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Photoelectric (PE) logging data is important in petroleum exploration due to its 

petrophysical implications, which can directly infer the reservoir composition. For example, the 

PE value of calcite is ~5 b/e, which can be used to indicate carbonates in the reservoir.   However, 

well logging requires significant financial resources and intensive labor to acquire necessary 

information. Moreover, missing data at depth is a common problem during well logging surveys. 

This study thus aims to use three machine learning models: Extreme gradient boosting (XGBoost), 

Support vector regression (SVR), and Artificial neural network (ANN) to synthesize the PE log in the 

Anadarko basin, Kansas, USA. Over 50,000 well logging data points of 6 logging types (gamma ray, 

deep resistivity, spontaneous potential, density porosity, bulk density and photoelectric) from 12 

wells are used to train, validate, and test the models in the ratio of 70:20:10. ANN performs poorly 

and shows the highest MSE at 0.197 due to its sensitiveness to imbalanced data. XGBoost shows 

the lowest mean square error (MSE) at 0.139 and R-square at 0.75, suggesting that XGBoost 

outperforms SVR and ANN. This is because XGBoost has an ability to handle imbalanced data, 

prioritize feature importance, and mimic human decision. Top three important features for 

synthesizing the PE log include depth, gamma ray log, and spontaneous potential log. 
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Chapter 1 Introduction 

 

1.1 Introduction 

 Subsurface information is valuable knowledge in petroleum and geothermal exploration. 

Geophysical well logging becomes an important tool in determining subsurface data as it records 

in-situ physical rock properties. Well logging can be used to determine lithology, fluid types, 

density, and porosity. Various types of logging are typical in exploration industries due to their 

high sensitiveness to lithology, porosity, and fluid saturation. For example, the spontaneous 

potential (SP) log and gamma ray (GR) log. In terms of lithological discrimination, the gamma-ray 

log is widely used as a shale-index indicator since its ability to detect naturally emitted gamma-

ray generated from K, Th, and U elements in the formations. The gamma-ray log is thus normally 

used to differentiate between clay-rich and clay-poor rocks. In addition, the photoelectric (PE) log 

is sensitive to the mean atomic number of minerals in the formation, but not sensitive to porosity 

and fluid saturation presented in the rocks (Glover, 2012).  The PE log is commonly used to 

distinguish the ambiguities of lithologies in multi-mineral formations. 

A study by Dubois et al. (2007) uses well logs from the Panoma fields in Kansas to 

determine lithofacies comparing between conventional statistical models and machine learning 

methods. Two experiments were taken in both methods where the first experiment is to 

determine lithologies by using well log data including PE logs. Another experiment is to determine 

lithologies by using well log data excluding PE logs because the PE logs are not available in all 

wells. Results show that machine learning approaches are more accurate (up to 70%) than those 

of the conventional models (up to 60%). The average accuracy improves approximately 2.5% 

when PE logs are taken into account. The study implies that the PE log is a powerful lithology 

discrimination tool applicable to both human and machine-based interpretations. A study by Giao 

and Chung (2017)  focuses on the characterization of carbonate reservoirs in Red River basin, 

Vietnam. The study uses the density porosity logs and the PE logs to compute apparent dry grain 

density (Dga) and apparent volumetric factor (Uma) cross plot. The Dga--Uma cross plot is proved to 

successfully identify predominant minerals in each lithological zone. The implication of the study 

is that the PE log is also one of the robust parameters for carbonate zonations. 

https://www.zotero.org/google-docs/?c94phj
https://www.zotero.org/google-docs/?ACzl1y
https://www.zotero.org/google-docs/?ACzl1y
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Well logging requires significant financial resources and intensive labor to acquire 

necessary information. Moreover, missing data at depth is a common problem during well logging 

surveys due to the limitation of technique and complexity of the formation (Chopra et al., 2005; 

Rolon et al., 2009). One novel approach to remediate this problem is to reconstruct the synthetic 

well logs from the existing logs, using machine learning approach (Rolon et al., 2009). Machine 

learning is a data-driven statistical analysis technique, which is capable of learning and pattern 

recognition from input data in order to make predictions or discover new knowledge. Machine 

learning involves two types of tasks: supervised and unsupervised learning. Supervised learning is 

to learn or train on a function between given input and labeled outputs (Simon et al., 2015). In 

contrast, unsupervised learning tries to learn a relationship between data without having labeled 

outputs. 

Machine learning has been increasingly used in statistical analysis where the other 

methods cannot solve high-dimension or non-linear relationships of the input data. A study by 

Demolli et al. (2019) performs long-term wind power forecasting based on daily wind speed data 

by using five machine learning algorithms: Least Absolute Shrinkage and Selection Operator 

(LASSO), k-Nearest Neighbor (kNN), Extreme Gradient Boosting (xGBoost), Random Forest (RF), and 

Support Vector Machine (SVM) algorithms. RF and SVM models are promising tools to give high 

accuracy prediction of wind power in different locations throughout the world with R-square 

values of RF and SVM are 0.995 and 0.955, respectively. In addition, machine learning is applied 

to energy resource exploration. For example, the bottom-hole temperature and formation 

temperature are predicted by using drilling fluid data in Gul et al. (2019). The study suggests that 

RF and xGBoost models provide high-accuracy results with R-square values more than 0.970 in 

both algorithms for both bottom hole circulating temperature and formation temperature. 

According to Goutorbe et al. (2006); Lashin (2005); Wang et al. (2013); Xie et al. (2018),  well log 

data is utilized either in classification or regression problems. Wang et al. (2013) and Xie et al. 

(2018) select well logs, such as gamma-ray, deep-resistivity, and caliper logs, as input data to 

perform lithology classification. The results of these studies show that xGBoost provides the 

highest prediction accuracy but RF is more prone to overfitting. Other studies such as Goutorbe 

https://paperpile.com/c/29QKgu/n8ND
https://paperpile.com/c/29QKgu/n8ND
https://paperpile.com/c/29QKgu/n8ND
https://www.zotero.org/google-docs/?pjtLlg
https://www.zotero.org/google-docs/?s1pXce
https://www.zotero.org/google-docs/?OEnGbR
https://www.zotero.org/google-docs/?GgShXo
https://www.zotero.org/google-docs/?qtUSXY
https://www.zotero.org/google-docs/?jhlLO3
https://www.zotero.org/google-docs/?jhlLO3
https://www.zotero.org/google-docs/?OdwVnd


3 
 

et al. (2006) and Lashin (2005) use Artificial Neural Network (ANN) to solve regression problems. 

ANN is robust in both works with a correlation coefficient of more than 98 percent. A study from 

Puskarczyk (2019) analyzes electrofacies of Polish paleozoic shale gas formations through a set of 

log responses to determine reservoir potential by unsupervised learning method. Clustering 

analysis, SVM, and self-organized Artificial Neural Network named Kohenen neural network are 

used to classify the standard well logging data; gamma-ray, deep-resistivity, neutron porosity, 

compressional wave slowness, bulk density, and photoelectric logs. The results can distinguish 

nine electrofacies or clusters with only partly overlap area, suggesting that the input log data 

provides good information about lithology, porosity, and saturation 

. In addition, photoelectric factor, high-resolution acoustic, sonic, and density logs were 

synthesized by various algorithms, giving high accuracy results with low mean square error (MSE) 

(Akinnikawe et al., 2018; Zhang et al., 2018). 

Machine learning has been proven as a powerful tool to solve complex problems with 

high accuracy in a short amount of time. This study thus aims to reconstruct a synthetic 

photoelectric log from Kansas, USA by using three machine learning algorithms, particularly 

Artificial Neural Network (ANN), Support Vector Machine (SVM), and Extreme Gradient Boosting 

(xGBoost).  Synthetic well logs can be created with high accuracy and scaled over a deep range 

of the interested area at a much lower cost and shorter time than the traditional well logging 

method. Kansas is located in the midwestern part of the USA and hosts a few important 

petroleum basins such as Hugoton and Sedgewick basins. The Hugoton area is the largest gas field 

in North America and one of the largest gas fields in the world, which over the last decade cash 

receipts form Kansas oil-and-gas production are identical to total annual statewide crop 

production (Kansas Geological Survey, 2001). Well log dataset is obtained from the Kansas 

Geological Survey website in form of Log ASCII Standard (LAS) files. The wells are located in the 

Hugoton Embayment, an extension of the Anadarko basin underlies in the southwestern part of 

Kansas state, in which the embayment axis plunges southeastward deepening into the Anadarko 

basin.  

https://www.zotero.org/google-docs/?OdwVnd
https://www.zotero.org/google-docs/?2dohTh
https://www.zotero.org/google-docs/?7LMOdJ
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1.2 Objectives 

1.2.1 To reconstruct synthetic well logging responses from Kansas, USA using machine 

learning models 

1.2.2 To compare the performance of three machine learning models: Extreme Gradient 

Boosting (xGBoost), Support Vector Machine (SVM), and Artificial Neural Network (ANN) 

 

1.3 The scope of study 

 This study aims to reconstruct a synthetic photoelectric log through well-logging data 

retrieved from Kansas, USA by using three machine learning algorithms, particularly Artificial Neural 

Network (ANN), Support Vector Regression (SVR), and Extreme Gradient Boosting (xGBoost). Twelve 

wells drilled in Hugoton embayment, Anadarko basin are used which are L.Maune 6, Young 'J' 1, 

Lighty 33-1, Nina Seyb 1, MLP SCOTT 'A' 1, J-G Unit 1-13, HCU 2220-B, Calkins 15-1, Kysar 1-1, 

Vercimak 'A' 1, PATTERSON UNIT 4-25, and Prentice 'A' 1. Each well is collected associated with 

six common well logging types: gamma ray (GR), photoelectric factor (PE), deep resistivity (RT90), 

spontaneous potential (SP), density porosity (DPHI), and bulk density (RHOB). A total number of 

the well-logging data points is 51,385 which 70% of the data points are used as a training set, 20% 

are used as a validation set, and the remaining are used as a test set. 

