

โดรงการ

การเรียนการสอนเพื่อเสริมประสบการณ์

ชื่อโครงการ	การระบุลักษณะคุณสมบัติของแบคทีเรียที่ผลิตพอลิไฮดรอกซีแอลคาโนเอต
	และยืนชีวสังเคราะห์ PHAs
	Characterization of polyhydroxyalkanoates (PHAs) producing
	bacteria and their PHA biosynthesis gene
ชื่อนิสิต	นายธีรวุฒิ เจริญสุข
กาดวิชา	จุลชีววิทยา

ปีการศึกษา 2562

ดณะวิทฮาศาสตร์ จุฬาลงกรณ์มหาวิทฮาลัฮ

^{โครงการ} การเรียนการสอนเพื่อเสริมประสบการณ์

ชื่อโครงการ	การระบุลักษณะคุณสมบัติของแบคทีเรียที่ผลิตพอลิไฮดรอกซีแอลคาโนเอตและ ยีนชีวสังเคราะห์ PHAs		
	Characterization of polyhydro> and their PHA biosynthesis ger	(yalkanoates (PHAs) pro ne	ducing bacteria
ชื่อนิสิต	นายธีรวุฒิ เจริญสุข	เลขประจำตัว	593 23249 23
ภาควิชา ปีการศึกษา	จุลชีววิทยา 2562		

คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

หัวข้อโครงงาน	การระบุลักษณะคุณสมบัติของแบคทีเรียที่ผลิตพอลิไฮดรอกซีแอลคาโนเอต		
	และยืนชีวสังเคราะห์ PHA	AS	
โดย	นายธีรวุฒิ เจริญสุข	เลขประจำตัว 593 23249 23	
อาจารย์ที่ปรึกษาโครงงาน	รองศาสตราจารย์ ดร.สุชา	ดา จันทร์ประทีป นภาธร	
ปีการศึกษา	2562		

ภาควิชาจุลชีววิทยา คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับโครงงานฉบับนี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาบัณฑิต ในรายวิชา 2312499 โครงงานวิทยาศาสตร์

(ผู้ช่วยศาสตราจารย์ ดร. กอบชัย ภัทรกุลวณิชย์)

คณะกรรมการสอบโครงงาน

(รองศาสตราจารย์ ดร.สุชาดา จันทร์ประทีป นภาธร)

..... กรรมการ

(รองศาสตราจารย์ ดร.รุ่งอรุณ วาดิถี สิริศรัทธา)

ในรับ Ddาลากสาล. กรรมการ

(รองศาสตราจารย์ ดร.วันชัย อัศวลาภสกุล)

tv v งก์ MNy vo-

(อาจารย์ ดร.ชมพูนิกข์ กาญจนพังคะ)

โครงการการเรียนการสอนเพื่อเสริมประสบการณ์

เรื่อง

การระบุลักษณะคุณสมบัติของแบคทีเรียที่ผลิตพอลิไฮดรอกซีแอลคาโนเอต และยืนชีวสังเคราะห์ PHAs

อาจารย์ที่ปรึกษาโครงการ

รองศาสตราจารย์ ดร.สุชาดา จันทร์ประทีป นภาธร

นิสิตหัวหน้าโครงการ

นายธีรวุฒิ เจริญสุข เลขประจำตัว 593 23249 23

โครงการนี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตร์บัณฑิต ภาควิชาจุลชีววิทยา คณะวิทยาศาสตร์ จุฬาลงกรณ์มาวิทยาลัย

ชื่อโครงการ	การระบุลักษณะคุณสมบัติของแบคทีเรียที่ผลิตพอลิไฮดรอกซีแอลคาโนเอต	
	และยืนชีวสังเคราะห์ PHA	NS
นิสิตเสนอโครงการ	นายธีรวุฒิ เจริญสุข	เลขประจำตัว 593 23249 23
อาจารย์ที่ปรึกษาโรงการ	รองศาสตราจารย์ ดร.สุชา	ดา จันทร์ประทีป นภาธร
ภาควิชา	จุลชีววิทยา คณะวิทยาศาส	สตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2562

บทคัดย่อ

้มลภาวะที่เกิดจากขยะพลาสติกยังคงเป็นปัญหาด้านสิ่งแวดล้อมในหลายๆ ประเทศ ทำให้ทั่วโลกเริ่ม ้สนใจพลาสติกชีวภาพทดแทนพลาสติกจากแหล่งปิโตรเลียม พลาสติกชีวภาพจึงมีบทบาทในชีวิตประจำวันมาก ู้ขึ้น เนื่องจากพลาสติกชีวภาพสามารถย่อยสลายได้เร็ว ในขณะที่พลาสติกจากปิโตรเคมีใช้เวลามากกว่า 500 ปี ในการย่อยสลายตามธรรมชาติ พอลิไฮดรอกซิแอลคาโนเอต (polyhydroxyalkanoates, PHAs) เป็นพลาสติก ้ชีวภาพทางเลือกชนิดหนึ่งที่เริ่มมีความสนใจมากขึ้น มีคุณสมบัติเป็นเทอร์โมพลาสติก สามารถย่อยสลายได้ ทางชีวภาพ และมีความเข้ากันได้กับเนื้อเยื่อในร่างกาย PHAs สามารถผลิตได้จากแบคเรียหลายชนิดที่มียืนชีว ้สังเคราะห์ PHAs และสามารถย่อยสลายได้ตามธรรมชาติจากแบคทีเรียที่มียืนย่อยสลาย PHAs ได้ผลิตภัณฑ์ สุดท้ายเป็นน้ำและแก๊สคาร์บอนไดออกไซด์ วัตถุประสงค์ของงานวิจัยนี้เพื่อระบุลักษณะคุณสมบัติของ แบคทีเรียที่ผลิต PHAs และยืนชีวสังเคราะห์ PHAs จากแบคทีเรียที่คัดแยกได้ในงานวิจัยก่อนหน้านี้ เมื่อระบุ ชนิดของแบคทีเรียด้วยวิธีวิเคราะห์ลำดับนิวคลีโอไทด์บริเวณ 16s rDNA แสดงให้เห็นว่าไอโซเลทที่ 1 ถึง 8 มี ความคล้ายคลึงกับ Chryseobacterium daecheongense SNA 43[™] 98.63 เปอร์เซ็นต์ Pseudomonas chengduensis L02^T 99.35 เปอร์เซ็นต์ Lysinibacillus mecroides KPB6^T 98.87เปอร์เซ็นต์ Enterobacter hormaechei IPBCC 19.1426^T 100 เปอร์เซ็นต์ Sphingopyxis indica DS15^T 99.78 เปอร์เซ็นต์ Gordonia bronchialis A5-8[™] 98.25 เปอร์ เซ็นต์ Pseudomonas denitrificans H38A[™] 99.93 เปอร์ เซ็นต์ และ Lysinibacillus fusiformis L13[™] 99.93 เปอร์เซ็นต์ ตามลำดับ จากนั้นวิเคราะห์กลุ่มยืนชีวสังเคราะห์ PHAs ในฐานข้อมูลจีโนมโดยใช้โปรตีนอ้างอิงในฐานข้อมูลโปรตีน พบว่าไอโซเลททั้งหมดมียืน phaJ และ fabG ซึ่ง เป็นยืนที่เกี่ยวข้องกับสารตัวกลางส่วนต้นและส่วนปลายในวิถีบีตาออกซิเดชัน พบ phaA และ phaC ซึ่งเป็น ้ยืนที่เกี่ยวข้องกับส่วนต้นและส่วนปลายในวิถีสังเคราะห์ PHAs โดยใช้ acetyl-coA ที่ได้จากเมแทบอลิซึมของ กลูโคสเป็นสารตั้งต้น นอกจากนี้ยังพบ phaZ ซึ่งถูกถอดรหัสได้เอนไซม์ PHA depolymerase ผลการทดลอง ทั้งหมดนี้จึงสรุปได้ว่า ไอโซเลททั้งหมดสามารถนำกลูโคสและกรดไขมันมาผลิต PHAs โดยใช้กลุ่มยืนชีว สังเคราะห์ PHAs ได้แก่ phaA phaC phaB phaJ และ fabG และสามารถย่อยสลาย PHAs โดยใช้ PHA depolymerase จากยีน phaZ ได้ อย่างไรก็ตาม การศึกษาในอนาคตควรออกแบบไพรเมอร์เพื่อนำมา ทดสอบกับเชื้อบริสุทธิ์เพื่อยืนยันยืนชีวสังเคราะห์ PHAs และชนิดของ PhaC ของไอโซเลททั้งหมดนี้

Project title	Characterization of polyhydroxyalkanoates (PHAs) producing	
	bacteria and their PHA biosynthesis gene	
Name of student	Mr. Teerawut Charoensuk ID No. 593 23249 23	
Advisor	Assoc. Prof. Suchada Chanprateep Napathorn, Ph.D.	
Department	Microbiology, Faculty of Science, Chulalongkorn University	

Abstract

Plastic pollution is a serious global problem in many countries. Recently, people are interested in using biodegradable plastic instead of petroleum-based plastics. Bioplastics play an important role in daily life because biodegradable plastics can be decomposed whereas petrochemical based plastics take more than 500 years to be degraded in nature. Polyhydroxy alkanoates (PHAs) are one of the most recognized bioplastics having thermoplastic, biodegradable and biocompatible properties. PHAs can be produced from many bacteria possessing PHA biosynthesis genes and can be naturally decomposed from bacteria possessing PHA biodegrading genes. The final products are water and carbon dioxide. The aim of this study is to characterize PHAs producing bacteria and their PHA biosynthesis genes using the isolated bacteria form the previous study. Based on 16S rDNA gene analysis. The isolates were identified as species belonging to Chryseobacterium daecheongense SNA 43^{T} (98.63%), Pseudomonas chengduensis $L02^{T}$ (99.35%), Lysinibacillus mecroides KPB6^T (98.87%), Enterobacter hormaechei IPBCC 19.1426^T (100.00%), Sphingopyxis indica DS15^T (99.78%), Gordonia bronchialis A5-8^T (98.25%), Pseudomonas denitrificans H38A^T (99.93%), and *Lysinibacillus fusiformis* L13^T (99.93%), respectively. Based on genome database analysis by using references protein from protein database revealed that all isolates contained phaJ and fabG genes which are related to the upper and lower PHAs substrates in the beta oxidation pathway. The phaA, phaC, and phaZ genes were determined in this analysis and found that all 8 isolates contained phaA and phaC genes related to the upper and lower parts in the PHAs biosynthesis pathway by using acetyl-coA derived from glucose metabolism. In addition, the *phaZ* gene, encoded for PHA depolymerase enzyme, was also found. In conclusion, all of these isolates are able to use glucose and fatty acids to produce PHAs by their phaA, phaC, phaB, phaJ, and fabG genes and can degrade PHAs by their phaZ genes. However, specific primer should be designed to confirm the existing of these genes and identify the class of phaC in the future.

กิตติกรรมประกาศ

โครงการการเรียนการสอนเพื่อเสริมประสบการณ์เรื่องนี้สำเร็จด้วยความกรุณาของ รองศาสตราจารย์ ดร.สุชาดา จันทร์ประทีป นภาธร อาจารย์ที่ปรึกษาโครงการการเรียนการสอนเพื่อเสริมประสบการณ์ซึ่งให้ คำปรึกษาและคำแนะนำอันเป็นประโยชน์ในการวิจัย ทั้งยังช่วยแก้ไขข้อบกพร่องต่าง ๆ ด้วยความเมตตาเสมอ มา ผู้วิจัยขอกราบขอบพระคุณเป็นอย่างสูง

ขอขอบพระคุณ รองศาสตราจารย์ ดร.รุ่งอรุณ วาดิถี สิริศรัทธา รองศาสตราจารย์ ดร.วันซัย อัศวลาภ สกุล อาจารย์ ดร.ชมพูนิกข์ กาญจนพังคะ ผู้ช่วยศาสตราจารย์ ดร.กอบชัย ภัทรกุลวณิชย์ และ ผู้ช่วย ศาสตราจารย์ ดร.สุพัฒน์ เจริญพรวัฒนา คณะกรรมการสอบโครงการการเรียนการสอนเพื่อเสริมประสบการณ์ ที่กรุณาตรวจแก้ไขและให้คำแนะนำต่างๆ จนโครงการการเรียนการสอนเพื่อเสริมประสบการณ์เรื่องนี้มีความ สมบูรณ์ถูกต้องมากขึ้น

ขอขอบพระคุณ คณาจารย์ภาควิชาจุลชีววิทยา และคณาจารย์คณะวิทยาศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัยทุกท่าน ที่เมตราอบรมสั่งสอนและให้วิชาความรู้ที่เป็นประโยชน์แก่การวิจัยครั้งนี้

ขอขอบพระคุณ เจ้าหน้าที่ภาควิชาจุลชีววิทยาทุกท่านที่ช่วยเหลือ เอกสาร อุปกรณ์ และการติดต่อ ต่างๆ ให้เป็นไปด้วยดีและมีความถูกต้องเสมอมา

ขอบพระคุณ นายธนวัฒน์ บุญทิพย์ นางสาวจิตตกานต์ ปัจฉิมสวัสดิ์ และนายศิริราชย์ นันทะชัย ที่คอยช่วยเหลือ ให้คำแนะนำ และสอนขั้นตอนวิธีการทดลองต่างๆ ในห้องปฏิบัติการ 1904/16

ขอบคุณ นายไพรัช จินดาเพ็ชร นายพีรวิชญ์ พลอยประดับ นางสาวณัฐพร ประทีปวิทยาวณิช นางสาวสามินี มีผิวหอม นายปิยนนท์ ผิวสะอาด ที่สละเวลาช่วยเหลือและตรวจทานข้อมูล และเพื่อนๆ ภาควิชาจุลชีววิทยาที่คอยให้กำลังใจและช่วยเหลือในด้านต่าง ๆ

อนึ่งโครงการการเรียนการสอนเพื่อเสริมประสบการณ์นี้จะสำเร็จไม่ได้หากปราศจากความกรุณาของ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัยที่สนับสนุนทุนวิจัยในครั้งนี้

เหนือสิ่งอื่นใดคือพระคุณของบิดามารดาที่เกื้อหนุนการศึกษาของข้าพเจ้าตลอดมา ความสำเร็จ ทั้งหลายทั้งปวงนี้ ขอนอบน้อมเป็นเครื่องแสดงความกตัญญูกตเวทิตาแด่บุพการีทั้งสองท่าน ผู้มีพระคุณสูงล้ำที่ ไม่อาจประเมินค่าได้

	หน้า
บทคัดย่อภาษาไทย	ก
บทคัดย่อภาษาอังกฤษ	ข
กิตติกรรมประกาศ	ዋ
สารบัญ	ঀ
สารบัญตาราง	ຈ
สารบัญรูป	ຉ
สารบัญแผนภาพ	ช
บทที่ 1 บทนำ	
1.1 ความเป็นมาและความสำคัญ	1
1.2 วัตถุประสงค์ของงานวิจัย	9
1.3 ประโยชน์ที่คาดว่าจะได้รับ	9
บทที่ 2 อุปกรณ์ เคมีภัณฑ์ และวิธีดำเนินงานวิจัย	
2.1 อุปกรณ์	10
2.2 เคมีภัณฑ์	11
2.3 แบคทีเรีย การเจริญ และการเก็บรักษา	
2.3.1 แบคทีเรีย	11
2.3.2 การเจริญ	11
2.3.3 การเก็บรักษาแบคทีเรีย	11
2.4 การจำแนกสายพันธ์แบคทีเรียด้วยวิธีวิเคราะห์ลำดับนิวคลีโอไทด์บริเวณ 16s rDNA	
2.4.1 การสกัด DNA จากแบคทีเรียด้วยวิธี Colony PCR	11
2.4.2 การเพิ่มจำนวน DNA บริเวณ 16S rDNA	12
2.4.3 อะกาโรสเจลอิเล็กโทรโฟริซิส (agarose gel electrophoresis)	13
2.4.4 วิเคราะห์ลำดับนิวคลีโอไทด์บริเวณ 16S rDNA	13
2.4.5 วิเคราะห์ต้นไม้วิวัฒนาการ phylogenetic tree	13
2.5 ตรวจสอบยืนในกระบวนการชีวสังเคราะห์ PHAs จากฐานข้อมูลจีโนม	
2.5.1 จีโนมของแบคทีเรียที่ระบุชนิดได้	13
2.5.2 กลุ่มยืนชีวสังเคราะห์ PHAs	14
2.5.3 ออกแบบไพรเมอร์ที่จำเพาะกับกลุ่มยีนชีวสังเคราะห์ PHAs	15
2.5.4 ตรวจสอบกลุ่มยืนชีวสังเคราะห์ PHAs ของแบคทีเรียแต่ละชนิด	15

สารบัญ (ต่อ)

	หน้า
2.5.5 วิเคราะห์ลำดับนิวคลีโอไทด์ของยีนชีวสังเคราะห์ PHAs	14
2.6 ตรวจสอบยืนในกระบวนการชีวสังเคราะห์ PHAs จากโคโลนีบริสุทธิ์	
2.6.1 การเพิ่มจำนวน DNA บริเวณยีนชีวสังเคราะห์ PHAs	15
2.6.2 ตรวจสอบขนาดของผลิตภัณฑ์ PCR	15
2.6.3 วิเคราะห์ลำดับนิวคลีโอไทด์บริเวณยีนชีวสังเคราะห์ PHAs	16
บทที่ 3 ผลการทดลอง	
3.1 แบคทีเรีย การเจริญ และลักษณะโคโลนี	17
3.2 การจำแนกสายพันธุ์แบคทีเรียด้วยวิธีวิเคราะห์ลำดับนิวคลีโอไทด์บริเวณ 16s rDNA	19
3.3 ต้นไม้วิวัฒนาการ (phylogenetic tree)	21
3.4 ฐานข้อมูลจีโนมของแบคทีเรียที่ระบุชนิด	26
3.5 ยีนและโปรตีนในกระบวนการชีวสังเคราะห์ PHAs จากฐานข้อมูลจีโนม	26
3.6 บริเวณอนุรักษ์ของโปรตีน PHAs	27
3.7 การผลิต PHAs จากกลูโคสและกรดไขมัน	37
3.8 การย่อยสลาย PHAs	38
บทที่ 4 สรุป วิจารณ์ผลการทดลอง และแผนดำเนินงานวิจัยในอนาคต	
4.1 สรุปและวิจารณ์ผลการทดลอง	39
เอกสารอ้างอิง	
เอกสารอ้างอิงภาษาไทย	41
เอกสารอ้างอิงภาษาอังกฤษ	41
เอกสารอ้างอิงอออนไลน์	43
ภาคผนวก	
ภาคผนวก ก สูตรและวิธีการเตรียมอาหารเลี้ยงเชื้อ	44
ภาคผนวก ข สารเคมีและวิธีการเตรียมสารที่ใช้ในการทดลอง	45
ภาคผนวก ค ผลการทดลองเพิ่มเติม	46

สารบัญตาราง

	หน้า
ตารางที่ 1.1 การจำแนกชนิด PHAs ตามจำนวนคาร์บอนอะตอมในหน่วยมอนอเมอร์	5
ตารางที่ 1.2 การจัดจำแนกคุณสมบัติของ PHA synthase อันดับต่างๆ	8
ตารางที่ 2.1 ไพรเมอร์ที่ใช้ในการวิเคราะห์ลำดับนิวคลีโอไทด์บริเวณ 16s rDNA	12
ตารางที่ 2.2 องค์ประกอบของสารในปฏิกิริยาลูกโซ่พอลิเมอเรส	12
ตารางที่ 2.3 สภาวะที่ใช้ในปฏิกิริยาลูกโซพอลิเมอเรส	12
ตารางที่ 2.4 ยีนและโปรตีนที่ใช้ค้นหาในฐานข้อมูลจีโนม	14
ตารางที่ 3.1 ลักษณะโคโลนีของแบคทีเรียทั้ง 8 ไอโซเลท	17
ตารางที่ 3.2 การจำแนกสายพันธุ์แบคทีเรียวิเคราะห์ลำดับนิวคลีโอไทด์บริเวณ 16s rDNA	20
ตารางที่ 3.3 ความแตกต่างระหว่างแบคทีเรียกลุ่ม TSG และกลุ่ม SG	21
ตารางที่ 3.4 ฐานข้อมูลจีโนมของแบคทีเรียที่ระบุชนิด	26
ตารางที่ 3.5 โปรตีนในกระบวนการชีวสังเคราะห์ PHAs จากฐานข้อมูลโปรตีน	28

สารบัญรูป

			หน้า
รูปที่	1.1	PHA granule จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน	4
รูปที่	1.2	โครงสร้างทั่วไปและโครงสร้างที่แตกต่างกันตามชนิดของหมู่ R	4
รูปที่	1.3	การจำแนกชนิดของ PHAs ตามองค์ประกอบทางเคมีของมอนอเมอร์	5
รูปที่	1.4	แสดงวิถีการสังเคราะห์ SCH/MCH PHA จากกลูโคสและกรดไขมัน	6
รูปที่	1.5	PHA synthase และ PHA operon organization	7
รูปที่	1.6	Primary degradation และ Ultimate degradation	8
		ของแบคทีเรียในการย่อยสลาย PHAs ด้วยเอนไซม์ PHA depolymerase	
รูปที่ :	3.1	ภาพอะกาโรสเจลอิเล็กโทรโฟริซิสของปฏิกิริยาลูกโซ่พอลิเมอเรส	19
		โดยใช้ไพรเมอร์ 27F และ 1492R	
รูปที่ :	3.2	บริเวณอนุรักษ์ของ PhaB เมื่อเปรียบเทียบกับ FabG	30
รูปที่ :	3.3	บริเวณอนุรักษ์ของ PhaA	31
รูปที่ :	3.4	บริเวณอนุรักษ์ของ FabG	32
รูปที่ :	3.5	บริเวณอนุรักษ์ของ PhaJ	33
รูปที่ :	3.6	บริเวณอนุรักษ์ของ PhaC class II	34
รูปที่ :	3.7	บริเวณอนุรักษ์ของ PhaC class I	34
รูปที่ :	3.8	บริเวณอนุรักษ์ของ PhaC ที่คาดว่าเป็น PhaC class III	34
รูปที่ :	3.9	บริเวณอนุรักษ์ของ PhaC ใน <i>C. daecheongense</i> (ก) และ <i>L. fusiformis</i> (ข)	35
รูปที่ :	3.1	0 บริเวณอนุรักษ์ของ PhaZ	35
รูปที่ :	3.1	1 บริเวณอนุรักษ์ของ PhaZ ของ P. chengduensis (ก) และ P. denitrificans	36
รูปที่ :	3.1	2 การผลิต PHAs จากกลูโคสและกรดไขมัน	37
รูปที่ :	3.1	3 การย่อยสลาย PHAs ภายในเซลล์และภายนอกเซลล์	- 38

สารบัญแผนภูมิ

	หน้า
แผนภูมิที่ 3.1 ต้นไม้วิวัฒนาการของ 16S rDNA ของ TSG1	22
แผนภูมิที่ 3.2 ต้นไม้วิวัฒนาการของ 16S rDNA ของ TSG2	22
แผนภูมิที่ 3.3 ต้นไม้วิวัฒนาการของ 16S rDNA ของ TSG3	23
แผนภูมิที่ 3.4 ต้นไม้วิวัฒนาการของ 16S rDNA ของ TSG4	23
แผนภูมิที่ 3.5 ต้นไม้วิวัฒนาการของ 16S rDNA ของ TSG5	24
แผนภูมิที่ 3.6 ต้นไม้วิวัฒนาการของ 16S rDNA ของ TSG6	24
แผนภูมิที่ 3.7 ต้นไม้วิวัฒนาการของ 16S rDNA ของ TSG7	25
แผนภูมิที่ 3.8 ต้นไม้วิวัฒนาการของ 16S rDNA ของ TSG8	25

สารบัญแผนภูมิ

	หน้า
แผนภูมิที่ 3.1 ต้นไม้วิวัฒนาการของ 16S rDNA ของ TSG1	21
แผนภูมิที่ 3.2 ต้นไม้วิวัฒนาการของ 16S rDNA ของ TSG2	21
แผนภูมิที่ 3.3 ต้นไม้วิวัฒนาการของ 16S rDNA ของ TSG3	22
แผนภูมิที่ 3.4 ต้นไม้วิวัฒนาการของ 16S rDNA ของ TSG4	22
แผนภูมิที่ 3.5 ต้นไม้วิวัฒนาการของ 16S rDNA ของ TSG5	23
แผนภูมิที่ 3.6 ต้นไม้วิวัฒนาการของ 16S rDNA ของ TSG6	23
แผนภูมิที่ 3.7 ต้นไม้วิวัฒนาการของ 16S rDNA ของ TSG7	24
แผนภูมิที่ 3.8 ต้นไม้วิวัฒนาการของ 16S rDNA ของ TSG8	24

