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CHAPTER 1

INTRODUCTION

At present, the research on the transition metal oxide (TMO) compounds
is one of very active fields since these compounds exhibit interesting phenomena
such as colossal magnetoresistance, high temperature superconducting state and
metal-insulator transition [1, 2]. These behaviors have been used to develop many
high efficiency electronic devices. In the theoretical study of electronic behavior
of TMO, we always consider a combination of charge, spin and orbital degree of
freedoms via reasonable models. In strongly correlated 3d transition metal oxides
3], it is found that the orbital degeneracy has a large effect on magnetic, structural
and electrical properties. The degeneracy of the d electron level is associated with

five orbitals in which two orbitals are d,2—,2 and ds,2_,2 orbitals. These orbitals

y
have higher energy than other three orbitals, d,,, d,. and d., orbitals. The d,2_,»
and ds,2_,2 orbitals are called e, orbitals and d,,, d,. and d., orbitals are called
oy orbitals. Omne system that the orbital degrees of freedom is very important
is the manganite compound Laj_,Ca,MnQg3 with perovskite structure. When
x ~ 0.3, the orbital degrees of freedom is only considered because the magnetic
phase is ferromagnetic. Then, the spin degrees of freedom has been neglected. In
the theoretical studies of electronic behaviors of this system, many crucial models
have been invented for describing these systems. The Hubbard model [4] is one
of the popular models that has been used to study strong correlated electronic

systems in many systems. When it includes the orbital degree of freedom, it has

been called the orbital Hubbard model. Therefore, it has been used to study the



effect of orbital occupied by electrons in many conditions; in finite on-site coulomb
potential U with full cubic symmetries by Yuan et al. [5], in the strong-coupling
limit with full cubic symmetries by Horsch at al. [6] and in U — oo with finite size
in 2D Hamiltonian by C. Srinitiwarawong and G. A. Gerhring [7]. These works
considered the finite system size as a full cubic symmetries and 2D cluster and

they studied the orbital ordering of the system in each case.

In this work we have calculated the ground-state properties of the two-orbital
Hubbard model at large-U limit and half-filling in one dimension. Assuming that
the Hamiltonian is in the ferromagnetic phase and the orbital degrees of free-
dom (e, orbitals) is deseribed by a pseudo-spin operator. Before the calculation,
the Hamiltonian has been transformed by canonical transformation approach [§]
to reduce the complexity of the problem from the degenerated Hubbard model.
Accordingly, we will get the effective Hamiltonian. The ground state of the effec-
tive Hamiltonian has been obtained by using the Density Matrix Renormalization
Group method, invented by White [9] [10] in 1992, with infinite size algorithm
and the ground state energy is extrapolated to the thermodynamic limit. After-
ward, the obtained ground-state wave function is used to calculate the orbital

correlation.

This thesis is organized as follows: The strong correlation of doubly degen-
erate Hubbard model is presented in Chapter II. In this chapter we will derive
this model with orbital states at large-U limit and half-filling in one dimension
into the effective Hamiltonian in pseudo-spin representation which depends on the
electronic moving axes ( x-, y--and z-axis). The crucial method in this chapter is
the canonical transformation. The Density Matrix Renormalization Group which
is described in Chapter III is constructed and tested with Heisenberg spin chain
model in which the exact ground state has been known. Moreover, we will de-
fine some operators to observe the electronic correlation in the ground state. The
definition of hopping amplitudes in each directions used in this calculation, the

comparison between spin and orbital models and the result of ground-state prop-



erties from these calculations are shown in Chapter IV. Finally, the summary and

conclusion are contained in Chapter V.
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CHAPTER 11

DOUBLE DEGENERATE
HUBBARD MODEL WITH
STRONG CORRELATION

In this chapter, we will discuss a derivation of two orbitals Hubbard Hamil-
tonian in the large-U limit at half-filling. This model considers orbital degrees
of freedom which represents the shape of the electron in solid. It is one of three
attributes (spin, charge and orbital) being important ingredients for causing the
variety of phenomena in the transition metal oxide such as high-temperature su-
perconductivity and colossal magnetoresistance. The correlation and ordering of
the electrons lead to the understanding of these behaviors. The manganite com-
pound, which is one of the transition metal oxides, is an important example for
studying the strong correlated ‘electronic system. We start with explaining how
the orbital states are defined. Next, the orbital Hubbard Hamiltonian is described
and the effective Hamiltonian in the large-U limit at half-filling is derived in which

the pseudo-spin operators are used.

2.1 Orbital Bases

In this thesis, the manganite compound La;_,Ca,MnOj3 [1], which is one of the

transition metal oxides, is considered to be the model for strongly correlated elec-



tronics system. The effects of electron correlation are intensively studied.

When we examine the structure of La;_,Ca,MnOQOs, it is found that the
separation of energy bands is due to the manganese atoms that are surrounded by
oxygen atoms. The perovskite structure is shown in Figure 2.1[11]. This effects
the occupation of electrons in d-orbital. They are degenerated into two groups,
namely the to, and the e, orbitals shown in Figure 2.2 [13]. The ¢5, have three
suborbitals d,,, d,. and d.,. They have lower energy than the e, orbital, which
have two suborbitals being ds.>_,» and d,>_,». The important property of this
compound is the ferromagnetic alignment of spin of electrons when the Ca atom
are suitably doped (x~ 0.3). Moreover, it is found that the ¢, orbital are fully
filled with electrons while the e, orbital has only one electron associated with it.
Therefore we consider only the e, orbital, which we will get the new degree of
freedom calling the orbital degree of freedom. This degree of freedom is slightly
different from the spin degree of freedom which is neglected because the system is
in ferromagnetic phase. We will define the basis of e, orbital state that behaves in
a solid similar to that of the spin state. For convenience, we denote |d,2_,2) = |a)

and |d322,r2> = 1b> [3]
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Figure 2.2: The shape 5, and e, orbitals.



2.2 Orbital Hamiltonian

As mentioned above, the e, orbital states can be used to make the orbital Hamil-
tonian which will be explained in this section. First, all local bases that associate
with the orbital exchange event and settings up the pseudo-spin in this system
are elucidated. Second, we will create the hopping Hamiltonian terms to find the
kinetic part. Next, the canonical transformation is used to evaluate the orbital
Hamiltonian in large-U limit and half-filling. Finally, we will derive the effective

Hamiltonian in the form of pseudo-spins operators.

2.2.1 Two-orbital Hubbard model

In this thesis the ground state of the two-orbital Hubbard model [12, 14] for the
case of one-dimensional chain is studied in the absence of spin degree of freedom.

The Hamiltonian is written as
H = il lv- (2.1)

They are separated for the description of opposing tendencies: metallic and insu-
lator phase. The Hy denotes the on-site interaction term, which can be written

as

Hy =UY  fugfi, (2.2)

where 7, is the number operator of an electron in a(b)-orbital at site ¢. This
term explains the Coulomb repulsion among electrons sharing the same site, with
U defines the Coulomb potential energy. The number operators are considered on
the same site ¢ at different orbitals. This term tends to resist the living of two
electrons on the same site and leading to the insulator phase. In contrast, the Hyp,
which denote the hopping of one electron to nearest neighbor site, brings about

the metallic behaviors, which will be explained extensively in the next sections.



2.2.2 Local basis and projection operators

The states of electrons occupying on a particular site ¢ are defined as four basis

states in the followings:

|0); empty state at site ¢,(No electron occupies at site i) (2.3

N
B

a); = ¢l |0); electron occupies a-orbital at site ¢,

)
)
)
)

b
o

b

(2.3)
(2.4)
i = cjb|0>i electron occupies b-orbital at site 4, (2.5)
(2.6)

d); = ¢l .ch|0) two electrons occupy both a and b-orbital at site i , (2.6

where cT o(p) 18 & creation operator which create an electron at site ¢ with a(b) orbital.
Note that clbcw also represents the doubly occupied state, however, according to
(2.6) the relations cl,cl,|0); = =cl,c! [0); and ¢! el |0Y; = —|d); hold.

To describe the motion of electrons, the projector operators will be defined as

Py = 100ii(0] = (1 — i) (1 — riiy), (2.7)
= @) (al = Mie(1 — 1), (2.8)
Pip =B (8] = i1 = 15), (2.9)
ST (2.10)

Where n;, is the number operator at site 7 and orbital o which defined as n;, =
c;racw. Therefore the summation over all the local projector operators are equal

to the unit operator

PAio—f—PAm—l-Pib-i-P;d 1. (2.11)

All four basis states are chosen to be orthonormal on-site, that is

(Ola) =0, (0] =0, (0]d) =0,
(ala) =1, (alb) =0, (a|d)=0,
(bla) =0, (blb) =1, (bld) =0,
(dla) =0, (dp) =0, (d|d)=1.



2.2.3 Pseudo-spin operators

As the local states in Hamiltonian Eq. (2.1) involves the orbital of electrons, the
operators that act on these states can be represented by a set pseudo-spin operators
7 [3]. When orbital d,2_,2 is occupied, 77|d,2_,2) = |d,2_,2) and when orbital
d3.2_,2 is occupied, 7%|ds,2_,2) = —%‘d3zz_r2>. It is found that these operators
have the commutation relation similar to that of the spin—% operators, that is

[7%,7Y] = i7%. When |a) = |d,2_,2) and |b) = |d3,2_,2), the raising and lowering of

pseudo-spin operators being 7 and 7~ are defined as

itla

o A

by = —%|b). (2.12)

These relations can be written in terms of the creation and annihilation operators

as
"

~z T T

7 = S(Ciatia = cacan),

~t =

T = clCs

~= Lt

T — C'LwaH

S i

2:<¥] QIR REXT (2.13)

2.2.4 Hopping process

All possible hopping processes in two-orbital Hubbard model which correspond to
the doubly occupied state are separated into three parts; creating, annihilating,

and the processes that do not change the number of doubly occupied sites. In
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order to simplify the study, the projection operators in Eqs. (2.7) - (2.10) are

used.

