
REFERENCES

[1] Sophocleous, M. From safe yield to sustainable development of water 
resources—the Kansas experience. Journal of Hydrology 235(1-2) (2000): 27-43.

[2] Loucks, D.p. Sustainable water resources management. Water international 
25(1) (2000): 3-10.

[3] Department, p.c. Water quality management strategies in Thailand.
Department, P.C., Editor. 2017: Ministry of Natural Resources and Environment.

[4] Dévia, G.K., Ganasri, B., and Dwarakish, G. A review on hydrological models. 
Aquatic Procedia 4 (2015): 1001-1007.

[5] Solomatine, D.p. and Ostfeld, A. Data-driven modelling: some past experiences 
and new approaches. Journal of Hydroinformatics 10(1) (2008): 3-22.

[6] Jakeman, A.J., Letcher, R.A., and Norton, J.p. Ten iterative steps in development 
and evaluation of environmental models. Environmental Modelling & Software 
21(5) (2006): 602-614.

[7] Hirsch, R.M. and Slack, J.R. A nonparametric trend test for seasonal data with 
serial dependence. Water Resources Research 20(6) (1984): 727-732.

[8] Maier, H.R. and Dandy, G.c. Neural networks for the prediction and forecasting 
of water resources variables: a review of modelling issues and applications. 
Environmental Modelling & Software 15(1) (2000): 101-124.

[9] Palani, ร., Liong, S.Y., and Tkalich, p. An ANN application for water quality 
forecasting. Marine Pollution Bulletin 56(9) (2008): 1586-97.

[10] Wang, Q., Li, ร., Jia, P., Qi, c., and Ding, F. A review of surface water quality 
models. ScientificWorldJournal 2013 (2013): 231768.

[11] Phelps, E.B. and Streeter, H. A study of the Pollution and Natural Purification 
of the Ohio River. 1958, US Department of Health, Education, & Welfare.



113

[12] Zu-xin, X. and Shi-qiang, L. Research on hydrodynamic and water quality model 
for tidal river networks. JOIJRNAI OF HYDRODYNAMICS SFRIFS B-FNG1 ISH 
EDITION- 15(2) (2003): 64-70.

[13] Wolanski, E., Mazda, Y., and Ridd, p. Mangrove hydrodynamics. Tropical 
mangrove ecosystems (1993): 43-62.

[14] Zheleznyak, M.J., Demchenko, R.I., Khursin, S.L., Kuzmenko, Y.I., Tkalich, P.V., 
and Vitiuk, N.Y. Mathematical modeling of radionuclide dispersion in the 
Pripyat-Dnieper aquatic system after the Chernobyl accident. Science of the 
Total Environment 112(1) (1992): 89-114.

[15] Brown, L.c. and Barnwell, T.o. The enhanced stream water quality models
Q.UAL2E__and__QUAL2E-UNCAS;__documentation__and__uasr__manual. US
Environmental Protection Agency. Office of Research and Development. 
Environmental Research Laboratory, 1987.

[16] Grenney, W.J., Teuscher, M.C., and Dixon, L.s. Characteristics of the solution 
algorithms for the QUAL II river model. Journal (Water Pollution Control 
Federation) (1978): 151-157.

[17] Esterby, S.R. Review of methods for the detection and estimation of trends with 
emphasis on water quality applications. Hydrological Processes 10(2) (1996): 
127-149.

[18] Shoemaker, L. Compendium of tools for watershed assessment and TMDL 
development. (1997).

[19] Havnp, K., Madsen, M., and Dorge, J. MIKE 11—a generalized river modelling 
package. Computer models of watershed hydrology (1995): 733-782.

[20] DHI, M. Eutrophication Module, User guide and reference manual, release 2.7. 
DHI-Water and Environment (1998).

[21] Guide, บ. Reference Manual for MIKE21, Reference Manual. Danish Hydraulic 
Institute, Agera Allé. Horsholm, Denmark (2001).



114

[22] Di Toro, D.M., Fitzpatrick, J.J., and Thomann, R.v. Documentation for water 
quality analysis simulation program (WASP) and model verification program 
(MVP). (1983).

[23] Connolly, J.p. and Winfield, R.p. A user's guide for WASTOX. a framework for 
modeling the fate of toxic chemicals in aquatic environments. Environmental 
Research Laboratory, Office of Research and Development, US Environmental 
Protection Agency, 1984.

[24] Ambrose, R.B., Wool, T.A., Connolly, J.P., and Schanz, R.w. WASP4. a 
hydrodynamic and water-quality model-model theory, user's manual, and 
programmer's guide. 1988, Environmental Protection Agency, Atnens, GA (USA). 
Environmental Research Lab.

[25] Maier, H.R., Jain, A., Dandy, G.C., and Sudheer, K.p. Methods used for the 
development of neural networks for the prediction of water resource variables 
in river systems: Current status and future directions. Environmental Modelling 
& Software 25(8) (2010): 891-909.

[26] Olsen, R.L., Chappell, R.W., and Loftis, J.c. Water quality sample collection, data 
treatment and results presentation for principal components analysis-literature 
review and Illinois River watershed case study. Water Research 46(9) (2012): 
3110-3122.

[27] Allison, P.D. Missing data. Vol. 136: Sage publications, 2001.
[28] Hirsch, R.M., Slack, J.R., and Smith, R.A. Techniques of trend analysis for monthly 

water quality data. Water resources research 18(1) (1982): 107-121.
[29] Carson, R.T. and Mitchell, R.c. The value of clean water: the public's willingness 

to pay for boatable, fishable, and swimmable quality water. Water resources 
research 29(7) (1993): 2445-2454.

[30] Helsel. D.R. More than obvious: better methods for interpreting nondetect data. 
2005, ACS Publications.



115

[31] Quevedo, J., et al. Validation and reconstruction of flow meter data in the 
Barcelona water distribution network. Control Engineering Practice 18(6) (2010): 
640-651.

[32] Gnauck, A. Interpolation and approximation of water quality time series and 
process identification. Anal Bioanal Chem 380(3) (2004): 484-92.

[33] Lakshminarayan, K., Harp, S.A., Goldman, R.P., and Samad, T. Imputation of 
Missing Data Using Machine Learning Techniques, in KDD. pp. 140-145, 1996.

[34] Donders, A.R., van der Heijden, G.J., stijnen, T., and Moons, K.G. Review: a gentle 
introduction to imputation of missing values. J Gin Fpidemiol 59(10) (2006): 
1087-91.

[35] Patil, B.M., Joshi, R.C., and Toshniwal, อ. Missing value imputation based on K- 
mean clustering with weighted distance, in International Conference on 
Contemporary Computing, pp. 600-609: Springer, 2010.

[36] Crookston, N.L. and Finley, A.o. yalmpute: An R package for kNN imputation. 
Journal of Statistical Software 23(10) (2008).

[37] Shataee, ร., Kalbi, ร., Fallah, A., and Pelz, อ. Forest attribute imputation using 
machine-learning methods and ASTER data: comparison of k-NN, SVR and 
random forest regression algorithms. International journal of remote sensing 
33(19) (2012): 6254-6280.

[38] Batista, G.E. and Monard, M.c. A study of «-Nearest Neighbour as an Imputation 
Method. H£ 87(251-260) (2002): 48.

[39] Zhang, Y. and Liu, Y. Missing traffic flow data prediction using least squares 
support vector machines in urban arterial streets, in Computational Intelligence 
and Data Mining. 2009. CIDM'09. IEEE Symposium on. pp. 76-83: IEEE, 2009.

[40] Honghai, F., Guoshun, c, Cheng, Y., Bingru, Y., and Yumei, C. A SVM regression 
based approach to filling in missing values, in International Conference on 
Knowledge-Based and Intelligent Information and Engineering Systems, pp. 581- 
587: Springer, 2005.



116

[41] Wang, X., น, A., Jiang, Z., and Feng, H. Missing value estimation for DNA 
microarray gene expression data by Support Vector Regression imputation and 
orthogonal coding scheme. BMC Bioinformatics 7(1) (2006): 32.

[42] Nordbotten, ร. Neural network imputation applied to the Norwegian 1990 
population census data. (1996).

