CHAPTER IlI
MAIN RESULTS

In this chapter, we begin with the definitions of integer-valued functions and
general pseudo-polynomials over Fo[x] which are analogous to Hall’s and de Bruijn’s
by reducing the linear condition of Wagner’s results. Then Wagner’s interpolation
series that representing linear pseudo-polynomial is generalized to general pseudo-
polynomial over F¢[x]. Section 3.2 provides some algebraic structures for V. The
difference and higher order differences of integer-valued functions are studied in
the last section.

3.1 Interpolation series for integer-valued polynomials and
pseudo-polynomials over ¥1]

Definition 3.1. An integer-valued function over Fo[x] is afunction from the

set Fq[x] to Fq[X].

Definition 3.2. A pseudo-polynomial over Fjx] is an integer-valued function
over ¥1[x] and satisfies

I (M +K) =f(M) (mod K)

for all M € F9jx] and all K £ Fq[x]\{0}.

Throughout denote the set of all integer-valued functions over Fjx] by IVF,
and denote the set of all pseudo-polynomials over Fo[x] by V.

Example 3.3.

1 The set of all constant functions ¥q and the set of all polynomial functions
(Fo[x])[t] are subset of V.



2 Let A G Fo Write A —akxK+ (kX TenTdoT 2T
where at G Fg. Define

[A] = akek+ ak=Xk T oo TQ
A function / : Fo[x] —» Fq[x] defined by
1o =[]

is an integer-valued function over Fq[x].

To find tile explicit shapes for the elements in IV F and V, we need the following
identities.

Lemma 3.4. Letk GN. For0<i< gk—1 we have

Ogk—+—"91 9ok Fk-

Proof. Let i G Nowith 0 <i<gk- L1 Clearly, gk 1-00 = S0 We assume
that i > L It can be expressed with respect to base g as

| —«0 T Qiig+ 2¢2+ o+ &dfi)9d'N

where @(i) 7* o and 0 < Qf < q for all j. Since i < gk —1 d(1) < =1 If
d(i) < A- 1, set a,i(i)H, ar(:)t2, ees, Qo1 = 0. So we have

| = Cot Oi\qg+ a2g2+ eee+ Gk-\gk

where 0 < @ < g for all |. Since gk —1= (g —I)(gfct + gk~2+ eee+ 1), we have
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by Definition 2.9, that

Nt =B e
oA pQ-l-<*2 s441pq-l~ak-\~ar  ~xp g44])7ak-117

9gk- 1-1 ' NC

Next, we will show that gok 1 = U< By applying Definition 2.6, this yields

Fk  [KMK7 ink7 of-. .{i]qk-1
= WK- ife-2]...[:]

= (- - 29 [P -3 e

= - mo- el 2 (A - 2K 3 e [I1Y) L (2010 (12D}9 L
= (Fk. IFk. 2---F2F1y -1
g e pg-Ty

4

This completes the proof. O

Theorem 3.5. Let f(t) GIVF. Then it is uniquely representable as an interpo-
lation series of the form

[«)=£> .()

where A1G Fo[X]
Remark This representation is well-defined for t G Fo[x] because for each M G
Fe[x] with d(i) > deg M, we have —(. By the Definition 2.9,

GI{M) =

So the sum A G;(IM) reduces»to. a.finite sum and-the representation i
interpreted R yielding the same value of f(M) on both sides
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Proof of Theorem 35. Assume that f(t) is ail integer-valued function. We first
show that for  EN, there exists a unique polynomial p,,\t) E Fq(x)[f] of degree
less than or equal to gn—1, such that P*\M ) = f(M) for all polynomials M E
Folx] of degree less than or equal to  —L1

Let EN. Set co:=/(0) and let Pnft) := Q@+ ¢t +---+ cop”,tq ~l. We
show that all cj: are uniquely determined. Let MI, A2.... Man-, E Fo[a]\{0}
be all distinct polynomials of degree less than or equal to  —21 To fulfill the
requirement that Pn{Mf) = f(Mt) for all i, it suffices to show that the following
system of equations is solvable for the coefficients c,’ .