The creation of doubly occupied site can be written in terms of a projected
hopping term. When local bases in Eqs. (2.3) - (2.6) are used, all possible
processes are shown in the diagrams below.

taa

i j i J
PoPjachciaBia iy = Prack,ciaPia (2.14)
Lop

i j i J

Piopjdc;r'bcibpibf)ja = pij;bCibeib (2.15)
Zfab

[ 2220

a a _— 0 d

i J i J

P Pdcjacszmpja = f)]dc bczapm (216)
tba

0

bbb { |l==—"70|"d

i j i J
P PdC Cszsz PdC Cszzb (217)

From observing an electronic transfer between sites, these processes can be clas-

sified into two types. The first case in Eq. (2.14) and Eq. (2.15), the hopping
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electron does not change the orbital as it shifts from site ¢ to 5. Whereas the
process has shown in Eq. (2.16) and Eq. (2.17), the hopping electron changes the

orbital after moving from site 7 to j.

In Egs. (2.14) - (2.17), the left hand side is a full projection operator form
when we consider states at both sites ( ¢ and j ) before and after the hopping.
However, only the states of exchanged electron before and after hopping are con-
sidered then projected hopping terms can be rewritten as short terms which are
shown in the right hand site of Eqs. (2.14) - (2.17). For instance in Eq. (2.14),
the projected hopping terms can be reduced to }A’jdc;aciaﬁ’w. It means that the
electron before hopping is in a-state at site 7 and after hopping it is in d-state at
site 7.

Using the definition of projection operators defined in Eqgs. (2.7) - (2.10),

one can modify the projected hopping terms to be the number operator hopping

terms which will be

Piact,ciaPia = jaitinCiattia(l = fiip) = el cia(1 — ), (2.18)
pjdc;r'bcibpib = ﬁjaﬁjbC;bCibﬁib(l = — ﬁjac;r'bcib(l — Tia), (2.19)
PiactyiaPia = fijafijpchyCiaiia(l — ip) = RjaClycia(1 — hiap), (2.20)
pjdc;acibpib = ﬁjaﬁjbc;acibﬁib(l — Njg) = fzjbc;r-acib(l — Tig)- (2.21)

All the hopping terms creating a doubly occupied sites can be written as

Htta = ~laa Z {ﬁibcjacja(l - ﬁjb) u H-C-}, (222)
<1j>
H = —ty Y {fwchen(l = fya) + Held, (2.23)
<ij>
H = —tw Yy {Anclcip(l = fya) + fjaclycia(l = fp)}, (2.24)
<ij>
Hy = —th Z {Riaclycia(1 = Rjp) + Apclacin(1 — ia) }, (2.25)

<ij>
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where .4, tw, tep and tp, are the kinetic energy parameters according to the
exchange of electrons among sites. Besides, the letters H.c. denote the Hermitian
conjugate of the immediately preceding term. For instance, t,, means that when
the electron hops from orbital a at site ¢ to the orbital a at site j it will use energy
tqe per one hopping. If site j has an electron orbital b, this site will be a doubly
occupied site after the hopping. But if site j does not have an electron, it will
have an electron at orbital a on site j after the hopping. It can be written in a

general form as follows

H+ = - Z Zta,(r{ﬁi,—ocjgcja(l N ﬁj7—o’) = H.C.}, (226)

to,o
<ij> o
H:;ia = — Z Z ta,—a{ﬁi—ac;'rgcj,—a(]- - ﬁjg) -+ ﬁjgc;7_acia(1 - ﬁi’_g)}, (227)
<ij> o

where (i, j) means that the summation is taken only over the pair of nearest
neighbor sites and o means a(b)-orbital, —o is b(a)-orbital. They sum over all

orbital degrees of freedom which have the two states (a and b orbital).
Like the processes in 2.14 - 2.17, the processes of decreasing doubly occupied

sites are as the followings:

taa

D

d| 0| — | b | a

i j i j

]Sibpjac;r‘aciapidpjo = pjacj'aciargid (228)
Lob

o

d | 0O —  a | b

i j i J
ﬁ)z'aﬁ)jbc;['bciblf)idﬁ)jo = ﬁ)jbc;r'bcibpid (2.29)



d | 0| — | b | Db

i J i J
S f o .
Py PjpcjoCivPialjo = PjpcjpCiabia

tba

d 0 _— a a

i J i J
Bapjac;[acibpidf)jo = Pjac;r-mePid

13

(2.30)

(2.31)

When the change of electron orbital is considered before and after hopping, the

process is divided into two types.

As in the case of ereating doubly occupied site the processes in Eqs. (2.28)-

(2.31) can be written in the number operator terms as

A

P

P

~

Consequently,

A

f _ 4 o RN
PjaCioCiaPia = T1ja(1 = Njp) o Cialliantin = (1 — fijp)Cly Ciallin,

T r—r S S N A
vCipCinEid = Mjp(1 = fija)CipCinMiain = (1 — Nja) CjyCitPia,

f o P SS—— SRR
bCipCialia = Mjp(1 — Nja) Gy Cialtialiy = (L — fja )€y CiaTlin,

Y N N
PjaciCinPia =Tja (1= 11jp)ci CvNiaitip = (1 — b)) Cjo CibTia-

the hopping terms become
H;a = —laa Z 11— ﬁib>C;raCjaﬁjb + H.c.},
<ij>
H,, = —tw Z {(1- ﬁia)cgbcjbﬁja + H.c.},
<ij>

Htab = _tab Z {(1 - /ﬁ'ib)c;'racjbﬁja + (1 - ﬁ‘ja)cj'bciaﬁib}a

<t5>

H, = ~tw D A = hia)elycgatin + (1= i)l ciniia}-

<ij>

(2.32)

(2.33)
(2.34)

(2.35)

(2.36)

(2.37)
(2.38)

(2.39)
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The general forms can be written as

=— Z th”{ — o )C Cjoit; o+ H.C.}, (2.40)

<ij> o

== Y ool = o)l cj—ojo + (1= Rj)c] _,Ciohi_o}.(2.41)

<ij> o

tO’U

Another hopping processes which do not change the number of doubly occupied
sites is shown below.

taa

frm— |
d|{b | ——|b | d

i J i J
Pidpjbc;[aciapibpjd Y pij}aCz'aﬁ’id (2.42)
taa

a 0 — 0 a

i j i J

piapjoc‘]taczapzopja = P]ac Czapza (243)
Lob

o

d | a| — | a|d

i j i J

Pzdpg bCszsz]d = PgdC]bCszzd (2.44)
Lob

=

b| 0| — | 0 |b

i J i J
PyPjoctycinPioPiy = PyyclycanPay (2.45)



d | a| — | b | d

i j i J
P PaC]mePZbP Pdcjbczapzd

tab

[ S

a 0 _— 0 b

i J i J

HaﬂOC}bciaROPb ~ -Pj bcza-Pza

zfba,

'JIE
d b | — | a | d

i J i J
Pzdpjbc C'LbRa-de = P;dC Cszzd

tba
et

b 0 — 0 a

i J i J
P, POC CszzOP]a = P]dc civPrg

These processes can be written in term of projected hopping terms as

15

(2.46)

(2.47)

(2.48)

(2.49)
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D1 4CtoCia Pid = MjalijnChoCiaMiaTin = MpCl i, (2.50)
D10l oCialia = Mja(1 = fipp)clyCiattia(1 — fip) = (1 — ivjp)chyCia(1 — 1), (2.51)
Ajdcjbcibgd = ﬁjaﬁjbC;bCibﬁmﬁib = ﬁjaC;bCibﬁm, (2.52)
AjbC;bCibPib = ﬁjb(l — ﬁja)c;r'bcibﬁib(l — flm) = (1 — ﬁja)c;r.bcib(l — ﬁia), (253)
PractyCiaPia = Rjajpch Ciaftiafian = MtjaClyCiafiin, (2.54)
]%-bc;.bcmfjw = ’fljb<]_ — ﬂja)c;[‘bciaﬁia(l - 'szb) = (1 — ﬁja)c;r.bcia(l - ﬂz’b), (255)
I:)jdcj'acibpid = ﬁjaﬁjbc;f'acibﬁiaﬁib T ’fljbc;r-acibﬁm, (2-56)
ﬁjac;aciblsib = TALja(l 2 ﬁjb)(j}acibﬁib<1 % ﬁia) = (1 - ﬁjb)c}acib(l — ﬁia)- (257)
Moreover, they can be written in form of the Hamiltonian as
Htom = —taa Z {TALibC;raCjaﬁjb + (1 = TALZ'b)C;raCja(l — ﬁjb) + H.C.}, (258)
<ij>
HY = —tw Y {fiachciphsa + (L= fia)ehcin(1 — j0) + H.c}, (2.59)
<ij>
Ht(lb = _tab Z {ﬁibc;racjbﬁja =fy (1 = ﬁib)czacjb<1 — ﬁja)
<ij>
+ﬁja0;bciaﬁib 1= ﬁja)c;r'bcia<1 — ) }, (2.60)
HY = —td > {fiachiciafiss + (1 — fia)chcia (1= 7)
<ij>
—FﬁjbC}acibﬁm + (1 — ﬁjb)cj-acib(l — ﬁia)}. (2.61)

Finally, the general cases are given by

HY ==Y tood i gCl ol + (1 =R o)clCio(L= 7 o) + H.c}, (2.62)

<ij> o

HY =- YN ool aClyi oo + (1= hig)cl ;o (1= fijo)

<ij> o

+ ﬁjo'cj"io.cio'ﬁi7_o' + (1 — ﬁjo‘)c‘;’iacig(l — 7A”Li7_g)}. (263)
To sum up, all possible types of hopping events can be written as

Hyop =Y {H} +H} +H, +H,  +H +H } (2.64)
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2.2.5 Canonical transformation

When the strongly correlated electrons system are considered, the mixed states
between the two subbands, doubly occupied and singly occupied subbands, will
appear due to the hopping Hamiltonian; creating and annihilating the doubly
occupied states respectively as shown in Eqgs. (2.26) - (2.27) and (2.40) - (2.41).
We need to separate these mix states . Therefore the canonical transformation
method [8, 12] is introduced to solve this problem. The unmixed states can be
found by rotating to such a new suitable basis. According to Egs. (2.2) and (2.64)

in the orbital basis, the two-orbitals Hubbard Hamiltonian can be written as
Ho= 37 (Hif, + A H el H o HY )+ Hy,  (260)
when index o refers to two orbitals (@ and b). It can be written as

