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Abstract

This senior project presents a model for calculating the band structure
of twisted bilayer graphene for large and small twist angles using the tight-
binding model. We also provide the program used for the calculations writ-
ten on MATLAB 2018b. For large twist angles, we follow the model of A.
O. Sboychakov. For small twist angles, we follow the model of A. H. Mac-
Donald. We found that the magic angle, which yields minimum bandwidth,
is equal to 1.05 degree which is agree with MacDonald’s model and the
density of states of twisted bilayer graphene at the magic angle is very high
near the Fermi energy which suggests that the superconducting state can
be obtained with the right conditions. Our model also shows that there are
energy gaps on both sides of Fermi energy which means the insulating state
of twisted bilayer graphene may be obtainable.
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Chapter 1

Introduction

Graphene is a two-dimensional layer of carbon atoms arranged on a honeycomb struc-
ture. Though the structure of graphite is a result of stacking of graphene, its electronic
properties are different from graphene. For example, graphite can not conduct elec-
tricity and heat well, while graphene can conduct them very well. Because graphene
is very thin, around 0.34 nm, it has a high potential to be used in electronics sectors.
These exciting properties of graphene were first predicted theoretically by P. R. Wal-
lace who wrote the first paper on the band structure of graphene in 1946[1]. Though
graphene was discovered in 1962 by Hanns-Peter Boehm and his co-workers who
coined the term graphene as combination graphite, it was hard to study and test prop-
erties of graphene because we didn’t know how to produce graphene at that time. It
is the work of a research group at the University of Manchester in 2004, led by Andre
Geim and Konstantin Novoselov awarded with the Nobel Prize in Physics in 2010, who
exfoliated graphene from bulk graphite by using sticky tape[2]. Graphene is an excel-
lent conductor because the dispersion relation of electrons near the Fermi energy is
linear[3]. We can also show that there is a possibility that an electron in graphene will
tunnel perfectly through a potential barrier with no scattering[4, 5]. In the classical pic-
ture, this means particles can almost go straight through the graphene when we apply
voltage to it, resulting in the high conductivity. In 2011, Allan MacDonald, a theoretical
physicist at the University of Texas, Austin, and his colleagues predicted a flat band
structure when we slightly twist two graphene sheet relative to each other[6]. Those
twist angles which yield the flat bands are called magic angles. At magic angles, the
densities of states are very high near the Fermi energy compared to other ranges of
energy. There are also gaps forming above and below the flat bands. These imply that
twisted bilayer graphene can be a superconductor and an insulator when we change its
density of states. It was not until 2018 when Jarillo-Herrero and his team at MIT discov-
ered that twisted bilayer graphene could be a superconductor and a Mott insulator when
the twist angle is around 1.1◦[7]. In this work, we want to simulate the band structure
of twisted bilayer in two regimes, large and small twist angles. We will use the con-
tinuum model, which assumes the tunnelling amplitude between each π-orbitals to be
an exponential function where the fitting parameters are obtained from graphene and
untwisted bilayer graphene[8]. For large twist angles, the Hamiltonian is constructed
according to the model of A. O. Sboychakov which calculates all possible tunnelling
between carbon atoms in two layers[9]. Though we can get dispersion relations, with
accuracy up to high energy, it’s computationally expensive as the dimension of the
Hamiltonian that we have to diagonalize is roughly proportional to 104θ−2(measured
in degree) for low twisted angles. Thus, we will use this model only for the large twist
angles, less than 30◦. For the small twist angles, we use the model proposed by Allan
MacDonald which calculates only the tunnelling between low-energy states. Though
this model is valid for small twist angle< 10◦ and low-energy regime, the dimension of
the Hamiltonian that we have to diagonalize in this case is proportional to 10θ−2. We
will do all the calculations on MATLAB.
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Chapter 2

Theory

2.1 Untwisted graphene
2.1.1 Crystal structure of monolayer graphene

Figure 1: The valence electrons in the orbitals
2s,2px and 2py forms the sp2 orbitals leaving the
last electron in the 2s orbital which will be in the
2pz orbital later.

Figure 2: The bonds between the sp2 orbitals,
sigma bonds, are stronger than the bonds be-
tween 2pz orbitals, pi bonds. Thus, each carbon
atom has only one electron in the 2pz orbitals that
can move to nearby 2pz orbitals.

The structure of graphene is a two-dimensional honeycomb of carbon atoms. Each
carbon atom has six electrons where four of them are valence electrons. The valence
electrons in 2s,2px and 2py orbitals hybridize to form sp2 orbitals, see Fig.1. The last
electron in 2s orbital is promoted to the 2pz orbitals. The bonds between the sp2 orbitals,
σ -bonds, are much stronger than the bonds between 2pz orbitals, π-bonds, see Fig.2.
This means electrons in the sp2 orbitals can rarely go or interact with other orbitals
while the electrons in 2pz orbitals can. Thus, we will assume that each carbon atom
has only one electron in its 2pz orbital that can interact with a potential or tunnel to other
sites. From Fig.4, We can choose primitive lattice vectors

aaa1 = a

(√
3

2
,−1

2

)
, aaa2 = a

(√
3

2
,
1
2

)
(1)

to describe the structure of graphene where a = 2.46 Å is the distance between the
lattice point. The distance between two adjacent carbon atoms are a/

√
3 ≈ 1.46 Å.

There are two bases per lattice point in this case. The ones that are put directly on
each lattice point are called A-sublattice, while the ones that are put relative to each
lattice point are called B-sublattice. Thus, we can describe the points in the A-sublattice
by a lattice vector RRRA = naaa1 +maaa2 and RRRB = RRRA +δδδ 1, see Fig.4, for the points in the B-
sublattice. The unit cell of graphene is the region inside the dashed line.

2.1.2 Tight binding model

In this section, we will construct the Hamiltonian which is needed to be diagonalized
later to obtain the band structure of twisted bilayer graphene. We will derive the Hamil-
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Figure 3: The distance between the atoms, which
don’t to be carbons, 1 and 2 is a. The wave
functions of each electron are localized near each
atom which means the probability amplitude is
high in the region near each atom. Due to the lo-
calization of the wave function, there is almost no
overlap region. This means the overlap integral
almost vanishes.

Figure 4: The structure of carbon atoms in a
graphene sheet where the unit cell is the re-
gion in the black lines. The A(B) sub-lattices are
colored as red(Blue), respectively. We choose
aaa1 = a(

√
3/2,−1/2) and aaa2 = a(

√
3/2,1/2) to be

lattice vectors for both sub-lattice where the dis-
tance between AA(BB) sub-lattices, which will be
used more regularly, is equal to a =

√
3d = 2.46

Å where d = 1.42 Å is the distance between car-
bon atoms. These vectors always point to the
same sub-lattice sites and it’s clear from the fig-
ure that each carbon atom has 3 neighbors.

tonian for graphene and bilayer graphene first and generalize the Hamiltonian to more
complex systems later. To construct the Hamiltonian of an electron in graphene, first,
we need to construct the wave function of an electron. We will use the tight-binding
model which approximates the wave function of an electron to localize near each atom.
Fig.3 illustrates the idea. By using this idea, we can approximate the wave function of
an electron in graphene, which is a linear combination of the wave functions of elec-
trons localized near each carbon atom, as

|k〉= ∑
rA

φrA,k |rA〉+∑
rB

φrB,k |rB〉 (2)

= cA ∑
rA

eirA·k
√

Nuc
|rA〉+ cB ∑

rB

eirB·k
√

Nuc
|rB〉= cA |A,k〉+ cB |B,k〉 . (3)

We use this trial wave function because the carbon atoms around sub-lattice A and
B are different. Thus, the probability of finding an electron in each sub-lattice may be
different. All the coefficients φ in Eq.2 represent the probability of finding an electron
in each site of the carbon atoms. Thus, if the graphene sheet is huge, we expect the
probability of finding an electron in the same sub-lattices to be equal even though the
positions of the sites are different. From Eq.3, the probability of finding an electron in
the A and B sub-lattices are |cA|2 and |cB|2, respectively. The factor 1/

√
Nuc is just a

normalization factor and Nuc is equal to the number of unit cells in the graphene sheet.
The reason for factoring out the exponential terms from each φ is because our wave
function must satisfy Bloch’s theorem(we are using periodic boundary condition here).
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Now, the wave function can be written as a vector with two bases |A〉 and |B〉. To find
the band structure, we start from the fact that the wave function of an electron must be
an eigenvector of a Hamiltonian in order to find its energy. Thus, the wave function of
an electron must satisfy the relation

H |k〉= cAH |A,k〉+ cBH |B,k〉= Ek |Ψ〉= EkcA |A,k〉+EkcB |B,k〉 . (4)

By acting 〈A,k| or 〈B,k| on the Eq.4 and rearranging the two equations, we get〈A,k|H|A,k〉 〈A,k|H|B,k〉
〈B,k|H|A,k〉 〈B,k|H|B,k〉

cA

cB

= Ek

〈A,k|A,k〉 〈A,k|B,k〉
〈B,k|A,k〉 〈B,k|B,k〉

cA

cB

 (5)

The first matrix on the left-hand side in Eq.5 is the Hamiltonian of our system. The first
matrix on the right-hand side will vanish if the basis are orthogonal. The values of the
diagonal terms of the matrix are 1. The values of the off-diagonal terms are

〈A,k|B,k〉= 〈B,k|A,k〉∗ = ∑
rA

∑
rB

ei(rB−rA)·k

Nuc
〈rA|rB〉 . (6)

For simplicity, the overlap integral 〈rA|rB〉 are vanished for our tight-binding model(Fig.3).
The last step before diagonalizing the Hamiltonian is to specify the hopping integral
〈rα |H|rβ 〉 where α and β can be A or B. From Fermi’s golden rule, we can interpret this
term as a quantity which tells us the probability of an electron to tunnel from a site rA
to a site rB. Due to the tight-binding approximation, we only care about the tunnelling
between nearest-neighbour electrons or

〈rα |H|rβ 〉=


ε, if rα = rβ ,

−t, if |rα − rβ |= d,
0, if |rα − rβ |> d

(7)

where d is the distance between carbon atoms, Fig.4. Now, The upper-diagonal term
of the Hamiltonian can be written as

〈A,k|H|A,k〉= ∑
rA

∑
rA′

ei(rA′−rA)·k

Nuc
〈rA|H|rA′〉= ∑

rA

ε

Nuc
= ε. (8)

The calculation in Eq.8 is simplified from the fact that an electron can only tunnel to its
site or its nearest-neighbours. Thus, the non-vanishing terms must satisfy the condition
rrrA = rrrA′. By doing the same calculation, we can get the values of 〈B|H|B〉. For the off-
diagonal terms of the Hamiltonian, we can write to them as

〈A,k|H|B,k〉= 〈B,k|H|A,k〉∗ = ∑
rA

∑
rB

ei(rB−rA)·k

Nuc
〈rA|H|rB〉= ∑

rA

− t
Nuc

(eiδ1·k + eiδ2·k + eiδ3·k)

(9)

=−t(eiδ1·k + eiδ2·k + eiδ3·k).
(10)
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To understand the calculation in Eq.9, we must realize that the non-vanishing terms
from the first summation on rrrB are the terms that rrrB = rrrA + δδδ i where i = 1,2,3(Fig.4).
It’s clear that, from Fig.4, δδδ 1 = d(1,0), δδδ 2 = d(−1/2,−

√
3/2) and δδδ 3 = d(−1/2,

√
3/2).

