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Abstract 

In this project we try to explain dynamic of hidden unit in residual network with knowledge of 
partial differential equation and quantum mechanics. By consider the change of input information 
over one layer of residual block as dynamics over a unit of time and consider each tensor element 
of input as function in the position space we see that the residual block is mathematical equivalence 
to partial differential equation depend on time and position, this allows us to derive Hamiltonian-
like object describe dynamics of the input in the similar fashion to the Schrödinger equation. We 
also show that output from the hidden layer of residual network can be write as sum of contribution 
from all paths the input has travelled in the previous layer like Feynman path integral formulation 
of quantum mechanics. The experiment of neural network architecture from PDE is created and 
compared with residual network in the case that residual block is made up of skip connection over 
one convolution kernel. Example of further development of neural network architecture from 
mathematical understanding of residual block is indicated here as neural ordinary differential 
equation.  
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CHAPTER I 

INTRODUCTION 

 Artificial neural network is a machine learning algorithm inspired by biological neural 
network located in animal brain. By receiving a set of observational data �⃑�, �⃑�  where �⃑� is a matrix 
of independent variable and �⃑� is vector of dependent variables, the network itself can learn relation 
between each pair of 𝑋𝑖, 𝑦𝑖 and predict �⃑� when unseen �⃑� is given. This fascinating ability cause 
neural network to be used in various tasks. 

 Activity of artificial neural network starts by receiving dataset into the network, next the 
dataset is divided into two groups: training dataset 𝒟𝑡𝑟𝑎𝑖  and test dataset 𝒟𝑡𝑒 𝑡, training dataset is 
used to create model 𝑓(�⃑�; �⃑�) which is function of �⃑� and parameters �⃑� used in prediction of �⃑� . The 
model is created by passing the operation of parameters into some activation function. Then the 
performance of network is evaluated using cost function ℒ(�⃑�, 𝑓(�⃑�; �⃑�)), the function tells us how 
𝑓(�⃑�; �⃑�) different from the ground truth �⃑�. Learning of the network is to minimizing cost function 
of training dataset ℒ(�⃑�𝑡𝑟𝑎𝑖 , 𝑓(�⃑�𝑡𝑟𝑎𝑖 ; �⃑�)) by adjusting value of �⃑�s, usually by back propagation 
in wish gradient of loss function with respect to each parameter is calculated, then it used to adjust 
the learning parameter in the way that value of loss function is decreased. After the network is 
finished learning final evaluation of network is performed by calculating loss function of test 
dataset ℒ(�⃑�𝑡𝑒 𝑡, 𝑓(�⃑�𝑡𝑒 𝑡; �⃑�)) [1].  

 At the present time, numerous architectures of neural network are proposed with goal of 
improve performance of neural network on vast majorities of tasks, the one that caught our 
attention is the network architecture called residual neural network (ResNet) which its hidden layer 
made up of residual block, the network shows high performance on image classification task in 
term of reduce error caused by vanishing gradient which drops accuracy of network as the 
architecture goes deeper. 

1.1 Brief idea of residual network 

What make residual network special is the structure that build up the hidden layer called 
residual block, residual block consists of two components: convolution kernel and skip connection.  

 
Figure 1.1 Residual block  
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Convolution kernel is a tensor of parameter called weight 𝑤, the kernel is overlay on the tensor 
of input data and usually smaller than the input. Convolution kernel work by convolve the element 
of tensor 𝑢(𝑥, 𝑡) in the interception region 𝑥 ∈ [−𝑎, 𝑎] and create an element of activation map 
𝑢(𝑥, 𝑡 + 1) as: 

𝑢(𝑥, 𝑡 + 1) = 𝑤(𝑑𝑥)𝑢(𝑥 + 𝑑𝑥)
𝑑𝑥=𝑎

𝑑𝑥=−𝑎

= 𝑤(𝑥) ∗ 𝑢(𝑥, 𝑡) (1) 

Then further process by slide along the width of input data with fixed stride to the right and 
hops down to the left-end of tensor with same stride value, the process repeated until entire tensor 
is process, completing the activation map [2]. The use of convolution kernel can be modified by 
adjust hyperparameters like stride which controls step the kernel move, or zero-padding which 
create zero value boarder on the input tensor changing size of activation map on the progress. 

 

 
Figure 1.2 The process of 2-dimensional convolutional kernel on the 2-dimensional input tensor, the 
kernel creates first element of activation map O1,1. 

With proper value of weight, convolution kernel can be used in classification task of neural 
network by help the network extract high-level features of data i.e., features that display the 
characteristic of �⃑� which help the network to determine its label �⃑� [2], hence enhance the 
performance of classification. 

The network of convolutional kernel is the architecture of hidden layer of convolutional neural 
network (CNN) which create model by create activation map and processing with activation 
function to make output of the layer then repeated until the final layer, before passing into 
traditional fully connected ANN. The network shows high performance on image classification 
task [3]. However, as hidden layer of network goes deeper, the accuracy of prediction become 
saturated and suddenly drop in some point. The degradation of accuracy is caused by vanishing 
gradient where gradient with respect to weight at the previous layer is decreased due to the chain 
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rule multiplication of gradients until it vanished eventually [4]. Skip connection of ResNet can 
solve such problem by adding elements of tensor from previous layer to activation map of current 
layer hence higher value of gradient is obtained [5]. The strategy to prevent vanishing gradient is 
sometimes include applying the suitable activation function like rectified linear unit (ReLU) which 
return absolute value of the activation map element if it has value more than zero and return zero 
if the input element is negative. 

1.2 Motivation  
 

 
(a)                                                                          (b) 

Figure 1.4: (a) The path of input information caused by residual block, the output information is seen as 
sum of contribution from each path, (b) path of photon in slit experiment. 