[43] Abdella, M. and Marwala, T. The use of genetic algorithms and neural networks 
to approximate missing data in database, in Computational Cybernetics. 2003. 
ICCC 2005. IEEE 3rd International Conference on. pp. 207-212: IEEE, 2005.

[44] Amer, S.R. Neural network imputation in complex survey design. International 
Journal of Computer Systems Science and Engineering 3(1) (2006): 12-17.

[45] Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J., and Kolehmainen, M. 
Methods for imputation of missing values in air quality data sets. Atmospheric 
Environment 38(18) (2004): 2895-2907.

[46] Silva-Ramirez, E.L., Pino-Mejias, R., Lopez-Coello, M., and Cubiles-de-la-Vega, 
M.D. Missing value imputation on missing completely at random data using 
multilayer perceptrons. Neural Netw 24(1) (2011): 121-9.

[47] Burke, น. and Ignizio, J.p. Neural networks and operations research: an 
overview. Computers & operations research 19(3-4) (1992): 179-189.

[48] Fortin, V., Ouarda, T.B., and Bobée, B. Comment on “The use of artificial neural 
networks for the prediction of water quality parameters” by FIR Maier and GC 
Dandy. Water Resources Research 33(10) (1997): 2423-2424.

[49] Brooks, พ., Corsi, ร., Fienen, M., and Carvin, R. Predicting recreational water 
quality advisories: A comparison of statistical methods. Environmental 
Modelling & Software 76 (2016): 81-94.

[50] Ge, z. and Frick, W.E. Some statistical issues related to multiple linear regression 
modeling of beach bacteria concentrations. Environmental Research 103(3) 
(2007): 358-64.



117

[51] Faraway, J. and Chatfield, c. Time series forecasting with neural networks: a 
comparative study using the air line data. Journal of the Royal Statistical 
Society: Series c (Applied Statistics) 47(2) (1998): 231-250.

[52] Masters, T. Practical neural network recipes in c++. Morgan Kaufmann, 1993.
[53] Kalteh, A.M., Hiorth, p., and Bemdtsson, R. Review of the self-organizing map 

(SOM) approach in water resources: Analysis, modelling and application. 
Environmental Modelling & Software 23(7) (2008): 835-845.

[54] Singh, K.P., Basant, A., Malik, A., and Jain, G. Artificial neural network modeling 
of the river water quality—a case study. Ecological Modelling 220(6) (2009): 
888-895.

[55] Dogan, E., Sengorur, B., and Koklu, R. Modeling biological oxygen demand of 
the Melen River in Turkey using an artificial neural network technique. Journal 
of Environmental Management 90(2) (2009): 1229-35.

[56] Areerachakul, ร., Junsawang, p., and Pomsathit, A. Prediction of dissolved 
oxygen using artificial neural network, in Int Conf Comput Commun Manage, 
pp. 524-528, 2011.

[57] Baker, E.A., Wehrly, K.E., Seelbach, P.W., Wang, L, Wiley, M.J., and Simon, T. A 
multimetric assessment of stream condition in the northern lakes and forests 
ecoregion using spatially explicit statistical Modeling and regional 
normalization. Transactions of the American Fisheries Society 134(3) (2005): 
697-710.

[58] Alonso-Borrego, c. and Arellano, M. Symmetrically normalized instrumental- 
variable estimation using panel data. Journal of Business & Economic Statistics 
17(1) (1999): 36-49.

[59] Cooijmans, T., Balias, N., Laurent, c., Gülçehre, Ç., and Courville, A. Recurrent 
batch normalization. arXiv preprint arXiv:1603.09025 (2016).

[60] Reynolds, J.H. and Fleeger, D.J. The normalization model of attention. Neuron 
61(2) (2009): 168-85.



118

[61] Lee, J. and Maunsell, J.H. A normalization model of attentional modulation of 
single unit responses. PLoS ONE 4(2) (2009): e4651.

[62] Noori, R., et al. Assessment of input variables determination on the SVM model 
performance using PCA, Gamma test, and forward selection techniques for 
monthly stream flow prediction. Journal of Hydrology 401(3-4) (2011): 177-189.

[63] Ahmad, z., Rahim, N.A., Bahadori, A., and Zhang, J. Improving water quality 
index prediction in Perak River basin Malaysia through a combination of 
multiple neural networks. International Journal of River Basin Management 
15(1) (2017): 79-87.

[64] Partalas, I., Tsoumakas, G., Hatzikos, E.V., and Vlahavas, I. Greedy regression 
ensemble selection: Theory and an application to water quality prediction. 
Information Sciences 178(20) (2008): 3867-3879.

[65] Ng, A.W.M. and Perera, B.J.C. Selection of genetic algorithm operators for river 
water quality model calibration. Engineering Applications of Artificial 
Intelligence 16(5-6) (2003): 529-541.

[66] Liu, S.Y., Tai, H.J., Ding, Q.S., Li, D.L., Xu, L.Q., and Wei, Y.G. A hybrid approach 
of support vector regression with genetic algorithm optimization for 
aquaculture water quality prediction. Mathematical and Computer Modelling 
58(3-4) (2013): 458-465.

[67] Huang, Y.T. Multi-objective calibration of a reservoir water quality model in 
aggregation and non-dominated sorting approaches. Journal of Hydrology 510 
(2014): 280-292.

[68] Rahman, A. and Chughtai, M. Reginol interpretation of river Indus water quality 
data using regression model. African Journal of Environmental Science and 
Technology 8(1) (2014): 86-90.

[69] Zare Abyaneh, H. Evaluation of multivariate linear regression and artificial 
neural networks in prediction of water quality parameters. J Environ Health Sci 
Eng 12(1) (2014): 40.



119

[70] Kisi, o. and Parmar, K.s. Application of least square support vector machine and 
multivariate adaptive regression spline models in long term prediction of river 
water pollution. Journal of Hydrology 534 (2016): 104-112.

[71] Barzegar, R., Adamowski, J., and Moghaddam, A.A. Application of wavelet- 
artificial intelligence hybrid models for water quality prediction: a case study in 
Aji-Chay River, Iran. Stochastic Environmental Research and Risk Assessment 
30(7) (2016): 1797-1819.

[72] Ahmed, A.M. and Shah, S.M.A. Application of adaptive neuro-fuzzy inference 
system (ANFIS) to estimate the biochemical oxygen demand (BOD) of Surma 
River. Journal of King Saud University-Engineering Sciences 29(3) (2017): 237- 
243.

[73] Seshan, H., Goyal, M.K., Falk, M.W., and Wuertz, ร. Support vector regression 
model of wastewater bioreactor performance using microbial community 
diversity indices: effect of stress and bioaugmentation. Water Research 53 
(2014): 282-96.

[74] Liu, M. and Lu, J. Support vector machine-an alternative to artificial neuron 
network for water quality forecasting in an agricultural nonpoint source 
polluted river? Environ Sci Pollut Res Int 21(18) (2014): 11036-53.

[75] Moharrmadpour, R., Shaharuddin, ร., Chang, C.K., Zakaria, N.A., Ab Ghani, A., 
and Chan, N.w. Prediction of water quality index in constructed wetlands using 
support vector machine. Environ Sci Pollut Res Int 22(8) (2015): 6208-19.

[76] Ding, Y.R., Cai, Y.J., รนท, P.D., and Chen, B. The Use of Combined Neural 
Networks and Genetic Algorithms for Prediction of River Water Quality. Journal 
of Applied Research and Technology 12(3) (2014): 493-499.

[77] Choi, D.J. and Park, FI. A hybrid artificial neural network as a software sensor for 
optimal control of a wastewater treatment process. Water Research 35(16) 
(2001): 3959-3967.



120

[78] Noori, R., Karbassi, A., and Salman Sabahi, M. Evaluation of PCA and Gamma 
test techniques on ANN operation for weekly solid waste prediction. Journal of 
Environmental Management 91(3) (2010): 767-71.

[79] Nasir, M.F.M., et al. River water quality modeling using combined principle 
component analysis (PCA) and multiple linear regressions (MLR): a case study 
at Klang River, Malaysia. World Applied Sciences Journal 14 (2011): 73-82.

