
CHAPTER III
MAIN RESULTS

In this chapter, we begin with the definitions of integer-valued functions and 
general pseudo-polynomials over F9[x] which are analogous to Hall’s and de Bruijn’s 
by reducing the linear condition of Wagner’s results. Then Wagner’s interpolation 
series that representing linear pseudo-polynomial is generalized to general pseudo
polynomial over Fç[x]. Section 3.2 provides some algebraic structures for V. The 
difference and higher order differences of integer-valued functions are studied in 
the last section.

3.1 Interpolation series for integer-valued polynomials and 
pseudo-polynomials over ¥(1[x]

D efin ition  3.1. An in teg er-va lu ed  fu n c t io n  o v er  F9[x] is a function from the 
set Fq[x] to Fq[x].
D efin ition  3.2. A p se u d o -p o ly n o m ia l o ver  F jx ] is an integer-valued function  
over ¥ 11[x] and satisfies

/ (M  + K ) = f ( M )  (mod K )

for all M  € F 9[x ] and all K  £ Fq[x]\{0}.
Throughout denote the set of all integer-valued functions over F jx ] by IV F , 

and denote the set of all pseudo-polynomials over F9[x] by V.
E x am p le  3.3.

1. The set of all constant functions ¥q and the set of all polynomial functions
(Fq[x])[t] are subset of V.
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2. Let A  G F0 . Write A — akx K -I- (Ik—\X -T • ■ ■ T do T ----  Ta_ 1

where at G Fg. Define

[A] := akxk +  ak—\Xk T • • • T ÜQ.

A function /  : F9[x] —» Fq[x] defined by

/ ( 0  =  [ ^ ]

is an integer-valued function over Fq[x].

To find tile explicit shapes for the elements in IV  F  and V, we need the following 
identities.

L em m a 3.4. Let k G N. For 0 < i < qk — 1. we have

Fk9qk — \ —x ' 9i 9qk — 1 •

Proof. Let i G No with 0 < i < qk -  1. Clearly, g qk_ 1 - 1go = so we assume
that i > 1. It can be expressed with respect to base q as

i — «0 T Oiiq + เท2(/2 +  • • • +  &d{i)9d l̂\

where a^(i) 7  ̂ 0 and 0 < Ctj < q for all j. Since i < qk — 1, d('i) < /c — 1. If 
d(ï) < A: -  1, set a,i(i)+i, a,r(,:)+2 , • • •, Cpc- 1  =  0. So we have

i =  Oi0 + Oi\q +  a 2q2 +  • • • +  Oik- \q k

where 0 < QCj < q for all j. Since qk — 1 =  (g — l)(g fc_1 +  qk~2 +  • • • +  1), we have
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by Definition 2.9, tha t

. v - 1  =  F ’- ' ช ุ- 1 ■ ■ ■ ท’: :
_   ̂ p q - l - < * 2  4 4 1 p q - l ~ a k - \   ̂ 4  ̂ ^ * 2  4 4 4 J7a k-1  ^

9 q k - 1 - 1 ' nc

F,Next, we will show th at gqk_ 1 =  — By applying Definition 2.6, this yieldsLk

Fk [k}[k7 i n k 7 2 f - . . { i ] q k- 1 
Lk = [k][k -  l][fc - 2] . . . [ 1 ]

= ([fc -  1  ][k -  2]9+1. . .  [1 ]?*-พ - 3+" +1 ) * - 1

=  { ( [*  -  m  -  2]* - • • [ l]9" 2) ([A: -  2}[k -  3]* • • . [I]**-3) . . .  ([2 ][1 ]ๆ ([1 ])} 9' 1

= (Fk. 1Fk. 2 - - - F2F1y - 1 
_  ^ 9 - 1  p q -i  414 pq~  ̂J?q- 1

/c 1 /c 2 2 1

—1.