To design further neural network architecture from the previous version, the mathematical 
knowledge of how input tensor changed as it passes through the hidden layer of network is strongly 
required. By comparison we see the implicit similarity between the dynamics of hidden state 
through the hidden layer and particle in quantum mechanics such as photon in slit experiment 
where the final output comes from summation of contributes from each path it was travelled. This 
implicit similarity gives up a question: “Is it possible to explain the non-physical phenomena with 
knowledge of physics?” in which we strongly believe that it is possible. 

1.3 Objective and scope of this project 

In this project we aim to explain the dynamics of the hidden state of residual network with 
knowledge of non-relativistic quantum mechanics pointing similarity between formulation of non-
relativistic quantum mechanics and structure of residual network. In chapter II we review the 
formulation of quantum mechanics Schrödinger equation, discuss its special case where 
Hamiltonian is time-independent and expand to Feynman path integral formulation. In chapter III 
the structure of residual block is shown to be equivalent to the partial differential equation (PDE) 
and define Hamiltonian-like object which cause dynamics of information in the hidden layer and 
finally write output from hidden layer of residual network in form of path integral using knowledge 
of Fourier transformation and Hamiltonian-like object we obtained. 
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CHAPTER II 

FORMULATION OF NON-RELATIVISTIC QUANTUM MECHANICS 

2.1 The Schrödinger equation 

 Time evolution of a quantum system is described by the Schrödinger equation: 

𝑖ℏ
𝜕𝜓(𝑥, 𝑡)

𝜕𝑡
= 𝐻𝜓(𝑥, 𝑡) = −

ℏ2

2𝑚
𝜕2𝜓(𝑥, 𝑡)

𝜕𝑥2 + 𝑉𝜓(𝑥, 𝑡) (2) 

Where the solution of (2) 𝜓(𝑥, 𝑡) is called wave function which contain all information about the 
system [6]. In case that Hamiltonian operator 𝐻 dose not explicitly depend on time, wave function 
can be calculated by the method of separable solution [7]. With this method (2) can be separate 
into two independent ordinary differential equation (ODE). 

𝑖ℏ
𝑑𝜑(𝑡)

𝑑𝑡
= 𝐸 (3) 

−
ℏ2

2𝑚
𝜕2𝜒(𝑥)

𝜕𝑥2 + 𝑉𝜒(𝑥) = 𝐸𝜒(𝑥) (4) 

By solving (3) we have 𝜑(𝑡) = 𝑒− ℏ  while (4) depending on what form of Hamiltonian is the 
Hamiltonian dependent ODE is called time-dependent Schrödinger equation (TISE). The wave 
function is the product of solution from the two ODEs, so we may see time evolution of quantum 

particle subjected to the time-dependent Hamiltonian is determined by the exponential 𝑒− ℏ . This 
type of Schrödinger equation is shown to be equivalent to Feynman path integral formulation in 
the original paper of the formulation and as we will see in the next few sections. The wave function 
can be considered as vector in Hilbert space of position that interchangeable with Hilbert space of 
momentum where momentum can be seen as real number operator 𝑝 while position is instead 
considered as some derivative operator. The interchange of two Hilbert spaces can be done by 
applying inverse Fourier transformation and Fourier transformation. 

𝜙(𝑝) =
1

√2𝜋ℏ
𝜓(𝑥, 0)𝑒−𝑖𝑝𝑥/ℏ𝑑𝑥 

∞

−∞
⟺  𝜓(𝑥, 0) =

1
√2𝜋ℏ

𝜙(𝑝)𝑒𝑖𝑝𝑥/ℏ𝑑𝑥
∞

−∞
(5) 

The use of Fourier transformation is useful in various case, in particular the case that particle in 
considered to be free particle in which calculation in position space cause paradox [6]. 

2.2 The Dirac notation 

In Dirac notation, quantum mechanics is described using abstract object | ⟩ serves as vector in a 
Hilbert space [8] and its complex conjugate defined as ket ⟨ | and the inner product between two 
vectors in Hilbert space is called bracket written as ⟨ | ⟩. In comparison to previous formulation 
the basis vector 𝜓 in Hilbert space can be write in form of |𝜓⟩. 
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The inner product of the vector and basis vector of position space of momentum space create wave 
function in the Hilbert space. 

𝜓(𝑥) = ⟨𝑥|𝜓⟩ 

𝜓(𝑝) = ⟨𝑝|𝜓⟩ (6) 

And inner product between two bases represents inverse Fourier transformation and Fourier 
transformation. 

⟨𝑥 |𝑥⟩ =
1

√2𝜋ℏ
𝑒

𝑖𝑝(𝑥 −𝑥)
ℏ = 𝛿(𝑥 − 𝑥) 

⟨𝑝′|𝑝⟩
1

√2𝜋ℏ
𝑒

𝑖𝑥(𝑝 −𝑝)
ℏ = 𝛿(𝑝 − 𝑝) 

⟨𝑥|𝑝⟩ =
1

√2𝜋ℏ
𝑒

𝑖𝑝𝑥
ℏ (7) 

⟨𝑝|𝑥⟩ =
1

√2𝜋ℏ
𝑒−𝑖𝑝𝑥

ℏ  

The notation also contains completeness relation: 

𝑑𝑥|𝑥⟩⟨𝑥| 
∞

−∞
= 𝕀 

𝑑𝑝|𝑝⟩⟨𝑝| 
∞

−∞
= 𝕀 (8) 

With this notation, we can rewrite (2) as  

𝑖ℏ
𝜕
𝜕𝑡

|𝜓(𝑡)⟩ = 𝐻|𝜓(𝑡)⟩ (9) 

2.2 Feynman Path Integral 

In 1948, Richard Feynman proposed a new formulation of quantum mechanics by considering the 
probability that particle will occupy each trajectory in space, with this idea he thinks of 
wavefunction as probability amplitude that particle is in a space-time point (𝑥, 𝑡) which obtained 
from the integration of all contributions from possible paths the particle subjected to in the past, 
where those contributions are the same in amplitude but their phase are depend on the classical 
action of the path [9]: 

𝜓 𝑥, 𝑡𝑓 = 𝑑𝑥𝑝𝑎𝑡ℎ𝑒
𝑖
ℏ𝑆 𝜓(𝑥′, 𝑡𝑖)

𝑥
(10) 

The formulation also able to be derived from the previous formulations, as we mention earlier this 
can be done in the case of time-independent Hamiltonian. In his original paper, Feynman derive 
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TISE from (10) with some approximations [9]. The derivation of (10) from previous formulation 
can be done by consider solution of TISE.  