H = Ht—ga + Ht—:b + Ht_:a + H+

tpp

+H, +H,_ +H, +H,

120

+ Hoaa + H?ab + Hi?ba + HO

top

+ Hy. (2.66)

For convenience, the hopping Hamiltonian can be written as

HS = H' S SEageT % (2.67)
H = H, +H, +H, +H,_, (2.68)
H) = H) +H) +H) +H),. (2.69)
Then, the Hubbard model can be rewritten as
H=5HH+HY + HY + Hy. (2.70)

Hamiltonian in Eq. (2.70) is used to find the Hamiltonian which have two condi-
tions: large-U limit and half-filling. This Hamiltonian is called effective Hamilto-
nwan

)
Hep = ¢ He™™ = H +4[S, H] + %[S, S, H]] + ... (2.71)
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Heg = Hy+ H+ H; + H) +i[S, Hy]

+ 4[S,H + H + H]| + g[S, [S, H]] + ... (2.72)
The generator S is chosen as to assure that H.g does not connect to different
subbands. The largest cross-terms, H,” and H, , should be eliminated. They are
canceled from the commuted term, i[S, Hy|. This condition will be brought to
find the suitable generator S. Terms with orders of ¢ higher than 2 are neglected.
The generator S is separated into two parts being S = S'+.5”. We will let that S’
and S” are in the order of ¢ and t? respectively where ¢ is the hopping amplitude
in all cases of an electron hopping between two sites. From Appendix. B, operator

S’ can be chosen to be

S'=—(H}-H,), (2.73)
From Eq. (2.73) term of i[S, Hy] which is replaced by S = S’ 4+ S”, becomes
ilS, Hy] = i[S’, Hy] + i[S”, Hy). (2.74)
The first term of the right-hand side is demonstrated in Appendix. B as being
ilS", Hy] = —(H;” + H,). (2.75)

While, the second term of the right-hand side comes from the definition of operator
i[S”, Hy] as
1
IS, Hy) = —=[H — 1 Hf) (2.76)

Moreover, we get
i[S, H + H, + H| =[S, HY + H, + H)|+4[S", H + H,_ + H}]. (2.77)

The first term of the right-hand side which is the order of #? can be separated into

two parts. They become

. ’ —_ 2 _
Z[S 7Ht+ +Ht ] = E[HjaHt ]7 (278)

and

. / ]- _



19

where Eq. (2.79) is canceled by Eq. (2.76). Moreover, the second term of the

right hand side in Eq. (2.77) has disappeared because it is of the order ¢3.

Besides, the term of £[S, [S, Hy]] is demonstrated in Appendix. B as

N

i 1o,
S99 Holl = =5 [H H . (2.80)

Finally, substituting Eqgs. (2.75), (2.76), (2.78), (2.79) and (2.80) into Eq. (2.72),

the effective Hamiltonian to the order of #* can be written as

1
Heg = H) + Hy + E[Hj, H/. (2.81)

When H,", H; and H in Eq. (2.81) are replaced with the full terms from Egs.
(2.67)- (2.69), the effective Hamiltonian is rewritten as

Heff = Hf?aa + H?ab + H?ba + HO

Lo

+ Hy

1 A _ _ _
+ ﬁ [Ht—za + H:;b + H:b—a + Ht-ib_b./ Htaa, + Htab _'_ tha + thb]. (282)

This model is the two orbital Hubbard model.

In this thesis, the orbital Hubbard model for the ground state is considered
in the large-U limit and half-filled. Therefore, the term of HY and Hy, which be
up against these conditions, are neglected. Then, we will only evaluate %[H;: s
H +H; +H' H, +H; +H, +H, |byreplacing with Eqs. (2.22) - (2.23) and
(2.36) - (2.37). For convenience, the suitable tool so-called Hubbard operators are
used for this evaluation. The Hubbard operator properties are shown in Appendix.

A. For example, the operator ﬁibcjacja(l — njp), when replaced by the Hubbard

operators, is written as
b—b ya—a a0 d«b O+—a b—d a+—a yb—b
X7 XS (X004 X )(Xj + X5 )Xj X
_ d<—b vy 0<—a
= XX 0, (2.:83)
As results from Eqs. (A.4) - (A.7), the hopping Hamiltonian in Egs. (2.22) -

(2.25) can be written as

HY = —ty Y AXIOX) 4 X0 X0}, (2.84)

taa

<ij>



+
tab

+
tba

H+

123
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—ta p_AXPTX)T XX (2.85)
<ig>

—the D {=XITOXPTOL XX D, (2.86)
<ig>

—tyy Y = (XXX X)) ) (2.87)
<i5>

Using the function 7(o) defined in Eq. (A.10), we get

Hf =

Hf =

+

Hf +HY +H 4H, (2.88)
= Z Z {toon(o)(X{= 7 X7 + X7 X)77)

<1180,
toa((0) X IX)T 77 + n(—0) X 7X)77) ) (2.89)

Similarly, the Hamiltonians that decrease the number of doubly occupied site is

written as

Finally we get

_taa Z {XiaHOXJI')Hd_'_X;LHOX;x—d}’ (290)
<ij>

—tab Z {_XZ{]A—vOX-;'JAfd_"_XJbHOX;)(—d}’ (291)
S irar

3 (XX o0 oy (2.92)
<ij>

—ty Y {—(XPOXFTIL XX (2.93)
<ij>

Holad Wy, & B (0 (2.94)
= 3 3 {ta(o) 70T 4 X0

<ij> o
to'*0'<77<_0_)XZfT<——OX‘;7<—d =+ 7,’<0_)X]'—U<—0Xi_o-<_d)}' (295)

The important term in the large-U limit and half-filling of H.g is %[H;“ JH,
this is H," H; — H, H,". Since we are interested in half filling, the Hilbert of the

effective Hamiltonian will contain only single occupied state. The H;" H; term is

neglected since the value of operator H," H, operates on this Hilbert space will
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be zero. So, the remaining term which becomes the effective Hamiltonian is only

H; H;". We will replace the index ¢’ into o in Eq. (2.95) as

H = =YY {toom(o) (X7 OX;7 4 X7 70X 7
<i3> o

+ to o (n(—0) X7 OXT T (o) X TOX ) (2.96)

We use Egs. (2.96) and (2.89) for substituting in —+H; H;" to get

SSHCHE = = YIS (e e (X7 X A X0)

<1]> Ot

I ) (X XXX )

+ Lo o o) X X o X0

O Sl s St s

b () (XY X XY X )

+ ey (o) (X 0K, X X0)

+ o (o) (XX XX D)
o e (o) (XX XEXI ) (2.97)

Eq. (2.97) can be solved from Eq. (A.3) as

LD S W EE T OIS ey

<ij> a’ o

to’a’ta—a —og'—0 yvol—a
+ (0 )=o) (X 7 TOXT )

U 7
to-/fo-/to-o- / —gle——0 —ol—0
+ TU(U)U(U)(XZ' Xj )
ta’~o’t0'40' —og'—0 yv—0'—0
4| lrtlosy o) (x e F i )
to'/a'/to'a' o—o —gle——¢
b o) (XX )
to"o’tafa o'—0o yv—0'—0o
b T o) (XX )
tor oty s
+ TW(_UIM(U)OQ Xj )
tcr’—cr’to—cr o'—0o yvol—o
+ (=0 In(—o) (X7 X7 )}. (2.98)

U



22

We will replace ¢’ = ¢ and ¢/ = —0 in Eq. (2.98)

U

<ij> o

U (2

[

ta-fatoa' X'—m——an—o%—U + Z

U

—iﬂgﬂt+ = > {-> %X{"‘_“’X;"_” +) foolo o X;TTOXTO

2
2(:0'—0' X 00 X 00
U J

+ Z t—‘T—UtUU Xlgw—fanfo%—U _ Z t—U—UtU—U X;J’HO'X;UHO'

U U
g g
t_o'a'to'a' O«—0 YV O+0O t_UO'tO'_U 0«0 YO0
Z U & A Z U X7 X;
e (e

t2 ol
— ZﬂXiU‘*chj-m—vU +Z 0'0'(}7 UX;’(—O’X;O’(—CT

U

(e

g

U

(e

i 4
ootoo X‘fo'(;a'
U 1

o

U

tg'Ao'ta'o' Ao v —o t?f—a 00 yOo—0o
+ Z U X; Xj _Z XX

s L X L3 tocoloo oo X7

U

—g——0 2(:—CJ'O'I(’-O'—O' —O0«—0O —O0—0
X; +27U X7777X7777) (2.99)

When the effective Hamiltonian is considered by replacing o with a and b orbital;

therefore H.g is written as

= =
Ha = Y- pXItxgm

<ij> U

taata “— — t ta «— «—
XX SR X X

tablaa b—b yb—+a tpalsp a+=a ya—b

t t;

U

U

t taa - v 4 taat <— «—
S s SRR G

U

U
tbataa
U
tbatab
U

2

U

tbbtab XZ-aHaXJI-)Ha B taatba XibeX]qu

U

Xiaeijc'u—a + tabtbb XZbHaXJbe

U

Labts
a<—a ya<—a ao®ba xr-b«—b y bbb
Xpoxere - Zhe yheb it

U

t t2
_ ﬂXfH“X;.’“b _ ﬁx?wbx;&a

U

U (2
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taflta — — ttll — —
+ bXaaXba‘i_MX,?qub

u J U
tablaa b balbb b—b b
+ Xgmaxah 4 Dt ybeb yba
u J u
t2 t?
+ [(}fjxcu—aXm—a %Xl?ﬂ—ble'x—b
tbbtaa b b taatbb bvb
u J u J
tbbtab b taatba b vb—b
. Xbeaxa—a _ —qu X'<—
BAGN, / U
tbataa b b<2b abtbb b
o X(—G,X(— Xa<_ Xa<_a
e " ) U
Loalab Xb<—aXb<—a tablba Xa<—bXa<—b 2.100
e ) AL Y — j }- (2.100)

Substituting Eqgs. (2.13) and (A.11) into Eq. (2.100), after some rearrangements

the effective Hamiltonian can be written in terms of pseudo-spin operators ,

rEpZ ﬁﬁ' 2(t(21b+tlga) ~Zpz ﬁlﬁ]
Heg = Z{ +tbb( T4 )_ U (TiTj+ 1 )
<t3>
2‘[;abtba + 4 + e 2taatbb AfoA— A At
+ U —— (7 +701)+ U (777 +777)
taatab tbbtba Az A Az ~—
+ 2 S W EEERT))
taatba Ztbbtab At~z A Ay
+ 2 YT Tkt (2.101)

where %f( i) ﬁ(rj) and ﬁ.z) are the pseudo-spin operators at site i(j). This Hamilto-

nian will be used to calculate the ground state in the next chapter.