This completes the proof. □

T heorem  3.5. Let f ( t )  G 
lation series of the form

I V F . Then it is uniquely representable as an interpo-

/ « ) = £ > G ,( f )

where A 1 G F9[x].
Rem ark This representation is well-defined for t G F9[x] because for each M  G 
Fç[x] with d(i) > deg M , we have — 0. By the Definition 2.9,

Gi(M )

Gl{M) = 0.

reduces to a finite sum and the representation  is
DC

So the sum Ai ______» ............. . — ---------  - - 1-----„ 9 iî=0 f linterpreted as y ield ing the sam e value o f f ( M )  on both  sides
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Proof of Theorem 3.5. Assume th at f ( t )  is ail integer-valued function. We first 
show that for ท E N, there exists a unique polynomial p „ \ t )  E Fq(x)[f] of degree 
less than or equal to qn — 1, such that P  ̂ \ M )  = f (M )  for all polynomials M  E 
F9[x] of degree less than or equal to ท — 1.

Let ท E N. Set Co := / (0) and let Pn{t) := Co +  c,t + - - - +  cqn ^ ,tq ~l . We 
show that all Cj:ร are uniquely determined. Let Ml, A/2 . . . . , Mqn-, E F9[a:]\{0} 
be all distinct polynomials of degree less than or equal to ท — 1. To fulfill the 
requirement that Pn{Mf) = f ( M t) for all i, it suffices to show that the following 
system of equations is solvable for the coefficients c,’ร.

/ (0) =  Co,

/(M l) = Co +  c  1 M I + • • • + cqn - \M l  \

/ (Mqn_i) =  Co + Cl MqU- 1 + • • • + cqท_ ,M qnZ, • 

Rewriting the previous system to the matrix form, we have

M l M l M l  . . M f - 1 Cl /  ( J W , ) - / ( O )

m 2 M l M l  . . M f - 1 c 2 = / ( พ 2 ) -  / ( 0 )

M qn _  1 M y , M y  1 . M qn~lm qn - 1 Cgn — 1 / ( A / , . - , )  -  / ( 0 ) _

We have

Ml A/;2 M l .. . M f ' 1

m 2 M l M l .. . M f - 1

Mqn -  1 M y , M y ,  .. - M f f
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(M\ M 2 ' ' • MqU — i) (let

\< i< i< q n — l

Ml M l . . .  M f
m 2 M l . . .  M f

Mqn - 1 M y  1 . . .  M f
(M  - Afj).

- M , 7  ̂ 0 for z ï  J ! det

n —2 

n —2

n - 2

shows that the system is solvable and has a unique solution. Now we have the 
unique polynomial p f \ t ) as required.

Invoking upon Theorem 2.13, this polynomial can also be uniquely expressed

e y ’w  = E  c.G .(f).

We have i < qd!T +1 where d(i) is the นpper 7-index of 1. Then, wit h m, — d(i) + 1,

c , - (-ir^ E พ’-!- 1 (M)py>(A/).
m* deg M < m 1

For each 0 <  ̂ <  qn — 1. we observe that d(i) < ท — 1. Therefore m, =  d(z) + 1  < ท. 
Moreover, from the first part of the proof, / (M) = P f \ M ) for all M of degree 
less than ท. It follows that

c , = <“ i r f ?  E  พ . - . - , ( v ) / ( v ) -
deg M o n ,

Then *a = (-i)'F(, E พ-.-,(ท)/(พ
1711 deg M o n ,

By Lemma 3.4 and the fact that i < qd(i) -  1 < <7rf{*)+1 =  q"h . we have - f y  9 1 =rrrii

9 1 a 1 = { - i r  E
deg M o n ,  9q 1 1 J
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Therefore,

^ ( 0  = | > Gi(i)
5*

where
A  = ( - i p  E G ;: - ' - < w )/(A /),

deg M  <m.i

By Theorem 2.12, Y  ~ v G F9[x] implies that Aj G Fg[x],
W ith the above preparation, we proceed now to derive our interpolation series. 

