JBIATINTG

ARV

Un1sAnen

1AS9NIS

n1SLSeUNTsaaULNaLaSNUS s aUN1Sl

FINTULRVANAUNNTLA LA FUURANUNEULD

Some arithmetic functions and their interesting properties

WILAVTUUN WU WwUUTERD 5933553423

ANAAIANSLAZINGINITADUN MDY
ANVAMAFARNS

2562

ABIZINYIANENT IUIAINTAUNNINEAY



Hendulavatinu1ssiakazauTanutaula

WY ANTUUN WU

Tnssnuihfudumisvoamsfinuinumdngasinermani oo
FUVNIVIANAAIENST NIAIVIANAAIEATHATINGINITABUTNIAADS
ANEINEIAERNT PAINTUUIING Y
UnsAnwn 2562
AvdvSvespnainsaiuinende



Some arithmetic functions and their interesting properties

Mr. Sittinon Pumpuang

A Project Submitted in Partial Fulfillment of the Requirements
for the Degree of Bachelor of Science Program in Mathematics
Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2019

Copyright of Chulalongkorn University



PUDlATIU HanFuravanu1siatazauURNuIaula

ng WY AVBUUT WU LavUsedndn 5933553423
A1973%90 AIRANERNS
219159NUSNWLATINUNGN 599ANEN519158 A5.029501  lvevuy

AAIPIAMAAIER TLALINGINTABUNLADS AMEINYIAENT INIAINTAUNTINEIRE
audAlidulassnuaduiiludiunis vaanisf@nwinunangnsuSyatudn Tusieden
2301499 1A5991U3INeAEn3 (Senior Project)

Wt AT TIARNAIERNS
(AN@n319138 As.Nque o) LAEINEINIIABUN NS

ANYNITUATARULATNNU

9197159NUS N IATIUNAN

(599F@RI19158 A5.0295m Tusus)

WomI S 1009077

____________________________ R
(309A1EMT19138 AT ALY 13U1Tg)

O- %/;ﬂwaw
NIIUNTT

(509ANaN519138 ATLERUNT TINgITIO)

N3ITUNT





ansuuy Wuwae: Henduavadnuissiauazandinuiaula (Some arithmetic
functions and their interesting properties) 8. AUSN¥IATINU : TOIFNENTIATY A3,
#9591 by, 33 wTn.

Hantuavadia fe Hettundandusnuiuddeutazilauuduwnvosdiuiutiu
Tulassuilssunuandiviusznsvesiiiduasadaiduniineguduas tenuieidu
uafn gl uIAnYeY Atanassov kas@nyaulAvesienduis e beuduuni

' oy & [l {
AT sRamAeikeyInen e Rnaed. aefletenan, S YWY WYWI
a N ¢ A oA P ) I
AUV AIRANERS aeileve anUsnwilasanunan. MY Tinn  bYYyu:



# # 5933553423 : MAJOR MATHEMATICS
KEYWORDS : ARITHMETIC FUNCTION
SITTINON PUMPUANG: SOME ARITHMETIC FUNCTIONS AND THEIR INTERESTING

PROPERTIES. ADVISOR : ASSOC. PROF. TUANGRAT CHAICHANA, Ph.D, 33 pp.

An arithmetic function is a complex-valued function whose domain is the set
of natural numbers. In this project, we collect some properties of well-known
arithmetic functions and define a new arithmetic function based on the idea of

Atanassov and study its properties.

Academic Year ;2019



Vi

Acknowledgements

In the completion of my project, | am deeply indebted to my advisor, Associate
Professor Tuangrat Chaichana, Ph.D. for her valuable suggestions and support. | am
most graceful and happy for her teaching and advices. | would like to thank the
committees, Associate Professor Pimpen Vejjajiva, Ph.D. and Associate Professor
Ouamporn Phuksuwan, Ph.D. for their advices and comments that make my project
more complete. Moreover, | feel very thankful to all of my teachers who have taught
me for my knowledge. Also, | wish to express my thankfulness to my friends and my

family for their encouragement throughout my study.



