$$
f(M+K) \equiv f(M)(\bmod K)
$$

for all $M \in \mathbb{F}_{q}[x]$ and all $K \in \mathbb{F}_{q}[x] \backslash\{0\}$.
Throughout denote the set of all integer-valued functions over $\mathbb{F}_{q}[x]$ by IVF. and denote the set of all pseudo-polynomials over $\mathbb{F}_{q}[x]$ by \mathcal{P}.

Example 3.3.

1. The set of all constant functions \mathbb{F}_{q} and the set of all polynomial functions $\left(\mathbb{F}_{q}[x]\right)[t]$ are subset of \mathcal{P}.
2. Let $A \in \mathbb{F}_{q}\left(\left(\frac{1}{x}\right)\right)$. Write $A=a_{k} x^{k}+a_{k-1} x^{k-1}+\cdots+a_{0}+\frac{a_{-1}}{x}+\cdots$, where $a_{\imath} \in \mathbb{F}_{q}$. Define

$$
[A]:=a_{k} x^{k}+a_{k-1} x^{k-1}+\cdots+a_{0} .
$$

A function $f: \mathbb{F}_{q}[x] \rightarrow \mathbb{F}_{q}[x]$ defined by

$$
f(t)=[A t]
$$

is an integer-valued function over $\mathbb{F}_{q}[x]$
To find the explicit shapes for the etements in $I V F$ and \mathcal{P}, we need the following identities.

Lemma 3.4. Let $k \in \mathbb{N}$. For $0 \leq i \leq q^{k}-1$. we have

$$
g_{q^{k}-1-1} \cdot g_{i}=g_{q^{k}-1}=\frac{F_{k}}{L_{k}}
$$

Proof. Let $i \in \mathbb{N}_{0}$ with $0 \leq i \leq q^{k}-1$. Clearly, $g_{q^{k}-1} \cdot g_{0}=g_{q^{k}-1}$ so we assume that $i \geq 1$. It can be expressed with respect t. hase q as

$$
i=\alpha_{0}+\alpha_{1} q+\alpha_{2} q^{2}+\cdots+\alpha_{d(i)} q^{d(2)} .
$$

where $\alpha_{d(i)} \neq 0$ and $0 \leq \alpha_{j}<q$ for all j. Since $i \leq q^{k}-1, d(i) \leq k-1$. If $d(i)<k-1$, set $\alpha_{t(i)+1}, \alpha_{d(i)+2}, \ldots, \alpha_{k-1}=0$. So we have

$$
i=\alpha_{0}+\alpha_{1} q+\alpha_{2} q^{2}+\cdots+\alpha_{k-1} q^{k-1}
$$

where $0 \leq \alpha_{j}<q$ for all j. Since $q^{k}-1=(q-1)\left(q^{k-1}+q^{k-2}+\cdots+1\right)$, we have
by Definition 2.9, that

$$
\begin{aligned}
g_{q^{k}-1} & =F_{1}^{q-1} F_{2}^{q-1} \cdots F_{k-1}^{q-1} \\
& =\left(F_{1}^{q-1-\alpha_{1}} F_{2}^{q-1-\alpha_{2}} \cdots F_{k-1}^{q-1-\alpha_{k-1}}\right) \cdot\left(F_{1}^{\alpha_{1}} F_{2}^{\alpha_{2}} \cdots F_{k-1}^{\alpha_{k-1}}\right) \\
& =g_{q^{k}-1-\imath} \cdot g_{\imath} .
\end{aligned}
$$

Next, we will show that $g_{q^{k}-1}=\frac{F_{k}}{L_{k}}$. By applying Definition 2.6, this yields

$$
\begin{aligned}
& \frac{F_{k}}{L_{k}}=\frac{[k][k-1]^{q}[k-2]^{q^{2}} \cdots[1]^{q^{k-1}}}{[k][k-1][k-2] \cdots[1]} \\
& =[k-1]^{q-1}[k-2]^{q^{2}-1} \cdots[1]^{q^{k-1}}=1 \\
& =\left([k-1][k-2]^{q+1} \cdots[1]^{q^{k-2}+q^{k}-3}+{ }^{6+1}\right)^{4-1} \\
& =\left\{\left([k-1][k-2]^{q} \cdots[1]^{q^{k-2}}\right)\left([k=2][k-3]^{q} \cdots[1]^{q^{k-3}}\right) \cdots\left([2][1]^{q}\right)([1])\right\}^{q-1} \\
& =\left(F_{k-1} F_{k-2} \cdots F_{2} F_{1}\right)^{q-1} \\
& =F_{k-1}^{q-1} F_{k-2}^{q-1} \cdots F_{2}^{q-1} F_{1}^{q-1} \\
& =g_{q^{k}-1}
\end{aligned}
$$

This completes the proof.
Theorem 3.5. Let $f(t) \in I V F$. Then it is uniquely representable as an interpolation series of the form

$$
f(t)=\sum_{i=0}^{\infty} A_{i} \frac{G_{i}(t)}{g_{i}}
$$

where $A_{\imath} \in \mathbb{F}_{q}[x]$.
Remark This representation is well-defined for $t \in \mathbb{F}_{q}[x]$ because for each $M \in$ $\mathbb{F}_{q}[x]$ with $d(i)>\operatorname{deg} M$, we have $\psi_{d(i)}(M)=0$. By the Definition 2.9,

$$
G_{\imath}(M)=0 .
$$

So the sum $\sum_{i=0}^{\infty} A_{i} \frac{G_{i}(M)}{g_{i}}$ reduces to a finite sum and the representation is interpreted as yielding the same value of $f(M)$ on both sides.

Proof of Theorem 3.5. Assume that $f(t)$ is an integer-valued function. We first show that for $n \in \mathbb{N}$, there exists a unique polynomial $P_{n}^{(f)}(t) \in \mathbb{F}_{q}(x)[t]$ of degree less than or equal to $q^{n}-1$, such that $P_{n}^{(f)}(M)=f(M)$ for all polynomials $M \in$ $\mathbb{F}_{q}[x]$ of degree less than or equal to $n-1$.

