
CHAPTER I
INTRODUCTION

Fermat’s little theorem says that for a prime number p and an integer a with 
p \ a, we have ap~l = l(mod p). Then we get the integer

which is called the F e r m a t  q u o t ie n t  o f  p b a s e  a. Another integer in which we 
are interested is called the W ils o n  q u o t ie n t  o f  a p r im e  n u m b e r  p, denoted 
by พ  (p). This quotient is induced from the Wilson’s theorem stating that for a 
prime number p. (p -  1)! = — l(mod p). Then we obtain

W ( p ):= (,i ~ A - ± 1.

In 1905. Lerch [7] studied the Fermat quotients and the Wilson quotients and gave 
some congruence relations of them.

In general, Euler improved Fermat’s little theorem for an integer ท > 2. Let 
a be an integer with (a .n ) = 1. We have arp('n'1 = l(mod ท) where 4>(n) is the 
Euler function given by the number of positive integers which are less than ท and 
relatively prime to ท. Then we also get the integer

rv Ï ^ {n) -  1E(a, ท) : = -----------ท

which is called the E u le r  q u o t ie n t  o f  ท b a s e  a. In addition. Gauss generalized
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the Wilson’s theorem to any positive integer. He proved that for an integer ท > 2,

where en = — 1 if ท = 2 ,4 .//' or 2pk where p is an odd prime and k is a positive
integer and en = 1 otherwise. Let p(n) = i. Then for an integer ท > 2. we

Surely, there are many researchers who developed the results of Lerch [7] by using 
the Euler quotients and the Wilson quotients defined by Gauss such as Agoh, 
Dilcher and Skula [1], [2],

The next quotient is the main idea in our work. Let ท > 2 be all integer. 
From the Euler’s theorem, for an integer a with (a, ท) = 1, a(t>l'n'1 = l(mod ท.). 
By the well-ordering principle, there is the smallest positive integer / such that 
a1 = 1 (ท!od ท) for all integers a with (a, ท) = 1 and the number l is called the 
C a r m ic h a e l fu n c t io n  o f  ท, denoted by A(ท). In other words, A(n) is the least 
common multiple of the orders of all elements ill (Z /nZ )x. We call write the 
Carmichael function in form of the Euler function as follows

i =  en(mod ท)
M ) = 1

(»S= 1obtain the W ils o n  q u o t ie n t  o f  ท as the integer

พ ( ท )  : P(n)

<t>(ท ) for ท = 2, 4, or pQ
where p is an odd prime and a > 1 .

A(n) := < -L(n) for ท = 2° where a > 3.

Now, we have aA(n) — l(mod ท). so this congruence gives ail integer which is called
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the C a r m ic h a e l q u o t ie n t  o f  ท b a se  a,

C(a, ท) :
A(n) _  ^

This quotient was introduced by Sha [11] and he also studied the Euler quotients 
and the Carmichael quotients and gave some congruence relations of these quo
tients.
T h e o r e m  1 .1 . [11] For an integer ท > 2 and an integer a with (a. n) = 1. we
write (a) for the subgroup of (Z /nZ )x generated by a and o(a) — I (a) I. Then

where [-J denotes the greatest integer function.
For a finite group G1 the least common multiple of the orders of all elements 

in G is called the e x p o n e n t  o f  G, denoted by exp(G). Note that exp(G) divides 
|G|. In addition, if G — G\ X G2 then exp(G') = 1cm {exp(G'i). exp(G2)}. For a 
commutative ring 1Z with identity 1, the e x p o n e n t  o f  7Z is the exponent of its unit 
group 7ZX. Let biz be an ideal of 1Z generated by b <E 1Z. If IZ/blZ is finite, then we 
can define \(b) = exp((iz/biz)x) similar to A(ท) = exp((Z/nZ)x ). Hence, we may 
develop the Carmichael quotients over other rings which have close properties to
z.

The first ring is the ring of integer 0 K of a number field K  (Section 2.1). We 
are interested in this ring because Bamunoba [3] studied the Euler quotients over 
O k  where O k  is a PID. He used the fact that for all rn e O k  \  {0}, the cardinality 
of the quotient ring O k / tuO k  is finite to define his Euler quotient of rn and also 
developed congruence relations similar to [1]. In general, the ring Ok may not 
be a PID or even a UFD, but this ring has no zero divisor. Then it satisfies the 
cancellative law, so the definition of quotient in any O k  is well defined. Hence, 
we can construct the Wilson quotients and the Carmichael quotients over a ring 
of integers O k  and study congruence relations of them in Chapter II.

s c  (a)
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The second ring is the polynomial ring ¥q [:r] over a finite field ¥11. This ring is a 
Euclidean domain and has infinitely many prime elements as z . In 2010. Meemark 
and Chinwarakorn [10] studied the Euler quotients over Fq[x] and obtained some 
congruence relations of them as the Lerclvร theorem for F(/[น']. Recently, Iamthong 
and Meemark [6] generalized the results in [10] by weakening the assumption. They 
replaced the polynomial ring ¥11[:r] over a finite field F(; with the polynomial ring 
R[x] over a finite local ring R. Note that ¥q[x] is a UFD. but /?[x] may contain 
zero divisors and has no unique factorization property. However, Iamthong and 
Meemark could define the Euler quotients and the Wilson quotients over R[x] by 
using the division algorithm. For our work, we construct the Carmichael quotients 
over the polynomial ring over a finite local ring and study the congruence relations 
in Section 3.1.

Moreover, Iamthong and Meemark [G] defined the dill power residue symbol 
over R[x] which induces the Euler quotient of degree d over R[x] and studied 
congruence relations of them. We also get the inspirations to define the new 
symbol which we call A, ritil power residue symbol over i?[x] in Section 3.2. Finally, 
in Section 3.3, we construct the Carmichael quotients of degree d induced from the 
our new symbol and study relations of these quotients and the Euler quotients of 
degree d and the Wilson quotients defined by Iamthong and Meemark [6].
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