Thus, there are only 3 non-vanishing terms for each rrrA, the nearest neighbors of each
carbon atom in graphene are 3. If we define f (kkk) = eiδδδ 1·kkk+eiδδδ 2·kkk+eiδδδ 3·kkk, the Hamiltonian
can be fully written as

H =

 ε −t f (k)

−t f (k)∗ ε

=

 0 −t f (k)

−t f (k)∗ 0

+ ε

1 0

0 1

 . (11)

We can see that if we diagonalize effective Hamiltonian defined as He f f = H− εI, the
eigenvalues of He f f are λ̃ = λ − ε where λ are the eigenvalues of H. Thus, the bands
from He f f are shifted by ε from the bands from H. However, they still capture the rest
information of the real bands. So, for simplicity, we will set ε to 0. In other words, we
will only work on the effective Hamiltonian later. Diagonalizing the Hamiltonian yields
the eigenvalues

Ek =±t| f (k)|=±t

√√√√1+4cos2
(

kya
2

)
+4cos

(
kya
2

)
cos

(
kx
√

3a
2

)
. (12)

The band structure Ek is shown in Fig.6. Fig.5 shows the first Brillouin zone of graphene
spanned from two reciprocal lattice vectors.

b1 =
2π

a

(
1√
3
,−1

)
, b2 =

2π

a

(
1√
3
,1
)
. (13)

As you can see, the shape of the first Brillouin zone is hexagonal and the points where
the two bands contact are named as K or K′. This results from the fact that the forms of
the low-energy effective Hamiltonian near the points K and K′ are different which can
be shown to be

He f f
low (q) =

 0 −t f (K +q)

−t f (K +q)∗ 0

≈−t

 0 ∇ f ′(K) ·q

∇ f ′(K)∗ ·q 0

+O(|q|2). (14)

From

f (k) = eiδ1·k + eiδ2·k + eiδ3·k = 2eikxa/(2
√

3)cos
(

kya
2

)
+ e−ikxa/

√
3, (15)

It’s straightforward to show that

∇ f (k) = eikya/(2
√

3)
(
−asin

(
kxa
2

)
,

a√
3

cos
(

kxa
2

)
i− e−i

√
3kya/2 a√

3
i
)
. (16)

Thus, if we use K = (bbb2−bbb1)/3 = (0,4π/3a)(we can use other K points but the results
will be the same), the low-energy effective Hamiltonian can be written as

He f f
low,K(q) =−t

 0
√

3a/2(1,−i) ·q
√

3a/2(1, i) ·q 0

=−
√

3ta
2

 0 qx−qyi

qx +qyi 0

 . (17)
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Figure 5: The first Brillouin zone of monolayer
graphene is shown here. bbb1 and bbb2 are recipro-
cal lattice vectors and the vector qqq is the vector
measured from each Dirac point.

Figure 6: The band structure of monolayer
graphene is shown here. The two bands arise
from the fact that our wave function has two ba-
sis |A〉 , |B〉. We plot the band structure along
K → Γ→ M → K, see Fig.5. We use t = 3.03eV
and a = 2.46 Å for these bands.

If we use K′ =−K, from Eq.16,

He f f
low,K(qqq)=−t

 0
√

3a/2(−1,−i) ·qqq
√

3a/2(−1, i) ·qqq 0

=−
√

3ta
2

 0 qx−qyi

qx +qyi 0

 (18)

which has a different form from the low-energy effective Hamiltonian in Eq.17. This
is the reason why those points are called differently. If we find the eigenvalue of the
Hamiltonian near these points, it’s equal to

Ek(q) =±
√

3ta
2
|q| (19)

which is a linear function of |q|. Thus, the dispersion relation of electrons near K and
K′ is linear which is the reason why we call those points as ”Dirac points”. The Fermi
velocity of electrons in graphene near the Dirac points is equal to

vF =
|∇kEk(q)|

h̄
=

√
3ta

2h̄
∼ 106 m/s. (20)

Next, we will find the available states per band so that we can determine where the last
electron is. The number of available states per band Nas can be written as

Nas = 2
ABZ

Astate
=

4
√

3LxLy

3a2 = 2
Agraphene

Auc
= 2Nuc = Nelectron (21)

where ABZ is the area of the first Brillouin zone and Astate is the area occupied by a state
k. The factor 2 arises from the fact that each k-point can contain 2 electrons having
spin up and down. In Eq.21, the area of the first Brillouin zone is 3

√
3/2(8π/(3a))2

and the area of each occupied state is equal to ∆kx∆ky = (2π/Lx)(2π/Ly) where Lx and
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Figure 7: The valence and conduction bands. Figure 8: The Fermi surface of the conduction
band.

Ly are the width and length of the graphene sheet. Note that quantized values of kx
and ky comes from the fact that we’re using the periodic boundary condition here. By
inserting LxLy to be the area of the graphene sheet and writing a2 in terms of the area
of each unit which is equal to 2Auc/

√
3, we can see that the number of the available

states per band Nas is precisely equal to 2Nuc, where Nuc is the number of unit cell in
the graphene sheet. Because there are 2 electrons in the pz orbitals per unit cell, this
tells us that the number of the available states per band Nas is equal to the number of
the electrons in the graphene sheet. This means the lower band shown in Fig.6 is fully
filled and the last electron is filled at the Dirac points. The reason why we interest in the
region near Dirac point is that its the only region where there are many available states
that electrons near the Dirac cones can occupy. To conclude, we calculate the band
structure of monolayer graphene in this section by using the tight-binding model. The
first step is writing the trial wave function of an electron as the linear combination of the
localized wave function of each electron in pz orbitals situated at each atom. We can
think that the localized wave function is the wave function of an electron in case there
is no atom nearby. Second, we write the Hamiltonian where its form is determined
by the basis of the trial wave function |A〉 , |B〉. Third, we show that each Dirac point
of the Brillouin zone has a different form of the Hamiltonian, which is the reason why
we call them K and K′. Last, we show that the low-energy states are situated near
the Dirac points. These states are important to us in the sense that it is these states
that interacts with the other systems, they are free to change their states. Fig.7 shows
both conduction and valence bands. Fig.8 shows the Fermi surface of the conduction
band which is similar to the Fermi surface of the valence band, in this case. The only
difference is the range of the energy.

2.1.2.1 Density of states

In this section, we will numerically calculate the density of states of graphene. The
density of states in 2-dimensional material is defined to be the number of states per

11



energy per area of the material or

D(E) =
1

Amat

dN(E)
dE

(22)

where N(E) is the number of states that have energy below E, note that N(E) can be
written as a summation of a partial number of states that have energy below E as ∑i Ni
where i is the band index. To find dN(E)/dE, we must calculate the cross-sectional
area of each band Ei at energy E and E +dE and use the fact that the number of states
between the energy E and E+dE is proportional to the difference of the cross-sectional
area of the energy E and E +dE or

dN(E) = ∑
i

dNi(E) = 2∑
i

dAcross,i(E)
Astate

=
Amat

2π2 ∑
i

∫
BZ

dh(Ei(k)−E)d2k. (23)

where we replace Astate with (2π/Lx)(2π/Ly) = 4π2/Amat and write the cross-sectional
area as the intergral of the Heaviside step function h defined to be

h(Ei(k)−E) =

{
1, if Ei(k)−E > 0,
0, if Ei(k)−E < 0.

(24)

By using these definitions, we can rewrite the density of states as

D(E) =
1

2π2 ∑
i

∫
BZ

∂h(Ei(k)−E)
∂E

d2k (25)

=
∆kx∆ky

2π2∆E ∑
i

∑
Nx

∑
Ny

(h(Ei(Nx,Ny)−E +∆E/2)−h(Ei(Nx,Ny)−E−∆E/2)) (26)

=
ABZ

2π2∆ENkxNky
∑

i
∑
Nx

∑
Ny

Ω(Ei(Nx,Ny)−E) (27)

where we approximate Eq.25 to a form that can be numerically integrated using the
central difference and the range of summation of each reciprocal area ∆kx∆ky is within
the region of the first Brillouin zone . In Eq.27, we replace ∆kx∆ky as ABZ/NkxNky where
Nkx and Nky are the number of grids in the kx and ky directions, respectively. By consid-
ering the central difference, we can write it in a more compact form as

Ω(Ei(Nx,Ny)−E) =

{
1, if |Ei(Nx,Ny)−E|< ∆E/2,
0, if |Ei(Nx,Ny)−E|> ∆E/2.

(28)

It’s a bit tricky to define the grids of Nx and Ny. Because the shape of the first Brillouin
zone of graphene is hexagonal, choosing the region for the integration to be the first
Brillouin zone is a bit complicate task as one has to the range of integration along kx
for each constant ky. This problem can be solved by choosing another the region of
integration shown in Fig.9. The density of states of graphene calculating according to
the method above is shown in Fig.10. The density of states near the Dirac points is
linear because the dispersion relation near those points is linear, Eq.19. This means
the number of states between energy E and E +dE near the Dirac points is

dN(E) = ∑
i

dNi(E) = 2
dAcross(E)

Astate
= 2

2π|qqq||dqqq|
4π2/Amat

=
Amat

π

4EdE
3t2a2 (29)

12



Figure 9: The first Brillouin zone is the region
surrounded by the green lines. In this work,
we choose the region to calculate the density of
states to be the region in the region surrounded
by the red lines. These two regions are equiva-
lent; they have the same area.

Figure 10: The density of states of graphene cal-
culated by using Nx = Ny = 300. The density of
states grows proportionally to the energy of elec-
trons when |E| � 1eV, which comes from the fact
that the dispersion relation near the Dirac points
is linear. We can reduce the error by increasing
Nx and Ny.

where i = 1,2 but we need to calculate only one term as the cross-sectional area only
comes from one of the bands and qqq is the vector measured from the Dirac points,
Fig.5. By replacing the dispersion relation near the Dirac points from Eq.19 in Eq.29,
the density of states of graphene near the Dirac points is

D(E) =
1

Amat

dN(E)
dE

=
4E

3πt2a2 (30)

which is linear in E as seen in Fig.10.

2.1.3 Bilayer graphene

For bilayer graphene, the unit cell of AB-stacked bilayer graphene is shown in Fig.11.
As you can see from the Figure, there are four carbon atoms in each unit cell which
means there are four sub-lattices named A1, B1, A2, B2 in each unit cell. To calculate
the band structure of bilayer graphene, we use the same strategy using to calculate
the band structure of monolayer graphene. We start by writing the trial wave function
of an electron as

|k〉= ∑
rA1

φrA1,k |rA1〉+∑
rB1

φrB1,k |rB1〉+∑
rA2

φrA2,k |rA2〉+∑
rB2

φrB2,k |rB2〉 (31)

= cA1 ∑
rA1

eirA1·k
√

Nuc
|rA1〉+ cB1 ∑

rB1

eirB1·k
√

Nuc
|rB1〉+ cA2 ∑

rA2

eirA2·k
√

Nuc
|rA1〉+ cB2 ∑

rB2

eirB2·k
√

Nuc
|rB2〉 (32)

= cA1 |A1,k〉+ cB1 |B1,k〉+ cA2 |A2,k〉+ cB2 |B2,k〉 . (33)

We use this trial wave function because the carbon atoms around each sub-lattice are
different. As you can see, Thus, the probability of finding an electron in each sub-lattice
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Figure 11: The unit cell of bilayer graphene is
the region in the black lines. There are four
sub-lattices in each unit cell which are A1(red),
B1(blue), A2(black), B2(grey). For AB-stacked bi-
layer graphene(which is a more stable pattern),
the sublattices B1 will align with the sublattices
A2.