Let $n \in \mathbb{N}$. Set $c_{0}:=f(0)$ and let $P_{n}(t):=c_{0}+c_{1} t+\cdots+c_{q^{n}-1} t^{q^{n}-1}$. We show that all c_{i} 's are uniquely determined. Let $M_{1}, \Lambda I_{2} \ldots, M_{q^{n}-1} \in \mathbb{F}_{q}[x] \backslash\{0\}$ be all distinct polynomials of degree less than or equal to $n-1$. To fulfill the requirement that $P_{n}\left(M_{i}\right)=f\left(M_{i}\right)$ for all i, it suffices to show that the following system of equations is solvable for the coefficients c_{2} 's.

$$
\begin{aligned}
& f(0)=c_{0}, \\
& f\left(M_{1}\right)=c_{0}+c_{1} M I_{1}+\cdots+c_{q^{n-1}} M M_{1}^{q^{n}-1}, \\
& \vdots \\
& f\left(M_{q^{n}-1}\right)=c_{0}+c_{1} M_{q^{n}-1}+\cdots+c_{q^{n}-1} M_{q^{n}-1}^{q^{n}-1} .
\end{aligned}
$$

Rewriting the previous system to the matrix form, we have

We have

$$
\operatorname{det} C:=\operatorname{det}\left[\begin{array}{ccccc}
M_{1} & M_{1}^{2} & M_{1}^{3} & \ldots & M_{1}^{q^{n}-1} \\
M_{2} & M_{2}^{2} & M_{2}^{3} & \ldots & M_{2}^{q^{n}-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
M_{q^{n}-1} & M_{q^{n}-1}^{2} & M_{q^{n}-1}^{3} & \ldots & M_{q^{n}-1}^{q^{n}-1}
\end{array}\right]
$$

$$
\begin{aligned}
& =\left(M_{1} M_{2} \cdots M_{q^{n}-1}\right) \operatorname{det}\left[\begin{array}{ccccc}
1 & M_{1} & M_{1}^{2} & \ldots & I_{1}^{q^{n}-2} \\
1 & M_{2} & M_{2}^{2} & \ldots & M_{2}^{q^{n}-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & M_{q^{n}-1} & M_{q^{n}-1}^{2} & \ldots & M_{q^{n}-1}^{q^{n}-2}
\end{array}\right] \\
& =M_{1} M_{2} \cdots M_{q^{n-1}} \prod_{1 \leq i<j \leq q^{n}-1}\left(M_{i}-M_{j}\right) .
\end{aligned}
$$

Since $\mathbb{F}_{q}[x]$ is an integral domain and $M_{i}-M_{j} \neq 0$ for $i \neq j$, $\operatorname{det} C \neq 0$. This shows that the system is solvable and has a unique solution. Now we have the unique polynomial $P_{n}^{(f)}(t)$ as required.

Invoking upon Theorem 2.13, this polynomial can also be uniquely expressed as

$$
P_{n}^{(f)}(t)=\sum_{i=0}^{y^{n}-1} C_{i} G_{2}(t)
$$

We have $i<q^{d(i)+1}$ where $d(i)$ is the upper q-index of i. Then, with $m_{1}=d(i)+1$,

$$
\left.C_{i}=(-1)^{m_{i}} \frac{L_{m_{i}}}{F_{m_{i}}} \sum_{\operatorname{deg} M<m_{i}} G_{q^{m_{i}},}^{\prime}-1-i\right)
$$

For each $0 \leq i \leq q^{n}-1$. we observe that $d(i) \leq n-1$. Therefore $m_{\imath}=d(i)+1 \leq n$. Morenver, from the first part of the proof, $f(M)=P_{n}^{(f)}(M)$ for all M of degree less than n. It follows that

$$
C_{\imath}=(-1)^{m_{i}} \frac{L_{m_{i}}}{F_{n_{t}}} \sum_{\operatorname{deg} M<m_{\imath}} G_{q^{m_{\imath}-1-\imath}}^{\prime}(M) f(M)
$$

Then

$$
g_{i} C_{2}=(-1)^{m_{i}} \frac{L_{m_{2}}}{F_{n_{2}}} g_{2} \sum_{\operatorname{deg} M<m_{2}} G_{q^{m_{2}-1-2}}^{\prime}(M) f(M)
$$

By Lemma 3.4 and the fact that $i \leq q^{d(i)}-1<q^{d(2)+1}=q^{m_{1}}$. we have $\frac{L_{m_{2}}}{F_{m_{2}}} g_{\iota}=$ $\frac{1}{g_{q^{m_{2}-1-i}}}$. So,

$$
g_{\imath} C_{i}=(-1)^{m_{i}} \sum_{\operatorname{deg} M<m_{2}} \frac{G_{q^{m_{i}-1-i}}^{\prime}(M)}{g_{q^{m_{i}-1-i}}} f(M)
$$

Therefore.

$$
P_{n}^{(J)}(t)=\sum_{i=0}^{q^{n}-1} A_{i} \frac{G_{i}(t)}{g_{i}}
$$

where

$$
A_{i}=(-1)^{m_{i}} \sum_{\operatorname{deg} M<m_{i}} \frac{G_{q^{m_{i}-1-2}}^{\prime}(M)}{g_{q^{m_{i}-1-i}}} f(M) .
$$

By Theorem 2.12, $\frac{G_{q^{m_{i}-1-i}}^{\prime}(M)}{g_{q^{m_{i}-1-i}}} \in \mathbb{F}_{q}[x]$ implies that $A_{i} \in \mathbb{F}_{q}[x]$.
With the above preparation, we proceed now to derive our interpolation series.
To this end. consider
and

$$
P_{n}^{(f)}(t)=\sum_{i=0}^{q^{n-1}} A_{1} \frac{G_{i}(t)}{g_{i}}
$$

$$
P_{n+1}^{(b)}(t)=\sum_{i=0}^{q^{n+1}-1} A_{2}^{\prime} \frac{G_{i}(t)}{g_{i}}
$$

where the coefficients A_{i} 's and $A_{i}^{\prime} s$ are defined as above. For $0 \leq i \leq q^{n}-1$, we have $m_{i}=d(i)+1 \leq n$. So for each $M \in \mathbb{F}_{q}[x]$ with deg $M<m_{\imath} \leq n$. we have

$$
\Gamma_{n}^{(\rho)}(M)=f(\Lambda)=P_{n+1}^{(f)}(M)
$$

Thus,

$$
\begin{aligned}
A_{i} & =(-1)^{m_{i}} \frac{L_{m_{i}}}{F_{m_{2}}} \sum_{\operatorname{deg} M<m_{i}} G_{q^{m_{i}-1-\imath}}^{\prime}(M) P_{n}^{(f)}(M) \\
& =(-1)^{m_{2}} \frac{L_{m_{i}}}{F_{m_{i}}} \sum_{\operatorname{deg} M<m_{i}} G_{q^{\prime m_{i-1}-i}}^{\prime}(M) f(M) \\
& =(-1)^{m_{2}} \frac{L_{m_{i}}}{F_{m_{2}}} \sum_{\operatorname{dcg} M<m_{i}} G_{q^{m_{i-1}-\imath}}^{\prime}(M) P_{n+1}^{(f)}(M) \\
& =A_{i}^{\prime} .
\end{aligned}
$$