To this end. consider

where the coefficients A j’s and A ';s are defined as above. For 0 < i <  qn — 1, we 
have ไทi =  d(i) +  1 < ท. So for each M  G F(/[x] with deg M  < m t < ท. we have

Thus,

g p A / )  = /(A /) =  c g g A /) .

A = n
m * deg M  < m,

=  {_ 1) , , . , ^  y  G ;.„ _ ,_ ,(M )/(M )
77,1 deg M  < m  1

= ( - 1 )”' ' t G  E g ;,, ,. 1. , (M )Pg>(A /)
* m x ,_

This implies that

E 1^ “  =  p 7 1 d + , E 1^ ^ 1
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Since Gi(M ) =  0 for all i with d(i) > (leg A/, for M  G F,7[x] of degree ท — 1, we 
have

Gi(M )
9,

qn -  \

= E  4

=  /(M ),

Gi(M) + 0

showing that the function /( f )  can be represented by the stated interpolation 
series. □

Modifying the preceding proof, we next derive interpolation series for pseudo- 
polynomials.

T h e o rem  3.6. Let f ( t )  G I V F. Then f ( t )  G V  if and only if it is representable 
as an interpolation series of the form

El Ld{i )
1=0

Gj{t)
9i

where B x G F9[x] and d(i) denotes the upper q-index of i.

Proof. From the proof of Theorem 3.5, for all ท G No, the unique polynomial of 
degree < qn — 1  which takes the same values as /( f )  over the set of all polynomials 
M  G F(/[x] with deg M  < ท is

G j ( t )
9i

and for r G N with qr > i, we have

■4. =  (-i)r
G ', '_ U N ) f ( N )

deg N < r 9qr — 1 —i
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Moreover, /  (f) is a pseudo-polynomial, if and only if

p U \ M  + K ) = f ( M  + K ) = / (M ) = P (nn {M) (mod K )

for all M, K  G IF9[ar], A" ^  0 and deg M, deg K  < ท for all ท G N(). By Theorem 
2 . 18,

G V  for all n  G N o  ^  p U \ t )  G I0 ก h  = h  for all ท G N o

<=> Ld(i) I Ai for all i < ท and ท G No-

Hence, the desired result follows. □

3.2 Some Algebraic Structures of V

It is known th at I V F  is a commutative ring under addition and multiplication 
of functions. The identity under addition is 0(f) defined by 0(f) =  0 G Fq for all 
f G F 9[x] and the identity under multiplication is 1(f) defined by 1(f) =  1 G Fq for 
all f G Fq[x], The inverse under addition of /( f )  G I V F  is ( —/)(f)  := —/(f)  for all
f G F (/[x],

T heorem  3.7. V is a subring of IV F .

Proof. Note th at V  c  I V F  and 0(f). 1(f) G V. To show th at V  is a subring of 
IV F ,  it suffices to show that /( f )  — g(t), f( t)g (t)  G V  for all f ( t) ,g ( t)  G V. Let 
f ( t ) ,g { t ) e V. Then

( f - g ) ( M  + K ) = f  (M  + K ) — g(M  + K ) = f ( M ) - g ( M ) =  (f - g ) ( M ) (mod K) 

and

( /  . 9){M  + K ) = f ( M  +  K ) . g(M  + K ) = f ( M ) • g(M ) = ( /  - g)(M) (mod À') 

for all A/ G F 9[x] and A" G Fq[x]\{0}. This completes the proof. □
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We define units in V  in tile usual way.

D efin ition  3.8. An element น(t) £ V  is called a u n i t  if  there, is v(t) £ V  such 
that น(t)V(t) =  1 (f).

Denote by น (V) be the set of all units in V.

Lem m a 3.9. We have u(fp) = F* := F9\{0}.

Proof. Let c £ F*. Since F* is a multiplicative group, there exists c £ F* such 
that cc  =  1 . This shows th at F* Ç น (fP).