[(0) = co
[(MI) = co+ cim I+ eoot cop-\MI |
[ (Man_i) = @+ AMU . + eeet ¢ MQZ
Rewriting the previous system to the matrix form, we have

M MIEE ME o M1 ¢ I (JW,)-1(0)
me  MEOME O ML
MLt my, myl . Mel et (AL - 10)

We have

Ml A2 ML .. M T
m2 Ml Ml ... Mf-

Mp-t My, My, .- M ff
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Mo ME .. M

)
g e " M M

Mgn-1 Myt ... MFP?
(M - Af).

\<i<i<gn—

-M, PMoforzi Jdet
shows that the system is solvable and has a unique solution. Now we have the
unique polynomial p f\t) as required.
Invoking upon Theorem 2.13, this polynomial can also be uniquely expressed

ey'w = E ¢.G.(f)
We have i < qdT + where d(i) isthe pper 7-index of 1. Then, with m, —d(i) + 4,
u A ’
c, "~ (-II' E 'L1
m* degM<m1

For each 0 < A< gn—L we observe that d(i) < —L Therefore m, = d(z) +1 < .
Moreover, from the first part of the proof, / (M) = P f\M ) for all M of degree
less than . It follows that

c,=<"ir f? degl%ﬂon’ o (V) (V)

o IHE (U

By Lemma 3.4 and the fact that i < qd) - 1< <+ = 'h. we have -n[r¥i9l =

sdr={-1Tr
{ degMon, 9g 1 1]
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Therefore,

Mo =)> )
Wwhere

A=(-ip E G- - <w)/(A)),

deg M <m.i

By Theorem 212, Y ~ v GFo[x implies that Aj G Fg[x],
With the above preparation, we proceed now to derive our interpolation series.
To this end. consider

where the coefficients Aj’s and A ;s are defined as above. For 0 < i< gn—1 we
have i=d(i)+ 1< . Soforeach M GF([x] with degM < mt< . we have

gpAl) = [(Al) = cqgAl).

Thus,
A= N
m* deg M <m,
- Ll)ﬂ'l/\ y G;'n_!_i(M)/(M)
711 deq pr=m1
= (716, L g L (MpPe>(a)

This implies that

E 10  =p7ld+ E I M1
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Since Gi(M) = 0 for all i with d(i) > (leg A/, for M G F7[] of degree —1, we
have

Gi(M)
9
qn- \ :
_E 4 Gi(M) .,
= I(M),

showing that the function /(f) can be represented by the stated interpolation
Series. 0

Modifying the preceding proof, we next derive interpolation series for pseudo-
polynomials.

Theorem 3.6. Let f(t) GIVF. Then f(t) GV if and only if it is representable
as an interpolation series of the form

|1:_:L Ld{i) ng{it)

where BxG Fo[x] and d(i) denotes the upper g-index ofi.

Proof. From the proof of Theorem 35, for all G No, the unique polynomial of
degree < gqn—1 which takes the same values as /(f) over the set of all polynomials
M GF([X with degM < s

q" -1 .

() Gj(t)
P(t) = E A
n ( 9|

and for r GN with gr > i, we have

L G''_UN)f(N)
N (_I)rdegN<r 9qr_l_|'
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Moreover, / (f) is a pseudo-polynomial, if and only if
pUIM +K) =f(M +K)=/(M)=Ptn{M) (mod K)

for all M, K G IFo[a] A" * 0 and degM, degK < for all G N(. By Theorem

2.18

GV forallnGno ™ pU\t) GIO h =h forall Gno
<Ld(i) 1A foralli< and G No-

Hence, the desired result follows. I

3.2 Some Algebraic Structures of v

It is known that |V F is a commutative ring under addition and multiplication
of functions. The identity under addition is 0(f) defined by 0(f) = 0 G Fq for all
f G F9[x] and the identity under multiplication is 1(f) defined by 1(f) = 1 G Fq for
all f G Fg[x], The inverse under addition of /(f) G IV.F is (<) (f) := —(f) for all
f GF(IX]

Theorem 3.7. V is a subring of IVF.

