Minszi lagdndugiuungueanygl)

o 7 s ¢ A A
uWﬂﬂﬁzwu‘EW\iﬁ NIAFTIOYN

a a 4 yd 1 % o a a @ a
'3‘1/]El'luwuﬁﬁlﬂua'luﬂﬁﬂsllﬂx‘lﬂWiﬁﬂ‘]&lW]'liJ‘ﬂaﬂt:f@‘iﬂiQ‘JiUu'l'J‘V]EﬂﬁTéTG]ﬂJW'l“Um"VIG]
a a 4 a a J
TIVNIBIAUAMTAT NIAIBIAUAAITAT
a 4 J a @
AUSINYIATAT JWIAINTUUNIINYIQY

Umsfnm 2549
ISBN : 974-14-1817-5
AvAnsuesnanIaiumInede



ACTION BY AUTOMORPHISMS ON THE DUAL OF A GROUP

Mr. Prapanpong Pongsriiam

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Mathematics
Department of Mathematics
Faculty of Science
Chulalongkorn University
Academic Year 2006
ISBN : 974-14-1817-5
Copyright of Chulalongkorn University



Thesis Title Action by automorphisms on the dual of a group

By Mr. Prapanpong Pongsriiam

Field of Study Mathematics

Thesis Advisor Assistant Professor Wicharn Lewkeeratiyutkul, Ph.D.
Thesis Co-advisor Professor Roberto Conti, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Master’s Degree

........................... Dean of the Faculty of Science
(Professor Piamsak Menasveta, Ph.D.)

THESIS COMMITTEE

(Professor Roberto Conti, Ph.D.)

‘(ELM HCNVC?R«! MEmbEI‘

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

(Associate Professor Ajchara Harnchoowong, Ph.D.)

T - T L T eI Member
(Paolo Bertozzini, Ph.D.)



iv

Ussuswad wadrdidon : manszh lavdndugiuugueangyl (ACTION BY

AUTOMORPHISMS ON THE DUAL OF A GROUP) :19136m1/3nw1: we.As. J11gy

fafisAgana, 819158M1TNM1993 : Professor Roberto Conti, 69 mi1
ISBN 947-14-1817-5

nisfinmsnssifidusssusnd laesadugmuugyiunivenylidfuilaymi
1 5 - et I3 i - H [ oA
waulsilgvmiis Twinoriivusisidinadiunmaeansnisiiluazdaduiiu

»
My ravestadug i tmuanIairavesdadugun ey n3e 'l luvnawnsdl

)
-

P <
- ; - ,
MAIN .. AdiAmaag . awiloFeiidn . Ainianaaf] AT oy
/ / ;
- - & - o~
MU . AdAmaa . ﬂwﬂwamwﬁﬂﬂ?ﬁm,L’cu-‘%.e ..... .a,df.if:‘.\../;

HUmisdnw ... 2549 ... awile¥oo1013onSny13n ‘ﬁz’c’*’%’



# #4772362823 : MAJOR MATHEMATICS
KEY WORDS : REPRESENTATION OF FINITE GROUP/ AUTOMORPHISM / THE

UNITARY DUAL OF A GROUP

PRAPANPONG PONGSRIIAM : ACTION BY AUTOMORPHISMS ON
THE DUAL OF A GROUP. THESIS ADVISOR : ASSIST. PROF. WICHARN
LEWKEERATIYUTKUL, Ph.D. THESIS CO-ADVISOR : PROF. ROBERTO

CONTI, Ph.D., 69 pp. ISBN 974-14-1817-5

It is an interesting problem to study the natural action by automorphisms on
the unitary dual of a group &. In this thesis, we compute the kernel of the action and

determine whether it is equal to InnG or Aut G in a number of cases.

Department : ...Mathematics... Student's signature : /l;quﬂgz’?’?’b’
Field of study : ...Mathematics... Advisor’s signature : Z*‘L“{Z)jﬂ;’{
Co-advisor’s signature : Q’mw

Academic year : ......... 2006......0mc e



vi

ACKNOWLEDGEMENTS

I wish to express my gratitude to many people who support me accomplish this the-
sis.

Foremost among these people are Assistant Professor Wicharn Lewkeeratiyutkul and
Professor Roberto Conti, my thesis advisors. They take care of entire thesis manuscript
and guide me how to prepare this thesis. They check both grammatical error and aca-
demic content. I am very impressed in these invaluable assistances and advices. Moreover,
I would like to thank them for promoting far-sighted knowledge in mathematics. Above
all academic support, they also suggest studying abroad preparation and give me the
letters of recommendation which help me obtain teaching assistantship from Pennsylva-
nia State University.

It is a pleasure to acknowledge Associate Professor Ajchara Harnchoowong who edu-
cated me a strong skill and knowledge in Algebra from many course works. This knowl-
edge is an important background for conducting this thesis.

T also would like to thank Assistant Professor Imchit Termwuttipong, Assistant Pro-
fessor Nattanard Triphop, and Professor Yupaporn Kemprasit. They taught me funda-
mental knowledge in conducting mathematics research when I was an undergraduate.
This knowledge is very helpful for doing this thesis.

In addition, I would like to thank Dr. Paolo Bertozzini, the thesis committee’s mem-
bers from Thammasat University, for sacrificing his time in the thesis examination.

Special thanks for preparing this thesis go to Tammatada Khemaratchatakumthorn
who teaches me using LATEX program and helps me type this thesis.

Last but not least, I am grateful to DPST who grant me the scholarship.



CONTENTS

page

ABSTRACT IN THAT ..o e iv

ABSTRACT IN ENGLISH ... e Y

ACKNOWLEDGEMENTS .. et vi

CONTENTS ... e o s vii
CHAPTER

I INTRODUCTION AND STATEMENT OF RESULTS ....................... 1

IT REPRESENTATION OF FINITE GROUPS ... ... ...t 4

ITIT ACTION BY AUTOMORPHISMS ON THE DUAL OF A GROUP ........ 10

IV DIHEDRAL GROUPS Dy, . e e 18

V SYMMETRIC GROUPS ), ..o e 29

VI ALTERNATING GROUPS Aj, oo 36

VII SEMIDIRECT PRODUCT Zg X g« oiee it 49

REFERENCGES ... . i e e e e e 60

AP PEN DI X . e e e e 61



CHAPTER 1

Introduction and statement of results

A topological group is complete if it has a trivial center and every continuous automor-
phism is inner. In other words, a group G is complete if Z(G) = {1} and Aut(G) =
Inn(G), where Aut(G) and Inn(G) denote the set of continuous automorphisms of G
and the set of inner automorphisms of GG, respectively. Finite complete groups have been
extensively studied in the past, see e.g. Suzuki [14].

In [1], Burnside defined Autgs(G) and Aute(G) to be the set of all automorphisms
which preserve equivalence classes of irreducible representations of G, and the set of all
automorphisms which preserve conjugacy classes of G, respectively. These definitions are
first defined for finite groups, but carried over to more general settings. In general one

has the inclusions, for every locally compact group G,
Inn(G) C Auts(G) € Aute(G) C Aut(G). (1.1)

In [2], Conti, D’ Antoni, and Geatti show that Inn(G) = Aut;(G) for a certain class of
connected Lie groups. From this result, one also recovers the fact that Inn(G) = Autz(G)
for every compact connected group G. Related work is also studied by Hertweck in [10].
He examined whether Inn(G) = Aute(G) for certain classes of finite solvable groups
whose Sylow subgroups are abelian. His work [10] has a connection with the isomorphism
problem for integral group rings and with certain vertions of the Zassenhaus’s conjecture
that group bases of ZG are rationally conjugate. He also mentioned in the introduction
that Feit and Seitz, using the classification of finite simple groups, showed that Inn(G) =
Aut.(G) for a finite simple group G ([4] Theorem c).

In this thesis, we investigate the relations among the sets in (1.1) for finite groups.



First, we show that, for any finite group G,
Inn(G) < Auts(G) = Aute(G) < Aut(G). (1.2)

After that, we study these relations for certain classes of finite groups, namely, dihe-
dral groups, symmetric groups, and alternating groups. Then we obtain the result that

all the group G from these families satisfy the equation
Inn(G) = Autg(G). (1.3)

Therefore we also study Zg x ZZ which gives us an example of a group which does not
satisfy (1.3).

This thesis is organized as follows. In Chapter 2, we introduce general terminologies,
and review concepts of representation theory of finite groups. In Chapter 3, we define the
action by automorphisms on the dual of a group and prove relation (1.2). In Chapter 4, 5,
6, and 7, we compute Inn(G), Auts(G), and Aut(G) and determine whether Inn(G) =
Autz(G) or Auts(G) = Aut(G) when G is a dihedral group, a symmetric group, an
alternating group, and the semi direct product Zg x Z , respectively.

The results of this work are summarized below:

1. Inn(Dy) = Autp (Dp) # Aut(Dy) for-every n-> 4.

2. Inn(D3) = Autp (D3) = Aut(Ds).

3. Inn(D,,) = D,, if n > 3 and n is odd.

4. Inn(Dy) =Dxnif n > 6 and n is even.

5. Inn(Da) & o x-Zo:

6. Aut(D,,) = Z, x Z) for every n > 3.

7. Inn(S,) = Autg (Sn) = Aut(S,) = S, for every n > 3, n # 6.
8. Inn(S6) = Autg (S6) 7# Aut(Se).

9. Inn(A4y) = Autz (An) # Aut(Ay) for every n > 4.



10.

11.

12.

13.

14.

15.

Inn(A4,) = A, for every n > 4.
Aut(Ay) 2 S, for every n >4, n # 6.

Every automorphism of A, is the restriction of an inner automorphism of S,, for

every n > 4, n # 6.

Inn(Zs x 23 ) # Aut,_——;

X
8 ><1Z8

Inl’l(Zg X Zg) =74 X7

X
AutZg ><1Z§< (Zg X ZS i

AONUUINBUINT )
ANRINTUNINEAE



CHAPTER 11

Representations of finite groups

In this chapter, we will give basic terminology related to representation theory of finite
groups. Throughout this thesis, C is the set of all complex numbers, and unless stated

otherwise, all vector spaces are over C and finite dimensional, and all groups are finite

Md((C) = {[aij]dxd | aij € C for all 7, j € {1, 2. .., d}},

GL4(C) = {A € My(C)| A is invertible},

Uq(C) {A e My(C) |AA* = A*A = I} where A* = (A)'.

We call GLy(C) the general linear group of degree d, and Uy(C) the unitary group
of degree d.

Definition 2.1. A matrix representation of a group G is a group homomorphism
X : G — GLy4(C). The parameter d is called the degree, or dimension, of the repre-
sentation and is denoted by deg X.

For any vector space V, define

GL(V)={T :V — V| T is an invertible linear operator}.

If dimV = d, then GL4(C) = GL(V') as groups. Therefore, we can also think of repre-

sentations in this term. This is the idea of G-module.

Definition 2.2. Let V' be a vector space and G be a group. We say that V is a G-

module if there is a group homomorphism

p:G— GL(V).



Equivalently, V is a G-module if there is a multiplication, gv, of elements of V by ele-
ments of G such that

1. gveV,
2. g(cv + dw) = c(gv) + d(gw),
3. (gh)v = g(hv), and
4. lv=wv
for all g, h € G; v, w € V5 and scalars ¢, d € C.

We will go back and forth between the notions of matrix representations and G-
modules. Each of them has its own advantage. Matrix representation is more concrete,

while G-module, as it is more abstract, can give us a cleaner proof.
Definition 2.3. Let V' be a G-module. A submodule of V' is a subspace W that is
closed under the action of G, i.e.,

weW = gweW foralgedG.
We also say that W is a G-invariant subspace. Equivalently, W is a subset of V' that
is a G-module in its own right. We write W <V if W is a submodule of V.

Next, we introduce irreducible representations that will be the building blocks of all

the others.

Definition 2.4. A nonzero G-module V' is reducible if it contains a nontrivial sub-
module W. Otherwise, V is said to be irreducible. Equivalently, V is'reducible if it has

a basis B in which every g € G is assigned a block matriz of the form

where the A(g) are square matrices, all of the same size, for each g € G, and 0 is a

non-empty matrix of zeros.



If V' is reducible, then the corresponding representations are said to be reducible.

If V' is irreducible, then so do the corresponding representations.

Theorem 2.5 (Maschke’s Theorem ([13], p.16)). Let G be a finite group and let V

be a nonzero G-module. Then
V=wlew®g...owh,

where each W9 is an irreducible G-submodule of V.