As we mentioned earlier, time-evolution of wave function is dictated by the exponential 𝑒− ℏ , 
with this fact we can write time evolution of wave function as 

𝜓(𝑥, 𝑡) = 𝑒−𝑖
ℏ𝑡𝐻𝜓(𝑥, 0) 

                          = 𝑥 𝑒−𝑖(𝑡)𝐻 𝜓(0) (11) 

By applying completeness relation in position basis 

𝜓(𝑥, 𝑡) = 𝑑𝑥 𝑥 𝑒−𝑖(𝑡)𝐻 𝑥′ ⟨𝑥′|𝜓(0)⟩ 

            = 𝑑𝑥 𝑥 𝑒−𝑖(𝑡)𝐻 𝑥 𝜓(𝑥′, 0) (12) 

We see that 𝜓(𝑥, 𝑡) becomes the sum of all products between the initial wave function and the 
propagator 𝑥 𝑒−𝑖(𝑡)𝐻 𝑥′  which specify the probability amplitude that particle that was in the point 
(𝑥 , 0) to the point (𝑥, 𝑡). To specify what exactly the propagator is we might want to simplify the 
exponential of Hamiltonian since two component operators of Hamiltonian 𝐻 = 𝑇 + 𝑉 depend on 
different variables which cause complexity in calculation, to cope with such complexity we may 
wish to separate the exponential of Hamiltonian into the term of 𝑇 and 𝑉. However, the separation 
caused more problem due to the non-commute nature of the variables they depend on. So instead 
of considering the effect of 𝑒−𝑖(𝑡)𝐻 at once we instead divide the exponential of 𝑡 into 𝑁 pieces of 

𝑒−𝑖 𝐻 and approximate the exponential, 

𝑒−𝑖 𝑡
𝑁(𝑇+𝑉) ≈ 𝑒−𝑖 𝑡

𝑁𝑇𝑒−𝑖 𝑡
𝑁𝑉 1 +

𝑇, 𝑉
𝑁2 +

𝒪
𝑁3 (13) 

under limit 𝑁 → ∞ we can neglect all the terms in (12) except the term with zeroth order of 𝑁 
hence the exponential of Hamiltonian is now separable. Then we apply 𝑁 completeness relation 
of position basis, the relations become continuous, let 𝑥 = 𝑥𝑁 and 𝑥 = 𝑥0 our propagator 
becomes: 

𝑥 𝑒−𝑖(𝑡)𝐻 𝑥′  = 𝑑𝑥𝑁−1 𝑑𝑥𝑁−2 … . 𝑑𝑥1 𝑥𝑁 𝑒−𝑖 𝑡
𝑁𝐻 𝑥𝑁−1 𝑥𝑁−1 𝑒−𝑖 𝑡

𝑁𝐻 𝑥𝑁−2  

         × 𝑥𝑁−1 𝑒−𝑖 𝑡
𝑁𝐻 𝑥𝑁−2 ⟨𝑥𝑁−2| … . |𝑥1⟩ 𝑥1 𝑒−𝑖 𝑡

𝑁𝐻 𝑥0 (14) 
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Since 𝑒−𝑖 𝐻 can be separate into two terms, one depended on 𝑥 and one depended on 𝑝 we add 
another completeness relation, this time on momentum basis to calculate the term of kinetic 
energy. 

𝑥 𝑒−𝑖(𝑡)𝐻 𝑥′ = 𝑑𝑥𝑁−1 … . 𝑑𝑥1 𝑑𝑝𝑁−1 … . 𝑑𝑝0 ⟨𝑥𝑁|𝑝𝑁−1⟩ 

                                     × 𝑝𝑁−1 𝑒−𝑖 𝑡
𝑁

𝑝
2𝑚𝑒−𝑖 𝑡

𝑁𝑉 𝑥𝑁−1 ⟨𝑥𝑁−1|𝑝𝑁−2⟩⟨𝑝𝑁−2| … 

        … ⟨𝑥1|𝑝0⟩ 𝑝0 𝑒−𝑖 𝑡
𝑁

𝑝
2𝑚𝑒−𝑖 𝑡

𝑁𝑉 𝑥0 (15) 

From (6) we see that bracket between position basis and momentum basis is Fourier transformation 

𝑥 𝑒−𝑖(𝑡)𝐻 𝑥′ = 𝑑𝑥𝑁−1 … . 𝑑𝑥1 𝑑𝑝𝑁−1 … . 𝑑𝑝0
1

√2𝜋ℏ
𝑒

𝑖
ℏ𝑝 𝑥 𝑒−𝑖

ℏ
𝑝

2𝑚
𝑡
𝑁 

                               × 𝑒−𝑖
ℏ𝑉(𝑥 ) 𝑡

𝑁
1

√2𝜋ℏ
𝑒

𝑖
ℏ 𝑥 … .