บทที่ 1 บทนำ

1.1 ความเป็นมาและความสำคัญ

ในปัจจุบันรัฐบาลไทยมีนโยบายลดการใช้ถุงพลาสติก และรณรงค์ให้นำวัสดุอื่นมาใช้แทนถุงพลาสติก เช่น รณรงค์ให้ใช้ถุงผ้าแทนถุงพลาสติก รณรงค์ให้ร้านสะดวกซื้อและห้างสรรพสินค้าต่าง ๆ งดแจกถุงพลาสติก โดยเปลี่ยนไปใช้ถุงผ้า หรือ ถุงกระดาษแทน (กรมควบคุมมลพิษ, 2019) แต่อย่างไรก็ตาม ด้วยคุณสมบัติของ พลาสติกที่ผลิตจากแหล่งปิโตรเลียมมีความทนทาน มีความยืดหยุ่นสูง และมีอายุการใช้งานได้นาน เราจึงไม่ สามารถหลีกเลี่ยงพลาสติกได้ทั้งหมด เนื่องจากยังมีความจำเป็นและความต้องการพลาสติกจำนวนมากทั้งใน ชีวิตประจำวันและทางอุตสาหกรรมต่าง ๆ เช่น อุตสาหกรรมการเกษตร อุตสาหกรรมการขนส่ง อุตสาหกรรม อาหาร และอุตสาหกรรรมยานยนต์ (Uchida และคณะ, 2000) แต่อย่างไรก็ตาม ถึงแม้พลาสติกจะมีข้อดีและ มีแนวโน้มการใช้พลาสติกที่สูงขึ้นมาตลอด แต่มักจะแปรผันตรงกับปัญหามลภาวะที่เกิดจากขยะพลาสติก เพิ่มขึ้นด้วยเช่นกัน เพื่อสอดคล้องกับนโยบายของรัฐบาลและแนวคิดรักษ์โลกที่หลาย ๆ ประเทศทั่วโลกกำลัง ผลักดันอยู่ในขณะนี้ จึงส่งผลให้ระบบอุตสาหกรรมและประชาชนสนใจที่จะใช้พลาสติกชีวภาพทดแทน พลาสติกที่ผลิตจากแหล่งปิโตรเลียม

พลาสติกชีวภาพ หมายถึง พลาสติกที่ผลิตขึ้นจากวัสดุธรรมชาติชึ่งส่วนใหญ่เป็นวัตถุดิบทางการเกษตร เช่น มันสำปะหลัง ข้าวโพด และ อ้อย เป็นต้น พลาสติกชีวภาพมี 2 ประเภท ประเภทแรกคือ พลาสติกที่ย่อย สลายได้ตามธรรมชาติ (biodegradable plastic) พลาสติกชนิดนี้จะสามารถย่อยสลายทางชีวภาพเป็น สารอินทรีย์ จึงเหมาะกับการใช้เป็นบรรจุภัณฑ์อาหาร หรือเป็นถุงทิ้งเศษอาหาร เนื่องจากจะย่อย สลายไป พร้อมขยะเศษอาหารและกลับคืนสู่ธรรมชาติ จึงมีความแตกต่างกับพลาสติกตั้งเดิมที่ยากต่อการนำไปใช้ใหม่ นอกจากนี้ยังสามารถประยุกต์ทำเป็นทำเป็นแผ่นฟิล์ม เช่น ฟิล์มยืด และฟิล์มขึ้นรูป ประยุกต์ใช้กับวัสดุสิ่งทอ เช่น เชือก ผ้า และ ตาข่ายคลุมดิน เป็นต้น เมื่อนำไปประยุกต์ใช้ทางการเกษตร พลาสติกเหล่านี้จะย่อยสลาย เป็นสารอินทรีย์ในดินและไม่มีสารพิษตกค้างในสิ่งแวดล้อม ยกตัวอย่างพลาสติกประเภทนี้ เช่น พอลิไฮดรอกซิ แอลคาโนเอต (polyhydroxyalkanoate, PHAs) พอลิแลคติก แอซิด (polylactic acid, PLAs) และ พอลิปิว ทิลีน ซักซิเนต (polybutylene Succinate, PBS) พลาสติกอีกประเภทคือ พลาสติกที่ผลิตจากชีวมวล (Biomass plastic) คือพลาสติกชีวที่สังเคราะห์จากทรัพยากรธรรมชาติโดยใช้กระบวนการทางเคมีและ ชีววิทยา ยกตัวอย่างเช่น ไปโอพอลิโพรพิลีน (bio-polypropylene, bio-PP) และ ไปโอพอลิเอทิลีน (biopolyethylene, bio-PE)

พลาสติกชีวภาพทั้งสองประเภทมีความคงทนเหมือนพลาสติกทั่วไป สามารถย่อยสลายได้โดย ธรรมชาติซึ่งจะช่วยลดปัญหาการกำจัดขยะพลาสติกและสารพิษตกค้างในสิ่งแวดล้อม คุณสมบัติดังกล่าวล้วน แล้วแต่เป็นปัจจัยที่สำคัญในการผลักดันให้ประชากรทั่วโลกสนใจใช้พลาสติกชนิดชีวภาพมากขึ้น ในหลายปีที่ ผ่านมา หลายประเทศเผชิญปัญหาการจัดการขยะพลาสติก ด้านพื้นที่จัดเก็บและทำลายขยะ ภาครัฐ ภาคเอกชน และหน่วยครัวเรือนในประเทศที่พัฒนาแล้ว เช่น ประเทศในแถบยุโรป สหรัฐอเมริกา และญี่ปุ่นจะ ให้ความสำคัญและตระหนักถึงปัญหาดังกล่าว จึงหันมาร่วมมือในการใช้พลาสติกชีวภาพเพิ่มขึ้น และจะมี มาตรการต่าง ๆ เพื่อรองรับการแก้ปัญหาขยะพลาสติก เช่น ประเทศญี่ปุ่นได้ให้สัตยาบันพิธีสารเกียวโตในปี 2002 เพื่อต่อต้านภาวะโลกร้อน (global warming) และได้ประกาศ 2 แนวทางสำคัญคือ biotechnology strategic scheme และ biomass nippon strategy โดยมีเป้าหมายในการส่งเสริมชีวมวลเป็นทรัพยากรที่ หมุนเวียนได้ โดยมุ่งเน้นให้อุตสาหกรรมภายในประเทศใช้ชีวมวลในการผลิตพลาสติก และตั้งหมายเพื่อใช้ พลาสติกชีวภาพทดแทนการใช้พลาสติกประเภทเดิม เช่น พอลิโพรพิลีน พอลิเอทิลีน และ พอลิเอทิลีน เทเรฟ ทาเลต ต่อมารัฐบาลญี่ปุนได้เข้าร่วม ความตกลงปารีส (Paris agreement) ในปี 2015 และได้กำหนด เป้าหมายให้ลดการปล่อยก๊าซคาร์บอนไดออกไซด์ร้อยละ 26 ภายในปี 2030 และมีแผนรับมือภาวะโลกร้อน โดยระบุให้ใช้พลาสติกจากชีวมวลเพิ่มขึ้น ในปัจจุบันประเทศญี่ปุ่นได้กำหนดเป้าหมายเพื่อลดปริมาณขยะ พลาสติกลงร้อยละ 25 ภายในปี 2030 กำหนดให้ร้อยละ 60 ของภาชนะบรรจุภัณฑ์ต้องสามารถนำกลับมาใช้ ใหม่ได้ และต้องนำขยะพลาสติกกลับมาใช้ใหม่ได้ 100% ภายในปี 2035 รวมทั้งพัฒนาและส่งเสริมการใช้ พลาสติกถึววภาพทดแทนพลาสติกที่ผลิตจากปิโตรเลียม และยกเลิกการแจกถุงพลาสติกในห้างสรรพสินค้า (ที่มา กระทรวงสิ่งแวดล้อมญี่ปุ่น, http://www.env.go.jp/en/index.html, accessed on April 20, 2020)

แนวโน้มการใช้พลาสติกชีวภาพในปัจจุบันมีแนวโน้มสูงขึ้นทุกปี โดยตลาดพลาสติกชีวภาพในญี่ปุ่น ขยายตัวอย่างก้าวกระโดดและมีแนวโน้มขยายตัวอย่างต่อเนื่อง (กรมส่งเสริมการค้าระหว่างประเทศ., 2018) จากข้อมูลทางสถิติของสมาคมพลาสติกชีวภาพญี่ปุ่น (Japan bio plastics association, JBPA) แสดงให้เห็น ว่าพลาสติกที่ย่อยสลายได้ตามธรรมชาติ (biodegradable plastic) มีปริมาณในท้องตลาดราว 2,300 ตัน ประกอบไปด้วยพลาสติกจาก PHAs และ PBS เช่นเดียวกับ พลาสติกจากชีวมวลที่มีปริมาณในท้องตลาดสูงถึง 35,000 ตันในปี 2017 ในช่วงเดียวกันนี้ทั่วโลกเริ่มให้ความสำคัญกับการแก้ไขปัญหาสภาพแวดล้อมทางท้อง ทะเลที่เกิดจากพลาสติกใช้แล้วทิ้งลงทะเล ซึ่งมีปริมาณขยะพลาสติกที่ทิ้งลงทะเลมากถึง 8 ล้านตันต่อปี ก่อให้เกิดกระแสเรียกร้องการควบคุมพลาสติกที่ใช้แล้วทิ้งมากขึ้นทั่วโลก พลาสติกชีวภาพจึงมีบทบาทใน ปัจจุบันมากขึ้น (ที่มา National geographic, https://www.nationalgeographic.com, accessed on February 13, 2015)

พลาสติกชีวภาพสามารถย่อยสลายได้จากกระบวนการต่าง ๆ สามารถแบ่งได้เป็น 5 ประเภทได้แก่ การย่อยสลายโดยใช้แสง (photodegradation) การย่อยสลายทางกล (mechanical degradation) การย่อย สลายผ่านปฏิกิริยาออกซิเดชัน (oxidative degradation) การย่อยสลายผ่านปฏิกิริยาไฮโดรไลซิส (hydrolytic degradation) และการย่อยสลายทางชีวภาพ (biodegradation) ซึ่งเป็นกระบวนการที่มี ความสำคัญมากที่สุดในการพัฒนาอุตสาหกรรมพลาสติกชีวภาพ

การย่อยสลายทางชีวภาพถือว่าเป็นกระบวนการที่มีความสำคัญ เป็นกระบวนการย่อยสลายของพอลิ เมอร์ต่าง ๆ จากการทำงานของเอนไซม์ในจุลินทรีย์ที่ประกอบไปด้วย 2 ขั้นตอนหลัก ซึ่งขึ้นอยู่กับขนาดของพอ ลิเมอร์ โดยทั่วไปแล้วพอลิเมอร์มักมีขนาดใหญ่และไม่ละลายน้ำ ในขั้นตอนแรกของการย่อยสลายจึงเกิดขึ้น ภายนอกเซลล์ (extracellular biodegradation) จุลินทรีย์จะปล่อยเอนไซม์ 2 ชนิด ได้แก่ เอนไซม์ที่ทำให้เกิด การแตกหักของพันธะในสายพอลิเมอร์อย่างไม่เป็นระเบียบ (endo-enzyme) และ เอนไซม์ที่ทำให้เกิดการ แตกหักของพันธะทีละหน่วยจากหน่วยซ้ำที่เล็กที่สุดที่อยู่บริเวณปลายพอลิเมอร์ (exo-enzyme) หลังจาก กระบวนการย่อยสลายโดยเอนไซม์ทั้งสองชนิด พอลิเมอร์จะแตกตัวจนมีขนาดเล็กพอที่จะแพร่ผ่านเข้าไปใน เซลล์ของจุลินทรีย์ หลังจากนั้นจะเกิดการย่อยสลายภายในเซลล์ (intracellular biodegradation) ได้ ผลิตภัณฑ์สุดท้ายคือ พลังงานและสารประกอบขนาดเล็กที่เสถียรในธรรมชาติ เช่น น้ำ เกลือ แร่ธาตุต่าง ๆ แก๊สคาร์ บอนไดออกไซด์ และชีวมวล (ที่มา national metal and materials technology center, https://www2.mtec.or.th/th/special/biodegradable_plastic/type_de_plas.html, accessed on, April 20, 2020)

พลาสติกชีวภาพชนิดพอลิไฮดรอกซีแอลคาโนเอต (polyhydroxyalkanoate, PHAs) นับเป็น พลาสติกชีวภาพชนิดหนึ่งที่มีกระบวนการผลิตและย่อยสลายที่ไม่ก่อสารพิษต่อสิ่งแวดล้อม สามารถสังเคราะห์ ได้โดยจุลินทรีย์ในสภาวะที่มีแหล่งคาร์บอนมากเกินพอในขณะที่สารอาหารชนิดอื่นเช่น ไนโตรเจน (N) ฟอสฟอรัส (P) แมกนีเซียม (Mg) หรือ ซัลเฟอร์ (S) มีปริมาณจำกัด จุลินทรีย์สามารถสะสม PHAs ไว้ภายใน เซลล์เพื่อใช้เป็นแหล่งพลังงานและคาร์บอนได้ในภาวะเครียดหรือภาวะที่เซลล์ขาดสารอาหารในรูปของพอ ลิไฮดรอกซิแอลคาโนเอตแกรนูล (PHAs granule) (Chanprateep, 2010) จำนวนและขนาดของ PHAs แกรนูลในหนึ่งเซลล์จะมีความแตกต่างกันขึ้นอยู่กับชนิดของจุลินทรีย์ สามารถตรวจสอบ PHA granule ภายใต้กล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน (transmission electron microscopes) ลักษณะที่แตกต่าง กันนี้มีผลมาจากชนิดของยีนชีวสังเคราะห์ PHAs (Stanislav และคณะ, 2020) จุลินทรีย์จึงสามารถสังเคราะห์ PHAs แกรนูล ที่มีขนาดต่างกัน เช่น ขนาด PHAs แกรนูล ของ *Halomonas hydrothermalis* มีขนาดเล็ก กว่า PHAs แกรนูล ของ *Cupriavidus necator* H16 แสดงดังรูปที่ 1.1

โครงสร้างของ PHAs จัดเป็นพอลิเอสเทอร์สายตรง ประกอบด้วยอะตอมคาร์บอน (C) ออกซิเจน (O) และ ไฮโดรเจน (H) โดยมีสูตรโครงสร้างทั่วไปและโครงสร้างที่แตกต่างกันออกไปตามชนิดของหมู่ R (Anupama และคณะ, 2013) แสดงดังรูปที่ 1.2 PHAs เป็นสายพอลิเมอร์ที่ประกอบด้วยมอนอเมอร์ชนิด เดียวกันต่อกันแบบหัวต่อหางและเชื่อมกันด้วยพันธะเอสเทอร์ระหว่างหมู่คาร์บอกซิลิกของมอนอเมอร์ตัวที่ หนึ่งกับหมู่ไฮดรอกซีของมอนอเมอร์ตัวถัดไป การจำแนกชนิดของ PHAs ตามองค์ประกอบทางเคมีของมอนอ เมอร์ (Luengo และคณะ, 2003) มี 3 ประเภทได้แก่ พอลิเมอร์ที่มีระกอบด้วยมอนอเมอร์ที่มีอนุพันธ์ของกรด ไขมันอะโรมาติก พอลิเมอร์ที่ประกอบด้วยมอนอเมอร์ที่มีสารประกอบอื่น เช่น พอลิแกมมากลูตามิก แอซิด (polyγ-glutamic-acid) แสดงดังรูปที่ 1.3 นอกจากนี้ยังสามารถจำแนกชนิด PHAs ตามจำนวนคาร์บอนอะตอมใน หน่วยมอนอเมอร์ (Lee และคณะ, 1996) ซึ่งวิธีนี้เป็นที่นิยมมากที่สุดในการเรียกชนิด PHAs สามารถจำแนก ได้ 3 ชนิด ได้แก่ PHAs สายสั้น (short-chain-length PHA, scl-PHA) PHAs สายปานกลาง (mediumchain-length PHA, mcl-PHA) และ PHAs สายยาว (long-chain-length PHA, lcl-PHA) โดยมีจำนวน หน่วยมอนอเมอร์ที่ประกอบด้วยคาร์บอน 3-5 อะตอม 6-14 อะตอม และ มากกว่า 14 อะตอม ตามลำดับ แสดงดังตารางที่ 1.1

(ก) H. Hydrothermalis

(ข) *C. necator* H16

ร**ูปที่ 1.1** เปรียบเทียบ PHAs แกรนูล เมื่อตรวจสอบภายใต้กล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน ของ *H. hydrothermalis* (ก) *C. necator* H16 (ข) (Stanislav และคณะ, 2020)

โครงสร้างทั่วไปของพอลิไฮดรอกซิแอลคาโนเอต

R group $-CH_3$ Poly(3-hydroxyalkanoates) PHA $-CH_2-CH_3$ Poly(3-hydroxyvalerate) PHV $-(CH_2)_2 - CH_3$ Poly(3-hydroxyhexanoate) PHHex $-(CH_2)_4 - CH_3$ Poly(3-hydroxyoctanoate) PHO $-(CH_2)_6-CH_3$ Poly(3-hydroxydecanoate) PHD -CH2-Poly(3-hydroxy-5-phenylvalerate) PHPV

ร**ูปที่ 1.2** โครงสร้างทางเคมีของ PHA (Anupama และคณะ, 2013)

รูปที่ 1.3 การจำแนกชนิดของ PHAs ตามองค์ประกอบทางเคมีของมอนอเมอร์ (Luengo และคณะ, 2003) PHAs ที่ประกอบด้วยมอนอเมอร์ที่มีอนุพันธ์ของกรดไขมันแบบแบบอะลิฟาติกและอะโรมาติก (1-9) (Manami และคณะ, 2018) และ PHAs ที่ประกอบด้วยมอนอเมอร์ที่มีสารประกอบอื่น (10)

ตารางที่ 1.1 การจำแนกชนิด PHAs ตามจำนวนคาร์บอนอะตอมในหน่วยมอนอเมอร์ (Lee และคณะ, 1996)

ชนิด PHAs	จำนวนคาร์บอนอะตอม(C)	ตัวอย่าง PHAs
short-chain-length PHA	3-5C	PHB, PHV
medium-chain-length PHA	6-14C	PHHex, PHO, PHD
long-chain-length PHA	มากกว่า 14C	Poly(3-hydroxyhexadecanoate)

การผลิต PHAs ของแบคทีเรียผ่านวิถี PHA synthesis ประกอบไปด้วยเอนไซม์หลัก 3 ชนิดทำหน้าที่ เปลี่ยน acetyl-coA เป็น acetoacetyl-coA จากนั้นเปลี่ยนเป็น 3-hydroxybutyryl-coA และได้ผลิตภัณฑ์ สุดท้ายคือ PHAs ได้แก่ β-ketothiolase, acetoacetyl-coA reductase และ PHA synthase จากการยีน *phaA phaB* และ *phaC* ตามลำดับ (Keiji และคณะ, 2013) ส่วนการย่อยสลาย PHAs ของแบคทีเรียจะใช้ เอนไซม์ PHA depolymerase จากยีน *phaZ* (Doh และคณะ, 2007) แสดงดังรูปที่ 1.4

(*PhaA*, β -ketothiolase; *PhaB*, acetoacetyl-coenzyme A reductase; *PhaC*, PHA synthase; *FabG*, 3-ketoacyl acyl carrier protein (ACP) reductase; *PhaJ*, enoyl-coenzyme A hydratase)

กลุ่มยืนชีวสังเคราะห์ PHAs มักอยู่รวมกันเป็นกลุ่มยืนหรือที่เรียกว่า PHA operon organization (Joanne Stubbe และคณะ, 2005) ประกอบไปด้วย *phaA phaB* และ *phaC* เป็นยืนหลักในวิถีสังเคราะห์ PHAs โดยมี acetyl-CoA เป็นสารตัวกลางที่ได้จากวิถีสร้างพลังงานของเซลล์ผ่านกระบวนการ glycolysis และ pyruvate decarboxylation แบคทีเรียแต่ละชนิดจะมีการจัดเรียงกันและทิศทางการแสดงออกของยืน ทั้งสามแตกต่างกัน ยกตัวอย่างเช่น *R. eutropha* มียืนทั้งสามเรียงกันโดยเริ่มจาก *phaC phaA* และ *phaB* ตามลำดับ มีทิศทางการแสดงออกในทิศทางเดียวกัน *A. vinosum* มียืนเรียงกันโดยเริ่มจาก *phaC phaE phaA phaP* และ *phaB* ตามลำดับโดยมีทิศทางการแสดงออกที่แตกต่างกันแสดงดังรูปที่ 1.5

รูปที่ 1.5 PHA synthase และ PHA operon organization (Joanne. และคณะ, 2005)

PHA synthase (PhaC) จากยีน *phaC* ทำหน้าที่ผลิต PHAs โดยมีทั้งหมด 4 ชนิด (Rehm, 2003) แบคทีเรียแต่ละชนิดจะมี PHA synthase ที่แตกต่างกันขึ้นอยู่กับการจัดเรียงกันของยีนและลำดับเบสบนยีน *phaC* ยกตัวอย่างเช่น PHA synthase class I (PhaC I) พบได้ใน *R. eutropha* ถูกถอดรหัสจากยีน *phaC* มี ขนาดประมาณ 61-73 kDa สามารถผลิต scl-PHA ความยาวคาร์บอน 3-5 อะตอม PHA synthase class II (PhaC II) พบได้ใน *P. aeruginosa* ถูกถอดรหัสจากยีน *phaC* ขนาดประมาณ 60-65 kDa สามารถผลิต mcl-PHA ความยาวคาร์บอน 6-14 อะตอม PHA synthase class III (PhaC III) พบได้ใน *A. vinosum* ถูกถอดรหัส จากยีน *phaC* และ *phaE* ขนาดประมาณ 40 kDa สามารถผลิต scl-PHA ความยาวคาร์บอน 3-5 อะตอม ในขณะที่ PHA synthase class IV (PhaC IV) พบได้ในกลุ่ม *Bacillus* sp. เป็นส่วนใหญ่ ถูกถอดรหัสจากยีน *phaC* และ *phaR* ขนาดประมาณ 40 kDa และ 22 kDa ตามลำดับ สามารถผลิต scl-PHA ความยาวคาร์บอน 3-5 อะตอม รูปแบบที่แตกต่างกันของ PHA synthase แต่ละชนิดนี้ทำให้คุณสมบัติในการสังเคราะห์ PHAs แตกต่างกันออกไปเช่น ขนาด ความยาว และชนิดมอนอเอมร์ในการสังเคราะห์ PHAs (Quillaguamán และ คณะ, 2010) แสดงดังตารางที่ 1.2

การย่อยสลาย PHAs ของจุลินทรีย์โดยใช้เอนไซม์ PHA depolymerase ซึ่งเป็นเอนไซม์ที่ถูกถอดรหัส จากยีน *phaZ* ยีนชนิดนี้จะจัดอยู่ใน PHA operon organization จึงทำให้ในแต่ละแบคทีเรียมียีนชนิดนี้ใน บริเวณที่แตกต่างกัน นอกจากนี้ยังสามารถจัด PHA depolymerase เป็นเอนไซม์ชนิดที่ใช้ภายในเซลล์ และ ภายนอกเซลล์ (Keiji และคณะ, 2008) โดยขึ้นอยู่กับรูปแบบของปฏิกิริยาต่อ PHAs แบคทีเรียจะย่อยสลาย PHAs ที่สะสมภายในเซลล์เพื่อเป็นแหล่งคาร์บอนและแหล่งพลังงานแก่แบคทีเรียในการเจริญเติบโต โดยมี ความสัมพันธ์กับการสังเคราะห์ PHAs ของเอนไซม์ PHA synthase ที่ทำหน้าสร้าง PHAs granule จากนั้น PHA depolymerase จะทำหน้าที่สลาย PHAs ที่สะสมไว้เพื่อเป็นพลังงานแก่เซลล์ การทำงานของ PHA depolymerase จะไฮโดรไลซ์ในส่วนของ amorphous ก่อน จากนั้นจึงเข้าจับ crystalline (Organ และ Barham, 1988) โดยทำหน้าที่สลายพันธะเอสเทอร์ของ PHAs นอกจากนี้ยังสามารถหลั่งเอนไซม์ PHA depolymerase ออกสู่ภายนอกเซลล์เพื่อย่อยสลาย PHAs และดูดซึมผลิตภัณฑ์ที่ได้ไปใช้เป็นสารตั้งต้นในการ สร้างพลังงานและชีวมวลของเซลล์แสดงดังรูปที่ 1.6

Class	Subunits	${f Molecular}$ weight	Example	Substrate	Properties of PHA
т	PhaC	61-73 kDa	R. eutropha	3/4/5HA 3-	500-5,000
1				$5\mathrm{C}$	kDa
	PhaC	60-65 kDa	P. aerugi-	$4/5 \mathrm{HA}$ +	50-500 kDa
II			nosa	3HA 6-14C	
				$+3\mathrm{HB}$	
	PhaC	40 kDa	Allochromatum	n 3/4/5HA 3-	molecular
TTT	PhaE	40 kDa	violosum	$5\mathrm{C}~+~3\mathrm{HA}$	mass lies be-
111				6-8C	tween I and
					II
IV	PhaC	40 kDa	B. mega-	3HA 3-5C	no data
	PhaR	22 kDa	terium		available