Corollary 2.6 ([13], p.17). Let G be a finite group and let X be a matriz representation
of G of dimension d > 0. Then there is a fized matriz T such that every matriz X (g),

g € G, has the form

XMgy 0 0
TX(g)T~" = 035 0
0 0 X®(g)

where each X9 is an irreducible matriz representation of G.

Definition 2.7. A representation is completely reducible if it can be written as a

direct sum of irreducibles.

Note from this definition, Maschke’s theorem could be restated as follows : Every rep-
resentation of a finite group having positive dimension is completely reducible.

Next, we give-a concept-of isomorphism between G-modules.

Definition 2.8. Let V and W be G-modules.
Then a G-homomorphism (or simply @ homomorphism) from V. inte W is a linear

tranformation ¢ : V. — W such that

d(gv) = go(v)

forallge G andv e V.



A G-isomorphism is a G-homomorphism ¢ : V. — W that is bijective. In this case,
we say that V and W are G-isomorphic, or G-equivalent, written V' = W. Otherwise

we say that V and W are G-inequivalent.

We also have the equivalence between matrix representations in the next definition.
Definition 2.9. Matriz representations X and Y of a group G are equivalent if there
18 an tnvertible matrix T such that

Y(g) = TX(¢)T™' forallg cG.

We write X 2Y if X and Y are equivalent.

Theorem 2.10 (Schur’s Lemma, [13], p.22). Let V' and W be two irreducible G-

modules. If ¢ :' V — W is a G-homomorphism, then either
(i) ¢ is a G-isomorphism, or
(ii) ¢ is the zero map.

Corollary 2.11 ([13], p.22). Let X and Y be two irreducible matriz representations
of G. If T is any matriz such that TX (g) = Y (g)T for all g € G, then either

(i) T is invertible, or
(i) T is the zero matriz.

Corollary 2.12 ([13], p.23). Let X be an irreducible matriz representation of G over
the field of complex numbers. Then the only matrices T that-commute with X (g) for all

g € G are those of the form T = cI 1i.e., scalar multiples of the identity matriz.

Next, we introduce the notion of characters and their inner product, which is a pow-
erful tool: Much of the information contained in a representation can be obtained from

its character.

Definition 2.13. Let X be a matriz representation. Then the character of X is the
function x : G — C defined by
x(g) = trX(g),



where tr denotes the trace of a matrix.
If V is a G-module, then its character is the character of a matrix representation X

corresponding to V.

The terminology used for representations will be applied without change to the cor-
responding characters. For example, if X has character x, we say that x is irreducible

whenever X is, etc.

Proposition 2.14 ([13], p.31). Let X be a matriz representation of a group G of degree
d with character x. Then

(i) x(1) =d,
(it) x(hgh™') = x(g) Vg, h € G,

(iii) If Y is a representation of G with character 1, then

X=Y — x(g)=9(g) foralgegG.

In fact, the converse of (iil) in proposition 2.14 is also true (see Corolary 2.18). This
can be proved after we have the notion of inner product of characters.
We can think of a character x of a group G = {g1, ..., gn} as a row vector of complex

numbers :

x = (x(g1), x(g2), -~ x(gn)) € C".
We have the usual inner produet in C™ given by

(ala a2, -« -y an) ) (bla b27 cee bn) = algl +a252 + - +6Lnbn
Therefore, we may define an inner product of x and v by

X =Y x(9)d(9)-

geG

Nevertheless, for normality (see [13], p.34), we divide this formula by |G|. This leads

to the definition of character inner product.



Definition 2.15 ([13], p.34). Let x and 1) be any two functions from a group G to the

complex numbers C. The inner product of y and ¢ is

uww=|;§jmmwm.

geG

Proposition 2.16 ([13], p.34). Let x and 1) be characters. Then

Oy = Tclﬂ S bl ).

ge@G

Theorem 2.17 (Character Relations of the First Kind, ([13], p.35)). Let x and

1 be irreducible characters of a group G. Then

1 if x=1,
0 of x#v.

Corollary 2.18 ([13], p.37). Let X be a matrixz representation of G with character x.
Then

(i) X is irreducible if and only if {x, x) = 1.

(ii) Let'Y be another matriz representation of G with character 1. Then X =Y if

and only if x =).

Theorem 2.19 (Character Relations of the Second Kind, ([13], p.42)). Let K, L

be conjugacy classes of G. Then
el
ZXKXL - |K| K,L7
X

where the sum is taken over all irreducible characters of G.



CHAPTER I11

Action by automorphisms on the dual of a group

In this chapter we define the action by automorphisms on the dual of a group. Then we

give some results which will be used later.

3.1

Group automorphisms

In this section, we recall elementary definitions and theorems in group theory. Their

proofs can be found in any standard text such as [3], [6], [9], and [11].

Definition 3.1. Let G be a group.

()

(i)

(iii)

A function f : G — G is called an automorphism of G if f is a bijective

homomorphism. The set of all automorphisms of G is denoted by Aut(G).

Let x € G, and ¢, : G — G by g — xgx—". Then ¢, is an automorphism of G,
called the inner automorphism induced from x. The set of all inner automor-

phisms of G is denoted by Inn(G). Thus
Inn(G) = {¢, |z € G}.

Since Inn(G) < Aut(G), we can define a quotient group which is called the outer

automorphisms group of G, by
Out(G) = Aut(G)/Inn(G).

Let g, h € G. We say that g and h are conjugate if there exists k € G such
that g = khk™'. Then conjugation is an equivalence relation. The set of all con-
Jugates of g is called the conjugacy class of g, and is denoted by K,. Thus
Ky ={hgh ' | h € G}.
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(iv) The center of G, denoted by Z(G), is defined by

Z(G) = {g € G|VzeqG, gr =xg}.

Theorem 3.2. Let G be a group. Then
(i) Aut(G) is a group under composition,
(i) Inn(G) < Aut(G),

(i1i) The map f : G — Inn(G) defined by f(g) = &g, is an epimorphism whose kernel
is Z(G),

(iv) Z(G) < G and G/Z(G) = Inn(G),
(’U) Vg, h e G7 d)g = Qsh 2 g_lh € Z(G):
(vi) G is abelian — Z(G)= G,

(vii) G is abelian — Inn(G) = {idg} < Vg€ G, K, = {g}.

3.2 The dual of a group

Since every representation-of a finite group G can be written as a direct sum of irre-
ducibles, it is useful to find the collection A of all inequivalent irreducible representations
of GG. Suppose we can find such A. Then every representation is equivalent to a direct sum
of elements in A. The collection A is called the dual-of G. We give a precise definition

of the dual of a group as follows.

Definition 3.3. Let G be a finite group. The dual of G, denoted by é, is.defined to be

the set of all equivalence classes of irreducible representations of G. That is
G ={[X]= | X is an irreducible representation of G},

where = is the equivalence of representations defined in Definition 2.9.
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Remark 3.4. The dual of a group may not be a group. If G is abelian, then its dual
will be a group. In fact, Gisa group isomorphic to G if G is a finite abelian group (see
[5], p.90). Perhaps, there is no natural condition on G so that the dual of G becomes a

group.

It may seem that there are infinitely many inequivalent irreducible representations,
and G contains infinitely many elements. However, G is a finite set, as implied by the

following theorem.

Theorem 3.5 ([13], p.40). Let G be a finite group and suppose

ClG] = @ miv?

where the VY form a complete list of pairwise inequivalent irreducible G-modules. Then
(i) m; = dim V),
(ii) Y (dimV®D)? = |G, and

(iii) the number of V@ equals the number of conjugacy classes of G.

Theorem 3.5 implies that for a finite group G

(i) |G| = the number of conjugacy classes of G, and

(i) |Gl= ) (degX).

[X]eG
3.3 Action by automorphisms on the dual of a group

We will give an action of Aut(G) on G. This action will give us the definition of Aut a(G)
on which' our work will emphasize. In this section, unless stated otherwise, x will be
a character of some representation. If there are more than one representations in the

context, such as X and Y, we denote their characters by x, and x, , respectively.
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Lemma 3.6. Let ¢ € Aut(G), and X : G — GL4(C) a representation. Let x be the

character of X. Then the following statements hold.
(i) X o ¢ is a representation.
(ii) deg(X o¢) =degX.
(1i1) Xxop = X © ¢ where X, are characters of X o ¢.
(iv) If X op = X, then x o ¢ = X.
(v) If X is irreducible, then X o ¢ is irreducible.

Proof. (i) Since ¢ : G — G and X : G — GLy(C), X 0 ¢ : G — GL4(C). Next, we prove
that X o ¢ is a group homomorphism. Let g, h € G. Then

(X 0@)(gh) = X(o(gh)) = X(o(g)o(h))
= X(o(g9))z(e(h))
= (X 09)(g)(X 0 ¢)(h).

Therefore X o ¢ is a representation. This proves (i) and (ii).

For (iii),

Xxos(9) = tr(X 00)(g) = trX(6(g))

= x(¢(9))
= (xo¢)(g) forallgeG.

This shows x ., = x © ¢.
(iv) follows immediately from (iii) and Corollary 2.18.
To prove (v), we will use Corollary 2.18(i). Assume that X is irreducible. Then

(x, x) = 1. From (iii) the character of X o ¢ is x o ¢, so we would like to show that

(xo¢, xo¢)=1.
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(x0 b, X0 = @HEjuo¢xwuw¢x§4>

geG

PR CONCOR

geG
1
=@ Z x(h)x(h™Y) since ¢ is bijective.
’ | heG
=06 x) =1
Therefore X o ¢ is irreducible. O

Theorem 3.7. Let G be a finite group. Define - : Aut(G) x G — G by
¢-1X] = [Kog] forpe Aut(G) and [X] € G.

Then this function is a group action.

Proof. From Lemma 3.6, we have [X o ¢] € G for every ¢ € Aut(G) and [X] € G. Next,
let ¢ € Aut(G), and [X], [Y] € G be such that [X] = [Y]. Then X 2V, and

Xxop = Xx©P = Xy ©P = Xyop-
Therefore X o ¢ 2Y o ¢. Hence
¢[X] = [Xog] = [Yogl = ¢[Y].
This shows that the action is well-defined. Next, for ¢, ¢ € Aut(G) and [X] € @,

(@od)[X] = [Xo(¢op)] = [(Xod)oy] = S[Xod] = P(o[X])

and 1[X] = [X o1] = [X]. This proves the theorem. O
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Theorem 3.8. Let G be a finite group, ¢ € Aut(G). Then ¢ maps a conjugacy class of

G onto a conjugacy class of G.

Proof. Let g € G and K, the conjugacy class of g. Then

$(Ky) = o{hgh™" | h € G}
= {o(Mo(g)e(h) ™ | h € G}
= {lo(9)l " |1 €6}

== K¢(9)'

This shows that ¢ maps the conjugacy class of g onto the conjugacy class of ¢(g). O
The action in Theorem 3.7 gives us the next definition.
Definition 3.9. Let G be a finite group.

(i) If » € Aut(G) and ¢(K) = K for every conjugacy class K of G, then ¢ is said to
preserve conjugacy classes of G.

Denote by Autc(G) the set of all automorphisms which preserve conjugacy classes

of G.

(i) If ¢ € Aut(G) and is in the kernel of the action defined in Theorem 3.7, then ¢ is
said to preserve equivalence classes of irreducible representation of G.

Denote by Auts(G) the kernel of the action in Theorem 3.7. Thus

Auts(G), = {d € Aut(G) |@[X] = [X] forevery [X] € G}
= {p € Aut(G) | X 0 2 X for every [X] € G}.

Since every inner automorphism maps an element g € G to its conjugate, and Autz(G)

1s defined as the kernel of the action, we have the following corollary.
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Corollary 3.10. Let G be a finite group. Then
(i) Inn(G) C Autc(G),
(ii) Autz(G) < Aut(G).

Note We will show later that Autc(G) = Autg(G) for any finite group G. Thus we will
have Inn(G) < Auts(G) = Auto(G) 9 Aut(G) for every finite group G.

~

Theorem 3.11. Let G be a finite group, and g, h € G. Then g and h are conjugate if

and only if x(g) = x(h) for every irreducible character x of G.