[80] Gaume, E. and Gosset, R. Over-parameterisation, a major obstacle to the use of 
artificial neural networks in hydrology? Hydrology and Farth System Sciences 
Discussions 7(5) (2003): 693-706.

[81] Han, ว., Kwong, T., and Li, ร. Uncertainties in real-time flood forecasting with 
neural networks. Hydrological Processes 21(2) (2007): 223-228.

[82] Abrahart, R.J. and See, L.M. Neural network modelling of non-linear hydrological 
relationships. Hydrology and Earth System Sciences 11(5) (2007): 1563-1579.

[83] Wen, C.G. and Lee, c.s. A neural network approach to multiobjective 
optimization for water quality management in a river basin. Water Resources 
Research 34(3) (1998): 427-436.

[84] Pigram, G.M. and MacDonald, T.R. Use of neural network models to predict 
industrial bioreactor effluent quality. Environmental Science & Technology 
35(1) (2001): 157-162.

[85] Khuan, L.Y., Hamzah, N., and Jailani, R. Prediction of water quality index (WQI) 
based on artificial neural network (ANN), in Research and Development. 2002. 
SCOReD 2002. Student Conference on. pp. 157-161: IEEE, 2002.

[86] Najah, A., El-Shafie, A., Karim, O.A., and El-Shafie, A.H. Application of artificial 
neural networks for water quality prediction. Neural Computing & Applications 
22(1) (2013): S187-S201.

[87] Najah, A., El-Shafie, A., Karim, O.A., and El-Shafie, A.H. Performance of ANFIS 
versus MLP-NN dissolved oxygen prediction models in water quality monitoring. 
Environ Sci Pollut Res Int 21(3) (2014): 1658-1670.



121

[88] Areerachakul, ร. Comparison of ANFIS and ANN for estimation of biochemical 
oxygen demand parameter in surface water. International Journal of Chemical 
and Biological Engineering 6 (2012): 286-290.

[89] Xiang, Y. and Jiang, L. Water quality prediction using LS-SVM and particle swarm 
optimization, in Knowledge Discovery and Data Mining. 2009. WKDD 2009. 
Second International Workshop on. pp. 900-904: IEEE, 2009.

[90] French, M.N., Krajewski, W.F., and Cuykendall, R.R. Rainfall forecasting in space 
and time using a neural network. Journal of hydrology 137(1-4) (1992): 1-31.

[91] Meybeck, M. Riverine quality at the Anthropocene: Propositions for global space 
and time analysis, illustrated by the Seine River. Aquatic Sciences 64(4) (2002): 
376-393.

[92] Hsu, K.-C. and Li, S.-T. Clustering spatial-temporal precipitation data using 
wavelet transform and self-organizing map neural network. Advances in Water 
Resources 33(2) (2010): 190-200.

[93] Gardner, M.W. and Dorling, S.R. Neural network modelling and prediction of 
hourly NOx and N02 concentrations in urban air in London. Atmospheric 
Environment 33(5) (1999): 709-719.

[94] Gupta, p. and Christopher, S.A. Particulate matter air quality assessment using 
integrated surface, satellite, and meteorological products: 2. A neural network 
approach. Journal of Geophysical Research-Atmospheres 114(D20) (2009).

[95] Wang, W.J., Lu, W.Z., Wang, X.K., and Leung, A.Y.T. Prediction of maximum daily 
ozone level using combined neural network and statistical characteristics. 
Environment International 29(5) (2003): 555-562.

[96] Mihalakakou, G., Flocas, H.A., Santamouris, M., and Helmis, C.G. Application of 
neural networks to the simulation of the heat island over Athens, Greece, using 
synoptic types as a predictor. Journal of Applied Meteorology 41(5) (2002): 519- 
527.



122

[97] Hooyberghs, J., Mensink, (ะ., Dumont, G, Fierens, F., and Brasseur, O. A neural 
network forecast for daily average PM10 concentrations in Belgium. 
Atmospheric Environment 39(18) (2005): 3279-3289.

[98] Hsieh, พ.พ. and Tang, B.Y. Applying neural network models to prediction and 
data analysis in meteorology and oceanography. Bulletin of the American 
Meteorological Society 79(9) (1998): 1855-1870.

[99] Barbounis, T.G., Theocharis, J.B., Alexiadis, M.C., and Dokopoulos, p.s. Long-term 
wind speed and power forecasting using local recurrent neural network models. 
leee Transactions on Energy Conversion 21(1) (2006): 273-284.

[100] Foley, A.M., Leahy, P.G., Marvuglia, A., and McKeogh, E.J. Current methods and 
advances in forecasting of wind power generation. Renewable Energy 37(1) 
(2012): 1-8.

[101] Deo, M. and Naidu, c.s. Real time wave forecasting using neural networks. 
Ocean engineering 26(3) (1998): 191-203.

[102] El-Din, A.G. and Smith, D.w. A neural network model to predict the wastewater 
inflow incorporating rainfall events. Water Research 36(5) (2002): 1115-26.

[103] Park, ร.ร. and Lee, Y.s. A water quality modeling study of the Nakdong River, 
Korea. Ecological Modelling 152(1) (2002): 65-75.

[104] Cox, B.A. A review of currently available in-stream water-quality models and 
their applicability for simulating dissolved oxygen in lowland rivers. Science of 
the Total Environment 314 (2003): 335-377.

[105] Diamantopoulou, M.J., Papamichail, D.M., and Antonopoulos, v.z. The use of a 
neural network technique for the prediction of water quality parameters. 
Operational Research 5(1) (2005): 115-125.

[106] May, R.J., Dandy, G.C., Maier, H.R., and Nixon, J.B. Application of partial mutual 
information variable selection to ANN forecasting of water quality in water 
distribution systems. Environmental Modelling & Software 23(10-11) (2008): 
1289-1299.



123

[107] Areerachakul, ร. and Sanguansintukul, ร. A comparison between the multiple 
linear regression model and neural networks for biochemical oxygen demand 
estimations, in Natural Language Processing. 2009. SNLP'09. Eighch international 
Symposium on. pp. 11-14: IEEE, 2009.

[108] Najah, A., Elshafie, A., Karim, O.A., and Jaffar, 0. Prediction of Johor River water 
quality parameters using artificial neural networks. European Journal of 
Scientific Research 28(3) (2009): 422-435.

[109] Areerachakul, ร. and Sanguansintukul, ร. Water quality classification using 
neural networks: Case study of canals in Bangkok, Thailand, in Internet 
Technology and Secured Transactions. 2009, ICITST 2009. International 
Conference for, pp. 1-5: IEEE, 2009.

[110] Areerachakul, ร. and Sanguansintukul, ร. Classification and regression trees and 
MLP neural network to classify water quality of canals in Bangkok, Thailand. 
International Journal of Intelligent Computing Research (1J1CR) 1(1/2)) (2010): 43- 
50.

[111] Faruk, D.o. A hybrid neural network and ARIMA model for water quality time 
series prediction. Engineering Applications of Artificial Intelligence 23(4) (2010): 
586-594.

[112] He, T. and Chen, p. Prediction of water-quality based on wavelet transform 
using vector machine, in Distributed Computing and Applications to Business 
Engineering and Science (DCABES). 2010 Ninth International Symposium on. pp. 
76-81: IEEE, 2010.

[113] Ekdal, A., Gurel, M., Guzel, c., Erturk, A., Tanik, A., and Gonenc, I.E. Application 
of WASP and SWAT models for a Mediterranean Coastal Lagoon with Limited 
Seawater Exchange. Journal of Coastal Research (64) (2011): 1023-1027.

[114] Wechmongkhonkon, ร., Poomtong, N., and Areerachakul, ร. Application of 
Artificial Neural Network to classification surface water quality. World Academy 
of Science. Engineering and Technology 6 (2012): 2012.



124

[115] Areerachakul, ร. The Using Artificial Neural Network to Estimate of Chemical 
Oxygen Demand. World Academy of Sciences. Engineering and Technology 79 
(2013): 455-461.