Figure 12: The band structure of bilayer
graphene is shown here. The four bands arise
from the fact that our wave function has four basis
|A1〉 , |B1〉 , |A2〉 , |B2〉. The two bands touch each
other at the 6 Dirac points called K′ and K. We
use t = 3.03eV and γ = 0.39eV for these bands.

may be different. Next, we can use the basis of the trial wave function to determine the
form of the Hamiltonian in this basis as

He f f
bi,low =


〈A1,k|H|A1,k〉 〈A1,k|H|B1,k〉 〈A1,k|H|A2,k〉 〈A1,k|H|B2,k〉
〈B1,k|H|A1,k〉 〈B1,k|H|B1,k〉 〈B1,k|H|A2,k〉 〈B1,k|H|B2,k〉
〈A2,k|H|A1,k〉 〈A2,k|H|B1,k〉 〈A2,k|H|A2,k〉 〈A2,k|H|B2,k〉
〈B2,k|H|A1,k〉 〈B2,k|H|B1,k〉 〈B2,k|H|A2,k〉 〈B2,k|H|B2,k〉

 . (34)

The upper-diagonal and lower-diagonal blocks in the above Hamiltonian represents the
tunnelling between the sites in the same layer, which we have calculated earlier. Thus,
we can replace them with the Hamiltonian of the monolayer graphene in those blocks.
For the off-diagonal blocks, we will approximate that the tunnelling integral between
layers, or the chance of an electron to tunnelling from a specific site to another site, will
vanish if those two sites are not aligned. This means only 〈B1,k|H|A2,k〉 is non-zero
here. If we let the tunnelling integral between A2 and B1 to be γ where the distance
between those two sites must equal to the interlayer distance, we can show that

〈B1,k|H|A2,k〉= ∑
rB1

∑
rA2

ei(rA2−rB1)·k

Nuc
〈rB1|H|rA2〉= ∑

rB1

eiL·kγ

Nuc
= eiLkz = γ (35)

where LLL is the vectors pointing from each site B1 to the site A2 above it, it’s magnitude
is the interlayer distance which is 3.35 Å. As you can see from Eq.35, we set kz = 0.
This is because the next kz from 0, or ∆kz, is 2π/|LLL| which too large compared to ∆kx
and ∆ky. In other words, electrons can’t go to those high energy states. So, electrons
can only situate in the states where kz = 0. From now on, we will set kz = 0. If you
insist on leaving kz in the Hamiltonian, you will get the same result as setting kz to
zero anyway. It’s not because the Hamiltonian doesn’t depend on kz. It’s because we
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Figure 13: The valence and conduction bands.
There are 4 bands in this figure.

Figure 14: The Fermi surface of the conduction
band of bilayer graphene.

approximate the Hamiltonian by keeping only the tunnelling between the sites B1 and
A2. If we keep the rest tunnelling between other sites, kz will appear in the Hamiltonian.
Now by replacing the rest terms on the Hamiltonian, we get

He f f
bi,low =


0 −t f (k) 0 0

−t f (k)∗ 0 γ 0

0 γ 0 −t f (k)

0 0 −t f (k)∗ 0

 . (36)

Diagonalizing the Hamiltonian gives the band structure of bilayer graphene shown in
Fig.12. We plot the band structure along the first Brillouin zone defined in Fig.5 be-
cause the lattice vectors of bilayer graphene and monolayer graphene are the same
which yields the same Brillouin zone. From Eq.36, we can show that

Ek =±

√√√√t2| f (kkk)|2 + γ2

2
± γ2

2

√
1+

4t2| f (kkk)|2
γ2 =±

(√
γ2

4
+ t2| f (kkk)|± γ

2

)
. (37)

The bottom of the energy bands, near the Dirac cones, can be approximated by re-
placing, see Eq.19,

| f (KKK +++qqq)| →
√

3a
2
|qqq| (38)

which yields

E low
k (qqq)≈±γ

2

(
1+

2t2| f (KKK +++qqq)|
γ2 ±1

)
∼ 3t2a2

4γ
|qqq|2 (39)

which is valid when 2t| f (KKK +++ qqq)| � γ. Because the relation between the energy and
the crystal momentum is quadratic, see the regions near Dirac cones in Fig.13, the
behaviour of electrons in the bilayer graphene near the bottom of energy bands are not
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Figure 15: The shape of this DOS is similar to the DOS of graphene. There are more peaks in the case
of bilayer graphene.

the same as low energy electrons in graphene. The electrons in bilayer graphene are
similar to electron gas having effective mass equal to 2γ/3t2a2h̄2. The Fermi surface
near the Dirac cones of bilayer graphene , shown in Fig.14, is similar to the Fermi
surface near the Dirac cones of graphene, shown in Fig.8, because the shape of band
structure of bilayer graphene near the Dirac cones is paraboloid, which means the
cross-section of each low energy level will be circle. The difference between dispersion
relations near the Dirac cones of single layer graphene and bilayer graphene also leads
to the difference filling factors in quantum Hall effects[10][11][12].

2.1.3.1 Density of states

We use the method used in calculating the density of states of graphene to calculate
the density of states of bilayer graphene. Fig.15 shows the density of states of electrons
in bilayer graphene.

2.2 Twisted bilayer graphene
2.2.1 Crystal structure of twisted bilayer graphene

Twisted bilayer graphene is actually bilayer graphene where the two layers are twisted
by angle θ . When two graphenes are twisted with respect to each other, there will be
some angles where supercells, a periodic crystal, appear. In other words, it is the twist
angles which cause stackings of sub-lattices A2 on B1 periodically along the plane.
Those angles are called commensurate angles where other angles that don’t produce
a crystal are called non-commensurate angles. Because the band theory works in the
case where there is a periodic crystal, we want to know which angles are commen-
surate. To derive the formula for calculating the commensurate angles, we need to
know that each carbon atom has an axis of 6-fold symmetry, Fig.16, perpendicular to
its plane. This means rotating graphene by 60◦ is equivalent to do nothing as it will
look the same, you might ask that the colours are changed, but colours have nothing
to do with the crystal structure. Graphene also has mirror planes perpendicular to its
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Figure 16: By choosing a point P which is equiv-
alent to the point at the origin, we can generate
more five points from rotating the point P by 60◦.

Figure 17: By using the mirror planes, we can
generate more six points(yellow) which can be re-
garded as points in another layer.

plane, along the direction shown in Fig.17. In order to find the commensurate angles,
we must choose one of carbon atoms to be an axis of the rotation. Conventionally, we
want to choose a carbon atom in a sub-lattice B1 or A2. In this case, we choose the
carbon atom in the middle of the intersection shown in Fig.16. Next, we must find an-
other carbon atom which is equivalent to the first chosen atom. We do this because we
want to use this atom to determine the superstructure by rotating the atom, around the
axis, to superimpose another carbon atom which has the same distance from the origin
of the rotation. In our case, we choose the carbon atom at the point P to be rotated.
The next problem is how can we determine the number of carbon atoms which has the
same distance from the origin equal to the distance between the point P and the origin.
We can solve this problem by using the fact that each carbon atom in graphene has an
axis of 6-fold symmetry perpendicular to it. Thus, we can generate the other five car-
bon atoms which have the same distances from the origin by rotating the graphene 60◦

around the origin five times. The result is shown in Fig.16. We can also generate the
rest six carbon atoms coloured in yellow which have the same distance from the origin
as the point P by using the mirror planes to reflect the first six carbon atoms. From
point P, we can generate 11 carbon atoms by using the 6-fold symmetry and mirror
planes. The result is shown in Fig.17. Now, if we rotate the point P to the point S, the
supercell lattice vectors will be determined by the vector pointing from the origin to the
point S. We can generate another supercell lattice vector by rotating this vector by 60◦.
If we rotate the point Q to the point P, the supercell lattice vectors will be determined
by the vector pointing from the origin to the point P. Another supercell lattice vector is
generated according to the method above. If the coordinate of the point P is

P = naaa1 +maaa2 (40)

where n > m > 0, we can generate the point S by reflecting the point P across the line
M1. This task can be simplified by creating a reflection matrix T1, which will reflect a
given point with respect to the line M1. For other mirrors, their reflection operators are
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noted as Ti where i = 1,2,3. From Fig.16, it’s clear that

T1(aaa1) = aaa2 and T1(aaa2) = aaa1. (41)

By using the fact that this operator is linear in its argument, we can show that the
coordinate of the point S can be written as

S = T1(P) = nT1(aaa1)+mT1(aaa2) = naaa2 +maaa1. (42)

We can also generate the point Q by doing the three following steps. First, we use
the reflection operator T2 to reflect the point Q across the line M2. Next, we use the
inversion operator to inverse that point. This is equivalent to adding the minus sign to
a point we want to inverse. Last, we use the reflection operator T3 to reflect the point Q
across the line M3. These steps for generating Q can be concluded as

Q = T3(−T2(S)). (43)

From Fig.16, we can see that

T2(aaa2) = aaa2−aaa1 , T2(aaa2−aaa1) = aaa2 (44)

and
T3(−aaa1) = aaa2−aaa1 , T3(aaa2−aaa1) =−aaa1. (45)

Because the operator T2 is linear, we can rewrite Eq.44 as

T2(aaa1) =−aaa1 , T2(aaa2) =−aaa1 +aaa2. (46)

The same procedure can be used to rewrite Eq.45 as

T3(aaa1) = aaa1−aaa2 , T3(aaa2) =−aaa2. (47)

By using the properties of the reflection matrices T2 and T3 written in Eq.45 and 46, it’s
straightforward to show that

Q = T3(−T2(S)) = T3(−nT2(aaa2)−mT2(aaa1)) = (n+m)aaa1−maaa2 (48)

Now that we have all the coordinates of P, Q and S, rotating the point P to the point S
would yield the supercell lattice vectors defined by the vector pointing from the origin
to the point S or RRR1. Another supercell lattice vector RRR2 can be obtained by rotating RRR1
by 60◦ anti-clockwise. This is equivalent to use the operator −T2T3 on P. In this case,
the supercell lattice vectors when we rotate the point P to S are

RRR1 = maaa1 +naaa2 and RRR2 =−T2(T3(RRR1)) =−naaa1 +(n+m)aaa2 (49)

where the twist angle calculating using the cosine law is

cos θ(m,n) =
|S|2 + |P|2−|S−P|2

2|S||P|
= 1− |S−P|2

2|P|2
=

3(m+n)2− (n−m)2

3(m+n)2 +(n−m)2 (50)

where aaa1 = a(
√

3/2,−1/2) and aaa2 = a(
√

3/2,1/2). If we choose to rotate the point Q to
the point P, the supercell lattice vectors R̃RR1 is equal to the vector that points from the
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origin to P. rotating R̃RR1 by 60◦ anti-clockwise with respect to the origin yields R̃RR2. This is
equivalent to use the operator −T2T3 on P. Another supercell lattice vector is the vector
pointing from the origin to the point P or R̃RR2. Thus, the supercell lattice vectors in this
case are

R̃RR1 = qaaa1 + paaa2 and R̃RR2 =−T2(T3(R̃RR1)) =−paaa1 +(p+q)aaa2 (51)