Proof. By Proposition 2.14, it suffice to prove only the converse. Suppose that x(g) =
x(h) for every irreducible character y of G but g and h are not conjugate. Let K =
K,, L = Kj. By Theorem 2.19, we have

0 = XX, = D_x@)x(h)

where the sum is taken over all irreducible characters. Therefore x(g) = 0 for every

irreducible character. Applying Theorem 2.19 again, we have

0= > X(@x(@) =D XXy
_ gl

= m # 0, _which is a contradiction.

Therefore, the theorem is proved. O
Theorem 3.12. Let G be a finite group. Then Autg(G) = Auto(G).

Proof. Let ¢ € Aut(G). We denote by Irr(G) the set of irreducible characters of G. Thus
(X] €@ « y, €Ir(G).
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¢ € Autz(G) « V[X]€G, Xop=2 X
— Vx elir(G) xoop =x
< Vx € Irr(G) Vg € G x(¢(9)) = x(9)
— Vg e GV x € Irr(G) x(¢(9)) = x(9)

— Vg € G, g and ¢(g) are conjugate

— ¢ preserves conjugacy classes of G.

O]
Corollary 3.13. For every finite group G,
Inn(G) < Auts(G) = Aute(G) < Aut(G).
Proof. It follows immediately from Corollary 3.10 and Theorem 3.12 O

Proposition 3.14. Let G be a finite abelian group. Then
Inn(G) = Aute(G) = Auté(G) = {idg}.

Proof. Since K, = {hgh™' | h € G} = {g} for every g € G, the automorphism which

preserves conjugacy classes of G is necessarily the identity map, so we have
Auts(G) = Aute(g) C {idg} € Inn(G) C Aute(G).

This proves the proposition. O



CHAPTER IV
Dihedral groups D,

4.1 Definition and notation

Let D,, (n > 3) be the dihedral group of order 2n defined by
o —oC7, slrt 2s2=1, sr:rfls>.

Elementary properties of the dihedral group can be found in [3], [6], [9], and [11].
Denote by Hom(D,,) the set of all homomorphisms from D,, into D,,. In this chapter,
we determine whether Autp (Dp) = Inn(Dy,) or Auty (Dy) = Aut(Dy). To do this,
we directly calculate all conjugacy classes of D,,, all inner automorphisms of D,,, and
all automorphisms of D,,. Since D, is generated by r and s, every ¢ € Hom(D,,) is
completely determined by ¢(r) and ¢(s).

If ¢ € Hom(D,,) and ¢(r) = a and ¢(s) = b, we denote ¢ by the diagram

(r—a, s—b).

Also, recall that we denote the conjugacy class of an element g in a group G by

K, = {hgh™!|h & G}, and denote by ¢4 the inner automorphisni induced from g.

4.2 Conjugacy classes in D,
Recall that Dn = <’r7 S | T‘n = 82 e 17 sSr = 7»71 S>
= {s'7]0<i<1,0<j<n—1}

= {r0<j<n—-1}U{sr’|0<j<n-—1}.

Let i € {0, 1,..., n—1},
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K, = {zr'z" |z € D,}

= {r7rr70<j<n—1}U{sr/rr s 0<j <n -1}
= {rpu{r™

— [, 1)

Koo = {Psrr]0<j<n—1}U{srisrird s [0<j<n—1}

st

= {sr7H|0<j<n—1}U{sr¥ " 0<j<n—1}.

Case 1: n is even.
K, = {1},
Kr = {T, Tn_l}:

Ko = {r2, r"*Z},

Kr%_l = {T%717 T‘%Jrl}?
Ky = {r2},

K, = {sr2|0<j<n—1}U{sr¥|0<j<n—-1}
= {sr™|miseven and 0 <m <n— 1},
Kyp = {sr'™¥]0<j<n—1}U{sr?10<j<n—1}

= {sr™|misodd and 0 < m <n—1}.
n+6

In this case the number of conjugacy classes in D, is 5




Case 2: n is odd.
Ky = {1},
K, = {r,rm 1},
K2 = {r*, "%},
Kan = {r'T 7 T},
K, = {sr72]|0<j<n—-1}U{sr¥|0<j<n—1}

= {sr"20<j<n—1JU{sr¥|0<j<n—-1}

I

{sr™ ™ |mis even and 0 <m < n — 1}
U{sr™ |m is even and 0 < m <n — 1}

= {sr""|0<m <n-1}.

Therefore K = {sr™ |0 <m <n — 1}.

. f 3 . n+3
In this case the number of conjugacy classes in D, is 5

4.3 Inn(D,,) D, = {r'|0<i<n—-1}U{sr'|0<i<n—1}

= {r1<i<n}U{sr'|1<i<n}

Then

Inn(Dyn) = {én|h € Dn}

For each 1 < i< n, we have

bpi(r) = rirrTt = 1,
bpi(s) = risr™t = sr2 = s,
((r) = srirrTls = srs = rt = ¢
Gori(T) e b=l
i(s) = srisrTls = r7%s = s
¢sr ( ) i i 21 21

20
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Then

Case 1 : n is odd.

{rP1<i<n} = PP1<i< UL <i<n}
= {r"™|misevenand 2 <m <n -1}
U{r™|miseven and n+1<m < 2n}
= {r""|miseven and 1 < m < n}
U{r"™ " |mis even and n+ 1 <m < 2n}
= {r"|miseven and 1 < m < n}
U {r'|7is odd and 1 < i < n}

i (PR T

Similarly {r=2"|1<i<n}={r"]1<m < n}.

Thus

and | Inn(Dy,)| = 2n.
Case 2 : n is even. Similar to case 1, we have

{r¥11<i<n} = {X"[1 <m <n and m is-even}

= {r2|1<i<n}.
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Therefore

Inn(D,) ={(r—r,s— sr™)|miseven and 1 <m < n}
U{(r— "1, s+ sr™)|mis even and 1 < m < n}

and |Inn(D,)| = n.

4.4 AUtf)n(Dn)

We will use the result obtained in Section 4.2 to calculate Autp (D). First, assume

that n is odd.

¢ € Autp (Dn)
— ¢ preserves conjugacy classes of D,
— (¢(r) =ror ¢(r) = Tn_l) and (¢(s) = sr™ for some 1 < m < n)
— pe{(r—r s—sr") |1 <m<n}

U{(r=r"1 s sr™) |1 <m < n}.
Hence

Aut, (D) € {(resr, se s |1 < m< )

U{(r—r"t s—sr™)|1<m<nl. (4.1)
Similarly, if n is even,

AUtf)n(Dn) CA{(r—r,s—s)|1<m<nand miseven}

UL(r— r" 1 s s sr™) |1 <m < n and m is even }. (4.2)

If we compare (4.1), (4.2) and the results in Section 4.3, we obtain the next theorem.
Theorem 4.1. Autp (D,) = Inn(D,,) for every n > 3.

Proof. Use the fact that Inn(G) C Autg(G) for any finite group G' and compare (4.1),
(4.2) above to Inn(D,,). O
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Theorem 4.2. Autp (Dy) = Aut(Dy) < n=3.

Proof. («) Let n = 3 and ¢ € Aut(D,,). Then D,, = D3 = {1, r, 2, s, sr, sr?}. Since
|r| = |r?| = 3, and |s| = |sr| = |sr?| = 2, we have ¢(r) € {r, 2} and ¢(s) € {s, sr, sr?}.

Then

pe {ror s s™0<m <2 U{(r? s s™ [0<m<2)

= Inn(D,).
Therefore ¢ € Inn(D,,). This shows that
Aut(D,,) C Inn(D,).

Hence Autp (Dpn) = Aut(Dy,).
(—) Assume that n # 3. If n is odd, (r + 7%, s+~ 5) is an automorphism of D,
which does not belong to Aut f)n(D”)' If n is even, (r +— 7, s — sr) is an automorphism

of Dy, which is not in Autg (Dy). This shows that Autpy (Dn) # Aut(Dy). O
Corollary 4.3. Inn(D,,) = Aut(D,) < n=3.

Proof. It follows directly from Theorem 4.1 and Theorem 4.2. O
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4.5 Aut(D,)

Although we already knew whether Autp (Dp) = Inn(Dy) and Autp (Dy) = Aut(Dy),

we are still interested in calculating Aut(D,,).

Theorem 4.4. Aut(D,) = {(r — 7%, s — sr7)|1 < i < n, ged(i,n) = 1, and 1 < j <

Proof. (C) Let ¢ € Aut(D,). Since |r| = n > 3 and |sr/| = 2 for all j, we have

#(r) # sri for all j. Let ¢(r) = ' for some i € {1,2,..., n}. Since ¢ € Aut(D,),

n=|r|=|¢o(r)| = rt| = ﬁz,—z) Hence ged(n, i) = 1. It follows that

o((r)) = (o(r)) = (r') = (r) (4.3)

Since ¢ is 1-1, ¢(s) ¢ (r). Therefore ¢(s) = sr’/ for some 1 < j < n. This shows that
pe{lr—r’ s—sri)|1<i<n, ged(i,n) =1, and 1 < j < n}.

(2) Let ¢ : D,, — Dy, be a homomorphism such that

$(r) = 7' for some 1 < i <mand ged(i, n) =1, and

#(s) = srd for some 1 < j < n.

35 (r)) = d(s)p((r)) = ¢(s) (r) = s17 (r) = s {r).

This shows that ¢ is surjective. Since D, is finite, ¢ is bijective. Therefore ¢ € Aut(D,,).
O

Corollary 4.5. |Aut(D,)| = n¢(n), where
d(n) = {meN|1<m<n, and ged(m, n) = 1}|

1s the Euler’s phi Function.
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M if n is odd,

Corollary 4.6. |Out(D,,)| = 2
o(n)  ifn is even.

We will find some concrete groups to which Inn(D,,), Autp (D), and Aut(Dy) are
isomorphic. Since Inn(Dy,) = Autp (Dp), our work reduce to finding only the abstract
groups for Inn(D,,) and Aut(D,,). To find a group to which Aut(D,,) is isomorphic, we

will use the notion of semidirect product of groups.
Theorem 4.7. (i) Inn(D,) = D,, if n is odd and n > 3.
(it) Inn(Dy) = Dy if nis even and n = 6.
(iii) Tnn(Dy) = Zo x Zs.
Proof. Assume that n > 3 and n is odd. Consider the map
D,, — Inn(Dy,), = — ¢g.
This map is an epimorphism (Theorem 3.2(iii)). In addition, (see Section 4.3)

ID,| = 2n = |Inn(D,)|.

Thus the map is an isomorphism, and Inn(D,,) = D,,.

Next, assume that n is even and n > 6. Recall that

Inn(D,) = {(r+—7r, s—sr") |1 <m <mn,; and m is even}

U{(rr7t s sr™) | 1L <m <n, andm is even}.

Let a =(r =1, s = s72), and b = (r — r71, s+ s) € Inn(D,,). Claim
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(i) and (ii) can be proved by direct calculation. In fact, a' = (r — r, s +— sr?!) for every

1

1 <1 < 5. Furthermore, ba! = (re—r—t s sr*ﬂ) for every 1 <1 < 5. Thus

Inn(D,,) = {(r—r,s—sr™) |1 <m<mn, and m is even}
U{(r—r1 s> s™) |1 <m <n, and m is even}
= {d|1<1<8}ufbd |1<i< 3}

C (a,b).

This shows that Inn(D,,) = (a, b).

Now, recall that Dz = <r./ s|rz=1=4 sr= 7“13>. From (i) and (ii), we can
see that a and b satisfy the relation in the presentation of D% if we replace r by a
and s by b. Thus there is a unique homomorphism ¢ : D% — Inn(D,,) mapping r
to a and s to b. From (iii), a and b generate Inn(D,,), so we have ¢ is surjective. In
addition, [Dz| =n = |Inn(Dy)| (see Section 3.3). Hence ¢ is also injective. Therefore ¢
is an isomorphism, and Inn(Dy) = Dz. This proves (ii). From Section 3.3, we see that
| Inn(Dy)| = 4. It is the fact that, up to isomorphism, the groups of order 4 are Z4 and

Zs X Zs. By direct calculation, we can see that every nonidentity element of Inn(Dy,) has

order 2. Thus Inn(Dy) = Zs X Zs. O

Note if we define Dy to be the group of {1, r, s, sr} of order 4 with the relation r? =

s> =1 and sr = r~'s. Then Dy = Zy X Zs, and the previous theorem becomes

Inn(Dy) = D 'if 'n = 3'and 'n is even,

Inn(D,,) = D,, if n > 3 and n is odd.

Next, we will prove that Aut(D,,) = Z, x Z). We first give theorems which will be

used in the proof.