CHAPTER 111

DENSITY MATRIX
RENORMALIZATION GROUP

In this chapter, the Density Matrix Renormalization Group (DMRG) algo-
rithm, which is the main method to find the ground-state properties of the spinless
two orbital Hubbard model from Chapter two in this work, is described. We begin
with the basic idea of DMRG. This idea is used to the study of low-dimensional
quantum systems. In the second section, the infinite system algorithm, which is
one of the algorithm of DMRG used in this work, is explained. Next, the DMRG
method is applied to a simple model (the Heisenberg spin chain model). In the last
section, the measured parameters associated with the ground state of the system

obtained by DMRG method are described.

3.1 Concept of DMRG

In the study of real space lattice systems in which the number of included basis
states depend on the system size, if the system size is large, more number of the
included basis states are needed. Many approaches have been used for studying
these systems, one of them is the numerical methods. However, the problems
of calculation are found when the number of bases increases exponentially as the
system size is increased. Consequently, the studying of lattice systems approaching

to the thermodynamic limits are impossible as a results of the memory restriction
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and the computer run time. The Density Matrix Renormalization Group (DMRG)
is one method which rectifies this problem. It was invented by Write [9] in 1992.
The main idea of DMRG methods is to calculate some target states (e.g. ground
state) of the lattice system using only some of the basis states. These basis states
extremely affect the target state. Thus, if we keep only the most relevant basis
states by neglecting the less influential ones, this method provides highly accurate
results. Therefore, the number of basis states used in this method is smaller
than the exact number of the basis states in the system. As a result the related
dimension of effective Hilbert space is restricted even if we increase the system
size. In order to chose the relevant basis states, the density matrix is used. This

approach is proposed by Write and Noack [10].

The original DMRG is used to solve 1D lattices models to find the ground-
state properties in the real space [15, 16, 17, 18]. In recent years, the DMRG
has been used successfully and adopted to solve various 1D and coupled chain

problems, such as the spin chain [19], strongly correlated electron systems and

Hubbard models [20].

The procedure of the DMRG method starts with system with small number
of sites, in this case only 2 sites are considered. One is called ”from system site”
and the other is called ”added site”. These two sites are combined to be the left
enlarged block. From the symmetric properties of the left enlarged block, the right
enlarged block is defined. Then the left and right enlarged blocks are merged to
be the superblock. The target state, which is one of all states in the superblock,
is therefore can be calculated from the superblock. ‘The next step after the target
state is obtained, the density matrix is formed from the target state. The density
matrix is used to consider the importance of basis states. Some basis states,
which are not importance, are neglected. Then, the number of basis states, which
correspond with calculation in ground state, are reduced. However, if the number
of kept states are large, the error will be small. However, the large number of basis

leads to the higher dimension of the Hilbert space. As a result, the restriction of
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memory and time evidently affect the calculations. Therefore, the suitable kept

number of bases are important.

These important bases will be used to create a new system block in the
next iteration. Accordingly, the number of lattice site of the next system block
will be two. In the next iteration, the number of system sites will be gradually
increased by adding one lattice site to the system block in the left enlarged block.
The iterative process has finished when the error is below a threshold or a desired
number of lattice size. The DMRG details of process will be thoroughly explained

in the next section.

The DMRG algorithm is used in two different systems, infinite and finite
system [15, 16, 17, 18,19, 20]. In this thesis, we will use only the infinite system

in one dimension. Schematically, the algorithm can be described as follows:

1. Construct the left enlarged block BMe? consisting of the system block
and one added site. The system block is denoted by BM where [ is lattice sites
and M is the number of states. Moreover, if d denote the number of states at
a single site, the system block of [ sites has M = d' states and denoted by Bldl.
While, the added site is denoted as e where d is the number of states. The left

enlarged block is shown in Figure 3.1.

System block Added site

Left enlarged block

Figure 3.1: The left enlarged block
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Consequently, the Hamiltonian and the operator only associated with the system
block can be written as matrices Hg(rxa) and Agrxary of M x M dimension.
The left enlarged block B} e? is created by joining the system block BM to the
added single site ®?. Consequently, it has Md states. Then, the Hamiltonian of
the left enlarged block is denoted as

Hvraxaray = Hs@rxan) @ daxa + Asuxan © Asgaxas (3.1)

where Aq(ixq) is the operator of the added site and 4.4 is the unit matrix which
has the same dimension as the operator in the added site. while the operator at

the added site of the enlarged block is denoted as

(Ae) Barascaray = Onrxar ® Astaxa), (3.2)

where superscript L and subscript F indicate that these operators are in the left
(L) enlarged (E) block. Besides, A,(4xq) is the operator at added site. In Eq. (3.1),
the first term of the right-hand side show that the dimension of Hamiltonian matrix
of system block is expanded to agree with the dimension of the enlarged block.
While, the second term defines the interaction between a site in the system block
and the added site. In Eq. (3.2); dprxar is the unit matrix which has the same
dimension as the operator in the system block. Accordingly, the Hamiltonian
and the operator operated in B}Me? will be matrices of Md x Md dimensions.
These matrices are formed as ‘a direct product of the matrix representation of

Hamiltonian and operator of system block and a single site.

2. Construct the superblock by connecting two enlarge blocks, left enlarged
block and right enlarged block. Right enlarged block is constructed by using the

reflection symmetry of the left enlarged block. Therefore, we can define that
HE vraxaray = Oaxa @ Hoxan) + Asaxa) @ Asarxan), (3.3)

then it is given by

Hg(deMd) = (Hé(deMd))Ta (34)
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which is the Hamiltonian of the right enlarged block. While, the operator of the
right enlarged block is given by

(AO)g(deMd) = Au(axd) @ d(arxnr)- (3.5)

Due to Eq. (3.2), the reflection symmetry, the operator of the right enlarged block

can be written as
(AO)E(deMd) 4 (Aé(deMd))T' (3-6)
The Hamiltonian of the superblock is constructed by connecting two enlarged

blocks via operator (A.)% and (A,)% which are defined as the operator of the

added sites belonging to left and right enlarged blocks respectively.
Added site

Left enlarged block| Right enlarged block

Superblock

Figure 3.2: The superblock

In Figure 3.2, the notation of the superblock will be B o¢ ¢?BM. The matrix

representation of the Hamiltonian of the superblock is written as

H(SEJIPVIZ)QX(MCZ)Q) 1 Hé(deMd) ® d(Mdx M)+ O(Mdx Md) & Hg(deMd)
+ (A-)%(deMd) ® (A°>g(Md><Md)7 (3.7)

where d(ardxarqy is the unit matrix which has the same dimension as the operator
in the right and left enlarged block. The contact of the two enlarged blocks in Eq.
(3.7) 18 (Ae) Brarasaray @ (Ae)Baraxaray. Next, this Hamiltonian is diagonalized to

find ground state (target state) in the next step.
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3. Construct the density matrix from the ground state. The ground state

can be written as
Md Md

) =D i li) 1), (3.8)

=1 j=1
where |i) and |j) are the bases from the left enlarged block and the right enlarged
block, respectively. The coefficient is ¢;; =(i|(j|¢)) which is the representation of
bases in the left and the right enlarged block on the ground state in the superblock.

The density matrix can be written as
Md
piv = Uity (3.9)
J

where p;» are the value of matrix element in the density matrix at row 7 and
column #. The construction of the density matrix can be illustrated as follows:
For example, if Md = 4, the coefficients of the ground state of the superblock is

written in the vector form [¢)) as

Yo b : (3.10)

(Y
£ 16x1

The ground state can be transformed from 16 x 1 matrix by new alignment of all
matrix elements to 4 x 4 matrix [20]. The square matrix of the ground states can

be written as

V1 V2 U3 U4

Us' Vg U7 Ug
) = : (3.11)

Vg V10 V11 V12
V13 V14 Uis Vig Axd
where the rows correspond to the complete basis of the left enlarged block, and

the columns correspond to the complete basis of the right enlarged block. Then,
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it can be transposed as

U1 Us Vg V13
Vg Vg U v
|¢>T _ 2 Vs Vip V14 ‘ (3‘12)

U3 VUr V11 7Uis

(% (% (% (%
4 8 12 16 Axd

The density matrix for the left enlarged block is given by

p =yl (3.13)

Therefore from Eqs. (3.11) and (3.12), p is a 4 X 4 matrix corresponding to with
Eq. (3.9).

4. Diagonalize the density matrix to find the important states. From above,
when the density matrix is diagonalized, eigenvalue and eigenvector are w, and
|ug) respectively, with o = 1,..., Md. Each w, represents the possibility of
the left enlarged block being in the state |u,), with Aij w, = 1. Therefore, the
accuracy of the DMRG approximation method deper(llg; on the number of kept
states being the largest density matrix eigenvalue. If m states will be kept and
wy > wy >, ..., > Wy, the corresponding kept states being |u1), |ug), ..., |uy)

respectively. If m = Md, it means that all the states are kept. Therefore, an error

cannot occurs in this process. But if m < Md, the error will occur.