ตารางที่ 1.2 การจัดจำแนกคุณสมบัติของ PHA synthase ชั้นต่าง ๆ (Quillaguamán และคณะ, 2010)

3/4/5HA 3-, 4- or 5-hydroxyalkanoate respectively; #C describes the chain length of the monomers (number of C atoms)

รูปที่ 1.6 Primary degradation และ Ultimate degradation ของแบคทีเรียในการย่อยสลาย PHAs ด้วยเอนไซม์ PHA depolymerase (Keiji และคณะ, 2008) ดินเป็นแหล่งธรรมชาติที่มีความอุดมสมบูรณ์และมีความสำคัญในการคัดแยกเซื้อแบคทีเรียที่มี คุณสมบัติในการสังเคราะห์ PHAs (Boyandin และคณะ, 2012) โดยปกติแล้วแบคทีเรียที่มีความสามารถใน การสลาย PHAs ได้มักจะผลิต PHAs ได้เช่นกัน และงานวิจัยนี้เป็นงานวิจัยต่อเนื่องจากการคัดแยกเซื้อที่มี คุณสมบัติในการย่อยสลาย PHAs จากดิน (ปวันรัตน์ ชัยศรี, 2018) ที่ได้นำแผ่น PHB ฝังลงไปในดินและเมื่อ เวลาผ่านไป น้ำหนักของแผ่น PHB มีน้ำหนักลดลง จึงคาดว่าจุลินทรีย์ในดินมีความสามารถในการย่อยสลาย PHB ซึ่งเป็นมอนอเมอร์ของ PHAs และระบุชนิดของเชื้อแบคทีเรียตัวอย่าง งานวิจัยนี้จึงนำความเกี่ยวข้องของ การผลิตและย่อยสลาย PHAs มาตรวจสอบด้วยวิธีการทางจุลชีววิทยาและอณูพันธุศาสตร์ ในการตรวจสอบ การมีอยู่ของกลุ่มยีนและโปรตีนชีวสังเคราะห์ PHAs ของแบคทีเรียที่คัดแยกได้

1.2 วัตถุประสงค์ของโครงการ

งานวิจัยชิ้นนี้มีวัตถุประสงค์เพื่อระบุลักษณะคุณสมบัติของแบคทีเรียที่ผลิตพอลิไฮดรอกซีแอลคาโน เอตและยืนชีวสังเคราะห์ PHAs

1.3 ประโยชน์ที่คาดว่าจะได้รับ

ก. ในด้านความรู้และประสบการณ์

ทราบถึงขั้นตอนในการระบุชนิดของแบคทีเรียและตรวจสอบการการมีอยู่ของกลุ่มยีนที่ เกี่ยวข้องกับกระบวนการสังเคราะห์พอลิไฮดรอกซีแอลคาโนเอต โดยใช้เทคนิคทางจุลชีวิทยาและอณู พันธุศาสตร์ เข้าใจกลไกในการสังเคราะห์พอลิไฮดรอกซีแอลคาโนเอต มีความรู้พื้นฐานเกี่ยวกับ พลาสติกชีวภาพ ฝึกคิด และ วิเคราะห์ปัญหาโดยอาศัยกระบวนการทางวิทยาศาสตร์ เสริม ประสบการณ์ในการทำงานในห้องปฏิบัติการทางวิทยาศาสตร์ ตลอดจนการเข้าถึงและวิเคราะห์ชุด ข้อมูลทางชีวภาพอย่างเป็นเป็นระบบ และสามารถนำไปต่อยอดได้ในอนาคต ข. ความรู้ ความเข้าใจที่นำไปสู่การแก้ปัญหาของสังคมหรือสภาพแวดล้อม

สามารถนำความรู้ที่ได้จากการระบุชนิดของแบคทีเรียและวิเคราะห์คุณสมบัติของจุลินทรีย์ที่ มีคุณสมบัติในการสังเคราะห์พอลิไฮดรอกซีแอลคาโนเอต มาเพิ่มประสิทธิภาพในการผลิตพลาสติก ชีวภาพ ทำให้ต้นทุนการผลิตต่ำลง และนำพลาสติกชีวภาพมาใช้ในอนาคตมากขึ้น

บทที่ 2

อุปกรณ์ เคมีภัณฑ์ และวิธีดำเนินงานวิจัย

2.1 อุปกรณ์

- 1. เครื่องผสมสาร (vortex mixer) รุ่น G-560E ของบริษัท Science Industries, Inc, New York, USA
- 2. ขวดรูปชมพู่ (erlenmeyer flask) ของบริษัท Pyrex, New York, USA
- 3. เครื่องนึ่งฆ่าเชื้อ (autoclave) รุ่น SS-325 และรุ่น ES-215 ของบริษัท Tomy Seiko, Ltd., Tokyo, Japan
- 4. กระบอกตวง (cylender) ของบริษัท Pyrex, New York, USA
- เครื่องชั่งหยาบ (laboratory balance) รุ่น PG 2002-S และรุ่น PG 6002-S ของบริษัท Metter Toledo Co. Ltd., Switzerland
- 6. เครื่องชั่งละเอียด (analytical balance) รุ่น AG 204 และรุ่น PG 285 ของบริษัท Metter Toledo Co. Ltd., Switzerland
- 7. เครื่อง Thermal cycler รุ่น T100 ของบริษัท Bio-Rad Laboratories, Inc., California, USA
- เครื่องให้กำเนิดแสง (BluPAD Dual LED Blue/White Light Transilluminator) ของบริษัท biohelix Co., Ltd, Keelung, Taiwan
- 9. จานเลี้ยงเพาะเชื้อ (petri dish) ของบริษัท Pyrex, New York, USA
- 10. ชุดเครื่องมืออะกาโรสเจลอิเล็กโทรโฟริซิส (agarose gel electrophoresis)
 - 10.1. Mini gel electrophoresis system ของบริษัท Bio-Rad Laboratories, Inc., California, USA
 - 10.2. Electrophoresis complete system ของบริษัท Bio-Rad Laboratories, Inc., California, USA
- 11. ตู้ถ่ายเชื้อแบบ laminar flow ISSO รุ่น BV-124 ของบริษัท International Scientific Supply Co. Ltd., Bangkok, Thailand
- 12. ตู้แช่แข็งจุดเยือกแข็งต่ำ (deep freezer) -20 องศาเซลเซียส ของบริษัท SANYO Electric Co., Ltd.
 Osaka, Japan
- ตู้แช่แข็งจุดเยือกแข็งต่ำา (deep freezer) อุณหภูมิ -80 องศาเซลเซียส ของบริษัท Thermo Fisher
 Scientific, Inc., Massachusetts, USA
- 14. ตู้บ่มเชื้อแบบควบคุมอุณหภูมิ (incubator) รุ่น D06062 ของบริษัท Kubota Co., Osaka, Japan
- 15. ตู้เย็นอุณหภูมิ 4 องศาเซลเซียส ของบริษัท Mitsubishi Electric Co., Tokyo, Japan
- 16. ตู้อบแห้ง (hot air oven) ของบริษัท Memmert GmbH + Co.KG, Schwabach, Germany
- 17. บีกเกอร์ (beaker) ของบริษัท Pyrex, New York, USA
- 18. ไมโครปิเปต (micropipette) รุ่น P2, P20, P200 และ P1000 ของบริษัท Gilson, Inc., Wisconsin, USA
- 19. หลอดไมโครเซนทริฟิวจ์ (microcentrifuge tube) ของบริษัท Sigma-Aldrich, Inc., Missouri, USA
- 20. หลอดทดลอง (tube) ของบริษัท Pyrex, New York, USA
- 21. หลอดเก็บเชื้อแช่แข็ง (cryotube) ของบริษัท Thermo Fisher Scientific, Inc., Massachusetts, USA

2.2 เคมีภัณฑ์

- 1. กลูโคส (glucose; C₆H₁₂O₆) ของบริษัท Sigma Chemical Co.,USA
- 2. โซเดียมคลอไรด์ (NaCl) ของบริษัท Merck KGaA, Darmstadt, Germany
- 3. กลีเซอรอล (C $_3H_8O_3$) ของบริษัท Merck KGaA, Darmstadt, Germany
- 4. ทริปโทน (tryptone) ของบริษัท Merck KGaA, Darmstadt, Germany
- 5. วุ้นผง (agar) ของบริษัท Productora de agar S.A., Llanquihue, Chile
- 6. สารสกัดจากเนื้อ (beef extract) ของบริษัท Labscan Asia Co., Ltd., Ireland
- 7. สารสกัดจากยีสต์ (yeast extract) ของบริษัท BioSpringer, Wisconsin, USA
- 8. อะกาโรสเจล (agarose gel) ของบริษัท ABgene, Inc, Cheshire, UK
- 9. แอมโมเนียมซัลเฟต ((NH₄)SO₄) ของบริษัท Merck, Darmstadt, Germany
- 10. Kod OneTM taq polymerase ของบริษัท Toyobo Co., Ltd., Osaka, Japan

2.3 แบคทีเรีย การเจริญ และการเก็บรักษา

2.3.1 แบคทีเรีย

แบคทีเรียทั้งหมดที่ใช้ในงานวิจัยนี้ถูกคัดแยกจากงานวิจัย การคัดแยกเชื้อที่มีคุณสมบัติใน การย่อยสลาย PHAs จากดิน (ปวันรัตน์ ชัยศรี, 2019) ได้แก่ SG1 SG2 SG3 SG4 SG5 SG6 SG7 และ SG8

2.3.2 การเจริญ

นำเชื้อแบคทีเรีย SG1 ถึง SG8 ที่เก็บในตู้เย็นที่อุณหภูมิ -80 องศาเซลเซียสในครั้งแรก มาขีด บนอาหารแข็ง Luria-Bertani (LB) (ภาคผนวก ก1) จากนั้นนำไปบ่มที่อุณหภูมิ 30 องศาเซลเซียส เป็นเวลา 48 ชั่วโมง หลังจากนั้นตั้งชื่อใหม่เป็น TSG1 TSG2 TSG3 TSG4 TSG5 TSG6 TSG7 และ TSG8

2.3.3 การเก็บรักษาแบคทีเรีย

เขี่ยเชื้อไอโซเลทที่บริสุทธิ์ลงบนอาหารเลี้ยงเชื้อแข็ง Luria-Bertani (LB) บ่มที่อุณหภูมิ 30 องศาเซลเซียส 1-2 วัน จากนั้นนำมาเก็บรักษาที่อุณหภูมิ 4 องศาเซลเซียส และนำโคโลนีเดี่ยวเขี่ยลง อาหาร ใหม่ทุก ๆ 1-2 สัปดาห์

2.4 การจำแนกสายพันธุ์แบคทีเรียด้วยวิธีวิเคราะห์ลำดับนิวคลีโอไทด์บริเวณ 16s rDNA

นำโคโลนีบริสุทธิ์ที่ได้จากข้อ 2.3 มาเพิ่มปริมาณสารพันธุกรรมของยีน 16s rDNA โดยใช้วิธี colony-PCR และใช้ไพร์เมอร์ที่จำเพาะกับบริเวณ 16s rDNA แล้วตรวจสอบผลด้วยเจลอิเล็กโทรโฟริสิส และส่ง ตัวอย่างวิเคราะห์หาลำดับเบส

2.4.1 การสกัด DNA จากแบคทีเรียด้วยวิธี Colony PCR

นำโคโลนีที่บริสุทธิ์จำนวน 1 ลูปของแบคทีเรียทั้ง 8 ตัวอย่างใส่ลงในแต่ละหลอดไมโครเซน ทริฟิวจ์ที่มี Tris-EDTA (TE) buffer 20 ไมโครลิตร จำนวน 8 หลอด กระจายตะกอนเซลล์ให้เป็นเนื้อ เดียวกัน จากนั้นนำไปต้มที่อุณหภูมิ 94 องศาเซลเซียส 10 นาที

2.4.2 การเพิ่มจำนวน DNA บริเวณ 16S rDNA

เพิ่มจำนวน DNA บริเวณ 16S rDNA ด้วยปฏิกิริยาลูกโซพอลิเมอเรส (polymerase chain reaction, PCR) ในหลอดปฏิกิริยาลูกโซ่พอลิเมอร์เรส โดยใช้ไพรเมอร์ 27F และ 1492R ลำดับนิวคลี โอไทด์ของไพรเมอร์แสดงในตารางที่ 2.1 เกิดผลิตภัณฑ์ PCR ขนาดประมาณ 1,500 bp องค์ประกอบ ของสารต่าง ๆ ในปฏิกิริยาแสดงในตารางที่ 2.2 ดำเนินปฏิกิริยาด้วยเครื่อง Thermal cycler ตาม สภาวะแสดงในตารางที่ 2.3 จากนั้นตรวจสอบผลิตภัณฑ์ PCR เกิดขึ้นด้วยวิธีอะกาโรสเจลอิเล็กโทรโฟ รีซิส โดยใช้ความเข้มข้นเจลร้อยละ 0.5 และผลิตภัณฑ์ PCR 2 ไมโครลิตผสมกับสีติดตาม 1 ไมโครลิตร เปรียบเทียบกับสารละลาย DNA มาตรฐาน VC 1kb DNA Ladder

ตารางที่ 2.1 ไพรเมอร์ที่ใช้ในการวิเคราะห์ลำดับนิวคลีโอไทด์บ	ริเวณ 16s rDNA
---	----------------

ไพรเมอร์	ลำดับนิวคลีโอไทด์ (5'-3')	ขนาดผลิตภัณฑ์ PCR (bp)	อ้างอิง
ไพรเมอร์ที่จำ	แพาะต่อนิวคลีโอไทด์บริเวณ 16S rDNA		
27F	AGAGTTTGATCCTGGCTCAG	1 500	Lana 1001
1492R	GGTTACCTTGTTACGACTT	~1,500	Lane, 1991

ตารางที่ 2.2 องค์ประกอบของสารในปฏิกิริยาลูกโซ่พอลิเมอเรส (ปริมาตรสุดท้าย 20 ไมโครลิตร)

สาร	ปริมาตร (ไมโครลิตร)	ความเข้มข้นสุดท้ายของสาร
น้ำปราศจากเชื้อ (DI Type I)	9.54	
KOD One [™] PCR Master Mix	10	1 เท่า
10 ไมโครโมลาร์ ไพรเมอร์	0.4	ชนิดละ 0.2 ไมโครโมลาร์
DNA แม่แบบ	0.06	

	64 Y		
ขั้นตอน	อุณหภูมิ (องศาเซลเซียส)	เวลา (วินาที)	จำนวนรอบ
Initial activation	98	300	1
Denaturation	98	10	
Annealing	52	30	35
Extension	68	12	
Final Extension	72	180	1

ตารางที่ 2.3 สภาวะที่ใช้ในปฏิกิริยาลูกโซพอลิเมอเรส

2.4.3 อะกาโรสเจลอิเล็กโทรโฟริซิส (agarose gel electrophoresis)

เตรียมอะกาโรสเจลโดยชั่งผงอะกาโรส 0.5 กรัม ใส่ลงในขวดรูปชมพู่ขนาด 50 มิลลิลิตร สำหรับเตรียมเจล เติมบัฟเฟอร์ 1X TAE ปริมาตร 100 มิลลิลิตร ละลายเจลด้วยไมโครเวฟจนกระทั่ง ผงเจลละลายหมด เทลงในถาดสำหรับขึ้นรูปเจล รอจนกระทั่งเจลแข็งตัวในอุณภูมิห้องประมาณ 15-30 นาที จากนั้นวางอะกาโรสเจลลงในแชมเบอร์ของเครื่องอิเล็กโทรโฟริซิส เติมบัฟเฟอร์ 1X loading buffer และใช้ VC 1kb DNA Ladder เป็นดีเอ็นเอมาตรฐาน จากนั้นทำอิเล็กโทรโฟริซิส โดยใช้ กระแสไฟฟ้า 120 โวลต์ เป็นเวลา 20 นาที และนำเจลไปส่องในเครื่องให้กำเนิดแสง Blue/White Light Transilluminator

2.4.4 วิเคราะห์ลำดับนิวคลีโอไทด์บริเวณ 16S rDNA

นำลำดับเบสที่ได้จากข้อ 2.4.2 มาวิเคราะห์ลำดับนิวคลีโอไทด์บริเวณ 16S rDNA โดยส่ง บริษัท U2bio ประเทศเกาหลี เพื่อทำผลิตภัณฑ์ PCR ให้บริสุทธิ์และวิเคราะห์หาลำดับนิวคลีโอไทด์ โดยใช้ไพรเมอร์ 27F และ 1492R หลังจากนั้นตรวจสอบคุณภาพลำดับนิวคลีโอไทด์โดยใช้โปรแกรม Chromas Pro 2.1.8 เปรียบเทียบคุณภาพของแต่ละสาย และรวมส่วนที่มีคุณภาพสูงให้ได้ลำดับ นิวคลีโอไทด์สายเดียว นำข้อมูลที่ได้มาวิเคราะห์และเปรียบเทียบกับฐานข้อมูลนิวคลีโอไทด์ ใน GenBank ด้วยโปรแกรม BLASTn (https://blast.ncbi.nlm.nih.gov/Blast) ของ National Center for Biotechnology Information (NCBI) และเปรียบเทียบกับลำดับนิวคลีโอไทด์บริเวณ 16S rDNA ของแบคทีเรียไอโซเลท SG1 SG2 SG3 SG4 SG5 SG6 SG7 และ SG8 จากงานวิจัยของนางสาว ปวันรัตน์ ชัยศรี

2.4.5 วิเคราะห์ต้นไม้วิวัฒนาการ phylogenetic tree

นำลำดับนิวคลีโอไทด์ของ 16S rDNA ที่ผ่านการวิเคราะห์จากข้อ 2.4.4 และลำดับนิวคลีโอ ไทด์ของ 16S rDNA ของแบคทีเรียที่คัดเลือกไว้ เปรียบเทียบความเหมือนของสายนิวคลีโอไทด์ด้วย ฟังก์ชัน multiple alignment โดยใช้โปรกรม Clustal W จากนั้นนำข้อมูลที่ได้มาคำนวณ distance matrix สร้าง phylogenetic tree ด้วยการวิเคราะห์แบบ Neighbor-joining และ Bootstrap จำนวน 1,000 ซ้ำ โดยใช้โปรแกรม MEGA-X version 10.1.7

2.5 ตรวจสอบยีนและโปรตีนในกระบวนการชีวสังเคราะห์ PHAs จากฐานข้อมูลจีโนม

ค้นหาจีโนมของเซื้อแบคทีเรียที่ระบุชนิดได้ในฐานข้อมูล หลังจากนั้นตรวจสอบกลุ่มยีนที่เกี่ยวข้องกับ กระบวนการชีวสังเคราะห์ PHAs ได้แก่ *phaA phaB phaC phaJ* และ *fabG* และยีนในกระบวนการย่อย สลาย PHAs ได้แก่ *phaZ* ค้นหางานวิจัยที่รายงานการผลิต PHA ของเชื้อแบคทีเรียที่ระบุชนิดได้ หลังจากนั้น ออกแบบไพรเมอร์ที่จำเพาะต่อยีนชีวสังเคราะห์ PHAs และยีนย่อยสลาย PHAs

2.5.1 จีโนมของแบคทีเรียที่ระบุชนิดได้

ค้นหาจีโนมของแบคทีเรียที่ระบุชนิดได้จากผลวิเคราะห์ต้นไม้วิวัฒนาการ ในฐานข้อมูล GenBank ระบุชนิดการค้นหาจาก Genome (https://www.ncbi.nlm.nih.gov/genome) จากนั้น ตรวจ สอบคุณภาพของจีโนมในฐานข้อมูลจากรายงานจีโนม เลือกจีโนมของแบคทีเรียจากคุณภาพ (quality) ระดับการรวม (assembly level) และความน่าเชื่อถือของข้อมูล

2.5.2 กลุ่มยืนและโปรตีนในกระบวนการชีวสังเคราะห์ PHAs

ค้นหายีนที่เกี่ยวข้องกับกระบวนการชีวสังเคราะห์พอลิไฮดรอกซีแอลคาโนเอต จากจีโนมถูก ที่คัดเลือกจากข้อ 2.5.1 จากนั้นค้นหาโปรตีนของจีโนมนั้น จากฟังก์ชันค้นหาโปรตีนที่สามาร แสดงออกได้ (protein coding genes, CDS) โดยค้นหาด้วยชื่อยีนและโปรตีนแสดงดังตารางที่ 2.4

ค้นหายีนโดยใช้ลำดับกรดอะมิโนมอ้างอิงของโปรตีนในกระบวนการชีวสังเคราะห์ PHAs เปรียบเทียบกับลำดับกรดอะมิโนที่สามารถถอดรหัสได้จากยีนและโปรตีนในฐานข้อมูลจีโนมของแต่ละ ไอโซเลทโดยใช้ใช้โปรแกรม tBLASTn (https://blast.ncbi.nlm.nih.gov/tBlastn) และ BLASTp (https://blast.ncbi.nlm.nih.gov/Blastp) ตามลำดับ ค้นหาบริเวณอนุรักษ์ของยีนโดยใช้ NCBI conserved domain (https://www.ncbi.nlm.nih.gov/Structure/cdd)

ยืน	โปรตีน
phaA	acetyl-CoA acetyltransferase (PhaA)
phaB	acetoacetyl-CoA reductase (PhaB)
phaC	PHA synthase, poly(3-hydroxyalkanoate) polymerase (PhaC)
phaJ	(R)-specific enoyl-CoA hydratase. (PhaJ)
phaZ	PHA depolymerase, poly(3-hydroxyalkanoate) depolymerase (PhaZ)
fabG	3-ketoacyl-acyl carrier protein reductase (FabG)

a		a ~	ା ସ ସଂସ	ียย	ຄ	ิย	ar
ตารางท	2.4	ยามและไป	ไรตนทไ	.ชเคนหว	าไนสาข	าเป็นเป็น	ลจเนม
	-• ·	0 10 00 0 0 0 0 0		0110071		0000	01 0 0 0000

แผนการดำเนินงานวิจัยในอนาคต

เนื่องจากสถานการณ์การระบาดของไวรัสโควิด-19 ในปัจจุบัน ผู้วิจัยได้วางแผนการทดลองในขั้น ถัดไปดังนี้

2.5.3 ออกแบบไพรเมอร์ที่จำเพาะกับกลุ่มยืนชีวสังเคราะห์ PHAs

ออกแบบไพรเมอร์โดยใช้ข้อมูลจีโนมของแบคทีเรียแต่ละชนิดมาวิเคราะห์ความเหมือนและ ความแตกต่างกันของลำดับนิวคลีโอไทด์ของกลุ่มยืนชีวสังเคราะห์พอลิไฮดรอกซีแอลคาโนเอตโดยใช้ โปรแกรม MEGA-X version 10.1.7 Primer-BLAST (https://www.ncbi.nlm.nih.gov/tools/ primer-blast/) และโปรแกรมออนไลน์ Benchling (https://www.benchling.com/) ออกแบบ ไพรเมอร์ให้มีความจำเพาะกับยืนในแต่ละชนิดของแบคทีเรียที่ระบุชนิดได้

2.5.4 ตรวจสอบกลุ่มยืนชีวสังเคราะห์ PHAs ของแบคทีเรียแต่ละชนิด

ตรวจสอบยีนในกลุ่มยีนชีวสังเคราะห์ PHAs ของแบคทีเรียที่ระบุชนิดได้ทั้ง 8 ตัวอย่าง โดย นำไพรเมอร์ที่ได้จากข้อ 2.5.3 มาเพิ่มจำนวน DNA ด้วยวิธี *insilico* PCR amplification โดยใช้จีโนม ของแบคทีเรียแต่ละชนิดเป็นชุดทดสอบ และปรับสภาวะให้เหมาะสมกับแต่ละไพรเมอร์

2.5.5 วิเคราะห์ลำดับนิวคลีโอไทด์ของยีนชีวสังเคราะห์ PHAs

นำลำดับนิวคลีโอไทด์ของยีนชีวสังเคราะห์ PHAs ที่ได้จากข้อ 2.5.4 มาวิเคราะห์และ เปรียบเทียบกับฐานข้อมูลนิวคลีโอไทด์ (nucleotide database, nr) ใน GenBank ด้วยโปรแกรม BLASTn (https://blast.ncbi.nlm.nih.gov/Blast) ของ national center for biotechnology Information (NCBI) เพื่อยืนยันผลการทดลองในข้อ 2.5.3 และ 2.5.4

2.6 ตรวจสอบยืนในกระบวนการชีวสังเคราะห์ PHAs จากโคโลนีบริสุทธิ์

นำโคโลนีเดี่ยวที่ได้จากข้อ 2.3 มาเพิ่มปริมาณสารพันธุกรรมของยีนในกระบวนการชีวสังเคราะห์ PHAs โดยใช้วิธี colony-PCR (ขั้นตอนที่ 2.4.1) ใช้ไพรเมอร์ที่จำเพาะแต่ละยีน ตรวจสอบผลด้วยเจลอิเล็กโทร โฟริซิส 1% agarose gel จากนั้นวิเคราะห์หาลำดับนิวคลีโอไทด์ของผลิตภัณฑ์ PCR ที่ได้