Theorem 4.8 ([3], p.93). If H and K are finite subgroups of a group, then

|HI K|

HK| = 120
|HN K|
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Theorem 4.9 ([3], p.180). Suppose G is a group with subgroups H and K such that
(i) HLG,
(i) HNK = 1.

Let ¢ : K — Aut(H) be the homomorphism defined by mapping k € K to the automor-
phism of left conjugation by k on H. Then HK = H x K.

In particular, if G = HK with H and K satisfying (i) and (ii), then G is the semidirect
product of H and K.

Theorem 4.10. Aut(D;,) = Z,, x Z; for every n > 3.

Proof. First, recall that (see Section 4.5)
Aut(D,) = {(r 1% s> sr™) |1 < i< n, ged(i,n) =1 and 1 <m < n}.
Let G=Aut(D,),H={(r—r,s—sr")|1<m<n}, and

K={(r—=r's8—s)|1<i<nand ged(i,n) =1}
Claim
(i) H=Z,, and K = ZX.
(i) H<G, and K < G.
(i) HNK = 1.
(iv) G = HK.

First, we prove (i). Let ¢ : Z,, — G be defined by ¢(m) = (r — r, s — sr'™). If m; = may
in Z,, then there exists k € Z such that m; = nk + mg, and thus 7™ = ypk+n2 = pm2,

This shows that ¢ is well-defined. Next, let.-m1, mo € Zy,

d(m1+ma) = (171, s sP™T72)

= (rer s—=sr"™)(re—r s sr’?)

= ¢(m1)p(m2).
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Therefore ¢ is a homomorphism. It is easy to see that Im(¢) = H, and ker ¢ = {0}.
Then ¢ is an isomorphism. Hence Z, = H. Next, let ¢ : Z — K be defined by
(i) = (r — r', s — s). Using the same argument as ¢, we obtain that Z* = K.

Next, we prove (ii). From (i), we know that ZX = K and, so Z,, = H we obtain that
H<Gand K <G.Now,let p=(r—7rl s sr™) € Gand q= (r+—r, s+ sr') € H.
Let

p_1 = (r— ri, sl srm)_l = (r—r* s sr?). (4.4)

Then

pept = (r—al s ™) (=1, s s (r - 1%, s — srY)
= (r=r' 85 5™ (1 1%, 5 sr¥Th)

= (r =19 shs srm Tyt (4.5)

From Equation (4.4), p~! = (7 + 7%, s+ sr),s0 p~_'(r) = r* and p~!(s) = sr. Therefore

Thus, from (4.5), we obtain pgp~" = (rr +— , § + sr™TWT) ¢ I This shows that
H < @. (iii) is obvious. For (iv), by Theorem 4.8, we obtain that

|HI K|

HK|[G ===
| | |H N K|

= |Zn||Z7>L<|

= ng(n)
= |Aut(D,,)| (Corollary 4.5).

Since HK. C Aut(D;)-and Aut(Dy,) is a finite set; we have Aut(D;,) = H K. By Theorem
4.9,
Aut(D,) = HK = Z, x Z*.



CHAPTER V

Symmetric groups S,

5.1 Definition and notation

Recall that S, is the group of all bijections from {1, 2, ..., n} onto itself under the
function composition. We multiply elements in S,, from right to left. Its elementary
properties can be found in [3], [6], [9], and [11].

Iff:5, = S,and o = (a1ay...q) is a cycle in S,,, then sometimes we will
write f(o) = f(aiaa ... a;) rather than f(o) = f((a1az ... a;)). In addition, if =z €
{1, 2, ..., n} is written as one of the non-fixed symbols in the cycle decomposition of o,
we will say that ¢ contains z as a symbol in its cycle notation, or simply ¢ contains x,
or z isin o.

For example, if o = (123)(56) € S7, then o contains 1, 2, 3, 5, and 6 but does
not contain 4 and 7. Consider S; = {(1)} and Sy = {(1), (12)}. It is easy to see that

Inn(S;) = Aut(S;) = {id} for i = 1, 2 where id is the identity map. Hence
Inn(S;) = Autg (S;) = Aut(S;) for i=1,2.
In Section 5.2, we consider S,, when n > 3.

5.2 Inn(Sy), Autg (S,), and Aut(S,)

Definition 5.1 ([12], p.92). A group G is called complete if it has no center and no

outer automorphism.

Theorem 5.2 ([12], p.92). S, is complete when n > 3 and n # 6.
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Corollary 5.3. Forn > 3, n # 6,
Inn(S,) = Autg (Sp) = Aut(Sn) = S,

Proof. From Theorem 5.2, we obtain Inn(S,) = Autg (S,) = Aut(Sy). In addition,
the map S, — Inn(Sy), by g — ¢4 is an isomorphism. Therefore, the corollary is proved.

O]

Next, we will show that

Autg (S5) = Inn(S6).

Lemma 5.4. Let ¢ € Aut(S,). If ¢ maps transpositions to transpositions, then the

following statements hold :

(i) If transpositions (xy) and (mn) have a common symbol (for instance,

x =m), then transpositions ¢(xy) and ¢(mn) have a common symbol.

(ii) for each a € {1, 2,..., n} there exists a unique o’ € {1, 2,..., n} such that

s{laa)ae{l,2,...,n} —Ha}}) = {(aP)[Fe{1,2,....n} —{d'}}

Proof. Let a € {1, 2,...,n}, oz, a3 € {1, 2,...,n} —{a} and a1 # ag. Assume that

dlaar) = (z1y1), plaas) = (x2y2). If 1, y1, x2, Y2 are all distinct, then

2 = |(z1y1)(z292)| = |[p(acr)d(aas)]

= l¢((acn)(aaz))|
= |p(aza1 a)|
= |(agaia)| = 3, a contradiction.

Therefore 1 = x2, €1 = Yo, Y1 =T3, or ¥i = y2. Then we can write

dlaar) = (d' p1),p(aaz) = (d Fa)

for some a’ € {1, 2,..., n}, By, B2 €{1,2,...,n} —{d'}, B1 # B2. This proves (i).
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Next, let a € {1, 2,..., n}. Choose a1, a2 € {1, 2,..., n} — {a}, and a; # ag. Then
by (i), there exist o', 1, B2 € {1, 2,..., n}, d, 1, B2 are all distinct, and ¢(aay) =

(a' Br), p(aaz) = (a’ B2).
Suppose there exists o € {1, 2,..., n} — {a, a1, a2} such that

#(a ) does not contain the symbol a’. (5.1)

Since (a «1) and (a o) have a common symbol, by (i), ¢(a 1) and ¢(a «) have a common
symbol. Because ¢(a ) = (a' 1), ¢(a «) contains either the symbol o’ or £;. But from
(5.1), we see that ¢(a«) contains 3i. If we consider ¢(aasg) and ¢(a«) with the same

argument, we have ¢(a a;) eontains (5. Hence ¢(a ) = (51 f2). Now

4 = [(aagaia)l = |[plaasa;a)l
= [o((a aa) (a az) (aa))]
= |¢(aen) p(aas) ¢plae)|
= |(a' B1)(d’ 52)(B1 B2)

= |(a' 32)| = 2, a contradiction.

The contradiction arises from supposition (5.1). This implies that for every a €
{1, 2,..., n}—{a, a1, as}, #(a @) contains the symbol a’. Thus ¢({(aa) | € {1, 2,..., n}—
{a}}) = {(d'B)|B € {1,2,..., n} —{a’}}. The uniqueness of a’ is obvious, so we have
proved (ii). O

Theorem 5.5. Autg (S¢) = Inn(S).

Proof. Let ¢ € Aut§6(56). Then ¢ maps transpositions to transpositions. From Lemma

5.4(ii), we can define s : {1, 2,..., 6} — {1, 2,..., 6} by s(a) = a’ where a and a are as

in Lemma 5.4(ii). Then s is 1-1 because ¢ is. Therefore s is bijective, that is s € Sg.
Next, we prove that ¢ = ¢, (the inner automorphism induced from s). Let (zy) be

a transposition. Then by Lemma 5.4(ii),
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o(zy) € d{(ra)|aedl,2,..., 6} —{z}}
= {(@'B)|pe{l,2,...,6} —{2'}}, where 2’ =s(x)
= {(s(@)p)1Be{L,2,...,6} — {a'}}.

Thus ¢(zy) = (s(x)B) for some 5 € {1, 2,..., 6} — {2'}.

Similarly,

b(yz) =(s(y)7) for some v € {1, 2., 6} — {s(y)}.

Since ¢(xy) = Pp(yx), (s(x) 3) = (s(y) 7). because = # y, we have s(x) # s(y), and thus
s(z) = 7. Hence ¢(zy) = (s(z) 5(y))-

ds(zy) = s(zy)s ' = (s(2)s(y)).

Therefore ¢(zy) = ¢s(xzy) for every transposition (zy). Then ¢ = ¢, and ¢ € Inn(Sp).
This proves that Autg (Ss) = Inn(Sg). O

To show that Autg (S) # Aut(Sg), we will find an automorphism ¢ of S which does
not preserve conjugacy classes. Since Inn(Sg) = Au‘c§6 (Sg), every outer automorphism
of Sg does not preserve conjugacy classes. Therefore ¢ can be any outer automorphism

of S. One of the outer automorphisms of Sg is given in [3].

Theorem 5.6 ([3], p.221).. The map

12)(34)(56

—_
W
[\
ot
w
D

—_
w
[\
S
ot
(@)

—_
[\Y)
w
D
W
t

(12) — (12)(34)(56)
(23) — (14)(25)(36)
(34) — (13)(24)(56)
(45) — (12)(36)(45)
(56) — (14)(23)(56)

14)(23)(56

extends to an automorphism of Sg.
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In the remaining part of this chapter, unless stated otherwise, ¢ is the automorphism
in Theorem 5.6. We can see that ¢ does not preserve conjugacy classes of Sg, so ¢ €

Aut(Ss) — Autg (Ss). Therefore, we obtain Theorem 5.7, and Corollary 5.8.
Theorem 5.7. Autg (S6) # Aut(5).
Corollary 5.8. Let n € N.
If n# 6, then Inn(S,) = Autg (Sn) = Aut(Sy).
If n = 6, then Inn(Ss) = Autg (5¢) # Aut(Ss).
Proof. Combine Theorem 5.5, Theorem 5.7, and Corollary (5.3). O

Since ¢ ¢ Aut 3 (S6). There exists an irreducible representation X of Sg such that X o
¢ 2 X. We will find such an X. The method of constructing irreducible representations
of S,, (for n € N) can be found in [13]. After using the method, we obtain an irreducible

representation X of Sg such that X o ¢ 22 X, which will be shown in the next example.
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Examples 5.9. Let X : S¢ — GL5(C) be irreducible representation of Sg defined by

1 -1 -1 —1 1] (0 1 0 o0 0]
0 1 0 0 0 1 0 0 0 0
X(12)=fo o 1 0 o0f,X23=|0 0 1 0 0],
0O 0 0 1 0 O 0 0 1 0
(0 0 0 0 1| (0 0 0 0 1|
1 N 1 0 0 0]
0 Doy 0 0 1 0 0 0
X34)=|l0 1 0 0 O0f,X45=]10 0 0o 1 0],
0 0 0 1 0 O 0 1 0 0
(0 0 0 0 1] 0 0 0 0 1
(1 0 0 0
0 1 0 0
XG6)=|0 0 1 0 0
0O 0 0 0 1
(0 0 0 1 0]

Let Y = X o¢: S¢ — GL5(C). Then Y is an irreducible representation of Sg. We
will show that X 2Y.
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Y(12) = X(6(12))

= X((12)(34)(56))

= X(12)X(34)X(56)

0 0 0 O

1
0

0 0 O

1

1
0

0 0 0 O

1

0 0 O

0 0 0 O

1]

It

0
O\ ONSOWS0

1

0 0 0 O

1

1

0O 0 0 O

-1 -1 -1 -1

-1

1

—1 5T £ IWFS

-1

0

Then

xx(12) '="tr X(12)="3

X(E 2= tr Y 2)r=r<1

Therefore xx # Xy, which implies that X 2Y. That is X o p Z X.



CHAPTER VI
Alternating groups A,

A, is a normal subgroup of S,, consisting of all even permutations. In this chapter, we
use the same terminology and notation as in the previous chapter.

If we consider A; = Ay = {(1)}, and A3 = Zs, then we have

{id} = Inn(4,) = Aut; (4,) = Aut(4,) for n=1,2 and
{id} = Inn(A43) = Auty (A3) # Aut(As).