Contents
ADSEIACT (TNAD ...t iv
ADSEIract (ENGUSN) ... v
ACKNOWLEAGEMENTS ...ttt vi
CONTENTS. ..ttt aenas vii
Chapter 1 Preliminari@s ...ttt 1
1.1 The greatest common diViSOr QNA PriMEe .........ccccoevveeeerreriessierrsieeeseerisiaen. 1
1.2 AMEAMEEIC fUNCHIONS......voveeeeeeeeeeieeeeevee et 2
1.3 AtQNQASSOV’S JUNCHION ...ttt q
Chapter 2 Some arithmetic functions and their properties.............cccccooveiiicenn 6
2.1 Some properties of known arithmetic fUNCIONS ..........ccovveeereeenirinerierieirinine 6
2.2 New QrithMEtiC fUNCHION.......c.cccoeeeeeieeeeieeeeeeeeee e 10
BIDLIOGIaPNY ...ttt 21
APPENAIX.......oooiiieetitieee ettt ettt ettt ettt ettt ettt an s 22

Vii



Chapter 1

Preliminaries

This chapter contains some definitions and theorems in number theory that
are used throughout this project, see e.g. [2].

1.1 The greatest common divisor and prime

Definition 1.1.1. Let a,b and ¢ be integers. If a | b and a | ¢, then we call
a a common divisor of b and c.

Definition 1.1.2. Let a,b € N. The greatest common divisor (g.c.d)
of a and b is the greatest among their common divisors and is denoted by

(a,b).

Example 1.1.3. Because 5 is the highest number such that5 | 15 and 5 | 25,
then (15,25) = 5.

Definition 1.1.4. A positive integer p > 1 is called a prime number if all
positive divisors of p are 1 and p.

If n € N and n is not prime, we call n a composite number.

Theorem 1.1.5. Let p be a prime number and a,b € Z. If p | ab, then p | a
orp|b.

The next theorem is an important theorem that tells us about the unique
representation of each number as a product of primes.

Theorem 1.1.6. Fundamental theorem of arithmetic: Every integer
n > 1 can be represented as a product of prime factors in only one way, apart
from the order of the factors.



1.2 Arithmetic functions

In this section, we begin with the definition of arithmetic functions which
plays important role in our study.

Definition 1.2.1. An arithmetic function is a complex—valued function
whose domain is the set of natural numbers.

Some examples of well-known arithmetic functions are shown as follows.

Definition 1.2.2. 7(n) is an arithmetic function which counts the number
of all positive divisors of n.

Example 1.2.3. Because 1,2,3 and 6 are all positive divisors of 6, then
7(6) = 4,

Theorem 1.2.4. Let n € N. If n. = p{'p32...p0* where py,pa, ..., p are
distinct primes and oy, ao, ..., € N, then

k

7(n) = (i +1).

i=1
Note that if p is a prime number, then 7(p) = 2.

Example 1.2.5. We have 504 = 23 x 3% x T'.Then 7(504) = (3 +1) x (2+
1) x (1+1) = 24.

Definition 1.2.6. ¢(n) is an arithmetic function which is the sum of positive
divisors of n.

Example 1.2.7. Because 1,2,3 and 6 are all positive divisors of 6, then
c(6)=14+2+3+6=12.

Theorem 1.2.8. Let n € N. If n = pi"p52...p.* where py, pa, ..., pi are
distinct primes and oy, ao, ..., € N, then
k

a;+1
‘ —1
o (n) =

p;
( pi — 1

).

i=1
Note that if p is a prime number, then o(p) = p + 1.

Example 1.2.9. We have 675 = 5% x 33. Then
52+1 -1 33+1 -1

7(675) = (e—) (5

) = 6240.




Definition 1.2.10. ¢(n) is an arithmetic function which counts the number
of positive integer k less than or equal to n with (k,n) = 1.

That is ¢p(n) = [{k |1 <k <n and (k,n) = 1}|.

Theorem 1.2.11. Let n € N. If n = p{"p5?..pp* where p1,pa, ..., pr are
distinct primes and oy, s, ..., a € N, then

k k
o) = [T =y =n[J01 - )
i=1 i=1 pi
Note that if p is a prime number, then ¢(p) = p — 1.
Example 1.2.12. We have 968 = 23 x 112. Then
$(968) = (2° — 2%)(11% — 11) = 440.