Proof. Note that V ¢ IVF and 0(f). 1(f) G V. To show that V is a subring of
IVF, it suffices to show that /(f) —g(t), f(t)g(t) GV for all f(t),g(t) G V. Let
f(t),g{t) e V. Then

(f-)(M +K) =f(M+K)—g(M +K) =f(M)-g(M) = (f-g)(M ) (mod K)
and
(1.9){M +K) = f(M + K) .q(M +K) =f(M)+g(M) = (/ -g)(M) (mod A)

for all A/ GF9[x] and A" G Fq[x]\{0}. This completes the proof, I
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We define units in V in tile usual way.

Definition 3.8. An element (t) £ V is called a unit if there, is v(t) £ V such
that ()V(t) = 1 (f).

Denote by (V) be the set of all units in V.
Lemma 3.9. We have u(fp) = F* := Fo\{0}.

Proof. Let ¢ £ F* Since F* is a multiplicative group, there exists ¢ £ F* such
that cc = 1. This shows that F* C  (fP).
Conversely, let
[ (f

be a unit in V. Then there exists g(t) GV such that

Substituting for t by any M G F([x], we arrive at
g(M) = (/(M))_1, the inverse of f{(M) in Folx].

This implies that / (Fjx]) ¢ F* Moreover, Bo = /(0) G F*. To show that
f(t) GF*, it suffices to show that f(N) —Bo for any N G F¢[x]\{0}. We have

[TV) = 1 (0+N) = (0) = Bo (mod TV} (4

If N G Folx]\Fq, using f(¥q[x}) ¢ F*, the relation (*) shows that /(TV) = Bq If
N G F* since
H{N) = scrv+x) (mod x)

and / (TV+ x) = Bo by the previous case, we conclude again that /(TV) = Bq This
can hold for all M G Fy[x] only when f(t) is a constant function with value in F*,
showing then that (V) G F) [
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Definition 3.10. A non-unit element f(t) G p\{0(t)} is called an irreducible
element inV if whenever f(t) = g(t)h(t) for some g(t), h(t) G V. then either g(t)
or h(t) is a unit.

Theorem 3.11. The set V is an integral domain.

Proof. By Theorem 3.7, we have V is a commutative ring under addition and
multiplication. There remains to check that it lias no zero divisors. Assume that
f(t) and g(t) ¢ v\{0(t)}. Then there are M1, Mi G F9[x] such that

[(AR) =K o

and
g(M2) = K21 0.

Let pi and p2 be two distinct irreducible polynomials in Fofx] such that
PUWKi and  P2\K 2.
Since gcd(Pi, p2) = 1, there are A, B GFofg] such that
APi - BP2= 1
lfmi [ M2 then
(Mi = Mi)APi - (Mi- Mi)BP2= M2- Mu

he.,
Mi +h2p2= Ml + hipi,

where hi = (Mi —m 1A 720and h2= (Mi —mi)B " 0. Then

f(Mi +hiPi) = /(MI) = Ki (mod hiPi)
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and

(M2 + h2P2) —g(M2) — 142 (mod h2P2).

Since P] 1 K1 and p2\ 142 these indicate that both / (MI+h]_px) and g{M2+h2P2)
are not zero. We have

(/¢ )(MI+hxpd) = f(Mx + nPi) - (M1+ fqP1)
= /(M1 + pPi) «g{M2+ h2P2)
0.

If M1 = M2, then

(I+ )(MD) =/ (M1) (MO
= f(M X)g{M2)
= p./p

BN

The two possibilities show that (/ - )(0 is not a zero map, and so p has no zero
divisor, I

To show that p is not a unique factorization domain, we need three more
lemmas.

Lemma 3.12. Let fit) Gp with the expansion in Theorem 3.6. If B, = 0 for all
| > 2q, then fit) GFg[X][t].

Proof. If £5 = 0for I > 2, then the interpolation series reduces to
[ = < >N

By Remark 2.10, we have that, i = Lj() for 0 < ?2< 2 —1 and so /(f) G
(Folx])[f] '
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Definition 3.13. Let f(t),q(t) GIVF. Then f(t) = 0(g(t)) if and only if there
exist a positive real number ¢ and a positive integer N such that

[[(M)| < c\g(M)\  for all M 6 Fg[x] with degM > N.