1
√2𝜋ℏ

𝑒
𝑖
ℏ𝑝 𝑥 𝑒−𝑖

ℏ
𝑝
2𝑚

𝑡
𝑁𝑒−𝑖

ℏ𝑉(𝑥 ) 𝑡
𝑁 

                                 = 𝑑𝑥𝑁−1 … . 𝑑𝑥1 𝑑𝑝𝑁−1 … . 𝑑𝑝0
1

2𝜋ℏ
𝑒

𝑖
ℏ𝑝 (𝑥 −𝑥 )𝑒−𝑖

ℏ
𝑝

2𝑚
𝑡
𝑁 

          × 𝑒−𝑖
ℏ𝑉(𝑥 ) 𝑡

𝑁 … .
1

2𝜋ℏ
𝑒

𝑖
ℏ𝑝 (𝑥 −𝑥 )𝑒−𝑖

ℏ
𝑝
2𝑚

𝑡
𝑁𝑒−𝑖

ℏ𝑉(𝑥 ) 𝑡
𝑁 (16) 

The sequence of 𝑥s with respect to time define the possible path of the particle, with this (12) and 
(16) tell us that 𝜓(𝑥, 𝑡) is the result of integral of contributions from all possible paths the particle 
in the past like we mention earlier. Furthermore (16) allow us to separate the term of potential 
energy from the rest momentum-dependent terms. Unless we know what exactly what potential 
energy takes form, we cannot calculate any further than that. Momentum-dependent terms, 
however, can be integrate out and make 𝜓(𝑥, 𝑡) in form of (10) which is the sum of position only, 
this can be done by defining imaginary time 𝜏 = −𝑖𝑡 and △ 𝜏 =

𝑁
 and consider a momentum term 

at time 𝑁 

𝑑𝑝𝑁−1
1

2𝜋ℏ
𝑒−𝑖

ℏ
𝑝

2𝑚
𝑡
𝑁+𝑖

ℏ𝑝 (𝑥 −𝑥 )
∞

−∞
= 𝑑𝑝𝑁−1

1
2𝜋ℏ

𝑒−Δ
ℏ

𝑝
2𝑚 +𝑖

ℏ𝑝 (𝑥 −𝑥 )
∞

−∞
 

                                                                                      = 𝑑𝑝𝑁−1
1

2𝜋ℏ
𝑒− Δ

2𝑚ℏ(𝑝 −2𝑖𝑚
Δ 𝑝 (𝑥 −𝑥 ))

∞

−∞
 

                                         =
1

2𝜋ℏ
𝑒− 𝑚

2ℏΔ (𝑥 −𝑥 )  

                                                                                        × 𝑑𝑝𝑁−1𝑒− Δ
2𝑚ℏ(𝑝 −𝑖𝑚

Δ (𝑥 −𝑥 ) )
∞

−∞
(16) 
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Now let 𝑢 = 𝑚
2ℏ∆

𝑝𝑁−1 − 𝑖𝑚
∆

(𝑥𝑁 − 𝑥𝑁−1) , (16) becomes Gaussian integral: 

𝑑𝑝𝑁−1
1

2𝜋ℏ
𝑒−𝑖

ℏ
𝑝

2𝑚
𝑡
𝑁+𝑖

ℏ𝑝 (𝑥 −𝑥 )
∞

−∞
=

1
2𝜋ℏ

2𝑚ℏ
Δ𝜏

𝑒− 𝑚
2ℏΔ (𝑥 −𝑥 ) 𝑒−𝑢

∞

−∞
 

                                                       =
𝑚

2𝜋ℏ∆𝜏
𝑒− 𝑚

2ℏΔ (𝑥 −𝑥 ) (17) 

The same goes for all momentum integrals, thus (15) becomes, 

𝑥 𝑒−𝑖(𝑡)𝐻 𝑥′ = 𝑑𝑥𝑁−1 … . 𝑑𝑥1
𝑚

2𝜋ℏΔ𝜏

𝑁
2 𝑒

− 𝑚
2ℏ

(𝑥 −𝑥 )
Δ Δ −Δ

ℏ 𝑉(𝑥 )
…. 

× 𝑒 − 𝑚
2ℏ

(𝑥 −𝑥 )
Δ Δ −Δ

ℏ 𝑉(𝑥 )  

                        = 𝑑𝑥𝑁−1 … . 𝑑𝑥1
𝑚

2𝜋ℏΔ𝜏

𝑁
2 𝑒

Δ
ℏ −𝑚

2  (𝑥 −𝑥 )
Δ −𝑉(𝑥 ) …. 

× 𝑒
Δ
ℏ −𝑚

2  (𝑥 −𝑥 )
Δ −𝑉(𝑥 )                              (18) 

Now we convert time back to its real version, 

𝑥 𝑒−𝑖(𝑡)𝐻 𝑥′ = 𝑑𝑥𝑁−1 … . 𝑑𝑥1
𝑚

2𝜋ℏΔ𝜏

𝑁
2 𝑒 ℏ∆𝑡 𝑚

2  (𝑥 −𝑥 )
Δ𝑡 −𝑉(𝑥 ) …. 

        × 𝑒 ℏ∆𝑡 𝑚
2  (𝑥 −𝑥 )

Δ𝑡 −𝑉(𝑥 )                                      (19) 

Now we obtain the exponential of discrete Lagrangian 𝐿 = 𝑇(�̇�) − 𝑉(𝑥). Finally, we take limit 
𝑁 → ∞ the propagator becomes: 

𝑥 𝑒−𝑖(𝑡)𝐻 𝑥 = 𝑑𝑥𝑒
𝑖
ℏ𝑆

𝑥
(20) 

Combine (20) with (11) we can write the wave function at position 𝑥 and time 𝑡 in form of (9) 
hence path integral formulation is derived from the solution of TISE proof the equivalence between 
three formulations. 
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CHAPTER III 

PDE AND QUANTUM MECHANICS EXPLANATION OF RESIDUAL NETWORK 

3.1 Hamiltonian of the hidden state 

Consider a second order PDE which depend on two independent variables 𝑡 and 𝑥: 

𝜕𝜓(𝑥, 𝑡)
𝜕𝑡

=
𝛼2

2
𝜕2𝜓(𝑥, 𝑡)

𝜕𝑥2 + 𝛽
𝜕𝜓(𝑥, 𝑡)

𝜕𝑥
+ 𝛾𝜓(𝑥, 𝑡) (21) 

The time derivative and spatial derivative can be discretized using Euler discretization. 