 

1.4 Expected results 

1.4.1 The photoelectric synthetic log reconstructed from well-logging data acquired from 

Hugoton embayment, Anadarko basin, Kansas by three machine learning algorithms 

1.4.2 Model performance comparison offering information of which algorithms can provide 

a satisfying result in reconstructing well log measurements   
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Chapter 2 Literature Reviews 

 

2.1 Well logging  

Lithological information such as the composition, texture, and structure of the rocks, is 

necessary for determining the type of hydrocarbon reservoir. In general, hydrocarbon reservoirs 

can be categorized into clastic (sandstone) or carbonate (limestone and dolomite) reservoirs. 

There are three main techniques to collect subsurface information for reservation 

characterization. First, geologists can collect cores or subsurface rocks directly while drilling, The 

second technique is to collect cuttings flushed to the surface during drilling, and the last one is 

to interpret from well logging. Cores are the most valuable and accurate subsurface data yet they 

are not practical for economical and technical reasons. Cuttings, fragments of rocks, are the 

second main source of subsurface data, but they have experienced mixing, leaching, and 

contamination along the way they transported up to the surface. Therefore, well logging, the last 

technique, is an important tool to collect subsurface data in situ (Serra, 1984). Well logging used 

in this study is shown in Table 2.1. 

Parameter Nomencalture Unit Primary uses 

GR gamma ray log API Shale content estimation in the formation 

RT90 deep resistivity ohm-m Fluid types determination in the formation 

SP 
spontaneous 

potential 
mV 

Porous and permeable zones 

determination in the formation 

DPHI density porosity % 
Formation's porosity estimation by 

calculating log responses from density tool 

PE photoelectric factor b/e 
Indication of major minerals in the 

formation 

RHOB bulk dnsity g/cm3 
Formation's porosity estimation, normally 

considered with NPHI 

Table 2.1 Six well logging types or features that are used in this study 

https://www.zotero.org/google-docs/?2kqFNH
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2.1.1 Gamma ray  

 Gamma ray (GR) log is a continuous measurement of gamma ray decayed from radioactive 

elements such as K, U, and Th in rocks. K and Th seem to be concentrated in clay minerals and 

U is usually rich in source rocks since its ability to be absorbed by organic matter (Puskarczyk, 

2019). The obtained GR responses are the summarized contribution of all three elements. The 

API (American Petroleum Institute) is applied as a measurement unit in most cases according to 

Tiab et al. (2012) stated that one API equals 0.07 micrograms of radium equivalent per ton of 

formation. In general, An important application of the GR log is to calculate the shale content 

with the assumption that only shale contains radioactive minerals in a rock, for instance, K-

feldspar (Schön, 2015). As shown in Figure 2.1 that high gamma ray is shale and low gamma ray 

is sandstone in the example, but it can be other rocks such as limestone depending on 

depositional environments. 

 

2.1.2 Deep resistivity 

Resistivity, an inversion of conductivity, measures electrical resistances of the formation. 

It is the primary property to determine reservoir properties especially porosity and fluid types 

(Thongsame, 2018). The coverage range of formation resistivity is widely distributed from 0.1 to 

1000 ohm-m where the rocks with resistivity higher than 1000 ohm-m are interpreted to be very 

impervious or very low porosity (Schön, 2015). Noteworthy that the resistivity resulting log 

presents in three curves: shallow, medium, and deep corresponding to the radius of investigation 

(Figure 2.1). Deep resistivity is presumed to true formation resistivity and separation between 

shallow and deep curves can be used to determine the fluid type, the diameter of mud invasion, 

and zones of permeable rocks (Varhuag, 2016). Figure 2.1 suggests that if the separation between 

shallow and deep curves are wide, it tends to contain hydrocarbon. In contrast, if they have 

narrow separation or move in the same trend, it is a water-bearing zone.  

 

2.1.3 Spontaneous potential 

Spontaneous potential (SP) log is a measurement of electrical potential occurring 

naturally, which is produced by the exchange of fluids with different salinities between the 

https://www.zotero.org/google-docs/?pSB0nJ
https://www.zotero.org/google-docs/?pSB0nJ
https://www.zotero.org/google-docs/?VoXMPk
https://www.zotero.org/google-docs/?Ihskst
https://www.zotero.org/google-docs/?4Qa17g
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formation water and the borehole mud filtrate. During drilling permeable bed is invaded by mud 

fluid causing ions exchange. If the formation fluid has more salinity than the filtrated mud, then 

the SP curves response to the left arbitrary to the SP baseline generated from impermeable shale 

formations. On the other hand, the SP curves will deflect to the right if the formation fluid has 

less salinity than the filtrated mud. In the latter case is usually a water-filled permeable formation. 

So, the SP curves can indicate which formations are permeable (Varhuag, 2016). 

 

2.1.4 Bulk density 

 Bulk density (RHOB) log is a key measurement of porosity since porosity, in general, is 

inversely related to the rock density. This log is obtained by density tool which emits gamma rays 

to the formation. Compton scattering occurs when the emitted gamma ray collides with electrons 

inside the formation and gives off energy. Thus, the number of collisions directly implies the 

number of electrons in the formation. The tool counts scattered gamma rays reaching back to 

the detector. Low-density formations, high porosity, will get more counts on the number of 

coming back gamma rays than high-density formations (Varhuag, 2016). Apart from that RHOB log 

can detect organic-rich shales since the organic matter has a much lower density than non-

organic-bearing shales (Puskarczyk, 2019). As illustrated in Figure 2.1, shales have a higher density 

than sandstones. 

 

2.1.5 Density porosity 

 Density porosity (DPHI) log is another form of porosity calculated from density data 

acquired from the density log using the equation below. Where: ф is calculated porosity, ρma is 

matrix density, ρb is formation bulk density (reads from log values), and ρf is fluid saturation 

density. 

https://www.zotero.org/google-docs/?18Kwku


8 
 

 

Figure 2.1 A basic suite of logging measurements. Track 1 is gamma ray log and spontaneous 

potential log often used as lithological classification. The next column is called a depth track (in 

this diagram represented in feet). Track 2 is resistivity measurements used in determining the fluid 

types. Track 3 is a neutron porosity log and bulk density log used to estimate porosity (Varhuag, 

2016). 

 

2.1.6 Photoelectric factor 

Photoelectric (PE) effect is a phenomenon where the gamma photon energy emitted from 

the density tool interacts with an electron in the rock. Innermost-shell electrons are ejected from 

the atom and the gamma photons are absorbed. Higher shell electrons will release energy to fill 

the vacancies in the innermost shell in the form of X-ray or low-energy gamma ray. Unlike the 

Compton scattering process that the photon energy transfers only part of its energy to the 

electrons and scatters away. Photoelectric factor (PE) log is also earned from the density tool 

recording low-energy gamma rays reaching the detector. The aggregate atomic number (Z) of the 



9 
 

elements assembled in the formation is a direct function of its recording, thus it is a precious log 

for mineral determination in the formation (Asoodeh and Shadizadeh, 2015). In addition, porosity 

and fluid saturation in the rocks are considered negligible (Figure 2.2). One of the exceptions is 

highly saturated brines which give a significant PE value (Glover, 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 PE value as a function of porosity and fluid saturation. Notice that PE values change 

insignificantly, even the porosity is increasing in all mineral types. The fluid saturation influencing 

PE values are disregarded as well (Glover, 2012). 

 

2.2 Machine learning algorithms 

 Machine learning (ML) is a technology grown out of artificial intelligence (AI) work. The goal 

of machine learning is to enable machines to perform excellently by using intelligent software 

whose backbone is developed from statistical learning methods. Mitchell et al. (2006) stated in 

his article entitled “The Discipline of Machine Learning” that this discipline seeks to answer the 

question of “How can we build computer systems that automatically improve with experience, 

and what are the fundamental laws that govern all learning processes?”. He also precisely defined 

that machine learning is a computer program that learns from experience E with respect to some 

task T and some performance measured by P. There are two main machine learning techniques: 

https://www.zotero.org/google-docs/?IjZgc1
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supervised learning and unsupervised learning. In supervised learning, it is a label-based technique 

that requires both input independent variables and labels as the training data. Two categories 

under the supervised learning field discriminate by the data type of labels. The first group is called 

regression problem for numerical labels, another is called classification problem for discrete or 

categorical labels. In contrast, unsupervised learning requires only the input data with no label, 

thus it is appropriate for cluster discovery which clusters from the relationship between data in 

the input data. After the machine learning model has learned from the training data, performance 

assessment is needed. The unseen data, so-called the test data will be given to the model and 

evaluated by different evaluation metrics. In regression problems, evaluation metrics can be R-

square, root mean square error (RMSE) or mean square error (MSE). Classification problem, on the 

other hand, evaluation metrics can be confusion matrix, area under curve, or F1-score. Note that 

in this study three supervised learning models namely; extreme gradient boosting (XGBoost), 

support vector regression (SVR), and artificial neural network (ANN) will be used to solve regression 

problems and assessed by R-square and MSE evaluation methods.  