In the remaining part, we will consider A,, when n > 4.

6.1 Inn(A,), Autg (A4,), Inng (5;,), and Aut(4,)

In this section, we determine whether Inn(A,) = Aut; (Ay) or Auty (An) = Aut(A,).
To do this, we also define Inn g, (S;,) to be the set of inner automorphisms of S, restricted

to Ay
Theorem 6.1. Let n > 4. Then
(i) Z(A) = (1)),
(i) Tan(An) —{e.b| & €l A} dntd o =) iff o=y,
(iii) | (@ = %'

Proof. Let n > 5. Since Z(A,,) < A, and A, is simple,

Z(An) = An or Z(An) = {(1)}.
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Because A4,, is not abelian, Z(A,) # A,. Therefore Z(A,) = {(1)}. Then f : A4, —
Inn(Ay), g — ¢4 is an isomorphism. This implies (ii) and (iii). For n = 4, we can

compute directly to see that Z(A4) = {(1)}, and then (ii) and (iii) follow. O
Lemma 6.2. Let G be a group, H <G, and g € G. Then ¢q4|p € Aut(H).

Proof. Since H < G, ¢4(H) = gHg™! = H. Therefore ¢, : H — H is surjective. Hence
bglH € Aut(H). O

From this Lemma, we have
This set will be used in the rest of this chapter, so we give it a notation.
Notation : Inng, (S,) = {¢ula, |z € S, }.
Theorem 6.3. Let n > 4. Then

(i) For each x,y € Sy, ¢z|a, = dyla, — =1y,
(i) |Innga, (Sp)| = n!,
(ii) Inng, (Sy) 2 Inn(A,).

Proof. (i) Let x, y € S),.

bula, = Oyla, < Vg€ An, 02(9) = dy(9)

1 1

— Vg €Ap, xgz " =ygy

o Vge A,y trg=gyla

o ytreZ(A,) ={(1)} (by Theorem 6.1(i))

(ii) is an immediate consequence of (i).
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For (iii),

Inng, (Sn) = {¢zla, [z € Sn}
(9], [ € A}
= Inn(4,).

I

Theorem 6.4. Inn(A4,) <Inng, (S,) < Aut(A4,) for every n > 4.
Proof. We know that Inng, (S,) € Aut(A,). Next let z, y € S,,. Since ¢, (A4,) = A, and

oy(Ay) = A, we have

Gelan (Dyla,) ™t = bula, b |4, =02y |4, = buy-1]a, € Inng, (Sn).

This shows Inn(S,)|4, < Aut(A,). Since Inn(A4, ) 9 Aut(4,) and Inn(A,) C Inng, (Sy),

we also have Inn(A,) <Innga, (S,). O
Theorem 6.5. (i) Inn(As) = Auty (As).
(it) Auty (Aq) <Inng,(Sa).

Proof. First, we prove (i) by directly compute all conjugacy classes of Ay.
Ay =A{(1), (12)(34), (13)(24), (14)(23), (123), (124), (134), (234), (132),
(142), (143), (243)}. All conjugacy classes of A4 are

123),(134), (142), (243)}, . and

{
K94y = {
K23 = {

{

Kase = {(132), (143), (124), (234)}.

Claim A4 = ((123), (134)). Since (123)(134) = (234), and (134)(123) = (124),
we obtain that (123), (134), (234), and (124) € ((123), (134)). Then their inverses
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(132),(143), (243), and (142) are also in ((123), (134)). Hence ((123), (134)) con-
tains all 3-cycles. Since 3-cycles generate A4, we obtain that A4 = ((123), (134)). Thus
every ¢ € Aut(Ay4) is completely determined by ¢(123) and ¢(134). Let ¢ € Aut 3 (A4).
There are at most 4 choices for ¢(123) and at most 3 choices for ¢(134). By Theorem
6.1(iii)
4!
|Autz (Ag)] <4-3=12= 5= | Inn(Ay4)].

Since Inn(A4) C Aut 3 (A4), Inn(Ag) = Aut 3 (Ay). This proves (i).
For (ii), since Inn(A4) SInng, (S1) and Auta,(Ss) = Inn(A4), we have Aut 3 (A4) <
Inng, (S4). O

We will use the following propositions to prove Theorem 6.6. Nevertheless, the proofs

of these propositions are routine, and we defer them to the appendix.

Proposition A.3. Let n > 5 and ¢ € Aut(A,) which maps 3-cycles to 3-cycles. If
(xyz) and (abc) have two common symbols, then ¢(xy z) and ¢(abc) have two common
symbols. Furthermore, after rotation the two common symbols of p(xy z) and ¢p(abc) are
in the corresponding positions of the common symbols in (xy z) and (abc), respectively.

More precisely,

(i) For distinct a, b, ¢, d € {1, 2,..., n}, ¢(abe) and ¢(abd) have two common sym-

bols, and after rotation, we can write
dlabe) = (V') and plabd) = (a'b' d).

where o', V', ¢, d are all distinct.

(ii) For distinct my n; p, ¢ € {1, 2,..., n}, ¢(mnp) and ¢(mqgn) have two common

symbols, and after rotation we can write
d(mnp) = (m'n'p) and é(mgn) = (m'qn')

where m’, n', p/, ¢’ are all distinct.
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Proposition A.4. Let n > 5 and ¢ € Aut(A,,) which maps 3-cycles to 3-cycles. Then

for every a € {1, 2,..., n} there exists a unique a’ € {1, 2,..., n}, such that

of{(amr)|m,re{l,2,....,n}—{a}, m#r}

= {(dzy)|z,ye{1,2,...,n} —{d'}, z #y}.

Theorem 6.6. Let n > 5, and ¢ € Aut(A4,). If ¢ maps 3-cycles to 3-cycles, then
¢ €Inny, (Sp).

Proof. Assume that ¢ map 3-cycles to 3-cycles. By Proposition A.4, for each a in

{1, 2, ..., n}, there exists a unique a’ in {1, 2,..., n} such that

d{(amre)|m,re{l, 2,...,n} —{a}, m #r}

= {(day)|v,ye{l,2,...,n}—{d}, v #y}.

Define = : {1,2,...,n} — {1,2,...,n} by z(a) = @ where a and a' are as above.
Since ¢ is 1-1, x is 1-1. Because {1, 2,..., n} is a finite set, = is bijective. That is
x € Sp. Claim that ¢ = ¢z|a,. To show this, let (abc) be a 3-cycle. We will apply
Proposition A.4 to ¢(abc). Since ¢p(abe) € ¢p{(amr)|m, re€{1,2,...,n} —{a}, m #
r} ={(dzy)|z,ye{l,2,...,n} —{d}, x # y}, where o’ = x(a), there are x1, y; €
{1,2,..., n} —{d'}, 21 # 11, such that

¢labe) = (d'z1y1) = (z(a)z11).

Apply Proposition A.4 again, we have

dlabe) = ¢(bca)
e {(bmr)|m,re{l,2,...,n} —{b}, m #r}

= {Wzy)|z,ye{l,2,...,n} —{V'}, v #y}, where , V' = x(b).
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Then there are xo, ys € {1, 2,..., n} — {b'}, z2 # ya, and

p(bca) = (Vx2y2) = (2(b) z292).

Similarly, there are x3, y3 € {1, 2,..., n} —{c'}, z3 # y3, and

p(cab) = (cazys) = (x(c)z3y3).

Since ¢(abc) = ¢(bca) = ¢(cab), we have

p(abe) = (z(a) 1 y1) = (z(b) T2y2) = (z(c) 23 y3).

Therefore ¢(abc) contains z(a), z(b) and z(c) as symbols in its cycle notation. Since

z(a), x(b) and z(c) are all distinet, and ¢(abc) is a 3-cycles, we conclude that

dlabe) = (x(a)e(b)2(e)) or (a(a) 2(e) 2(b)). (6.1)

Suppose for a contradiction that

plabe) = (x(a)x(c)x(b)). (6.2)

Choose d € {1, 2,..., n} — {a, b, ¢}. Using the same argument as ¢(abc), we will have

plabd) = (z(a)x(b) x(d)) or (z(a) x(d) x(b)). (6.3)

By Proposition A.3, ¢(abc¢) and ¢(abd) have two common symbols, and after rotations
we can write ¢(abc) and ¢(abd) so that the common symbols lie in the first and second
position. From (6.2) and (6.3), we can see that the common symbols of ¢(abc) and

¢(abd) are z(a) and x(b). Now, write

¢plabe) = (2(b) z(a) 2(c))
¢plabd) = (x(b) z(d) z(a)) or (x(b) x(a) z(d)).



42

Therefore

¢(abd) = (2(b)x(a)x(d)). (6.4)

Apply Proposition A.4 to ¢(adc), we conclude that ¢(adc) contains z(a) as a symbol

in its cycle notation. On the other hand, we obtain that

¢(adc) (abc)(adbd))

= o
= ¢(abe)p(adb)
= o

(

S|
(=
Q

(
Jo(abd)™!
abe)(p(abd))!

I
-

z(b))(x(a) z(d) z(b))~' (from (6.2) and (6.4))
(b)) (x(a) x(b) x(d))

x(a) x(c

%

b

8

( (©)
= (az(a)xz(c):
( )

This contradicts the fact that ¢(ad ¢) contains z(a). This implies ¢(a bc) # (x(a) z(c) z(D)).
From (6.1), we conclude that ¢(abc) = (z(a)z(b) z(c)). Now

pelabe) = z(abe)r t = (z(a)x(b)z(c) = ¢labe).
Since (abc) is arbitrary, ¢ and ®u) 4, are equal at every 3-cycle. Since 3-cycles generate
Ay, we conclude that ¢ = ¢|a,, and ¢ € Inng, (Sy). O
Corollary 6.7. Aut; (Ay) JdInng,(Sy) for every n > 5.

Proof. Tt suffices to prove Aut; (A4,) € Inny, (Sy) since Inng, (S,) < Aut(A4,) and
Auty (An) < Aut(4,). Let ¢ € Aut; (Ay). Then ¢ preserves conjugacy classes of Ay.
In particular, ¢ maps 3-cycles to 3-cycles. Apply the previous theorem, we obtain that
¢ € Inna,(Sy). This shows Autz (An) € Inng, (Sy). O
Corollary 6.8. Inn(A4,) < Aut; (A,) < Inng,(S,) < Aut(Ay) for every n > 4.

Proof. Combine Theorem 6.4, 6.5, and Corollary 6.7. [

The next theorem appears in Exercise 2.12 of [13].
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Theorem 6.9 ([13], p.89). Let G be a group and let H < G have index two. Then the
following hold.

(i)
()

(iii)

(iv)
(v)

H4G.

Every conjugacy class of G having nonempty intersection with H becomes a con-
jugacy class of H or splits into two conjugacy classes of H having equal size.
Furthermore, the conjugacy class K of G does not split in H if and only if some

k € K commutes with some g ¢ H.

Let x be an irreducible character of G. Then x| is irreducible or is the sum of two
inequivalent irreducibles. Furthermore, x|m is irreducible if and only if x(g) # 0
for some g ¢ H.

Let A,, denote the alternating subgroup of S, and consider m € S, having cycle
type A = (A1, Aayen., Ap) (see [18], p.2). Then

w € Ay if and only if n — [ is even.

The conjugacy classes of Sy, that split in A, are those where all parts of X\ are odd

and distinct.

Theorem 6.10. Auty (An) € Inny, (Sy) for every n > 4.

Proof. Let n > 4. We divide into 2 cases.

Case 1 :

Case 2 :

n is odd. Let @« = (12 ... n) be an n-cycle in S,,. Since n is odd, o € A,,. Also,
the cycle type of a is'A'= (n).-By Theorem 6.9(v), the conjugacy class of « in
Sy split in A,,. That is there exists an n-cycle. 6 in A, such that a and (§ are
conjugate in S, but are not conjugate in A,,. Therefore there isa ¢ € S, — 4,
such that o = 080! = ¢,(B). Then ¢5 € Inny, (S,) — Aut 3 (An). Therefore
Auty (An) G Inng, (Sn).

n is even. Let @« = (12...n — 1) and follow the same method as case 1, we
will obtain o € S, — A, such that ¢, € Inng, (S,) — Aut ﬁn(A”)' Therefore
Auty (A4y) C Inng, (Sn). O



44

Theorem 6.11. Inn(A,) = Aut; (A,) for every n > 4.