,note we change n→ q and m→ p to avoid the confusion later. The twist is

cos θ
′(p,q) =

|P|2 + |Q|2−|P−Q|2

2|P||Q|
= 1− |P−Q|2

2|Q|2
=

4q2 +4pq+ p2

3(p+q)2 +(p−q)2 . (52)

There formulas in Eq.50 and 52 can generate the same set of commensurate angles.
In other words, there are always integers (m,n) and (p,q) for a given commensurate
angle θ0 or

cos θ0 = cos θ(m,n) = cos θ(p,q) (53)

. But there is only one of them that produces the shorter supercell lattice vectors for
each θ0. This can be seen clearly by transforming n−m = r and q− p = s. Now, we can
rewrite Eq.53 using these new variables as

cos θ0 =
3m2 +3mr+ r2/2
3m2 +3mr+ r2 =

3(m+ r/2)2− (r/2)2

3(m+ r/2)2 +(r/2)2 → tan θ0/2 =
1√
3

(
1+

2m
r

)
(54)

and

cos θ0 =
3p2/2+3ps+ s2

3p2 +3ps+ s2 =
3(3p/2+ s)2− (3p/2)2

3(3p/2+ s)2 +(3p/2)2 → tan θ0/2 =
1√
3

(
1+

2s
3p

)
. (55)

By comparing Eq.54 and 55, we can see that the relation between (m,r) and (s, p) for
each commensurate angle θ0 is

m
r
=

s
3p

. (56)

For a commensurate angle generated when m = s and r = 3p, the norm of the supercell
lattice vector from (m,r) is longer than the norm of the supercell lattice vector from (s, p)
which we can be shown as, by using Eq.49 and 51,

RRR1 ·RRR1 > R̃RR2 · R̃RR2 (57)

(r+ s)2|aaa1|2 +2s(r+ s)aaa1 ·aaa2 + s2|aaa2|2 > (r/3)2|aaa1|2 +2(r/3)(s+ r/3)aaa1 ·aaa2 +(s+ r/3)2|aaa2|2
(58)

(r+ s)2 + s(r+ s)+ s2 > (r/3)2 +(r/3)(s+ r/3)+(s+ r/3)2 (59)

2r2/3+2rs+2s2 > 0 (60)

where we use R̃RR2 instead of using R̃RR1 because their lengths are equal but R̃RR2 has a
simple form. Thus, if we want to calculate the commensurate angles by using Eq.54,
we must use

R̃RR1 =
(

m+
r
3

)
aaa1 +

r
3

aaa2 and − r
3

aaa1 +

(
m+

2r
3

)
aaa2 (61)

from Eq.51 as the supercell lattice vectors when r can be divided by 3 because their
norms are shorter than the norms of RRR1 and RRR2. Note that we replace q by s+ p and
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Figure 18: For m = r = 1, there are 28 sites in
each supercell where RRR1 and RRR2 are supercell lat-
tice vectors.

Figure 19: The first Brillouin zone of the super-
cell is much smaller than the first Brillouin zone
of each layer. The distance between the nearest
Dirac points is equal to the length of each side of
the first Brillouin zone of the supercell. This figure
is adapted from [9].

p by r/3 in Eq.61.When r can’t be divided by 3, we have r = p and s = 3m for each
commensurate angle θ0. It can be shown that the norm of RRR1 is shorter than the norm
of R̃RR2 in this case. Thus, we must use the supercell lattice vectors from Eq.49 or

RRR1 = maaa1 +(m+ r)aaa2 and RRR2 =−(m+ r)aaa1 +(2m+ r)aaa2 (62)

where we replace n by m+ r. To conclude, we will use Eq.54

cos θ(n,m) =
3m2 +3mr+ r2/2
3m2 +3mr+ r2 (63)

to generate the commensurate angles. If mod(r,3) = 0, the supercell lattice vectors are,
from Eq.61,

RRR1 =
(

m+
r
3

)
aaa1 +

r
3

aaa2 and RRR2 =−
r
3

aaa1 +

(
m+

2r
3

)
aaa2. (64)

if mod(r,3) 6= 0, the supercell lattice vectors are, from Eq.62

RRR1 = maaa1 +(m+ r)aaa2 and RRR2 =−(m+ r)aaa1 +(2m+ r)aaa2. (65)

Figure 18 shows the supercell with m = r = 1. The first Brillouin zone of the supercell,
which can be calculated from RRR1 and RRR2, in this case, is shown in Fig.19. As you can
see, the size of the first Brillouin zone of the supercell is smaller than the first Brillouin
zone of each layer. This should be clear from the fact that the length of the supercell
lattice vectors is larger than the distance between each sublattice. The number of the
sites in each supercell Nsc, shown in Fig.18, can be calculated from the fact that the
area of the supercell Asc can be written AucNuc where Auc is the area of the unit cell
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of bilayer graphene and Nuc is the number of the unit cells of bilayer graphene in the
supercell. Thus, the number of sites in each supercell is

Nsc = 4
Asc

AucNuc
= 4
|RRR1×RRR2|

AucNuc
(66)

where the factor four comes from the fact that there are four sites in each unit cell of
bilayer graphene. By using the supercell lattice vectors from Eq.64 and Eq.65, we can
show that when mod(r,3)6= 0

Nsc = 4(3m2 +3mr+ r2) (67)

and when mod(r,3) = 0
Nsc = 4(m2 +mr+ r2/3). (68)

2.2.2 Continuum model of twisted bilayer graphene

We follow the method used in calculating the band structure of monolayer graphene
and bilayer graphene. First, we start by constructing the trial wave function of an elec-
tron in twisted bilayer graphene which is a linear combination of wave functions from
each sub-lattice. The wave function of an electron of a n sub-lattice from layer s(1,2)
can be written as

|n,s,kkk〉= ∑
rrrn

eirrrn·kkk
√

Nsc
|rrrn,s〉 . (69)

Thus, the trial wave function of an electron in twisted bilayer graphene is

|kkk〉= ∑
s

∑
n

cn,s |n,s,kkk〉 . (70)

A component of the Hamiltonian of twisted bilayer graphene is given by

〈m,si,kkk|H|n,s j,kkk〉= ∑
rrrn

∑
rrrm

ei(rrrn−rrrm)·kkk

Nsc
〈rrrn,si|H|rrrm,s j〉 . (71)

We can rewrite rrrn, the position of a point in a sub-lattice n, as

rrrn = RRR+ vvvn (72)

where RRR is a vector pointing to one of the lattice points of supercell and vvvn is a position
of the lattice point n relative to each supercell. Now, Eq.64 can be rewritten as

〈m,si,kkk|H|n,s j,kkk〉= ∑
RRR

∑
RRR′′′

ei(RRR+vvvn−RRR′′′−vvvm)·kkk

Nsc
〈RRR+ vvvn,si|H|RRR′′′+ vvvm,s j〉 . (73)

If we change to the basis from |RRR+ vvvn,si〉 → eivvvn·kkk |RRR+ vvvn,si〉, Eq.66 can be written as

〈m,si,kkk|H|n,s j,kkk〉= ∑
RRR

∑
RRR′′′

ei(RRR−RRR′′′)·kkk

Nsc
〈RRR+ vvvn,si|H|RRR′′′+ vvvm,s j〉 . (74)

21



Figure 20: The band structure of twisted bilayer
graphene for m = r = 1 plot along Γ→ K1→ K2→
Γ, see Fig.18

Figure 21: Density of states of electrons in
twisted bilayer graphene for m = r = 1.

For each RRR′′′, we can see that summation over all supercells in the lattice yields the
same result whether there is a vector RRR′′′ or not. For simplicity, we will set RRR′′′ = 0 in the
Eq.74. Thus, we will get

〈m,si,kkk|H|n,s j,kkk〉= ∑
RRR

∑
RRR′′′

eiRRR·kkk

Nsc
〈RRR+ vvvn,si|H|vvvm,s j〉 . (75)

By using the continuum model which approximates the tunnelling amplitude to a contin-
uous function of the distance between two sites and the fact that the number of vectors
RRR′′′ is equal to the number of supercell Nsc, we get

〈m,si,kkk|H|n,s j,kkk〉= ∑
RRR

eiRRR·kkk
τ(RRR+ vvvn− vvvm) = ∑

RRR
eiRRR·kkk

τ(vvvm−RRR− vvvn). (76)

where τ is the tunnelling function which continuously depends on the distance between
two sites. In this works, we use a tunnelling function

t(s) = Ae−(s−h)/B h2

s2 (77)

where s is the distance between two sites. if s = h = 3.35 Å, the distance between
two layers, we know that t(h) = 0.39 eV. If s = d = 1.42 Å, the distance between carbon
atoms, we know that t(d) = 3.03eV . By using this information, we can fit the parameters
A and B which are equal to 0.39 eV and 0.27 Å, respectively. If the two sites n and m
are on the same layer, we will consider only the tunnelling between nearest neighbour
sites. Thus, we can approximate Eq.76 as

〈m,si,kkk|H|n,s j,kkk〉= ∑
RRR

eiRRR·kkk
τ(RRR+ vvvn− vvvm) = ∑

RRR
eiRRR·kkktδ (|vvvm−RRR− vvvn|−d) (78)

where δ is the Kronecker delta and d is the distance between carbon atoms. The
band structure and Fermi surface of twisted bilayer graphene when m = r = 1 is shown
in Fig.20 and 22.
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Figure 22: The Fermi surface of twisted bilayer graphene is similar to the Fermi surface of graphene
and bilayer graphene. It’s rotated in the clockwise direction.

2.2.2.1 Density of states

The density of states of electrons in twisted bilayer graphene for m = r = 1 is shown in
Fig.21.

2.2.3 Low energy regime of twisted bilayer graphene

In this section, we will derive the band structure of twisted bilayer graphene in low
energy regime. The main idea is that only electrons in the low energy states correspond
to this regime. In the previous section, the trial wave function of an electron is written
as a linear combination of localized wavefunctions of electrons in the same sub-lattice.
Then, we calculate the tunneling amplitude or the probability of tunneling between
sub-lattices. The momentum kkk in the previous section is measured with respect to the
center of the first Brillouin zone of the supercell but not the center of the first Brillouin
zone of each unit cell of graphene. Thus, it’s not clear wheather the momentum states
|n,s,kkk〉 in the previous section refers to the low energy state. This suggests us to write a
momentum state kkk of an electron where kkk is measured with respect to the center of the
first Brillouin zone of each unit cell of graphene. With this definition of the momentum
state kkk, we can easily denote the region where kkk corresponds to a low energy state,
the state near Dirac points. Next, we can create a momentum state kkk of an electron
from each layer according to the new definition of the momentum state as

|ψ1
kkk,α〉=

1√
Nuc

∑
RRR

eikkk(RRR+τττα ) |RRR+ τττα〉 , (79)

|ψ2
ppp,β 〉=

1√
Nuc

∑
RRR′′′

eippp(RRR′′′+τττ ′′′
β
) |RRR′′′+ τττβ 〉 . (80)
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Figure 23: The notation of variables of the real lattice used in this model. The red layer is unrotated
while the blue layer is rotated. carbon atoms B1 is below carbon atoms A2. The dots signify A-sublattices
in both layers.

where

kkk = a momentum state kkk measured from the center of the first Brillouin zone of the layer 1,
ppp = a momentum state ppp measured from the center of the first Brillouin zone of the layer 2,

α,β = a sublattice(A or B),
Nuc = the number of unit cells in each layer,

RRR = positions of B1 sublattices in layer 1 which can be written as a linear combination,
of the vectors aaa1 and aaa2,