2.6.1 การเพิ่มจำนวน DNA บริเวณยีนชีวสังเคราะห์ PHAs

เพิ่มจำนวน DNA บริเวณยีนชีวสังเคราะห์ PHAs ด้วยวิธี PCR ในหลอดปฏิกิริยาลูกโซ่พอลิ เมอร์เรส โดยใช้ไพรเมอร์ที่จำเพาะ ดำเนินปฏิกิริยาด้วยเครื่อง thermal cycler จากนั้นตรวจสอบ ผลิตภัณฑ์ PCR เกิดขึ้นด้วยวิธีอะกาโรสเจลอิเล็กโทรโฟรีซิส โดยใช้ความเข้มข้นเจลร้อยละ 1 และ ผลิตภัณฑ์ PCR 2 ไมโครลิตผสมกับสีติดตาม 1 ไมโครลิตร เปรียบเทียบกับสารละลาย DNA มาตรฐาน VC 1kb DNA Ladder

2.6.2 ตรวจสอบขนาดของผลิตภัณฑ์ PCR

เตรียมอะกาโรสเจลโดยซั่งผงอะกาโรส 1.0 กรัม ใส่ลงในขวดรูปชมพู่ขนาด 50 มิลลิลิตร สำหรับเตรียมเจล เติมบัฟเฟอร์ 1X TAE ปริมาตร 100 มิลลิลิตร ละลายเจลด้วยไมโครเวฟจนกระทั่ง ผงเจลละลายหมด เทลงในถาดสำหรับขึ้นรูปเจล รอจนกระทั่งเจลแข็งตัวในอุณภูมิห้องประมาณ 15-30 นาที จากนั้นวางอะกาโรสเจลลงในแชมเบอร์ของเครื่องอิเล็กโทรโฟริซิส เติมบัฟเฟอร์ 1X loading buffer และใช้ VC 1kb DNA Ladder เป็นดีเอ็นเอมาตรฐาน จากนั้นทำอิเล็กโทรโฟริซิส โดยใช้ กระแสไฟฟ้า 120 โวลต์ เป็นเวลา 20 นาที และนำเจลไปส่องในเครื่องให้กำเนิดแสง Blue/White Light Transilluminator

2.6.3 วิเคราะห์ลำดับนิวคลีโอไทด์บริเวณยีนชีวสังเคราะห์ PHAs

นำลำดับเบสที่ได้จากข้อ 2.6.2 มาวิเคราะห์ลำดับนิวคลีโอไทด์บริเวณยีนชีวสังเคราะห์ PHAs โดยส่งบริษัท U2bio ประเทศเกาหลีใต้ เพื่อทำผลิตภัณฑ์ PCR ให้บริสุทธิ์และวิเคราะห์หาลำดับนิวคลี โอไทด์โดยใช้ไพรเมอร์จำเพาะ หลังจากนั้นตรวจสอบคุณภาพลำดับนิวคลีโอไทด์โดยใช้โปรแกรม Chromas Pro 2.1.8 เปรียบเทียบคุณภาพของแต่ละสาย และรวมส่วนที่มีคุณภาพสูงให้ได้ลำดับ นิวคลีโอไทด์สายเดียว นำข้อมูลที่ได้มาวิเคราะห์และเปรียบเทียบกับฐานข้อมูลนิวคลีโอไทด์ใน GenBank ด้วยโปรแกรม BLASTn (https://blast.ncbi.nlm.nih.gov/Blast) ของ national center for biotechnology Information (NCBI)

บทที่ 3

ผลการทดลอง

3.1 แบคทีเรีย การเจริญ และลักษณะโคโลนี

ผลจากการนำแบคทีเรีย TSG1 ถึง TSG8 ที่เก็บในตู้เย็นที่อุณหภูมิ -80 องศาเซลเซียสมาขีดบนอาหาร แข็ง LB จากนั้นนำไปบ่มที่อุณหภูมิ 30 องศาเซลเซียส เป็นเวลา 48 ชั่วโมง พบว่าแบคทีเรียทั้ง 8 ไอโซเลทมี ลักษณะโคโลนีแสดงดังตารางที่ 3.1

ตารางที่ 3.1 ลักษณะโคโลนีของแบคทีเรียทั้ง 8 ไอโซ	เลท
--	-----

แบคทีเรีย	รูปภาพแสดงโคโลนี	ลักษณะโคโลนี
TSG1		มีลักษณะกลม ขนาดเล็ก สีเหลือง ขอบเรียบ
TSG2		มีลักษณะกลม ขนาดปานกลาง สีขาว ขอบเรียบ
TSG3		มีลักษณะกลม ขนาดใหญ่ สีขาว ขอบเรียบ
TSG4		มีลักษณะกลม ขนาดเล็ก สีขาว ขอบเรียบ

แบคทีเรีย	รูปภาพแสดงโคโลนี	ลักษณะโคโลนี
TSG5		มีลักษณะกลม ขนาดเล็ก สีเหลือง ขอบเรียบ
TSG6		มีลักษณะกลม ขนาดเล็ก สีส้ม ขอบเรียบ
TSG7		มีลักษณะกลม ขนาดเล็ก สีขาว ขอบเรียบ
TSG8		มีลักษณะกลม ขนาดเล็ก สีขาวอมเหลือง ขอบเรียบ

ตารางที่ 3.1 ลักษณะโคโลนีของแบคทีเรียทั้ง 8 ไอโซเลท (ต่อ)

3.2 การจำแนกสายพันธุ์แบคทีเรียด้วยวิธีวิเคราะห์ลำดับนิวคลีโอไทด์บริเวณ 16s rDNA

จากการตรวจสอบยีนบริเวณ 16S rDNA ในปฏิกิริยาลูกโซพอลิเมอเรส โดยใช้ไพรเมอร์ 27F และ 1492R ตรวจสอบขนาดด้วยอะกาโรสเจลอิเล็กโตรโฟริซิส ผลิตภัณฑ์ที่ได้มีขนาดประมาณ 1,500 bp แสดงดัง รูปที่ 3.1 จากนั้นวิเคราะห์ลำดับนิวคลีโอไทด์บริเวณ 16S rDNA โดยเปรียบเทียบกับฐานข้อมูล GenBank ด้วยโปรแกรม BLASTn พบว่าลำดับนิวคลีโอไทด์บริเวณ 16S rDNA ของแบคทีเรียทั้ง 8 ตัวอย่าง มีความ คล้ายกับลำดับนิวคลีโอไทด์บริเวณ 16S rDNA ของแบคทีเรียสายพันธุ์ต่าง ๆ โดยแสดงความยาวของลำดับ นิวคลีโอไทด์ที่วิเคราะห์ ชนิดแบคทีเรียที่คล้ายกัน ร้อยละความเหมือน (% identity) เลขที่อ้างอิง (accession number) และความรุนแรงของเซื้อ (bio-safety level) แสดงดังตารางที่ 3.2 เมื่อเปรียบเทียบกับลำดับนิวคลี โอไทด์บริเวณ 16S rDNA ของแบคทีเรียไอโซเลท SG1 SG2 SG3 SG4 SG5 SG6 SG7 และ SG8 จากงานวิจัย ของนางสาวปวันรัตน์ ชัยศรี พบว่า แบคทีเรียไอโซเลทที่ 1-6 ของกลุ่ม TSG และ SG มีความคล้ายกันอย่างมี นัยสำคัญทางสถิติ ในขณะที่แบคทีเรียไอโซเลทที่ 7 และ 8 ของกลุ่ม TSG และ SG มีความแตกต่างกันอย่างมี นัยสำคัญทางสถิติ แสดงดังตารางที่ 3.3

รูปที่ 3.1 ภาพอะกาโรสเจลอิเล็กโทรโฟริซิสของปฏิกิริยาลูกโซ่พอลิเมอเรสโดยใช้ไพรเมอร์ 27F และ 1492R ของแบคทีเรียทั้ง 8 ตัวอย่าง

ไอโซเลท	ความยาว (bp)	ความคล้าย	หมายเลขเข้าถึง	% ความ	ความ	กลุ่มเสี่ยง*
				เหมือน	ครอบคลุม	
TSG1	1383	Chryseobacterium daecheongense strain SNA43	HQ220101.1	98.63	100	2
TSG2	1383	Pseudomonas chengduensis strain L02	MG719530.1	99.35	100	2
TSG3	1416	Lysinibacillus fusiformis strain 4	KF916674.1	98.87	99	2
TSG4	1405	Enterobacter hormaechei strain IPBCC 19.1426	MN428803.1	100.0	99	2
TSG5	1354	Sphingopyxis indica strain DS15	NR_108185.1	99.78	99	2
TSG6	1376	Gordonia bronchialis strain A5-8	JN627170.1	98.25	98	2
TSG7	1400	Pseudomonas denitrificans strain H38A	KT337533.1	99.93	99	2
TSG8	1418	Lysinibacillus fusiformis strain L13	KC428749.1	99.93	99	2
SG1	1384	Chryseobacterium daecheongense	FJ455451.1	98.99	99	2
SG2	1370	Pseudomonas chengduensis strain L02	MG719530.1	98.55	99	2
SG3	1430	Lysinibacillus fusiformis strain 4	KF916674.1	100.0	100	2
SG4	1092	Enterobacter hormaechei strain C44	CP042566.1	99.54	99	2
SG5	1320	Sphingopyxis indica strain DS15	NR_108185.1	99.92	98	2
SG6	1337	Gordonia bronchialis strain A5-8	JN627170.1	98.80	99	2
SG7	1357	Mesorhizobium plurifarium strain G187	MK817576.1	97.50	99	2
SG8	1402	Pseudomonas citronellolis strain PY1	MH685460.1	99.64	100	2
					2	

ตารางที่ 3.2 ผลวิเคราะห์การจำแนกสายพันธุ์แบคทีเรียวิเคราะห์ลำดับนิวคลีโอไทด์บริเวณ 16s rDNA

*อ้างอิงเชื้อโรคกลุ่มเสี่ยง (Biosafety level) จากพระราชบัญญัติเชื้อโรคและพิษจากสัตว์ พ.ศ. 2558

กลุ่ม TSG	กลุ่ม SG	ระยะห่าง	ส่วนเบี่ยงเบน
TSG1	SG1	0.00	0.00
TSG2	SG2	2.00	1.32
TSG3	SG3	3.00	1.74
TSG4	SG4	0.00	0.00
TSG5	SG5	4.00	1.90
TSG6	SG6	3.00	1.64
TSG7	SG7	243.00	14.00
TSG8	SG8	294.00	14.40

ตารางที่ 3.3 ความแตกต่างระหว่างแบคทีเรียกลุ่ม TSG และกลุ่ม SG

3.3 ต้นไม้วิวัฒนาการ (phylogenetic tree)

เมื่อนำลำดับนิวคลีโอไทด์ของ 16S rDNA ของแบคทีเรียทั้ง 8 ตัวอย่างที่ผ่านการวิเคราะห์คุณภาพ และลำดับนิวคลีโอไทด์ของ 16S rDNA ของแบคทีเรียที่คัดเลือกไว้ นำมาเปรียบเทียบความเหมือนของสาย นิวคลีโอไทด์ด้วยฟังก์ชัน multiple alignment โดยใช้โปรกรม Clustal W จากนั้นนำข้อมูลที่ได้มาคำนวณ distance matrix สร้าง phylogenetic tree ด้วยการวิเคราะห์แบบ Neighbor-joining และ Bootstrap จำนวน 1,000 ซ้ำ โดยใช้โปรแกรม MEGA-X พบว่า พบว่า TSG1 มีความใกล้เคียงกับ *Chryseobacterium daecheongense* สายพันธุ์ SNA 43 โดยมีเลขหน้ากิ่งเท่ากับ 99 เปอร์เซ็นต์ TSG2 มีความใกล้เคียงกับ *Pseudomonas chengduensis* สายพันธุ์ L02 โดยมีเลขหน้ากิ่งเท่ากับ 96 เปอร์เซ็นต์ TSG3 มีความ ใกล้เคียงกับ *Lysinibacillus mecroides* สายพันธุ์ KPB6 โดยมีเลขหน้ากิ่งเท่ากับ 99 เปอร์เซ็นต์ TSG3 มีความ ใกล้เคียงกับ *Lysinibacillus mecroides* สายพันธุ์ KPB6 โดยมีเลขหน้ากิ่งเท่ากับ 99 เปอร์เซ็นต์ TSG4 มี ความใกล้เคียงกับ *Enterobacter hormaechei* สายพันธุ์ IPBCC 19.1426 โดยมีเลขหน้ากิ่งเท่ากับ 99 เปอร์เซ็นต์ TSG5 มีความใกล้เคียงกับ *Sphingopyxis indica* สายพันธุ์ A5-8 โดยมีเลขหน้ากิ่งเท่ากับ 99 เปอร์เซ็นต์ TSG6 มีความใกล้เคียงกับ *Sphingopyxis indica* สายพันธุ์ A5-8 โดยมีเลขหน้ากิ่งเท่ากับ 94 เปอร์เซ็นต์ TSG7 มีความใกล้เคียงกับ *Pseudomonas denitrificans* สายพันธุ์ H38A โดยมีเลขหน้ากิ่ง เท่ากับ 99 เปอร์เซ็นต์ และ TSG8 มีความใกล้เคียงกับ *Lysinibacillus fusiformis* สายพันธุ์ L13 โดยมีเลข หน้ากิ่งเท่ากับ 99 เปอร์เซ็นต์แสดงดังในแผนภูมิที่ 3.2 ถึง 3.9

0.020

แผนภูมิที่ 3.1 ต้นไม้วิวัฒนาการของ 16S rDNA ของ TSG1 โดยใช้ 16S rDNA ของ *Cupiavidus necator* สายพันธุ์ N1 (NR 028766.1) เป็น out-group และตัวเลขบนกิ่งสาขา บอกถึงการนับที่ให้ผลซ้ำจากทั้งหมด 1,000 ครั้ง ด้วย bootstrap

0.020

แผนภูมิที่ 3.2 ต้นไม้วิวัฒนาการของ 16S rDNA ของ TSG2 โดยใช้ 16S rDNA ของ *Cupiavidus necator* สายพันธุ์ N1 (NR 028766.1) เป็น out-group และตัวเลขบนกิ่งสาขา บอกถึงการนับที่ให้ผลซ้ำจากทั้งหมด 1,000 ครั้ง ด้วย bootstrap

แผนภูมิที่ 3.3 ต้นไม้วิวัฒนาการของ 16S rDNA ของ TSG3 โดยใช้ 16S rDNA ของ *Cupiavidus necator* สายพันธุ์ N1 (NR 028766.1) เป็น out-group และตัวเลขบนกิ่งสาขา บอกถึงการนับที่ให้ผลซ้ำจากทั้งหมด 1,000 ครั้ง ด้วย bootstrap

0.020

แผนภูมิที่ 3.4 ต้นไม้วิวัฒนาการของ 16S rDNA ของ TSG4 โดยใช้ 16S rDNA ของ *Cupiavidus necator* สายพันธุ์ N1 (NR 028766.1) เป็น out-group และตัวเลขบนกิ่งสาขา บอกถึงการนับที่ให้ผลซ้ำจากทั้งหมด 1,000 ครั้ง ด้วย bootstrap

แผนภูมิที่ 3.5 ต้นไม้วิวัฒนาการของ 16S rDNA ของ TSG5 โดยใช้ 16S rDNA ของ *Cupiavidus necator* สายพันธุ์ N1 (NR 028766.1) เป็น out-group และตัวเลขบนกิ่งสาขา บอกถึงการนับที่ให้ผลซ้ำจากทั้งหมด 1,000 ครั้ง ด้วย bootstrap

0.020

แผนภูมิที่ 3.6 ต้นไม้วิวัฒนาการของ 16S rDNA ของ TSG6 โดยใช้ 16S rDNA ของ *Cupiavidus necator* สายพันธุ์ N1 (NR 028766.1) เป็น out-group และตัวเลขบนกิ่งสาขา บอกถึงการนับที่ให้ผลซ้ำจากทั้งหมด 1,000 ครั้ง ด้วย bootstrap

. 0.020

แผนภูมิที่ 3.7 ต้นไม้วิวัฒนาการของ 16S rDNA ของ TSG7 โดยใช้ 16S rDNA ของ *Cupiavidus necator* สายพันธุ์ N1 (NR 028766.1) เป็น out-group และตัวเลขบนกิ่งสาขา บอกถึงการนับที่ให้ผลซ้ำจากทั้งหมด 1,000 ครั้ง ด้วย bootstrap

0.020

แผนภูมิที่ 3.8 ต้นไม้วิวัฒนาการของ 16S rDNA ของ TSG8 โดยใช้ 16S rDNA ของ Cupiavidus necator สายพันธุ์ N1 (NR 028766.1) เป็น out-group และตัวเลขบนกิ่งสาขา บอกถึงการนับที่ให้ผลซ้ำจากทั้งหมด 1,000 ครั้ง ด้วย bootstrap

3. ฐานข้อมูลจีโนมของแบคทีเรียที่ระบุชนิด

เมื่อค้นหาจีโนมของแบคทีเรียที่ระบุชนิดได้จากผลวิเคราะห์ต้นไม้วิวัฒนาการ ระบุชนิดการค้นหา จีโนมในฐานข้อมูล GenBank จากนั้นพิจารณาคุณภาพของจีโนมจากรายงานชนิดยีน (genome annotation report) เลือกจีโนมของแบคทีเรียจากระดับการประกอบ (assembly level) และความน่าเชื่อถือของข้อมูล โดยค้นหายีนและโปรตีนจากฟังก์ชันค้นหาโปรตีนที่สามารแสดงออกได้ (protein coding genes, CDS) พบว่า ทั้ง 8 ไอโซเลทมีจีโนม และ ปริมาณสัดส่วนร้อยละ GC แสดงดังตารางที่ 3.4

ตัวอย่าง	แบคทีเรีย	ระดับ	ฐานข้อมูลจีโนม	%GC
TSG1	Chryseobacterium daecheongense	comtiq	SAMN05421667	36.20
TSG2	Pseudomonas chengduensis	completed	SAMN05216576	62.3
TSG3	Lysinibacillus fusiformis	completed	SAMN02892976	37.60
TSG4	Enterobacter hormaechei	completed	SAMN07988874	54.66
TSG5	Sphingopyxis indica	completed	NZ_FZPA00000000.1	65.7
TSG6	Gordonia bronchialis	completed	<u>SAMN11056391</u>	67.07
TSG7	Pseudomonas denitrificans	completed	SAMN12691970	65.30
TSG8	Lysinibacillus fusiformis	completed	SAMN05216576	62.3
TSG7 TSG8	Pseudomonas denitrificans Lysinibacillus fusiformis	completed completed	<u>SAMN12691970</u> SAMN05216576	65.30 62.3

ตารางที่ 3.4 ฐานข้อมูลจีโนมของแบคทีเรียที่ระบุชนิด

3.5 ยีนและโปรตีนในกระบวนการชีวสังเคราะห์ PHAs จากฐานข้อมูลจีโนม

เมื่อค้นหายีนโดยใช้ลำดับกรดอะมิโนมอ้างอิงของโปรตีนในกระบวนการชีวสังเคราะห์ PHAs เปรียบเทียบกับลำดับกรดอะมิโนที่สามารถถอดรหัสได้จากยีนและโปรตีนในฐานข้อมูลจีโนมของแต่ละไอโซเลท โดยใช้ใช้โปรแกรม tBLASTn และ BLASTp ตามลำดับ เมื่อศึกษายีนและโปรตีนในวิถีย่อยสลายกรดไขมันที่ เกี่ยวข้องกับการผลิต PHAs พบว่าทั้ง 8 ไอโซเลทมีบริเวณอนุรักษ์ของ enoyl-CoA hydratase (PhaJ) จาก ยีน phaJ ทำหน้าที่เปลี่ยน trans-2-enoyl-CoA เป็น (R)-3-hydroxyacyl-CoA ซึ่งสารชนิดนี้เป็นมอนอเมอร์ ในการผลิต PHAs ชนิด poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (Fukui และคณะ, 1998) และบริเวณอนุรักษ์ของ 3-ketoacyl-acyl carrier protein (ACP) reductase (FabG) จากยีน fabG ทำ หน้าที่เปลี่ยน 3-ketoacyl-ACP เป็น (R)-3-hydroxyacyl isomer (Nomura และคณะ, 2005) เมื่อศึกษา โปรตีนในวิถีชีวสังเคราะห์ PHAs จากยีน *phaC phaA phaB* และ *phaZ* พบว่าไอโซเลททั้งหมดมีบริเวณ อนุรักษ์ของ acetyl-CoA C-acyltransferase (PhaA) จากยีน phaA ไอโซเลทที่ 2 4 5 6 และ 7 มีบริเวณ อนุรักษ์ของ poly(R)-hydroxyalkanoic acid synthase (PhaC) จากยีน phaC ในขณะที่ไอโซเลทที่ 1 3 และ 8 พบบริเวณอนุรักษ์ของ alpha/beta hydrolase ที่มีความใกล้เคียงกับบริเวณอนุรักษ์ของ PHA synthase ของโปรตีนอ้างอิง แบคทีเรียสกุล *Pseudomonas* ในไอโซเลทที่ 2 และ 7 พบบริเวณอนุรักษ์ของ PHA depolymerase (PhaZ) จากยีน *phaZ* โดยตรง ในขณะที่ไอโซเลทอื่น ๆ พบบริเวณอนุรักษ์ของ alpha/beta hydrolase และ carboxylesterase ที่พบใน PhaC นอกจากนี้ยังพบว่าเมื่อนำโปรตีนอ้างอิง acetoacetyl-CoA reductase (PhaB) จากยีน phaB ที่พบใน *Mesorhizobium japonicum* MAFF 303099^T (BAB49825.1) มาเปรียบเทียบกับข้อมูลพบว่าทั้ง 8 ไอโซเลต มีบริเวณอนุรักษ์เหมือนกับ 3ketoacyl- (ACP) reductase (FabG) ที่มาจากยีน *fabG* ซึ่ง ทั้ง PhaB และ FabG ทำหน้าที่เปลี่ยน acetoacetyl-CoA เป็น (R)-3-hydroxybutyryl-CoA ซึ่งเป็นสารตัวกลางในการผลิต PHAs ผ่านโปรตีน PHA synthase (Numata และคณะ, 2013) แสดงดังตารางที่ 3.5 และรูปที่ 3.2

3.6 บริเวณอนุรักษ์ของโปรตีน PHAs

เมื่อศึกษาบริเวณอนุรักษ์แต่ละโปรตีนพบว่า *C. daecheongense P. chengduensis L. fusiformis E. hormaechei S. indica G. bronchialis* และ *P. denitrificans* มีบริเวณอนุรักษ์เหมือนกันคือ PhaA ซึ่งมี บริเวณอนุรักษ์ของ acetyl-CoA C-acetyltransferase (PhaA) ในกลุ่มโปรตีน thiolase แสดงดังรูปที่ 3.3 FabG มีบริเวณอนุรักษ์ของ 3-oxoacyl-ACP reductase (FabG) แสดงดังรูปที่ 3.4 PhaJ มีบริเวณอนุรักษ์ ของ enoyl-CoA hydratase (PhaJ) แสดงดังรูปที่ 3.5

เมื่อศึกษาบริเวณอนุรักษ์ของ PhaC โดยใช้โปรตีนอ้างอิง poly(3-hydroxybutyrate) poly merase ของ *Cupriavidus necator* N-1T [AEI76811.1] และ class II poly(R)-hydroxyalkanoate synthase ของ *Pseudomonas aeruginosa* [WP_132663818.1] พบว่า *P. chengduensis* และ *P. denitrificans* มีบริเวณอนุรักษ์ของ class II PHA synthase แสดงดังรูปที่ 3.6 *E. hormaechei S. Indica* พบบริเวณอนุรักษ์ของ class I PHA synthase แสดงดังรูปที่ 3.7 และ *G. bronchialis* พบบริเวณอนุรักษ์ของ PHA synthase และมีความคล้ายกับ class III PHA synthase แสดงดังรูปที่ 3.8 ในขณะที่ *C. Daecheongense* และ*L. fusiformis* ไม่พบ PhaC โดยตรง แต่พบบริเวณที่เหมือนกับโปรตีนอ้างอิง และ บริเวณดังกล่าวมีความเหมือนกับ pimeloyl-ACP methyl ester carboxylesterase แสดงดังรูปที่ 3.9

เมื่อศึกษาบริเวณอนุรักษ์ของ PhaZ โดยใช้โปรตีนอ้างอิง polyhydroxyalkanoate depolymerase -ของ C necator [WP_013957652.1] พบว่า C. daecheongense L. fusiformis E. hormaechei S. Indica และ G. bronchialis มีบริเวณที่เหมือนกับ PhaZ ของโปรตีนอ้างอิง และบริเวณที่เหมือนกันนั้นตรง กับบริเวณอนุรักษ์ของ alpha/beta hydrolase และ carboxylesterase แสดงดังรูปที่ 3.10 ในขณะที่ P. chengduensis และ P. denitrificans พบ PhaZ จากฐานข้อมูลโดยตรงและมีบริเวณอนุรักษ์ตรงกับ PHA depolymerase super family แสดงดังรูปที่ 3.11