Definition 1.2.13. ¢(n) is an arithmetic function which is defined by
1
vy =n]J0+ i

where p runs over all prime divisors of n.
Example 1.2.14. We have 48 = 2* x 3'. Then

h(48) = 48(1 + %)(1 + %) — 96.

Definition 1.2.15. s(n) is an arithmetic function which is defined by

1, if n = m? for some m € N,
s(n) = .
0, otherwise.

Example 1.2.16. Since 7 is not square, s(7) = 0 but s(49) = 1 because
49 = 7%

Definition 1.2.17. w(n) is the number of distinct primes dividing n.

Example 1.2.18. We have w(1) = 0 and since 100 = 22 x 5%, then
w(100) = 2.



Some properties of arithmetic functions are introduced as follows.
Definition 1.2.19. A function f: N — C is said to be multiplicative if

f(mn) = f(m)f(n),

whenever (m,n) =1 and it is said to be completely multiplicative if the
identity holds for all positive integers m and n.

Theorem 1.2.20. 7,0 and ¢ are multiplicative functions.

Definition 1.2.21. A function f : N — C is said to be additive if

f(mn) = f(m) + f(n),
whenever (m,n) = 1.

In this project, we collect some interesting properties of certain well-known
arithmetic functions.

1.3 Atanassov’s function

In 2016, a new arithmetic function was introduced by Atanassov [1] as follows.

Definition 1.3.1. Let |: N — C be a function defined by | (1) = 1 and
1 (2) = 1. For each prime number p > 3, define | (p) to be the highest prime
number smaller than p. For n > 2, if

k
o
n=]1"
i=1

where k, a1, ao, ..., ay are positive integers and pq, ps, ..., pr are distinct primes,

define
k

L) =116 ).

=1

Throughout this project, we will shorten [T, (1 (p:))* to [T,  (pi)* for
our convenience.

Example 1.3.2. | (7) =5 and | (36) =] (223%) =22 = 4.



Then he presented some properties of the function | as follows.

Theorem 1.3.3. | is a multiplicative function.

Theorem 1.3.4. For every natural number n > 3,

o(n) _ ot n)

n In

Theorem 1.3.5. For every natural number n > 2,

_oldn)

n in

a(n)

Theorem 1.3.6. For every natural number n > 2,

v(n) _ vl n)

n In

Theorem 1.3.7. For every odd number n > 3,
p(n)a(l n) > oI n)o(n),
o(n)Y( n) > o(J n)b(n).

In this project, we will define a new function based on his idea and study
its properties.



Chapter 2

Some arithmetic functions and
their properties

2.1 Some properties of known arithmetic
functions

This section contains some interesting properties of arithmetic functions in-
troduced in Chapter 1.

Theorem 2.1.1. Let n € N — {1} be such that n = p{*p3*..p* where
P1, D2, -, P are distinct primes and oy, ao, ..., € N. Then

k

Y(n) =@ + ).

i=1

Proof. By Definition 1.2.13, we get

vim) = ][+
i=1 ’ 1

i, o ag 1 1
= (' P )+ —) 1+ —)..(1+—)
(e a1—1 (e P1 ag—1 P2 (e aplil
= (P +p" ) 027 ) (Rt )
k

= Jer+pmh. O

=1

By Theorem 2.1.1, it is easy to see that 1(p) = p+1 for all prime numbers



Theorem 2.1.2. ¢ is a multiplicative function.

Proof. Let m,n € N be such that (m,n) = 1.
Case m = 1 or n = 1: Without loss of generality, we may assume that
m = 1, then

P(n-1) =1(n) =¢(n) -1 =(n)P(1).
Case m # 1 and n # 1: Assume m = p{'ps?..pp* and n = q11q§2...q53.
where p;, ¢; are distinct primes and «;, 8; € N for all 1 <7 < k and
1 < j <s. Then

mn = (p{'ps?...pp*) (a)" a5°..q2).

Since (m,n) =1, then p; # ¢; for all i € {1,2,...,k} and j € {1,2,...,s}. By
Theorem 2.1.1, we have

Y(mn) = P + o0+ T+ g
= p(m)y(n).
Hence v is a multiplicative fuction. ]

Note that 1(4) = 6 and ¢(2) = 3. Then ¢(4) # 1¥(2)1(2). This implies
that 1 is not a completely multiplicative function.

Theorem 2.1.3. s is a multiplicative function.