RRR′′′ = positions of A2 sublattices in layer 2 which can be written as a linear combination,
of the vectors aaa′′′1 and aaa′′′2,

The vectors τα and τ ′
β

are not vanished when α = A and β = B, respectively. We can
get the vectors aaa′′′1 and aaa′′′2 by rotating the vectors aaa1 and aaa2, respectively. We change the
notations of vectors aaa1 and aaa2 because it will make the reciprocal space look simpler.
Fig.23 and 24 clarify the notion written above. The main difference between this model
and the model of the first half is that the basis of this model are constructed differently,
which can be seen from the fact that the normalized factor is not 1/

√
Nsc where Nsc is

the number of supercell. Although ppp,kkk are not measured directly from the center of the
first Brillouin zone of the supercell, they are related to the momentum states measured
from the center of the first Brillouin zone of the supercell. The prime symbols denote the
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Figure 24: The notation of variables of the reciprocal space used in this model.

quantities related to the rotated layer. Next, We calculate tunneling amplitude between
the momentum states in layer 1 and 2:

T αβ

kkk,,,ppp = 〈ψ1
kkk,α |H|ψ

2
ppp,β 〉=

1
Nuc

∑
RRR

∑
RRR′′′

e−ikkk(((RRR+++τττα )))+ippp(((RRR′′′+++τττ ′′′
β
))) 〈RRR+ τττα |H|RRR′′′+ τττ

′′′
β
〉 (81)

=
1

Nuc
∑
RRR

∑
RRR′′′

e−ikkk(((RRR+++τττα )))+ippp(((RRR′′′+++τττ ′′′
β
)))t(RRR+++ τττα −−−RRR′′′−−− τττ

′′′
β
). (82)

The form of the tunneling amplitude is the same as the one from Eq.77 but we will write
it now as a function of a distance in the xy-plane r instead of the distance between
carbon atoms or

t(rrr) = Ae−(
√

r2+h2−h)/λ h2

r2 +h2 . (83)

The FT of the tunneling amplitude t(rrr), which is a continuous on the real space func-
tion(MacDonald names this as a continuum model), between the localized wavefunc-
tion is

t(kkk) =
∫

e−ikkk·rrrt(rrr)d2rrr (84)

= 2π

∫
∞

0
rt(r)J0(kr)dr. (85)

The FT of the tunneling amplitude is simplified, written in a form of a Bessel function,
because we are dealing with a circularly symmetric function here. Thus, the inverse FT
of t(kkk) is

t(rrr) =
1

(2π)2

∫
eikkk·rrrt(kkk)d2kkk =

1
(2π)2

(2π)2

Atotal
∑
kkk

eikkk·rrrt(kkk) =
1

Atotal
∑
kkk

eikkk·rrrt(kkk) (86)
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where Atotal = NucAuc = the area of the each graphene sheet. Inserting the results from
Eq.86 to 81 yields

T αβ

kkk,,,ppp =
1

Nuc
∑
RRR

∑
RRR′′′

e−ikkk(((RRR+++τττα )))+ippp(((RRR′′′+++τττ ′′′
β
)))

(
1

Atotal
∑
kkk′′′

eikkk′′′·(RRR+++τττα−−−RRR′′′−−−τττ ′′′
β
)t(kkk′′′)

)
(87)

=
1

AucN2
uc

∑
RRR

∑
RRR′′′

∑
kkk′′′

e−ikkk(((RRR+++τττα )))+ippp(((RRR′′′+++τττ ′′′
β
)))eikkk′′′·(RRR+++τττα−−−RRR′′′−−−τττ ′′′

β
)t(kkk′′′) (88)

=
1

AucN2
uc

∑
RRR

∑
RRR′′′

∑
kkk′′′

ei(RRR+++τττα )(kkk′
′′−kkk)ei(RRR′′′+++τττ ′′′

β
)(ppp−kkk′′′)t(kkk′′′) (89)

=
1

Auc
∑
kkk′′′

(
∑
RRR

eiRRR(kkk′′′−−−kkk)

Nuc

)(
∑
RRR′′′

eiRRR′′′(ppp−−−kkk′′′)

Nuc

)
eiτττα (((kkk′

′′−−−kkk)))eiτττ ′′′
β
(((ppp−−−kkk′′′)))t(kkk′′′) (90)

=
1

Auc
∑
kkk′′′

(
∑
GGG1

δkkk′′′−−−kkk,,,GGG1

)∑
GGG′′′2

δppp−−−kkk′′′,,,−−−GGG′′′2

eiτττα (((kkk′
′′−−−kkk)))eiτττ ′′′

β
(((ppp−−−kkk′′′)))t(kkk′′′) (91)

=
1

Auc
∑
GGG1

∑
GGG′′′2

δkkk+++GGG1,,,ppp+++GGG′′′2
eiτττα GGG1e−iτττ ′′′

β
GGG′′′2t(kkk′′′) (92)

=
1

Auc
∑
GGG1

δkkk+++GGG1,,,ppp+++GGG′′′1
eiτττα GGG1e−i(τττβ−−−τττA)))GGG1t(kkk+++GGG1) (93)

where

GGG1,,,GGG′
′′
2 = linear combinations of reciprocal lattices vectors

of the layer 1 and 2, respectively. (94)

We write −GGG′′′2 instead of GGG′′′2 in Eq.91, which is not change anything, so that there are
only plus signs in the delta function in Eq.92. Because we want kkk and ppp to be as close
as possible, which will be clearified later, the delta function in the Eq.92 is non-zero
when GGG1 and GGG′′′2 are almost equal. This occcur when there components are equal.
Thus, after the summation over GGG′′′2, only the terms where GGG′′′2 === GGG′′′1(same components
but difference basis) survive. We also write (((τττβ −−− τττB)))GGG1 because the vectors τττβ and
GGG′′′2 are rotated with the same amount of angle which means the dot product between
them will be the same if we write them in an unrotated form. Note that we write τττβ −−−τττB
instead of τττβ because the original notation of τττ ′′′

β
is the vector that points to a sub-lattice

A in the rotated layer. Thus, if we want to write this vector in a form of vectors in the
unrotated layer, we must them in the form shown above to keep its notation.

The form of the tunneling amplitude from Eq.93 may look different from the form
on the MacDonald’s paper because we have already summed on the vectors GGG′′′2. A
shorter form of the tunneling amplitude[8], which does not include the factor eiτττBGGG1,

T αβ

kkk,,,ppp =
1

Auc
∑
GGG1

δkkk+++GGG1,,,ppp+++GGG′′′1
eiτττα GGG1e−iτττβ GGG1t(kkk+++GGG1) (94)
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can be obtained by using a new set of momentum states. For now, we will use the
Eq.93 as the tunneling amplitude. However, both form of the tunnelling amplitudes will
yield the same results as we can choose a basis that reduces the tunneling amplitude
written in MacDonald’s form to the form written here(he wrote how to do it in his paper).

2.2.3.1 Bilayer Graphene

In this section, we will use the result from Eq.94 to calculate the Hamiltonian of bilayer
graphene. Then, we will compare the Hamiltonian obtained in this section with the one
obtained from the method in the previous section. By using Eq.93, we can rewrite the
tunneling matrix as

T αβ

kkk,,,ppp =
1

Auc
∑
GGG1

δkkk+++GGG1,,,ppp+++GGG1ei(((τττα−−−τττβ+++τττA)))GGG1t(kkk+++GGG1). (95)

Note that GGG′′′1 === GGG1 for this case. From Eq.95, the delta function is not vanished when
kkk = ppp. Thus, from

T αβ

kkk,kkk =
1

Auc
∑
GGG1

ei(((τττα−−−τττβ+++τττA)))GGG1t(kkk+++GGG1). (96)

Thus, from the tunneling matrix, we can construct a trial wavefunction as

|Ψ(kkk)〉= c1 |A1,kkk〉+ c2 |B1,kkk〉+ c3 |A2,kkk〉+ c4 |B2,kkk〉 . (97)

And the resulting matrix has 4x4 dimension. Until now, we have not talked about the
tunnelling amplitude within the same layer. However, this quantity can be easily calcu-
lated by using Eq.93 and setting GGG1 to equal to GGG′′′1, which has already being done in
this case, because we are considering the tunnelling in the same layer. We will have to
replace t(kkk) with ts(kkk) which is the FT of the tunneling amplitude within the same layer.
The result is similar to the Eq.95 and we will write them as

T (s)αβ

kkk1,,,kkk2
=

1
Auc

∑
GGG1

δkkk1,,,kkk2ei(((τττα−−−τττβ+++τττA)))GGG1ts(kkk1 +++GGG1)∼ δkkk1,,,kkk2 (98)

where kkk1 and kkk2 are crystal momentum in the same reciprocal space. As you can
see, the tunneling between momentum states within the same layer occur when their
crystal momentums are equal. This result is general and we will use it later in the case
of twisted bilayer graphene. Finally, the expression of the Hamiltonian in this case is

HBG =


〈A1,k|H|A1,k〉 〈A1,k|H|B1,k〉 〈A1,k|H|A2,k〉 〈A1,k|H|B2,k〉
〈B1,k|H|A1,k〉 〈B1,k|H|B1,k〉 〈B1,k|H|A2,k〉 〈B1,k|H|B2,k〉
〈A2,k|H|A1,k〉 〈A2,k|H|B1,k〉 〈A2,k|H|A2,k〉 〈A2,k|H|B2,k〉
〈B2,k|H|A1,k〉 〈B2,k|H|B1,k〉 〈B2,k|H|A2,k〉 〈B1,k|H|B2,k〉

 (99)

=



0 −t f (kkk) T AA
kkk,,,kkk T AB

kkk,,,kkk

−t f ∗(kkk) 0 T BA
kkk,,,kkk T BB

kkk,,,kkk

(T AA
kkk,,,kkk )

∗ (T AB
kkk,,,kkk )

∗ 0 −t f (kkk)

(T BA
kkk,,,kkk )

∗ (T BB
kkk,,,kkk )

∗ −t f ∗(kkk) 0


. (100)
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By using Eq.96 and

τττA =− a√
3
(1,0), τττB = 0, (101)

bbb1 =
2π

a

(
1√
3
,−1

)
, bbb2 =

2π

a

(
1√
3
,1
)
, (102)

we can show that the tunneling amplitude between sub-lattices A1 and A2 is

T AA
kkk,,,kkk =

1
Auc

∑
GGG1

eiτττAGGG1t(kkk+++GGG1). (103)

If we look back to the section where we calculate this term, Eq.36, we can see that
this term should be vanished and not depend on the crystal momentum kkk. The reason
for the vanishing of that term is because we approximate it. However, the tunneling
amplitudes that we have derived here are more general which shows us that the real
tunneling amplitudes between all sub-lattices will depend on the crystal momentum. In
low energy regime, only the momentum states near the Dirac cone from each graphene
sheet are interested. Thus, we will write

kkk = KKK +qqq (104)

where K is the position of the Dirac cone in the reciprocal space of each graphene sheet
and |qqq| � |KKK| is a vector measured from the Dirac cone. Thus, we can approximate
T AA

kkk,,,kkk as

T AA
kkk,,,kkk ≈

1
Auc

(
t(KKK +++qqq)+ t(KKK +++qqq+bbb1)eiτττAbbb1 + t(KKK +++qqq−bbb2)e−iτττAbbb2

)
(105)

≈ 1
Auc

(
t(KKK)+ t(KKK +bbb1)eiτττAbbb1 + t(KKK−bbb2)e−iτττAbbb2

)
(106)

=
t(KKK)

Auc
(1+2cos(2π/3)) = 0. (107)

We use only three terms because this three terms yield the same magnitude of the
tunneling amplitude t(KKK) while other terms give less magnitude than this. By repeating
this procedures, we can also show that

T BB
kkk,,,kkk = T AB

kkk,,,kkk = 0 and T BA
kkk,,,kkk = 3

t(KKK)

Auc
= 0.34 eV. (108)

By using the Eq.84 to calculate the tunneling amplitude t(KKK) and the area of an unit
cell of graphene Auc =

√
3a2/2 = 5.24 Å2, we can show that T BA

kkk,,,kkk = 0.34 eV. Though, it is
not equal to 0.39 eV, which is because it’s an approximated value, the approximation
using only three terms give a quite good result.