This implies that

$$
\sum_{i=0}^{q^{n+1}-1} A_{i}^{\prime} \frac{G_{i}(t)}{g_{i}}=P_{n}^{(f)}(t)+\sum_{i=q^{n}}^{q^{n+1}-1} A_{i}^{\prime} \frac{G_{i}(t)}{g_{i}}
$$

Since $G_{\imath}(M)=0$ for all i with $d(i)>\operatorname{leg} M$. for $M \in \mathbb{F}_{q}[x]$ of degree $n-1$, we have

$$
\begin{aligned}
\sum_{i=0}^{\infty} A_{i} \frac{G_{i}(M)}{g_{i}} & =\sum_{i=0}^{q^{n}-1} A_{i} \frac{G_{i}(M)}{g_{i}}+\sum_{i=q^{n}}^{\infty} A_{i} \frac{G_{i}(M)}{g_{i}} \\
& =\sum_{i=0}^{q^{n}-1} A_{i} \frac{G_{i}(M)}{g_{i}}+0 \\
& =f(M)
\end{aligned}
$$

showing that the function $f(t)$ can be represented by the stated interpolation series.

Modifying the preceding proof, we next derive interpolation series for pseudopolynomials.

Theorem 3.6. Let $f(t) \in I V F$. Then $f(t) \in \mathcal{P}$ if and only if it is representable as an interpolation series of the form

$$
\sum_{i=0}^{\infty} B_{i} L_{d(t)} \frac{G_{i}(t)}{g_{i}}
$$

where $B_{\imath} \in \mathbb{F}_{q}[x]$ and $d(i)$ denotes the upper q-index of i.
Proof. From the pronf of Theorem 3.5, for all $u \in \mathbb{N}_{0}$, the unique polymomial of degree $\leq q^{n}-1$ which takes the same values as $f(t)$ over the set of all polynomials $M \in \mathbb{F}_{q}[x]$ with $\operatorname{deg} \Lambda I<n$ is

$$
P_{n}^{(f)}(t)=\sum_{i=0}^{q^{n}-1} A_{i} \frac{G_{\imath}(t)}{g_{i}}
$$

and for $r \in \mathbb{N}$ with $q^{r}>i$, we have

$$
A_{\imath}=(-1)^{r} \sum_{\operatorname{deg} N<r} \frac{G_{q^{r}-1-i}^{\prime}(N) f(N)}{g_{q^{r}-1-i}}
$$

Moreover, $f(t)$ is a pseudo-polynomial, if and only if

$$
P_{n}^{(f)}(M+K)=f(M+K) \equiv f(M)=P_{n}^{(f)}(M)(\bmod K)
$$

for all $M . K \in \mathbb{F}_{q}[x], K \neq 0$ and $\operatorname{deg} M, \operatorname{deg} K<n$ for all $n \in \mathbb{N}_{11}$. By Theorem 2.18,

$$
\begin{aligned}
P_{n}^{(f)}(t) \in \mathcal{P} \text { for all } n \in \mathbb{N}_{0} & \Leftrightarrow P_{n}^{(f)}(t) \in I_{0} \cap I_{1}=\bar{I}_{1} \text { for all } n \in \mathbb{N}_{0} \\
& \Leftrightarrow L_{d(i)} \mid A_{i} \text { for all } i \leq n \text { and } n \in \mathbb{N}_{0} .
\end{aligned}
$$

Hence, the desired result follows.

3.2 Some Algebraic Structures of \mathcal{P}

It is known that $I V F$ is a commutative ring under addition and multiplication of functions. The identity under addition is $0(t)$ defined by $0(t)=0 \in \mathbb{F}_{q}$ for all $t \in \mathbb{F}_{q}[x]$ and the identity under multiplication is $1(t)$ defined by $1(t)=1 \in \mathbb{F}_{q}$ for all $t \in \mathbb{F}_{q}[x]$. The inverse under addition of $f(t) \in I V F$ is $(-f)(t):=-f(t)$ for all $t \in \mathbb{F}_{q}[x]$.

Theorem 3.7. \mathcal{P} is a subring of IVF.

Proof. Note that $\mathcal{P} \subset I V F$ and $0(t) .1(t) \in \mathcal{P}$. To show that \mathcal{P} is a subring of $I V F$, it suffices to show that $f(t)-g(t), f(t) g(t) \in \mathcal{P}$ for all $f(t), g(t) \in \mathcal{P}$. Let $f(t), g(t) \in \mathcal{P}$. Then
$(f-g)(M+K)=f(M+K)-g(M+K) \equiv f(M)-g(M)=(f-g)(M)(\bmod K)$
and

$$
(f \cdot g)(M+K)=f(M+K) \cdot g(M+K) \equiv f(M) \cdot g(M)=(f \cdot g)(M)(\bmod K)
$$

for all $M \in \mathbb{F}_{q}[x]$ and $K \in \mathbb{F}_{q}[x] \backslash\{0\}$. This completes the proof.

We define units in \mathcal{P} in the usual way.
Definition 3.8. An element $u(t) \in \mathcal{P}$ is called a unit if there is $v(t) \in \mathcal{P}$ such that $u(t) v(t)=1(t)$.

Denote by $\mathcal{U}(\mathcal{P})$ be the set of all units in \mathcal{P}.
Lemma 3.9. We have $\mathcal{U}(\mathcal{P})=\mathbb{F}_{q}^{*}:=\mathbb{F}_{q} \backslash\{0\}$.
Proof. Let $c \in \mathbb{F}_{q}^{*}$. Since \mathbb{F}_{q}^{*} is a multiplicative group, there exists $c^{\prime} \in \mathbb{F}_{q}^{*}$ such that $c^{\prime} c=1$. This shows that $\mathbb{F}_{q}^{*} \subseteq \mathcal{U}(\mathcal{P})$.