ตัวอย่าง	หมายเลขเข้าถึง	โปรตีน	ยืน	บริเวณอนุรักษ์	หมายเลขเข้าถึง	E value
TSG1	WP_123261368	acetyl-CoA C-acyltransferase	phaA	thiolase	cd00751	0e+00
	WP_123262498.1	carboxylesterase family protein	phaZ	Abhydrolase super family	cl21494	4.50e-64
	WP_123264316.1	3-oxoacyl-ACP reductase FabG	fabG	fabG	cd05333	7.86e-106
	WP_123261370.1	enoyl-CoA hydratase	phaJ	FadB	PRK07659	5.50e-75
	WP_123262344.1	ester carboxylesterase	phaC	MhpC	COG0596	1.48e-29
TSG2	WP_017678526.1	class II PHA synthase	phaC I	PHA syn II super family	cl31144	0e+00
	WP_017678527.1	PHA depolymerase	phaZ	PHA depoly super family	cl30397	0e+00
	WP_017678571.1	3-oxoacyl-ACP reductase	fabG	fabG	PRK05653	1.26e-126
	WP_017677192.1	acetyl-CoA C-acetyltransferase	phaA	thiolase	cd00751	6.70e-16
	WP_123261370.1	enoyl-CoA hydratase	phaJ	FadB	COG1250	5.50e-75
TSG3	WP_036126136.1	3-oxoacyl-ACP reductase FabG	fabG	fabG	PRK05653	2.06e-108
	WP_036120015.1	acetyl-CoA C-acetyltransferase	phaA	thiolase	cd00751	0e+00
	WP_036120354.1	enoyl-CoA hydratase	phaJ	PRK07659	PRK07659	1.20e-142
	WP_069480331.1	3-oxoacyl ACP reductase	fabG	fabG	PRK05557	2.95e-142
	WP_036125645.1	alpha/beta hydrolase	phaZ	bhydrolase_3	pfam07859	4.59e-86
	WP_036121449.1	alpha/beta hydrolase	phaC	MhpC	COG0596	3.93e-21

TSG4	WP_003857956.1	3-oxoacyl-ACP reductase FabG	FabG	FabG	PRK05557	3.12e-138
	WP_003862843.1	acetyl-CoA C-acetyltransferase	phaA	thiolase	cd00751	0e+00
	WP_032609349.1	enoyl-CoA hydratase	phaJ	PRK08788	PRK08788	5.14e-171
	WP_023098586.1	PHA synthase, class I	phaC I	PHA_synth_I	TIGR01838	3.56e-172
	WP_151550377.1	ester carboxylesterase	phaZ	MhpC	COG0596	6.94e-47
	WP_003861395.1	beta-ketoacyl-ACP synthase I	fabG	PRK07967	PRK07967	0e+00
TSG5	WP_089214834.1	class PHA synthase	phaC I	PHA_synth_I	TIGR01838	0e+00
	WP_089214397.1	PHA synthesis repressor	phaR	COG5394 super family	COG5394	3.58e-59
	WP_089214379.1	acetyl-CoA C-acyltransferase	phaA	thiolase	cd00751	1.67e-174
	SNS26647.1	ester carboxylesterase	phaZ	PHA_depoly_arom	TIGR02240	4.42e-21
	WP_003857956.1	3-oxoacyl-ACP reductase FabG	FabG	fabG	PRK05557	3.12e-138
	WP_032609349.1	enoyl-CoA hydratase family protein	phaJ	PRK08788	PRK08788	5.14e-171
TSG6	WP_012835831.1	enoyl-CoA hydratase	phaJ	PRK05862	PRK05862	1.15e-152
	WP_012832375.1	acetyl-CoA C-acyltransferase	phaA	PRK05862	PRK05862	1.15e-152
	WP_012835844.1	3-oxoacyl-ACP reductase FabG	fabG	fabG	PRK05653	1.59e-101
	WP_083775525.1	alpha/beta hydrolase	phaZ	Abhydrolase_1	pfam00561	8.54e-22
	WP_012834564.1	PHA synthase	phaC	PhaC	COG3243	1.40e-75
TSG7	WP_045208591.1	enoyl-CoA hydratase family protein	phaJ	PRK06213	PRK06213	4.60e-141
	WP_081516283.1	acetyl-CoA C-acyltransferase	phaA	thiolase	cd00751	0e+00

	WP_045208787.1	beta-ketoacyl-ACP synthase I	fabG	PRK07967	PRK07967	0e+00
	WP_081519477.1	beta-ketoacyl-ACP synthase II	fabF	BKR_SDR_c	cd05333	3.96e-98
	WP_151187558.1	3-oxoacyl-ACP reductase FabG	fabG	fabG	PRK05557	8.66e-128
	WP_151189074.1	class II PHA synthase	phaC II	PHA_synth_II super family	TIGR01839	0e+00
	WP_003095866.1	PHA depolymerase	phaZ	PHA_depoly_arom	TIGR02240	0e+00
TSG8	WP_036126136.1	3-oxoacyl-ACP reductase FabG	fabG	fabG	PRK05653	2.06e-108
	WP_036120015.1	acetyl-CoA C-acetyltransferase	phaA	thiolase	cd00751	0e+00
	WP_036120354.1	enoyl-CoA hydratase	phaJ	PRK07659	PRK07659	1.20e-142
	WP_069480331.1	3-oxoacyl ACP reductase	fabG	fabG	PRK05557	2.95e-142
	WP_036125645.1	alpha/beta hydrolase	phaZ	bhydrolase_3	pfam07859	4.59e-86
	WP_036121449.1	alpha/beta hydrolase	phaC	MhpC	COG0596	3.93e-21

ร**ูปที่ 3.3** บริเวณอนุรักษ์ของ PhaA ใน *C. daecheongense* (ก) และ *P. chengduensis* (ข). *L. fusiformis* (ค) *E. hormaechei* (ง) *S. indica* (จ) *G. bronchialis* และ *P. denitrificans* (ช) ซึ่งตรงกับบริเวณอนุรักษ์ของ acetyl-CoA C-acetyltransferase (PhaA) หรือ thiolase

ร**ูปที่ 3.4** บริเวณอนุรักษ์ของ FabG ใน *C. daecheongense* (ก) และ *P. chengduensis* (ข). *fusiformis* (ค) *E. hormaechei* (ง) *S. indica* (จ) *G. bronchialis* และ *P. denitrificans* (ช) ซึ่งตรงกับบริเวณอนุรักษ์ของ 3-oxoacyl-ACP reductase (FabG)

L.

ร**ูปที่ 3.5** บริเวณอนุรักษ์ของ PhaJ ใน *C. daecheongense* (ก) และ *P. chengduensis* (ข). *fusiformis* (ค) *E. hormaechei* (ง) *S. indica* (จ) *G. bronchialis* (ฉ) และ *P. denitrificans* (ช) ซึ่งตรงกับบริเวณอนุรักษ์ของ enoyl-CoA hydratase (PhaJ)

L.

รูปที่ 3.6 บริเวณอนุรักษ์ของ PhaC class II ใน P. chengduensis (ก) และ P. denitrificans (ข)

รูปที่ 3.7 บริเวณอนุรักษ์ของ PhaC class I ของ E. hormaechei (ก) และ S. indica (ข)

ร**ูปที่ 3.8** บริเวณอนุรักษ์ของ PhaC ที่คาดว่าเป็น PhaC class III ของ G. bronchialis

รูปที่ 3.9 บริเวณอนุรักษ์ของ PhaC ใน *C. daecheongense* (ก) และ *L. fusiformis* (ข) ซึ่งตรงกับ บริเวณอนุรักษ์ของ Pimeloyl-ACP methyl ester carboxylesterase

ร**ูปที่ 3.10** บริเวณอนุรักษ์ของ PhaZ ของ *C. daecheongense* (ก) และ *L. fusiformis* (ข) *E. hormaechei* (ค) *S. Indica* (ง) และ *G. bronchialis* (จ) ซึ่งตรงกับบริเวณอนุรักษ์ของ alpha/beta hydrolase และ carboxylesterase

(ข) 190 150 200 Query seq. Specific hits Non-specific hits protocat pcaD Abhydrolase_6 PRK14875 bipheny1_bphD RutD o_imino_pep_2 bch0_mg_che_rel MET2 PIdB PLN02894 menH_SHCHC Hydrolase_4 homoser0_Ac_trn PRK08775 bioH Ndr PRK10349 metX Superfamilies PHA_depoly_arom superfamily PRK14875 superfamily MhpC superfamily Abhydrolase_1 superfamily

รูปที่ 3.11 บริเวณอนุรักษ์ของ PhaZ ของ *P. chengduensis* (ก) และ *P. denitrificans* (ข) ซึ่งตรงกับบริเวณอนุรักษ์ PHA depolymerase superfamily และ abhydrolase

3.7 การผลิต PHAs จากกลูโคสและกรดไขมัน

ผลการทดลองทั้งหมดแสดงให้เห็นว่า *C. daecheongense P. chengduensis L. fusiformis E. hormaechei S. Indica G. bronchialis* และ *P. denitrificans* มีโปรตีน PhaA PhaB PhaC PhaJ PhaZ และ FabG ที่มาจากยีน phaA phaB phaC phaJ phaZ และ FabG ตามลำดับ โดยสามารถ แบ่งเป็นสองชนิดตามวิธีผลิต PHAs จากสารตั้งต้น ได้แก่ กลูโคส และ กรดไขมัน

เมื่อกรดไขมันถูกนำเข้าสู่เซลล์ของแบคทีเรียจะถูกเปลี่ยนเป็น acyl-CoA เพื่อเข้าสู่วิถีบีตาออกซิเดชัน (beta oxidation) และเปลี่ยนเป็น enonyl-coA เปลี่ยนเป็น (R)-3HA-CoA จนได้เป็น 3-ketoacyl-CoA โดย โปรตีนในวิถีบีตาออกซิเดชันจนครบหนึ่งรอบตามลำดับ enonyl-coA สามารถนำมาผลิต PHAs ได้โดยการ ทำงานของ PhaJ ซึ่งจะเปลี่ยนสารดังกล่าวเป็น HA-CoA และเป็นสารตัวกลางในการผลิต PHAs โดย PhaC ชนิดชั้นต่าง ๆ ในขั้นถัดไป เช่นเดียวกันกับ 3-ketoacyl-CoA ที่สามารถนำมาผลิตสารตัวกลาง HA-CoA ได้ โดยการทำงานของ FabG

เมื่อกลูโคสถูกนำเข้าสู่เซลล์ของแบคทีเรียจะถูกสลายเพื่อนำมาสร้างพลังงานผ่านวิถีไกลโคไลซิส (glycolysis) และไพรูเวทออกซิเดชัน (pyruvate oxidation) ได้เป็น acetyl-CoA หลังจากนั้นจะถูกนำมา ผลิต (R)-3HB-CoA ผ่านโปรตีน PhaA และ PhaB ตามดำดับ

การผลิต PHAs จึงสามารถนำ HA-CoA และ (R)-3HB-CoA จากทั้งสองกระบวนการมาผลิต PHAs ผ่าน PhaC แต่ละชนิด ได้แก่ PhaC class I PhaC class II และ PhaC class III ซึ่งจะได้ผลิตภัณฑ์คือ PHAs สองชนิดขึ้นอยู่กับชนิดของ PhaC โดย PhaC class I ที่พบใน *E. hormaechei* และ *S. Indica* สามารถผลิต scl-PHA PhaC class II ที่พบใน *P. chengduensis* และ *P. denitrificans* สามารถผลิต mcl-PHA และ PhaC class III ที่พบ *G. bronchialis* สามารถผลิตได้ทั้ง scl-PHAs และ mcl-PHAs ดังรูปที่ 3.12

ร**ูปที่ 3.12** การผลิต PHAs จากกลูโคสและกรดไขมัน (modified from Keiji และคณะ, 2013)

3.8 การย่อยสลาย PHAs

ผลการทดลองทั้งหมดแสดงให้เห็นว่า *C. daecheongense P. chengduensis L. fusiformis E. hormaechei S. indica G. bronchialis* และ *P. denitrificans* มีโปรตีนที่สามารถทำลายพันธะเอสเทอร์ ได้โดยเป็นโปรตีนในกลุ่ม alpha/beta hydrolase ซึ่งตรงกับคุณสมบัติของ PHA depolymerase (PhaZ) การย่อยสลาย PHAs ของจุลินทรีย์โดยใช้เอนไซม์ PHA depolymerase โดยเอนไซม์ชนิดนี้สามารถใช้ภายใน เซลล์ และ ภายนอกเซลล์ (Keiji และคณะ, 2008) โดยขึ้นอยู่กับรูปแบบของปฏิกิริยาต่อ PHAs แบคทีเรียจะ ย่อยสลาย PHAs ที่สะสมภายในเซลล์เพื่อเป็นแหล่งคาร์บอนและแหล่งพลังงานแก่แบคทีเรียในการเจริญเติบโต โดยมีความสัมพันธ์กับการผลิต PHAs ของเอนไซม์ PHA synthase ที่ทำหน้าสร้าง PHAs granule จากนั้น PHA depolymerase จะทำหน้าที่สลาย PHAs ที่สะสมไว้เพื่อเป็นพลังงานแก่เซลล์ การทำงานของ PHA depolymerase จะไฮโดรไลซ์ในส่วนของ amorphous ก่อน จากนั้นจึงเข้าจับ crystalline (Organ และ Barham, 1988) โดยทำหน้าที่สลายพันธะเอสเทอร์ของ PHAs นอกจากนี้ยังสามารถหลั่งเอนไซม์ PHA depolymerase ออกสู่ภายนอกเซลล์เพื่อย่อยสลาย PHAs และดูดซึมผลิตภัณฑ์ที่ได้ไปใช้เป็นสารตั้งต้นในการ สร้างพลังงานและชีวมวลของเซลล์ แสดงดังรูปที่ 3.13

ร**ูปที่ 3.13** การย่อยสลาย PHAsภายในเซลล์และภายนอกเซลล์ (modified from Keiji และคณะ, 2013)

บทที่ 4 สรุป และวิจารณ์ผลการทดลอง

4.1 สรุปและวิจารณ์ผลการทดลอง

จากงานวิจัยของนางสาวปวันรัตน์ ชัยศรี (2019) ที่ได้คัดแยกและระบุลักษณะสมบัติของแบคทีเรียที่มี ความสามารถในการผลิต PHAs จากดิน โดยคัดแยกแบคทีเรียจาก 21 ไอโซเลทด้วยวิธีคัดเลือกบนอาหารตาม สูตรของ Kouhei M. และคณะ (2010) ที่มีส่วนประกอบของกลูโคส และ Nile Blue A (ภาคผนวก ก) นำไป ตรวจสอบภายใต้ลำแสง UV ที่ความยาวคลื่น 365 นาโนเมตร จะเห็นลักษณะโคโลนีที่เรืองแสงสีส้ม ซึ่งเกิด จากปฏิกิริยาออกซิเดชันของกรดไขมัน (spontaneous oxidation) ทำให้ Nile blue A ที่อยู่ในรูปออกซาซิน (oxazine form) เปลี่ยนเป็นรูปออกซาโซน (oxazone form) ซึ่งจะคลายพลังงานออกมาในช่วงคลื่น 543-598 nm จึงทำให้เกิดสีส้มดังกล่าว (Kitamura และคณะ, 1994) และอาจเป็นไปได้ว่าเซลล์มีการสะสม PHAs ที่เป็นไขมันชนิดหนึ่ง พบว่ามีทั้งหมด 8 ไอโซเลท ที่ให้ลักษณะการเรืองแสงสีส้ม จึงตั้งชื่อไอโซเลททั้ง 8 ไอโซเล ทว่า SG1 SG2 SG3 SG4 SG5 SG6 SG7 และ SG8

งานวิจัยนี้จึงนำแบคทีเรียทั้ง 8 ไอโซเลทมาเลี้ยงบนอาหารแข็งเชื้อแข็ง LB และตั้งชื่อไอโซเลทใหม่ทั้ง หมดว่า TSG1 TSG2 TSG3 TSG4 TSG5 TSG6 TSG7 และ TSG8 หลังจากนั้นนำไปวิเคราะห์ลักษณะ ทางสัณฐานวิทยา จำแนกสายพันธุ์แบคทีเรียด้วยวิธีวิเคราะห์ลำดับนิวคลีโอไทด์บริเวณ 16s rDNA วิเคราะห์ ต้นไม้วิวัฒนาการ และเปรียบเทียบกับลำดับพันธุกรรมของแบคทีเรีย SG1 ถึง SG8 พบว่าไอโซเลท SG และไอ โซเลท TSG ที่ 1 ถึง 6 ไม่มีความแตกต่างอย่างมีนัยสำคัญทางสถิติ ในขณะที่ไอโซเลทที่ 7 และ ไอโซเลทที่ 8 มี ความแตกต่างกัน โดยไอโซเลท SG7 มีความคล้ายกับ *Mesorhizobium plurifarium* สายพันธุ์ G187 เท่ากับ 97.50 เปอร์เซ็นต์ ในขณะที่ไอโซเลท TSG7 มีความคล้ายกับ *Pseudomonas denitrificans* สายพันธุ์ H38A เท่ากับ 99.93 เปอร์เซ็นต์ โดยมีความแตกต่างจากค่าระยะห่าง คือ 243 ± 14.00 และไอโซเลท SG8 มีความ คล้ายกับ *Pseudomonas citronellolis* สายพันธุ์ PY1 เท่ากับ 99.64 เปอร์เซ็นต์ ในขณะที่ไอโซเลท TSG8 มีความคล้ายกับ *Lysinibacillus fusiformis* สายพันธุ์ L13 เท่ากับ 99.93 เปอร์เซ็นต์ โดยมีความแตกต่างจาก ค่าระยะห่าง คือ 294 ± 14.40 ความแตกต่างที่เกิดขึ้นของทั้งสองไอโซเลทนี้อาจจะเกิดจากการปนเปื้อน ระหว่างการจัดเก็บหรือเกิดจากการปนเปื้อนระหว่างการทดลอง

เมื่อพิจารณายีนชีวสังเคราะห์ PHAs จากจีโนมด้วยวิธีหายีนจากลำดับกรดอะมิโนของโปรตีนอ้างอิง พบว่า C. daecheongense P. chengduensis L. fusiformis E. hormaechei S. indica G. bronchialis และ P. denitrificans มี PhaA PhaJ และ FabG เมื่อวิเคราะห์ PhaC พบว่า P. chengduensis และ P. denitrificans มีบริเวณอนุรักษ์ของ class II PHA synthase E. hormaechei และ S. Indica พบบริเวณ อนุรักษ์ของ class I PHA synthase และ G. bronchialis พบบริเวณอนุรักษ์ของ PHA synthase และมี ความคล้ายกับ class III PHA synthase ในขณะที่ C. daecheongense และL. fusiformis ไม่พบ PhaC โดยตรง แต่พบบริเวณที่เหมือนกับโปรตีนอ้างอิง และบริเวณดังกล่าวมีความเหมือนกับ pimeloyl-ACP methyl ester carboxylesterase ซึ่งเป็นส่วนหนึ่งของบริเวณ alpha/beta hydrolase ที่พบใน PhaC เมื่อพิจารณายีนชีวสังเคราะห์ PHAs จากจีโนมด้วยวิธีหายีนจากลำดับกรดอะมิโนของโปรตีนอ้างอิง PhaZ พบว่า *C. daecheongense L. fusiformis E. hormaechei S. Indica* และ *G. bronchialis* มี บริเวณที่เหมือนกับ PhaZ ของโปรตีนอ้างอิง และบริเวณที่เหมือนกันนั้นตรงกับบริเวณอนุรักษ์ของ alpha/beta hydrolase และ carboxylesterase ในขณะที่ *P. chengduensis* และ *P. denitrificans* พบ PhaZ จากฐานข้อมูลโดยตรงและมีบริเวณอนุรักษ์ตรงกับ PHA depolymerase super family อย่างไรก็ตาม PhaZ ที่ระบุได้ยังไม่สามารถระบุได้ว่าเป็น PhaZ ชนิดภายนอกเซลล์หรือภายในเซลล์ เนื่องจาก PhaZ ชนิด ภายในและภายนอกเซลล์มาจากยีนต่างกัน (De Eugenio และคณะ, 2007)

ผลจากการทดลองดังกล่าวมีความสอดคล้องกับผลการค้นคว้าหาข้อมูลเบื้องต้น พบว่า สกุล Sphingopyxis (Tobella และคณะ, 2005) และสกุล Lysinibacillus (Mohapatra, 2016) สามารถผลิตโค พอลิเมอร์ชนิด scl-PHAs และ mcl-PHAs สกุล Enterobacter (Favaro และคณะ, 2019) สามารถผลิต scl-PHAs และสกุล Pseudomonas (Song และคณะ, 2008) เป็นสกุลแบคทีเรียที่สามารถผลิต mcl-PHAs อย่างแพร่หลาย ในขณะที่สกุล Chryseobacterium และสกุล Gordonia ยังไม่พบรายงานถึงความสามารถ ในการผลิต PHAs

งานวิจัยนี้จึงสามารถระบุชนิดของยีนและโปรตีนที่เกี่ยวข้องกับการผลิต PHAs และการย่อยสลาย PHAs โดยแบคทีเรียทั้ง 7 สายพันธุ์นั้นสามารถนำกลูโคสและกรดไขมันมาผลิต PHAs ผ่านกลุ่มยีนและโปรตีน ชีวสังเคราะห์ PHAs ที่ระบุได้ของแบคทีเรียแต่ละชนิด และยังสามารถย่อยสลาย PHAs ผ่านกลุ่มยีนและ โปรตีนย่อยสลาย PHAs อย่างไรก็ตามงานวิจัยนี้เป็นการตรวจสอบและทำนายกลุ่มยีนชีวสังเคราะห์ PHAs จากฐานข้อมูลในเบื้องต้น อาจต้องมีการศึกษาค้นคว้าเพิ่มเติมโดยการออกแบบไพรเมอร์ให้จำเพาะต่อยีนและ นำไปตรวจสอบกับโคโลนีบริสุทธิ์ เพื่อยืนยันถึงชนิดของยีนชีวสังเคราะห์ PHAs และวิถีการผลิตของแบคทีเรีย ทั้งหมดนี้

เอกสารอ้างอิง

ภาษาไทย

ปวันรัตน์ ชัยศรี (2019). การคัดแยกและระบุลักษณะสมบัติของแบคทีเรียที่มีความสามารถในการผลิตพอลิไฮ ดรอกซีแอลคาโนเอตจากดิน โครงการการเรียนการสอนเพื่อเสริมประสบการณ์ สาขาจุลชีววิทยา ภาควิชาจุลชีววิทยา คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ภาษาอังกฤษ

- Boyandin, A. N., Prudnikova, S. V., Filipenko, M. L., Khrapov, E. A., Vasil'ev, A. D., & Volova, T.
 G. (2012). Biodegradation of polyhydroxyalkanoates by soil microbial communities of different structures and detection of PHA degrading microorganisms. *Applied Biochemistry and Microbiology, 48*(1), 28-36. doi:10.1134/S0003683812010024
- Cai, L., Yuan, M.-Q., Liu, F., Jian, J., & Chen, G.-Q. (2009). Enhanced production of mediumchain-length polyhydroxyalkanoates (PHA) by PHA depolymerase knockout mutant of *Pseudomonas putida* KT2442. *Bioresource Technology, 100*(7), 2265-2270. doi:10.1016/j.biortech.2008.11.020
- Chanprateep, S. (2010). Current trends in biodegradable polyhydroxyalkanoates. *Journal of Bioscience and Bioengineering, 110*(6), 621-632. doi:10.1016/j.jbiosc.2010.07.014
- de Eugenio, L. I., García, P., Luengo, J. M., Sanz, J. M., Román, J. S., García, J. L., & Prieto, M. A. (2007). Biochemical evidence that phaZ gene encodes a specific intracellular medium chain length polyhydroxyalkanoate depolymerase in *Pseudomonas putida* KT2442: characterization of a paradigmatic enzyme. *Journal of Biological Chemistry, 282*(7), 4951-4962. doi:10.1074/jbc.M608119200
- Favaro, L., Basaglia, M., & Casella, S. (2019). Improving polyhydroxyalkanoate production from inexpensive carbon sources by genetic approaches: a review. *Biofuels, Bioproducts and Biorefining, 13*(1), 208-227. doi:10.1002/bbb.1944
- Fukui, T., Shiomi, N., & Doi, Y. (1998). Expression and characterization of (R)-specific enoyl coenzyme A hydratase involved in polyhydroxyalkanoate biosynthesis by *Aeromonas caviae*. *Journal of Bacteriology*, *180*(3), 667-673. doi:10.1128/jb.180.3.667-673.1998
- Gao, X., Jian, J., Li, W.-J., Yang, Y., Shen, X.-W., Sun, Z.-R., Chen, G.-Q. (2013). Genomic study of polyhydroxyalkanoates producing *Aeromonas hydrophila* 4AK4. *Applied Microbiology and Biotechnology, 97*, 9099-9109. doi: 10.1007/s00253-013-5189-y