2.2.3.2 Twisted Bilayer Graphene

We will use Eq.93 to calculate the band structure of twisted bilayer graphene in this sec-
tion. We can use the equation to calculate the band structure for each kkk by constructing
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the basis based on the values of kkk,,, ppp and GGG1 that yields non-zero delta function. We can
see that there are many ppp that yields non-zero delta function for each kkk since GGG1 6 6 6=== GGG′′′1
but not when GGG1 ≈≈≈ GGG′′′1. This means that the number of basis for a trial wavefunction in
this case are quite large. For a general value of kkk, it is hard to write a Hamiltonian for a
system to because

• Numerically, the dimension of the Hamiltonian is very large which means we have
to deal with a computationally expensive problem.

• Theoreotically, we have to face with the convergence problem. In other words,
it’s not clear how many basis we should keep for each k to determine the band
structure analytically.

Both of this can be solve by choosing the value of kkk that give most information to us.
Because we know the the low energy states are situated near the Dirac points, this
give us an intuitive idea that the momentum states near the Dirac points are account
for the shape of the band structure(only for the low energy regime). For the momentum
states near the Dirac point KKK and KKK′′′, we can write them as

kkk = KKK +++qqq (109)

where

KKK = The Dirac point of the unrotated layer 1, (110)
qqq = The momentum vector measured with respect to the Dirac point KKK (111)

and
ppp = KKK′′′+++qqq′′′ (112)

where

KKK′′′ = The Dirac point of the rotated layer 2, (113)
qqq′′′ = The momentum vector measured with respect to the Dirac point. KKK′′′ (114)

Fig.25 shows the vectors qqq and qqq′′′. We will now clarify why the components of the
reciprocal lattice vectors in the kronecker delta must be equal if we only interested in
the low energy regime. From Eq.92, the kronecker delta can be satisfied when

KKK +++qqq+++GGG1 = KKK′′′+++qqq′′′+++GGG′′′2. (115)

If GGG1 === bbb2 and GGG′′′2 = 0 and |||qqq||| � |KKK|, see Fig.26, we can see that the kronecker can
be satisfied when the magnitude of qqq is large. This will contradict the assumption of
the vectors qqq. If the components of the reciprocal lattice vectors are equal,which are
all zeros in this case, see Fig.27, we can see that the kronecker can be satisfied while
the magnitude of qqq and qqq′′′ satisfied the assumption. This is the reason why we set the
components of the reciprocal lattice vectors from each layer to be equal. Now, we can
rewrite the tunneling matrix, from Eq.93, as

T αβ

KKK+++qqq,,,KKK′′′+++qqq′′′ =
1

Auc
∑
GGG1

δqqq−−−qqq′′′,,,KKK′′′−−−KKK+++GGG′′′1−−−GGG1
ei(τττα−−−τττβ+++τττA)GGG1t(kkk+++GGG1). (116)
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Figure 25: qqq and qqq′′′ are measuared with respect to the Dirac cones of each layer.

Figure 26: If the components of reciprocal lattice vectors from both layers are not equal, the magnitude
of qqq(or qqq′′′ in other cases) will be too large.
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Figure 27: If the components of reciprocal lattice vectors are equal, the kronecker can be satisfied while
the magnitudes of qqq and qqq′′′ are still much less than |KKK|.

For each twist angle, the quantity KKK′′′−−−KKK which is the shift of Dirac point between two
layers are constant which we will write as

KKK′′′−−−KKK === qqqD. (117)

Because GGG1 and GGG′′′1 have the same components(different basis),

GGG′′′1−−−GGG1 = n(bbb′′′1−−−bbb1)+m(bbb′′′2−−−bbb2), (118)
= nbbbm

1 +mbbbm
2 . (119)

The definition of vectors bbbm
1 and bbbm

2 is shown in Fig.28. Eq.116 can be rewritten now as

T αβ

KKK+++qqq,,,KKK′′′+++qqq′′′ =
1

Auc
∑
n,m

δqqq−−−qqq′′′,,,qqqD+nbbbm
1 +mbbbm

2
ei(τττα−−−τττβ+++τττA)GGG1(n,m)t(KKK +++qqq+++GGG1(n,m)). (120)

From Eq.116, we can see that the tunneling amplitude is not vanished when

qqq−−−qqq′′′ === qqqD +nbbbm
1 +mbbbm

2 (121)

or when the differences between qqq and qqq′′′ are equal to qqqD+nbbbm
1 +mbbbm

2 . Let’s approximateqqq=
0 in the argument of function t as |||qqq||| ��� |||KKK|||, we can see that, from Fig.24,

t(KKK) = t(KKK−−−bbb1) = t(KKK−−−bbb2) (122)

because they are the same Dirac cone. Thus, for a momentum state |qqq〉, which should
be written as |qqq+++KKK〉 but we omit KKK, where qqq is near the Dirac point, we can use Eq.116
to write the tunneling matrix as

T αβ

KKK+++qqq,,,KKK′′′+++qqq′′′ ≈
t(KKK)

Auc
δqqq−−−qqq′′′,,,qqqD

+
t(KKK)

Auc
ei(τττα−−−τττβ+++τττA)bbb1δqqq−−−qqq′′′,,,qqqD−−−bbbm

1
+

t(KKK)

Auc
e−i(τττα−−−τττβ+++τττA)bbb2δqqq−−−qqq′′′,,,qqqD−−−bbbm

2
.

(123)
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Figure 28: bbbm
1 and bbbm

2

We can also write the Eq.123 as the form of a matrix as

TKKK+++qqq,,,KKK′′′+++qqq′′′ =

T AA T AB

T BA T BB


KKK+++qqq,,,KKK′′′+++qqq′′′

(124)

≈ t(KKK)

Auc

1 1

1 1

δqqq−−−qqq′′′,,,qqqD
+

t(KKK)

Auc

1 1

1 1

δqqq−−−qqq′′′,,,qqqD+++bbbm
1
+

t(KKK)

Auc

1 1

1 1

δqqq−−−qqq′′′,,,qqqD−−−bbbm
2

(125)
= T1δqqq−−−qqq′′′,,,qqqD

+T2δqqq−−−qqq′′′,,,qqqD−−−bbbm
1
+T3δqqq−−−qqq′′′,,,qqqD−−−bbbm

2
(126)

We will also write a momentum state from the rotated layer as |qqq′′′〉 instead of writing
|qqq′′′+++KKK′′′〉. The (minimal)number of basis for the Hamiltonian for qqq near the Dirac point
KKK are 8;

|qqq′′′,A(B)2〉 , |qqq+++qqqD,A(B),1〉 , |qqq′
′′+++qqqD−−−bbbm

1 ,A(B),2〉 , |qqq′
′′+++qqqD−−−bbbm

2 ,A(B),2〉 . (127)

The tunneling matrix between the momentum states in the rotated layer |qqq′′′,A2〉 , |qqq′′′,B2〉
can be calculated by using the result from the Eq.17. From the equation, we can see
that we can write the tunneling matrix between the momentum states of the unrotated
layer as

He f f
low,K(qqq) =−

√
3ta
2

 0 qx−qyi

qx +qyi 0

=−
√

3ta
2
|qqq|

 0 eiθqqq

eiθqqq 0

 (128)

where tan(θ ) = qy/qx. As you can see, θqqq is measured with respect to x-axis. This
means that we can obtain the tunneling matrix between the momentum states of the
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Figure 29: The reciprocal space spanned by reciprocal lattice vectors bbbm
1 and bbbm

2 . The high symmetry
lines are drawn along the points A, B, C, D and A. The rectangle denotes the area of the first Brillouin
zone.

rotated layer by rotating the x-axis. Thus, the tunneling matrix between the momentum
states of the rotated layer can be easily obtained from the Eq.105 by changing θqqq′′′,
which is measured with respect to the x-axis, to θqqq′′′ − θ where θ is the twist angle
which gives

He f f
low,K′(qqq

′′′) =−
√

3ta
2
|qqq′′′|

 0 ei(θqqq′′′−θ)

ei(θqqq′′′−θ) 0

 . (129)

Now, we can constructing the Hamiltonian by using the momentum states from the
Eq.4 as

Hlow(qqq) =


He f f

low,K(qqq
′′′) T1 T2 T3

T †
1 He f f

low,K′(qqq−−−qqqD) 0 0

T †
2 0 He f f

low,K′(qqq
′′′+++qqqD−−−bbbm

1 ) 0

T †
3 0 0 He f f

low,K′(qqq
′′′+++qqqD−−−bbbm

2 )


(130)

In general, we can construct a trial wavefunction from the momentum states as

|ψ(qqq)〉= ∑
n,m

cn,m
qqq |qqq′

′′+qqqD +nbbbm
1 +mbbbm

2 〉+ ∑
n′,m′

cn′,m′
qqq−−−qqqD

|qqq′′′+n′bbbm
1 +m′bbbm

2 〉 . (131)

From Eq.127, replacing qqq with qqq+nbbbm
1 +mbbbm

2 does not change the form of the Hamilto-
nian. This means the reciprocal lattice vectors of This momentum space are

bbbm
1 and bbbm

2 . (132)
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Figure 30: This figure shows a superlattice of twisted bilayer graphene with a twist angle equal to 21.79o.
The black dots denote places where carbon atoms are dense. In this case, carbon atoms superimpose
at each black dot. Moiré structure formed by the black dots are spanned by the vectors aaam

1 and aaam
2 .

Fig.29 shows a repeated zone scheme of the momentum space of the wave function
of electrons described by Eq131.We can use bbbm

1 and bbbm
2 to calculate the lattice vectors

for Moiré pattern shown in Fig.30.
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Chapter 3

Methodology

I will list a few steps required for calulating the band structure of twisted bilayer graphene
for large and small twist angles.

3.1 Large twist angles
1. determine the coordinates of sub-lattices in a supercell for each twist angle de-

terimined by m and r. This can be done by choosing a set of coordinates of
electrons near the origin and write them in the basis of the superlattice vectors.
For example, if rrrn,m = naaa1 +maaa2 is a coordinate of an electron, we can write it as

rrrn,m = naaa1 +maaa2→ rrrn,m = n′RRR1 +m′RRR2. (133)

Next, we will choose only n′ and m′ that are less than 1 as these are the coordi-
nates of electorns in the supercell marked by superlattice vectors RRR1 and RRR2.

2. use Eq.76 to determine the tunneling amplitude between sub-lattices which are
components of the Hamiltonian.