Lemma 3.14. Letf(t) GV andme N. Iff(t) = 0(xmdegt). then f(t) G Fq(x)]i].

Proof. From the hypothesis, there exist ¢ > 0and e N such that |/(M)| <
cqmaegM for all M GFjx], with degM > N. Since gdnl+1 > , by Theorem 2.14,
Wwe have

vV, = - y  GtL  Ln(K)(K).
d(n)+1 deg K=c(( )+ 1
K 1s Inonic

We show now that An = o (xhn_tHin)+1). Let N1—max{N, 2q}, and choose j so
that d(j) > N1 Write

] = 10 + Ti<T+ 1202+ oo+ Td)Qu)

where 0 < k< g—1, 7dGj) 70 Then,

@+ _j_1=(09_ DN +qdU1+ L+ D) -

= (q- D{od) + / Gyt + eeo+ 1) - (70 +7i9 + oo+ 7d()OA3)
= Po +Piq + ---+ Pd(j)qoU), where Pk = (q- 1) - 7/-

Therefore d(qd()+ —2) = d(j) and so, for a nronic polynomial K of degree d(j) + 1,
Wwe have

g” ohi-,-(«1 )=

At=q-1
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0 4n{ <

degFfc = kgk and  degik(K) =deg JJ (K- E) = qk(d(j) + 1)
degE<k

For 0 <k <d(j), we have

Since d(j) + 1 > k. we see that

deg-"rVO - F 1} = deg i |(K).

and so
degG"0)L 1 (K) = degjjr/T (K)
= (d(j) + I)(do + Pigl + eee+ Pulz)gc{])
=(do)+ 1) +1-.7-1).
Thus,

degidj < degLa(j)+i - degFd(j)+i + degGyo)t i1 (K) + deg f(K)

<{g+ g2+ m +qdJl+) - @)+ o7+ (d) + I{oddHL- - 1)
+d+m(d(j) +1) (for some ¢ such that ¢ < qc)

<2J11- ( + 2 {d() + 1)+ ¢+ m(d() +1)
< 20ddy+1 - qdbii(2g) +¢ + (m - D(d(j) + 1) (since j > qd(Jl and

d(j) +1>29)

=c + (™- @) + 1.

Consequently, for sufficiently large k, we have [Tfc| < Cla:(m" D)WA)+D)| for some
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¢ > 0. Since f GV, we know then that Ld(K) 1 Ak- Therefore,
(leg LK) < degAk or Ak =0
If some Ak d o, then for k sufficiently large, we get

(m <ql+q2+ eret qd
= deg LdK
< deg Ak
<d + (m—=1)(d(k) +1),
which is a contradiction, and so Ak = o, i... f(t) is a polynomial over Fq(x). T

Lemma 3.15. Let f(t) GV. I f(t) G¥q(x)[f] and if there exist g(t),h(t) GV
such that

f(t) = o{t)h{t)
for all t GFjx], then g(t),h(t) G Fa(X)][t].

Proof. Write /(f) = antn + a,,_ifn-1 + 1ee+ a0, Let M GFo[X], Then,
\f(M)\< AqneM,

where A = max{[a0|, |ail,..., |an[}. If git) is not a polynomial, Lemma 3.14 yields
g(t) d O(xnaegt), which ill turn implies that there exists an increasing sequence
{ 7} with deg mj = uj such that

\g(Mj) 1> Aqndegh>: AgnnK

and so
Agnnj > /(M) = 9{ 3\ )\ > Agnnj,

which is a contradiction. O
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In particular, Lemma 3.15 holds for linear pseudo-polynomials over F([x], The
following corollaries provide alternative proofs for this linear case independently
from previous lemmas. Let £ be the set of all linear pseudo-polynomials over Fqx],

Corollary 3.16. 1ff(t) GE£ and f(xn) = 0(xqn)Lthen f(t) G Fo(x)[f].