- Ishii-Hyakutake, M., Mizuno, S., & Tsuge, T. (2018). Biosynthesis and characteristics of aromatic polyhydroxyalkanoates. *Polymers, 10*(11), 1267. doi:10.3390/polym10111267
- Kim, D.-Y., Kim, H., Chung, M., & Rhee, Y. (2007). Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates. *Journal of Microbiology*, 45, 87-97. https://pubmed.ncbi.nlm.nih.gov/17483792/
- Kitamura, S., & Doi, Y. (1994). Staining method of poly(3-hydroxyalkanoic acids) producing bacteria by nile blue. *Biotechnology Techniques, 8*(5), 345-350. doi:10.1007/BF02428979
- Mohapatra, S., Samantaray, D. D., Samantaray, S., Mishra, B. B., Das, S., Majumdar, S., Pradhan,
 S., Rath, S., Rath, C., Akthar, J., Achary, K. (2016). Structural and thermal
 characterization of PHAs produced by *Lysinibacillus* sp. through submerged
 fermentation process. *International Journal of Biological Macromolecules*, *93*(Pt A),
 1161-1167. doi:10.1016/j.ijbiomac.2016.09.077
- Nomura, C. T., Taguchi, K., Gan, Z., Kuwabara, K., Tanaka, T., Takase, K., & Doi, Y. (2005). Expression of 3-ketoacyl-acyl carrier protein reductase (fabG) genes enhances production of polyhydroxyalkanoate copolymer from glucose in recombinant *Escherichia coli* JM109. *Applied and Environmental Microbiology*, *71*(8), 4297-4306. doi:10.1128/aem.71.8.4297-4306.2005
- Numata, K., Abe, H., & Doi, Y. (2008). Enzymatic processes for biodegradation of poly(hydroxyalkanoate)s crystals. *Canadian Journal of Chemistry, 86*, 471-483. doi:10.1139/V08-004
- Numata, K., Morisaki, K., Tomizawa, S., Ohtani, M., Demura, T., Miyazaki, M., Nogi, Y., Deguchi, S., & Doi, Y. (2013). Synthesis of poly- and oligo(hydroxyalkanoate)s by deep-sea bacteria, *Colwellia* spp., *Moritella* spp., and *Shewanella* spp. *Polymer Journal, 45*, 1094-1100. doi:10.1038/pj.2013.25
- Obruca, S., Sedlacek, P., Slaninova, E., Fritz, I., Daffert, C., Meixner, K., Koller, M. (2020). Novel unexpected functions of PHA granules. *Applied Microbiology and Biotechnology*. 104, 4795–4810. doi:10.1007/s00253-020-10568-1
- Shrivastav, A., Kim, H.-Y., & Kim, Y.-R. (2013). Advances in the applications of polyhydroxyalkanoate nanoparticles for novel drug delivery system. *BioMed research international, 2013*, 581-684. doi:10.1155/2013/581684

- Song, J., Jeon, C., Choi, M., Yoon, S., & Park, W. (2008). Polyhydroxyalkanoate (PHA) production using waste vegetable oil by *Pseudomonas* sp. strain DR2. *Journal of Microbiology and Biotechnology, 18*, 1408-1415. https://pubmed.ncbi.nlm.nih.gov/18756101/
- Tobella, L. M., Bunster, M., Pooley, A., Becerra, J., Godoy, F., & Martínez, M. A. (2005).
 Biosynthesis of poly-beta-hydroxyalkanoates by *Sphingopyxis chilensis* S37 and *Wautersia* sp. PZK cultured in cellulose pulp mill effluents containing 2,4,6-trichlorophenol. *Journal of Industrial Microbiology & Biotechnology, 32*(9), 397-401. doi:10.1007/s10295-005-0011-1
- Uchida, H., Nakajima-Kambe, T., Shigeno-Akutsu, Y., Nomura, N., Tokiwa, Y., & Nakahara, T. (2000). Properties of a bacterium which degrades solid poly(tetramethylene succinate)-co-adipate, a biodegradable plastic. *FEMS Microbiology Letters, 189*(1), 25-29. doi:10.1111/j.1574-6968.2000.tb09201.x
- Verma, H., Dhingra, G. G., Sharma, M., Gupta, V., Negi, R. K., Singh, Y., & Lal, R. (2020). Comparative genomics of *Sphingopyxis* spp. unravelled functional attributes. *Genomics*, 112(2), 1956-1969. doi:10.1016/j.ygeno.2019.11.008

เอกสารอ้างอิงออนไลน์

กรมควบคุมมลพิษ. (2018). การจัดการขยะพลาสติก พ.ศ. 2561-2565 และ แผนปฏิบัติการด้านการจัดการ ขยะพลาสติก พ.ศ. 2561-2565 สืบค้น 20 เมษายน 2018, จาก http://www.pcd.go.th/Info_serv/File/17-09-62/40.pdf กรมส่งเสริมการค้าระหว่างประเทศ. (2019) สินค้าพลาสติกชีวภาพในญี่ปุ่น. สืบค้น 8 ตุลาคม 2019, จาก https://www.ditp.go.th/contents_attach/577232/577232.pdf Laura Parker. (2020). The world's plastic pollution crisis explained. สืบค้น 12 กุมภาพันธ์ 2020,. จาก https://www.nationalgeographic.com/environment/habitats/plastic-pollution The japan plastics industry federation. (2020). Production of plastics materials in 2019-2020

Japan สืบค้น 20 มกราคม 2020, จาก http://www.jpif.gr.jp/english/statistics/monthly/2020

ภาคผนวก ก สูตรและวิธีการเตรียมอาหารเลี้ยงเชื้อ

1. อาหารเลี้ยงเชื้อแข็ง Luria-Bertani (LB)

อาหาร 1 ลิตร ประกอบด้วย

Tryptone	10	กรัม
Yeast extract	5	กรัม
Sodium chloride (NaCl)	5	กรัม
Agar	20	กรัม

นำไปนึ่งฆ่าเชื้อด้วยความดันไอ 15 ปอนด์ต่อตารางนิ้ว อุณหภูมิ 121 องศาเซลเซียส เป็นเวลา 15นาที

2. อาหารเลี้ยงเชื้อแข็งตามสูตร Mizuno K. และคณะ (2010)

อาหาร 1 ลิตร ประกอบด้วย		
Yeast extract	0.5	กรัม
Peptone	1	กรัม
Glucose	10	กรัม
Nile blue A	0.5	มิลลิกรัม
Agar	20	กรัม

นำไปนึ่งฆ่าเชื้อด้วยความดันไอ 15 ปอนด์ต่อตารางนิ้ว อุณหภูมิ 121 องศาเซลเซียส เป็นเวลา 15นาที

ภาคผนวก ข สารเคมีและวิธีเตรียมสารที่ใช้ในการทดลอง

1. 10X TAE Electrophoresis buffer

10X TAE 1 ลิตร ประกอบด้วย

Tris [tris (hydroxymethyl) aminomethane]	48.4	กรัม
ผงกรดอะซิติก (17.4 M)	11.4	มิลลิลิตร
EDTA, เกลือโซเดียม	3.7	กรัม
น้ำปราศจากไอออน (DI)	988.6	มิลลิลิตร

ละลาย Tris ผงกรดอะซิติกและ EDTA ใน 800 มิลลิลิตรของน้ำปราศจากไอออน เจือจางบัฟเฟอร์ถึง 1 ลิตร เก็บสารละลายบัฟเฟอร์ที่อุณหภูมิห้อง เมื่อนำมาใช้งานต้องเจือจางสารละลายบัฟเฟอร์ โดยผสม 10X TAE บัฟเฟอร์ปริมาตร 100 มิลลิตร ปรับปริมาตรด้วยน้ำปราศจากไอออนจนมีปริมาตร 1 ลิตร

ภาคผนวก ค ผลการทดลองเพิ่มเติม

1. ลำดับนิวคลีโอไทด์บริเวณ 16s rDNA

1.1 ลำดับนิวคลีโอไทด์บริเวณ 16s rDNA ของไอโซเลท TSG1

ขนาด 1383 bp

>ATGCAGCCGAGCGGTAGAGTTCCTTCGGGGGACTTGAGAGCGGCGTACGGGTGCGGAACA CGTGTGCAACCTGCCTTTATCTGGGGGGATAGCCTTTCGAAAGGAAGATTAATACCCCATAATAT AATGAGTGGCATCACTTATTATTGAAAACTCCGGTGGATAGAGATGGGCACGCGCAAGATTAGA TAGTTGGTGGGGTAACGGCCTACCAAGTCAGTGATCTTTAGGGGGGCCTGAGAGGGTGATCCCCC ACACTGGTACTGAGACACGGACCAGACTCCTACGGGAGGCAGCAGTGAGGAATATTGGACAAT GGGTGAGAGCCTGATCCAGCCATCCCGCGTGAAGGACGACGGCCCTATGGGTTGTAAACTTCTT TTGTACAGGGATAAACCCAGATACGTGTATCTGGCTGAAGGTACTGTACGAATAAGCACCGGCT AACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTATCCGGATTTATTGGGTTTA AAGGGTCCGTAGGCGGATCAGTAAGTCAGTGGTGAAATCTCATAGCTTAACTATGAAACTGCCA TTGATACTGCTGGTCTTGAGTAAGGTAGAAGTAGCTGGAATAAGTAGTGTAGCGGTGAAATGCA TAGATATTACTTAGAACACCAATTGCGAAGGCAGGTTACTATGTCTTAACTGACGCTGATGGAC GAAAGCGTGGGGGGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGCTAACTC GTTTTTGGGTTTTCGGATTCAGAGACTAAGCGAAAGTGATAAGTTAGCCACCTGGGGAGTACGA ACGCAAGTTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGATTATGTGGTTTAA TTCGATGATACGCGAGGAACCTTACCAAGGCTTAAATGGGAATTGATCGGTTTAGAAATAGACC TTCCTTCGGGCAATTTTCAAGGTGCTGCATGGTTGTCGTCAGCTCGTGCCGTGAGGTGTTAGGT TAAGTCCTGCAACGAGCGCAACCCCTGTCACTAGTTGCCATCATTAAGTTGGGGACTCTAGTGA GACTGCCTACGCAAGTAGAGAGGAAGGTGGGGATGACGTCAAATCATCACGGCCCTTACGCCTT GGGCCACACGTAATACAATGGCCGGTACAGAGGGCAGCTACACAGCGATGTGATGCAAATCT CGAAAGCCGGTCTCAGTTCGGATTGGAGTCTGCAACTCGACTCTATGAAGCTGGAATCGCTAGT AATCGCGCATCAGCCATGGCGCGGTGAATACGTTCCCGGGCCTTGTACACACGCCCGTCAAGC CATGGAAGTCTGGGGTACCTGAAGTCGGTGACCGTAAAAGGAGCT

1.2 ลำดับนิวคลีโอไทด์บริเวณ 16s rDNA ของไอโซเลท TSG2

ขนาด 1383 bp

>GCAAGTCGAGCGGATGAAGGGAGCTTGCTCCTTGATTCAGCGGCGCGACGGGTGAGTAAT GCCTAGGAATCTGCCTGGTAGTGGGGGGATAACGTTCCGAAAGGAACGCTAATACCGCATACGTC CTACGGGAGAAAGCGGGGGATCTTCGGACCTCGCGCTATCAGATGAGCCTAGGTCGGATTAGC TAGTTGGTGAGGTAATGGCTCACCAAGGCGACGATCCGTAACTGGTCTGAGAGGATGATCAGTC ACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAAT GGGCGAAAGCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTAAAGCACTTT AAGTTGGGAGGAAGGGTATTCACCTAATACGTGAGTATTTTGACGTTACCGACAGAATAAGCAC CGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGTGCAAGCGTTAATCGGAATTACTGG GCGTAAAGCGCGCGTAGGTGGTTCGTTAAGTTGGATGTGAAAGCCCCGGGCTCAACCTGGGAA CTGCATCCAAAACTGGCGAGCTAGAGGTACGGTAGAGGGTGGTGGAATTTCCTGTGTAGCGGTG AAATGCGTAGATATAGGAAGGAACACCAGTGGCGAAGGCGACCACCTGGACTGATACTGACAC TGAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGA TGTCAACTAGCCGTTGGGATCCTTGAGATCTTAGTGGCGCAGCTAACGCATTAAGTTGACCGCC TGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGA GCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCTGGCCTTGACATGCTGAGAACTTTC CAGAGATGGATTGGTGCCTTCGGGAGCTCAGACACAGGTGCTGCATGGCTGTCGTCAGCTCGT GTCGTGAGATGTTGGGTTAAGTCCCGTAACGAGCGCAACCCTTGTCCTTAGTTACCAGCACGTT ATGGTGGGCACTCTAAGGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAGT CATCATGGCCCTTACGGCCAGGGCTACACGTGCTACAATGGTCGGTACAAAGGGTTGCCAAG CCGCGAGGTGGAGCTAATCCCATAAAACCGATCGTAGTCCGGATCGCAGTCTGCAACTCGACTG CGTGAAGTCGGAATCGCTAGTAATCGTGAATCAGAATGTCACGGTGAATACGTTCCCGGGCCTT GTACACCGCCCGTCACACCATGGGAGTGGGTTGCTCCAGAAGTAGCTAGT

1.3 ลำดับนิวคลีโอไทด์บริเวณ 16s rDNA ของไอโซเลท TSG3

ขนาด 1416 bp

>GCAAGTCGAGCGAACAGAAAAGGAGCTTGCTCCTTTGACGTTAGCGGCGGACGGGTGAGT AACACGTGGGCAACCTACCCTATAGTTTGGGATAACTCCGGGAAACCGGGGCTAATACCGAATA ATCTCTTTTGCTTCATGGTGAAAGACTGAAAGACGGTTTCGGCTGTCGCTATAGGATGGGCCCG CGGCGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAG AGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGG CGTAAAACTCTGTTGTAAGGGAAGAACAAGTACAGTAGTAACTGGCTGTACCTTGACGGTACCT TATTAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGT CCGGAATTATTGGGCGTAAAGCGCGCGCGGGGGGCCCTTTAAGTCTGATGTGAAAGCCCACGGC TCAACCGTGGAGGGTCATTGGAAACTGGGGGGACTTGAGTGCAGAAGAGGAAAGTGGAATTCCA AGNGTANCNGTGAAATNCGTAGAGANTTGGANGAACACCAGTNGCGAAGGCGACTTTCTGGTC TGTNACTGACGCTGAGGCGCGAAAGCGTNGGGAGCAAACAGGATTAGATANCCTGGTAGTCCN CGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGTTTCCGCNCCTTAGTGCTGCAGCTAACGCAT TAAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCG CACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACAT CCCGTTGACCACTGTAGAGATATAGTTTCCCCTTCNGGGGCAACGGTGACAGGTGGTGCATGGT TGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTA GTTGCCATCATTTAGTTGGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGA TGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGACGATACAAA CGGTTGCCAACTCGCGAGAGGGAGCTAATCCGATAAAGTCGTTCTCAGTTCGGATTGTAGGCTG CAACTCGCCTACATGAAGCCGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGT TTCCGGGCCTTGTACACACCGCCCGTCCCACTACGAGAGTTTGTAACACCCGAAGTCGGTGAGG TAACCTTTTGGAGCCAGC

1.4 ลำดับนิวคลีโอไทด์บริเวณ 16s rDNA ของไอโซเลท TSG4

ขนาด 1405 bp

GAGTAATGTCTGGGAAACTGCCTGATGGAGGGGGGATAACTACTGGAAACGGTAGCTAATACCGC ATAACGTCGCAAGACCAAAGAGGGGGGCCTTCGGGCCTCTTGCCATCGGATGTGCCCAGATGG GATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCGACGATCCCTAGCTGGTCTGAGAGGAT GACCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATAT TGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGTGTATGAAGAAGGCCTTCGGGTTGTAA AGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGG AATTACTGGGCGTAAAGCGCACGCAGGCGGTCTGTCAAGTCGGATGTGAAATCCCCGGGCTCAA CCTGGGAACTGCATTCGAAACTGGCAGGCTAGAGTCTTGTAGAGGGGGGGTAGAATTCCAGGTGT AGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGA CTGACGCTCAGGTGCGAAAGCGTGGGGGGGGCAAACAGGATTAGATACCCTGGTAGTCCACGCCG TAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGAGCTAACGCGTTAAGTC GACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGGCCCGCACAAG CGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCTACTCTTGACATCCAGAG AACTTAGCAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCTGTCGTCA GCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATCCTTTGTTGCCAG CGGTTAGGCCGGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGGGATGACGT CAAGTCATCATGGCCCTTACGAGTAGGGCTACACGTGCTACAATGGCGCATACAAAGAGAAG CGACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTGGAGTCTGCAACTC GACTCCATGAAGTCGGAATCGCTAGTAATCGTGGATCAGAATGCCACGGTGAATACGTTCCCGG TCGGGAGGG

1.5 ลำดับนิวคลีโอไทด์บริเวณ 16s rDNA ของไอโซเลท TSG5

ขนาด 1354 bp

>TGCAGTCGAACGAGATCTTCGGATCTAGTGGCGCACGGGTGCGTAACCGCGTGGGAATCT GCCCTTGGGTGCGGAATAACTTCCCGAAAGGGATGCTAATACCGCATAATGTCGCAAGACCAAA GATTTATCGCCCAAGGATGAGCCCGCGTAAGATTAGCTAGTTGGTGGGGTAAAAGCCTACCAAG GCGACGATCTTTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGGCCCAGA CTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGCGAAAGCCTGATCCAGCAATGCC GCGTGAGTGATGAAGGCCCTAGGGTTGTAAAGCTCTTTTACCCGGGATGATAATGACAGTACCG TTCGGAATTACTGGGCGTAAAGCGCGCGTAGGCGGTTTTTTAAGTCAGAGGTGAAAGCCCGGG GCTCAACCCCGGAATAGCCTTTGAAACTGGAAAACTAGAATCTTGGAGAGGTCAGTGGAATTCC CAAGTATTGACGCTGAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCC ACGCCGTAAACGATGATAACTAGCTGTCCGGGTTCATAGAACTTGGGTGGCGCAGCTAACGCAT TAAGTTATCCGCCTGGGGAGTACGGTCGCAAGATTAAAACTCAAAGGAATTGACGGGGGCCTGC ACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGCAGAACCTTACCAGCGTTTGACATC CTGATCGCGGTTACCAGAGATGGTTTCCTTCAGTTCGGCTGGATCAGTGACAGGTGCTGCATGG CTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCATCCCT AGTTGCCATCATTCAGTTGGGCACTCTAAGGAAACTGCCGGTGATAAGCCGGAGGAAGGTGGG GATGACGTCAAGTCCTCATGGCCCTTACGCGCTGGGCTACACGTGCTACAATGGCGGTGACA GTGGGCAGCAACCGGGCGACCGGTAGCTAATCTCCAAAAACCGTCTCAGTTCGGATTGTTCTCT GCAACTCGAGAGCATGAAGGCGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATAC GTTCCCAGGCCTTGTACACACCGCCCGTCACACCATGGGAGTTGGTTTCACCCGAAGGCAGTGC TCTAACCCGCAAGGGGGGAAGC

1.6 ลำดับนิวคลีโอไทด์บริเวณ 16s rDNA ของไอโซเลท TSG6

ขนาด 1376 bp

>CACTGCAAGTCGAACGGAAAGGCCCAGCTTGCTGGGTGCTCGAGTGGCGAACGGGTGAG TAACACGTGGGTGATCTGCCCCTGACTTTGGGATAAGCCTGGGAAACTGGGTCTAATACCGGAT ATGACCAGTTGGTGCATGCCTTCTGGTGGAAAGCCTTGTGCGGTTGGGGGATGGGCCCGCGGCC TATCAGCTTGTTGGTGGGGTAATGGCCTACCAAGGCGACGGGGTAGCCGACCTGAGAGGGT GATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATAT TGCACAATGGGCGCAAGCCTGATGCAGCGACGCCGCGTGAGGGATGACGGCCTTCGGGTTGTA AACCTCTTTCACCAGGGACGAAGCTTTTGTGACGGTACCTGGAGAAGAAGCACCGGCCAACTAC GTGCCAGCAGCCGCGGTAATACGTAGGGTGCGAGCGTTGTCCGGAATTACTGGGCGTAAAGAG CTCGTAGGCGGTTTGTCGCGTCGTCTGTGAAATTCTGCAGCTTAACTGCAGGCGTGCAGGCGAT ACGGGCAGACTTGAGTACTACAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGA TATCAGGAGGAACACCGGTGGCGAAGGCGGGTCTCTGGGTAGTAACTGACGCTGAGGAGCGAA AGCGTGGGTAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGGTGGGTACTAGG TGTGGGGCTCATTTCACGAGTTCCGTGCCGTAGCTAACGCATTAAGTACCCCGCCTGGGGAGTA CGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGGCCCGCACAAGCGGCGGAGCATGTGGA TTAATTCGATGCAACGCGAAGAACCTTACCTGGGTTTGACATACACCAGACGCGGCTAGAGATA GTCGTTCCCTTGTGGTTGGTGTACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTGGTGAGATGT TGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCCTGTATTGCCAGCGGGTTATGCCGGGGACT TGCAGGAGACTGCCGGGGTCAACTCGGAGGAAGGTGGGGATGACGTCAAGTCATGCCCCT TATGTCCAGGGCTTCACACATGCTACAATGGCCGGTACAGAGGGCTGCGATACCGTGAGGTGG AGCGAATCCCTTAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGG AGTCGCTAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCG CCCGTCACGTCTCGGTAACACCCGAAGCCGGGCCTAACCCTGAGGAGC

1.7 ลำดับนิวคลีโอไทด์บริเวณ 16s rDNA ของไอโซเลท TSG7

ขนาด 1400 bp

>TGGTCGAGCGGATGAAGGGAGCTTGCTTCTGGATTCAGCGGCGGACGGGTGAGTAATGCC TAGGAATCTGCCTGGTAGTGGGGGGACAACGTTCCGAAAGGAGCGCTAATACCGCATACGTCCTA CGGGAGAAAGTGGGGGATCTTCGGACCTCACGCTATCAGATGAGCCTAGGTCGGATTAGCTAG TAGGTGGGGTAATGGCTCACCTAGGCGACGATCCGTAACTGGTCTGAGAGGATGATCAGTCACA CTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGG CGAAAGCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTAAAGCACTTTAAG TTGGGAGGAAGGGCAGTAAGTTAATACCTTGCTGTTTTGACGTTACCAACAGAATAAGCACCGG CTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGTGCAAGCGTTAATCGGAATTACTGGGCG TAAAGCGCGCGTAGGTGGTTTGGTAAGATGGATGTGAAATCCCCGGGCTCAACCTGGGAACTG CATCCATAACTGCCTGACTAGAGTACGGTAGAGGGTGGTGGAATTTCCTGTGTAGCGGTGAAAT GCGTAGATATAGGAAGGAACACCAGTGGCGAAGGCGACCACCTGGACTGATACTGACACTGAG GTGCGAAAGCGTGGGGGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTC GACTAGCCGTTGGGATCCTTGAGATCTTAGTGGCGCAGCTAACGCGATAAGTCGACCGCCTGG GGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCA TGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCTGGCCTTGACATGTCCGGAATCCTGCAG AGATGCGGGAGTGCCTTCGGGAATCGGAACACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTC GTGAGATGTTGGGTTAAGTCCCGTAACGAGCGCAACCCTTGTCCTTAGTTACCAGCACGTTAAG GTGGGCACTCTAAGGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAGTCAT CATGGCCCTTACGGCCAGGGCTACACACGTGCTACAATGGTCGGTACAGAGGGTTGCCAAGCC GCGAGGTGGAGCTAATCCCAGAAAACCGATCGTAGTCCGGATCGCAGTCTGCAACTCGACTGC GTGAAGTCGGAATCGCTAGTAATCGTGAATCAGAATGTCACGGTGAATACGTTCCCGGGCCTTG TACACACCGCCCGTCACACCATGGGAGTGGGTTGCTCCAGAAGTAGCTAGTCTAACCGCAAGG GGGACGGT

1.8 ลำดับนิวคลีโอไทด์บริเวณ 16s rDNA ของไอโซเลท TSG8

ขนาด 1418 bp

>AGTCGAGCGAACAGAAAAGGAGCTTGCTCCTTTGACGTTAGCGGCGGACGGGTGAGTAAC ACGTGGGCAACCTACCCTATAGTTTGGGATAACTCCGGGAAACCGGGGCTAATACCGAATAATC TCTTTTGCTTCATGGTGAAAGACTGAAAGACGGTTTCGGCTGTCGCTATAGGATGGGCCCGCGG CGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAGAGG GTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAAT TAAAACTCTGTTGTAAGGGAAGAACAAGTACAGTAGTAACTGGCTGTACCTTGACGGTACCTTA TTAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTC CGGAATTATTGGGCGTAAAGCGCGCGCGGGGGGCCCTTTAAGTCTGATGTGAAAGCCCACGGC TCAACCGTGGAGGGTCATTGGAAACTGGGGGACTTGAGTGCAGAAGAGGAAAGTGGAATTCCA AGTGTAGCGGTGAAATGCGTAGAGATTTGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGTC TGTAACTGACGCTGAGGCGCGAAAGCGTGGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCA CGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGTTTCCGCCCCTTAGTGCTGCAGCTAACGCAT TAAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCG CACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACAT CCCGTTGACCACTGTAGAGATATAGTTTCCCCTTCGGGGGCAACGGTGACAGGTGGTGCATGGT TGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTA GTTGCCATCATTTAGTTGGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGG ATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGACGATACAA ACGGTTGCCAACTCGCGAGAGGGAGCTAATCCGATAAAGTCGTTCTCAGTTCGGATTGTAGGCT GCAACTCGCCTACATGAAGCCGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATAC GTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAGGTTTGTAACACCCGAAGTCGGTGAG GTAACCTTTTGGAGCCAGCCGCCGA