Conversely, let

$$
f(t)=\sum_{i=0}^{\infty} B_{i} L_{d(i)} \frac{G_{i}(t)}{g_{i}}
$$

be a unit in \mathcal{P}. Then there exists $g(t) \in \mathcal{P}$ such that

$$
g(t) f(t)=1(t)
$$

Substituting for t by any $M \in \mathbb{F}_{q}[x]$. we arrive at

$$
g(M)=(f(M))^{-1} \text {. the inverse of } f(M) \text { in } \mathbb{F}_{q}[x] .
$$

This implies that $f\left(\mathbb{F}_{q}[x]\right) \subseteq \mathbb{F}_{q}^{*}$. Moreover, $B_{0}=f(0) \in \mathbb{F}_{q}^{*}$. To show that $f(t) \in \mathbb{F}_{q}^{*}$, it suffices to show that $f(N)=B_{0}$ for any $N \in \mathbb{F}_{q}[x] \backslash\{0\}$. We have

$$
\begin{equation*}
f(N)=f(0+N) \equiv f(0)=B_{0}(\bmod N) \tag{*}
\end{equation*}
$$

If $N \in \mathbb{F}_{q}[x] \backslash \mathbb{F}_{q}$, using $f\left(\mathbb{F}_{q}[x]\right) \subseteq \mathbb{F}_{q}^{*}$, the relation $(*)$ shows that $f(N)=B_{0}$. If $N \in \mathbb{F}_{q}^{*}$. since

$$
f(N) \equiv f(N+x)(\bmod x)
$$

and $f(N+x)=B_{0}$ by the previous case, we conclude again that $f(N)=B_{0}$. This can hold for all $M \in \mathbb{F}_{q}[x]$ only when $f(t)$ is a constant function with value in \mathbb{F}_{q}^{*}, showing then that $\mathcal{U}(\mathcal{P}) \subseteq \mathbb{F}_{q}^{*}$.

Definition 3.10. A non-unit element $f(t) \in \mathcal{P} \backslash\{0(t)\}$ is called an irreducible element in \mathcal{P} if whenever $f(t)=g(t) h(t)$ for some $g(t) . h(t) \in \mathcal{P}$. then either $g(t)$ or $h(t)$ is a unit.

Theorem 3.11. The set \mathcal{P} is an integral domain.

Proof. By Theorem 3.7, we have \mathcal{P} is a commutative ring under addition and multiplication. There remains to check that it has no zero divisors. Assume that $f(t)$ and $g(t) \in \mathcal{P} \backslash\{0(t)\}$. Then there are $M_{1}, M_{2} \in \mathbb{F}_{q}[x]$ such that
and

Let P_{1} and P_{2} be two distinct irreducible polynomials in $\mathbb{F}_{q}[x]$ such that

$$
P_{1} \nmid K_{1} \text { and } P_{2} \nmid K_{2} .
$$

Since $\operatorname{gcd}\left(P_{1}, P_{2}\right)=1$, there are $A, B \in \mathbb{F}_{q}[x]$ such that

$$
A P_{1}-B P_{2}=1
$$

If $M_{1} \neq M_{2}$. then

$$
\left(M_{2}-M_{1}\right) A P_{1}-\left(M_{2}-M_{1}\right) B P_{2}=M_{2}-M_{1},
$$

i.e.,

$$
M_{2}+h_{2} P_{2}=M_{1}+h_{1} P_{1},
$$

where $h_{1}=\left(M_{2}-M_{1}\right) A \neq 0$ and $h_{2}=\left(M_{2}-M_{1}\right) B \neq 0$. Then

$$
f\left(M_{1}+h_{1} P_{1}\right) \equiv f\left(M_{1}\right) \equiv K_{1}\left(\bmod h_{1} P_{1}\right)
$$

and

$$
g\left(M_{2}+h_{2} P_{2}\right) \equiv g\left(M_{2}\right) \equiv K_{2}\left(\bmod h_{2} P_{2}\right) .
$$

Since $P_{1} \nmid K_{1}$ and $P_{2} \nmid K_{2}$, these indicate that both $f\left(M_{1}+h_{1} P_{1}\right)$ and $g\left(M_{2}+h_{2} P_{2}\right)$ are not zero. We have

$$
\begin{aligned}
(f \cdot g)\left(M_{1}+h_{1} P_{1}\right) & =f\left(M_{1}+h_{1} P_{1}\right) \cdot g\left(M_{1}+h_{1} P_{1}\right) \\
& =f\left(M_{1}+h_{1} P_{1}\right) \cdot g\left(M_{2}+h_{2} P_{2}\right)
\end{aligned}
$$

If $M_{1}=M_{2}$, then

$$
\begin{aligned}
(f . g)\left(M_{1}\right) & =f\left(M_{1}\right) g\left(M_{1}\right) \\
& =f\left(M_{1}\right) g\left(M_{2}\right) \\
& =K_{1} K_{2} \\
& \neq 0 .
\end{aligned}
$$

The two possibilities show that $(f \cdot g)(t)$ is not a zero map, and so \mathcal{P} has no zero divisor.

To show that \mathcal{P} is not a unique factorization domain, we need three more lemmas.

Lemma 3.12. Let $f(t) \in \mathcal{P}$ with the expansion in Theorem 3.6. If $B_{\imath}=0$ for all $i \geq 2 q$, then $f(t) \in \mathbb{F}_{q}[x][t]$.

Proof. If $B_{i}=0$ for $i \geq 2 q$, then the interpolation series reduces to

$$
f(t)=\sum_{i=0}^{2 q-1} B_{i} L_{d(i)} \frac{G_{i}(t)}{g_{i}} .
$$

By Remark 2.10, we have that $g_{i}=L_{d(i)}$ for $0 \leq i \leq 2 q-1$, and so $f(t) \in$ $\left(\mathbb{F}_{q}[x]\right)[t]$.