Proof. Let n > 5, H = Inn(A,), K = Aut; (A,), and G = Inny, (S,). Then by Corol-

lary 6.8, we have

H<K <G
. . G/H
By the Third Isomorphism Theorem, K/E ~ G/K. Then |G/K||K/H| = |G/H| =
G !
\‘H’\ = % = 2. Therefore 1 < |G/K| < 2. From Theorem 6.10, K # G, so |G/K| # 1.

2
Thus |G/K| = 2. Hence |K/H| = 1. Then |K| = |H]|. Since H C K and K is finite,
H = K. That is Inn(4,) = Auty (An). O
Corollary 6.12. Inn(Ay) = Autz (4,) # Aut(4,) for every n > 4.

Proof. Combine Theorems 6.4, 6.10, and 6.11. ]

6.2 Aut(A,)

In this section, we will give a relation between Aut(A4,) and Inng, (S,) which is stronger
than that given in Theorem 6.4. In addition, we find a concrete group to which Aut(A4,,) is

isomorphic. First, we give two lemmas about inequalities which are proved by induction.
Lemma 6.13. Vk >3, (3k — 3)! > 6"~ kL.

Proof. We will prove by induction.
For k = 3, we have (3k — 3)! = 6! = 6 x 120 > 6 x 36 = 63713! = 6"~ 1!
Assume that k >3 and (3k— 3)! > 61kl Then we obtain that

B(k+1) — 3)! =
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Therefore (3k — 3)! > 6*~1k! for every k > 3. O
Lemma 6.14. Vn > 7,Vk € N, 2 < k<2 — (n—3)! > 6" 1kl(n — 3k)\.

Proof. We will prove this statement by induction on n.
Let n = 7. The only k € N such that 2 < k < I is k = 2. Then we have (n — 3)! =
24, 6F=1k!(n — 3k)! = 12, and (n — 3)! > 65~1k!(n — 3k)!. Let n = 8. Similar to the case

n =7, we will have (n — 3)! > 6*~'kl(n — 3k)!. Next, assume that n > 8 and
VEeN,2<k<2 — (n—3)'> 6" klI(n - 3k).

Let £ € N be such that 2 <k < %l We will divide into 2 cases :

case 1 : 6 <3k <n. Then

n+1-3)! = (n—2)!
= (293
> (n—2)6F k! (n — 3k)! (by induction hypothesis)
> (n—=3k+ 16" kl(n—3k)! (n—2>n-3k+1)

= 6"kl (n4 1 — 3k)!

case 2 : 3k =n+ 1. Then 6" 'k!(n+ 1 — 3k)! = 65 k!, and (n+ 1 —3)! = (3k — 3)!. Since

1
n > 8, we have k = % > 3. Thus by Lemma 6.13, we obtain (3k —3)! > 65~ 1!.

That is (n 4+ 1 — 3)! > 6" k!(n+ 1 — 3k)!.

Corollary 6.15.
Vn>T,VhkeN,2<k< g — 2" (= 3) > 6" Lk (n — 3k).

Lemma 6.16 ([3], p.33). Let p be a prime number. Then an element has order p in

Sy if and only if its cycle decomposition is a product of commuting p-cycles.
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Theorem 6.17. Let n >4, n # 6, and ¢ € Aut(A,,). Then ¢ maps 3-cycles to 3-cycles.

Proof. First, we consider in the case n € {4, 5}. Let o be a 3-cycle in A,,. Then |¢(0)| =
|o| = 3. Then, by Lemma 6.16, ¢(o) is the product of disjoint 3-cycles. Since n € {4, 5},
there are no pair of disjoint 3-cycles. Hence ¢(o) is a 3-cycle. This shows that ¢ maps
3-cycles to 3-cycles. Now assume that n > 7. For each k € N with 3k < n, let C}, be the
set of all even permutations in A,, which are the product of k£ 3-cycles. That is

o = (a1 aga3)(as a5 ag) -+ (azp—_2 ask—1 ag) and
Cp,=K0€A,

a, ..., asp € {1, 2, ..., n} are all distinct
By Theorem 6.9, C} is a conjugacy class of A, for every k. In particular, C is the
conjugacy class of 3-cycles. Let o be a 3-cycle. Then |¢(o)| = |o] = 3. By Lemma 6.16,
¢(0) is a product of disjoint 3-cycles. That is ¢(o) € Cf for some k € N. This implies
that ¢(C1) = Cy, for some k € N. We claim that ¢(C) = C}. Suppose that there exists
2 < k < % such that ¢(C1) = Cy. Since ¢ is bijective, |C1| = |Cy|. Therefore

2n!
no 2(”) L (el e

3!(n —3)! 3
kN (n — n—3(k—
~ul)Ca) ()

ﬁ n! (n — 3)! (n— 3k +3)!
k!'3!(n —3)!3!(n —6)! 3!(n — 3k)!
28 n!

k! (3)k(n — 3k)!

This implies 2¥~1(n — 3)! = 6*~'k!(n — 3k)! which contradicts Corollary 6.15. Hence
¢(C1) = Cy. That is ¢ maps 3-cycles to 3-cycles. O

Corollary ‘6.18. Let n.> 4 andn # 6. Then
(i) Aut(A,) =Inng, (S,),
(ii) | Aut(Ay)| = nl,

(iii) | Out(A,)| = 2.
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Proof. First assume that n > 5 and n # 6. Then we obtain that (i) follows from Theorems
6.4, 6.6 and 6.17. (ii) follows from (i), and Theorem 6.3(ii). (iii) follows from (ii), and
Theorem 6.1(iii).

Next, let n = 4. We will show that Aut(A4) = Inna, (Sy).
Recall (see in the proof of Theorem 6.5) that A4 = ((123), (134)) and the conjugacy

class

K23 = {(123), (134), (142), (243)} together with

Kiz9) = {(132),(143), (124), (234)} contains all 3-cycles in Ay.

Let ¢ € Aut(A4). Since Ay = ((123), (134)), ¢ is completely determined by ¢(123)
and ¢(134). Also, by Theorem 6.17, ¢ maps 3-cycles to 3-cycles. Therefore ¢(123) €
K(123) U K(132). In addition, by Theorem 3.8,

if ¢(123) £ K(123)7 then ¢(134) S K(]_23) and

if ¢<123) [S K(132), then ¢<134) (S K(]_32).

Thus there are at most 8 choices for the ¢(123) and after ¢(123) is known, there are

atmost 3 choices for ¢(134). This implies that
[Aut(A4)] < 8-3 = 24 = 41 = Inny,(Ss).
From Theorem 6.4, Inn,(S1) < Aut(As), so we obtain that
Aut(Ay) = Inng, (Ss)-

This proves (i). (ii) follows from (i), and Theorem 6.3(ii). (iii) follows from (ii), and
Theorem 6.1(iii).
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Theorem 6.19. (i) Inng, (S,) =S, for every n > 3.
(ii) Aut(A,) =S, for everyn >4, n # 6.
Proof. Let f : Inn(S,) — Inng, (Sy) be defined by f(¢z) = ¢z|a,- Let ¢r, ¢y € Inn(Sy,).

Then

F(9edy) = [(bay) = bayla, = (92dy)|a, = (d2]4,)(dy|a,) = [(dz) f(y)-

Therefore f is a homomorphism.

f(¢r) 7 f(¢y) Y ¢m|An = ¢y|An

—% ;L':y

_>¢a: :¢y-

~

Hence ¢ is 1-1. Thus f is an isomorphism. Hence Inn 4, (S,) = Inn(.S,,). Since Inn(.S,) =
Sp, we obtain that Inny, (S,) = S,. This proves (i). For n > 4, n # 6, we obtain from
(i) and Corollary 6.18(i) that

Aut(Ay) = Inng, (Sp) = Sy.



CHAPTER VII

Semidirect product Zg x Zg

7.1 Definition and notation
Recall from Theorem 4.10 that Aut(D,,) = Z,, x Z, . It is easy to see that

1

(r =1t s 8)(E rys = sr™)(r = 1!, s 8) T = (r 1, 5 s,

This shows that the action of Z on Z,, in the semidirect product is given by
i-m=1im for i €7, mEeE L, (7.1)
This action corresponds to an isomorphism ¢ from Z) to Aut(Z,) given by
é¢(a)(z) = ax forall a € Z), x € Zy, ([3], p.135).

In addition, from this action, we have the formula for the multiplication in Z,, x Z

as follows : for all (m, i), (I, j) € Zn X Z;;
(m, i), j) = (m + il i5). (7.2)

In this chapter, we compute Inn(Zg x ZJ ), and AutZ/-Z\X (Zs x Z§ ) and show that they
ERe 8

are not equal. That is there is an automorphism which preserves conjugacy classes of

Zg x Zg but is not an inner automorphism of Zg x Z§ . First, we give two lemmas which

will be used in the calculation.

Lemma 7.1. Let H = (A) and K = (B) be finite groups generated by A C H, and
B C K, respectively. Then H x K is geneated by {(a, 1) |a € A} U{(1,b) | b€ B}. In
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particular, if K =7 = (b1, ba, ..., b)), and H = Z, = (1), then

HxK=27,xZ={((1,1), (0, b)), (0, ba), ..., (0, b)) .

Proof. Let (h, k) € H x K. Then (h, k) = (h, 1)(1, k). Since H = (A) and h € H,

there exist aq, as, ..., ay, € A such that h = alllal22 ..abm where Iy, ..., 1y, € {1, —1}.
Similarly, there are by, ..., by € Bandny, ..., ng € {1, —1} such that k = bby2 ... b.*.
Then

(B, k) = (b, (1, k) = (al}, 1) (al, D(L, b7)(L, 572 ... (1, ™).

This shows that H x K is generated by {(a, 1) |a € A} U{(1, b) | b€ B}. O

Assume that Z° = (b, ..., b;). From Lemma 7.1, we have that every endomorphism
¢ of Zyn xZ) is completely determined by ¢(1, 1), ¢(0, by) ..., ¢(0, b;). Like the notation
used in Chapter IV, if ¢ € Hom(Z,, x Z)) mapping (1, 1), (0, b1), ..., and (0, b;) to

(mo, i0), (m1, 1), ..., and (my, 4;), respectively, we will denote ¢ by the diagram
((1, 1) = (mo, d0), (0, b1) = (my, 41), ..., (0, b) — (my, 77))

Lemma 7.2. Let (m, i) € Z, X Z) . Then

(L 5)(m, ) §)= = (U + jm — i, i)

forall (1, j) € Zp x Z).
Proof. Let (1, j) € Zyp X Z,;. Then
(L) my )0 )7 = W )m, )G AT
= (L, )(m, i)(=j 7', 571
(L, j)(m —ij ', i57")
(

L+ jm —1l, 7).
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We will use the formula in Lemma 7.2 to calculate Inn(Zg x Zg ) and conjugacy

classes of Zg x Z; .
7.2 All conjugacy classes of Zg x Zg
From Lemma 7.2, for each (m, i) € Zg x Z§ , we have
K(m,i) = {(l—{-jm—-il, Z) | leZg, j€E Zg}

We compute directly by this formula all conjugacy classes of Zg x Zg and the results are

shown as follows.

K = 40, 1)}

K3 = {(0,3), (2, 3), (4, 3), (6,3)}
Ko,5 = {(0,5), (4,5)}

Ko,7 =H{(0,7), (2,7),(4,7), (6, 1)}
Ko = AL 1), 3,1, (5, 1), (7, 1)}
K3 = A(L3), (3,3), (5, 3), (7, 3)}
Ka,5 = {(1,5), (3,5), (5,5), (7, 5)}
Ka,n ={1,17),3,7), 5,7, (7. 7)}
K1y = {(2,1),(6, 1)}

Kpo5= {(2,5), (6,5)}

Ky = {4, 1)}
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7.3 Inn(Zg x Z3)
Since Zg = (1) and Zg = (3, 5), by Lemma 7.1, we obtain that
Zs x 73 ={(1, 1), (0, 3), (0, 5))

and every ¢ € Hom(Zg x Zg ) is completely determined by ¢(1, 1), ¢(0, 3), and ¢(0, 5).
As mentioned before, we use the same notation as in Chapter IV. Thus we denote ¢ by

the diamgram
((17 1) = (m17 il)? (07 3) b (m27 i2)7 (07 5) = (m37 13))

when ¢ € Hom(Zg » Zg) mapping (1, 1), (0, 3), and (0, 5) to (m1, i1), (me, i2), and
(ms, i3), respectively. Let (m, i) € Zg % Z§ . The values of P(m,q) at (1, 1), (0, 3), and

(0, 5) are shown below.