Proof. Assume that /(f) G £ and / (xn) = 0(xd). Then there exists ¢ > 0 and
N G N such that |/(xn)| < cqdJfor all > N. Since /(f) G£. foreach GN

/ | A B (xfl) 1 1 +A
Fn ) F{ ) F2
So
: 1)
) 0 0 [ )
Fpfx2)  £i(x2)
det £| ; 0 / )
Eo(xn_1) £i(xn_1) £2(x"-1) S|
fo(zn)  E£](xn)  Fa(xn) lv "
i A )
I 0 0 0 0
Eo(x’) 1 0 0 0
tor2)  EI(XD : 0
det Fo Fi
g0 -*) £ g2 ") 1 0
Fo Fi f2
£0 ) £1 ) £2 (xn) £ |
Fo Fi f2 Fn-

Since the matrix in the denominator of An is lower triangular, its determinant is
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1 Thus

An=f(xn)- /[ r DN " -+ A-2DnMn- f(xn- Dn 3, + ...
t (-1) 7 (X°)A>,,,,

where DtJ is the determinant of the matrix in numerator of .4 which cut row
(z+ )thand column (j + Dthforall 0< 1.] < . We have

po 1 < 1(') !&:2) IF; '.'1 I( 1 _A+T+A-

F2
\D \)Ul < 1/"é ) ( ) (A) F A _AA+qW.
Y < AW ) i FP - A<D -1
, £ ¥ | "
\D,.n\ < Id’g‘)Aé v)wé‘) F”](;l- 6q3+q4+q5+ an- 1
pn—1, I < Vrll:-%’(_l")l —qop L
lA\lv < :m. = 90.

Next we will claim that An=0(xq ). Let >N, Foreach N < < —i,

Om o (7] < il < egQ

Since \Dnn\\f(xn)\ < cqdp it follows that \Dmn\\f{xm)\ < cqq for allN <m < .
Let gr:= max{|/7°)], [[(x-D)|, |[/(x2)|.... . \f(xN~I)\}. Then
\An\ < max{o<rin<ah%(_I {IDhn\gr}. coan}

= max{\D0L\qg\cqan}

=max{/+2+ +n'lqr.cqon}

< max{qqk+a2+ U 1 max{<ar,c}. nmax{gr,c}}

= giUmax{qr.c}.
Hence An = 0(xq). as required. Since An = 0(xd), there exists ¢ > 0 and for

sufficiently large A" € N,
<egAk < gk + ¢
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for all k > K. Since f(t) G£, Lk 1Ak for all k. That is
deg Lk < (leg Ak or Ak =o.
Note that
deg It = g1 + Q2H-—haki
So Ak = 0 for sufficiently large k > K. Hence f(t) is a polynomial. 0

Corollary 3.17. Let f(t) Gc. Iff(t) GFIX)[f] and if there exist g(t).h(t) G£
such that

{t) = g(t)(t)
for all t GFg[ ;] then g(t),h(t) GFg( )

Proof. Assume that f(t) —amtq' + am-itg’ + 1ee+ dot. So
[[(:r")] < M gngm

Where
M = max{|o0}, jail,.... [am]}.

Assume by a contradiction that g(t) is not a polynomial function in V. We have
g(xm)™0(x"").

So there exists an increasing sequence { ]} such that \g(xnj)\ > MqqJ for all s G
N. Therefore, for a sufficiently large J. we have

Maregm > |/(xn0]

= \9(xnd\\h(x” |
> Mcfl.

which is a contradiction. O
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Example 3.18. Let £ be a polynomial over Fo[*] By Theorem 3.6, tile
polynomial t —E is a pseudo-polynomial (iso = —£. A\ = Land A1= 0 for all
i >1). Ift—E is reducible over V,

t- E=1(t)g(t)

for some non-unit elements f{t),g{t) GV. By Lemma 3.15, / (f) and g(t) are
polynomials over Fo(;r) with an indeterminate t. Thus deg/(t), degp(f) < L By
Lemma 3.12, /(f) and g(t) are polynomials over Fo[ ;] That is /(f) or oft) G Fo[ ]
Without loss of generality, we may assume that / (f) GF7[x]

o Iff(t) GFq, by Lemma 3.9 f(t) is a unit in V, a contradiction.
o If/(f) GFo[x]\F9, then

9(f) = e Flx[t]
Thus g(t) GFg. By Lemma 3.9, it is a unit in V, a contradiction.