For example in the previous step as Md =4, if we choose m = Md and
wy > we > w3 > wy, we will get |uy), |ug), |ug) and |uy) which are shown in the

matrix from for the important states in chronological order as

a by 1 €1
as by Co €2
lur) =  Jug) =  Jug) = , Jug) = . (3.14)
as b3 C3 €3
Qay b4 Cy €4

5. Form the truncation matrix O by keeping the finite states of the density
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matrix. The truncation matrix is

(3.15)

Obviously, the order of the important, state is considered to construct truncation

matrix. From Eq. (3.14), it becomes

ay Gz a3 Q4

by ba by b

C1 B CARAREIRN, O

Cl~REAARETRAN -
Evidently, the number of rows of O matrix depend on the number of kept states.
This point effects the size of Hilbert space in the next iteration. In the general

case, the matrix O will be m x Md. Accordingly, the truncation matrix O can be

written as O,,xrd-

6. Truncate the left enlarged block to create the new system block. This
new system block consists of system block from the previous step and the added
site. All corresponding operators in the left enlarged block are truncated by the
truncation matrix O. For example, when HY, . /., and (A¢)44. 174 are the Hamil-
tonian and A operators on the left enlarged block having the dimension being

Md x Md, they are truncated by

Hgt(%:rvzxrn) = OmXMdHLL?(deMd)O}LMde7
Ag‘e(‘;vvmxm) F OmXMd(AO)é’(MdXMd)O;rWde7 (317)
where Hgmxm) and Ag?vr;Xm) are the Hamiltonian and A operator of the new

system block having m x m dimension.

7. Define the new system block. After we get a new Hamiltonian and an

operator A from truncation, we will use them for the new system block, shown as

HS(mxm) = Hg,

S(mxm)>»
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Consequently, the dimension of the Hamiltonian and operators in the system block
is m x m, which will be constant because the number of the kept states m has been
defined before the iteration. This process leads to the limited size of the Hilbert
space. In Figure 3.3, it looks as if we expand the system block to cover the added
site.

Truncated left enlarged block New system block

- mm =

Figure 3.3: Constructing the new system block

8. Add one site on the right-hand side of the system block to form the new
left enlarged block, Figure 3.4. The Hamiltonian of enlarged block in Figure 3.4

1s written as

New left enlarged block

nggfrf;zvx)md) = CHg(mxm) 8 Oaxa 1 AsS(mxm) © Aeaxd)
<A°)é((1;j¥>)<md) = 5m><m ® AodXd (319)

After we get the Hamiltonian and operators of the new left enlarged block, we will

replace them in H5 4. arq) 304 (Ae) Boarasxaray » 1-€-

L o L(new)
HE(demd) - HE'(de md)

(AO)é(demd) = (A.)é((l;:glmd) (320)
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From Eq. (3.1), the process has the dimension of the enlarged block not exceeding
(md x md).

9. Go to step 2 for creating the new superblock. We will use H% ) and

(mdxmd
(A.)é(m dxmd) in step 8 to compute in step 2 for the next iteration process. Some of
the operators and truncation matrices in each loop will be kept for the calculation
of the parameters such as correlation and expectation values. This part will be

explained again in the next section. The process will finish, when convergence of

the target state eigenvalue of the superblock is reached.

New added site

New left enlarged block] New right enlarged block

New superblock

Figure 3.5: Constructing the new superblock

3.2 Example: The Heisenberg Model

In this section, the ‘infinite. DMRG approach ‘is implemented to calculate the
ground-state energy and spin correlation of antiferromagnetic Heisenberg spin-1/2

chain.

The Heisenberg spin chain [21] is used to describe magnetic systems with

interacting spins. In the antiferromagnetic phase, which the spin favors antiparallel
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arrangement, the Hamiltonian is given by
H=7J> 8.5 (3.21)

where < ij > means that the summation is to be taken over pair of nearest
neighbor sites only and J > 0. While, @(j) is the total spin operator at site i(j).

Consequently, The Hamiltonian becomes
L/
i=1

when we consider in one-dimension with .# length. Furthermore, the spin opera-

tors can be written as

F = _5° 5L 5%
S* = 8% +iSY,
Bt Sl Vel GO (3.23)

where S* and S~ are the raising and lowering operators respectively. They affect

on the z component of the spin angular momentum by 5.

1 1

Let | 1)( | 1)) -be the cigenstate-of operator- S with eigenvalue 5(—3), ie.

S# 1) = | 1) and 87| 1) = —3| |). The raising and lowering operators operate

on these bases can be written as

ST 170,085 L= an,
S7I1) =0, S7[1)=hl]) (3.24)

The commutation relations are
[SF,57] =257, (3.25)
(5%, 6%] = £8%, (3.26)

and

(5%, 5% =0. (3.27)
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From the above equations, the scalar product of the spin operators becomes

~

1 - N N
S+ Sir = 57 - Sz + 5(5F - S + 57 - ). (3.28)

In this model for spin 1/2, each site has spin S =1/2, so the number of states per
site is 25 + 1 = 2. Therefore, all the corresponding on-site spin operators can be

expressed as 2 X 2 matrices as

. 0 1 . 0 0 A 1(1 0
St = s F S5°=— , (3.29)
0 0 10 2\ o0 -1
where we put A = 1. A unit matrix in one site is
D
0= , (3.30)
U

which is used to expand the system for the DMRG algorithm. To demonstrate
the calculation using the DMRG algorithm, we will follow Section 3.2.

Step 1 We construct the left enlarged block having one site from the sys-
tem block and one site from added site. The on-site Hamiltonian matrix can be
enlarged by performing direct product with a unit matrix, Hgx2) ® dax2. The

Hamiltonian of the left enlarged block is written as

i . )
5(5;(2><2)®S o(2x2) +S S(2x2 ®Sj—(2><2 )

(3.31)

H§(4><4) = HS(2><2)®5(2><2)+S§(2><2)®Soz(2><2)+
where subscript e, S and E of each operators indicate where operators act to the

added site, the system block and the enlarged block, respectively. Furthermore,

the dimension of them are shown in bracket subscripts. Eq. (3.31) is shown in a

)

matrix form as

HE = ®

o O

_|_
o~
I 1
/\/\ o ()
(@) —

0
1

1
+ ® (3.32)

0
®
0 10 00
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then we get
1 0 0 0
110 -1 2 0
HE =~ (3.33)
410 2 -1 0
0 0 0 1

In Eq. (3.31), Hg is a zero matrix owing to the system block having only one site.

Accordingly, the interaction of two spins has never occurred.

Step 2 The superblock Hamiltonian is constructed by the left and right
enlarged block. Before starting this process, we will define the right enlarged
block HE from the left enlarged block HE as

TSNS )N (3.34)

To link two enlarged blocks for creating the superblock, the sites at the edge of
two enlarge blocks are considered. They are the added sites of the left enlarged
block and the right enlarged block. The corresponding operators of the added site
of the left enlarged block can be obtained by

( :L)JLE(4x4) = O@ex2) ® S:L(2x2)>
(S._)é(4><4) = 6(2><2) ® So_(2><2)’
(S Euxty = Oax2) © Siaxs)- (3.35)

Similarly in Eq. (3.34), we cangenerate the operators which belong to the added
site of the right enlarged block, being

(Sj)§(4x4) = {(gj)§(4x4)}T7

(S’o—)g(4x4) = {(5*:)%(4)(4)}1‘7

(gf)g(z;xz;) = {(S’f)é‘(4><4)}T' (3-36)
The superblock Hamiltonian is constructed by Eqs. (3.34), (3.35) and (3.36).

Then, it is defined as

Hsuper(lﬁle) - Hé(4><4) ® 5(4X4) + 5(4X4) ® Hg(4><4)



N — | =
| —

)§(4x4) + (g:)l%;(4x4) ® (S7)

R
E(4x4)

The matric form of the superblock Hamiltonian Hgyper(16x16) is Written as

O O O O O O O O o o o o o

o O O O O O o o o o o

O O O O O O o o o o

Ol O O

0 0
0 0
0 0
0 0
0 0
0.5 0
—0.25 0
0 0.25
0 0
0 0
0.5 0
0 0.5
0 0
0 0
0 0
0 0

S © o o

&
o

<t

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0.5 0 0
0 0.5 0
0 0 0.5
0 0 0
—0.25 0.5 0
0.5 —0.75 0
0 0 —0.25
0 0.5 0
0 0 0.5
0 0 0
0 0 0

o O O O O O o o o o

O O O O O O O o o o o

—0.25
0.5
0

37

(3.37)

i

o O O O O O O O o o o o o

0.5
0.25
0
(3.38)

Step 3 After Hyyper: Eq. (3.38), is diagonalized, we obtain the lowest eigen-

value which is the ground-state energy £y as -1.616 eV, and corresponding eigen-

vector which is the ground-state wave function [ig). The ground-state wave func-

0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.7

5
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tion are expressed as

0

0

0
—0.14943

0
0.55768
—0.40825

0

0
—0.40825
0.55768

0
—0.14943

0

0

0

|tho) = (3.39)

Eq. (3.9), Eq. (3.39) is then transformed to a square matrix,

0 0 0 —0.14943

0 0.55768  —0.40825 0

0 —0.40825  0.55768 0
—0.14943 0 0 0

|%0) 4xa = (3.40)

After we get [1)g)4x4, it will be used to construct the density matrix from Eq. (3.9)

as
0.022329 0 0 0
0 0.47767 —0.45534 0
p= . (3.41)
0 045534 0.47767 0
0 0 0 0.022329

Step 4 In order to decide which states of the left ‘enlarged block are the most
important for the ground state of the superblock, one diagonalizes the density

matrix Eq. (3:41). Then, we get w, and |u,) being

wy = 0.93301 wy = 0.022329 ws = 0.022329 wy = 0.022329
0 —0.51873 0.27334 0.81006
0.70711 0.48311 —0.30904 0.41364
[ur) = —o.70711 |’ [u2) = 0.48311 s Jus) = —0.30904 |’ [ua) = 0.41364
0 —0.51393 —0.8569 —0.039962
(3.42)

Then, we get wy > wy > w3 > wy.
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Step 5 If assume that they are non-degenerate states and the truncation
matrices are created by keeping only three states, then the error occurs because
of the disappearing of |us). Therefore, from Eq. (3.15), the truncation matrix O
for m = 3 is given by

0 0.70711  —0.70711 0
Osxq = | 051873 048311 048311 —0.51393 | . (3.43)
0.27334  —0.30904 —0.30904 —0.8569

For each iteration, O is kept and labeled with an index to be used to calculate the

expectation value of operators such as spin correlation.