𝜕𝜓(𝑥, 𝑡)
𝜕𝑡

=  
𝜓(𝑥, 𝑡 + Δ𝑡) − 𝜓(𝑥, 𝑡)

Δ𝑡
 

            
𝜕𝜓(𝑥, 𝑡)

𝜕𝑥
=  

𝜓(𝑥 + Δ𝑥, 𝑡) − 𝜓(𝑥 − Δ𝑥, 𝑡)
2Δ𝑥

(22) 

                              
𝜕2𝜓(𝑥, 𝑡)

𝜕𝑥2 =  
𝜓(𝑥 + Δx, 𝑡) − 2𝜓(𝑥, 𝑡) + 𝜓(𝑥 − Δx, 𝑡)

Δ𝑥2  

(21) is now can be rewritten in discrete form: 

𝜓(𝑥, 𝑡 + Δ𝑡) − 𝜓(𝑥, 𝑡)
Δ𝑡

=
𝛼2

2
𝜓(𝑥 + Δx, 𝑡) − 2𝜓(𝑥, 𝑡) + 𝜓(𝑥 − Δx, 𝑡)

Δ𝑥2  

                                                   +𝛽
𝜓(𝑥 + Δ𝑥, 𝑡) − 𝜓(𝑥 − Δ𝑥, 𝑡)

2Δ𝑥
+ 𝛾𝜓(𝑥, 𝑡) (23) 

By setting Δ𝑡 = Δ𝑥 = 1, we can rewrite (23) in form of matrix multiplication. 

𝜓(𝑥, 𝑡 + 1) − 𝜓(𝑥, 𝑡) =
1
2

(𝛼2 + 𝛽), (𝛾 − 𝛼2),
1
2

(𝛼2 − 𝛽)
𝜓(𝑥 + 1, 𝑡)

𝜓(𝑥, 𝑡)
𝜓(𝑥 − 1, 𝑡)

(24) 

By define the convolution kernel 𝑓(𝑥) = 1
2

(𝛼2 + 𝛽), (𝛾 − 𝛼2), 1
2

(𝛼2 − 𝛽)  , we can rewrite (24) 
in convolution form: 

𝜓(𝑥, 𝑡 + 1) − 𝜓(𝑥, 𝑡) = 𝑓(𝑥) ∗ 𝜓(𝑥, 𝑡)  

                                      𝜓(𝑥, 𝑡 + 1) = 𝑓(𝑥) ∗ 𝜓(𝑥, 𝑡) + 𝜓(𝑥, 𝑡) (25) 

As we see in (25) any second order PDE can be rewritten into the form of residual block [10] with 
convolution kernel 𝑓(𝑥) and input 𝜓(𝑥, 𝑡) showing equivalence between the two mathematical 
objects. In comparison to quantum mechanics, each element of the input of the 𝑡𝑡ℎ residual block 
resembles wave function at some point in position space and time 𝑡. With this comparison we can 
see that an operation of convolutional kernel on a hidden unit is equal to the operation of 
Hamiltonian operator on a wave function which is not wrong, but not completely right either since 
the hidden unit on the skip connection may also multiplied or even convolved by another 



10 
 

convolution kernel before adding up to the convolved hidden unit. With this we can generalize our 
Hamiltonian-like object of hidden unit to be the quotient of convolution kernel and weight tensor 
on the skip connection under condition that the weight tensor is invertible. 

3.2 Path integration form of residual network hidden unit 

 Consider the output of a residual block consisting of a convolutional layer and skip 
connection 𝑓(𝑥) with weight tensor 𝑤 with ReLU activation function: 

𝜓(𝑥𝑡) = 𝑟𝑒𝑙𝑢[𝑤 ∙ 𝜓(𝑥𝑡−1) + 𝑓(𝑥𝑡−1) ∗ 𝜓(𝑥𝑡−1)] (26) 

Since ReLU activation function can be applied on the activation map and skip connection 
separately (26), can be rewritten in form of 

𝜓(𝑥𝑡) = 𝜅 ∙ 𝑤 𝛿(𝑥𝑡 − 𝑥𝑡−1) + Ω(𝑥𝑡 − 𝑥𝑡−1) 𝜓(𝑥𝑡−1)
𝑥

(27) 

Where 𝜅 ∙ 𝑤 is the activation function on weight tensor. By adopt notation of space-time of the 
network established in previous section we can see the delta function as inner product between two 
position bases. 

𝛿(𝑥𝑡 − 𝑥𝑡−1) = 𝑒𝑖𝑝 (𝑥 −𝑥 )

𝑝

(28) 

And the convolutional term, which act on the same delta function can be considered in momentum 
space that we defined as inverse Fourier transformation on the position space object. 

Ω(𝑥𝑡 − 𝑥𝑡−1) =
1
𝑀

𝑒𝑖2
𝑀 (𝑥 −𝑥 )

𝑀−1

=0

Ω(𝑝𝑡−1) (29) 

Then we define quantity ℎ𝑡 = log (𝜅 ∙ 𝑤) we can rewrite (27) as 

𝜓(𝑥𝑡) = 𝑒𝑖𝑝 (𝑥 −𝑥 )𝑒ℎ 1 + Ω(𝑝𝑡−1)
𝑝𝑥

𝜓(𝑥𝑡−1) (30) 

Assume that the skip connection weights are much smaller than the convolutional kernel 𝑤 ≪ 𝑓, 
this allows us to approximate 1 + Ω(𝑝𝑡−1) = 𝑒Ω(𝑝 ), so we have: 

𝜓(𝑥𝑡) = 𝑒𝑖𝑝 (𝑥 −𝑥 )𝑒ℎ +Ω(𝑝 )

𝑝𝑥

𝜓(𝑥𝑡−1) (31) 

Now we define Hamiltonian 𝐻(𝑝𝑡−1) = ℎ𝑡 + Ω(𝑝𝑡−1) and consider the output from N residual 
blocks, 

𝜓(𝑥𝑁) = … . … . 𝑒𝑖𝑝 (𝑥 −𝑥 )+𝐻(𝑝 )

𝑝𝑝𝑝𝑥𝑥𝑥

𝑒𝑖𝑝 (𝑥 −𝑥 )+𝐻(𝑝 ) …. 