 

2.2.1 Extreme Gradient Boosting (XGBoost) 

 Extreme gradient boosting (xGBoost) is a scalable implementation of the gradient boosting 

technique. Gradient boosting is a predictor that ensembles many weak learners together, typically 

decision trees (Biau and Carde, 2017). A decision tree is non-parametric supervised learning used 

for both classification and regression tasks, in which the algorithm works as a rule-based system 

(if-then-else rules). The decision tree architecture is shown in Figure 2.3. The feature that best 

separates the training data into two subsets will be used as a root node and do the same for the 

child nodes. After done with all the splitting, the last node (with no child node) is then the 

prediction node, called leaf nodes. 
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Figure 2.3 The architecture of the rule-based decision tree model, where a decision node in the 

green box is the root node and subdivided into two child nodes (decision nodes in the blue 

boxes). The last nodes without further separation are the leaf nodes where the predictions are 

made (JavaTpoint, 2018). 

 

However, a single decision tree suffers from the data having several features and classes 

and occasionally encounters overfitting issues (Aha et al., 1998; Thongsame, 2018). This where 

boosting method becomes handy. xGBoost trains many trees in gradual, additive, and sequential 

manners since the remnant errors in the previous tree are used as labels in the next tree (Figure 

2.4). Thus, in every tree added to the algorithm, the algorithm focuses on the error labels and 

attempts to correct them resulting in a better model in each step. For xGBoost, learning rate and 

maximum depth parameters were optimized. Learning rate controls how fast a tree, added to 

xGBoost sequentially, learns to correct the residual errors from the previous tree. Maximum depth 

controls the maximum depth of each tree fed to the xGBoost and increasing of this value can 

lead to overfitting (Zhang and Zhan, 2017).  

 

https://www.zotero.org/google-docs/?6Ia3yH
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Figure 2.4 A schematic diagram of how the boosted tree works, showing input data (X), true 

labelled output data (y), prediction (y-hat), the previou tree remnant error (r), and the current 

tree remnant error from the prediction (r-hat) (Kawerk, 2018). 

 

2.2.2 Support Vector Regression (SVR) 

 Support vector regression (SVR) is a kind of support vector machine (SVM) used for 

regression analysis. Aiming of the algorithm is to find the best function to estimate the output. 

The theory is developed on a basic idea of a regression algorithm as well as a linear product of 

two vectors in Hilbert space, space where the linear product has a real value (Maleki et al., 2014). 

The difference between a simple regression and SVR is that the regression algorithm tries to 

minimize the training error using all of the training examples, yet SVR tries to minimize the 

generalized error bound using a subset of the training examples. The generalized error bound is 

the combination of the training error and a regularization term controlling model’s complexity 

(Basak et al., 2007). C is a regularization term indication of how much the model can tolerate 

misclassifying of each training example outside the boundary decision (Figure 2.5). Higher C means 

the model cannot tolerate any misclassified data leading to overfitting. In contrast, lower C can 

tolerate many misclassified data leading to underfitting. To optimize generalization of the SVR 

model, errors within a certain distance, epsilon or a margin of tolerance, are ignored and SVR uses 

https://www.zotero.org/google-docs/?CVGkfI
https://www.zotero.org/google-docs/?pMMDdw
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only values outside an epsilon-intensive tube to construct the model (Kleynhans et al., 2017). 

Thus, C and epsilon were tuned in this study. 

 

 

 

 

 

Figure 2.5 One-dimensional example of SVR where the solid line is a hyperplane used to predict 

the target value (y). The two dashed lines are boundary lines that are epsilon distances away 

from the hyperplane (Kleynhans et al., 2017). 

 

 Figure 2.5 is a simple linear SVR model, but in case of non-linear SVR model, the data 

points will be mapped into a high dimensional space called feature space by a kernel function 

(Kleynhans et al., 2017). Radial basis function kernel (RBF) is used in this study and also in 

Kleynhans et al. (2017), Maleki et al. (2014), Thongsame et al. (2018), and Xie et al. (2018). Radial 

kernel behaves as a weighted nearest neighbor model which means the closest data point or 

nearest neighbor influencing the most on prediction of a new observation.  

 

2.2.3 Artificial Neural Network (ANN) 

In 1980, an artificial neural network (ANN) was first introduced by Kunihiko Fukushima which is 

inspired by modeling the human brain (Simon et al., 2015). ANN is an interconnected network 

that contains a collection of neurons that mimic problem-solving skills of the brain by learning, 

developing, and establishing a mathematical approximation for non-linear patterns between input 

and output data (Buhulaigah et al., 2017; Chitsazan et al., 2015; Prieto et al., 2016). ANN can be 

categorized by the direction of the input data into feedforward and feedback neural networks. 

https://www.zotero.org/google-docs/?uQqUqW
https://www.zotero.org/google-docs/?EXuNCA
https://www.zotero.org/google-docs/?GZh7Dj
https://www.zotero.org/google-docs/?ZlQHGB
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Feedforward neural networks are defined when the flow of the signals is fed only in one direction. 

If the neural network has some kind of internal recurrence, the flow of signals can be fed back to 

the previous neuron or layer, then it is a feedback neural network. The multilayer perceptron 

feedforward neural networks are used often in generating synthetic well logs (Akhundi etal., 2014; 

Melaki et al., 2014; Onalo et al., 2018; Ramcharitar and Hosein, 2016; Rolon et a., 2009; 

Zoveidavianpooretal, 2013). A multilayer perceptron is a fully connected multilayer feedforward 

supervised learning consisting of three layers: an input layer, hidden layers, (can be more than 

one) and an output layer. Figure 2.6 illustrates an example of a multilayer perceptron that all 

connected lines point in only one direction, no loops exist in the network. 

 

 

 

 

Figure 2.6 An example of a multilayer perceptron with one hidden layer (with three Qneurons) 

(Gupta, 2019). 

 

Each node in the layer is a neuron which is the basic unit of a neural network. The first 

layer is an input layer that provides input data or features to the network where each node 

represents each feature. In the hidden layer is where the calculation begins inside each hidden 

node, as shown in Figure 2.7, there are two steps involved.  
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Figure 2.7 An example of a node, neuron, with input data or features (x1 - xn), their associated 

weights (w1 - wn), a bias (b) and the activation function (f) are applied to the weighted sum of the 

input (Gupta, 2019). 

 

First, it calculates the weighted sum of its input corresponding to the weights associated 

with each input (x1w1, x2w2 ,,..,, xnwn), noteworthy that these weights are parameters the algorithm 

tries to learn in the training phase. Then the output from the first step is applied to the activation 

function, which can be linear or non-linear to normalize the output. For the last layer, output 

layer, it is where the prediction given which the activation function here can differ depending on 

the problem whether classification or regression. The number of nodes in the hidden layer and 

the dropout are adjusted in ANN. Rate of dropout is used to prevent overfitting by setting a 

chance to some number of nodes to zero or drop that node out while learning. 
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Chapter 3 Study area 

 

 Anadarko basin is the deepest Phanerozoic cratonic basin in the USA covering an area of 

70,000 square miles (130,000 km2) and 40,000 ft (12 km) in thickness, which also one of the 

greatest oil-and-gas producing provinces in the Northern America craton (Kansas Geological 

Survey, 2001). In this area, Oklahoma is the first formed basin, which will form the Anadarko basin 

in the latter time. Pennsylvanian is the time when the inversion normal faults occurred and 

resulted in the Wichita uplift and the Anadarko basin (Tomlinson and McBee, 1959; Ham et al., 

1964; Ham and Wilson, 1967). The basin center is situated in western Oklahoma and northern 

Texas, extending to southwestern Kansas and southeastern Colorado. The basin is bounded by 

the Las Animas arch to the west, the Namaha uplift to the east, the Central Kansas uplift to the 

north, and the Wichita-Amarillo uplift to the south. The basin evolution history can be divided 

into four stages (Johnson, 1988), viz. 1) An igneous stage, 2) An early epeirogenic stage, 3) An 

orogenic stage, and 4) A late epeirogenic stage.  