[116] Areerachakul, ร., Sophatsathit, p., and Lursinsap, c. Integration of unsupervised 
and supervised neural networks to predict dissolved oxygen concentration in 
canals. Ecological Modelling 261 (2013): 1-7.

[117] Monfared, S.H., Mirbagheri, ร., and Sadrnejad, ร. A Three-Dimensional, 
Integrated Seasonal Separate Advection-Diffusion Model (ISSADM) to Predict 
Water Quality Patterns in the Chahnimeh Reservoir. Environmental Modeling & 
Assessment 19(1) (2014): 71-83.

[118] Ali, M., Ahmad, M., Khalid, K., and Rahman, N.A. Water Quality Measures Using 
QUAL2E: A Study on RoL Project at Upper Klang River, in InClEC 2013. pp. 757- 
767: Springer, 2014.

[119] Leta, O.T., Shrestha, N.K., de Fraine, B., van Griensven, A., and Bauwens, พ. 
Integrated water quality modelling of the River Zenne (Belgium) using OpenMI. 
in Advances in Hydroinformatics, pp. 259-274: Springer, 2014.

[120] Morrill, J.C., Bales, R.C., and Conklin, M.H. Estimating stream temperature from 
air temperature: Implications for future water quality, journal of Environmental 
Engineering-Asce 131(1) (2005): 139-146.

[121] McCullough, D. Issue Paper 5: Summary of Technical Literature Examining the 
Physiological Effects of Temperature on Salmonids: Prepared as Part of EPA 
Region 10 Temperature Water Quality Criteria Guidance Development Project. 
US Environmental Protection Agency, Region 10, 2001.

[122] Karr, J.R. and Dudley, D.R. Ecological perspective on water quality goals. 
Environmental Management 5(1) (1981): 55-68.

[123] Sanchez, E., et al. Use of the water quality index and dissolved oxygen deficit 
as simple indicators of watersheds pollution. Fcoiogicai Indicators 7(2) (2007): 
315-328.



125

[124] Lohani, B.N. and Todino, G. Water quality index for Chao Phraya river. Journal 
of Environmental Engineering 110(6) (1984): 1163-1176.

[125] Hamelink, J., Landrum, P.F., Bergman, H., and Benson, W.H. Bioavailability: 
physical, chemical, and biological interactions. CRC Press, 1994.

[126] Allen, H.E. and Hansen, D.J. The importance of trace metal spéciation to water 
quality criteria. Water Environment Research 68(1) (1996): 42-54.

[127] Guo, L.D., Santschi, P.H., and Ray, S.M. Metal partitioning between colloidal and 
dissolved phases and its relation with bioavailability to American oysters. 
Marine Environmental Research 54(1) (2002): 49-64.

[128] Calmano, พ., Hong, J., and Forstner, บ. Binding and Mobilization of Heavy- 
Metals in Contaminated Sediments Affected by Ph and Redox Potential. Water 
Science and Technology 28(8-9) (1993): 223-235.

[129] Myllynen, K., Ojutkangas, E., and Nikinmaa, M. River water with high iron 
concentration and low pH causes mortality of lamprey roe and newly hatched 
larvae. Ecotoxicologv and Environmental Safety 36(1) (1997): 43-8.

[130] Pesce, S.F. and Wunderlin, D.A. Use of water quality indices to verify the impact 
of Cordoba City (Argentina) on Suquia River. Water Research 34(11) (2000): 2915- 
2926.

[131] Ferguson, C.M., Coote, B.G., Ashbolt, N.J., and Stevenson, I.M. Relationships 
between indicators, pathogens and water quality in an estuarine system. Water 
Research 30(9) (1996): 2045-2054.

[132] LeChevallier, M.W., Evans, T.M., and Seidler, R.J. Effect of turbidity on 
chlorination efficiency and bacterial persistence in drinking water. Applied and 
Environmental Microbiology 42(1) (1981): 159-67.

[133] Dallas, H.F. and Day, J.A. The effect of water quality variables on aquatic 
ecosystems: a review. Water Research Commission Pretoria, 2004.



126

[134] Hsu, S.Y. Effects of flow rate, temperature and salt concentration on chemical 
and physical properties of electrolyzed oxidizing water. Journal of Food 
Engineering 66(2) (2005): 171-176.

[135] น, Y.L., Stanghellini, c, and Challa, H. Effect of electrical conductivity and 
transpiration on production of greenhouse tomato (Lycopersicon esculentum 
น). Scientia Horticulturae 88(1) (2001): 11-29.

[136] Bauder, T.A., Waskom, R., Sutherland, p., Davis, J., Follett, R., and Soltanpour, 
p. Irrigation water quality criteria. Service in action: no. 0.506 (2011).

[137] Bhatnagar, A. and Devi, p. Water quality guidelines for the management of pond 
fish culture, international Journal of Environmental Sciences 3(6) (2013): 1980.

[138] Dennison, W.C., et al. Assessing Water-Quality with Submersed Aquatic 
Vegetation. Bioscience 43(2) (1993): 86-94.

[139] Mitchell, J., Shennan, c, Grattan, ร., and May, D. Tomato fruit yields and quality 
under water deficit and salinity. Journal of the American Society for 
Horticultural Science 116(2) (1991): 215-221.

[140] Snieszko, ร. The effects of environmental stress on outbreaks of infectious 
diseases of fishes. Journal of Fish Biology 6(2) (1974): 197-208.

[141] Bouck, G.R. Etiology of gas bubble disease. Transactions of the American 
Fisheries Society 109(6) (1980): 703-707.

[142] Delpla, I., Jung, A.V., Baures, E., Clement, M., and Thomas, 0. Impacts of climate 
change on surface water quality in relation to drinking water production. 
Environment International 35(8) (2009): 1225-33.

[143] Wilhm, J.L. and Dorris, T.c. Biological parameters for water quality criteria. 
Bioscience (1968): 477-481.

[144] Standardization of wastewater discharge from industrial plants Industrial Estate 
and incustrial zones. Ministry of Natural Resources and Environment, T., Editor. 
1992. 17.



127

[145] Sânchez, E., et al. Use of the water quality index and dissolved oxygen deficit 
as simple indicators of watersheds pollution. Ecological Indicators 7(2) (2007): 
315-328.

[146] Tanner, C.C., Clayton, J.S., and Upsdell, M.p. Effect of loading rate and planting 
on treatment of dairy farm wastewaters in constructed wetlands—I. Removal 
of oxygen demand, suspended solids and faecal coliforms. Water Research 
29(1) (1995): 17-26.

[147] Bowie, G.L., et al. Rates, constants, and kinetics formulations in surface water 
quality modeling. EPA 600 (1985): 3-85.

[148] Takahashi, N., Nakai, T., Satoh, Y., and Katoh, Y. Variation of Biodegradability of 
Nitrogenous Organic-Compounds by Ozonation. Water Research 28(7) (1994): 
1563-1570.

[149] Noble, R.T., Moore, D.F., Leecaster, M.K., McGee, C.D., and Weisberg, S.B. 
Comparison of total coliform, fecal coliform, and enterococcus bacterial 
indicator response for ocean recreational water quality testing. Water Research 
37(7) (2003): 1637-43.

[150] Cabelli, V.J., Dufour, A.P., McCabe, L.J., and Levin, M.A. Swimming-associated 
gastroenteritis and water quality. American Journal of Epidemiology 115(4) 
(1982): 606-16.

[151] Wright, 1, Gundry, ร., and Conroy, R. Household drinking water in developing 
countries: a systematic review of microbiological contamination between 
source and point-of-use. Tropical Medicine & International Health 9(1) (2004): 
106-117.

[152] Maki, A.W., Porcella, D.B., and Wendt, R.H. The impact of detergent phosphorus 
bans on receiving water quality. Water Research 18(7) (1984): 893-903.

[153] Dodds, W.K. Misuse of inorganic N and soluble reactive p concentrations to 
indicate nutrient status of surface waters. Journal of the North American 
Benthological Society 22(2) (2003): 171-181.



128

[154] Smith, V.H. Low nitrogen to phosphorus ratios favor dominance by blue-green 
algae in lake phytoplankton. Science 221(4611) (1983): 669-71.