Step 6 We will truncate all operators of the left enlarged block to make a

new system block. The processes are

L(new
HS((3>e<3)) ir O3X4H§(4X4)OZX37

L(new A
(S+>SE3><3§ - O3><4(S:r)é(4><4)01><37
—\L(new A
(S- )SE:sxsg = O3x4(5, )é(4><4)01><37

(82 g = O35al8:) fanay Olocs- (3.44)

Then, all of the corresponding operators become 3 x 3 matrices, and the size of

the Hilbert space is reduced from 4 to 3.

Step 7 Construct the new system block which consists of 2 sites. The
system block operators are replaced by the new system block operators which are

obtained from step 6. Therefore, the operators of the system block become

Higy = Hegn
(S = (SDHEE,
(5 ) ks = (520500,
(5)Kxs) = (SDEET. (3.45)

Step 8 The system block of 2 sites combined with added site becomes the

new enlarged block. The new left enlarged block operators are constructed as the
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following,
H}égrﬁli‘?) = HsL*(sxg) ® d(2x2);
Hg(ﬁxﬁ) - Héﬁgiv&
( A:r)é((réexwﬁ)) = 0@3x3) ® g+2><2)’
(Sexe) = NS mone)
( Ao_)é((gi‘?) = 0(3x8) ® So_(2><2)7
(5)exs) = (5
(S Eere) = Oax® ®Suzxz),
(S2)B@6) = (SZ)E(réeva;) (3.46)

Step 9 The process continues by repeating step 2 by using Eq. (3.46) to
produce the superblock Hamiltonian. Since the operators belonging to the added

site of the right enlarged block are
Hi = (Hpg)",
(S Eexe) = {8 Eexe) s
(S:)§(6><6) o {(S’:)é(ﬁxﬁ)}T7

A

(Sf)§(6x6) = {(Soz>é(6><6)}T' (3-47)

Then, the superblock Hamiltonian resembles teo-Eq. (3.38). However, the dimen-
sion of the matrix has been changed according to the size of Hilbert space. Thus

it becomes

Hsuper(36><36) = H E(6x6) ® 5(6><6) + 5 (6x6) ® HE(6><6)
1 Az

+ Z [ 6><6 ® (S7)E 6><6)] (3.48)
1
2

+ 6><6 ® (958 E(6x6) + (S )E(6><6)®(S )g(ﬁxﬁ)
(59

Hence in step 3, the ground state becomes |1)y)36x1 Which is transformed to the

square matrix being [1o)exs. The density matrix equivalents to pgxe. When p
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is diagonalized, we will get w, and |us)ex1, where « = 1, ..., 6. In step 5
three states are kept according to the number of kept states m=3. Therefore, the
truncation matrix is equal to Osyg. For this reason, the truncation in the next
step affects to all of the operators of the system block having the matrix dimension
being 3 x 3. Consequently, the dimension matrices of the enlarged block (being
6 x 6) and superblock (being 36 x 36) are constant in every loop until the end of
the process. The iteration process will finish when convergence of the ground-state
energy has been reached. Another way to stop iteration is that the define system
size has been reached. However, the system size should large enough to ensure the

convergence.

3.3 Measurement

In this section, measurement proecesses by using the DMRG algorithm are demon-
strated. Both the ground-state energy and the spin correlation are described.
Moreover, the measurement, results from the Heisenberg spin chain model in the
last chapter are represented. Furthermore, the results from the Matlab program
have been compared with the exact result from the calculation of Bethe ansatz

19].

3.3.1 Ground state energy

When the superblock Hamiltonian is diagonalized, the ground-state energy is de-
termined every time. The convergence of ground-state energy of iteration process
leads to the true ground-state energy of the total system. Above all, the accuracy
of the ground-state energy depends on the number of kept states. From Figure
3.6, this calculation are calculated by the length of sites L as many as 2002 sites
(from L=2i+2 when i= 1000 being number of iteration loop). Moreover, the kept
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Figure 3.6: A DMRG calculation from The average ground energy per site for

antiferromagnetic spin 1/2 Heisenberg chain keeping various number of kept states.
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states are varied to be m = 4,8,14 and 18. We found that the ground-state en-
ergy will converge as the length goes to infinity. Furthermore, the result are in
good agreement with the exact result as the number of kept state m is increased.
The exact result [19] has been used to compare with these result. The difference
between the exact and DMRG calculation have been demonstrated in Table 3.1

when exact refers to the ground-state energy from the exact solution.

m Energy per site EPMEC — peract
4 -0.43811 5.04 x 1073

8 -0.44178 1.37 x 1073
14 -0.44206 1.09 x 1073
18 -0.44238 0.77 x 1073
exact|[19] -0.44315

Table 3.1: Difference of the average ground-state energy per site for antiferromag-
netic spin 1/2 Heisenberg chain between a DMRG calculation and the exact result

keeping different number of kept states.

The ground-state energy and the error of the ground-state energy from
DMRG algorithm at each number of kept states are shown in Table. (3.1). The

error decreases with increasing the number of kept states (m).

3.3.2 Correlations

Besides the groundstate energy, the expectation value of interested operators cor-
responding to the system can be found likewise, for example the spin correlation
operator. The calculation of the correlation operators depends on the position of
the spin in the left enlarged block as shown in Figure 3.7. When we compute the
nearest neighbor spin correlation, spin at site ¢ in the system block and spin at

site 7 + 1 being added site, are considered.
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Left enlarged block

System block Added site

Figure 3.7: Different position of the two operators on the left enlarged block.

For example, the spin correlations are described with operators from two
different sites of the left enlarged block. That is, S'f operator acts on site ¢ in the
system block and Sfﬂ operator acts on site i + 1 in added site. Since, the ground
state has been transformed every time in each iteration. Therefore, the truncation

matrix is stored for every iteration.

To consider each operator, (57)¢ ', represents the S# operator on site i of
the left enlarged block with total number of 7 + 1 site . O;,; represents truncate
matrix. Spin-spin correlation can be found in subsequent calculations. If the left
enlarged block has the chain size of 2 + 1, the local spin operator for site ¢ can be
written as

(5751 = (0i(6, ® S7)O]) @ da, (3.49)
where 9, and J; are unit matrices corresponding to the system block and added
sites matrix in each iteration respectively. Also the spin operator for added site is

written as

A

(S71)i1 = 0p ® S%. (3.50)

Then, the spin correlation is
(57571)501 = (0i(0y ® 57)0]) © 62)(6, ® 57). (3.51)
Thus if [1)0) is the ground state, the spin correlation can be calculated as

(ol S7.S%[wo) = (S7S3). (3.52)
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After we get the operator at each site of the system, the correlation at the ground

state can be calculated as

(S757,1) = (1ol (S7S7,1)5 41 © 0glto) (3.53)

where 0% is a unit matrix having size the same as the dimension of right enlarged

block.
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CHAPTER 1V

GROUND STATE PROPERTIES
OF THE SPINLESS
TWO-ORBITAL HUBBARD
MODEL IN ONE DIMENSION

In this chapter the ground state of Hamiltonian in Chapter two, which is
derived from Hubbard model in the large-U limit at half-filling, has been calculated
in one dimension by using infinite DMRG algorithm. We start with the definition
of hopping amplitudes by introducing the condition of manganite compounds and
using DMRG algorithm to calculate the ground state of the effective Hamiltonian
for one-dimensional spinless orbital Hubbard model. A comparison between the
Heisenberg spin chain and spinless orbital Hubbard chain is presented, including
the calculation of ground-state energy of spinless orbital Hubbard at various axes (
x-, y- and z--axis). Finally, the orbital orders and correlations of electronic ground

state are described.

4.1 Definition of Hopping Amplitude

In this section, the parameters which correspond to the hopping terms are de-

scribed. The processes of electronic hopping leading to the calculation of hopping
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amplitudes for transition metal oxide have been explained by Slater and Koster
in [23]. Especially, the hopping processes in manganite compound in Figure 2.1
with Perovkite structure in which the manganese ions are surrounded by oxygen
ions, are investigated. The important phenomena occur when the orbital degrees
of freedom of electron are considered. The exchange of electrons among neighbor
sites of manganese ions occurs as the p-orbitals of the oxygen ions and d-orbitals of
manganese ions overlap. Hence, one of the important parameters are the pdo bond
which is the overlap integral between the do and po orbitals. Additional informa-
tion can be found in the original paper by Slater and Koster [23]. In this paper,
the effective hopping amplitude of electrons between two nearest manganese ions

via the oxygen ion orbitals along the x-axis, y-axis and z-axis can be written as
tia [ —(de')2,

Ia;b 7. Z(pdo-)z'/

o —— _T<pdo-)27 (41)
#, = fpdo)”
1
t?ljb = Z(pdo-)27
V3
ty = — (pdo)”, (4.2)
t., = 0,
tlfb S (de)Q’
Zb = 07 (43)

where a denotes a2 — g2 orbital and b denotes 322 — 72 orbital. By using ¢, which
is defined as ty = (pdo)?, the hopping amplitude along the z- and y- axis can be
rewritten as follows:

T-axis

T x \/§

toe = Qlgy = _\/gtzba



48

ty = Plg,= _%tim (4.4)
Y-axis
V3
t9, =t =—t
ab ba 1o
v, = at’,=3tY,
1
by = Bly= ﬁti{b' (4.5)

We let t,, = aty, and ty, = Btw, and t,;, = t,, = t and the eigenvalue of n is 1.