Proof. Let m,n € N be such that (m,n) = 1.
Case 1: m and n are squares.
Then s(m) = s(n) = 1. Moreover, mn is square. Then we have

s(mn) = 1= s(m)s(n).

Case 2: m or n is not square.
Without loss of generality, we may assume that m is not square. Then
s(m) = 0 and there exist a prime p and an odd positive integer k such that

p* | m but pFtt fm.
Since (m,n) = 1, then p } n. Consequently, we have
p* | mn but p* f mn.
Therefore mn is not square and so
s(mn) =0 = s(m)s(n).

Hence s is a multiplicative function. O



Theorem 2.1.4. w is an additive function.

Proof. Let m,n € N be such that (m,n) = 1.

Case 1: m=1orn=1.

We have w(m) = 0 or w(n) = 0. Moreover, we have w(mn) = w(n) or
w(mn) = w(m). By these two cases, we have

w(mn) = w(m) + w(n).

Case 2: m >1and n > 1.
We can write n = p{'p5*..pp* and m = qlﬁlq262...qfs where p;, g; are distinct
primes and «;,3; € Nforall 1 <i <k and 1 <j <s. Since (m,n) = 1,
w(mn) = k + s. Therefore

w(mn) =k + s =w(m) + w(n).
Hence w is an additive function. O

Some other properties of certain arithmetic functions are shown as follows.

Theorem 2.1.5. Let p be a prime number. Then
1) 7(ph) =27((p — 1)),

2)o(p!) = (p+a((p— 1),

3) o(p!) = (p — Do((p — Y.

Proof. We have

(p!) = 7ppE-1)")
= 7(p)7((p— 1)!) since (p, (p —1)!) =1
= 27((p— 1.

Similarly, we have

and
o(p!) = o(p(p—1)!)
= o(p)ollp— 1)}
= (p—1e(lp— 1.
Hence 7(p!) =27((p — 1)!), o(p!) = (p+ o((p—1)!) and
o(p!) = (p = Dol(p — 1)) =



Theorem 2.1.6. Let p be a prime number. Then o(p) + ¢(p) = pr(p).

Proof. Let p be a prime number. We know that o(p) = p+1 and ¢(p) = p—1.
Then o(p) + ¢(p) = 2p. Since 7(p) = 2, we get

o(p) + ¢(p) = 2p = p7(p).
Hence o(p) + ¢(p) = p7(p). O
Theorem 2.1.7. Let n € N. Then 7(n)¢(n) > n.
Proof. Let n € N. If n =1, then

o(n)T(n) =1=n.
Assume n > 2. Then we can write n = p{'p5®...pp" where pq,po, ..., pi, are
distinct primes and «; € N for all 1 < i < k. By Theorem 1.2.4, we have

k

7(n) =[Jai +1) > 2~

i=1

By Theorem 1.2.11, we have

: 1 e
o =n]J0 -3 = n[[0-3)
Hence 7(n)¢(n) > n. O

Theorem 2.1.8. Let n € N. If n > 2, then ¢(n) is even.

Proof. Let n € N.
Case 1: n is odd.
There is an odd prime factor of n, say p. Write n = p*m where k € N and
(p,m) = 1. Then
¢(n) = o(p)p(m

= (" —p"No(m)

= p"p-1)0,
where p — 1 is even. Therefore ¢(n) is even.

Case 2: n is even.
Write n = 2"m where k,m € N and (2,m) = 1. Then

¢(n) = ¢(2")g(m).

By the first case, we get ¢(m) is even. Hence ¢(n) is even. O]

9



2.2 New arithmetic function

First, we define the function 1 which is analogous to that defined by Atanassov
[1].
Definition 2.2.1. For a prime number p, define 1 p to be the smallest prime

number higher than p. For a positive number n, if n = 1, define 1 (n) = 1.
For n > 2, write

k
o
n=1»t
i=1

where k, a1, ag, ..., € N and pq, po, ..., pr are distinct primes . Define

k

T (n) = [Tt (i)

i=1
Throughout this project, we will shorten [T, (1 (pi))® to [T, 1 (pi)* for
our convenience.

Remarks

1. For a positive number n. We have 1 (n) = 1 if and only if n = 1.
2. For n > 2, we have 1 (n) > n.
3. For a prime number p, 1 (p) is also prime.