Therefore
Inn(ZsxZ3) = {((1, 1) (i, 1), (0, 3) > (—=2m, 3), (0, 5) = (—4m, 5)) | m € Zg, i € ZZ}.
It is easy to see that {(—2m, —4m) | m € Zs} ={(0,0), (6, 4), (4, 0), (2, 4)}. Hence

Inn(Zg % Zg ) =-{((1, 1).+—=(i,1), (0, 3)+— (0, 3),(0,5) (0, 5))-| i.€ {1, 3, 5, 7} }
U {((1, 1)~ (i, 1), (0, 3) — (6, 3), (0,5) — (4, 5)) |1 €{1, 3,5, 7}}
U {((1, 1)~ (i, 1), (0, 3) — (4, 3), (0, 5) — (0, 5)) | i € {1, 3, 5, 7}}

U {((1, 1)~ (i, 1), (0, 3) — (2, 3), (0, 5) — (4, 5)) | 1 € {1, 3, 5, T}}

and |Inn(Zg x Z§)| = 16.
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X
74 Aut . (T % Z§)

In this section, we calculate the set of all automorphisms preserving conjugacy classes of

Zg »x Z§ . To do this, we first find a presentation of Zg x Z; .

Proposition 7.3 ([7], p.71). Let R be a set of relations between elements of a set X.
Let G be a group and ¢ : X — G be a mapping such that every relation uw = v in R holds
in G (via ¢). There is a unique homomorphism ¢ : (X; R) — G such that () = ¢(x)

for every x € X. If G is generated by (X)), then 1 is surjective.
Theorem 7.4. Zg X 2§ = <a, b,cla®=b%=c?=1, bab= a3, cac = a®, bc = cb>.

Proof. Let H = <a, bela® =b>=c?=1, bab=a?, cac = a’, bc = cb>. Since a, b, and
¢ have finite orders, every element of G is a finite product of a, b, and c. Since b? =

5

¢ =1, we have b = b~ ! and ¢ = ¢ '. From bab = a*, and cac = a°, we obtain that

b

ba = a®b~! = a3b, and ca = a’c”' = a’c. This implies that the product of a, b, and
¢ can be written so that all of a appear before b and c¢. In addition, since bc = c¢b, the
products of a, b, and ¢ can be written in the form afb’el. Since a® = 12 = ¢ = 1, we
can assume that 0 < kK < 7,0 <7< 1,0 <35 < 1. Hence H has atmost 32 elements,

7 7 9 7 7
,.o..,a' byab, ..., a'b, ¢, ac, a‘c, ..., a'c, be, abe, ..., a'be.

1,a,a

Next, let z = (1, 1),y = (0, 3), z = (0, 5) € Zg X Zg . Let ¢ : {a, b, ¢} — Zg X LS
be defined by a +— z, b— y, ¢ — z. It is easy to see that x, y, and z satisfy the relation
in the presentation of H when a, b, and ¢ are replaced by z, y, and z, respectively. In

addition, we know that z, y, and z generate Zg x Zg . Therefore, by Proposition 7.3,

there exists an epimorphism v,: - H — Zg X Z; mapping a to.«, b-to y, and ¢ to z. Thus
|H| < 32 = |Zs||Zg| = |Zs »ZE| < |H].

Hence |H| = 32 and ¢ is an isomorphism. O

Corollary 7.5. Leta = (1, 1), b= (0, 3), c= (0, 5) € Zg x Z§ . Then

ZgNZSX:<a,b,c|a8:b2:cZ:1, bab = a3, cac:a5,bc:cb>.
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Lemma 7.6. The map (1,1) — (1, 1), (0,3) — (2, 3), (0,5) — (0, 5) extends to a

unique automorphism of Zg X Z§ .

Proof. We use the presentation of Zg x Zg in the previous Corollary. It can be checked
directly that (1, 1), (2, 3), and (0, 5) satisfy the relation in the presentation. Then, by
Proposition 7.3, the map extends to a unique homomorphism ¢ : Zg x Z§ — Zg x Zg .
Since (1, 1)5(2, 3) = (6, 1)(2, 3) = (0, 3), we obtain that (0, 3) € ((1, 1), (2, 3), (0, 5))
and that ((1, 1), (2, 3), (0, 5)) = Zg x Zg . Therefore ¢ is onto and thus an isomorphism.

O

Theorem 7.7. Let G = Zg x Zg . Then

(i) Autgs(G) = {((1, 1) = (iy 1), (0, 3) = (m, 3), (0, 5) — (1, 5)) | i € {1, 3, 5, 7},
m e {0, 2,4, 6}, 140, 4}}.

(ii) | Autg(G)| = 32.
(iii) Autg(G) # Inn(G).
Proof. Let H = {((1, 1) — (i 1), (0, 3) > (m, 3);(0,5) — (1, 5)) | i € {1, 3,5, 7}, m €

{0, 2,4, 6}, 1 € {0, 4}}. First we show that Auta(G) C H. Let ¢ € Autz(G). Then ¢

preserves conjugacy classes of G. From the calculation in Section 7.2, we have

¢(1,1) € K(l,l) - {(17 1)7 (37 1)5 (5’ 1)7 (7’ 1)}7
¢(0,3) € K(O,?)) = {(07 3)’ (27 3)? (4a 3)a (67 3)}7

b0,5)-€ Ko,5) = {(0,5), (4, 5)}.

This shows that ¢ € H, and Autz(G) € H. It is easy to see that |H| = 32. There-
fore | Autg(G)| < 32. Since Inn(G) 9 Auts(G) and |Inn(G)| = 16, we have 16 divide
| Aut5(G)|. Then the possible order of Autz(G) is 16 or 32. To show that Auts(G) = H,
it suffices to find an automorphism of G preserving conjugacy class of G but not inner.
Let ¢ be an automorphism given in Lemma 7.6. From the calculation of Inn(G) in Sec-

tion 7.3, we can see that ¢ is not inner. Next, we show that ¢ preserves conjugacy classes
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¢(m, 1) = ¢(L, D™ = (1, )™ = (m, 1),

¢(m, 3) = ¢((m, 1)(0, 3)) = (m, 1)(2,3) = (m+2,3)
¢(m, 5) = ¢((m, 1)(0, 5)) = (m, 1)(0, 5) = (m, 5)
¢(m, 7) = ¢((m, 1)(0, 7)) = ¢((m, 1)(0, 3)(0, 5))

= (m, 1)(2, 3)(0, 5) = (m, 1)(2,7) = (m+2,7)
(m+2,3) = (3, 1)(m, 3)(3,1)""

(m+2,7) = (1,1)(m, 7)(1, 1)~ 1.

This implies that ¢ preserves conjugacy classes of G. Hence | Auts(G)| > 16. Thus
| Autz(G)| = 32. This prove (ii) and (iii). Since Autz(G) C H and |H| = 32, we obtain
that Auts(G) = H, which is (i). O
Next, we find groups to which Inn(Zg x Zg ) and AutZ/ZX (Zg x 7§ ) are isomorphic.

8 X 8

Theorem 7.8. Inn(Zg x Zg ) = Zy X 7 .

Proof. We will apply Theorem 4.9, to prove this theorem. Recall that
IDD(ZS X Zg) = {¢(m 3) ’ (m, Z) € 7Zg ~ Zg}

Let H = (¢(1,1)), and K = (b0 3), b(o,5))- Since (¢1,1))" = b1yt = d,1), we obtain
that H = {¢q1)|l € Zs}. Also, we can see that ¢4 1) fixes (1,1), (0,3), and (0,5), and
thus it is the identity-map. Then

‘Qb(l,l)‘ =4 and H= <(]5(171)> = Z4. (74)

Next, consider the group K. Since ¢3)00,5 = 90,5 P03 = P, and [Pz =
|$(0,5)] = 2, we obtain that

K = {(¢(0,3))l(¢(0,5))k |1, k€ {1, 2}}
= {b(0,3)> (0,5)> P(0,7), id}.
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It is the fact that a group of order 4 which is not cyclic is isomorphic to Zo X Zso. From
this, we can see that

K%ZQXZngg. (75)
Next, we will show that H < Inn(Zg x Zg ). Let ¢, ) € Inn(Zg x Zg ). Then
Dmi)P11) (Dmi)) ™ = Blamsi)(1,1)(moi) -1

) ¢(m+il—m,1)

= ¢(il,1) € H, forallle Zs.

Hence

H < 1nn(Zg X Z3). (7.6)
From (7.4), and (7.5), we know that

H = {901y, P21), ¢3,1)> Pa,1)}
K = {bw03), 205 P(0,7), id}-

We can see that any nonidentity map in H maps (1,1) to (1,1), while any nonidentity
map in K maps (1,1) to (3,1), (5,1) or (7,1). Hence

HNK = {id}. (7.7)
Also,
[HIK| . 4x4 x
Therefore
Inn(Zg X 2§ ) = HK. (7.8)
From (7.4) to (7.8), we obtain that Inn(Zg x Z§ ) = Zs X Zg . O

Next, we will show that AutZ/E (Zg XL ) = (Z4 X L) x Zg . To show this, we will

X
8 Nlug

apply the next theorem in the proof.
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Theorem 7.9 ([3]). Suppose G is a group such that
(1) H<G and K QG
(2) HNK = 1.

Then HK = H x K.

Theorem 7.10. At — (Zs ) & (Ta X ) % I3

Proof. Let G = Zg x 723, K = <¢(073), ¢(075)>, LadS] — <¢(171), ¢) where ¢ € Auts(G)
be defined by ¢(1,1) = (1,1), ¢(0,3) = (4,3), ¢(0.5) = (0,5) (see Theorem 7.7(i)).

Consider the following diagram of mapping

¢>(1 1)

dand (1,1) (1,1 L2 a1y
(0,3) 2(4,3) = (1,1)40,3) 212 (1,1)4(6,3) = (10,3) = (2,3)
(0,5) £.(0,5) 222, (4,5)

45(1 1)

déan (1,1) 28 (1) & (1,1

(0,3) 290, (6,35 = (1,1)5(0,3) & (1,1)°(4,3) = (10,3) = (2,3)

¢(1 1)

0,5) 22, (4,5) = (1,1)4(0,5) 2 (1,1)*(0,5) = (4, 5).

Hence ¢¢(1,1) = d(1,1y¢- Also, |¢| = 2 and |¢(; 1)| = 4. Then
H= {(¢(1,1))l¢k | le {17 27 37 4}7 ke {la 2}}

Let Hy = <¢(171)>, and Hy = <¢> Then Hy & Zy, and Hy = Zoy and Hi N Hy = {ld}
Therefore
|H1||H2| R 4 x'2

HiH>| = —
| ' 2| ‘HlmH2| 1

=8> [H| = |H\Hy|

Hence H = HyHs. Since ¢(;1) and ¢ commute, we obtain that Hy << H, and Hy < H. By
Theorem 7.9, we obtain that

H:H1H2§H1 XH2%Z4XZ2. (79)
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From the proof of Theorem 7.8, we know that
K =7, (7.10)

and {¢(1,1), P(2,1), ¢3,1)> P(a,1)} MK = {id}. Since ¢(1 19, P2,1)¢s d(3,1)¢ and P41y are

all outer automorphism, we can see that
HNK ={¢puné"|ke{l. 2}, ac{l 2 3 4}}nK = {id}. (7.11)
Therefore |[KH| = |HK| = |H||K| =8 x 4 =32 = |G|, and thus
G=HK = KH. (7.12)

Next, we will show that H < G. Let g € G. Then there exist k € K and h € H such that
g = kh. Let hg € H. Then ghog ' = khhoh 'k~' = khok~! (since H is abelian). From

this, we can see that
H<G —Yke KVYhe H, khk™! € H.
Let a € {1, 3,5, 7} and b € {1,,2, 3, 4},

$0.0)00,1) (P0.0) " = P(0.0)P(6,1)P(0;0)
= 9(0,a)(b,1)(0,a)
= ¢(ab,a2)

- ¢(ab,1) € H.