 

3.1 An igneous stage, Precambrian to middle Cambrian periods 

 This stage is represented by Precambrian and Cambrian igneous and metasedimentary 

basement rocks, which are considered to underlie the Anadarko basin. Evidenced by seismic and 

drilling data gathered from the eastern, western, and northern flanks of the basin instead of the 

unreachable deeper southern part. From the drilled data, the Precambrian basement rocks are 

identified to be massive allotriomorphic granular texture (mesozonal) granitic and related rocks 

with ages around 1,300 – 1,600 Ma (Denison et al., 1984). During early to middle Cambrian, rifting 

had occurred associated with the proto-Atlantic Ocean opening (Burke and Dewey, 1973). 

Resulting in aulacogen, failed arms of triple junctions, development extended into the North 

America craton (Figure 3.1a). the failed-arm rifting allowed massive amounts of igneous to intrude 

shown in Figure 3.1b. Cambrian basement rocks are granites, rhyolites, gabbros, anorthosites, and 

basalts. The igneous Cambrian rocks are exposed in the present Wichita uplift estimated total 

thickness of approximately 20,000 ft (6.1 km) (Oklahoma Geological Survey, 2008).  
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Figure 3.1 a) Oklahoma and Kansas are showing in blue and red color respectively with 

generalized paleotectonic map showing the southern Oklahoma aulacogen, failed arm of the 

triple junctions. DA, Delaware aulacogen; RCG, Rough Creek graben; RFR, Reelfoot rift; RT, Rome 

trough; SOA, southern Oklahoma aulacogen. b) cross section showing the geology of southern 

Oklahoma aulacogen, adjacent to the Anadarko basin to the north (modified from William and 

Perry, 1989). 

3.2 An early epeirogenic stage, Late Cambrian to Mississippian periods 

 Early epeirogenic stage started when the aulacogen began to cool and subsidence, after 

the rifting phase, becoming the Oklahoma basin. The sea first invaded during this time, Late 

Cambrian, and moved throughout the state from the east (Oklahoma Geological Survey, 2008). 

Therefore, the environment in the basin started with the transgressive sandstones, Reagan 

Sandstone (Figure 3.2) deposited upon the basement rocks. Then, shallow-water flooded into the 

basin resulting in limestones and dolomites deposition, the Arbuckle Group (Oklahoma Geological 

Survey, 2008). The Arbuckle limestones deposited continuously until Early Ordovician making up 

succession more than 6,000 ft (1.8 km) along the basin depocenter (Johnson, 1988). However, the 

succession thinner and truncated in the northwestern part of the Oklahoma basin and the 
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Hugoton Embayment (Johnson, 1988). Late Ordovician rocks are characterized by the Simpson 

Group sandstones, the Viola Group limestones, and the Sylvan shales.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Stratigraphic column for the Anadarko basin, and the Hugoton embayment. The 

diagram heights are not relative to the unit thicknesses (Johnson, 1988). 
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In Silurian and Devonian, the Hunton Group carbonates were deposited, and overlain by 

the Woodford organic-rich shale (Oklahoma Geological Survey, 2008). The present Wichita uplifts 

contain early marine invertebrate fossils found in this period such as trilobites, bryozoans, and 

brachiopods (Oklahoma Geological Survey, 2008). The deposition was interrupted by two 

epeirogenic uplifts (Amsden, 1975): pre-middle Early Devonian, and pre-Late Devonian resulting 

in widespread Woodford unconformities. According to Oklahoma Geological Survey (2008), during 

Mississippian time, the first half of the period was dominated by limestones and cherts. Important 

units such as Sycamore Limestone in southern Oklahoma, and ‘Mississippian lime’ in northern 

Oklahoma, Hugoton Embayment. In the last half of the period, basin rapidly subsided in the 

southern part of the basin making shales dominate the area. The schematic principle rock types 

of each period since late Cambrian to Mississippian are presented in Figure 3.3.  

3.3 An orogenic stage 

This is the stage where the orogeny and subsidence occurred in the southern part of the 

Oklahoma basin, during Pennsylvanian, major history changes (Johnson, 1988). Prior to 

Pennsylvanian, proto-Anadarko basin and the Wichita-Amarillo blocks are subsided together as 

one (named southern Oklahoma aulacogen) (Johnson, 1988). Vast areas of the region experienced 

epeirogenic uplifts during Late Mississippian and Early Pennsylvanian. In southern Oklahoma 

aulacogen has experienced normal faults inversion (Tomlinson and McBee, 1959; Ham et al., 1964; 

Ham and Wilson, 1967); separating into the Wichita-Amarillo uplifts and deep Anadarko basin area. 

Since then, the Anadarko basin is defined and the other parts, used to be called Oklahoma basin, 

are restated to be part of the Anadarko basin. The Mississippian shallow-marine deposition has 

ended in all areas unlike the deeper part of the basin (Johnson, 1988); limestone continuously 

deposited (the Springer Group). The Wichita-Amarillo uplifted in N60W trends (Gilbert, 1982, 1987) 

with northward thrusting and associated with rapidly the Anadarko basin sinking. 
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Figure 3.3 Schematic principal rock types of each period since late Cambrian to Mississippian in 

Oklahoma and adjacent areas. Red box shows the study area, Hugoton embayment located in 

southwestern Kansas (modified from Oklahoma Geological Survey, 2008). 

 

Pennsylvanian has five epochs namely: Morrowan, Atokan, Desmoinesian Missourian, and 

Virgilian (all epochs evolution shown in Figure 3.4), which according to Johnson (2008) orogenies 

occurred in all epochs. In Morrowan and Atokan time, igneous fragments and conglomerates 

eroded from pre-Pennsylvanian rocks are deposited near the Wichita-Amarillo uplifts. Sandstones 

and shales are graded toward the basin centers. A broad north-trending uplift rose from the 

central Oklahoma city extended to Kansas city, and also in northeastern Oklahoma city (Oklahoma 

Geological Survey, 2008). During Desmoinesian (Oklahoma Geological Survey, 2008); the sea 
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covered all the area extending to central Kansas and some uplifts had stopped. Cyclic marine 

limestones and shales are dominated in the Desminesian strata with some lenticular point bars 

and channel filled sandstones. ‘Granite wash’ from the Wichita uplifts concurrently deposited on 

the southern part of the Anadarko basin. In Missourian and Virgilian time, Late Pennsylvanian 

Arbuckle orogeny. The strong compression affected many mountains in the area (Oklahoma 

Geological Survey, 2008). The Missourian and Virgilian strata in the Hugoton embayment, main 

shelf of the Anadarko basin, had accumulated marine limestones interbedded with shales. In 

central Anadarko basin had accumulated marine shales, and sandstones graded westward into 

delta facies (delta plain sandstone, and pro-delta shales) interfingering with some thick ‘granite 

wash’ along the Wichita-Amarillo uplift (Oklahoma Geological Survey, 2008).  

 

3.4 A late epeirogenic stage, Permian till presents 

 By Permian period, the Wichita-Amarillo uplift has ended and subsidence with a very low 

rate compared with the Anadarko basin (Johnson, 1988). The Permian shallow inland sea covered 

most of the western Oklahoma depositing limestones and gray shales along the ancient seaway’s 

center.  Lithologies laterally grade to east and west as Permian red beds (red shales and red 

sandstones) (Oklahoma Geological Survey, 2008). Early Permian (Leonardian epoch), the 

evaporating seawater deposits salt, gypsum, and anhydrite (Jordan and Vosburg, 1963). During 

Late Permian, the Wichita mountain is buried by sediments from the east (Figure 3.5). Post- 

Permian, Mesozoic era and Cenozoic era deposit mainly red sandstones and shales mixing with 

fluvial, deltaic, and lacustrine deposits with lesser marine sediments (Johnson, 1988) 
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Figure 3.4 Schematic principal rock types of each epochs in Pennsylvanian period in Oklahoma 

and adjacent areas. Red box shows the study area, Hugoton embayment located in southwestern 

Kansas (modified from Oklahoma Geological Survey, 2008). 
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Figure 3.5 schematic principal rock types of Permian period in Oklahoma and adjacent areas. Red 

box shows the study area, Hugoton embayment located in southwestern Kansas (modified from 

Oklahoma Geological Survey, 2008). See Figure 3.4 for symbol explanations  

 

 

 

 

 

 

 

 

 

 



24 
 

Chapter 4 Methodology 

 

Overview of the workflow 

 The procedures to generate synthetic well log are divided into four main steps: data 

collection, data preprocessing, synthetic well log reconstruction, and model comparison 

respectively (Figure 4.1).  

 
Figure 4.1 Four steps to reconstruct synthetic well log 

 

4.1 Data collection 

Well log data in this study was retrieved as Log ASCII Standard (LAS) files from Kansas 

Hugoton Project located on Hugoton Embayment, Anadarko basin, southwestern Kansas, USA. 