1.9 ลำดับนิวคลีโอไทด์บริเวณ 16s rDNA ของไอโซเลท SG1

ขนาด 1385 bp

>GCAGCCGAGCGGTAGAGTTCCTTCGGGGACTTGAGAGCGGCGTACGGGTGCGGAACACG TGTGCAACCTGCCTTTATCTGGGGGGATAGCCTTTCGAAAGGAAGATTAATACCCCATAATATAA TGAGTGGCATCACTTATTGTGAAAACTCCGGTGGATAGAGATGGGCACGCGCAAGATTAGATA GTTGGTGGGGTAACGGCCTACCAAGTCAGTGATCTTTAGGGGGGCCTGAGAGGGTGATCCCCCA CACTGGTACTGAGACACGGACCAGACTCCTACGGGAGGCAGCAGTGAGGAATATTGGACAATG GGTGAGAGCCTGATCCAGCCATCCCGCGTGAAGGACGACGGCCCTATGGGTTGTAAACTTCTTT TGTACAGGGATAAACCCAGATACGTGTATCTGGCTGAAGGTACTGTACGAATAAGCACCGGCTA ACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTATCCGGATTTATTGGGTTTAA AGGGTCCGTAGGCGGATCAGTAAGTCAGTGGTGAAATCTCATAGCTTAACTATGAAACTGCCAT TGATACTGCTGGTCTTGAGTAAGGTAGAAGTAGCTGGAATAAGTAGTGTAGCGGTGAAATGCAT AGATATTACTTAGAACACCAATTGCGAAGGCAGGTTACTATGTCTTAACTGACGCTGATGGACG AAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGCTAACTCG TTTTTGGGTTTTCGGATTCAGAGACTAAGCGAAAGTGATAAGTTAGCCACCTGGGGAGTACGAA CGCAAGTTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGATTATGTGGTTTAAT TCGATGATACGCGAGGAACCTTACCAAGGCTTAAATGGGAATTGATCGGTTTAGAAATAGACCT TCCTTCGGGCAATTTTCAAGGTGCTGCATGGTTGTCGTCAGCTCGTGCCGTGAGGTGTTAGGTT AAGTCCTGCAACGAGCGCAACCCCTGTCACTAGTTGCCATCATTAAGTTGGGGACTCTAGTGAG GGCCACACACGTAATACAATGGCCGGTACAGAGGGCAGCTACACAGCGATGTGATGCAAATCTC GAAAGCCGGTCTCAGTTCGGATTGGAGTCTGCAACTCGACTCTATGAAGCTGGAATCGCTAGTA ATCGCGCATCAGCCATGGCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCAAGCC ATGGAAGTCTGGGGTACCTGATAGTCGGTGACCGTAAAAGGAGCTGC

1.10 ลำดับนิวคลีโอไทด์บริเวณ 16s rDNA ของไอโซเลท SG2

ขนาด 1371 bp

>TGCAGTCGAGCGGAGAAGGGATGCTCCTTGATTCAGCGGCGGAGGTGAGTAATGCCT AGGAATCTGCCTGGTAGTGGGGGGATAACGTTCCGAAAGGAACGCTAATACCGCATACGTCC TACGGGAGAAAGCGGGGGATCTTCGGACCTCGCGCTATCAGATGAGCCTAGGTCGGATTAG CTAGTTGGTGAGGTAATGGCTCACCAAGGCGACGATCCGTAACTGGTCTGAGAGGATGATC AGTCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTG GACAATGGGCGAAAGCCTGATCCAGCCATGCCGCGTGTGAGAAGAGGTCTTCGGATTGTA AAGCACTTTAAGTTGGGAGGAAGGGTATTCACCTAATACGTGAGTATTTTGACGTTACCGA CAGAATAAGCACCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGTGCAAGCGTT AATCGGAATTACTGGGCGTAAAGCGCGCGTAGGTGGTTCGTTAAGTTGGATGTGAAAGCCC CGGGCTCAACCTGGGAACTGCATCCAAAACTGGCGAGCTAGAGTACGGTAGAGGGTGGTG CCACCTGGACTGATACTGACACTGAGGTGCGAAAGCGTGGGGGGGCAAACAGGATTAGATAC CCTGGTAGTCCACGCCGTAAACGATGTCAACTAGCCGTTGGGATCCTTGAGATCTTAGTGG CGCAGCTAACGCATTAAGTTGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATG AATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAA CCTTACCTGGCCTTGACATGCTGAGAACTTTCCAGAGATGGATTGGTGCCTTCGGGAGCTC AGACACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTGGGTGAGATGTTGGGTTAAGTCCCGT AACGAGCGCAACCCTTGTCCTTAGTTACCAGCACGTTATGGTGGGCACTCTAAGGAGACTG CCGGTGACAAACCGGAGGAAGGTGGGGGATGACGTCAAGTCATCATGGCCCTTACGGCCAG GGCTACACGTGCTACAATGGTCGGTACAAAGGGTTGCCAAGCCGCGAGGTGGAGCTAAT CCCATAAAACCGATCGTAGTCCGGATCGCAGTCTGCAACTCGACTGCGTGAAGTCGGAATC GCTAGTAATCGTGAATCAGAATGTCACGGTGAATACGTTCCCGGGCCTTGTACACACCGCC CGTCTGGGAGTGGGTTGCTCCAGAAGTAGCTAGT

1.11 ลำดับนิวคลีโอไทด์บริเวณ 16s rDNA ของไอโซเลท SG3

ขนาด 1431 bp

>CTATACATGCAAGTCGAGCGAACAGAAAAGGAGCTTGCTCCTTTGACGTTAGCGGCG GACGGGTGAGTAACACGTGGGCAACCTACCCTATAGTTTGGGATAACTCCGGGAAACCGGG GCTAATACCGAATAATCTCTTTTGCTTCATGGTGAAAGACTGAAAGACGGTTTCGGCTGTC GCTATAGGATGGGCCCGCGCGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCGAC GATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACT CCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGGCGAAAGCCTGATGGAGCAACGCC GCGTGAGTGAAGAAGGTTTTCGGATCGTAAAACTCTGTTGTAAGGGAAGAACAAGTACAGT AGTAACTGGCTGTACCTTGACGGTACCTTATTAGAAAGCCACGGCTAACTACGTGCCAGCA GCGGTCCTTTAAGTCTGATGTGAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTG GGGGACTTGAGTGCAGAAGAGGGAAAGTGGAATTCCAAGTGTAGCGGTGAAATGCGTAGAGA TTTGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGTCTGTAACTGACGCTGAGGCGCGAA AGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTA AGTGTTAGGGGGTTTCCGCCCCTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGG AGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGC ATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCCGTTGACCAC TGTAGAGATATAGTTTCCCCTTCGGGGGGCAACGGTGACAGGTGGTGCATGGTTGTCGTCAG CTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCC ATCATTTAGTTGGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGGATGA CGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGACGATACAAA CGGTTGCCAACTCGCGAGAGGGAGCTAATCCGATAAAGTCGTTCTCAGTTCGGATTGTAGG CTGCAACTCGCCTACATGAAGCCGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGA ATACGTTCCCGGGCCTTGTACACACCGCCGTCACACCACGAGAGTTTGTAACACCCGAAG TCGGTGAGGTAACCTTTTGGAGCCAGCCGCCGA

1.12 ลำดับนิวคลีโอไทด์บริเวณ 16s rDNA ของไอโซเลท SG4

ขนาด 1093 bp

>AATGGGCGCAAGCCTGATGCAGCCATGCCGCGTGTATGAAGAAGGCCTTCGGGTTGT GCAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCG TTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTCTGTCAAGTCGGATGTGAAATC CCCGGGCTCAACCTGGGAACTGCATTCGAAACTGGCAGGCTAGAGTCTTGTAGAGGGGGGT AGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCG GCCCCCTGGACAAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATA CCCTGGTAGTCCACGCCGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTT CCGGAGCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAAT GAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGA ACCTTACCTACTCTTGACATCCAGAGAACTTAGCAGAGATGCTTTGGTGCCTTCGGGAACT CTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCG CAACGAGCGCAACCCTTATCCTTTGTTGCCAGCGGTTAGGCCGGGAACTCAAAGGAGACTG CCAGTGATAAACTGGAGGAAGGTGGGGGATGACGTCAAGTCATCATGGCCCTTACGAGTAGG GCTACACGTGCTACAATGGCGCATACAAAGAGAAGCGACCTCGCGAGAGCAAGCGGACC TCATAAAGTGCGTCGTAGTCCGGATTGGAGTCTGCAACTCGACTCCATGAAGTCGGAATCG CTAGTAATCGTGGATCAGAATGCCACGGTGAATACGTTCCCGGGCCTTGTACACACCGCCC GTCACACCATGGGAGTGGGTTGCAAAAGAAGTACTTAACCTTCGGGAGGGCGCTTACCAC

1.13 ลำดับนิวคลีโอไทด์บริเวณ 16s rDNA ของไอโซเลท SG5

ขนาด 1321 bp

>TGCAGTTAGTGGCGCACGGGTGCGTAACGCGTGGGAATCTGCCCTTGGGTGCGGAAT AACTTCCCGAAAGGGATGCTAATACCGCATAATGTCGCAAGACCAAAGATTTATCGCCCAA GGATGAGCCCGCGTAAGATTAGCTAGTTGGTGGGGGTAAAAGCCTACCAAGGCGACGATCTT TAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGG GAGGCAGCAGTGGGGAATATTGGACAATGGGCGAAAGCCTGATCCAGCAATGCCGCGTGA GTGATGAAGGCCCTAGGGTTGTAAAGCTCTTTTACCCGGGATGATAATGACAGTACCGGGA TCGGAATTACTGGGCGTAAAGCGCGCGTAGGCGGTTTTTTAAGTCAGAGGTGAAAGCCCGG GGCTCAACCCCGGAATAGCCTTTGAAACTGGAAAACTAGAATCTTGGAGAGGTCAGTGGAA TTCCGAGTGTAGAGGTGAAATTCGTAGATATTCGGAAGAACACCAGTGGCGAAGGCGACTG ACTGGACAAGTATTGACGCTGAGGTGCGAAAGCGTGGGGGGGCAAACAGGATTAGATACCCT GGTAGTCCACGCCGTAAACGATGATAACTAGCTGTCCGGGTTCATAGAACTTGGGTGGCGC AGCTAACGCATTAAGTTATCCGCCTGGGGAGTACGGTCGCAAGATTAAAACTCAAAGGAAT TGACGGGGGCCTGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGCAGAACCT TACCAGCGTTTGACATCCTGATCGCGGTTACCAGAGATGGTTTCCTTCAGTTCGGCTGGAT CAGTGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCG CAACGAGCGCAACCCTCATCCCTAGTTGCCATCATTCAGTTGGGCACTCTAAGGAAACTGC CGGTGATAAGCCGGAGGAAGGTGGGGGATGACGTCAAGTCCTCATGGCCCTTACGCGCTGG GCTACACGTGCTACAATGGCGGTGACAGTGGGCAGCAACCGGGCGACCGGTAGCTAATC TCCAAAAACCGTCTCAGTTCGGATTGTTCTCTGCAACTCGAGAGCATGAAGGCGGAATCGC TAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCAGGCCTTGTACACACCGCCCG TCACACCATGGGAGTTGGTTTCACCCGAAGGCATAACCCGCAAGG

1.14 ลำดับนิวคลีโอไทด์บริเวณ 16s rDNA ของไอโซเลท SG6

ขนาด 1338 bp

>TGGGTGCTCGAGTGGCGAACGGGTGAGTAACACGTGGGTGATCTGCCCCTGACTTTG GGATAAGCCTGGGAAACTGGGTCTAATACCGGATATGACCAGTTGGTGCATGCCTTCTGGT GGAAAGCCTTGTGCGGTTGGGGGATGGGCCCGCGGCCTATCAGCTTGTTGGTGGGGTAATGG CCTACCAAGGCGACGGCGGGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAG ACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCC TGATGCAGCGACGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCACCAGGG ACGAAGCTTTTGTGACGGTACCTGGAGAAGAAGCACCGGCCAACTACGTGCCAGCAGCCGC GGTAATACGTAGGGTGCGAGCGTTGTCCGGAATTACTGGGCGTAAAGAGCTCGTAGGCGGT TTGTCGCGTCGTCTGTGAAATTCTGCAGCTTAACTGCAGGCGTGCAGGCGATACGGGCAGA CTTGAGTACTACAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGG AGGAACACCGGTGGCGAAGGCGGGTCTCTGGGTAGTAACTGACGCTGAGGAGCGAAAGCG TGGGTAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGGTGGGTACTAGGTG TGGGGCTCATTTCACGAGTTCCGTGCCGTAGCTAACGCATTAAGTACCCCGCCTGGGGAGT ACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGAGCATG TGGATTAATTCGATGCAACGCGAAGAACCTTACCTGGGTTTGACATACACCAGACGCGGCT AGAGATAGTCGTTCCCTTGTGGTTGGTGTACAGGTGGTGCATGGCTGTCGTCAGCTCGTGT CGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCCTGTATTGCCAGCGGGT TATGCCGGGGACTTGCAGGAGACTGCCGGGGTCAACTCGGAGGAAAGGTTGGGGATGACG TCAAGTCATCATGCCCCTTATGTCCAGGGGCTTCACACATGCTACAATGGCCGGTACAGAG GGCTGCGATACCGTGAGGTGGAGCGAATCCCTTAAAGCCGGTCTCAGTTCGGATCGGGGTC TGCAACTCGACCCCGTGAAGTCGGAGTCGCTAGTAATCGCAGATCAGCAACGCTGCGGTGA CTCG
1.15 ลำดับนิวคลีโอไทด์บริเวณ 16s rDNA ของไอโซเลท SG7

ขนาด 1358 bp

>TGCAAGTCGAGCGCCCTGCTTGCAGGGAGCGGCAGACGGGTGAGTAACGCGTGGGA ATCTACCCATCTCTACGGAACAGCTCCGGGAAACTGGAATTAATACCGTATACGCCCTTTT GGGGAAAGATTTATCGGAGATGGAAGAGCCCGCGTTGGATTAGCTAGTTGGTGGGGTAAAG GCCTACCAAGGCGACGATCCATAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAG ACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGGGCAACCC TGATCCAGCCATGCCGCGTGAGTGATGAAGGCCCTAGGGTTGTAAAGCTCTTTCACCGGTG AAGATAATGACGGTAACCGGAGAAGAAGCCCCGGCTAACTTCGTGCCAGCAGCCGCGGTAA TACGAAGGGGGCTAGCGTTGTTCGGAATTACTGGGCGTAAAGCGCACGTAGGCGGACATTT AAGTCAGGGGTGAAATCCCGGGGCTCAACCCCGGAACTGCCTCTGATACTGGGTGTCTTGA GTTCGAGAGAGGTGAGTGGAATTCCGAGTGTAGAGGTGAAATTCGTAGATATTCGGAGGAA CACCAGTGGCGAAGGCGGCTCACTGGCTCGATACTGACGCTGAGGTGCGAAAGCGTGGGG AGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGGAAGCTAGCCGTTGGC AGGTTTACCTGTCGGTGGCGCAGTTAACGCATTAAGCTTCCCGCCTGGGGAGTACGGTCGC AAGATTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT TCGAAGCAACGCGCAGAACCTTACCAGCCCTTGACATCCCGGTCGCGGTTACCAGAGATGG TATCCTTCAGTTCGGCTGGACCGGTGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGT GAGATGTTGGGGTTAAGTCCCGCAACGAGCGCAACCCTCGCCCTTAGTTGCCAGCATTCAG TTGGGCACTCTAAGGGGACTGCCGGTGATAAGCCGAGAGGAAGGTGGGGATGACGTCAAG TCCTCATGGCCCTTACGGGCTGGGCTACACACGTGCTACAATGGTGGTGACAGTGGGCAGC GAGACCGCGAGGTCGAGCTAATCTCCAAAAGCCATCTCAGTTCGGATTGCACTCTGCAACT CGAGTGCATGAAGTTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTC CCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTTGGCTTTACCCGAAGGCGCTGTG CTAACCGCAAGGAGGCAGGCACC

1.16 ลำดับนิวคลีโอไทด์บริเวณ 16s rDNA ของไอโซเลท SG8

ขนาด 1403 bp

>TGCAAGTCGAGCGGATGAAGGGAGACATTGCTTCTGGATTCAGCGGCGGACGGGTGA GTAATGCCTAGGAATCTGCCTGGTAGTGGGGGGACAACGTTCCGAAAGGAGCGCTAATACCG CATACGTCCTACGGGAGAAAGTGGGGGGATCTTCGGACCTCACGCTATCAGATGAGCCTAGG TCGGATTAGCTAGTAGGTGGGGTAATGGCTCACCTAGGCGACGATCCGTAACTGGTCTGAG AGGATGATCAGTCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGG GGAATATTGGACAATGGGCGAAAGCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGTCTT CGGATTGTAAAGCACTTTAAGTTGGGAGGAAGGGCAGTAAGTTAATACCTTGCTGTTTTGA CGTTACCAACAGAATAAGCACCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGT TGAAATCCCCGGGCTCAACCTGGGAACTGCATCCATAACTGCCTGACTAGAGTACGGTAGA GAAGGCGACCACCTGGACTGATACTGACACTGAGGTGCGAAAGCGTGGGGAGCAAACAGG ATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCGACTAGCCGTTGGGATCCTTGAGA TCTTAGTGGCGCAGCTAACGCGATAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAA ACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAA CGCGAAGAACCTTACCTGGCCTTGACATGTCCGGAATCCTGCAGAGATGCGGGAGTGCCTT CGGGAATCGGAACACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGGT TAAGTCCCGTAACGAGCGCAACCCTTGTCCTTAGTTACCAGCACGTTAAGGTGGGCACTCT AAGGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCCC TTACGGCCAGGGCTACACGTGCTACAATGGTCGGTACAGAGGGTTGCCAAGCCGCGAGG TGGAGCTAATCCCAGAAAACCGATCGTAGTCCGGATCGCAGTCTGCAACTCGACTGCGTGA AGTCGGAATCGCTAGTAATCGTGAATCAGAATGTCACGGTGAATACGTTCCCGGGCCTTGT ACACCGCCCGTCACACCATGGGAGTGGGTTGCTCCAGAAGTAGCTAGTCTAACCGCAAG GGGGA