× 𝑒𝑖𝑝 (𝑥 −𝑥 )+𝐻(𝑝 )𝜓(𝑥0)                                                                                           (32) 
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The form of Hamiltonian used in this calculation is equivalent to what we mentioned in previous 
section since the term Ω(𝑝𝑡−1) will be far larger than the term ℎ𝑡 which may neglectable at this 
point. The sequence of 𝑥  and 𝑝  successively in time define the path of the hidden unit so we 
may rewrite (31) in form of: 

𝜓(𝑥𝑁) = 𝑒𝑖𝑝 (𝑥 −𝑥 )+𝐻(𝑝 )

𝑡𝑝𝑥

𝜓(𝑥0) (33) 

(33) tells us that the output from N hidden layers of ResNet is the summation of contributions from 
all paths the feature was travelled in the past [10]. Since we know that the residual block and PDE 
are equivalent, we can rewrite our Hamiltonian with a second order PDE. Since the current 
calculation is done in momentum space the spatial differential operator is replace by imaginary 
number 𝑖𝑝, for simplicity we use equation (21) which can be rewritten in momentum space as                                            
𝐻(𝑝𝑡−1) = − 1

2
𝛼2𝑝𝑡−1

2 + 𝑖𝑏𝑝𝑡−1 + 𝑐, so we have: 

𝜓(𝑥𝑁) = 𝑒𝑖𝑝 (𝑥 −𝑥 )−1
2𝛼 𝑝 +𝑖𝛽𝑝 +𝛾

𝑡𝑝𝑥

𝜓(𝑥0) 

       = 𝑒𝛾

𝑝𝑡𝑥

𝑒−1
2𝛼 𝑝 +𝑖𝑝 (𝑥 −𝑥 +𝛽)𝜓(𝑥0) (34) 

The momentum term in (33) can be integrate out like what have done in (19) hence we obtain: 

𝜓(𝑥𝑁) =
𝑒𝛾

𝛼
𝑡𝑥

𝑒−(𝑥 −𝑥 +𝛽) /2𝛼 𝜓(𝑥0) 

               = 𝑒𝛾−log(𝛼)−(𝑥 −𝑥 +𝛽)
2𝛼 𝜓(𝑥0)

𝑡𝑥

(35) 

We can also define velocity over a time step as �̇� = 𝑥𝑡 − 𝑥𝑡−1 thus we obtained kinetic energy 
𝑇(�̇�) i.e., the term containing velocity and potential energy 𝑉 as  

 𝑇(�̇�) =
(�̇� + 𝛽)2

2𝛼2 (36) 

𝑉 = 𝛾 − log(𝛼) (37) 
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In the end we use definition of the Lagrangian 𝐿 = 𝑇 − 𝑉 and the classical action 𝑆 = ∑ 𝐿𝑡𝑡 , (35) 
can now rewritten in more physical form: 

𝜓(𝑥𝑁) = 𝑒∑ 𝑉−𝑇(�̇�)

𝑥

𝜓(𝑥0) 

             = 𝑒− ∑ 𝐿 𝜓(𝑥0)
𝑥

 

         = 𝑒−𝑆 𝜓(𝑥0)
𝑥

(38) 

Hence the output of multilayer residual block is the sum of contribution from all paths the input 
travelled in the past, where each contribution is an exponential of negative classical action of the 
path in the similar fashion to the Feynman path integral formulation of quantum mechanics. 
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CHAPTER IV 

EXPERIMENT ON PDE NETWORK 

The mathematical equivalence between PDE and residual block leads to the explanation of 
residual block in notation of Hamiltonian and path integral formulation of neural network as shown 
in chapter III. In this chapter we aim to proof the equivalence experimentally, to do that we create 
PDE network based on the second order PDE and compare with residual network in the control 
case which all residual blocks contain a skip connection over a convolutional layer. The 
comparison is showed in form of accuracy acquired from each network with varied depth of 5 
layers, 15 layers, 27 layers, and 50 layers. The logistic regression for classifier is done by using 3 
layers of linear neural network and using SoftMax function, and optimizer used in learning of the 
models is ADAM optimizer. 

 
Figure 4.1: example of MNIST data, the dataset containing 60,000 pairs of handwriting image and labels for training 
the model and another 10,000 pairs for testing the model. 

4.1 Structure of the PDE neural networks 

Partial differential neural network created by replacing hidden layer of ResNet with PDE operator 
created by applying finite different method on the second order PDE, since convolutional kernel 
is two-dimensional tensor the PDE used in creation of network depends on three variables, by 
space-time notation in chapter II the PDE depends on time i.e., layer of the hidden layer and 
position in two cartesian coordinate 𝑥, 𝑦 which is the width and length of the input tensor. The 
PDE used in this experiment is defined as: 

𝜕𝜓(𝑥, 𝑡)
𝜕𝑡

=
𝛼2

2
𝜕2𝜓(𝑥, 𝑡)

𝜕𝑥2 + 𝛽
𝜕𝜓(𝑥, 𝑡)

𝜕𝑥
+

𝜎2

2
𝜕2𝜓(𝑥, 𝑡)

𝜕𝑦2 + 𝜌
𝜕𝜓(𝑥, 𝑡)

𝜕𝑦
+ 𝛾𝜓(𝑥, 𝑡) (39) 

Where 𝛼, 𝛽, 𝜎, 𝜌, and 𝛾 are learning parameters. By discretization, the spatial derivatives in 𝑥 

coordinate become 1 × 3 tensors: 
𝑥

→ [1, −2, 1], 
𝑥

→ 1
2

, 0, − 1
2

, and spatial derivatives in 𝑦 
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coordinate become 3 × 1 tensors: 
𝑦

→
1

−2
1

, 
𝑦

→

1
2
0

− 1
2

.  When input tensor is sent to the first 

layer, it will be convoluted with product of kernel and learning parameters separately creating two 
activation maps, then the two activation maps along with the skip connection tensor are add up 
and pass to ReLU function and send value out as output of the layer, since normally convolution 
kernel are different in each layer, the PDE in each layer is also created differently, the procedure 
of creating activation maps and combine together with skip connection occurs repeatedly for all 
layers. Then the final output is sent to linear layers before send to linear network and use SoftMax 
classifier for logistic regression which return probability of each class of labels. 