Kansas Hugoton Project is a five-year project funded by industry, University, and Government to 

develop technology and information of the Hugoton Embayment. The well data is assembled at 

the Data Resource Library, the Kansas Geological Survey. The data is collected to be the repository 

for oil, gas, and water well records in the state of Kansas available for public uses. Thus, 12 wells 

located on the Hugoton Embayment are selected (Figure 4.2) and 7 well logging types or features 

from each well are gathered: gamma ray (GR), photoelectric factor (PE), deep resistivity (RT90), 

spontaneous potential (SP), density porosity (DPHI), and bulk density (RHOB). The depth in each 

well is different, but overall ranges from 300 ft. - 5800 ft. (90 - 1800 m.). The total number of data 

points gained from 12 wells is 51,385 in which the data points and depth range acquired from 

each well are illustrated in Table 4.1.  Figure 4.3 is used to demonstrate the drilled depth 

comparison between each well. Measurement resolution for logging tools is 0.5 ft, identical for 

all logging types.  
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Lithology data, which is contained in well report, is not provided with the LAS files, only 

2 wells are possible namely, PATTERSON UNIT 4-25 (available from 3600 - 4900 ft.), and J-G Unit 

1-13 (available from 4650 - 4850 ft.). These 2 well reports suggest that the lithofacies at the 

Hugoton Embayment at those depths are dominated by limestone interbedded with shale, and 

some quartz-rich sandstone also found.  

 

 

 
 
 
 
 
 
 
 
 

Figure 4.2 a) Kansas state locates on the midwestern part of the USA, and Hugoton embayment 
is laid on the southwestern part of Kansas highlighted in black. b) Locations of each well are 
shown in red symbols. 
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4.2 Data Preprocessing 
 This step can be divided into four steps which are data preparation, data transformation, 

data exploratory analysis, and data partitioning. 

 

4.2.1 Data Preparation 

Well logging data are obtained in Log ASCII Standard (LAS) file format. The data are 

collected in different quality and logging types. Therefore, when gathering the well data, common 

logging types are selected viz. Gamma ray (GR), Deep resistivity (RT90), Photoelectric factor (PE), 

Spontaneous potential (SP), Density porosity (DPHI), and Bulk density (RHOB). 

 

Well name 

Number of data 

points 

Minimum 

depth (ft) 

Maximum 

depth (ft) 

Location 

(latitude, longitude) 

L.Maune 6 2171 3700 4785 (38.21, -100.98) 

Young 'J' 1 5769 2948 5832 (37.45, -101.52) 

Lighty 33-1 5333 3048 5714 (37.49, -101.15) 

Nina Seyb 1 3671 3972 5807 (37.51, -101.52) 

MLP SCOTT 'A' 1 1113 5196 5752 (37.41, -101.12) 

J-G Unit 1-13 8652 1051 5376.5 (38.14, -101.55) 

HCU 2220-B 3977 951 2939 (38.13 , -101.70) 

Calkins 15-1 6868 320 5084.5 (38.23, -101.25) 

Kysar 1-1 5603 2250 5051 (38.26, -101.22) 

Vercimak 'A' 1 3543 3400 5171 (37.96, -101.35) 

PATTERSON UNIT 4-25 2569 3648 4932 (38.11, -101.44) 

Prentice 'A' 1 2116 3845 4902.5 (38.212, -101.17) 

Table 4.1 Data points and depth in ft. shown in minimum and maximum ranges from each well. 

Latitude and longitude where the wells were drilled also given. 

20 km 
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The data originally consists of approximately 51,385 data points. However, the missing 

values are still existing in the dataset which may result from the limitation of technique and error 

in well log reading. Since the objective of this study is to generate photoelectric (PE) log, thus the 

PE log must have no missing values. Fortunately, missing values presented in the PE log account 

for only 68 data points. For other types of logging, the missing values are substituted by the 

number -999.25. This study expects models to recognize -999.25 as missing values since this 

number is normally used in the petrophysical field symbolled for absent values (Thongsame, 

2018). 

 

4.2.2 Exploratory Data Analysis (EDA) 

 Exploratory data analysis (EDA) is an essential key for any research analysis to understand 

the overall trend and correlation of the data (Natrella, 2010). The well log data are examined for 

distribution, anomalies, and feature correlation via a variety of visualization techniques. This study 

aims to reconstruct well logs by existing well logs. Hence, well log data obtained as LAS files are 

converted to well log curves representation to visualize the data (Figure 4.3). Side-by-side 

boxplots are also used to see mean and log values distribution between multiple wells 

(Komorowski et al., 2016). Moreover, these boxplots can provide an insight into log anomalies if 

presented. Feature selection frequently falls into this step since EDA assists the researchers to 

find a pattern or correlation of input features as well.  

 

 

 

 

 

 

 

Figure 4.3 LAS files contain well log responses of each logging type in the form of numerical data 

at each depth. Converting them to log curves can provide an overall picture of well log data. PE 

log that this study aims to reconstruct is highlighted in red curve. 

https://www.zotero.org/google-docs/?yLsji0
https://www.zotero.org/google-docs/?yLsji0
https://www.zotero.org/google-docs/?WXx87Q
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4.2.3 Data Transformation 

 There are three models applying in this study which are extreme gradient boosting 

(xGBoost), support vector regression (SVR), and artificial neural network (ANN). xGBoost, apart from 

the other two, is tolerant with different input feature scales because its algorithm is a rule-based 

system. The other two are considered sensitive to feature scales (Crone et al., 2006). Large 

measurement values can overwhelm the model performances. So that, to reduce the effects of 

large values, feature scaling is required. Regular ways to transform the data is min-max scaling 

and z-score shown in Equation (1) and Equation (2) respectively (Atomi, 2012.; Bisgin et al., 2018; 

Crone et al., 2006; Jayalakshmi and Santhakumaran, 2011; KumarSingh et al., 2015; Malaki et al., 

2014). Min-max scaling changes data scale into a specific range e.g. [0,1]. While z-score is to 

transform your data that has a mean of 0 and a unit variance. This study applies Z-score for 

scaling well log features. 

          

               Equation (1)   

  
Where,      is the min-max score,       is the original input data,           is the minimum 

value of the data, and           is the maximum value of the data.   
 
                Equation (2) 
  

Where,      in equation (2) is the standardized score,      is the original input data,   
          Is the mean value of the data, and       is the standard deviation of the data. 
    
 4.2.4 Data Partitioning 
 In general, the dataset will be divided into two main sets: a training data and a test data. 

However, overfitting is a key issue when trying to build a predictive model. Overfitted model is 

generally a complex model that perfectly explains the training data, even the noises.  Resulting 

in good prediction for the training data but unable to predict test data or unseen data nicely 

(Berrar et al., 2013). The issue occurs due to the model lacking generalization property and the 

data containing high variance. To enhance the model generalization and reduce the data variance, 

https://www.zotero.org/google-docs/?dpnDTl
https://www.zotero.org/google-docs/?ZQzZFZ
https://www.zotero.org/google-docs/?ZQzZFZ
https://www.zotero.org/google-docs/?ZQzZFZ
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cross validation is thus applied (Thongsame, 2018). Cross-validation is a method to resampling 

data and assessing model generalization which k-fold cross-validation is often used in practice 

(Berrar, 2019). Well logging data was divided into three sets: a training set, a validation set, and a 

testing set. Data from the Kysar 1-1 well was used as the testing set while data from the other 

eleven wells were combined and resampled by 4-fold cross-validation technique: 70% for a 

training set and 20% for a validation set in each fold (Figure 4.4). The idea is that Kysar 1-1 well 

was excluded as an unseen data (shown in pink)  and the rests are subsampled into 4 equal-size 

pieces (Berrar, 2019). The model is trained on the training set (shown in black), and optimized and 

evaluated on the validation set (shown in blue) for four iterations. In this method the validation 

set is partitioned in a way that there is no overlap of the data in each iteration. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 An example of 4-fold cross-validation where: pink represents testing sets, black 

represents training sets, and blue represents validation sets. 

 

4.3 Well log reconstruction 

 To reconstruct well log responses, there are two main phases: training phase or model 

development phase, and model evaluation phase. 

 

 

https://www.zotero.org/google-docs/?8Cgad1
https://www.zotero.org/google-docs/?oqI9XB
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4.3.1 Model development phase 

 Extreme gradient boosting (xGBoost), support vector regression (SVR), and artificial neural 

network (ANN) were developed to reconstruct synthetic photoelectric (PE) logs. Each model was 

trained and optimized four times or folds corresponding to the 4-fold cross validation technique. 

Kysar 1-1 well was kept away from this phase. Other eleven wells were mixed and randomly 

subsampled into 4 equal subsets: three for training and one for validating. For the first fold, the 

model was trained on the training data which the algorithm aims to reduce the prediction errors 

on this dataset as much as possible shown in a black line on the error graph (Figure 4.5).  

Figure 4.5 Model development phase where the model was trained and validated four times. 

Error graph is an output of the training and validating. The hyperparameter is plotted in different 

search ranges on the x-axis and prediction errors corresponding to the hyperparameter values 

plotted on the y-axis. The final cross-validation error graph is where the optimal hyperparameter 

range is selected. Note, black color stands for the training data related, blue stands for the 

validation data related, and pink stands for the test set. 

 

After that, the model will be evaluated with the validation data where the prediction 

errors are more generalized than the training errors shown in a blue line on the error graph. Note 

that to plot an error graph y-axis is the occurring prediction error, and x-axis is the hyperparameter 
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of the model. Learning rate and maximum depth, for instance, are the hyperparameters of 

xGBoost. Likewise, for the second, third, and forth fold differ only in the data subsets. The cross-

validation error graph is an average of all errors achieved on validation sets (Berrar, 2019). Since 

the x-axis of the cross-validation error graph is a model hyperparameter thus, this graph favors 

the researcher to locate an optimal range of that hyperparameter. This process is essential in 

improving model performance, so called hyperparameter tuning. Table 4.2 details the search 

range values of hyperparameters for each model. After optimal ranges were defined, grid search 

technique was applied to find the most optimized model. 