[155] Xu, H., Paerl, H.W., Qin, B.Q., Zhu, G.W., and Gao, G. Nitrogen and phosphorus 
inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnology 
and Oceanography 55(1) (2010): 420-432.

[156] Sims, J.T., Simard, R.R., and Joern, B.c. Phosphorus loss in agricultural drainage: 
Historical perspective and current research. Journal of Environmental Quality 
27(2) (1998): 277-293.

[157] Takamura, N., Kadono, Y., Fukushima, M., Nakagawa, M., and Kim, B.H.O. Effects 
of aquatic macrophytes on water quality and phytoplankton communities in 
shallow lakes. Ecological Research 18(4) (2003): 381-395.

[158] Codd, G.A. Cyanobacterial toxins, the perception of water quality, and the 
prioritisation of eutrophication control. Ecological Engineering 16(1) (2000): 51- 
60.

[159] Easton, Z.M. and Petrovic, A.M. Fertilizer source effect on ground and surface 
water quality in drainage from turfgrass. Journal of Environmental Quality 33(2) 
(2004): 645-55.

[160] Spalding, R.F. and Exner, M.E. Occurrence of nitrate in groundwater—a review. 
Journal of Environmental Quality 22(3) (1993): 392-402.

[161] Fewtrell, L. Drinking-water nitrate, methemoglobinemia, and global burden of 
disease: a discussion. Environmental Health Perspectives 112(14) (2004): 1371-
4.

[162] Hegesh, E. and Shiloah, J. Blood nitrates and infantile methemoglobinemia. Clin 
Chim Acta 125(2) (1982): 107-15.

[163] Brownell, C.L. Water quality requirements for first-feeding in marine fish larvae.
I. Ammonia, nitrite, and nitrate. Journal of Experimental Marine Biology and 
Fcologv 44(2) (1980): 269-283.



129

[164] Trivedy, R. and Goel, p. Chemical and biological methods for water pollution 
studies. Environmental publications, 1984.

[165] Thurston, R.V., Russo, R.C., and Vinogradov, G. Ammonia toxicity to fishes. Effect 
of pH on the toxicity of the unionized ammonia species. Environmental Science 
& Technology 15(7) (1981): 837-840.

[166] Emerson, K., Russo, R.C., Lund, R.E., and Thurston, R.v. Aqueous ammonia 
equilibrium calculations: effect of pH and temperature, journal of the Fisheries 
Board of Canada 32(12) (1975): 2379-2383.

[167] Di, H.J. and Cameron, K.c. Nitrate leaching in temperate agroecosystems: 
sources, factors and mitigating strategies. Nutrient Cycling in Agroecosystems 
64(3) (2002): 237-256.

[168] Augspurger, T., Keller, A.E., Black, M.C., Cope, W.G., and Dwyer, F.J. Water quality 
guidance for protection of freshwater mussels (บทionidae) from ammonia 
exposure. Environmental Toxicology and Chemistry 22(11) (2003): 2569-75.

[169] Bilotta, G.s. and Brazier, R.E. Understanding the influence of suspended solids 
on water quality and aquatic biota. Water Research 42(12) (2003): 2849-61.

[170] Alabaster, J.s. and Lloyd, R.s. Water quality criteria for freshwater fish. Elsevier,
2013.

[171] Magazinovic, R.S., Nicholson, B.C., Mulcahy, D.E., and Davey, D.E. Bromide levels 
in natural waters: its relationship to levels of both chloride and total dissolved 
solids and the implications for water treatment. Chemosphem 57(4) (2004): 
329-35.

[172] Said, A., Stevens, D.K., and Sehlke, G. An innovative index for evaluating water 
quality in streams. Environmental Management 34(3) (2004): 406-14.

[173] Kazi, T.G., et al. Assessment of water quality of polluted lake using multivariate 
statistical techniques: a case study. Ecotoxicologv and Environmental Safety 
72(2) (2009): 301-9.



130

[174] Determine water quality standards in surface water, in ร, Board, N.E., Editor. 
1992.

[175] Pearson, K. Note on regression and inheritance in the case of two parents. 
Proceedings of the Royal Society of London 58 (1895): 240-242.

[176] Scheffer, J. Dealing with missing data. (2002).
[177] Srebotnjak, T., Carr, G., de Sherbinin, A., and Rickwood, c. A global Water Quality 

Index and hot-deck imputation of missing data. Fcoiogicai Indicators 17 (2012): 
108-119.

[178] Jain, A.K., Murty, M.N., and Flynn, P.J. Data clustering: A review. Acm Computing 
■ Surveys 31(3) (1999): 264-323.

[179] Van Hulse, J. and Khoshgoftaar, T.M. Incomplete-case nearest neighbor 
imputation in software measurement data. Information .Sciences 259 (2014): 
596-610.

[180] Van Hulse, J. and Khoshgoftaa, T.M. Incomplete-case nearest neighbor 
imputation in software measurement data, in Information Reuse and 
Integration. 2007. IRI 2007. IEEE International Conference on. pp. 630-637: IEEE, 
2007.

[181] Markey, M.K., Tourassi, G.D., Margolis, M., and DeLong, D.M. Impact of missing 
data in evaluating artificial neural networks trained on complete data. 
Computers in Biology and Medicine 36(5) (2006): 516-25.

[182] Amer, S.R. Neural network imputation: A new fashion or a good tool. (2004).
[183] vanGerven, M. and Bohte, ร. Artificial neural networks as models of neural 

information processing: Editorial on the Research Topic Artificial Neural 
Networks as Models of Neural Information Processing. (2017).

[184] Cybenko, G. Approximation by superpositions of a sigmoidal function. 
Mathematics of control, signals and systems 2(4) (1989): 303-314.



131

[185] R osenb latt, F. Principles of neurodynam ics, p e rcep tio n s  and  th e  th eo ry  of brain 
m ech an ism s. 1961, CORNELL AERONAUTICAL LAB INC BUFFALO NY.

[186] Flecht-Nielsen, R. T heory of th e  backpropagation  neura l netw ork. เท Neural 
netw orks for p e rc e p tio n , pp. 65-93: Elsevier, 1992.

[187] B uscem a, M. Back propagation  neural networks. Subst Use Misuse 33(2) (1998): 
233-70.

[188] Box, G.E. and  Cox, D.R. An analysis of transform ations. Journal of th e  Royal 
S tatistical Society. Series B (M ethodological) (1964): 211-252.

[189] O sborne, J.w . Improving your d a ta  transform ations: Applying th e  Box-Cox 
transform ation . Practical A ssessm ent. Research & Evaluation 15(12) (2010): 2.

[190] Aho, K.A. Foundational and applied statistics for biologists using R. CRC Press,
2013.

[191] Yu, L. and  Liu, H. Efficient fea tu re  se lection  via analysis of re levance  and 
reduncancy . Journal of M achine Learning Research 5(Oct) (2004): 1205-1224.

[192] Guyon, I. and  Elisseeff, A. An in troduction  to  variable and  fea tu re  selection . 
Jou rnal of m achine learning research  3(Mar) (2003): 1157-1182.

[193] Wang, J., Ci, L.-L, and  YAO, K.-z. A survey of fea tu re  se lection . C om puter 
Engineering & Science 12 (2005): 023.

[194] C hrysostom ou, K. W rapper fea tu re  se lection , in Encyclopedia of Data 
W arehousing and  Mining. S econd Edition, pp. 2103-2108: IGI Global, 2009.

[195] Kabir, M.M., Islam, M.M., and M urase, K. A new  w rap p er fea tu re  se lection  
ap p ro ach  using neural network. N eurocom puting 73(16-18) (2010): 3273-3283.

[196] รนท, Y., Todorovic, ร., and  G oodison, ร. L ocal-learning-based fea tu re  se lection  
for high-dim ensional d a ta  analysis. IFFF Trans P attern  Anal Mach Intell 32(9) 
(2010): 1610-26.

[197] Flocking, R.R. A Biometrics invited paper. The analysis and  se lec tion  of variables 
in linear regression. Biometrics 32(1) (1976): 1-49.



132

[198] Draper, N.R. and Smith, H. Applied regression analysis. Vol. 326: John Wiley & 
Sons, 2014.