Conversely, let
/ (f

be a unit in V . Then there exists g(t) G V  such that

9{t)f(t) = 1(0-

Substituting for t by any M  G F(/ [.x], we arrive at

g(M ) = ( / (M ))_1, the inverse of f ( M )  in F9[x].

This implies th at / (F jx ]) ç  F*. Moreover, Bo =  / (0) G F*. To show that 
f ( t )  G F*, it suffices to show that f ( N )  — Bo for any N  G Fç[x]\{0}. We have

/(TV) =  / (0 + N ) = f  (0) = Bo (mod TV). (*)

If N  G F9[x] \F q, using f ( ¥ q[x}) ç  F*, the relation (*) shows that /(TV) =  B q. If 
N  G F*, since

f{ N )  = /(TV + x) (mod x)

and / (TV +  x) =  Bo by the previous case, we conclude again th at /(TV) =  B q. This 
can hold for all M  G Fy[x] only when f ( t )  is a constant function with value in F*, 
showing then that น (V) ç F). □
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D efin ition  3.10. A non-unit element f ( t )  G p \{ 0 ( t)}  is called an irreducible  
e lem en t in V  if whenever f ( t )  =  g(t)h(t) for some g (t), h(t) G V. then either g(t) 
or h(t) is a unit.

T heorem  3.11. The set V  is an integral domain.

Proof. By Theorem 3.7, we have V  is a commutative ring under addition and 
multiplication. There remains to check that it lias no zero divisors. Assume that 
f ( t )  and g(t) G v \ { 0 ( t ) } .  Then there are M l ,  Mi  G F 9[x] such that

/ (Ah) = K 0

and
g(M 2) = K 2 Ï  0.

Let P i  and p 2 be two distinct irreducible polynomials in Fq[x] such that

P \ \ K i  and P 2 \ K 2 .

Since gcd(Pi, p 2) = 1, there are A ,  B  G F9[o;] such that

A P i  -  B P 2 =  1.

If M l  /  M2. then

( M i  -  M i ) A P i  -  ( M i  -  M i ) B P 2 =  M 2 -  M u

he.,
M i  + h 2P 2 = Ml + h i  P i ,

where hi = ( M i  — M l ) A  7  ̂ 0 and h2 = ( M i  — M i ) B  ^  0 . Then

f (M i + hiP i) =  /(M l) =  K i (mod hiPi)
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and

ฐ(M2 +  h2P2) — g(M 2) — 142 (mod h2P2).

Since P] I K l and p 2 \ 14-2, these indicate that both / (Ml + h]_px) and g{M2 + h2P2) 
are not zero. We have

( /  • ฐ )(M l +  hxp1) =  f  (Mx +  /n P i)  - ฐ(M 1 +  fq P 1)
= /(M l +  p P i )  • g{M2 +  h2P2)
7^0.

If Ml =  M2, then

( / • ฐ ) (M 1) =  / (M 1 )ฐ(MO 
=  f ( M x)g{M2)
=  p , / p
^ 0 .

The two possibilities show th at ( /  - ฐ)(0 is not a zero map, and so p  has no zero 
divisor. □

To show that p  is not a unique factorization domain, we need three more 
lemmas.
Lem m a 3.12. Let f i t ) G p  with the expansion in Theorem 3.6. I f  B, = 0 for all 
i > 2q, then f i t )  G Fg[x][t].
Proof. If £?j = 0 for I > 2ฐ, then the interpolation series reduces to

/ ผ  =  < . > ^ '

By Remark 2.10, we have that, ฐi =  L j(1) for 0 < ? < 2ฐ — 1, and so /( f )  G
(F9[x])[f]. □
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D efin ition  3.13. Let f( t) ,g ( t)  G IV  F . Then f ( t )  = 0 (g (t)) i f  and only if there 
exist a positive real number c and a positive integer N  such that

|/ (M ) | < c\g(M)\ for all M  G Fg[x] with degM  > N.