 

4.3.2 Model architecture  

4.3.2.1 xGBoost 

This model is a tree-based algorithm thus the architecture is a tree-based 

architecture (if-then-else architecture) 

4.3.2.2 SVR 

An appropriate kernel function transforming input data into a higher dimension 

space is needed to be verified. Crone et al. (2006) study suggested that radial based 

function (RBF) is the most widely used kernel for regression problems. The RBF kernel is 

thus applied in this study as well. 

4.3.2.3 ANN 

According to Parapuram et al. (2018), a three layers neural network (2 hidden layers 

and one output layer) successfully predicts shear wave velocity with an adjusted R-square 

of 0.88. Onalo et al. (2018) also uses a three layers neural network to synthesize a 

compressional and shear transit time logs which root mean square error (RMSE) is 2.62 

and 5.29 respectively. Therefore, this study adopted a three layers structure with 

backpropagation algorithm as an ANN architecture, both studies use backpropagation 

algorithm as well. In addition, dropout is also employed in the structure to reduce 

overfitting which is located on each of the fully connected (dense) layers before the 

output shows in Figure 4.6 (Hinton et al., 2012). 

 

https://www.zotero.org/google-docs/?O4J1Kk
https://www.zotero.org/google-docs/?CbjSxA
https://www.zotero.org/google-docs/?FO1q2S
https://www.zotero.org/google-docs/?vn21JJ
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Model 
Hyperparameter Search range 

References for the 
search ranges 

XGBoost Maximum depth 1 - 13 Thongsame et al. (2018) 
Learning rate 0.01 - 0.3 Thongsame et al. (2018) 

SVR 
Regularization (C) 0 - 200 

Cherkassky et al. (2004); 
Thongsame et al. (2018) 

Epsilon 0.01 - 0.8 Cherkassky et al. (2004) 

ANN 
Number of 

nodes 
1st hidden layer 1 - 64 Thongsame et al. (2018) 
2nd hidden layer 1 - 64 Thongsame et al. (2018) 

Dropout 0.05 - 0.4 Thongsame et al. (2018) 
 

Table 4.2 Search range for hyperparameter tuning in each algorithm, two hyperparameters were 

adjusted in each algorithm. Since ANN has 2 hidden layers thus a number of nodes are needed 

to be tuned on both hidden layers. 

 

Figure 4.6 a) An example of a three-layered neural network, 2 hidden layers and an output  

layer before applying dropout, b) An example of the neural network after applying dropout. 

Dropout will set some nodes to zero to avoid overfitting. Note that input features are gamma ray 

(GR), deep resistivity (RT90), spontaneous potential (SP), bulk density (RHOB), and depth in feet 

and output is photoelectric (PE) log. 

 

 

https://www.zotero.org/google-docs/?yLsji0
https://www.zotero.org/google-docs/?yLsji0
https://www.zotero.org/google-docs/?yLsji0
https://www.zotero.org/google-docs/?yLsji0
https://www.zotero.org/google-docs/?yLsji0
https://www.zotero.org/google-docs/?yLsji0
https://www.zotero.org/google-docs/?yLsji0
https://www.zotero.org/google-docs/?yLsji0
https://www.zotero.org/google-docs/?yLsji0
https://www.zotero.org/google-docs/?yLsji0
https://www.zotero.org/google-docs/?yLsji0
https://www.zotero.org/google-docs/?yLsji0
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4.3.3 Model evaluation phase 

 The three best models, xGBoost, SVR, and ANN, already created from the previous phase. 

This phase is where the best models first encounter with the test set or unseen data that was 

kept away from the development phase. The test data, Kysar 1-1 well, was given to the model 

and the synthetic PE log, predicted PE, was served as an output. The predicted PE was evaluated 

by comparing with the actual PE responses. Mean square error (MSE) and R-square were used as 

evaluation metrics (Figure 4.7). 

 

 

 

 

 

 

 

 

Figure 4.7 Model evaluation phase 

 

4.4 Model comparison 

 The performance of three models were compared in this step. Datasets used to train, 

validate, and test the model are identical for every model. Independent variables are different 

model algorithms and dependent variables are performances of each algorithm. To determine 

model performances, MSE and R-square are adapted. MSE is a method to measure the differences 

in values between the predicted and the actual values. Whereas, R-square or coefficient of 

determination is generally used to show how much variance can be explained by the model 

(Parapuram et al., 2018).  

 

 

 

 

https://www.zotero.org/google-docs/?0QwyWC
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Chapter 5 Results 

 

5.1 Exploratory Data Analysis 

 Twelve wells were collected with a total of 51,385 data points. The depth of wells ranges 

from 300 ft - 5800 ft. A common 6 well logging types were used in this study: gamma ray (GR), 

photoelectric factor (PE), deep resistivity (RT90), spontaneous potential (SP), density porosity 

(DPHI), and bulk density (RHOB). As mentioned before that well logging operation requires 

intensive labors and considerably high costs, hence some wells may contain missing data (Figure 

5.1). This study aims to synthesize PE log resulting in removing data points at the depth where 

the PE log values have vanished. 51,338 is the final total amount of prepared data with only 3 

percent of missing values. The absent values are replaced by -999.25, a number representing a 

missing value in the petrophysical field. This number is used expecting models to recognize it as 

missing values (Thongsame, 2018). The range value of each well logging type comparing between 

12 wells is illustrated in Figure 5.2. Average log values, in most wells, of each logging type are 

alike, yet only HCU 2220-B well differentiates from the rest. ‘PE’ boxplot, Figure 5.2a, shows that 

the average PE log responses of the HCU 2220-B well is lower than the other wells, which 

approximately equal to 1.6 - 2. Thus, according to Glover (2012), the average value in this well is 

a reflection of quartz mineral (sandstones). Meanwhile, the average value of the other wells is 

roughly a reflection of dolomite and calcite (evaporitic rocks). For ‘RT90’ boxplot, Figure 5.2b, the 

average value of the HCU 2220-B well is the same as others, but there are still some peculiar 

outstanding values needed for further investigation. The data of this well is collected at a shallow 

distinct depth range from most of the wells (Table 4.1). Besides after overseeing the well log 

responses in Figure 5.1, it suggests that the notable deep resistivity value spikes at a depth around 

2,250 ft., but corresponding with the rapid changes in other logging types at the same depth as 

well. Hence, these values are not anomalies. 
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Figure 5.1 An example of missing data in RT90 log presented in HCU 2220-B well log responses 

where: blue color for gamma ray (GR) log, green for photoelectric (PE) log, cyan blue for deep 

resistivity (RT90) log, yellow for density porosity (DPHI) log, and black for bulk density (RHOB). 

Notice missing data points at different depths in RT90 log which are evidenced by discontinuous 

responses.  
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Figure 5.2 Boxplots showing range value of each well logging type comparing between 12 wells. 

a) boxplots for photoelectric factor log responses, b) deep resistivity log responses, c) gamma ray 

log responses, d) spontaneous potential log responses, e) bulk density log responses, and f) 

density porosity log responses. 

 
 

 

a 
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However, only 4 features of well logging (GR, RT90, SP, RHOB) and depth (in feet) were 
used as input data in the model to reconstruct synthetic photoelectric (PE) log. Density porosity 
(DPHI) was excluded. DPHI and RHOB are obtained from the same density log, which measures 
gamma rays left from Compton scattering and only differs in the calculation method. Based on 
obtained well logging data, DPHI and RHOB data are highly correlated with Pearson (linear) 
correlation of -1 (minus means higher in DPHI, lower in RHOB) suggesting that these two features 
simply can represent each other (Figure 5.3). Thus RHOB, which has a higher Pearson correlation 
with PE, is preserved and DPHI is excluded.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.3 Heatmap showing Pearson correlation between each feature. DPHI and RHOB logging 
responses are highly correlated. 
 

5.2 Model Performance 

 Well logging data was divided into three sets; 70% for training set, 20% for validation set, 

and 10% for testing set. Data from the Kysar 1-1 well was used as the testing set while data from 

the other eleven wells were combined and used as training and validation sets. The combined 

data was then divided into two datasets: the training set, which accounts for 36,000 data points, 

and the validation set, which is used for hyperparameter tuning. A model was first trained on the 
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training set and parameters were optimized by 4-fold cross-validation using the validation set. 

This technique favors the model to reduce the variance of the dataset (Thongsame, 2018). After 

validation, the optimized model was evaluated by the testing set using error functions such as 

mean square error and R-square methods. Mean square error, MSE, is one of the loss function 

algorithms attempting to reduce in the training phase. MSE is thus used to select the best model 

in this study indicated by the lowest MSE. Nevertheless, MSE values can range in a wide range 

depending on the unit range of measurement. Akinnikawe et al. (2018) reconstructs the PE logs 

and the unconfined compressive strength (UCS) logs from conventional well logs by various 

means of machine learning. Results show that random forest, the best model, can predict the PE 

logs with MSE of 0.33 while artificial neural networks can predict UCS logs with MSE of 320.2. 