3.2 Small twist angles
1. select momentum states from both layer, see Appendix A.

2. use Eq.120 to calculate the tunneling amplitude between momentum states. It’s
better to calculate the tunneling amplitudes between both layers first as they are
not depend on the crystal momentum qqq.
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Chapter 4

Result

4.1 Band structure along high symmetry lines and Bandwidth

Figure 31: 0.5 degree Figure 32: 1.05 degree

Figure 33: 1.08 degree Figure 34: 2.00 degree

In this section, we will show you the band structures along high symmetry lines of 4
twist angles. The reason that we only focus on low twist angle is the low energy model
only valid in this region. As you can see from Fig.31-34, the differences between the
highest energy of the conduction band and the lowest energy of the valence, called
Bandwidth, can be easily seen from these figures but not in Fig.32. The conduction
band and valence bands shown in Fig.32 are almost straight lines in this energy scale,
eV. We can see from these figures that the Bandwidth is not always increased when
the twist angle is increased. For example, increasing the twist angle from 0.5 degree
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to 1.05 degree tends to decrease the Bandwidth while increasing the twist angle from
1.05 degree to 1.08 degree tends to increase the Bandwidth. Fig.35-38 show the

Figure 35: 0.5 degree Figure 36: 1.05 degree

Figure 37: 1.08 degree
Figure 38: 2.00 degree

conduction bands and valence bands of 4 twist angles in the energy scales that we
can see their bandwidths clearly. The band structures shown in Fig.35-37 are plotted
in the energy scale meV while Fig.38 shows the band structure in the energy scale
eV. We can see that the twist angle at 1.05 degree yields smallest bandwidth. There
are also energy gaps which sandwich the conduction and valence bands shown in
Fig.36. Fig.39 shows the bandwidth for all twist angles from 0 degree to 1.5 degree
calculated by using the energies plotted along high symmetry lines. there is a local
minimum at 1.05 degree. For the very low twist angles, less than 0.1 degree, we can
see that the bandwidths are even less than the bandwidth at 1.05 degree. At 0 degree,
the bandwidth is vanished completely! This is because the moire pattern is disappear
at very low twist angles,bbbm

1(2) → 0, this means we can’t get plot the band structures
along high symmetry lines anymore. But we know that the band structure of twisted
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Figure 39: The bandwidth of Moire pattern. Each value is calculated from the difference between the
maximum of the conduction band and the minimum of the valence band for each twist angle.

bilayer graphene when there is no twist angle is equal to the band structure of bilayer
graphene. Because the bandwidth of bilayer graphene, see Fig.13, is higher than the
bandwidth of twisted bilayer graphene at 1.05 degree. We conclude that the twist angle
at 1.05 degree yields smallest bandwidth.
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4.2 three-dimensional band structures and Fermi surface

Figure 40: 0.5 degree Figure 41: 1.05 degree

Figure 42: 1.08 degree Figure 43: 2.00 degree

In this section, we plot three-dimensional band structures of 4 twist angles in the
region specified by the rectangle shown in Fig.29. The colors shown in these figures
specify the energy levels of electrons. If the proportions of the yellow and blue regions
are almost equal, the energies of electrons are largely distributed. Thus, we can clearly
see from Fig.40-43 that the energies of electrons in the energy band with twist angle
equal to 1.05 degree distribute less than other twist angles. Fig.44 shows the Fermi
surface of twist bilayer graphene calculated from Fig.41. We can see that the momen-
tum states of electrons that have high energies situated near the center of the figure
are less than the momentum states of electrons that have low energies colored as blue.
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Figure 44: The Fermi surface of the conduction band when the twist angle is equal to 1.05 degree.
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4.3 Density of states

Figure 45: The density of states of twisted bilayer graphene with the twist angle equal to 1.05 degree.

The density of states of twisted bilayer graphene with twist angle equal to 1.05
degree is shown in Fig.45. As you can see, the density of states near the Fermi energy
is very high compared to other regions. Because there are energy gaps on both sides
of the Fermi energy, the density of states on both sides of the Fermi energy are zero.
Fig.46 shows the density of states for each energy level. Having high density of states
near the Fermi energy means there is a chance for us to change carrier density to
that energy level. If the temperature of our twisted bilayer graphene is very low and
the carrier density is at the level where the density of states is high, there is a chance
that the twisted bilayer graphene to be a superconductor. This is because the kinetic
energies of electrons are small over the wide range which means the potential energies
from the Coulomb potential will dominate. This strong interaction which occurs at this
energy level can leads to the superconducting state in twisted bilayer graphene. If we
change the carrier density to the region where the density of states is vanished. There
is a chance that we could get an insulator. The reason why we call 1.05 degree the
magic angle is there are many states that twisted bilayer graphene can be when the
twist angle is equal to 1.05.
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Figure 46: The conduction and valence bands of twisted bilayer graphene with twist angle equal to 1.05
degree and the desity of states.
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Chapter 5

Conclusion

In conclusion, we have written the codes for determining the band structures of graphene,
bilayer graphene and twisted bilayer graphene. For twisted bilayer graphene, we have
written two separated codes for calculating the band structures for large twist angles
and low twist angles. We also write codes to calculate the density of states of the
untwisted(twisted) bilayer graphene. The density of states of graphene and bilayer
graphene obtained from our model have similar shapes to other literatures. In case of
twisted bilayer graphene, we obtain the energy gaps on both sides of the Fermi energy
which is agree with the minimal model proposed by X. Lin[8]. The magic angle, or the
angle that yields smallest bandwidth, obtained from our model is precisely equal to
1.05 degree which is agree with the continuum model proposed by MacDonald[6].
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Appendix

1 param band = genvar band (4 ,1 .05 ) ;
2 qx = 0;
3 qy = 0;
4 E b tBLG ( qx , qy ,151 , param band ) ;

In this section, We will show the Matlab code that we use to calculate the band struc-
ture, density of states, Fermi surface of twisted bilayer graphene according to Mac-
Donald’s model. The code above shows how can we calculate energies for a crystal
momentum (qx,qy). First, 1 generates the necessary parameters using the function
genvar band(B,angle) where B and angle(degree) are the quantity relating to the num-
ber of basis, which we will clarify later, and the twist angle. We found that the energy
bands are converged when C≥3. We stored the parameters in the variable param band

in case we want to modify it later. Next, 2 and 3 specify the crystal momentum that we
want to calculate the energies. Last, 4 calculate the energies specified by the param-
eters from the previous lines using the function E b tBLG(qx,qy,N,param band) where
the variable N specifies the band that we want to obtain the energy. If there are M bands,
we can get the energy of the valence and conduction bands by using N = M/2-1 and N

= M/2+1, respectively. Appendixes A and B below show the code of the functions used
in the code above. The Fermi surface can be easily calculated by using the function
contour. Appendix C show how can we use the functions from Appendixes A and B to
calculate the denisty of states.

Appendix A
We will show how the function genvar band works in this section.

1 f u n c t i o n f = genvar band (B, angle )
2 t = B ;
3 %e x t r a c t coord ina te
4 %%%%%%%%%%%%%%%%%%%%%%%
5 i f t == 0
6 C = [ [ 0 , 0 ] ; [ 0 , 1 ] ; [ − 1 , 0 ] ] ;
7 e l s e i f t ==1
8 C = [ [ 0 , 0 ] ; [ 0 , 1 ] ; [ − 1 , 0 ] ; [ 1 , 0 ] ; [ 1 , 1 ] ; [ 1 , 2 ] ; . . .
9 [ 0 ,2 ] ; [ −1 ,1 ] ; [ −2 ,0 ] ; [ −2 , −1 ] ; [ −1 , −1 ] ; [0 , −1 ] ] ;

10 else
11 C = [ [ 0 , 0 ] ; [ 0 , 1 ] ; [ − 1 , 0 ] ; [ 1 , 0 ] ; [ 1 , 1 ] ; [ 1 , 2 ] ; . . .
12 [ 0 ,2 ] ; [ −1 ,1 ] ; [ −2 ,0 ] ; [ −2 , −1 ] ; [ −1 , −1 ] ; [0 , −1 ] ] ;
13 f o r i = 2 : t
14 p1 = [0+ i , 0 ] ;
15 p2 = [0 ,0− i ] ;
16 p3 = [−1− i ,0− i ] ;
17 p4 = [−1− i , 0 ] ;
18 p5 = [0 ,1+ i ] ;
19 p6 = [0+ i ,1+ i ] ;
20 C = [C; p1 ] ;
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21 C = [C; p2 ] ;
22 C = [C; p3 ] ;
23 C = [C; p4 ] ;
24 C = [C; p5 ] ;
25 C = [C; p6 ] ;
26 %l i n e 1
27 f o r j = 1 : i−1
28 C = [C; p1+ j ∗ [−1 ,−1]] ;
29 end
30 %l i n e 2
31 f o r j = 1 : i
32 C = [C; p2+ j ∗ [ −1 ,0 ] ] ;
33 end
34 %l i n e 3
35 f o r j = 1 : i−1
36 C = [C; p3+ j ∗ [ 0 , 1 ] ] ;
37 end
38 %l i n e 4
39 f o r j = 1 : i
40 C = [C; p4+ j ∗ [ 1 , 1 ] ] ;
41 end
42 %l i n e 5
43 f o r j = 1 : i−1
44 C = [C; p5+ j ∗ [ 1 , 0 ] ] ;
45 end
46 %l i n e 6
47 f o r j = 1 : i
48 C = [C; p6+ j ∗ [ 0 , −1 ] ] ;
49 end
50 end
51 end
52 %%%%%%%%%%%%%%%%%%%%
53 V0 = 0 .39 ;
54 lambda = 0 .27 ;
55 d0 = 3 .35 ; % dis tance between la ye r
56 d = 1 .42 ;
57 dhex = s q r t ( 3 ) ∗d ;
58 a1 = [ 1 / 2 ; s q r t ( 3 ) / 2 ] ∗ dhex ;
59 a2 = [−1/2; s q r t ( 3 ) / 2 ] ∗ dhex ;
60 b1 = [ s q r t ( 3 ) / 2 ; 1 / 2 ] ∗4 ∗ p i / ( 3∗ d ) ;
61 b2 = [− s q r t ( 3 ) / 2 ; 1 / 2 ] ∗4 ∗ p i / ( 3∗ d ) ;
62 Rt = @( ang ) [ cos ( ang ) ,− s in ( ang ) ; s in ( ang ) , cos ( ang ) ] ;
63 K = [4∗ p i / ( 3∗ dhex ) ; 0 ] ;
64 Auc = s q r t ( 3 ) ∗dhex ˆ 2 / 2 ; % Area of an u n i t c e l l
65 t he ta = ( angle ) ∗ p i /180 ;
66 hbarv f = 6.582; % eV∗Angstrom
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67

68 %Kt po in t ( r o ta ted K p o in t −−> t he ta / 2 ) and ro ta ted vec to rs
69 Kt1 = Rt ( the ta / 2 ) ∗K; %K po in t o f above l ay e r
70 Kt2 = Rt(− t he ta / 2 ) ∗K;%K po in t o f lower l ay e r
71 b1t = Rt ( the ta / 2 ) ∗b1 ; % above lay e r
72 b2t = Rt ( the ta / 2 ) ∗b2 ; % above lay e r
73 b3t = Rt(− t he ta / 2 ) ∗b1 ;% lower l a ye r
74 b4t = Rt(− t he ta / 2 ) ∗b2 ;% lower l a ye r
75 Kt1 = Kt1 ’ ;
76 Kt2 = Kt2 ’ ;
77 b1t = b1t ’ ;
78 b2t = b2t ’ ;
79 b3t = b3t ’ ;
80 b4t = b4t ’ ;
81 bm1 = b3t−b1t ;
82 bm2 = b4t−b2t ;
83 qb = Kt2−Kt1 ;
84 expo1 = exp (1 i ∗ ( the ta / 2 ) ) ;
85 expo2 = exp (1 i ∗(− t he ta / 2 ) ) ;
86