L em m a 3.14. Let f ( t )  G V  and m e  N. I f f ( t )  =  0 ( x mdegt). then f ( t )  G Fq(x)[i].

Proof. From the hypothesis, there exist c > 0 and TV G N such that |/(M )| < 
cqmdegM for all M  G F jx ], with deg M  > N. Since qd(-n'l+1 > ท, by Theorem 2.14, 
we have

v ,  =  ( - y  G’t 11, 1_n(K ) f(K ) .
d(n) + l deg K=c((ท) + 1 

K  is inonic

We show now that A n = 0 (xhn_1Hd(n)+1)). Let N 1 — ma,x{N, 2q}, and choose j  so 
that d(j) > N 1. Write

] = !() + 7i<7 + l2d2 +  • • • +  7d(j)Qd{j\

where 0 < kๆ < q — 1, 7 d(j) 7̂  0. Then,

qd(])+i _  j  _  1 = (9 _  1) (^ ๓  + qdU)~ 1 + .. . + 1) -  j

= ( q -  1){qd{j) + / (j)_1 +  • • • + 1) -  (7o +  7i9 +  • • • + 7d(j)Qd{3))
= Po + Piq +  - - - +  Pd(j)qdU), where Pk = (q -  1) -  7 /0-

Therefore d(qd(j')+l — 1) =  d(j) and so, for a nronic polynomial K  of degree d(j) + 1,

g^ o h i- , -,(«■ )=

n n พ ‘พ
A t= q - 1

we have
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= n ฬ,<*) n {ฬ-'พ- -̂1}-
1 /3fc=g- 1

For 0 < k < d ( j) , we have

degFfc =  kqk and deg i>k(K) = deg J J  (K  -  E) = qk(d(j) + 1).
degE< k

Since d(j) +  1 > k. we see that

d e g - ^ r V O  -  F f '1} =  deg ipqkr l (K ).

and so

degG ^0)+1_ 1_j  (K) = d e g j j r / ’f  (K)

= (d(j) +  l)(do +  Pi ql +  • • • +  Pd(:j)qd{])) 
= (d 0 ) + 1 ) ๙ ๓+ 1 - . 7 - 1 ) .

Thus,

degidj < degL d(j)+i -  degFd(j)+i +  degG y0 )+1 _ 1 _■  (K) + deg f ( K )
< {q + q2 + ■ ■ ■  + qdU]+l) -  (d ( j) + 1 ) / ๓ + 1  +  (d(j) + l){qdU)+1 -  j  -  1 )

+  c! +  m (d(j)  +  1 ) (for some c such th at c < qc )
< 2qJ{j)+1 -  (j  +  1  ){d(j) +  1 ) +  c +  m (d(j) +  1 )
< 2qdd)+1 -  qd(-iï(2q) + c + (m -  l)(d (j)  + 1 ) (since j  > qd(Jî and

d(j) + 1 > 2 q)
=  c + (™ -  l ) ( d ( j )  + 1).

Consequently, for sufficiently large k, we have |Tfc| < C|a:(m" 1)WA;)+1)| for some
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c  > 0. Since f  G V, we know then th at Ld(k) I Ak- Therefore,

(leg Ld{k) <  deg Ak or Ak = 0 .

If some Ak d  0 , then for k sufficiently large, we get

q'm  < ql + q2 + • ■ • + qd{k)
= deg Ld(k)
< deg Ak
< d  + (m — 1 )(d(k) + 1 ),

which is a contradiction, and so Ak = 0 , i.e.. f ( t )  is a polynomial over Fq(x). □

Lem m a 3.15. Let f ( t ) G V. I f f ( t )  G ¥q(x )[f] and if there exist g ( t) ,h ( t) G V  
such that

f  (t) = g{t)h{t)

for all t G F jx ], then g (t),h (t)  G F9(x)[t].