Definition 3.13. Let $f(t), g(t) \in I V F$. Then $f(t)=O(g(t))$ if and only if there exist a positive real number c and a positive integer N such that

$$
|f(M)| \leq c|g(M)| \quad \text { for all } M \in \mathbb{F}_{q}[x] \text { with } \operatorname{deg} M \geq N .
$$

Lemma 3.14. Let $f(t) \in \mathcal{P}$ and $m \in \mathbb{N}$. If $f(t)=O\left(x^{m \operatorname{deg} t}\right)$, then $f(t) \in \mathbb{F}_{q}(x)[t]$.
Proof. From the hypothesis, there exist $c>0$ and $N \in \mathbb{N}$ such that $|f(M)| \leq$ $c q^{m \operatorname{deg} M}$ for all $M \in \mathbb{F}_{q}[x]$, with $\operatorname{deg} M \geq N$. Since $q^{d(n)+1}>n$, by Thenrem 2.14, we have

$$
A_{n}=(-1)^{d(n)+1} \frac{L_{d(n)+1}}{F_{d(n)+1}} \sum_{\substack{\text { deg } \\ K \\ K \\ \text { s snonic }}} \sum_{\substack{\text { monic }}}^{G_{q^{d(n)+1-1-n}}^{\prime}}(K) f\left(K^{\prime}\right) .
$$

We show now that $A_{n}=O\left(x^{(n-1)(d(n)+1)}\right)$. Let $N^{\prime}=\max \{N, 2 q\}$, and choose j sn that $d(j) \geq N^{\prime}$. Write

$$
j=\gamma_{0}+\gamma_{1} q+\gamma_{2} q^{2}+\cdots+\gamma_{d(j)} q^{d(j)}
$$

where $0 \leq \gamma_{k} \leq q-1, \gamma_{d(j)} \neq 0$. Then,

$$
\begin{aligned}
q^{d(\jmath)+1}-j-1 & =(q-1)\left(q^{d(\jmath)}+q^{d(j)-1}+\cdots+1\right)-j \\
& =(q-1)\left(q^{d(\jmath)}+q^{d(\jmath)-1}+\cdots+1\right)-\left(\gamma_{0}+\gamma_{1} q+\cdots+\gamma_{d(\jmath)} q^{d(\jmath)}\right) \\
& =\beta_{0}+\beta_{1} q+\cdots+\beta_{k(\jmath)} q^{d(\jmath)}, \text { where } \beta_{k}=(q-1)-\gamma_{k} .
\end{aligned}
$$

Therefore $d\left(q^{d(j)+1}-1\right)=d(j)$ and so, for a monic polynomial K of degree $d(j)+1$, we have

$$
\begin{aligned}
G_{q^{d(\jmath), 1-1-\jmath}}^{\prime}(K) & =\prod_{k=0}^{d(j)} G_{\beta_{k} q^{k}}^{\prime}(K) \\
& =\prod_{\substack{k=0 \\
\beta_{k} \neq q-1}}^{d(j)} G_{\beta_{k} q^{k}}^{\prime}(K) \prod_{\substack{k=0 \\
\beta_{k}=q-1}}^{d(j)} G_{\beta_{k} q^{k}}^{\prime}\left(K^{\prime}\right)
\end{aligned}
$$

$$
=\prod_{\substack{k=0 \\ \beta_{k} \neq q-1}}^{d(j)} \psi_{k}^{\beta_{k}}(K) \prod_{\substack{k=0 \\ \beta_{k}=q-1}}^{d(j)}\left\{\psi_{k}^{q-1}(K)-F_{k}^{q-1}\right\}
$$

For $0 \leq k \leq d(j)$, we have

$$
\operatorname{deg} F_{k}=k q^{k} \quad \text { and } \quad \operatorname{deg} \psi_{k}(K)=\operatorname{deg} \prod_{\operatorname{deg} E<k}(K-E)=q^{k}(d(j)+1)
$$

Since $d(j)+1>k$. we see that
and so

$$
\operatorname{deg}\left\{\psi_{k}^{q-1}(K)-F_{k}^{q-1}\right\}=\operatorname{deg} \psi_{k}^{q-1}(K)
$$

$$
\operatorname{deg} G_{q^{d(j)+1-1-j}}^{\prime}(K)=\operatorname{deg} \prod_{k=0} \psi_{k}^{\beta_{k}}(K)
$$

$$
=(d(j)+1)\left(\beta_{0}+\beta_{1} q^{1}+\cdots+\beta_{d(j)} q^{d(\jmath)}\right)
$$

$$
=(d(\jmath)+1)\left(q^{d(\jmath)+1}-j-1\right) .
$$

Thus,

$\operatorname{deg} A_{j} \leq \operatorname{deg} L_{d(j)+1}-\operatorname{deg} F_{d(j)+1}+\operatorname{deg} G_{q^{d(j)+1}-1-j}^{\prime}(K)+\operatorname{deg} f(K)$

$$
\begin{aligned}
< & \left(q+q^{2}+\cdots+q^{d(j)+1}\right)-(d(j)+1) q^{d(j)+1}+(d(j)+1)\left(q^{d(j)+1}-j-1\right) \\
& +c^{\prime}+m(d(j)+1) \quad \\
<2 q^{d(j)+1}-(j+1)(d(j)+1)+c^{\prime}+m(d(j)+1) & \\
<2 q^{d(j)+1}-q^{d(j)}(2 q)+c^{\prime}+(m-1)(d(j)+1) & \quad \text { (since } j \geq q^{d(j)} \text { and } \\
& d(j)+1>2 q) \\
= & c^{\prime}+(m-1)(d(j)+1) .
\end{aligned}
$$

Consequently, for sufficiently large k, we have $\left|A_{k}\right|<C\left|x^{(m-1)(d(k)+1)}\right|$ for some
$C>0$. Since $f \in \mathcal{P}$, we know then that $L_{d(k)} \mid A_{k}$. Therefore,

$$
\operatorname{deg} L_{d(k)} \leq \operatorname{deg} A_{k} \quad \text { or } \quad A_{k}=0
$$

If some $A_{k} \neq 0$, then for k sufficiently large, we get

$$
\begin{aligned}
q^{d(k)} & <q^{1}+q^{2}+\cdots+q^{d(k)} \\
& =\operatorname{deg} L_{d(k)} \\
& \leq \operatorname{deg} A_{k} \\
& <c^{\prime}+(m-1)(d(k)+1)
\end{aligned}
$$

which is a contradiction. and so $A_{k}=0$, i.e.. $f(t)$ is a polynomial over $\mathbb{F}_{q}(x)$.