 

 

 

 

 

 

 

 

 

 

 

 

   . 

   . 

   . 

 

 

 

 

 

Figure 4.2: Algorithm for PDE neural networks 

 

image 

PDE1 conv x PDE1 conv y 

PDE2 conv x PDE2 conv y 

Linear layer 

Linear layer 

Repeated until final layer. 
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4.2 Result and discussion 

4.2.1 Performance comparison between PDE network and ResNet 

The comparison of performance between PDE network and residual network with depth of 5 
layers, 15 layers, 27 layers, and 50 layers over 50 epochs are shown in Figure 4.3. we see that by 
replacing convolution kernel as partial differential operators can achieve the similar level of 
accuracy in classification task to the ResNet. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Fig.4.3 Comparison of accuracies of iteration over 50 epochs of PDE neural network and residual network 
with depth of (a) 5 layers, (b) 15 layers, (c) 27 layers, and (d) 50 layers. 

 

Table 4.1: Final output from logistic regression of PDE network and ResNet when learning rate is fixed at 
the same value of 10−3 and learning over 50 epochs. 

layers PDE neural network c_ResNet 
5 97.4% 97.5% 
15 96.5% 97.3% 
27 95.8% 97.0% 
50 89.2% 96.2% 
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From the experiment we see that the accuracy drops as the network goes deeper, the cause of 
accuracy degradation is due to the nature of the PDE chosen for the network. The diffusion solution 
cause value of feature i.e., the non-zero value of tensor element to decrease and increase the value 
of nearby elements in the rate dictated by learning variables, this is not only making features to be 
more difficult to extract but also make the feature to “drift” to the direction assigned by the PDE 
which may cause features to vanish when the features are drift out the boundary of the tensor. This 
problem can be tackled by changing the PDE to change the rate of diffusion and control drifting 
of the features, so we decide to replace (39) with: 

𝜕𝜓(𝑥, 𝑡)
𝜕𝑡

=
𝛼2

2
𝜕2𝜓(𝑥, 𝑡)

𝜕𝑥2 −
𝛽
8

𝜕𝜓(𝑥, 𝑡)
𝜕𝑥

+
𝜎2

2
𝜕2𝜓(𝑥, 𝑡)

𝜕𝑦2 −
𝜌
8

𝜕𝜓(𝑥, 𝑡)
𝜕𝑦

+ 𝛾𝜓(𝑥, 𝑡) (40) 

This time the model performance that shown in Figure 4.4, which clearly improved in terms of 
final accuracy and development of the model, which goes like the residual network we create as 
control. 

 

 

 

 

 

 

 

 

 

 

 

 



18 
 

 

(a) 

 

(b) 

Fig 4.3 The comparison of performance of two PDE neural networks and residual network, note that PDE 
1 is based on the equation (39) and PDE 2 is based on equation (40) in the depth of 27 layers (a) and 50 
layers(b) which accuracy drops significantly. 

 

Table 4.2 Comparison of final accuracy acquired from PDE 1, PDE2, and residual network. 

layer PED network 1 PDE network2 c_ResNet 
27 95.8% 97.0% 96.7% 
50 89.2% 96.9% 97.3% 
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(a) 

 

(b) 

Fig 4.5 Evolution of input data through 10 layers, 15 layers, and 27 layers of PDE network based on (a)  
equation (39) , and (b) based on equation (40). 
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CHAPTER V 

FROM REDISUAL BLOCK TO NEURAL ODE 

Mathematical understanding of hidden unit through a residual block showed in (25) leads 
to designing new architecture of ANN called neural ordinary differential equation or neural ODE 
in short, since (25) is considered as Euler discretization of a differential equation. By consider the 
continuous form and replace the spatial differential operators in the right-hand side with an 
arbitrary function of the hidden unit 𝜓(𝑡) and learning parameter 𝜃𝑡 at specific time 𝑡. The hidden 
unit becomes solution to the initial value problem of the ODE: 

𝑑𝜓(𝑡)
𝑑𝑡

= 𝑓(𝜓(𝑡), 𝜃𝑡, 𝑡) (41) 

 
Fig 5.1 Paths of hidden unit propagated by hidden layer of ResNet and Neural ODE in comparison, We 
can see that ODE Network is the continuous limit of path caused by the architecture of ResNet. 

In practice, the function 𝑓(𝜓(𝑡), 𝜃𝑡, 𝑡) is the model created by a neural network layer at layer 𝑡 
[11]. The ODE is solvable via any differential equation solver which approximate in form:  

𝜓(𝑡1) = 𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒(𝜓(𝑡0), 𝑓, 𝑡0, 𝑡1, 𝜃) = 𝜓(𝑡0) + 𝑓(𝜓(𝑡), 𝜃𝑡, 𝑡)
𝑡

𝑡
𝑑𝑡 (42) 

Loss function used in this network architecture will tell how different our ODE solver 
approximation and the real function is [12]. 