Proof. Write /( f )  =  antn + a„_ifn -1  +  ■ • • +  a0. Let M  G F9[x], Then,

\ f ( M ) \< A q nAe*M,

where A = m ax{|a0|, |a i | , . . . ,  |an |}. If git) is not a polynomial, Lemma 3.14 yields 
g(t) d  0 ( x nàegt), which ill turn implies that there exists an increasing sequence 
{ท7} with deg M j  = Uj  such that

\ g ( M j )  I >  AqndegM> =  Aqn nK

and so
Aqnnj > |/(M ,) | =  \9{น 3) \พ น ,) \  > Aqnnj,

which is a contradiction. □
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In particular, Lemma 3.15 holds for linear pseudo-polynomials over F(/[x], The 
following corollaries provide alternative proofs for this linear case independently 
from previous lemmas. Let £  be the set of all linear pseudo-polynomials over Fq[x],

Corollary 3.16. I f  f ( t )  G £  and f ( x n) =  0 ( x qn) 1 then f ( t )  G F9(x)[f].

Proof. Assume that /( f )  G £  and / (xn) = 0 ( x qU). Then there exists c > 0 and 
N  G N such that | / ( x n)| < cqqU for all ท > N. Since /( f )  G £. for each ท G N

/  ๙ )  I ^ ‘£ '( x fl) 1 1 +  ^
Fn Fl F2

So

det

A n =

0 

0

1

£o(xn_1) £ i(x n_1) £ 2(x”-1)

ทฺเ ๙) 
Fpfx2) £ i(x 2)

Fi

£o(zn)
Fn

£ ](x n)
Fl

F 2(xn)
F2

0

0

0

1

I.v :(■ '")
F„-1

/ ๙)
/ ๙ )  
/ ๙ )

/ ๙ - 1)
/ ๙ )

det

1 0 0 0

£ o ( x ‘ )
1 0 0

£ o F 2 ) £ i(x 2)
1 0

F o F i

£ o  ๙ - * ) £ 1 ๙ ๙ £ 2 ๙ " ' )
1

F o F i f 2
£ 0 ๙ ) £ 1 ๙ ) £ 2  ( x n ) £ ท—1 (

F o F i f 2 Fn-

0
0
0

0
1

Since the m atrix in the denominator of An is lower triangular, its determinant is
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1. Thus

An = f ( x n) -  / r 1) ^ " -  + ท ^ - 2)D n ^ n  -  f ( x n- ๆ  Dn.  31,, + . . .

+ ( - l ) n+7(x°)A>,„,

where Dt J is the determinant of the matrix in numerator of .4ท which cut row 
(z + l)th and column (j + l)th for all 0 < 1. ] <  ท. We have

D o  ท 1 < พ (•'!) พ่!(น:2) พ  i.F; '.'1, ! ( ''ฯ  1 — A +T +A -To Fj F ‘2 Fn- 1
\ D \ )U\ < 1'/'! (A) พ (A) พ (A) พ -!  (A) 1 _  A A +qW .พ -1Fl F ‘2 F3 F„-1
\ D ■1 ,ท \ < A  (A) พ (A) พ (A) พ - ! (A) -  A+<?3+<74 + . พ -1

F'2 f 3 f 4 F„-1 q

\ D , . n \ < 1 t ■ d A ) A  (ร',’’) V’5 (A) พ - 1 (ร") n q3 + q 4 + q 5 +  . q n -  1
F3 F4 F5 F„-1 — Q

D n —1,ท 1 < V'n-1 (ร") 1
F„-1 — qqn 1.

1 Al, ท < 111 = 9°.
Next we will claim that A n = 0 ( x q ). Let ท > N.  For each N  < ไท < ท — 1 ,

m I rtm + l

| O m , „ H / ( l " ‘ ) |  <  ? "  + " +  - - -+<7ฑ " cqH < cqQ

Since \D n n\ \ f ( x n)\ < cqqTX, it follows that \Dm n\ \ f { x m)\ <  cqq for all N  < m < ท. 
Let qr := m a x { |/7 ° ) |,  |/(x-1)|, | / ( x 2) | . . . . . \ f ( x N~l)\}. Then

\A n\ < max{ max {ID hn\qr }. cqqn}
0 < i < N — l

= m ax {\D 01ท\q \cqqn}
= m a x { / +?2+ +qn' l qr .cqqn}
< max {qql+q2+ +qU 1 max{<7r , c}. q',n max{gr , c}}
=  qqU m ax {q r . c}.