Then Eq. (2.101) becomes

gtery/s 2) (5222 1 |
Heg = Z{—a +8°)(7 _Z)_F(TiTj +Z)
<ij>
vy & TEe 2By, . ..
+ 7(7Z T T ) 7 (7577 +777))
2t - ¥ e S -z ~Z o
+ F(Q—ﬁ){T T+ T T T T T }} (4.6)

However of the special case in z-axis, fH.g has been modified since t7, = t, =

t;, = 0 and tj, = ty, and it is given by

2 2N\ Az
Hep = U(tbb) (7: = 1 )- (4.7)

4.2 DMRG for Spinless Orbital Hubbard Model

In this section, the DMRG for spinless orbital Hubbard model is described in the
first loop. The effective Hamiltonian is separated into two cases; along x- or y- axis
and along z- axis. For example, we begin with the construction of Hamiltonian for
the left enlarge block which contains the system block and added site as in Figure

3.1. For the case of electrons hopping along x- or y- axis, it is written as

2t2 1 2t2
Hp = Hs@dot+ (0’ + PHF @7 - (05 @)} + 7 {fs @70 + 7§ @1}

22 42 .
v O ois 45 040} - AT 07+ (5 B0}
2t2 ~+ ~Z ~Z ~+ ~— ~Z ~Z ~Z
+ F(O[_ﬁ){TS ®To +TS®T0 +TS ®To +TS®TO}7 (48)
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which are shown in matrix form in the first loop of Matlab programming in Egs.
(D.1) and (D.2) following the direction of an electron hopping. For moving along

z-axis it becomes
L 2 ~A2Z\2 [~z ~Z 1
Hp :Hs®5-+5(7bb) (5@ 70+ 1(0s @ d)}- (4.9)

Where subscripts S and e refer to the pseudo spin operator in the system block
and the added site, respectively. Moreover from Eqs. (4.8) and (4.9), Hg is the
Hamiltonian in the system block. The matrix form of the left enlarged block for

an electron hopping along z-axis is denoted in Eq. (D.3).

To construct the superblock Hamiltonian, the Hamiltonian of two enlarged
blocks, the left and right enlarged blocks, are considered. Hence, we will construct
the connecting point between the left and right enlarged blocks via operators at

the added sites. Then, operations at the added site of the left enlarged block are

given by
(FHE = s 7],
(FHE = dg® 7. (4.10)

According to Egs. (3.4) and (3.5), the Hamiltonian and the operators at the added

site of the right enlarged block can be written as

2 1
HE = 6,.® Hg + E(ffb)Z{Af ® 5+ 1(5- ® ds)}

(FO)E = 7o ®0s,
(7 = 7. ®ds. (4.11)

So, they can be written in form of left enlarged block as

Hy = (Hg)",
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(FE = ((FDE)",
(F)e = ((FOE)",
(7)E = ((FE)" (4.12)

Consequently, the superblock Hamiltonian, which is created from two enlarged

blocks for the case of electrons moving along x- or y-axis cases, is given by

Hsuper - Hé & 6]E% + 5§‘ ® Hg
i ~z ~z 1
+ 7(042 + ()@ (735 — 1(55 ® 05)}

#1600k & E+ (ke (DB
+ 2L k@ GO+ GOk @ GDB)
4t2 ~2\L ~2\R 1 5L 5R
77 (D) ® (e + Z( B ®0g)}
2 e CIE + (ke ()]
¥ GopetnEdeke 65 (4.13)

When an electron hops in x- and y-axis, the matrices form of the superblock
Hamiltonian are shown in Eqgs. (D.4) and (D.5). For the case of electron moving

along z-axis, the superblock Hamiltonian can be written as

Hoper = HEROR+ L@ HE
o2t2

o TG () 0k edD). (1.14)
The matrix form of the superblock-in this case is shown in Eq. (D.6). When we
get the superblock Hamiltonian, it is diagonalized to find the ground-state wave
function and ground-state energy. After, the optimized states are found by using
the density matrix method. The truncation matrix can be constructed by the
optimized state. The truncation matrix is used to transform the operators in the

left enlarged block:

Hs = OHEO,
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5 = 0(FHEO",
7y = 0(i,)p0",
& = O(FA)ko. (4.15)

Furthermore, these operators, which have been truncated, are used as the opera-
tors in the system block in the next iteration. When the convergence of ground-
state energy (in the superblock) is reached, we will get the ground-state energy

and ground-state wave function of the total system.

4.3 Comparing of Orbital and Spin Model

In this section, we will check the orbital model by defining its parameter similar to
the case of the spin model. Evidently, the difference of the orbital and spin model
are the off-diagonal hopping amplitudes. Moreover, the hopping amplitude of spin
model is isotopic because the directions of spin do not effect the hopping amplitude
while the hopping amplitude of orbital model is either isotopic or anisotropic
depending on the occupation of electronic orbital. Obviously, the orbital model
can be reduced to the spin model by defining hopping amplitude parameter as

toa =ty = t and ¢, = tp, = 0. Hence the effective H is written as

U T
Hyg = i (77 — Z) + T (7 7 +177)
bk dVieglll d11 1
= 7( i 13 5( AR r T;)_Z)
4%~ 1.a 1k

Evidently, the effect of i in bracket can be neglected because it is constant. As a
reason, the ground-state energy of the Heisenberg spin chain model and the orbital

model can be compared as in Figure 4.1.
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Figure 4.1: Comparison of ground state of Spin model and Orbital model using

DMRG by keeping 16 states.
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4.4 Ground State Energy

The ground-state energy of the spinless orbital Hubbard model with DMRG cal-
culations are computed in each axis (x-, y- and z-axis). The conditions of hopping
amplitudes are mentioned earlier. We have found that the calculated ground-state
energies of all axes are equivalent. When we use pdo bond to be —1.97 eV and
U =4 eV [25] and the number of sites to be 2002 (i=1000 and site=2i+2). This
number of sites is large enough to ensure the convergence to the ground-state
energy. The convergent to the ground state are reached which can be seen from

Figure 4.2. Moreover, this result is extrapolated to the thermodynamic limit as

1

~ — 0 shown in Figure 4.3., which the ground-state energy is -3.7635 eV.

4.5 Order Parameters

In this work we will focus on the change of orbital degrees of freedom in the
ground state then the crucial considered parameters are the orbital correlation
6, 7]. Possible types of orbital ordering will be calculated by operator 77(#) in the
ground state where index ¢ indicates the site number in the chain and parameter
0 is the rotating angle of the new basis |@) and |b) from original starting basis |a)
and |b). Operator 77(6) is pseudo-spin operators correspond to the basis states
@), |b) and 77 s pseudo=spin operators correspond to the |a) and [b). The relation

between new and old bases is

|a) cosf  sind |a)
] |0t . (4.17)
|b) —sinf cosf |b)
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Figure 4.2: Ground-state energy per site of the one-dimension spinless orbital
Hubbard model are plotted in three axis, namely x-, y- ‘and z-axis with 16 kept
states and 2002 sites of infinite DMRG algorithm. The optimum of a number
of iteration are considered from the time of calculation and the convergence of

ground-state energy.
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Figure 4.3: The extrapolation is used to finding the ground-state energy as N —

Q.
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The pseudo-spin operators are defined as

77(0) = 77 cos26 + 77 sin 26, (4.18)
1

77 = 5(7%@ — Ngp), (4.19)
1

7= 5(011,07@ + clycn). (4.20)

We are interested in the orbital correlation. It is the expectation value of the

operator 77(6;)77(6;) which is defined as

77(0:)77(85) = 777 cos 20; cos 20; + 777 sin 20, sin 20;

+ 77 7; cos 26;sin 20; + 7,77 sin 20, cos 20;. (4.21)

The event of strong orbital correlation between site ¢+ and j emerges when the
expectation value of this operator is maximum or minimum. For maximum ex-
pectation value, it is highly possible that the electrons occupy the orbital |a;)(|b;))
at site i and orbital |@;)(|b;)) at site j simultaneously. Similarly, for the minimum
expectation value this event should have electrons occupy on the orbital |a;)(|b;))

at site 7 and orbital |b;)(]a,)) at site j simultaneously.

4.6 Orbital Correlation

In this section we discuss the nearest-neighbor orbital correlations at position
j — i = 1. This result is calculated by DMRG method and kept only 16 states
which are shown in Figure 4.4, 4.5 and 4.6 in x-, y- and z- axis respectively. The
hopping amplitudes are defined according to the electronic hopping on each axis
and pdo is set to be -1.97 eV [25], which is the value of pdo bonding between
d-orbital of Mn atom and p-orbital of O atom.

The expectation values (77(6;)77(0;)) at ground state have been shown in

Figure 4.4, 4.5 and 4.6 as the following. The results that appear in these graphs

can be analyzed and discussed. For example in Figure 4.4, the maximum of the
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expectation value of pseudo-spin correlation operator is 0.25. At this point, both
¢; and 6; are found to be 60° and 150°, respectively. The linear combination of

states |a) and |b) is calculated according to Eq. (4.17). They can be written as

la;) = cos60]a) + sin60|b),
|b;) = —sin60|a)+ cos60|by, (4.22)

and

\a;) = cos150|a) + sin 150|b),
1B;) = —sin150|a) + cos 150]b). (4.23)

Then, they are

ot =2 ),

2
i 8
2

By = —Llaer ol (1.24)

and

i) = —La)+ 110,

By =~k - L (4.25)

According to Eqs. (4.24) and (4.25) we found that

b)) = —lai). (4.26)

bi) = la) = 1) (4.27)
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The positive peak at 6; = 60° and ¢; = 150° show that the electrons occupies two
possible basis either |d;d;) or |bb;). When T and | are replaced in both |a;a;) and

|5i5j>, it is shown that these states are antiferro-orbital state as

@az;) = | 11),

[bibg) = = 11)- (4.28)
Thus, we can conclude that it has antiferro-orbital correlation between two nearest

neighbor sites when we consider hopping of electrons along x-axis at the ground

state.

Similarly, the orbital correlation of the case of Figure 4.4, 4.5 and 4.6 are

summarized in Table (4.1).
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Figure 4.4: A plot of (77(6;)77(6;)) on x-axis in ; and 6, space.
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Figure 4.5: A plot of (77(6;)77(0;)) on y-axis in 6; and 6; space.
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Figure 4.6: A plot of (77(6;)77(0;)) on z-axis in 0; and 6; space.
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Table 4.1: DMRG calculation of the orbital correlation for ground state at one
dimension setting the number of sites to be 2002 and considering peaks from Figure
4.4, 4.5 and 4.6, 0; and 6; are chosen from the maximum of the expectation value

of the pseudo-spin correlation operator.