Because the unit range of PE logs varies between 1.7 - 5.1 b/e and varies between 1,700 - 40,000 

psi for UCS logs. R-square, consequently, is a helpful tool to compare results from different logging 

types. R-square is a closeness measurement between the predicted data and the actual data 

(Parapuram et al., 2018). The results from Kysar 1-1 well were shown since it Is the testing data 

or the unseen data which models have never encountered. While data from the other eleven 

wells were already used to train and validate the models, thus the predicted result of those wells 

are not generalized. 

The first model to mention is extreme gradient boosting (XGBoost) since this model has 

the lowest mean squared error, MSE, of 0.139 (or R-square of 0.75) determining it to be the best 

model. For support vector regression (SVR), which is a type of support vector machine handled 

with regression problems, has an MSE of 0.154 (or R-square of 0.71). Artificial neural networks 

surprisingly generated the highest MSE, the worst model, of 0.197 (or R-square of 0.65). 

Noteworthy that the input data for SVR and ANN is transformed by z-score procedure before 

training the model. MSE, R-square results, and relation between predicted PE and acutial PE of 

each model are illustrated in Figure 5.4. The actual PE and the predicted PE from each model is 

plotted as well log curves in Figure 5.5. 

 To inform that, the ideal image of scatter plot between the actual PE on the x-axis and 

the predicted PE on the y-axis is a linear trend of the data points with an R-square equals to 1. In 

Figure 5.4b. the data points in the scatter plot of xGBoost are clustered in a linear trend the 

https://www.zotero.org/google-docs/?bj21rg
https://www.zotero.org/google-docs/?dmUVjd
https://www.zotero.org/google-docs/?Qz4Md8
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scatter plot of xGBoost result suggests that the predicted PE log values are covered from 2 to 5 

b/e and the model predicts slightly poorly when the actual PE is less than 2 and more than 5. 

For the scatter plot of SVR result, Figure 5.4c, a few predicted results can go high up to around 

6.5, this may be exemplified at depth around 4,150 ft. in Figure 5.5b. However, the data points 

are still well scattered in a linear trend. The last model is ANN, Figure 5.4d, the data points are 

not scattered in a linear trend, moreover, the scatter plot yields that ANN is unable to provide 

outputs less than 3 b/e and higher than 5 b/e. Therefore, the predicted result of this model is 

slightly left behind because the actual PE log values ranging from 1 to 6 b/e are constrained to 

be predicted in a range of only 3 to 5 b/e. Figure 5.5 is used to see the predicted PE responses 

along with the actual PE responses where the solid red lines are the prediction of each model, 

and the dashed blue lines are the actual PE responses. There are two noticeable different 

sections; the first section is where the average value of PE is around 2.8 b/e, can be interpreted 

as shaly sandstone, located at depth less than 2,750 ft. Another succession is where the average 

value of PE is 4.1 b/e, interpreted to be evaporitic rocks, detected at depth more than 2,750 ft. 

For the first section, xGBoost and SVR perform as good as each other (Figure 5.5a, b), while ANN 

performs unsuccessfully (Figure 5.5c) with an outstanding line at a predicted value of 3 b/e. On 

the other hand, the second section is where all three models can perform similarly well. 

 

 

 

 

 

 

 

 

 

 

 

 



40 
 

 

Figure 5.4 a) Mean square error of each model performance: lowest in xGBoost means the model 

best synthesizes the PE log. b) A jointplot showing R-squared result of the xGBoost model where: 

actual PE is plotted on x-axis and its distribution is projected upward and plotted on the top. The 

predicted PE is plotted on y-axis and its distribution is projected rightward and plotted on the 

right. This figure configuration is applied in all joint plots. c) A jointplot showing R-square result of 

SVR, and d) a jointplot showing R-square result of ANN. 
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Figure 5.5 Actual and predicted PE along with depth (feet) of different algorithms for Kysar 1-1 
well of a) xGBoost model, b) SVR model, and c) ANN model. Solid red lines represent the 
predicted PE, the dashed blue lines are the actual PE, yellow boxes on the right indicated to be 
shaly sandstone, and blue boxes are evaporitic rocks. 
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5.3 Effect of hyperparameter tuning 
 Before getting the final MSE or R-square, 4-fold cross-validation was applied to find the 
best hyperparameters in each model. Since there is no model that can predict any kind of dataset 
accurately without an adjustment. Hyperparameter tuning can find the optimal values in the 
model for better performance and generalization.  

For xGBoost, learning rate and maximum depth parameters were optimized. Learning rate 
controls how fast a tree, added to xGBoost sequentially, learns to correct the residual errors from 
the previous tree. Maximum depth controls the maximum depth of each tree feeded to the 
xGBoost. Table 5.1 shows the search range, optimal range, and the most optimized values of 
hyperparameters for each model. The optimal range of learning rate and maximum depth were 
selected by the graph showing in Figure 5.6. The optimal range for maximum depth is between 3 
and 5. Although the number of maximum depths increases, the MSE does not decrease 
significantly. For learning rate, the optimal range is obviously between 0.025 and 0.05 because of 
the dogleg style of the graph. After optimal ranges were defined, grid search technique was 
applied to find the most optimized model which maximum depth is 4, and learning rate is 0.045. 

 

Model Hyperparameter Search range Optimal range Optimized value 

XGBoost 
Maximum depth 1 - 13 3 - 5 4 

Learning rate 0.01 - 0.3 0.025 - 0.05 0.045 

SVR 
Regularization (C) 0 - 200 40 - 60 50 

Epsilon 0.01 - 0.8 0.4 - 0.6 0.4 

ANN 

Number  

of nodes 

1st hidden layer 1 - 64 8 - 16 13 

2nd hidden layer 1 - 64 3 - 16 15 

Dropout 0.05 - 0.4 0.05 - 0.1 0.05 

 
Table 5.1 The search range, optimal range and the most optimized value obtained from the grid 
search technique for every model. Since ANN has 2 hidden layers thus a number of nodes are 
needed to be tuned on both hidden layers. 
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Figure 5.6 Line graphs represent the effect of tuning parameters to MSE in XGBoost 
a) the effect of maximum depth, amd b) the effect of learning rate  
 

For SVR, C and epsilon were tuned. C is a regularization term indication of how much the 
model can tolerate misclassifying of each training example. Higher C means the model cannot 
tolerate any misclassified data leading to overfitting. In contrast, lower C can tolerate many 
misclassified data leading to underfitting. To optimize generalization of the SVR model, errors 
within a certain distance, epsilon, are ignored. Figure 5.7 shows that the optimal range for C is 
between 10 and 50 (Figure 5.7a) since C of more than around 50 is slowly decreasing in MSE. 
Epsilon both in the training set and validation set reach their bottoms between 0.4 to 0.5. 
Furthermore, epsilon of more than 0.5 will lead to the rising of MSE rapidly. 

Number of nodes in the hidden layers both first and second layers and the dropout are 
adjusted in ANN. Rate of dropout is used to prevent overfitting by setting a chance to some 
number of layer outputs, nodes, to zero (or dropped out). The optimal range for the number of 
nodes in the first hidden layer is 8 to 16 nodes (Figure 5.8a), for the number of nodes in the 
second hidden layer is 3 to 16 nodes (Figure 5.8b), and for the rate of dropout is 0.05 to 0.1 
(Figure 5.8c).  
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Figure 5.7 Line graphs represent the effect of tuning parameters to MSE in SVR  
a) the effect of C, and b) the effect of epsilon 

 
Figure 5.8 Line graphs represent the effect of tuning parameters to MSE in ANN 
a) the effect of number of nodes in the first hidden layer, b) the effect of number of nodes in the 
second hidden layer, and c) the effect of dropout rate 
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Chapter 6 Discussion and Conclusions 

 

6.1 Discussion 

6.1.1 Model performance 

 Extreme gradient boosting (xGBoost), support vector regression (SVR), and artificial neural 

network (ANN) are utilized to predict photoelectric (PE) logs from convention well logs. Gamma 

ray (GR), spontaneous potential (SP), deep resistivity (RT90), and bulk density (RHOB) along with 

depth in feet are the input data. Moreover, in the training phase, z-score and min-max scaling 

were used to transform the input data to reduce the effect of scaling in SVR and ANN. Models 

with min-max scaling method perform worst than z-score method. Since min-max scaling will 

only change the range of data to specific range such as [0,1] or [-1,1] thus it is significantly sensitive 

to outliers. in this case, outliers mean a wide range of log values such as the range of GR which 

is distributed between 0 to 415 API with a mean of 60.2 API (right-skewed distribution shown in 

Figure 6.1). Meanwhile, z-score method provides a zero mean and a unit variance which its 

advantage is that it reduces the effect of outliers (Atomi, 2012). XGBoost provides the least MSE 

of 0.139 (R-square of 0.75) which is considered to be the best model to synthesize PE log in this 

study. SVR is the second best with MSE of 0.154 (R-square of 0.71) and the worst model is ANN 

with MSE of 0.197 (R-square of 0.65).  