Lemma 3.15. Let $f(t) \in \mathcal{P}$. If $f(t) \in \mathbb{F}_{q}(x)[t]$ and if there exist $g(t), h(t) \in \mathcal{P}$ such that

$$
f(t)=g(t) h(t)
$$

for all $t \in \mathbb{F}_{q}[x]$, then $g(t), h(t) \in \mathbb{E}_{q}(x)[t]$.
Proof. Write $f(t)=a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{0}$. Let $M \in \mathbb{F}_{q}[x]$. Then.

$$
|f(M)| \leq A q^{n \operatorname{deg} M},
$$

where $A=\max \left\{\left|a_{0}\right|,\left|a_{1}\right|, \ldots,\left|a_{n}\right|\right\}$. If $g(t)$ is not a polynomial, Lemma 3.14 yields $g(t) \neq O\left(x^{n \operatorname{deg} t}\right)$, which in turn implies that there exists an increasing sequence $\{n$,$\} with \operatorname{deg} M_{j}=n_{j}$ such that

$$
\left|g\left(M_{j}\right)\right|>A q^{n \operatorname{deg} M,}=A q^{n \cdot n_{\jmath}} .
$$

and so

$$
A q^{n n_{j}} \geq\left|f\left(M_{j}\right)\right|=\left|g\left(M_{j}\right)\right|\left|h\left(M_{j}\right)\right|>A q^{n n_{j}}
$$

which is a contradiction.

In particular, Lemma 3.15 holds for linear pseudo-polvnomials over $\mathbb{F}_{q}[x]$. The following corollaries provide alternative proofs for this linear case independently from previous lemmas. Let \mathcal{L} be the set of all linear pseudo-polynomials over $\mathbb{F}_{q}[x]$.

Corollary 3.16. If $f(t) \in \mathcal{L}$ and $f\left(x^{n}\right)=O\left(x^{q^{n}}\right)$, then $f(t) \in \mathbb{F}_{q}(x)[t]$.
Proof. Assume that $f(t) \in \mathcal{L}$ and $f\left(x^{n}\right)=O\left(x^{q^{n}}\right)$. Then there exists $c>0$ and $N \in \mathbb{N}$ such that $\left|f\left(x^{n}\right)\right| \leq c q^{q^{n}}$ for all $n>N$. Since $f(t) \in \mathcal{L}$. for each $n \in \mathbb{N}$

$$
f\left(x^{n}\right)=\frac{A_{0} \psi_{0}\left(x^{n}\right)}{F_{0}}+\frac{A_{1} \psi_{1}\left(x^{n}\right)}{F_{1}}+\frac{A_{2} \psi_{2}\left(x^{n}\right)}{F_{2}}+\ldots+A_{n} .
$$

So

Since the matrix in the denominator of A_{n} is lower triangular, its determinant is

1. Thus

$$
\begin{aligned}
A_{n}= & f\left(x^{n}\right)-f\left(x^{n-1}\right) \frac{\psi_{n-1}\left(x^{n}\right)}{F_{n-1}}+f\left(x^{n-2}\right) D_{n-2, n}-f\left(x^{n-3}\right) D_{n-3, n}+\ldots \\
& +(-1)^{n+2} f\left(x^{0}\right) D_{0, n},
\end{aligned}
$$

where $D_{2,}$ is the determinant of the matrix in numerator of A_{n} which cut row $(i+1)^{\text {th }}$ and column $(j+1)^{\text {th }}$ for all $0 \leq i . j \leq n$. We have

$$
\begin{aligned}
\left|D_{0, n}\right| & \leq\left|\frac{\psi_{0}\left(x^{1}\right)}{F_{0}} \frac{\psi_{1}\left(x^{2}\right)}{F_{1}} \frac{\psi_{2}\left(x^{3}\right)}{F_{2}} \cdots \frac{\psi_{n-1}\left(x^{n}\right)}{F_{n-1}}\right|=q^{q^{1}+q^{2}+q^{3}+\ldots q^{n-1}}, \\
\left|D_{1, n}\right| & \leq\left|\frac{\psi_{1}\left(x^{2}\right)}{F_{1}} \frac{\psi_{2}\left(x^{3}\right)}{F_{2}} \frac{\psi_{3}\left(x^{4}\right)}{F_{3}} \cdot \frac{\psi_{n-1}\left(x^{n}\right)}{F_{n-1}}\right|=q^{q^{1}+q^{2}+q^{3}+\ldots q^{n-1}} . \\
\left|D_{2, n}\right| & \leq \frac{\psi_{2}\left(x^{3}\right)}{F_{2}} \frac{\psi_{3}\left(x^{4}\right)}{F_{3}} \psi_{4}\left(x^{5}\right) \\
F_{4} & \left.\frac{\psi_{n-1}\left(x^{n}\right)}{F_{n-1}} \right\rvert\, \\
\left|D_{3, n}\right| & =q^{q^{2}+q^{3}+q^{4}+\ldots q^{n-1}}, \\
\vdots & \left\lvert\, \frac{\psi_{3}\left(x^{4}\right)}{F_{3}} \frac{\psi_{4}\left(x^{5}\right)}{F_{4}} \psi_{5}\left(x^{6}\right)\right. \\
\left.F_{5} \cdots \frac{\psi_{n-1}\left(x^{n}\right)}{F_{n-1}} \right\rvert\, & =q^{q^{3}+q^{4}+q^{5}+\ldots q^{n-1}}, \\
\left|D_{n-1, n}\right| & \leq\left|\frac{\psi_{n-1}\left(x^{n}\right)}{F_{n-1}}\right| \\
\left|D_{n, n}\right| & \leq|1|
\end{aligned}
$$

Next we will claim that $A_{n}=O\left(x^{q^{n}}\right)$. Let $n \geq N$. For each $N \leq m \leq n-1$,

$$
\left|D_{m, n}\right|\left|f\left(x^{m l}\right)\right| \leq q^{q^{m}+q^{m+1}+\cdots+q^{n-1} c q^{q^{m}}} \leq c q^{q^{n}}
$$

Since $\left|D_{n, n} \| f\left(x^{n}\right)\right| \leq c q^{q^{n}}$, it follows that $\left|D_{m, n} \|\left|f\left(x^{m}\right)\right| \leq c q^{q^{n}}\right.$ for all $N \leq m \leq n$. Let. $q^{r}:=\max \left\{\left|f\left(x^{0}\right)\right|,\left|f\left(x^{1}\right)\right|,\left|f\left(x^{2}\right)\right| \ldots .\left|f\left(x^{N-1}\right)\right|\right\}$. Then

$$
\begin{aligned}
\left|A_{n}\right| & \leq \max \left\{\max _{0 \leq \imath \leq N-1}\left\{\left|D_{\imath, n}\right| q^{r}\right\} \cdot c q^{q^{n}}\right\} \\
& =\max \left\{\left|D_{0, n}\right| q^{r} \cdot c q^{q^{n}}\right\} \\
& =\max \left\{q^{q^{1}+q^{2}+\cdots+q^{n-1}} q^{r} \cdot c q^{q^{n}}\right\} \\
& \leq \max \left\{q^{q^{1}+q^{2}+\cdots+q^{n-1}} \max \left\{q^{r}, c\right\} \cdot q^{q^{n}} \max \left\{q^{r} \cdot c\right\}\right\} \\
& =q^{q^{n}} \max \left\{q^{r} \cdot c\right\} .
\end{aligned}
$$