Axis || 0; | 0; | Occupied orbital (i) | Occupied orbital (j) | Orbital
at site i at site j correlation

X | 60° | 150° a4 M3)p) —Y31g) 4 L|p) AF
—LBa) + Lb) ~(3la) -+ 21b) AR

Y | 30° | 120° Blay 4 11b) —Lja) + L) AF
Slo PP g (Pl + 1) | AF

Z || oo | 90° la) 1b) AF
|b) —la) AF

* AF=Antiferro-orbital

Shape of electron wave funictions of the states in Table (4.1) are shown in

Figure 4.7, 4.8 and 4.9.
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Figure 4.7: Shape of electron density of states +(1]a) + %2|b)) = +(L(2? — ¢?) +

?(322 —r?)) and —§|a> + %|b) = —?(wz —y?) + %(322 —7r?).
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i(ﬁ a)+%b>}=i[-\/§-(x2«y2)+%(322rz)]

X _1 ﬁ __1 2 g2 ﬁ 22
y 2\a>+ 7 |b)= 2(x y2) + s (322 -r?)

Figure 4.8: Shape of electron density of states :I:(§|a> + %|b>) = j;(_3(x2 _ y2) +

2
5(327 = 1)) and —gla) + P|) = —3(2* — ) + F (3" — ).



65

tlay=£(¢ -y?)

y b)=(32%-r?%)

Figure 4.9: Shape of electron density of states +|a) = +(z*—y?) and |b) = 32%—72.



CHAPTER V

SUMMARY AND
CONCLUSION

In this thesis we have been able to derive the effective model for strongly
correlated electrons in two-fold degenerate e, band. This model consists of the
orbital degrees of freedom in the absence of spin degrees of freedom in large-U limit
and half-filling, namely the two orbital Hubbard model. This model has been
realized in the system with ferromagnetic metallic phase of several metal oxide
compounds. Afterward, the ground-state properties of the effective Hamiltonian

in one-dimension have been calculated.

We start with the Hubbard Hamiltonian for the electron in transition metal
oxides with perovskite structure. Accordingly, the orbital degrees of freedom is
added in this effective model. On the other hand, the spin degrees of freedom
can be neglected since the spin arrangement of electrons of Mn ions are the ferro-
magnetic. Moreover, the effective Hamiltonian can be derived in the form of the
pseudo-spin operator with the aid of canonical transformation. This transforma-
tion has separated the overlapped states occurring from the hopping of electron
between nearest neighbor sites. As a result the doubly occupied and singly occu-
pied states can be separated. We choose the effective Hamiltonian that operates

on the single occupied states only.

We have used the infinite DMRG algorithm as the numerical method to

study the ground-state properties of the interested system. It is constructed and
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tested with the spin 1/2 Heisenberg model in which the exact result for one-
dimension nearest neighbor sites interacting system has been known. In this work,
the number of kept states is 16 states and the number of iterations is 1000, meaning
that the number of sites is 2002 which is enough for the ground-state to converge.
When we compare the results from our program with the exact result, we get

satisfactory results.

In addition, the hopping amplitudes are crucial parameters to find the
ground-state properties of the two orbital Hubbard model. These are defined
according to the manganite system. However, we have only operated the effective
Hamiltonian in one-dimension. Then, the hopping amplitude parameters in each
axis (x- ,y- and z- axes) are considered. In this work, pdo = —1.97 eV is used.
The infinite DMRG method is used with this model to calculate the ground-state
energy and the ground-state wave function. We have found that the ground-state
energy are equivalent for the electrons moving in x-, y- or z-axis. The ground-state
energy has been found to be —3.7635 eV. The ground-state wave function is used
to calculate the nearest neighbor orbital correlation. The evidence suggests that
these correlations are in antiferro-orbital phase in the orbital pseudo-spin space in

all axes.

The complexity of the interested model in the general cases, such as in-
cluding the spin degree of freedoms as well as the difficulties to understand and
program the DMRG algorithm in higher dimensions, lead to the restricted con-
ditions such as the large-U limit and half filling in one dimension. Furthermore,
infinite DMRG algorithm has been programmed with MATLAB and has been run
in a personal computer then the numbers of kept states are restricted due to the
memory and speed of the computer, therefore affecting the accuracy of the ground
state. However, the result is satisfied because the ground state of this system is

reasonably converged.

Although we have only studied the system in one dimension, it provides
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us an opportunity to study the basic many-body quantum systems and to use a
numerical method to solve the interesting problem. For the future this work would
be implemented in the higher dimensions (2D and 3D) which will provide results

resemble to real systems in the thermodynamic limit.
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APPENDIX A

HUBBARD OPERATORS

When we consider the electron states before and after the hopping, the process can
be described via Hubbard operator. For example, notation of Hubbard operator

show that an a-state becomes a b-state at the same site j after the hopping process
b—a __
S |b>jj (al (A1)

which all events will be written

X3t =a) (bl
X 2y
Xt — |d), (],
T
X0 = Jay;,; {d]
X0 = o), {d],
X570 = Ja), (0],
X070 = |b),. (0]
X971=0), 4al.
X0 =10) 5 O, (A2)

where|a) and |b) denote the basis of occupation of an electron in a and b orbital

respectively. Products of Hubbard operators behave like
c—f yvb—a __ c—f yb—a __ yec—a
XX =0 Xy X = X (A.3)

In this thesis, the orbital Hubbard model in the large-U limit and half-filled are

written in creation and annihilation operators, which are substituted with the
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Hubbard operators form as

ch, = X070 XU, (Ad)
chy = X070 — X, (A.5)
o= X] "+ X1, (A.6)
ey = X3T0— X (A7)

These equations series can be expressed as

=X 4 (o) X4 (A.8)

Cig = XJQ‘_" +n(o) X (A.9)
where 7)(0) is defined depending on o

(o) = a l:fgza (A.10)
£y %fa=b.

Another form that the Hubbard operators link with the creation and annihilation

operators are

a—a __ t
X, — =
a—b __ t

be—a __ T
Xi = CipCia;

XA Apdgmsl (A.11)
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In this appendix we show the detail of some parameters used for the Canon-

ical transformation method. Furthermore, some solving processes are elucidated

for more understanding.

B.1 Choosing of 5’

The term of ¢[S’, Hy| is important for the reason to choose S’. The S’ should

consists of H," and H; . First we consider a set of commuting operators as

[Pl Cia (1 — M), Pialin] = —Rapcl,cia(1 — Rizp),
[PriaClyCiall = Tigp), Pialtip] = —RiaClcia(1 — Rjp),
[Pranclycin(l = fosa); Riaan] = —Ranclycin(1 — Pja),
[Piachcin(1 = fija), Piafia] = —Pigclhein(1 — fja).

Thus, they can be written as

Similarly,

[H,]

tab)

Hyl = —-UH}

tab?

[Hi., Hyl = —UH,,

H,

tpp?

Hyl= -UH;' .

top

[H", Hy] = —~UH;'.

[(1 = Rup) el Ciatisy, friatiin) = (1 — fup)clyciaiizn,
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[(1 = fiia)chyCiatije, Puiatian] = (1 = fria)chyCjatize, (B.11)
[(1 = fin)cluCipivja, iafiis]) = (1= i)l oMo, (B.12)
[(1 = fria)lyCioMjas Piatiin] = (1 = fia)clycioiza, (B.13)

which they can be written as

|H,,,, Hyl = UH,_, (B.14)

[H,,,, He] =UH,, (B.15)

[H,, ,Hy]=UH, , (B.16)

[H;,, Hy] = UH,. (B.17)
Accordingly, they are given by

(H Hyl'= UH; . (B.18)

The both UH,; and UH," have the order of ¢ (hopping amplitude). Then, we will

choose S’ as

Se=— W [y (B.19)

B.2 Substitute S in i[S’, Hy|

Substituting S’ from Eq. (B.19) into the operator i[S’, Hy|, it becomes

N A
ilSYHy) = '(j[HQL—Ht7HU]

= —~(H 4+ H"). (B.20)

B.3 Execution with %[S, (S, Hyl]

When %[S, [S, Hy]] is substituted with S = 5"+ S”, it becomes

72 72 72
SIS+ "8 + 8" Hyl) = SIS,[5'+ 5", Holl + 5[5, [5' + 5", Hol]



7

Z‘2

= L1818, Holl + 19[S, Ho]

i2 1! ! ZQ 1! 1
+§[S .S, Hyl] + 5[5 ,[S", Hyll (B.21)

where the underlined terms of the right hand side can be neglected because they
are higher order than ¢? when we know that S’ and S” are in the order of ¢ and #?

respectively. The remaining terms become

22 ! 7a 1 - -
LIS ) =, - St H 4
_| L) (B.22)

U



APPENDIX C

FLOW CHART OF DMRG

end

yes

setup kept state
& the number of iteration ( id)

define all operators
in matrices from

!

the number of iteration is equal to
starting definition ( i = id)

i=i+1
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L1

|

construct system block

diagonalize
density matrix

|

add 1 site to system block to form the
left enlarged block

construct truncate matrix

construct the right
enlarged block

|

|

transform the left enlarged block

Hamiltonian by truncation matrix
to form a new system block

construct super block

keep ground state energy
& ground wave function

diagonalize Hamiltonian of
super block for finding the ground state

|

construct density matrix from
ground state wave function




79

APPENDIX D
HAMILTONIAN IN THE FIRST LOOP

In these results, the spinless two-orbital Hubbard model is calculated in the first loop of MATLAB programming with DMRG
algorithm. The calculation are separated in three cases following the direction of an electron hopping as the number of kept states

is 16.

D.1 Left Enlarged Block Hamiltonian

D.1.1 The Electron Hopping Along x-axis

—1412 —081522 —0 81522 1412
—081522 -2 3533 1412 0 81522
—0 81522 1412 —2 3533 © 081522

1412 0 81522 0 81522 —1412

(D.1)



D.1.2 The Electron Hopping Along y-axis
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D.1.3 The Electron Hopping Along z-axis
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D.2 Superblock Hamiltonian

D.2.1 The Electron Hopping Along x-axis
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D.2.2 The Electron Hopping Along y-axis
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D.2.3 The Electron Hopping Along z-axis
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