[199] KPFRS, L. On Lines and Planes of Closest Fit to Systems of Points in Space, in 
Proceedings of the 17th ACM SIGACT-SIGMQD-SIGART symposium on Principles 
of database systems (SIGMOD). 1901.

[200] Goldberg, D.E. and Holland, J.H. Genetic algorithms and machine learning. 
Machine learning 3(2) (1988): 95-99.

[201] Holland, J.H. Adaptation in natural and artificial systems: an introductory 
analysis with applications to biology, control, and artificial intelligence. 1975, 
University of Michigan Press Ann Arbor.

[202] Freedman, D.A. Statistical models: theory and practice. Cambridge university 
press, 2009.

[203] Legendre, A.M. Nouvelles méthodes pour la détermination des orbites des 
comètes. F. Didot, 1805.

[204] Samuel, A.L. Some studies in machine learning using the game of checkers. IBM 
Journal of research and development 3(3) (1959): 210-229.

[205] Russell, S.J. and Norvig, p. Artificial intelligence: a modern approach. Malaysia; 
Pearson Education Limited, 2016.

[206] Cortes, c. and Vapnik, V. Support-Vector Networks. Machine Learning 20(3) 
(1995): 273-297.

[207] Kamiyama, N., lijima, N., Taguchi, A., Mitsui, H., Yoshida, Y., and Sone, M. Tuning 
of learning rate and momentum on back-propagation, in Singapore 
ICCS/ISITA'92.'Communications on the Move', pp. 528-532: IEEE, 1992.

[208] Basheer, I.A. and Hajmeer, M. Artificial neural networks: fundamentals, 
computing, design, and application. Journal of Microbiological Methods 43(1) 
(2000): 3-31.

[209] Hassoun, M.H. Fundamentals of artificial neural networks. MIT press, 1995.



133

[210] Wanas, N., Auda, G., Kamel, M.S., and Karray, F. On the optimal number of 
hidden nodes in a neural network, in Electrical and Computer Engineering. 1998. 
IEEE Canadian Conference on. pp. 918-921: IEEE, 1998.

[211] Mishra, A.K. and Desai, V.R. Drought forecasting using feed-forward recursive 
neural network. Ecological Modelling 198(1-2) (2006): 127-138.

[212] Song, L, Minku, L.L., and Yao, X. The impact of parameter tuning on software 
effort estimation using learning machines, in Proceedings of the 9th 
international conference on predictive models in software engineering, p. 9: 
ACM, 2013.

[213] Cerco, C.F. Measured and modelled effects of temperature, dissolved oxygen 
and nutrient concentration on sediment-water nutrient exchange. 
Hvdrobiologia 174(3) (1989): 185-194.

[214] Koralay, N., Kara, o., and Kezik, บ. Effects of run-of-the-river hydropower plants 
on the surface water quality in the Solakli stream watershed, Northeastern 
Turkey. Water and Environment Journal.



APPENDICES



135

A PPENDIX A DISSERTATION PR O PO SA L

P red ic tio n  M o d e l o f  W ater Q u a lity  in C h a o p h ra y a  River using A rtificial N eu ra l
N etw ork

ABSTRACT

W ater quality  is o n e  of th e  m ajor concerns of coun tries a ro u n d  th e  w orld. This 
s tudy  aim s to  pred ic t th e  w ate r quality  param ete rs  in th e  C haophraya River. The m o d e l 
is used  to  analyze  historical d a ta  g en era ted  through  m onitoring o f w ate r quality 
p aram ete rs  a t 19 w a te r sam pling sta tions on th e  C haophraya to  p red ict nine w ater 
quality  p aram ete rs . W ater quality  p a ram ete rs  are se le c te d  for m ultilayer p ercep tron  
(ANN), adap tive  neuro-fuzzy inference system  (ANFIS) and  su p p o rt v ec to r m achine 
(SVM) m odelling.

OBJECTIVES

1. Design and  d ev e lo p  th e  m o d e l for predicting w ate r quality  in C haophraya 
River by using artificial neural netw ork

2. D eterm ine th e  b est se t of input p aram ete rs  for predicting w a te r quality  by 
using artificial n eu ra l netw ork

3. Predict w a te r quality  in C haophraya River u n d er d ifferent m an ag em en t 
scenarios by using th e  p ro p o sed  m o d el

PROBLEM FORMULATION

M odel design for w ater quality prediction is o ften  difficult d u e  to  th e  
com plex ity  of w ate r p a ram e te r relations. Several factors are asso c ia ted  with each  
p a ram ete r making difficulty in m o d e l prediction and b ec o m e  m ajor p ro b lem s of w ater 
quality  m odelling.

T he b est se ts  of input p aram ete rs  for predicting w a te r quality  are de te rm in ed .
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The model could be used for predicting the water quality of other rivers that 
are similar to Chaophraya River.

SCOPE OF THE WORKS

เท this dissertation, the model is constrained as follows:

- The scope of this dissertation is aimed to design a model from water quality 
data of Chaophraya River during 2539 - 2556 BE that have been collected by the 
Pollution Control Department, Ministry of Natural Resources and Environment.

- The model predicts water quality at monitoring stations i+2 by using i and i+1 
monitoring station data.

-The historical water quality data of Chaophraya River came from 19 monitoring 
station along the river that start from Dechatiwong Bridge station to Phra Samut Chedi 
station

- The model can predict nine water parameters which are pH, d'ssolved oxygen 
(DO), total solid (TS), fecal coliforms, nitrate (N03'), phosphate (P043'), turbidity, 
temperature and biochemical oxygen demand (BOD).
INTRODUCTION

Water is an essential resource needed for all aspects of human health and 
ecosystems. เท addition to drinking water and personal hygiene, water is essential for 
agricultural production, industrial processes and hydropower generation, waste 
processing, navigation, recreation, fish and wildlife, and a variety of other purposes. 
(Biswas, 1981). Water quality is a term used to describe the condition of the water, 
including chemical, physical and biological characteristics. Water quality is one of the 
main characteristics of the river affecting the suitability for use (Dogan, et al. 2009).

Water quality modelling is the basis of water pollution control. Models are used 
to predict trends in water quality based on current water conditions, including 
pollutant concentrations. Several deterministic and stochastic water quality models 
have been developed to manage best practices for conserving water quality (Hull et
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al. 2008; Einax et al 1999). Most of these models are very complex and require a 
significant amount of field data to support the analysis. Furthermore, many statistically 
based water quality models assume the relationship between the response and 
prediction variables are linear and normally distributed. As water quality can be 
affected by many factors, traditional data processing methods are no longer sufficient 
for analysis (Xiang et al. 2006) as many factors exhibit complex nonlinear relationships 
to water quality predict variables. Therefore, utilizing a statistical approach usually 
does not provide high precision.

Water quality modelling is the basis of water pollution control. Models are used 
to predict trends in water quality based on current water conditions, including 
pollutant concentrations. Several deterministic and stochastic water quality models 
have been developed to manage best practices for conserving water quality (Hull et 
al. 2008; Einax et al. 1999). Most of these models are very complex and require a 
significant amount of field data to support the analysis. Furthermore, many statistically 
based water quality models assume the relationship between the response and 
prediction variables are linear and normally distributed. As water quality can be 
affected by many factors, traditional data processing methods are no longer sufficient 
for analysis (Xiang et al. 2006) as many factors exhibit complex nonlinear relationships 
to water quality predict variables. Therefore, utilizing a statistical approach usually 
does not provide high precision.

Recently, neural networks have been applied to computational problems in 
many branches of science. A number of studies in which neural networks were used 
to address water resource problems can be considered. Artificial neural networks 
(ANNs) were first applied by French and Recknagel (1994) to the task of learning to 
predict algal blooms based on water quality databases. เท their application, a feed
forward ANN was trained to make predictions of phytoplankton abundance in the 
Saidenbach reservoir, Germany. Similarly, Yabunaka et al. (1997) applied ANNs to 
predict algal blooms by simulating the future growth of five phytoplankton species 
and chlorophyll-A concentrations in the same lake.