87 H0 = zeros (4∗ s ize (C, 1 ) ,4∗ s ize (C, 1 ) ) ;
88 H1 = zeros (4∗ s ize (C, 1 ) ,4∗ s ize (C, 1 ) ) ;
89 f o r i = 1:2∗ s ize (C, 1 ) % the r e s t can be ca l cu la ted by p u t t i n g

the herm i t i an conjugate on them
90 % i == row , j = column
91 u = 1;
92 co l = 0 ;
93 f o r j = 2∗ s ize (C, 1 ) +1:4∗ s ize (C, 1 )
94 d i f f 1 = C( f l o o r ( ( j −2∗s ize (C, 1 ) +1) / 2 ) ,1 )−C( f l o o r ( ( i +1)

/ 2 ) ,1 ) ;
95 d i f f 2 = C( f l o o r ( ( j −2∗s ize (C, 1 ) +1) / 2 ) ,2 )−C( f l o o r ( ( i +1)

/ 2 ) ,2 ) ;
96 kvec = norm ( Kt1+ d i f f 1 ∗b1t+ d i f f 2 ∗b2t ) ;
97 G1 = d i f f 1 ∗b1t+ d i f f 2 ∗b2t ;
98 G2 = G1;
99 fun = @( x ) 2∗ p i .∗V0.∗ x .∗ exp(−( s q r t ( x .∗ x+d0 ˆ 2 )−d0 ) . /

lambda ) . ∗ . . .
100 ( 1 . / ( x .∗ x+d0 ˆ 2 ) ) .∗ d0 ˆ 2 .∗ besse l j (0 , kvec .∗ x ) ;
101 i f mod( i , 2 ) == 1 % t h i s mean i −−> sub A
102 tau1 = [ 0 , 0 ] ;
103 else
104 tau1 = Rt ( the ta / 2 ) ∗ [ 0 ; 1 ] ∗ d ;
105 tau1 = tau1 ’ ;
106 end
107 i f mod( j , 2 ) == 1 % t h i s mean j −−> sub A
108 tau2 = [ 0 , 0 ] ;

46



109 else
110 tau2 = Rt ( the ta / 2 ) ∗ [ 0 ; 1 ] ∗ d ;
111 tau2 = tau2 ’ ;
112 end
113 H0( i , j ) = ( i n t e g r a l ( fun ,0 , i n f ) / Auc ) ∗exp (1 i ∗ ( dot (G1, tau1

)−dot (G2, tau2 ) ) ) ;
114 H0( j , i ) = H0( i , j ) ’ ;
115 co l = co l +1;
116 i f co l == 2
117 u = u+1;
118 co l = 0 ;
119 end
120 end
121 end
122

123 f {1} = C;
124 f {2} = bm1;
125 f {3} = bm2;
126 f {4} = hbarv f ;
127 f {5} = expo1 ;
128 f {6} = expo2 ;
129 f {7} = qb ;
130 f {8} = H1 ;
131 f {9} = H0 ;
132 f {10} = Kt1 ;
133 f {11} = Kt2 ;
134 end

The lines 2-51 create basis according to the value of B. The number of basis can be
easily understood from Fig.47. The lines 53-57 specify the tunneling parameters[8].
From Eq.130, we can see that the low-energy Hamiltonian of tBLG can be separated
to the non-diagonal and diagonal parts, H0 and H1, respectively. The lines 89-121
create the non-diagonal part H0. We calculate this part in this code because this part
is not depend the crystal momentum. Doing this will help us the reduce the time used
for calculating the whole energy bands. The lines 123-131 send all calculated variables
to the indices.

Appendix B
In this section, we will use the parameters and variables generated from the function

genvar band to calculate the energy bands.

1 f u n c t i o n e = E b tBLG ( qx , qy , s , f )
2

3 f {1} = C;
4 f {2} = bm1;
5 f {3} = bm2;
6 f {4} = hbarv f ;
7 f {5} = expo1 ;
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Figure 47: When you specfify B = 1, the number of K-points used in the calculation. In this case, the
total number of basis should be (3+1)*2 according to Eq.130 where the number 1 is added to account
for the tunneling within the unrotated layer and the number 2 accounts for the sub-lattices A and B.
However, we want the basis in each layer to be equal which means we will use the same number of
K-points from each layer. Thus, the number of basis used in our program is equal to (3+3)*2.

8 f {6} = expo2 ;
9 f {7} = qb ;

10 f {8} = H1 ;
11 f {9} = H0 ;
12 f {10} = Kt1 ;
13 f {11} = Kt2 ;
14

15 t = 3 .03 ;
16

17 ux = mod( qx , s q r t ( 3 ) ∗norm ( qb ) ) ;
18 uy = mod( qy ,3∗norm ( qb ) ) ;
19 %def ine mat r i x
20 u = 1;
21 co l = 0 ;
22 f o r v = 1 :2 :2∗ s ize (C, 1 )−1
23 qx2 = ux+C( u , 1 ) ∗bm1( 1 ) +C( u , 2 ) ∗bm2( 1 ) ;
24 qy2 = uy+C( u , 1 ) ∗bm1( 2 ) +C( u , 2 ) ∗bm2( 2 ) ;
25 k1 = Kt1 ’ + [ qx2 ; qy2 ] ;
26 u1 = exp (1 i ∗dot ( k1 , d1 ) ) +exp (1 i ∗dot ( k1 , d2 ) ) +exp (1 i ∗

dot ( k1 , d3 ) ) ;
27 H1( v : v+1 ,v : v+1) = − t ∗ [ 0 , u1 ; u1 ’ , 0 ] ;
28 co l = co l +1;
29 i f co l == 1
30 u = u+1;
31 co l = 0 ;
32 end
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33 end
34 u = 1;
35 co l = 0 ;
36 f o r v = 2∗ s ize (C, 1 ) +1:2:4∗ s ize (C, 1 )−1
37 qx2 = ux+qb ( 1 ) +C( u , 1 ) ∗bm1( 1 ) +C( u , 2 ) ∗bm2( 1 ) ;
38 qy2 = uy+qb ( 2 ) +C( u , 1 ) ∗bm1( 2 ) +C( u , 2 ) ∗bm2( 2 ) ;
39 k2 = Kt2 ’ + [ qx2 ; qy2 ] ;
40 u2 = exp (1 i ∗dot ( k2 , dt1 ) ) +exp (1 i ∗dot ( k2 , dt2 ) ) +exp (1 i

∗dot ( k2 , dt3 ) ) ;
41 H1( v : v+1 ,v : v+1) = − t ∗ [ 0 , u2 ; u2 ’ , 0 ] ;
42 co l = co l +1;
43 i f co l == 1
44 u =u+1;
45 co l = 0 ;
46 end
47 end
48 E ( 1 , : ) = e ig (H1+H0) ;
49 e = E(1 , s ) ;
50 end

The lines 2-13 retrieve the parameters and variables from the function param band.
the line 13 specifies the tunneling amplitude between carbon-carbon atoms. The lines
17, 18 are included to solve the problem of non-periodic band structures when the
ranges of the crystal momentums qx and qy are too large. This occurs because 1)
we only keep only the finite number of basis 2) we use the low-energy Hamiltonians
of graphene in the diagonal part of H1 which are not periodic, see Eq.18. Because
we use C≥3, there is no discontinuity in the boundaries,marked by the rectangle in
Fig.29, of the momentum space which means it’s correct to include the lines 17 and 18.
Fig.48,49 show the differences in the boundary of the momentum space. You can see
that the difference is almost vanished when C = 3. Next, the lines 20-50 calculate the
components for the diagonal Hamiltonian H1.
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Figure 48: The three lines show the differences in
the energies where qy = 0 and qy = 3|qqqb| which are
the boundaries of the momentum space. The red,
green and blue show the difference in the ener-
gies when C = 2,3 and 4, respectively. As you can
see, the order of ∆E for the red line is in the order
10−2 eV which is quite large. Thus, it’s invalid to
use the function E b tBLG in this case.

Figure 49: The values of ∆E decrease substan-
tially when we increase C. The order of ∆E when
C=4 is 10−3 while it’s equal to 10−4 when C=4.
Thus, we the function E b tBLG is valid when C≥3.

Appendix C
This part use the result from the appendixes A and B to calculate the density of

states of twisted bilayer graphene. The area of the first Brillouin zone is shown in
Fig.29.

1 param band = genvar band (4 ,1 .05 ) ;
2 qb = param band {7} ;
3 Nx = 400;
4 Ny = 400;
5

6 minx = 0;
7 maxx = s q r t ( 3 ) ∗norm ( qb ) ;
8 miny = 0;
9 maxy = 3∗norm ( qb ) ;

10

11 dx = (maxx−minx ) / Nx ;
12 dy = (maxy−miny ) / Ny ;
13 E = zeros (Ny+1 ,Nx+1 ,4∗ s ize (C, 1 ) ) ;
14 expo1 = exp (1 i ∗ ( the ta / 2 ) ) ;
15 expo2 = exp (1 i ∗(− t he ta / 2 ) ) ;
16 f o r nkx = 1:Nx+1
17 qx = minx+dx ∗ ( nkx−1) ;
18 f o r nky = 1:Ny+1
19 qy = miny+dy ∗ ( nky−1) ;
20 f o r b = 1:4∗ s ize (C, 1 )
21 E( nky , nkx , b ) = . . .
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22 E b tBLG ( qx , qy ,2∗ s ize (C, 1 ) , param band ) ;
23 end
24 end
25 end
26

27 min e = −0.09;
28 max e = 0 .09 ;
29 Ne = 400;
30 dez = ( max e−min e ) /Ne ;
31 dA = dx∗dy ;
32 cof = dA / ( 2∗ p i ∗ p i ∗dez ) ;
33 DOSX = min e : dez : max e ;
34 DOSY = zeros (1 , s ize (DOSX, 2 ) ) ;
35

36 f o r ne = 1:Ne+1
37 count = 0 ;
38 ez = min e+dez ∗ ( ne−1) ;
39 f o r layer energy = 2∗ s ize (C, 1 ) −5:2∗ s ize (C, 1 ) +5
40 tms1 = E ( : , : , l ayer energy ) ;
41 f o r i = 1 :Nx+1
42 tms2 = tms1 ( i , : ) ;
43 f o r j = 1 :Ny+1
44 i f abs ( ez−tms2 ( j ) ) < 0.5∗dez
45 count = count +1;
46 end
47 end
48 end
49 end
50 DOSY( ne ) = count ;
51 end
52 DOSY = cof ∗DOSY;

The lines 1-4 generate parameters and the number of grids used for calculating the
density of states. The lines 6-9 specify the boundaries of the Brillouin zone, see Fig.29.
The lines 11-19 calculate the energy bands within the Brillouin zone. The lines 27 and30
denote the range of energy we want to calculate the density of states where Ne is the
number of discretized energy. The lines 31 and 32 give the coefficient shown in Eq.27.
The lines 36-51 count the number of states within each energy range.
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