Example 2.2.2. 1 (7) =11, 1 (8) =1 (2)* = 3* = 27.
Next, we will show that 1 is a completely multiplicative function.
Theorem 2.2.3. 1 is a completely multiplicative function.

Proof. Let m,n € N be such that m = p{'p5®..pp* and n = qllqzﬂ"’... Bs,
where p;, ¢; are distinct primes and «;, 5; € N for all 1 <17 <k and
1 < j < s. Then the prime factorization of mn is

mn = H piaiqu H piai+ﬁj-
PiFq; Pi=q;
Then
t(mn) = Tt @)™ @)% ] t ()

PiFq; Pi=q;

= [Tt eIt @)

— )t

Hence 1 is a completely multiplicative function. O]

10



Theorem 2.2.4. Let n € N. Then |1 (n) = n, but

n,if n is odd.
™N(n) = %an = 2%m where m € N is odd and k € N.

Proof. Let n € N.

Casen =1: |1 (1)=)(1)=1and 1} (1) =1 (1) = 1.

Case n > 2: we can write n = pi'ps®...p.* where py,po, ..., ), are distinct
primes and aq, s, ..., a; € N. Then

W) = L ()™ 1) 1 (r)™)
=¢ﬁ@ﬂ“HNMWWHNMW
= piipyt.ppt

Now we will consider the composite function 1 .

Case 1: n is odd.

Then all p; are odd and so | (p;) are all primes. By the same argument as
the above identity,

T (n) =n.

Case 2: n is even.
There exists p; = 2 for some ¢ € {1,2,...,s}. Without loss of generality,
assume that p; = 2. Then

T M) = T @)™ ()2 | (pr)™)
ZT&@M”WQWM%
= pyr..ppt

Theorem 2.2.5. 1 is an injection and ran(T) & N.

Proof. First, we will show ran(1) & N. is not surjective by showing that
there is no m € N such that 1 (m) = 2. Let m € N.
Case m = 1: We have 1 (m) = 1.
Case m > 2: By Remarks (2), we have 1 (m) > 2.
Next we will show that 1 is injection. Let m,n € N be such that

T (n) =1 (m).
Then, by Theorem 2.2.4,

Hence 1 is injection. O

11



Next, we will study a property related to 7 and 7.

Theorem 2.2.6. Let n € N. Then 7(n) = 7(1 (n)).

Proof. Let n € N.

Casen = 1: 7(1) =1 =7(1 (1)).

Case n > 2: Write n = p{"'p5*...pp* where py, po, ..., pi are distinct primes
and «aq, g, ..., € N. Then

T (n) =1 (p1)™ 1T (p2)**... 1 (pr)**.
Note that all 1 (p;) are primes. Therefore, by Theorem 1.2.4, we have

Hence 7(n) = 7(1 (n)). O
Next we will study a relationship between ¢ and 7.

(1 (p)) ¢(p)_

Lemma 2.2.7. Let p be a prime number. Then >

T (p) p

Proof. By Remarks (2), we have

(p—1)71 ()

A
i)
—
=

|
_ s

Then

12



Lemma 2.2.8. Let p be a prime number and k € N. Then —— = ——.
p

o(p*)  o(p)
p

Proof. By Theorem 1.2.11, we get

pk P
_ p-t
- p
_ o)
-
Hence gbiﬁj) = @ O

Finally, we will extend the result in Lemma 2.2.7 for any natural numbers.

5t () _ oln)
T (n) n
Proof. Assume that n > 2. Write n = p'p5®...pp" where py,po,...,p) are

distinct primes and aq, as, ..., ap € N. Therefore, by Lemma 2.2.7 and Lemma
2.2.8, we have

Theorem 2.2.9. For every natural number n > 2,

¢(n) o(pi) o(p3*)  o(pp*)
9 T

d(p1) d(p2)  d(pr)

D1 D2 Pk

o(1 (p1)) (1 (p2)) (T (pr))
) T(p2) 7T (pw)

(1 (p1)™) o(1 (p2)*2) o (1 (pr)™)
T (p) T (p2)22 1 (pr)™*

13



Next we will study a property between ¢ and 1 for prime numbers.

o(p) _ ot (p)