138

Motivated by success in modelling nonlinear system behavior in a wide range 
of systems, ANNs have been applied to water quality prediction in complex systems. 
The literature offers some recent successful ANN applications related to water quality 
prediction and water resource analysis (Najah et al. 2009; Ahmed et al. 2009; El-Shafie 
et al. 2008, 2009). The primary goals were to minimize fieldwork and improve the 
accuracy of prediction. For instance, Hatzikos et al. (2005) utilized neural networks with 
active neurons to predict seawater quality indicators such as water temperature, pH, 
DO, and turbidity. Singh et al. (2009) constructed an ANN model to predict the water 
quality at Gomti River, India. The coefficients of determination between the measured 
and model computed values of DO for the training, validation and test sets were 0.70, 
0.74, and 0.76, respectively. Kuo et al. (2007) used the back-propagation neural 
network for predicting the DO in the Te-Chi Reservoir in Taiwan. The correlation 
coefficients between the predicted values and measured data of DO were above 0.7 
for training and testing data sets.

The ANNs models showed reasonable accuracies for average water quality 
prediction overcoming most of the drawbacks of conventional models. Although ANNs 
are powerful tools for modelling real-world problems, they also have shortcomings. 
The ANN model still has a major limitation at extreme events. Therefore, an approach 
that can provide accurate water quality prediction at average and extreme events is 
highly necessitated for efficient decision making. Therefore, in these situations, a fuzzy 
system such as the adaptive neuro-fuzzy inference system (ANFIS) may be a better 
option. The ANFIS model exhibits significantly higher accuracy and reliability in terms 
of prediction than ANNs (El-Shafie et al. 2007; Najah et al. 2010). The present study 
demonstrates the application of ANFIS to predict water quality parameters, with the 
dynamic processes concealed in the measurement data. The use of the ANFIS model 
in water quality prediction in the Chaophraya River could be effective in capturing 
patterns in historical data sets to improve prediction accuracy.
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METHODS AND MATERIALS 

Study area data analysis

Chaophraya River is the main river of Thailand. Occurred to the combination of 
four main rivers of the region. Then flow down to the south and prior to the Gulf of 
Thailand. Chaophraya river basin has an area of 20,125 square kilometers. There are a 
number of tributaries and canals. The river is used as a transportation industries, and 
is also a natural drainage as well. By human activities and nature, water quality in the 
river has changed dramatically over the past several decades.

The water quality of the Chaophraya River is deteriorating because of the 
increasing levels of several pollutants, it continues to be silted and contaminated by 
waste given the lack of enforcement by local authorities. These contaminants 
eventually flow into the estuaries of the Chaophraya River, which are rich habitats that 
provide spawning and feeding areas for fish and birds.

According to the historical water quality data of Chaophraya River during 2539 
-  2556 BE that have been collected by the Pollution Control Department, Ministry of 
Natural Resources and Environment, we will design and develop a model for predicting 
the water quality parameters and simulating the river management scenarios.

Selection of appropriate input parameters is a very important aspect in 
modelling. To use the model structures effectively, the input parameters must be 
selected with great care. This is strongly dependent on a solid understanding of the 
problem.

Proposed method

This dissertation is divided into two parts. The first part is the design and 
development of a model and the second part is the simulation of a few scenarios by 
using the model. The proposed model consists of three main steps: data imputation, 
input selection and value prediction. At each step, several techniques are used to 
compare with each other as shown in figure 1. The inputs of model are the water
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quality parameters at monitoring stations i and i+1 and output are water quality 
parameters at monitoring station i+2 at the same monitoring period. There are 18 water 
quality input parameters (at a single monitoring station and same monitoring period) 
consisting of monitoring month, monitoring year, pH, electrical conductivity (EC), 
salinity, dissolved oxygen (DO), suspended solids (SS), total solids [116], total dissolved 
solids (TDS), total coliforms, fecal coliforms, nitrite (N02-), nitrate (N03-), ammonia 
(NH3), phosphate (P043-), turbidity, temperature and biochemical oxygen demand 
(BOD).

The missing values in the original water quality data are imputed by three 
different techniques (Small value imputation, K-mean imputation and interpolation). 
Then the input selection step extracts some important features from imputed data 
using three techniques. The input selection step starts with feeding all water quality 
parameters into each of the three techniques. Each of three techniques will generate 
new features from water quality parameters and then feed these features into each of 
the three techniques in the Value prediction step in step three. Each technique in step 
three will predict one output value. After the first iteration, the process in step three 
is repeated with the same input features excluding the least important feature, step 
three is repeated until only one feature is fed into each of the technique in step three. 
The output parameter from each technique in step three is recorded. Next, step two 
is repeated. This time one of the parameters is removed, there will be only 17 input 
parameters that are fed to each technique in step two. Each of the technique will 
generate new features and feed these new features into the techniques in step three 
as before. Step two is repeated for the number of selection of n-i parameters from ท 
distinct parameters where i=l,2,...,n-l and ท is the number of all input parameters.
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Model overview
1. Data imputation step

Small value 

imputation

K-mean

imputation

Interpolation

2. Input selection step

Principle

component

analysis

Partial

mutual

information

Wavelet

transform

3. Value prediction step

Multi-layer

Perceptron

Support

vector

machine

Adaptive

neuro-fuzzy

inference

system

Figure A.0.1 Model overview

The inputs of step three are divided into training set (60%), testing set (20%) 
and validation set (20%) for all techniques. The training of the model is set the 1000 
epochs. After the model was trained, testing set is used for checking the efficiency of 
the model. เท addition, validation set is used to avoid overfitting problem.

The three main steps (consisted of nine mathematical modelling techniques) 
are fully connected to form 27 combinations of unique models. The output parameter 
from each unique model is compared with real data to determine pred ction efficiency 
and optimality. The output parameters are pH, dissolved oxygen (DO), total solids 
[116], fecal coliforms, nitrate (N03-), phosphate (P043-), turbidity, temperature and 
biochemical oxygen demand (BOD). For each output, the model is constructed 
individually.

The second part of dissertation is the simulation of water quality management 
scenarios. The model is used to show the water quality when management scenarios
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are processing. The first scenario is environmental shock avoidance, and the second 
one is pre-release treatment plant. Environmental shock avoidance (ESA) is pollutant 
dilution strategy by distributing the major point source pollutant along the bank of the 
river instead of releasing it at a single point. Pre-release treatment plant (PRTP) is the 
simple way to treat the water by treating it again before releasing to the river. However, 
those two strategies are only the pioneer simulation on Chaophraya River.

Performance criteria

The performance of the proposed models will be examined and evaluated 
using water quality parameter measurements accumulated over a ten-year period. The 
performance of each module will be evaluated according to two statistical indices. 
The coefficient of determination (R2) was introduced by Nash and Sutcliffe (1970) and 
is often used to evaluate model performance. Another metric used for evaluation is 
the root mean square error (RMSE).
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APPENDIX B COMPLEMENTARY RESULT

B.l Historical data chart
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Figure B.o.l Historical data of total dissolved solid from monitoring stations along 
Chaophraya River during 2538-2556 B.E.
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Figure B.0.2 Historical data o f to ta l solid from monitoring stations along Chaophraya 
River during 2538-2556 B.E.
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Figure B.0.3 Historical data of EC from monitoring stations along Chaophraya River
during 2538-2556 B.E.
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Figure B.0.4 Historical data of suspended solid from monitoring stations along 
Chaophraya River during 2538-2556 B.E.
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Figure B.0.5 Historical data of dissolved oxygen from monitoring stations along
Chaophraya River during 2538-2556 B.E.
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Figure B.0.6 Historical data of N02' from monitoring stations along Chaophraya River 
during 2538-2556 B.E.
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Figure B.0.7 Historical data of N03‘ from monitoring stations along Chaophraya River
during 2538-2556 B.E.
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Figure B.0.8 Historical data of P043' from monitoring stations along Chaophraya River 
during 2538-2556 B.E.
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Figure B.0.9 Historical data of fecal coliform from monitoring stations along
Chaophraya River during 2538-2556 B.E.
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Figure B.0.10 Historical data of total coliform from monitoring stations along 
Chaophraya River during 2538-2556 B.E.
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Figure B.0.11 Historical data of pH from monitoring stations along Chaophraya River
during 2538-2556 B.E.
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Figure B.0.12 Historical data of water temperature from monitoring stations along 
Chaophraya River during 2538-2556 B.E.
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Figure B.0.13 Historical data of NH3from monitoring stations along Chaophraya River
during 2538-2556 B.E.