Hence $A_{n}=O\left(x^{q^{n}}\right)$, as required. Since $A_{n}=O\left(x^{q^{n}}\right)$, there exists $c>0$ and for sufficiently large $K \in \mathbb{N}$.

$$
\operatorname{deg} A_{k} \leq q^{k}+c
$$

for all $k>K$. Since $f(t) \in \mathcal{L}, L_{k} \mid A_{k}$ for all k. That is

$$
\operatorname{leg} L_{k} \leq \mathfrak{l e g} A_{k} \text { or } A_{k}=0
$$

Note that

$$
\operatorname{deg} L_{k}=q^{1}+q^{2}+\cdots+q^{k} .
$$

So $A_{k}=0$ for sufficiently large $k>K$. Hence $f(t)$ is a polynomial.
Corollary 3.17. Let $f(t) \in \mathcal{L}$. If $f(t) \in \mathbb{F}_{q}(x)[t]$ and if there exist $g(t) . h(t) \in \mathcal{L}$ such that

$$
f(t)=g(t) h(t)
$$

for all $t \in \mathbb{F}_{q}[x]$, then $g(t), h(t) \in \mathbb{F}_{q}(x)[t]$.
Proof. Assume that $f(t)=a_{m} t^{t^{m}}+a_{m i}-1 t^{t^{m-1}} 4+\cdots+a_{0} t$. So

$$
1 f\left(x^{n}\right) \leq M q^{n q^{m}}
$$

where

$$
M=\max \left\{\left|a_{0}\right|,\left|a_{1}\right|, \ldots,\left|a_{m}\right|\right\}
$$

Assume by a contradiction that $g(t)$ is not a polynomial function in \mathcal{P}. We have
Chulalongoorn University

$$
g\left(x^{n}\right) \neq O\left(x^{q^{n}}\right)
$$

So there exists an increasing sequence $\left\{n_{j}\right\}$ such that $\left|g\left(x^{n_{j}}\right)\right|>M q^{n^{n_{3}}}$ for all $j \in$ \mathbb{N}. Therefore, for a sufficiently large j. we have

$$
\begin{aligned}
M q^{n_{,} q^{m}} & \geq\left|f\left(x^{n_{j}}\right)\right| \\
& =\left|g\left(x^{n_{j}}\right)\right|\left|h\left(x^{n_{j}}\right)\right| \\
& >M q^{q^{n^{3}}} .
\end{aligned}
$$

which is a contradiction.

Example 3.18. Let E be a polynomial over $\mathbb{F}_{q}[x]$. By Theorem 3.6, the polynomial $t-E$ is a pseudo-polynomial $\left(A_{0}=-E . A_{1}=1\right.$ and $A_{2}=0$ for all $i>1)$. If $t-E$ is reducible over \mathcal{P},

$$
t-E=f(t) g(t)
$$

for some non-unit elements $f(t), g(t) \in \mathcal{P}$. By Lemma 3.15, $f(t)$ and $g(t)$ are polynomials over $\mathbb{F}_{q}(x)$ with an indeterminate t. Thus $\operatorname{deg} f(t), \operatorname{deg} g(t) \leq 1 \operatorname{Bv}$ Lemma 3.12, $f(t)$ and $g(t)$ are polynomials over $\mathbb{F}_{q}[x]$. That is $f(t)$ or $g(t) \in \mathbb{F}_{q}[x]$. Without loss of generality, we may assume that $f(t) \in \mathbb{F}_{q}[x]$.

- If $f(t) \in \mathbb{F}_{q}$, by Lemma $3.9 f(t)$ is a unit in \mathcal{P}, a contradiction.
- If $f(t) \in \mathbb{F}_{q}[x] \backslash \mathbb{F}_{q}$, then

$$
g(t)=\frac{t-E}{f(t)}\left\{\in \mathbb{F}_{q}[x][t]\right.
$$

Thus $g(t) \in \mathbb{F}_{q}$. By Lemma 3.9, it is a unit in \mathcal{P}, a contradiction.
So, for each $E \in \mathbb{F}_{q}[x], t-E$ is irreducible in \mathcal{P}. Similarly, we can prove that $f(t)=x$ is irreducible in \mathcal{P}.

By Lemma 3.6. Lemma 3.14 and Lemma 3.15, we have the conclusion for the factorization in \mathcal{P} as follows.

Theorem 3.19. \mathcal{P} is not a unique factorization domain.
Proof. Let us first treat the case $q=2$. Consider

$$
g(t):=\frac{\psi_{2}(t)}{x} .
$$

By Thenrem 3.6, $g(t)$ has an interpolation of the form

$$
g(t)=\frac{A_{4} G_{4}}{g_{4}}
$$

where $A_{1}=F_{2} / x$, and so $g(t) \in \mathcal{P}$. Since

$$
g(t)=\frac{1}{x} \prod_{\operatorname{deg} E<2}(t-E)
$$

we see that $g(t) \in \mathbb{F}_{q}(x)[t]$ with degree $q^{2}=4=2 q$. If $g(t)$ could be factored in $\mathbb{F}_{q}(x)[t] \cap \mathcal{P}$, then each factor in $\mathbb{F}_{q}(x)[t]$ would have degree less than $2 q$, with one of its factors having leading coefficient in $\mathbb{F}_{q}(x) \backslash \mathbb{F}_{q}[x]$, which is impossible by Lemma 3.12. Thus, $g(t)$ is irreducible in \mathcal{P}. Since $\psi_{2}(t) \in \mathcal{P}$ and

$$
x g(t)=\underbrace{\psi_{2}(t)}=\prod_{\operatorname{dcg} E<2}(t-E)
$$

where $x, g(t)$ and $t-E$ are irreducible in \mathcal{P}, we deduce that $\psi_{2}(t)$ can be factored as a product of irreducible elements in more than one way.