Hence An = 0 ( x qTl). as required. Since A n =  0 ( x q" ) ,  there exists c > 0 and for 
sufficiently large A' € N,

<leg A k < qk +  c,
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for all k > K. Since f ( t )  G £ , Lk I Ak for all k. That is

•leg Lk < (leg Ak or Ak = 0 .

Note that
deg I t  = g1 +  q2 H------ h qk ■

So Ak =  0 for sufficiently large k  > K . Hence f(t)  is a polynomial. □

C o r o lla r y  3 .1 7 . Let f ( t )  G c . If f ( t )  G F 9(x)[f] a n d  if there exist g(t).h(t) G £  
such that

f{t) = g(t)h(t)

for all t G Fg[ว;], then g(t),h(t) G Fg(ว:)[£].

Proof. Assume th at f ( t )  — amtq ' + am- i tq ' + ■ • • + dot. So

| / ( . r " ) |  <  M q nqm

where
M = max{|o0|, ja il,. . . .  |am|}.

Assume by a contradiction that g(t) is not a polynomial function in V . We have

g(xn) ^ 0 ( x " " ) .

So there exists an increasing sequence {ท]} such that \g(xnj)\ > Mqq J for all J  G
N. Therefore, for a sufficiently large J. we have

Mqn>qm > |/ (x n0 |
= \9(xn>) \\h(x” ฯ  I
> M c f 1.

which is a contradiction. □
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Exam ple 3.18. Let £  be a polynomial over F 9 [ว':]. By Theorem 3.6, tile 
polynomial t — E  is a pseudo-polynomial ( i 4 0 = —E. A\ =  1 and A1 =  0 for all 
i  > 1 ). If t — E  is reducible over V,

t -  E = f(t)g( t)

for some non-unit elements f{ t) ,g{t )  G V.  By Lemma 3.15, / (f) and g(t) are 
polynomials over F9(;r) with an indeterminate t. Thus d e g /( t) , degp(f) < 1. By 
Lemma 3.12, /( f )  and g(t) are polynomials over F9[ว;]. That is /( f )  or g{t) G F9[ว:]. 
W ithout loss of generality, we may assume that / (f) G F7[x].

• If f ( t )  G Fq, by Lemma 3.9 f ( t )  is a unit in V , a contradiction.

• If /( f )  G F9[x]\F9, then

9 (f) =  e  Fq[x][t].

Thus g(t) G Fq. By Lemma 3.9, it is a unit in V , a contradiction.

รก, for each E  G F9[a;], t — E  is irreducible in V. Similarly, we can prove that 
/ ( t )  =  X  is irreducible in V.

By Lemma 3.6. Lemma 3.14 and Lemma 3.15, we have the conclusion for the 
factorization in V  as follows.

T h e o r e m  3 .1 9 . V is not a unique factorization domain.

Proof. L e t  US f i r s t  t r e a t  t h e  c a s e  q =  2 . C o n s id e r

g { t )  ■ =

B y  T h e o r e m  3 . 6 , g(t)  h a s  a n  i n t e r p o la t i o n  o f  t h e  f o r m

g ( t )  =
A ^ G i

9a
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where A\ — F2/ x , and so g(t)  G V . Since

ร พ  =  ;  n  ( ‘  - พ .
deg E < 2

we see that g(f) G F9(x)[f] with degree g2 =  4 =  2g. If p(t) could be factored in 
F9(x)[t] ก V , then each factor in Fg(x)[f] would have degree less than 2g, with 
one of its factors having leading coefficient in Fq(x)\F(/[x], which is impossible by 
Lemma 3.12. Thus, g{t) is irreducible in V. Since i/>2(t) £ V  and

xg(t)  =  Ip2{t) =  n  ( ^  E ï-
deg E <  2

where X ,  g(t)  and t — E  are irreducible in V,  we deduce that ^ 2 (t) can be factored 
as a product of irreducible elements in more than one way.