BO
D

(m
g/

L)

1 5 2

1 8 .0

1 6 .0

1 4 .0

12.0 
10.0
8.0
6.0
4 .0

2.0 
0.0

b b b b  b b b b  b b b b  b b b b  b b b b  b b b b  b b b b  b b b b  b b b b  b b b b  b b b b  b b b b  b b b b  b b b b  b b b b

year

Figure B.0.14 Historical data of biochemical oxygen demand from monitoring stations 
along Chaophraya River during 2538-2556 B.E.
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B.2 Pre-processing result

Table B.o.l Three imputation methods performance evaluation show by individual 
model

Model code name Imputation method Argument RMSE p
AveEvoSVM mean replacement - 1.419 0.621
AveEvoANN - 1.417 0.662
Knn2EvoSVM CMII 1.39 0.645
Knn2EvoANN k=2 1.387 0.675
Knn3EvoSVM k=3 1.395 0.638
Knn3EvoANN k=3 1.506 0.696
Knn4EvoSVM 7T II -p* 1.393 0.644
Knn4EvoANN K-NN k=4 1.403 0.687
Knn5EvoSVM k=5 1.392 0.645
Knn5EvoANN k=5 1.432 0.687
Knn6EvoSVM k=6 1.393 0.643
KnnôEvoANN k=6 1.33 0.693
Knn7EvoSVM k=7 1.39 0.648
Knn7EvoANN k=7 1.566 0.689
ANNEvoSVM ANN 1.54 0.597
ANNEvoANN 1.795 0.626
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Table B.0.2 Performance comparison of transformed data and non-transformed data
on various models

Model RMSE p
GA-ANN 0.085 0.671
GA-SVM 0.083 0.665
PCA-ANN 0.096 0.578
PCA-SVM 0.084 0.653
Trans-GA-ANN 0.127 0.663
Trans-GA-SVM 0.124 0.661
Trans-PCA-ANN 0.140 0.631
Trans-PCA-SVM 0.125 0.660

B.3 Parameter selection result

Table B.0.3 Forward selection performance of various BOD model
Model epoch RMSE p #inputs Selected parameter

50 1.449 0.640 2 Distance NH
100 1.483 0.701 4 month DO NO NH3
200 1.488 0.700 4 month DO NO NH3
300 1.489 0.700 4 month DO NO NH3
400 1.493 0.696 4 month DO NO NH3

ANN 500 1.420 0.685 4 month DO NO NH3
600 1.410 0.687 4 month DO NO NH3
700 1.430 0.676 4 month DO NO NH3
800 1.434 0.674 4 month DO NO NH3
900 1.432 0.674 4 month DO NO NH3
1000 1.431 0.675 4 month DO NO NH3

SVM - 1.318 0.654 3 Distance P043' NH3
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Table B.0.4 Backward elimination performance of various BOD model
Model epoch RMSE p #inputs Selected parameter

50 1.464 0.722 7 month WT pH DO P043' N03' NH3
100 1.627 0.727 8 month WT pH Con DO P043' N03' NH3
200 1.719 0.740 8 month WT pH Con DO P043' N03‘ NH3
300 1.255 0.729 6 month ร pH DO N03' NH3
400 1.480 0.726 6 month ร WT P043" N03' NH3

ANN 500 1.413 0.730 6 month ร WT P043' N03" NH3
600 1.380 0.725 6 month ร WT P043' N03' NH3
700 1.367 0.720 6 month ร WT P043' N03" NH3
800 1.161 0.720 6 month ร WT DO P043' NH3
900 1.161 0.725 6 month ร WT DO P043' NH3
1000 1.175 0.724 6 month ร WT DO P043' NH3

SVM - 1.516 0.691 5 month WT DO N03' NH3

Table B.0.5 PCA performance of various BOD model
model epoch RMSE p

100 1.707 0.331
200 1.632 0.415
300 1.629 0.422
400 1.629 0.425

ANN 500 1.612 0.444
600 1.606 0.449
700 1.605 0.451
800 1.604 0.451
900 1.604 0.452
1000 1.604 0.453

SVM 1.749 0.292
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Table B.0.6 Genetic algorithm performance of various BOD model
Model epochs RMSE p #inputs Selected parameter

50 1.250 0.752 7 month pH Con DO P043' N03' NH
1 0 0 1.324 0.736 6 ร pH DO P043' NO NH
2 0 0 1.198 0.730 6 ร pH DO P043‘ NO NH
300 1.315 0.730 5 pH Con DO P043' NH
400 1.314 0.731 5 pH Con DO P043' NH

ANN 500 1.312 0.733 5 pH Con DO P043' NH
600 1.310 0.734 5 pH Con DO P043' NH
700 1.309 0.735 5 pH Con DO P043' NH
800 1.309 0.736 5 pH Con DO P043' NH
900 1.657 0.739 7 month ร pH Con DO NO3" NH
1 0 0 0 1.672 0.740 7 month ร pH Con DO NO3' NH

SVM - 1.285 0.731 6 month tern pH DO P043' NH

B.4 Selected parameter from proposed model

Parameter name is follow by two number, the first is number of upstream 
monitoring station and the second is the time delay. Parameter of EC model, TDS 
model and PC43' are shown as follow.

There are 77 parameters selected by genetic algorithm for EC P'ediction model 
which are BOD02, BOD11, BOD13, BOD21, BOD22, EC01, EC13, EC21, Distance03, 
Distancell, Distanced, Distance21, Distance23, D022, Fecal coliform02, Fecal 
coliforml3, Fecal coliform21, Fecal coliform22, Fecal coliform23, morthOO, monthOl, 
month02, ทาonth03, monthl2, monthl3, month22, month23, NH301, NH3O2 , NFI3O3 , 
NH3 I I ,  NOz'Ol, NO2'02, N02T3, N02'23, NO3'01, NO3 I I ,  NO3 I 2 , N03'13, N03‘22, pHOl, 
pH02, pH03, pH 13, Sall2, Sall3, Sal21, Sal23, SS01, SSI 1, SS13, SS23, TDS01, TDS02, 
TDS13, TDS22, TDS23, Temp02, Templ2, Temp22, Total coliform03, Total co lifo rm ll, 
Total coliforml3, Total coliform22, Total coliform23, PO4'02, PO4'03, P04'11, P04'12, 
TS02, TS03, TS12, TS21, TurOl, T u r ll, Tur21, Tur23
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There are 52 parameters selected by genetic algorithm for TDS prediction 
model which are BOD02, BOD11, BOD12, EC01, ECU, EC21, EC22, DistanceOO, 
DistanceOl, Distance02, Distancell, Distanced, DOOl, D022, Fecal coliformOl, Fecal 
coliform02, Fecal coliforml2, monthOO, m on th ll, month21, month22, NH3OI, NH3O2 , 
NH3 I 2 , |\J02'11, N02'12, N02'21, N02'22, NO3I 2 , pHOl, pH12, pH21, Sal21, SS02, SS11, 
SS22, TDS02, TDS11, TDS21, TDS22, Temp21, Total coliformOl, Total coliform02, Total 
coliforml2, P04'12, P04'22, TSOI, TS11, TS21, TurOl, Tur02, T u r ll

There are 38 parameters selected by genetic algorithm for P043' prediction 
model which are BOD02, BOD21, BOD22, EC02, EC12, EC22, DistanceOO, Distance02, 
Distancell, Distance21, DO ll, D022, Fecal coliformOl, Fecal coliform02, m on th ll, 
NH3OI, NH3O2 , NH3 I I ,  NH3 I 2 , NH322, NO2’02, NOz'll, N02'21, N02'22, NO3‘02, N03'12, 
N03'22, pEH 12, pEH22, Sal22, TDS01, Temp22, Total co lifo rm ll, Total coliform21, P04' 
01, PO4’02, P04'21 and T u r ll.
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