บริเวณอนุรักษ์ของ PhaB เมื่อเปรียบเทียบกับ FabG

query	4	LEGKVALITGATRGIGRGIAEVFAQQGAKI.[1].FTYVGSV.[2].AKELEAT.[3].V TQIKG.[3].DASDY 67
167621922	11	LQGKVALVTGGNTGLGQAIAVALAKAGADI.[1].VAGRTEP.[2].TRLEVEQ A.[1].RGFIS.[3].DFFTT 72
24374346	12	LQGKVAFVQGGSRGIGAAIVKRLASEGAAV.[1].FTYVSSE.[2].SQLLVDE.[3].Q.[1].GKAIA.[3].DSTEP 76
295688966	7	LEGKVALVTGANTGIGQGIAIALAAAGADI.[1].AAGRSEP.[2].TQAAVEA L.[1].RKFLS.[3].DFGST 68
16125739	7	LEGKVALITGANTGIGQGIAIALAAAGADI.[1].AAGRSAP.[2].TQAAVEA L.[1].RKFLS.[3].DFSSI 68
221234496	7	LEGKVALITGANTGIGQGIAIALAAAGADI.[1].AAGRSAP.[2].TQAAVEA L.[1].RKFLS.[3].DFSSI 68
145297514	7	LSGQVAFVQGGSRGIGAAIVKRLARDGAAV.[1].FTYVSSA.[2].AEEIVAT.[3].A.[1].GKALA.[3].DSADA 71
125718728	3	LQNKNVLITGSARGIGLAIAHKFASVGANV.[1].LNGLSGI SDDILAE.[3].Y.[1].GKVVA.[3].DVSKA 65
260597464	3	FEGKIALVTGASRGIGRAIAETLAARGAKV IGTATSE.[2].AQAISDY.[3].N.[1].KGLML NVTDA 63
296504346	2	LKGKVALVTGASRGIGRAIAIDLAKQGANV.[1].VNYAGNE.[2].ANEVVDE.[3].L.[1].SDAIA.[3].DVANA 66
query	68	DAAOKLVEEVMAEFGOIDILINNAGITRDNLLLRMSKEDWDTIIKVNLDSVFNLTKAVIKPMMKA.[2].GSIINMTSV 143
167621922	73	EPIARTLEETLAAFGRVDILVNNAGVIRRADSIDFTEADWDAVMDTNLKVVFFLTOAFAROALKO.[7].GKVINIASL 153
24374346	77	EAIRRAIRETKAHLGGLDIVVNNAGILIWDSIENLTLEDWERIVNTNVRSVFVASQEAALHMNDG GRIINIGST 150
295688966	69	EPVORVVDETVATFGKVDILVNNAGIIRRADSIEFSEADWDAVMDTNLKVVFFLTQAFAKQALKR.[2].GKVINIASL 144
16125739	69	EPVORVVDETVAAFGKVDILVNNAGIIRRADSIEFSEADWDAVMDTNLKVVFFLTQAFAKQALKQ.[6].AKVINIASL 148
221234496	69	EPVQRVVDETVAAFGKVDILVNNAGIIRRADSIEFSEADWDAVMDTNLKVVFFLTQAFAKQALKQ.[6].AKVINIASL 148
145297514	72	IAVQHAIRQTVTTFGRLDILVNNAGVLVWGDIEELTLDDLDRTLAVNIRSVFVACQEAAHHMGKG GRIINIGST 145
125718728	66	ADAQRIVEEAVTALGSVDVLVNNAGITRDKLMLKMTEEDFEQVLKVNLTGTFNMTQSVLKPMTKA.[2].GAIINLSSV 141
260597464	64	ASIESVLENIRSEFGEVDILVNNAGITRDNLLMRMKDDEWNDIIETNLSSVFRLSKAVMRAMMKK.[2].GRIITIGSV 139
296504346	67	DDVTNMVKQTVDTFGQVDILVNNAGVTKDNLLMRMKEEEWDTVINTNLKGVFLCTKAVSRYMMRQ.[2].GRIINIASV 142
auerv	144	VGISGNGGOANYAASKAGVIGFTKSVALELGSRNIRCNAIAPGFIETEMTAS.[1].DEKTL OAWRDGIP 209
query 167621922	144 154	VGISGNGGQANYAASKAGVIGFTKSVALELGSRNIRCNAIAPGFIETEMTAS.[1].DEKTL QAWRDGIP 209 LSFOGGIRVPSYTASKSGLAGLTKILANEWATKGVNVNAIAPGYFDTNNTEA.[2].NDPDR.[1].AAILORIP 221
query 167621922 24374346	144 154 151	VGISGNGGQANYAASKAGVIGFTKSVALELGSRNIRCNAIAPGFIETEMTAS.[1].DEKTL QAWRDGIP 209 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGVNVNAIAPGYFDTNNTEA.[2].NDPDR.[1].AAILQRIP 221 .[1].AERIPFVGGAIYGMSKSALVGLAKGLARDLGPRAITVNNIOPGPVDTDMNPD NGDSS EPIKAIGV 216
query 167621922 24374346 295688966	144 154 151 145	VGISGNGGQANYAASKAGVIGFTKSVALELGSRNIRCNAIAPGFIETEMTAS.[1].DEKTL QAWRDGIP 209 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGVNVNAIAPGYFDTNNTEA.[2].NDPDR.[1].AAILQRIP 221 .[1].AERIPFVGGAIYGMSKSALVGLAKGLARDLGPRAITVNNIQPGPVDTDMNPD NGDSS EPIKAIGV 216 LSFQGGIRVPSYTAAKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 212
query 167621922 24374346 295688966 16125739	144 154 151 145 149	VGISGNGGQANYAASKAGVIGFTKSVALELGSRNIRCNAIAPGFIETEMTAS.[1].DEKTL QAWRDGIP 209 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGVNVNAIAPGYFDTNNTEA.[2].NDPDR.[1].AAILQRIP 221 .[1].AERIPFVGGAIYGMSKSALVGLAKGLARDLGPRAITVNNIQPGPVDTDMNPD NGDSS EPIKAIGV 216 LSFQGGIRVPSYTAAKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 212 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216
query 167621922 24374346 295688966 16125739 221234496	144 154 151 145 149 149	VGISGNGGQANYAASKAGVIGFTKSVALELGSRNIRCNAIAPGFIETEMTAS.[1].DEKTL QAWRDGIP 209 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGVNVNAIAPGYFDTNNTEA.[2].NDPDR.[1].AAILQRIP 221 .[1].AERIPFVGGAIYGMSKSALVGLAKGLARDLGPRAITVNNIQPGPVDTDMNPD NGDSS EPIKAIGV 216 LSFQGGIRVPSYTAAKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 212 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216
query 167621922 24374346 295688966 16125739 221234496 145297514	144 154 151 145 149 149 146	VGISGNGGQANYAASKAGVIGFTKSVALELGSRNIRCNAIAPGFIETEMTAS.[1].DEKTL QAWRDGIP 209 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGVNVNAIAPGYFDTNNTEA.[2].NDDR.[1].AAILQRIP 221 .[1].AERIPFVGGAIYGMSKSALVGLAKGLARDLGPRAITVNNIQPGPVDTDMNPD NGDSS EPIKAIGV 216 LSFQGGIRVPSYTAAKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 212 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 .[1].ADRIPMVGGSVYAMSKSALVGLTKGMARDLGPKGITVNNVQPGPVDTDMNPA DGESA AQLKGMMA 211
query 167621922 24374346 295688966 16125739 221234496 145297514 125718728	144 154 151 145 149 149 146 142	VGISGNGGQANYAASKAGVIGFTKSVALELGSRNIRCNAIAPGFIETEMTAS.[1].DEKTL QAWRDGIP 209 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGVNVNAIAPGYFDTNNTEA.[2].NDPDR.[1].AAILQRIP 221 .[1].AERIPFVGGAIYGMSKSALVGLAKGLARDLGPRAITVNNIQPGPVDTDMNPD NGDSS EPIKAIGV 216 LSFQGGIRVPSYTAAKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 212 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 LSFQGGIRVPSYTASKSGLAGLTKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 .[1].ADRIPMVGGSVYAMSKSALVGLTKGMARDLGPKGITVNNVQPGPVDTDMNPA DGESA AQLKGMMA 211 VGLAGNIGQANYAASKAGLIGFSKSVAREVAARNIRVNCIAPGFIESDMTDV.[1].PEKIK EASLALIP 207
query 167621922 24374346 295688966 16125739 221234496 145297514 125718728 260597464	144 154 151 145 149 149 146 142 140	VGISGNGGQANYAASKAGVIGFTKSVALELGSRNIRCNAIAPGFIETEMTAS.[1].DEKTL QAWRDGIP 209 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGVNVNAIAPGYFDTNNTEA.[2].NDPDR.[1].AAILQRIP 221 .[1].AERIPFVGGAIYGMSKSALVGLAKGLARDLGPRAITVNNIQPGPVDTDMNPD NGDSS EPIKAIGV 216 LSFQGGIRVPSYTAAKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 212 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 LSFQGGIRVPSYTASKSGLAGLTKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 .[1].ADRIPMVGGSVYAMSKSALVGLTKGMARDLGPKGITVNNVQPGPVDTDMNPA DGESA AQLKGMMA 211 VGLAGNIGQANYAASKAGLIGFSKSVAREVAARNIRVNCIAPGFIESDMTDV.[1].PEKIK EASLALIP 207 VGTMGNAGQANYAAAKAGLIGFSKSLAREVASRGITVNVVAPGFIETDMTRA.[1].SDDQR AGILAEVP 205
query 167621922 24374346 295688966 16125739 221234496 145297514 125718728 260597464 296504346	144 154 145 149 149 146 142 140 143	VGISGNGGQANYAASKAGVIGFTKSVALELGSRNIRCNAIAPGFIETEMTAS.[1].DEKTL QAWRDGIP 209 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGVNVNAIAPGYFDTNNTEA.[2].NDPDR.[1].AAILQRIP 221 .[1].AERIPFVGGAIYGMSKSALVGLAKGLARDLGPRAITVNNIQPGPVDTDMNPD NGDSS EPIKAIGV 216 LSFQGGIRVPSYTAAKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 212 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 .[1].ADRIPMVGGSVYAMSKSALVGLTKGMARDLGPKGITVNNVQPGPVDTDMNPA DGESA AQLKGMMA 211 VGLAGNIGQANYAASKAGLIGFSKSVAREVAARNIRVNCIAPGFIESDMTDV.[1].PEKIK EASLALIP 207 VGTMGNAGQANYAAKAGLIGFSKSLAREVASRGITVNVVAPGFIETDMTRA.[1].SDDQR AGILAEVP 205 VGVIGNPGQANYVAAKAGVIGLTKTSAKELASRNITVNAIAPGFIATDMTDV.[1].DENIK AEMLKVIP 208
query 167621922 24374346 295688966 16125739 221234496 145297514 125718728 260597464 296504346	144 154 145 149 149 146 142 140 143	VGISGNGGQANYAASKAGVIGFTKSVALELGSRNIRCNAIAPGFIETEMTAS.[1].DEKTL QAWRDGIP 209 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGVNVNAIAPGYFDTNNTEA.[2].NDPDR.[1].AAILQRIP 221 .[1].AERIPFVGGAIYGMSKSALVGLAKGLARDLGPRAITVNNIQPGPVDTDMNPD NGDSS EPIKAIGV 216 LSFQGGIRVPSYTAAKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 212 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 .[1].ADRIPMVGGSVYAMSKSALVGLTKGMARDLGPKGITVNNVQPGPVDTDMNPA DGESA AQLKGMMA 211 VGLAGNIGQANYAASKAGLIGFSKSVAREVAARNIRVNCIAPGFIESDMTDV.[1].PEKIK EASLALIP 207 VGTMGNAQQANYAAAKAGLIGFSKSLAREVASRGITVNVVAPGFIETDMTRA.[1].SDDQR AGILAEVP 205 VGVIGNPGQANYVAAKAGVIGLTKTSAKELASRNITVNAIAPGFIATDMTDV.[1].DENIK AEMLKVIP 208
query 167621922 24374346 295688966 16125739 221234496 145297514 125718728 260597464 296504346 query	144 154 151 145 149 149 146 142 140 143 210	VGISGNGGQANYAASKAGVIGFTKSVALELGSRNIRCNAIAPGFIETEMTAS.[1].DEKTL QAWRDGIP 209 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGVNVNAIAPGYFDTNNTEA.[2].NDPDR.[1].AAILQRIP 221 .[1].AERIPFVGGAIYGMSKSALVGLAKGLARDLGPRAITVNNIQPGPVDTDMNPD NGDSS EPIKAIGV 216 LSFQGGIRVPSYTAAKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 212 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 (1].ADRIPMVGGSVYAMSKSALVGLTKGMARDLGPKGITVNNVQPGPVDTDMNPA DGESA AQLKGMMA 211 VGLAGNIGQANYAASKAGLIGFSKSVAREVAARNIRVNCIAPGFIESDMTDV.[1].PEKIK EASLALIP 207 VGTMGNAQQANYAAAKAGVIGLTKTSAKELASRNITVNAIAPGFIETDMTRA.[1].SDDQR AGILAEVP 205 VGVIGNPGQANYVAAKAGVIGLTKTSAKELASRNITVNAIAPGFIATDMTDV.[1].DENIK AEMLKVIP 208 MKRGGOPEDIANACVELGSE.[2].SYITGOVLNVDGGM 245
query 167621922 24374346 295688966 16125739 221234496 145297514 125718728 260597464 296504346 query 167621922	144 154 151 145 149 149 146 142 140 143 210 222	VGISGNGGQANYAASKAGVIGFTKSVALELGSRNIRCNAIAPGFIETEMTAS.[1].DEKTL QAWRDGIP 209 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGVNVNAIAPGYFDTNNTEA.[2].NDPDR.[1].AAILQRIP 221 .[1].AERIPFVGGAIYGMSKSALVGLAKGLARDLGPRAITVNNIQPGPVDTDMNPD NGDSS EPIKAIGV 216 LSFQGGIRVPSYTAAKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 212 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 .[1].ADRIPMVGGSVYAMSKSALVGLTKGMARDLGPKGITVNNVQPGPVDTDMNPA DGESA AQLKGMMA 211 VGLAGNIGQANYAASKAGLIGFSKSVAREVAARNIRVNCIAPGFIESDMTDV.[1].PEKIK EASLALIP 207 VGTMGNAGQANYAAAKAGLIGFSKSLAREVASRGITVNVVAPGFIETDMTRA.[1].SDDQR AGILAEVP 205 VGVIGNPGQANYVAAKAGVIGLTKTSAKELASRNITVNAIAPGFIATDMTDV.[1].DENIK AEMLKVIP 208 MKRGGQPEDIANACVFLGSE.[2].SYITGQVLNVDGGM 245 AGRLGLPADIAGAAVFLASA.[2].DYVQGITLPVDGGW 257
query 167621922 24374346 295688966 16125739 221234496 145297514 125718728 260597464 296504346 query 167621922 24374346	144 154 151 145 149 146 142 140 143 210 222 217	VGISGNGGQANYAASKAGVIGFTKSVALELGSRNIRCNAIAPGFIETEMTAS.[1].DEKTL QAWRDGIP 209 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGVNVNAIAPGYFDTNNTEA.[2].NDPDR.[1].AAILQRIP 221 .[1].AERIPFVGGAIYGMSKSALVGLAKGLARDLGPRAITVNNIQPGPVDTDMNPD NGDSS EPIKAIGV 216 LSFQGGIRVPSYTAAKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 212 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 .[1].ADRIPMVGGSVYAMSKSALVGLTKGMARDLGPKGITVNNVQPGPVDTDMNPA DGESA AQLKGMMA 211 VGLAGNIGQANYAASKAGLIGFSKSVAREVAARNIRVNCIAPGFIESDMTDV.[1].PEKIK EASLALIP 207 VGTMGNAGQANYAAAKAGLIGFSKSLAREVASRGITVNVVAPGFIETDMTRA.[1].SDDQR AGILAEVP 205 VGVIGNPGQANYVAAKAGVIGLTKTSAKELASRNITVNAIAPGFIATDMTDV.[1].DENIK AEMLKVIP 208 MKRGGQPEDIANACVFLGSE.[2].SYITGQVLNVDGGM 245 AGRLGLPADIAGAAVFLASA.[2].DYVQGITLPVDGGW 257 LGRYGKAEEIASFVAFIAGP.[2].GYITGASLMIDGGF 252
query 167621922 24374346 295688966 16125739 221234496 145297514 125718728 260597464 296504346 query 167621922 24374346 295688966	144 154 145 149 149 146 142 140 143 210 222 217 213	VGISGNGGQANYAASKAGVIGFTKSVALELGSRNIRCNAIAPGFIETEMTAS.[1].DEKTL QAWRDGIP 209 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGVWVNAIAPGYFDTNNTEA.[2].NDPDR.[1].AAILQRIP 221 .[1].AERIPFVGGAIYGMSKSALVGLAKGLARDLGPRAITVNNIQPGPVDTDMNPD NGDSS EPIKAIGV 216 LSFQGGIRVPSYTAAKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 212 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 .[1].ADRIPMVGGSVYAMSKSALVGLTKGMARDLGPKGITVNNVQPGPVDTDMNPA DGESA AQLKGMMA 211 VGLAGNIGQANYAASKAGLIGFSKSVAREVAARNIRVNCIAPGFIESDMTDV.[1].PEKIK EASLALIP 207 VGTMGNAGQANYAAAKAGLIGFSKSLAREVASRGITVNVVAPGFIETDMTRA.[1].SDDQR AGILAEVP 205 VGVIGNPGQANYVAAKAGVIGLTKTSAKELASRNITVNAIAPGFIATDMTDV.[1].DENIK AEMLKVIP 208 MKRGGQPEDIANACVFLGSE.[2].SYITGQVLNVDGGM 245 AGRLGLPADIAGAAVFLASA.[2].DYVQGITLPVDGGW 257 LGRYGKAEEIASFVAFIAGP.[2].GYITGASLMIDGGF 252 AGRWGRPEDIGGAAVFLASS.[2].DYVQGITLPVDGGW 248
query 167621922 24374346 295688966 16125739 221234496 145297514 125718728 260597464 296504346 query 167621922 24374346 295688966 16125739	144 154 151 145 149 149 146 142 140 143 210 222 217 213 217	VGISGNGGQANYAASKAGVIGFTKSVALELGSRNIRCNAIAPGFIETEMTAS.[1].DEKTL QAWRDGIP 209 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGVWVNAIAPGYFDTNNTEA.[2].NDDR.[1].AAILQRIP 221 .[1].AERIPFVGGAIYGMSKSALVGLAKGLARDLGPRAITVNNIQPGPVDTDMNPD NGDSS EPIKAIGV 216 LSFQGGIRVPSYTAAKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 212 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 .[1].ADRIPMVGGSVYAMSKSALVGLTKGMARDLGPKGITVNNVQPGPVDTDMNPA DGESA AQLKGMMA 211 VGLAGNIGQANYAASKAGLIGFSKSVAREVAARNIRVNCIAPGFIESDMTDV.[1].PEKIK EASLALIP 207 VGTMGNAGQANYAAAKAGLIGFSKSLAREVASRGITVNVVAPGFIETDMTRA.[1].SDDQR AGILAEVP 205 VGVIGNPGQANYVAAKAGVIGLTKTSAKELASRNITVNAIAPGFIATDMTDV.[1].DENIK AEMLKVIP 208 MKRGGQPEDIANACVFLGSE.[2].SYITGQVLNVDGGM 245 AGRLGLPADIAGAAVFLASA.[2].DYVQGITLPVDGGW 257 LGRYGKAEEIASFVAFIAGP.[2].GYITGASLMIDGFF 252 AGRWGRPEDIGGAAVFLASS.[2].DYVQGITLPVDGGW 248 AGRWGRPEDIGGAAVFLASS.[2].DYVQGITLPVDGGW 248 AGRWGRPEDIGGAAVFLASS.[2].DYVQGITLPVDGGW 248
query 167621922 24374346 295688966 16125739 221234496 145297514 125718728 260597464 296504346 query 167621922 24374346 295688966 16125739 221234496	144 154 151 145 149 149 146 142 140 143 210 222 217 213 217 217	VGISGNGGQANYAASKAGVIGFTKSVALELGSRNIRCNAIAPGFIETEMTAS.[1].DEKTL QAWRDGIP 209 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGVWVNAIAPGYFDTNNTEA.[2].NDDR.[1].AAILQRIP 221 .[1].AERIPFVGGAIYGMSKSALVGLAKGLARDLGPRAITVNNIQPGPVDTDMNPD NGDSS EPIKAIGV 216 LSFQGGIRVPSYTAAKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 212 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 .[5].ADRIPMVGGSVYAMSKSALVGLTKGMARDLGPKGITVNNVQPGPVDTDMNPA DGESA AQLKGMMA 211 VGLAGNIGQANYAASKAGLIGFSKSVAREVAARNIRVNCIAPGFIESDMTDV.[1].PEKIK EASLALIP 207 VGTMGNAGQANYAAAKAGLIGFSKSLAREVASRGITVNVVAPGFIETDMTRA.[1].SDDQR AGILAEVP 205 VGVIGNPGQANYVAAKAGVIGLTKTSAKELASRNITVNAIAPGFIATDMTDV.[1].DENIK AEMLKVIP 208 MKRGGQPEDIANACVFLGSE.[2].SYITGQVLNVDGGM 245 AGRLGLPADIAGAAVFLASA.[2].DYVQGITLPVDGGW 257 LGRYGKAEEIASFVAFIAGP.[2].GYITGASLMIDGGF 252 AGRWGRPEDIGGAAVFLASS.[2].DYVQGITLPVDGGW 248 AGRWGRPEDIGGAAVFLASS.[2].DYVQGITLPVDGGW 252
query 167621922 24374346 295688966 16125739 221234496 145297514 125718728 260597464 296504346 query 167621922 24374346 295688966 16125739 221234496 145297514	144 154 151 145 149 149 146 142 140 143 210 222 217 213 217 217 212	VGISGNGGQANYAASKAGVIGFTKSVALELGSRNIRCNAIAPGFIETEMTAS.[1].DEKTL QAWRDGIP 209 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGVNVNAIAPGYFDTNNTEA.[2].NDPDR.[1].AAILQRIP 221 .[1].AERIPFVGGAIYGMSKSALVGLAKGLARDLGPRAITVNNIQPGPVDTDMNPD NGDSS EPIKAIGV 216 LSFQGGIRVPSYTAAKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 212 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 .[5].ADRIPMVGGSVYAMSKSALVGLTKIMANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 .[1].AORIPMVGGSVYAMSKSALVGLTKGMARDLGPKGITVNNVQPGPVDTDMNPA DGESA AQLKGMMA 211 VGLAGNIGQANYAASKAGLIGFSKSVAREVAARNIRVNCIAPGFIESDMTDV.[1].PEKIK EASLALIP 207 VGTMGNAGQANYAAAKAGLIGFSKSLAREVASRGITVNVVAPGFIETDMTRA.[1].SDDQR AGILAEVP 205 VGVIGNPGQANYVAAKAGVIGLTKTSAKELASRNITVNAIAPGFIATDMTDV.[1].DENIK AEMLKVIP 208 MKRGGQPEDIANACVFLGSE.[2].SYITGQVLNVDGGM 245 AGRLGLPADIAGAAVFLASA.[2].DYVQGITLPVDGGW 257 LGRYGKAEEIASFVAFIAGP.[2].GYITGASLMIDGGF 252 AGRWGRPEDIGGAAVFLASS.[2].DYVQGITLPVDGGW 248 AGRWGRPEDIGGAAVFLASS.[2].DYVQGITLPVDGGW 252 AGRWGRPEDIGGAAVFLASS.[2].DYVQGITLPVDGGW 252
query 167621922 24374346 295688966 16125739 221234496 145297514 125718728 260597464 296504346 query 167621922 24374346 295688966 16125739 221234496 145297514 125718728	144 154 151 145 149 149 146 142 140 143 210 222 217 213 217 217 212 208	VGISGNGGQANYAASKAGVIGFTKSVALELGSRNIRCNAIAPGFIETEMTAS.[1].DEKTL QAWRDGIP 209 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGVNVNAIAPGYFDTNNTEA.[2].NDPDR.[1].AAILQRIP 221 .[1].AERIPFVGGAIYGMSKSALVGLAKGLARDLGPRAITVNNIQPGPVDTDMNPD NGDSS EPIKAIGV 216 LSFQGGIRVPSYTAAKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 212 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 .[1].ADRIPMVGGSVYAMSKSALVGLTKGMARDLGPKGITVNNVQPGPVDTDMNPA DGESA AQLKGMMA 211 VGLAGNIGQANYAASKAGLIGFSKSVAREVAARNIRVNCIAPGFIESDMTDV.[1].PEKIK EASLALIP 207 VGTMGNAGQANYAAAKAGLIGFSKSLAREVASRGITVNVVAPGFIETDMTRA.[1].SDDQR AGILAEVP 205 VGVIGNPGQANYVAAKAGVIGLTKTSAKELASRNITVNAIAPGFIATDMTDV.[1].DENIK AEMLKVIP 208 MKRGGQPEDIANACVFLGSE.[2].SYITGQVLNVDGGM 245 AGRLGLPADIAGAAVFLASA.[2].DYVQGITLPVDGGW 257 LGRYGKAEEIASFVAFIAGP.[2].GYITGASLMIDGGF 252 AGRWGRPEDIGGAAVFLASS.[2].DYVQGITLPVDGGW 252 LARYGKDEEIASFVAFLASS.[2].DYVQGITLPVDGGW 252 LARYGKDEEIASFVAYLAGS.[2].DYVQGITLPVDGGW 252 LARYGKDEEIASFVAYLAGF.[2].GYITGASLTDGGF 252 LARYGKDEEIASFVAYLAGF.[2].GYITGASLTDGGF 252 LARYGKDEEIASFVAYLAGF.[2].GYITGASLTDGGF 252 LARYGKDEEIASFVAYLAGF.[2].GYITGASLTDGGF 252 LARYGKDEEIASFVAYLAGF.[2].GYITGASLTDGGF 252 LARYGKDEEIASFVAYLAGF.[2].GYITGASLTDGGF 252 LARYGKDEEIASFVAYLAGF.[2].GYITGASLTDGGF 241
query 167621922 24374346 295688966 16125739 221234496 145297514 125718728 266597464 295684346 query 167621922 24374346 295688966 16125739 221234496 145297514 125718728 260597464	144 154 151 145 149 149 146 142 140 143 210 222 217 213 217 217 212 208 206	VGISGNGGQANYAASKAGVIGFTKSVALELGSRNIRCNAIAPGFIETEMTAS.[1].DEKTL QAWRDGIP 209 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGVNVNAIAPGYFDTNNTEA.[2].NDPDR.[1].AAILQRIP 221 .[1].AERIPFVGGAIYGMSKSALVGLAKGLARDLGPRAITVNNIQPGPVDTDMNPD NGDSS EPIKAIGV 216 LSFQGGIRVPSYTAAKSGLAGLTKILANEWATKGINVNAIAPGYPDTNNTEA.[2].ADQDR.[1].AAILARIP 212 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 .[1].ADRIPMVGGSVYAMSKSALVGLTKGMARDLGPKGITVNNVQPGPVDTDMNPA DGESA AQLKGMMA 211 VGLAGNIGQANYAASKAGLIGFSKSVAREVAARNIRVNCIAPGFIESDMTDV.[1].PEKIK EASLALIP 207 VGTMGNAGQANYAASKAGLIGFSKSLAREVASRGITVNVVAPGFIETDMTRA.[1].SDDQR AGILAEVP 205 VGVIGNPGQANYVAAKAGVIGLTKTSAKELASRNITVNAIAPGFIATDMTDV.[1].DENIK AEMLKVIP 208 MKRGGQPEDIANACVFLGSE.[2].SYITGQVLNVDGGM 245 AGRLGLPADIAGAAVFLASA.[2].DYVQGITLPVDGGW 257 LGRYGKAEEIASFVAFIAGP.[2].GYITGASLMIDGGF 252 AGRWGRPEDIGGAAVFLASS.[2].DYVQGITLPVDGGW 252 LARYGKDEEIASFVAFIAGP.[2].GYITGASLTIDVGGF 241 AGRLGDAKEIASFVAFLASS.[2].DYVQGITLPVDGGW 252 LARYGKDEEIASFVAFLASD.[2].GYITGASLTIDGGF 241 AGRLGDAKEIASAVAFLASD.[2].GYITGASLTIDGGF 241
query 167621922 24374346 295688966 16125739 221234496 145297514 125718728 260597464 296504346 query 167621922 24374346 295688966 16125739 221234496 16125718728 260597464 296504346	144 154 151 145 149 149 146 142 140 143 210 222 217 213 217 212 208 206 209	VGISGNGGQANYAASKAGVIGFTKSVALELGSRNIRCNAIAPGFIETEMTAS.[1].DEKTL QAWRDGIP 209 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGVNVNAIAPGYFDTNNTEA.[2].NDPDR.[1].AAILQRIP 221 .[1].AERIPFVGGAIYGMSKSALVGLAKGLARDLGPRAITVNNIQPGPVDTDMNPD NGDSS EPIKAIGV 216 LSFQGGIRVPSYTAAKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 212 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 LSFQGGIRVPSYTASKSGLAGLTKILANEWATKGINVNAIAPGYFDTNNTEA.[2].ADQDR.[1].AAILARIP 216 .[1].ADRIPMVGGSVYAMSKSALVGLTKGMARDLGPKGITVNNVQPGPVDTDMNPA DGESA AQLKGMMA 211 VGLAGNIGQANYAASKAGLIGFSKSVAREVAARNIRVNCIAPGFIESDMTDV.[1].PEKIK EASLALIP 207 VGTMGNAGQANYAASKAGLIGFSKSVAREVAARNIRVNCIAPGFIESDMTDV.[1].PEKIK EASLALIP 207 VGTMGNAGQANYAAAKAGLIGFSKSLAREVASRGITVNVAAPGFIETDMTRA.[1].SDDQR AGILAEVP 205 VGVIGNPGQANVVAAKAGVIGLTKTSAKELASRNITVNAIAPGFIATDMTDV.[1].DENIK AEMLKVIP 208 MKRGGQPEDIANACVFLGSE.[2].SYITGQVLNVDGGM 245 AGRLGLPADIAGAAVFLASA.[2].DYVQGITLPVDGGW 257 LGRYGKAEEIASFVAFIAGP.[2].GYITGASLMIDGGF 252 AGRWGRPEDIGGAAVFLASS.[2].DYVQGITLPVDGGW 252 LARYGKDEEIASFVAFIAGP.[2].GYITGASLTPVDGGW 252 LARYGKDEEIASFVAYLAGP.[2].GYITGASLTPVDGGW 252 LARYGKDEEIASFVAYLAGP.[2].GYITGASLTPVDGGW 248 AGRWGRPEDIGGAAVFLASS.[2].DYVQGITLPVDGGW 244 AAGRLGDAKEIASAVAFLASD.[2].GYITGASLTPVDGGW 244 AARLGDAKEIASAVAFLASD.[2].GYITGASLTPVDGGW 244