As for the case q > 2, consider

Proceeding in the same manner as above, we deduce that g(t) £ F9(x)[f] o v  and 
g(t) is irreducible over V . From Ipl{t) G V  and

xg(t) = i f i ( t )=  J J  (t - E )2,
deg E <  2

where X .  g(t) and t — E  are irreducible in V, we arrive at the fact that can
be factored as a product of irreducible elements in more than one ways. □

3.3 Difference and Higher Order Differences
In this section, a generalization of differences for polynomials introduced by 

Wagner [7] is investigated.

D efinition 3.20. Let f  : F9[x] —» ¥q[x]. For each M  e  Fq[x]\{0}, the di f ference
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f o r  a f u n c t i o n  f ( t )  is defined by

A Mf[t)  = Ht  + M ) - m
M

for all t G F9[x] and for let r > 0 and Ml, M2, . . . .  Mr G F,;[.x]\{0}. WT define, the 
r th d i f ference  o f  f u n c t i o n  f ( t )  inductively by

/  ( 0  =  A m , ( A m i , a / 2 , . ■ ■ 1M r - 1  m ) ,

for all t G F9[x].

We define the sets of 'Pr for positive integer r as follows. 

D efin ition  3.21. For any positive integer r. uie define

z 0 =
l r  =

{ /  : F, พ  -> พ } ,
| / ( t )  G z 0 A G Zo /o r all Ml, M2, . . . ,  Mr G F j:r]\{0}} ,

p r =  Xi ก z 2 ก • • •ก  x r.

We remark that the set of all pseudo-polynomials V  is V\  and the set of all 
integer-valued functions I V F  is J 0. To find the explicit shape of an element in V r 
for r > 1 , it is convenient to define

=  lc m | X p ( 7 1 ไ 1 Lp(ie(ü), H/e^2p  • . ■ , Ze(jr)

j!
- • — *1 — *2--------- *r)!

Zi, z2. ■ ■ ■ f i r  > 0 , il +  ?2 +  • ■ - + zr G j  and 
is prime to p},

for all r <  j .  Then we have

T h eo rem  3.22. Let f ( t ) G TV WT have that f ( t )  G P r i f  and only if it is 
representable as an interpolation series of the form.

f
i=0

£ 1
9i '
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where. r P  =  Icm ^R p’. R p \  . . . .  R p 11 .

Proof. From the proof of Theorem 3.5, for all ท G No, the unique polynomial of 
degree < qn — 1 which takes the same values as f ( t ) over the set of all polynomials 
M  G Rq[x] with degM  < ท is

p y ^ = | > Gi(t)
9i

and where for r G N with qr > I. we have

A. = (-!)' E
deg N < r

g ; , - i j N ) f ( N )
9qr -1  — l

Moreover, /( f )  G Vr — R\ ก 2โ2 Fl •••ก  Xr if and only if

for all Ml,  M2, . . . .  Mj  G Fç[x]\{0} and for j  < r. This holds if and only if

^■ hh.hh,.. £  h

for all Ml, M 2. . . . .  Mj  G Fg[x]\{0} and for J  < r. that is.

P p \ t )  G Io ก  h  ก  • • ■ ก / r =  ïr

for all ท G N0. By Theorem 2.19

P p \ t )  G Fr for ail ท G N0 O  r P  I Ai, R (p  \ Ai, . . . , i?,(r) I A  for all I < ท and
ท G No
Rp^  I Ai for ail i < ท and ท G N0.

This proves the results. □
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