Lemma 2.2.10. Let p be a prime number. Then >
p T ()
Proof. We know that
p+1) 1T = pt{E+1()
> pt(p)+p
= p(t (p) +1).
Then
p+1 _1(p)+1
p T (p)
Hence Z®) - o1 (p)). 0O
p T ()
. o@*) o) ( p
Lemma 2.2.11. Let p be a prime number and k € N. Then —— =
p p p
Proof. By theorem 1.2.8, we have
ot -1 " -D(p+1)
Pt prp—1) prp—1(p+1)
_ (D 1)
pF(p?* —1)
p+1\ [ P -1
- D PR ph1
olp) (P -1
- p \pHl —ph1 ) O

Lemma 2.2.12. Let p be a prime number and k € N. Then

k+1 k—1
t—p

op") _ ot 0)*)

>
pF T (p)*
Proof. By Lemma 2.2.10, the inequality holds for £ = 1. We may assume
that £ > 1.

2k k
Case p = 2: We will show that o(2) _ o(3)

o > o . Since

3k2k+1 o 3k+12k—1 - 3k + 2k—1 3k<2k+1 —3. 2k—1 o 1) + 21@—1

S g 3.9kl
= 211
> 0,

—_
>~

)



then
3k2k+1 o 3k > 3k+12k—1 o 2k—1
and so
2k+1 -1 3k+1 -1
>
2k 3k .2
Hence, by Lemma 1.2.8, we have

Case p > 2: We will show that ¢

inequality is replaced by

a(p) < PPt -1 ) ) ( Tt -1 )

P pk+1 _ pkfl

By Lemma 2.2.10, we know that KAV
p

Hence it remains to show that
P 1 N 4 (p)k+1 1
prtt — pht T (p)*1=1(p)k1t)
Consider

PP (p) T - p’““ T (p)F =1 ()"t (p) P — !
=1 ()" () =P = 1 () + 1] P
=1 (p)F 1 (p)*(p*! 1) pA 4 1] 4 phtt — kTt (1)

It is easy to see that 1 (p) > p + 2 for p > 3 because 1 (p) is the
smallest prime number higher than p. Then

1 (p)2(pk—1 . 1) _ pk+1 > (]) + Q)Q(pk—l _ 1) _ pk+1
= (PP+ap+4) (Pt —1) —pFt!
ApF 4+ 4pFt —p? —4p — 4
(p* — p?) + (4p" — 4p) + (3p* — 1)
0

V

since k > 2 and p > 3 which implies that p* — p?> > 0, 4pF~! —4p > 0 and
3pF — 4 > 0. Substituting it to (1), we have

PP M =M () =t )M () T = >0

15



Therefore

_pk+1 T (p>k71_ T (p>k+1+ T (p)kfl > _pkfl T (p>k+1 _ pk+1 _i_pkfl
Adding (p 1 (p))**! to bothsides, it yields

P =D @ =1 @) > (M =D e =M.
We then have
pk:-i-l -1 T (p)k‘-i-l -1
PR ph=1 T g (p)kHI— o (p)kT

op") _ ot ")
P T (p)*
Now, we are ready to state the result for all natural numbers.
o(n) _ o(t ()
T (n)
Proof. Assume that n > 2. Write n = p{'p5?...pp" where py,ps,...,pj are

distinct primes and ay, ..., € N. Then 1 (n) =1 (p1)™ 1 (p2)**... T (pr)**
and so

Hence

Theorem 2.2.13. For every natural number n > 2,

o(n) _ o) a(py®) o(pt)
n p?l pgéQ pgk
o(t (p)™) o(t (p2)*2) (T (pr)™*)
b, 2.
> T 1 () T o0 ( by Lemma 2.2.12)
a(1 (n))
= ——, m
T(n)
Next, we will study a property between v and 1 for prime number.
Lemma 2.2.14. Let p be a prime number. Then ¢(p) > e (p))
p T (p)
Proof. Let p be a prime number. Since
P+t = ptW+1 k)
> pt(p)+p
= p(t (p) +1).
Then
p+1 _T(p)+1
p T (p)
Hence p) > ¢(TT(;I;>) O

16



v(@") _ v(p)