Next, we will show that ¢(0,a)¢¢(b,1)(¢(o,a))_l € H. Consider the following diagram of

mapping
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QZ)(O,G,)(Z5 (1? 1) i’ (17 1) m (CL, 1)
(0,3) 2 (4,3) = (1,1)4(0,3) 2% (a, 1)4(0,3)

= (4a,1)(0,3) = (4a,3) = (4,3)

0,5) % (0,5) 222 (0, 5)

¢¢(07a) (17 1) M’ (a’v 1) = (17 l)a ﬂ (17 1)a = (aa 1)

(0,522, (0, 5)

We can see that ¢¢ g 4) = ¢(0,q)¢- Therefore

D0.0% = P 10.0-1 = D(0.0)P01) (P0,0) ")
€ ¢H — H.

Thus
H <G, (7.13)

From (7.9) to (7.13), we obtain that G = H x K. That is

AutZ;;Z\g (Zg X Zg) = (ZQ X Z4) X Z?
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Appendix I

Automorphism of A, which maps 3-cycles to 3-cycles

Since we will use the argument about the order of elements, we first give the following

Lemma here.

Lemma A.1. Let (abc) and (xy z) be distinct 3-cyeles in S,,.
(i) If (abc) and (xyz) have no common symbol, then |(abc)(xyz)| = 3.
(ii) If (abc) and (xyz) have one common symbol, then [(abc)(xyz)| = 5.

(iii) If (abc) and (zy z) have two common symbols, then [(abc)(zyz)| =2 or 3.
More precisely, |(abc)(abd)| =2, and |(abc)(adb)| = |(acb)(abd)| =3

(i) If (abc) and (xyz) have 3 common symbol, then (abc) is the inverse of (xy z),
so |[(abe)(zyz)| = [(1)] = 1.

Proof. The proof is straightforward. It is just a direct calculation. O

Lemma A.2. Let n > 5 and ¢ € Aut(A,) which maps 3-cycles to 3-cycles. If 3-cycles
(zyz) and (abc) have one common symbol, then ¢(xy z) and ¢p(abc) have one common
symbol.

More precisely, for distinct a, by, by, ¢1, co € {1, 2,.., n}, there exists a unique o’ €

{1, 2,..., n} such that p(aby by) = (a’ d1 d2) and p(acy ca) = (a' ey e2) whered’, dy, da, €1, e

are all distinct.

Proof. Let a, by, ba, c1, ca € {1, 2,..., n} be all distinct. Assume that

¢(abrby) = (zyz)and

¢lacicz) = (mpq).
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Then

(xyz)(mpq)| = |p(abybs) placyca)
= |p((abr1b2) (ac1c2))|
= |(abib2) (aci )

= 5.

Therefore, by Lemma A.l, (xyz), (mpq) have one common symbol. After rotation
and renaming, we may assume that x = m = d/, for some o' € {1,2,...,n}, and

d(abiby) = (d'yz), and ¢(acyez) = (@' pg). The uniqueness of @’ is obvious. O

Proposition A.3. Let n > 5 and ¢ € Aut(A,,) which maps 3-cycles to 3-cycles. If
(zyz) and (abc) have two common symbols, then ¢(xy z) and ¢(abc) have two common
symbols. Furthermore, after rotation the two common symbols of ¢(xy z) and p(abc) are
in the corresponding positions of the common symbols in (xy z) and (abc), respectively.

More precisely,

(i) For distincta, b, ¢, d € {1, 2,..., n}, ¢(abe) and ¢p(abd) have two common sym-

bols, and after rotation, we can write

dlabe) = (a'b' ) and p(abd) = (¥ d).

where a', V', ¢, d" are all distinct.

(i) For distinet msnyp, q € {1,2::. 4y n}y ¢(mnp)-and ¢(mgn) have two common

symbols, and after rotation we can write

TR7E %

¢(mnp) = (m'n'p). and $(magn) = (m'q'n)

where m', 0, p', ¢’ are all distinct.

Note If (abc) and (ryz) are 3-cycles in A,, which have two common symbols, then

there are 2 cases to be considered :



Case (1)

Case (2)
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We can rotate the 3-cycles (abc) and (xy z) so that their common symbols lie in

the same position, for instance

(abc) = (132), (xyz) = (215).

Then (abc) = (213),(xyz) = (215), the symbols 1 and 2 in (abc) and (zy z)

are in the same position.

We cannot rotate the 3-cycles (abc) and (7 y2) so that their common symbols lie

in the same position. For instance

(abc) = (132)and (zyz) = (512).
Then

(@abe) = (132) = (321) = (213),

(zyz) = (512) = (125) = (251).

We can see that if 1 in (abc) and (zy z) lies in the same position, then 2 in them

lies in the different position.

Proof. First, we will prove (i). Let a, b, ¢, d € {1, 2,..., n} be all distinct. Let consider
the order of the produet.of 3-cycles ¢(abc) and ¢(abd)

[p(abe)plabd)] = [p((abe)(abd))|
= [(abec)(abd)| = 2.

By Lemma A.1, we have ¢(abc) and ¢(abd) have two common symbols and after ro-

tation, the common symbols lie‘in the first and second position of ¢(abc) and ¢(abd).

Let @/, V' be the common symbols which lie in the first and second position, respectively.

Then we can write

¢labe) = (d'b' ) and p(abd) = (a’'b' d)

where o/, V', ¢ and d’ are all distinct. Next, we will prove (ii). Let m, n, p, ¢ € {1, 2,..., n}
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be all distinct. Let ¢p(mnp) = (abc) and ¢p(mgn) = (zyz). Suppose that (abc) and

(zy z) have no common symbol. Then

¢(mgp) = ¢((mnp)(mgn))
= ¢(mnp)p(mqn)

= (abc)(xyz), which contradicts ¢ maps 3-cycles to 3-cycles.

Therefore (abc) and (zyz) have at least one common symbol. Now using the same

argument about the order as in (i) we will have a proof of (ii). O

Proposition A.4. Let n > 5 and ¢ € Aut(A,) which maps 3-cycles to 3-cycles. Then

for each a € {1, 2,..., n} there exists a unique such that a’ € {1, 2,..., n},

p{lamr)|m, red{l, 2,...,n} —{a}, m#r}

= {(dzy)|z,ye{l,2,...,n} —{d}, z #y}.

Proof. Let a € {1, 2,..., n}. Choose my, r1, mg, r2 € {1, 2,..., n} — {a} which are all
distinct. This can be done, since n. > 5. From Lemma A.2, there exists o’ € {1, 2,..., n}

such that

dlamyiry) = (a'mgrs), plamary) = (a'myry)

where a’, ms, r3, my, rq are all distinct.

Suppose for a contradiction that there exists a 3-cycle (amr) such that

#(amr) does not contain a’ as a symbol in its cycle rotation . (A.1)

Consider (am ) and (amy 71). The number of common symbols in (e m ) and (amq 1)
is 1 or 2. Similarly for (amr) and (amgre). From Lemma A.2 and Proposition A.3,
¢(amr) and ¢(amy ) have at least one common symbol. Also, ¢(am ) and ¢(amsors)
have at least one common symbol.

We denote by [¢p(amr), ¢(am;r;)] the number of common symbols of ¢(amr) and

¢lam;r;) fori =1, 2.
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There are 4 cases to be considered :

Case 1: [p(amr), plam;r;)] = 1forie{l, 2}

Case 2: [p(amr), p(am;r;)] = 2forie {1, 2}

Case 3: [p(amr), p(amiry)] = 1 and [p(amr), p(amary)] = 2

Case 4: [p(amr), d(amiry)] = 2 and [plamr), p(amarsy)] = 1

We will show that all cases do not occur.

Case 1 : Let ¢p(amr)

= (xyz) where z, y, z are all distinct. For i € {1, 2}, ¢(amr) and

¢(am;r;) have one common symbol, so we have (amr) and (am;r;) have one

common symbol, that is a. Therefore a, my, r1, ma, ro, m, r are all distinct. Then

7

= |(amarogmirimr)| = |p(amaramyrimr)|
= |o((amr)(amiri)(amars))|
= |p(amr)p(amiri)p(amsars)|
= [(zy2)(a'msrs)(a’ mary)l

= [(zyz)(a maramsrs)| (A.2)

Since ¢(amr) and ¢(am;ry) have one common symbol, and ¢(amr) does not

contain a’, we have ¢(amr) contains either mg or r3. Similarly, ¢(amr) contains

my Or T4.

Hence there are 4 cases to be considered :

case 1.1 :

case 1.2 :

case 1.3 :

case 1.4

d(armin
dlamr
olamr

(

olamr

contains m3 and my.

)

) contains r3 and my.
) contains r3 and 7.
)

contains ms and ry4.

All cases will contradict Equation A.2. In fact, in the first three cases, we obtain

that [(xy z)(a’ myrgmsrs)| =4 or 3, and in the last case, we have

((zy z)(a’ maramgrs)] =5 or 4.
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Therefore case 1 does not occur.

Case 2 : Since ¢(amr) does not contain a’, ¢(amr) contains ms, rs, ms and r4. This

cannot happen because ¢(amr) is a 3-cycle and mg, r3, my, r4 are all distinct.

Case 3 : We have ¢(amr) contains m4 and r4 and contains either mg or 3. Then ¢p(amr) =

(marams), (mamsry), (margrs) or (marsry).

Case 3.1 : ¢(amr) = (mygrsmz). Then

¢ Ymyrygmz) = (amr), (A.3)
qﬁﬁl(a’mgrg) = (amymr), (A.4)
o Yd myry) = (amgrsy). (A.5)

Note that ¢=' € Aut(A,) which maps 3-cycles to 3-cycles, so we can apply
Lemma A.2 and Proposition A.3 for ¢ !. Consider (A.3) and (A.4). Since
(amr) = ¢ L(marams), (amiry) = ¢ '(a’msars), and (mgrgms) and
(@’ m3r3) have one common symbol, we conclude that (amr) and (amqry)
have one common symbol. We see that the symbol a is the common symbol of
(amr) and (amq ry). Therefore a, m, r, my, r1 are all distinct. From (A.3)

and (A.5)

(amr) =" ¢~ (marams)

(amare) = qﬁ_l(a'm4r4) = ¢_1(m47"4a’).

Apply Proposition A.3, we have (m =mg and r # r9) or

(r =rgo and m # ma)
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5 = |(a'ramamsrs)| (A.6)
= [(marams)(a’ mzr3)(a mars)| (A7)
= |plamr)p(amiry)p(amars)]
= lo((amr)(amari)(amars))|

b (amr)(ami ) (afas)| if m = mg and r % o

lp(amr)(amyry)(@mar)| if r = ro and m # mo

|p(ar)(myrimra)| if m=mg and r # 7o
|[p(ama)(mirymr)| if r =rg and m # mo

= 4, a contradiction.

Case 3.2 : ¢(amr) = (mamsry).
We use the same process as in case 3.1. Apply Lemma A.2, we have a, m, v, my, r1
are all distinct. Apply Proposition A.3, we have

(m =19 and r # my) or (r = mg and m # r2). Then we have

(@' myrs) = (a"mgr3)(a"mare)(mamzrs) (A.8)
= ¢lamyr)dlamars)dlamr)
= ¢((amiri)(amare)(amr))
¢((amiry)(@mym)(amr)) it m=ry, r#my
s((amar)(arra)(amr)) if r = ma, i 7y
¢((amayri)(momr)) ifm =ry, 1 # ma

plamromyry) if r=mo, m#mry

Then ¢~ *(a’ myr3) is a 5-cycle or product of two 3-cycles. This contradicts

the fact that ¢! maps 3-cycles to 3-cycles.
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Case 3.3 : ¢p(amr) = (marsrs).
Use the same process as case 3.1. The proof is different from case 3.1 at
equation (A.6) and (A.7). Just replace (a’ r4mgmsrs) by (@’ r4ym3mygrs) in
(A.6) and (marsmg) by (marsrs) in (A.7) we will have the proof of case

3.3.

Case 3.4 : ¢p(amr) = (mar3ry).
Using the same process as case 3.2. The proof is different from case 3.2 at
equation (A.8). Just replace (a’ mgrs) by (@' m4)(msrs), and (mygmsry) by
(mgr3ry) in (A.8), then taking the order of the elements we have a contra-

diction.
Case 4 : This can be proved similarly to case 3.
All cases lead to a contradiction. This result from supposition (A.1). Hence

o{lamr)|myre{l,2,...,n} —{a},m #r}

Cl{l@zy) |z, ye{l,2,....,n}—{d},z#y}

Since ¢is 1-1, ¢p{(amr)|m, r € {1,2,...,n}—{a},m #r} ={(d zy) |z, y € {1, 2,..., n}—

{d’'},x # y}. The uniqueness of a’ is obvious. Therefore, Proposition A.4 is proved. []
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