As for the case $q>2$, consider

$$
g(t):=\frac{\psi_{1}^{2}(t)}{x}
$$

Proceeding in the same manner as above, we deduce that $g(t) \in \mathbb{F}_{q}(x)[t] \cap \mathcal{P}$ and $g(t)$ is irreducible over \mathcal{P}. From $\psi_{1}^{2}(t) \in \mathcal{P}$ and

$$
x g(t)=\psi_{1}^{2}(t)=\prod_{\operatorname{deg} E<2}(t-E)^{2} S
$$

where $x . g(t)$ and $t-E$ are irreducible in \mathcal{P}, we arrive at the fact that $\psi_{1}^{2}(t)$ can be factored as a product of irreducible elements in more than one ways.

3.3 Difference and Higher Order Differences

In this section, a generalization of differences for polynomials introduced by Wagner [7] is investigated.

Definition 3.20. Let $f: \mathbb{F}_{q}[x] \rightarrow \mathbb{F}_{q}[x]$. For each $M \in \mathbb{F}_{q}[x] \backslash\{0\}$, the difference
for a function $f(t)$ is defined by

$$
\Delta_{M 1} f(t)=\frac{f(t+M)-f(t)}{M}
$$

for all $t \in \mathbb{F}_{q}[x]$ and for let $r>0$ and $M_{1}, M_{2}, \ldots . M_{r} \in \mathbb{F}_{q}[x] \backslash\{0\}$. We define the $r^{\text {th }}$ difference of function $f(t)$ inductively by

$$
\Delta_{M_{1}, M_{2}, \ldots, M_{r}} f(t)=\Delta_{M},\left(\Delta_{M_{1}, M_{2}, \ldots, M_{r-1}} f(t)\right),
$$

for all $t \in \mathbb{F}_{q}[x]$.

We define the sets of \mathcal{P}_{r} for positive integer r as follows.

Definition 3.21. For any positive integer r. we define.

$$
\begin{aligned}
& \mathcal{I}_{0}=\left\{f: \mathbb{F}_{q}[x] \rightarrow \mathbb{F}_{q}[x]\right\}, \\
& \mathcal{I}_{r}=\left\{f(t) \in \mathcal{I}_{0} \mid \Delta_{M_{1}, M_{2}, \ldots, M_{r}} f(t) \in \mathcal{I}_{0} \text { for all } M_{1}, M_{2}, \ldots, M_{r} \in \mathbb{F}_{q}[x] \backslash\{0\}\right\}, \\
& \mathcal{P}_{r}=\mathcal{I}_{1} \cap \mathcal{I}_{2} \cap \cdots \cap \mathcal{I}_{r} .
\end{aligned}
$$

We remark that the set of all pseudo-polynomials \mathcal{P} is \mathcal{P}_{1} and the set of all integer-valued functions $I V F$ is \mathcal{I}_{0}. To find the explicit shape of an element in \mathcal{P}_{r} for $r \geq 1$, it is convenient to define

$$
\begin{aligned}
R_{j}^{(r)}= & \operatorname{lcm}\left\{L_{e\left(i_{1}\right)}, L_{e\left(i_{2}\right)} \ldots, L_{e\left(i_{r}\right)} \mid i_{1}, i_{2} \ldots, i_{r}>0, i_{1}+i_{2}+\cdots+i_{r} \leq j\right. \text { and } \\
& \left.\frac{j!}{i_{1}!i_{2}!\cdots i_{r}!\left(j-i_{1}-i_{2}-\cdots-i_{r}\right)!} \text { is prime to } p\right\} .
\end{aligned}
$$

for all $r \leq j$. Then we have
Theorem 3.22. Let $f(t) \in \mathcal{P}_{0}$. We have that $f(t) \in \mathcal{P}_{r}$ if and only if it is representable as an interpolation series of the form

$$
\sum_{i=0}^{\infty} B_{i} \bar{R}_{i}^{(r)} \frac{G_{i}}{g_{i}} .
$$

where $\bar{R}_{i}^{(r)}=\operatorname{lcm}\left\{R_{j}^{(1)}, R_{j}^{(2)}, \ldots R_{j}^{(r)}\right\}$.
Proof. From the proof of Theorem 3.5, for all $n \in \mathbb{N}_{0}$, the unique polynomial of degree $\leq q^{n}-1$ which takes the same values as $f(t)$ over the set of all polynomials $M \in \mathbb{F}_{q}[x]$ with $\operatorname{deg} M<n$ is

$$
P_{n}^{(f)}(t)=\sum_{i=0}^{q^{n}-1} A_{i} \frac{G_{i}(t)}{g_{i}}
$$

and where for $r \in \mathbb{N}$ with $q^{r}>i$, we have

$$
A_{\imath}=(-1)^{r} \sum_{\operatorname{deg} N<r} \frac{G_{q^{\prime}-1-i}^{\prime}(N) f(N)}{g_{q^{r}-1-2}}
$$

Moreover, $f(t) \in \mathcal{P}_{r}=\mathcal{I}_{1} \cap \mathcal{I}_{2} \cap \cdots \not \mathcal{I}_{r}$ if and only if

$$
\Delta_{M}, M_{2}, \quad M_{2} f(t) \in \mathcal{I}_{0}
$$

for all $M_{1}, M_{2} \ldots \ldots M_{j} \in \mathbb{F}_{q}[x] \backslash\{0\}$ and for $j \leq r$. This holds if and only if

$$
\Delta_{M_{1}, M_{2}, \ldots, M_{j}} P_{n}^{(J)}(t) \in I_{0}
$$

for all $M_{1}, M_{2} \ldots . M_{j} \in \mathbb{F}_{q}[x] \backslash\{0\}$ and for $j \leq r$. that is.
CHULALONGKORN UNIVERSITY

$$
P_{n}^{(f)}(t) \in I_{0} \cap I_{1} \cap \cdots \cap I_{r}=\bar{I}_{r}
$$

for all $n \in \mathbb{N}_{0}$. By Theorem 2.19

$$
\begin{aligned}
P_{n}^{(f)}(t) \in \bar{I}_{r} \text { for all } n \in \mathbb{N}_{0} \Leftrightarrow & R_{i}^{(1)}\left|A_{i}, R_{i}^{(2)}\right| A_{i}, \ldots, R_{i}^{(r)} \mid A_{i} \text { for all } i \leq n \text { and } \\
& n \in \mathbb{N}_{0} \\
\Leftrightarrow & \bar{R}_{i}^{(r)} \mid A_{i} \text { for all } i \leq n \text { and } n \in \mathbb{N}_{0} .
\end{aligned}
$$

This proves the results.