Lemma 2.2.15. Let p be a prime number and k € N. Then —.
p

oF
Proof. By Theorem 2.1.1, we have
A A A (8 Y
e p*
_ p+l1
p
_ v O
p
Now, we are ready to state a general version of the result.
Theorem 2.2.16. For every natural number n > 2, ¢(n) @Z’(TT n)
n n

Proof. Assume that n > 2. Write n = p{'ps®...pp" where py,po,...,p) are
distinct primes and aj, ..., € N. Then 1 (n) =1 (p1)* 1 (p2)?%... T (pr)“*.
By Theorem 2.1.2, Lemma 2.2.14 and Lemma 2.2.15.

v(n) _ Yy'petpit) (w(p‘f‘l)) (Wi”)) (w(pk ))

no piipst.ppt Py

(o) () - ()
- () () - ()
- (‘b o) (o) (o)

p1)* T (p2)*2. 1 (pr)*™)
T(p) T (p2)e2... T (pr)*

/\
=
—

17



Lemma 2.2.17. Let p be a prime number and k € N. Then

o(1 (0)") > o(0").
Proof. Consider

o(t (%) = 1@ -1)
> pip—1)
= ¢(p*) ( by Lemma 1.2.11 ). [

Theorem 2.2.18. For every natural number n > 2, ¢(n) < ¢(1T n).

Proof. Assume that n > 2. Write n = p{'p5*...pp where py,pa, ..., pp are
distinct primes and ay, ..., € N. Then 1 (n) =1 (p1)* T (p2)*2... T (px)**
and so

o(n) = o(p'py*..pp") = d(p1")o(p3?)...0(p")
< o1 (p1)*)o(t (p2)*?)...0(T (pk)**) ( by Lemma 2.2.17 )
= o1 (n)). O

Lemma 2.2.19. ¥(1 (p)¥) > o(p*) for all prime numbers p.

Proof. We have

(T (p)*) T () 't (p) +1)
PP p+1)

¥ (p*) ( by Lemma 2.1.1 ). O

v

Theorem 2.2.20. For every natural number n > 2, (n) < (T n).

Proof. Assume that n > 2. Write n = p{'p5?...pp* where py,po, ...,y are
distinct primes and aq, ..., € N. Then 1 (n) =1 (p1)** T (p2)*2... T (pr)“*
and so

Y(n) =Py’ pt) = YY) Y (pe*)
< P (p1)* )Y (T (p2)*?).. (1 (pr)**) ( by Lemma 2.2.19 )
= Y1 (n)). 0

Before we prove the inequality properties between 1 and o, we first show
the following Lemma.

18



Lemma 2.2.21. 272 < 3¥1 4+ 1 for all k € N.

Proof. We prove this lemma by induction. It is easy to see that 22 = 8 <
10 = 31 4+ 1. Let b € N be such that 20+2 < 301 4 1.
Then

3. 2b+2 < 3b+2 + 3

and so
2b+3 < 2b+3 + 2b+2 —92 < 3b+2 + 1.

Hence 212 < 381 1 1 for all k € N.
Il

Lemma 2.2.22. (p— 1) 1 (p)¥ — p*** > 0 for all prime numbers p > 2 and
k € N.

Proof. 1t is easy to see that

p—D1p)—-p*>p@-1Dp+2)—p* = p—2>0.

Let b € N be such that (p — 1) 1 (p)® — p®™! > 0. Then, by the induction
hypothesis,

=11 @™ =" >pp-1)T @) =" =pp-1) T (@) —p") >0
Hence (p — 1) 1 (p)* — pFt > 0 for all k € N. O
Lemma 2.2.23. o(p*) < o(1 (p)*¥) for all prime numbers p and k € N.

Proof. Case p = 2: We know that 282 < 31 1 ( by Lemma 2.2.21 ).
Then
2k+2 92« 3]€+1 -1

and so
3k+1 -1

okt _ 1 <
2

Therefore
a(2F) < o(35).

Case p > 3: Consider

p1 () =1 (p)* = 1t (p)+ 1 (p) — p + P!

=t p—-1)1®"=p"+1 @) —p+ !

>0 ( by Lemma 2.2.22 ).

19



Therefore

pt @) —p—1 @ > 1 (p)— 1 (p) — P

Thus

k+1_1 k+1_1
T () P

T(p)—1 p—1

and so o(1 (p)*) > o(p*). O

Then we will prove the inequality properties between 1T and ¢ for natural
numbers.