Instead of optimize loss function ℒ(𝜓(𝑡1)) with backpropagation, neural ODE optimizes loss 
function by use the benefits of ODE solver by calculating adjoint 𝑎(𝑡) = ℒ

(𝑡)
  and then use value 

of each adjoint to approximate gradient of loss function with respect to learning parameters at each 
time. However, the calculation of derivative  

 the set of 𝑎(𝑡) is obtained by solving ODE: 

𝑑𝑎(𝑡)
𝑑𝑡

= −𝑎(𝑡)𝑇 𝜕𝑓(𝜓(𝑡), 𝜃𝑡, 𝑡)
𝜕𝜓

(43) 
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And ℒ
(𝑡 )

 can be calculated by solving (43) using ODE solver but backward in time starting 

from 𝑧(𝑡1). The calculation of gradient with respect to parameter is also evaluate using integral: 

𝑑ℒ
𝑑𝜃

= − 𝑎
𝑡

𝑡
(𝑡)𝑇 𝜕𝑓(𝜓(𝑡), 𝜃𝑡, 𝑡)

𝜕𝜃
(44) 

Where 𝑎(𝑡)𝑇 𝑓( (𝑡),𝜃 ,𝑡) and 𝑎(𝑡)𝑇 𝑓( (𝑡),𝜃 ,𝑡)
𝜃

 can be calculated with automatic differentiation, 

this method is called “adjoint sensitivity method” [13]. One major benefits of learning parameter 
this way is that the method does not need to store any quantity of parameters when calculating 
gradient like traditional backpropagation causing the memory cost of this method constant as 
𝑓(𝜓(𝑡), 𝜃𝑡, 𝑡). The network also has many benefits such as the highly adaptability with several 
ODE solvers we currently have, the speed of calculation and error can be controlled. And have 
high efficiency when it comes to predict continuous dataset of time-series [14].  
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CHAPTER VI 

CONCLUSION 

What we have done so far is develop the mathematical explanation of dynamics of hidden 
unit of a neural network architecture, in which we choose residual network, we show that the 
structure of residual block is equivalent to the PDE and when compare dynamics of hidden unit to 
the dynamics of quantum particle we can point that convolution kernel act as Hamiltonian of the 
system of hidden unit and we can use this Hamiltonian to derive path integral formulation of output 
of 𝑁 residual block similar to the Feynman path integral. The concept of PDE and residual block 
is shown experimentally by create PDE network which achieve value of accuracy close to the 
ResNet with skip connection between each convolutional kernel we create as a control. Finally we 
shown that the understanding of residual block as differential equation leads to the innovation of 
new neural network called neural ordinary differential equation which adopt adjoint sensitivity 
method to update parameter enhance efficiency of memory management, easy to adjust the model, 
and able to perform the prediction of continuous dynamics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

REFERENCE 

[1] Metha, P., Bukov, M., Wang, C., Day, G.R. A., Richardson, C., Fisher K. C., Schwab, j. 
D. (2019, March 23). A high-bias, low-variance introduction to Machine Learning for 
physicists.  Retrieved from https://arxiv.org/abs/1803.08823 

[2] Saha, S. (2018, December 16). A Comprehensive Guide to Convolutional Neural Networks 
– the ELI5 way. A Comprehensive Guide to Convolutional Neural Networks — the ELI5 
way | by Sumit Saha | Towards Data Science 

[3] Srizhevsky, A., Sutskever, I., Hinton, G. ImageNet Classification with Deep Convolutional 
Neural Networks. Retrieved from imagenet_classification_with_deep_convolutional.pdf 
(toronto.edu) 

[4] He, K., Zhang, X., Ren, S., Sun, J., (2015, December 10). Deep Residual Learning for 
Image Recognition. Retrieved from https://arxiv.org/abs/1512.03385 

[5] Wang, C., (2019, January 8). The Vanishing Gradient Problem: The Problem, Its causes, 
It Significance, and Its Solutions. https://towardsdatascience.com/the-vanishing-gradient-
problem-69bf08b15484 

[6] Griffiths, D. (2005) “Introduction to quantum mechanics” 2nd ed. Pearson. 
[7] Riley, K., Hobson, M., Bence, S. (2006). “Mathematical Methods for Physics and 

Engineering” 3rd ed. Cambridge university press. 
[8] Dirac, P. (1939, April). “A New Notation for Quantum Mechanics”. Mathematical 

Proceedings of the Cambridge Philosophical Society, Vol25, pp 416-418. Cambridge, 
England: Cambridge university press. 

[9] Feynman, R.  (1948, April). “Space-Time Approach to non-Relativistic Quantum 
Mechanics”. Rev. Mod. Physics, Vol 20, pp. 367-387. 

[10] Yin, M., Li, X., Zhang, Y., & Wang, S. (2019, April 16). On the Mathematical 
Understanding of ResNets with Feynman Path Integral. Retrieved from 
https://arxiv.org/abs/1904.07568 

[11] Sinai, J. (2019, January 18). Understanding Neural ODE’s. 
https://jontysinai.github.io/jekyll/update/2019/01/18/understanding-neural-odes.html 

[12] Surtsukov, M. (2019, February 16). Neural Ordinary Differential Equations. neural-
ode/Neural ODEs.ipynb at master · msurtsukov/neural-ode (github.com) 

[13] Chen, T.R., Rubanova, Y., Bettencourt, J., & Duvenaud, D. (2018, June 19). Neural     
Ordinary Differential Equations. Retrieved from https://arxiv.org/abs/1806.07366 

[14] Honchar, A. (2019 June 12). Neural ODEs: breakdown of another deep learning 
breakthrough. Neural ODEs: breakdown of another deep learning breakthrough | by 
Alexandr Honchar | Towards Data Science 

 


	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (English)
	Acknowledgement
	Content
	CHAPTER I INTRODUCTION
	CHAPTER II FORMULATION OF NON-RELATIVISTIC QUANTUM MECHANICS
	CHAPTER III PDE AND QUANTUM MECHANICS EXPLANATION OF RESIDUAL NETWORK
	CHAPTER IV EXPERIMENT ON PDE NETWORK
	CHAPTER V FROM REDISUAL BLOCK TO NEURAL ODE
	CHAPTER VI CONCLUSION
	REFERENCE