, for each E G Fo[a], t —E is irreducible in V. Similarly, we can prove that
I (t) = x IS irreducible in V.

By Lemma 3.6. Lemma 3.14 and Lemma 3.15, we have the conclusion for the
factorization in V as follows.

Theorem 3.19. V is not a unique factorization domain.

Proof. Let US first treat the case (= 2. Consider

g{t) 1=
By Theorem 3.6, g(t) has an interpolation of the form

ANGI

g(t) = 9a
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where A\ —F2/x, and so g(t) ¢ V. Since

poon (-
degE<2

we see that g(f) G Fo(x)[f] with degree g2 = 4 = 2g. If p(t) could be factored in
Fo(x)[] V , then each factor in Fg(x)[f] would have degree less than 2g, with
one of its factors having leading coefficient in Fq(x)\F([x], which is impossible by
Lemma 3.12. Thus, ot) is irreducible in V. Since is2(t) £ V and

Xg(t) = Ie{t) = o (~ EF
deg E< 2
where x, g(t) and t —E are irreducible in V, we deduce that . . (t) can be factored
as a product of irreducible elements in more than one way.
As for the case q > 2, consider

Proceeding in the same manner as above, we deduce that g(t) £ Fo(x)[f] o v and
o(t) is irreducible over V. From Ipi{t) GV and

xg(t) = ifi(t)= 30 (t-E )2

degE<?2

where x. (t) and t —E are irreducible in V, we arrive at the fact that can
be factored as a product of irreducible elements in more than one ways. 0

3.3 Difference and Higher Order Differences

In this section, a generalization of differences for polynomials introduced by
Wagner [7] is investigated.

Definition 3.20. Let f :Fo[x] —»¥q[X]. For each M e Fq[x]\{0}, the difference
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for a function f(t) is defined by

AMf[t) - Ht + MM)- m

for all t GFo[x] and for let r > 0 and MI, M2,.... Mr GF;[x]\{0}. WT define, the
rth difference of function f(t) inductively by

for all t 6 FI[X].
We define the sets of 'Pr for positive integer r as follows.

Definition 3.21. For any positive integer r. uie define

o= {/ :F; -> }!
ir=|/(t) 6Gzo A G Z0 for all MI, M2,..., Mr G FJ:r[\{0}},
Pr=X 2 oo Xr.

We remark that the set of all pseudo-polynomials V is V\ and the set of all
integer-valued functions 1V F is J0. To find the explicit shape of an element in Vr
for r > 1, it is convenient to define

= lem| Xe(th1Lphizp - mzery 2, 2.0114ic > 0,il + 24 o1-+ 7 G| and

j L
P S N ) Is prime to p},

for all r <j. Then we have

Theorem 3.22. Let f(t) ¢ TV W have that f(t) G Pr if and only if it is
representable as an interpolation series of the form.

.
9"

i=0
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where. rP = [cm*Rp’.Rp\ .... RpllL.

Proof. From the proof of Theorem 35, for all G No, the unique polynomial of
degree < gn—1 which takes the same values as f(t) over the set of all polynomials
M G Rg[X] with degM < s

_ 1< Gi(t
py"r=1[>"

and where for r GN with qr > |. we have

A:(.!)' E aiiiN)f(N)

deg N<r 9qr-1+

Moreover, /(f) 6 Vr =R\ 22H s Xrifand only if

for all MI, M2,.... Mj G F¢[x]\{0} and for | < r. This holds if and only if
™ b, £h
for all MI, M2..... Mj G Fg[x]\{0} and for, <. that is.
Pp\t) Glo hear Jr=ir
forall G NO. By Theorem 2.19

Pp\t) 6 Frforail 6NoO rP 1AL, Rp VAL, ....i%0 IA forall 1< and
G No
Rp" TAi foraili< and G NO.

This proves the results. O
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