Theorem 2.2.24. For every natural number n > 2, o(n) < o(1 n).

Proof. Assume that n > 2. Write n = p{'p5*...pp where py,pa, ..., pp are
distinet primes and «q, ..., € N. Then 1 (n) =1 (p1)** T (p2)®2... T (pr)**
and so

o(n) =o(pps..p*) = o)o(s?)...a(pyr)
< o(T (p)*)o(T (p2)*?)...o(T (pr)**) ( by Lemma 2.2.23 )

— ot (), =

Finally, we will prove the inequality properties between 1 and known
arithmetic fuctions more than 1 function.

Theorem 2.2.25. For every natural number n > 2,

o(1 ()¢ (n) > o(n)v (T (n)).
Proof. Assume that n > 2. By Theorem 2.2.9 and Theorem 2.2.16, we obtain

Consequently, we have ¢(1 (n))(n) > ¢(n)Y (1 (n)). O

Theorem 2.2.26. For every natural number n > 2,

a(n)e(T (n)) > o(1 (n))d(n).

Proof. The Theorem holds by using Theorem 2.2.9, Theorem 2.2.24 and the
proof is similar as in Theorem 2.2.25. 0
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Project Tittle (Thai) flaiduandinurriauaraudiviunaula

Project Tittle (English)  Some arithmetic functions and their interesting properties.
Project Advisor Assoc.Prof. Tuangrat Chaichana

By Mr. Sittinon Pumpuang 1D 5933553423

Mathematics Program, Department of Mathematics and Computer

Science, Faculty of Science, Chulalongkorn University

Background and Rationale
An arithmetic function f:N — C is a complex-valued function whose domain is the
set of natural numbers N. Some examples of these particular functions are :
(1) the function T(n) counting the number of all positive divisors of n ;
(2) the function a(n) adding the positive divisors of n ;
(3) the function @(n) counting the number of positive integer k less than or
equal to n with (k,n) = 1.
An important property of arithmetic functions is multiplicativity. A function f:N — C

is said to be multiplicative if

f(mn) = f(m)f(n)

whenever (m,n) = 1 and it is said to be completely multiplicative if the identity holds for
all positive integers m and n.

It is known that the function 1, and @ are multiplicative, see [2]. Moreover, there are
some interesting properties of these functions. In [2], some inequalities of these functions
were determined. Examples of inequalities include the following :

(1) @(n) = Vnforallnwithn#2andn # 6 ;

2)nt(n) =2 o)+ O(n) foraln=2;

(3) @(n)o(n) = n for all n.

The first objective of this project is to investigate possible properties of some known arithmetic

functions.
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In 2016, a new arithmetic function was introduced by Atanassov [1] as follows. Define
1 (1) = 1 and 1 (2) = 1. For each prime number p = 3, define | (p) to be the highest prime
number smaller than p. For n > 2, write

— TTk ;
n = [lizy pi*™
where k, a4..., ay € N and pq..., py are distinct primes and define

L) =TI L ()™
He proved that the function ! is multiplicative. Some of its properties were also presented.

The second objective of this project is to define a new function based on Atanassov’s idea

and study its properties.

Objectives

1. Investigate possible properties of some known an arithmetic functions.
2. Define a new arithmetic function based on the idea of Atanassov [2] and study its

properties.

Scope

The results of the second objective are based on the idea of Atanassov [2].

Project Activities
1. Study research papers on arithmetic functions and related topics.
2. Present a proposal of the project.
3. Investigate possible properties of some known arithmetic functions.
4. Define a new arithmetic function based on the work of Atanassov[2] and study its
properties.

5. Write the report.



Periods.

2019

2020

Description

1. Study research papers on arithmetic funtions and

related topics.

2. Present a proposal of the project.

3. Investigate possible properties of some

known arithmetic functions.

4. Define a new arithmetic function based on the work of

Atanassov [2] and study its properties.

5. Write the report.

Benefits
1. Obtain interesting properties of some arithmetic functions.
2. Obtain the technique of doing mathematical reseach.

3. Obtain computer typing skills.
Equipment
1. Computer
2. Microsoft Word 2013

3. Latex
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