 

 

 

 

 

 

 

 

 

Figure 6.1 Gamma ray (GR) distribution plot showing right-skewed of the data with a wide range 

of values (0-415 API). 
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Comparing results between three algorithms 

 Figure 6.2 illustrates the major lithology that was obtained from twelve wells located in 

the Hugoton embayment, Kansas. From the figure, it can be seen that evaporitic rocks, PE average 

is around 4.1 b/e, are the most common data while there is only 10% of shaly sandstone data, 

PE average is around 2.5 b/e. The unequal amount of lithology or data is also known as 

imbalanced data which is the common problem encountered in real-world dataset. Imbalanced 

in lithology results in imbalanced PE values as well, since PE value can directly represent the 

main mineral component of each rock type. For example, quartz which is the main mineral for 

sandstone has PE value about 1.8 b/e, shaly sand for shaly sandstone has PE value around 2.7, 

shale has PE value around 3.42 b/e, and PE value more than 4 are indication for evaporitic rocks 

(Glover, 2012). The results suggest that the predicted PE logs from xGBoost and SVR can align 

along with the actual PE logs both in evaporitic succession and shaly sandstone succession. ANN 

performs well in evaporitic succession but not in the shaly sandstone succession due to the 

influence of imbalanced data problem. Ustuner et al. (2016) performed a study on RapidEye 

imagery classification with balanced and imbalanced data with three machine learning algorithms: 

support vector machine (SVM), maximum likelihood (ML), and artificial neural network (ANN). The 

study informs that SVM outperforms ML and ANN. The overall classification accuracy of ANN 

reduced 3-5% with imbalanced data. In contrast SVM is a kernel-based classification algorithm 

that can tolerate imbalanced data by using a kernel function (Ustuner et al., 2016).  

 

Comparing results with other studies 

 Studies performed log reconstruction compared with this study shown in Table 6.1. Some 

of the mentioned studies predict the PE logs similar to this study thus MSE and R-square can both 

be used to compare model performances directly. Only one study predicted different kinds of 

logging types thus only R-square can be used to compare the result. First, consider the results 

from Akinnikawe et al. (2018) and this study, they assure that the tree-based algorithm can 

synthesize PE logs from conventional logs with satisfying results. Because xGBoost, a tree-based 

algorithm, is the best model in this study to reconstruct the PE log and the first three models in 

Akinnikawe et al. (2018) are the tree-based algorithms as well.  

https://www.zotero.org/google-docs/?tRmcaj
https://www.zotero.org/google-docs/?tRmcaj
https://www.zotero.org/google-docs/?b8ERWW
https://www.zotero.org/google-docs/?Ir0avE
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Figure 6.2 Boxplots of PE value distribution comparing between 12 wells. Evaporitic rocks are the 

main lithology in this study area with 10% of shaly sandstone. 

 

Tree-based algorithms have an advantage in working as an if-then-else system resembling 

human decisions. In addition, xGBoost has parameters to deal with imbalanced data (xgboost 

developers, 2016) which has been proven in many researches (Stanley et al., 2020; Thongsame, 

2018; Sun et al, 2019). 

Considering MSE between this study and  Akinnikawe et al. (2018) study, there are not 

many differences indicating that the errors in this study are acceptable. This study, even though, 

has a lower MSE but that because of the advantage of this study. The dataset utilized in 

Akinnikawe et al. (2018) is acquired from over 100 well log files which means more in lithologies 

and heterogeneity of the data while this study uses 12 well log files. Asoodeh and Shadizadeh 

(2015) study which works on committee neural networks (CNN) has the lowest MSE result. CNN 

result is obtained from the combination of three different architectures of neural networks: radial 

basis neural networks (RBNN), bayesian regulation neural networks (BRNN), and generalized 

regression neural network (GRNN). Each neural network results then combined with the favor of 

 

Evaporitic 
succession 

~ 10 % of  

Shaly sandstone 

succesasion 

 

 

https://www.zotero.org/google-docs/?Ir0avE
https://www.zotero.org/google-docs/?ywECqT
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a genetic algorithm-pattern search (GA-PS) thus the final predicted PE of CNN model is more 

generalized. As can be known, SVR is not used to generate the PE log, but Wong et al. (2005) used 

SVR and ANN to generate porosity data instead. The input data for generating porosity data is a 

suite of well logging as well. The result shows that SVM (MSE of 23.71) outperforms the ANN (MSE 

of 66.68). Since prediction accuracy of ANN depends much on the generalization ability and real-

world well log data is too noisy for ANN (Wong et al. 2005). Moreover, SVR has a regularization 

term to tolerate noise in the data (Huang et al., 2008). Hence, Support vector machines or support 

vector regression is a powerful tool because it is a kernel-based algorithm that can perform well 

in both imbalanced data and noisy data. MSE of this study and Wong et al. (2005) can not be 

compared directly because different kind of logging types. 

 

Articles Input Data Output Data Model R-square MSE 

This study Depth, GR, RT90, SP, RHOB PE 

- xGBoost 0.75 0.139 

- SVR 0.71 0.154 

- ANN 0.65 0.197 

Akinnikawe et al.  
(2018) 

GR, RHOB, NPHI, RT90, NPHI, 
Vsh, and differences 

between NPHI and DPHI 
(new feature) 

PE 

- Random forest 
(RF) 

- 0.33 

- Gradient 
boosting (GB) 

- 0.348 

- Decision tree - 0.349 

- ANN - 0.38 

- Linear regression - 0.395 

Asoodeh and  
Shadizadeh 

(2015) 
DT, RHOB, NPHI PE 

- Committee 
neural network 

(CNN) 
0.879 0.02 

Wong et al. 
(2005) 

DT, RHOB, RT90, RT60, RT30, 
PE, GR, NPHI 

Porosity 
- SVM - 23.71 

- ANN - 66.68 

 

Table 6.1 Result comparison between this study and others studies 

https://www.zotero.org/google-docs/?Hzutr3
https://www.zotero.org/google-docs/?Hzutr3
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6.1.2 Recommendation 

 Imbalanced data is a problem encountered in this study thus future works can increase 

the amount of minor class by collecting more data or using upsampling methods. For major 

classes where the amount of data can be reduced by downsampling method. So that, the PE 

distribution covers all lithologies. Feature engineering, moreover, can be proposed to improve the 

model performances. In addition, other models such as concurrent neural network (CNN) and 

recurrent neural network (RNN) can be applied to this dataset 

 

6.2 Conclusions 

 This study aims to reconstruct synthetic PE logs with distinct machine learning algorithms: 

extreme gradient boosting (xGBoost), support vector regression (SVR), and artificial neural network 

(ANN). 12 well log data is obtained from the Hugoton Embayment which is a shelf extension of 

Anadarko basin in Kansas, USA. Kysar 1-1 well was kept as a test set and other wells were 

subdivided into a training set and a validation set. 4-fold cross-validation was used as a technique 

to generate different four training sets and four validation sets in order to increase model 

generalization and avoid overfitting. The models were built with hyperparameter tuning by the 

validation set and evaluated four times on different datasets. The final MSE and R-square, 

evaluation metrics in this study, are the average of four results.  

 From the exploratory data analysis, it can be concluded that 12 well log datasets are not 

balanced in lithologies. Evaporitic rocks are major rocks with smaller amounts of clastic rocks 

which is shaly sandstone. This can cause a problem in some machine learning algorithms.  

 All models can properly synthesize PE log since the occurring mean square error (MSE) is 

distributed in small ranges from 0.139 to 0.197. Even though, the data used in this study is 

imbalanced and models in this study are simple, but the results and MSE are considered 

acceptable thus the models are effective in synthesizing PE log 

 xGBoost becomes the best model to reconstruct the PE log in this study because of its 

ability to work as a human. In other words, xGBoost is a rule-based algorithm or if-then-else 

system resembling human decisions. xGboost also has parameters to deal with imbalanced data. 

MSE of xGBoost is 0.139 and R-square is 0.75 considered as a satisfying result. 
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xGBoost has the ability to select its feature importance, ordering from the most important, 

top, to the least important, bottom, respectively. 

o Depth 

o Gamma ray 

o Spontaneous potential 

o Deep resistivity 

o Bulk density 

 

 SVR is the second-best model with 0.194 and 0.71 for MSE and R-square respectively. The 

result suggests that even though it does not work as a human decision, with a kernel-based 

algorithm, its kernel function can map lower-dimensional data to be higher dimension data. Two 

classes of data that can not separate linearly can be projected to non-linear separable data 

through a kernel function. Nevertheless, the model is robust, constant and effective under 

balanced and imbalanced dataset.  

The last model is ANN which has the highest MSE of 0.197 and lowest R-square of 0.65. 

ANN performs worst since its sensitivity to the generalization of the data or the imbalanced data. 

If the data is imbalanced the model will try to learn only the major distribution of the data. 

Resulting in performing well with the major distribution of the data (evaporitic rocks with PE 

around 4 - 5, in this case), but poor on the minor distribution (lithologies with PE less than 4 and 

more than 6). 
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