การวิเคราะห์ความแปรผันทางมอร์โฟเมตริก และทงพันธุกรรมของผึ้งมิ้มเล็ก

Apis andreniformis Smith, 1858 ในประเทศไทย

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตมมหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต 9997 จสาขาวิชาสัตววิทยา ภภควิชาชีววิทยา ลย
คณะวิทยาศาสตร์ จุพาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2549
ISBN 974-14-2018-8
ลิขสิทธิ์ของจุพาลงกรณ์มหาวิทยาลัย

ANALYSIS OF MORPHOMETRIC AND GENETIC VARIATION OF

SMALL DWARF HONEY BEES Apis andreniformis Smith, 1858

IN THAILAND

Mr. Atsalek Rattanawannee

สถาบันวิทยบริการ

A Thesis Submitted in Partial Fulfillment of Requirements for the Degree of Master of Science Program in Zoology

Department of Biology
Faculty of Science
Chulalongkorn University
Academic Year 2006

ISBN 974-14-2018-8

Thesis Title

By
Mr. Atsalek Rattanawannee
Field of study Zoology
Thesis Advisor Professor Siriwat Wongsiri, Ph.D.
Thesis Co-advisor Assistant Professor Chanpen Chanchao, Ph.D.
Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Dean of Faculty of Science
(Professor Piamsak Menasveta, Ph.D.)

THESIS COMMITTEE

Chairman
(Assistant Professor Kumthon Thirakhupt, Ph.D.)

Thesis Advisor
(Professor Siriwat Wongsiri, Ph.D.)

(Assistant Professor Chanpen Chanchao, Ph.D.) \int_{\square} Q
(Assistant Professor Sureerat Deowanish, D.Agr)

Member
(Assistant Professor Jessada Denduangboripant, Ph.D.)

อัศเลข รัตนวรรณี: การวิเคราะห์ความแปรผันทางมอรโฟเมตริก และทางพันธุกรรมของผึ้งมิ้มเล็ก Apis andreniformis Smith, 1858 ในประเทศไทย (ANALYSIS OF MORPHOMETRIC AND GENETIC VARIATION OF SMALL DWARF HONEY BEES Apis andreniformis Smith, 1858 IN THAILAND)
อ. ที่ปร็กษา: ศ. ตร. สิรัวัผน์ วงษ์ศศิ, อ. ที่ปรีกษาร่วม: ผศ. ตร. จันทร์เพ็ญ จันทร์เจ้า จำนวนหน้า 117 หน้า ISBN 974-14-2018-8

ผึ้งมิ้มเล็ก Apis andreniformis จัดเป็นผึ้งพื้นเมืองชนิดหนึ่งของประเทศไทย ซึ่งพบว่ามี การศึกษาทั้งทางด้านมอร์โฟเมตริก และทางพันธุกรรมน้อยมาก ดังนั้นในการศึกษาครั้งนี้ได้ทำการสุ่มเก็บผึ้ง มิ้มเล็กจำนวน 30 รังเพื่อใชิศึกษาความแปรผ้นทางมอร์โฟเมตริกและเก็บจำนวน 37 รังเพื่อใช้ศึกษาความ แปรผันทางพันธุกรรม ในส่วนของความแปรผันทางมอร์ไฟเมตริก ทำการวัดและวิเคราะห์ลักษณะทางมอร์โฟ เมตริกทั้งหมด 24 ลักษณะในผึ้งงาน จากการใช้ค่าเฉลี่ยของรังในการวิเคราะห์ปัจจัยครั้ที่ที่ 1 พบว่ามี 20 ลักษณะจากทั้งหมด 24 ลักษณะที่ถูกคัดเลือกไว้เป็นปัจจัยใหม่ และเมื่อทำการวิเคราะห์ปัจจัยครั้งที่ 2 สามารถจัด กลุ่มทั้ง 20 ลักษณทที่เลือกมาจากข้างตันได้เป็น 4 กลุ่มปัจจัยใหม่ จากการนำคะแนนปัจจัยที่ได้มาสร้างกราฟ ผล ที่ได้แสดงว่าผึ้งมิ้มเล็กจากประเทศไทย และจากเมืองทึนอม ประเทศมาเลเซียอยู่กลุ่มเดียวกัน นอกจากนี้จาก การใช้เดนโดรแกรมที่ได้จากการวิเคราะห์ลบบคลัสเตอร์ สามารถจัดกลุ่มผึ้งมิ้มเล็กดังกล่าวนี้เปืน 1 กลุ่ม เช่นเดียวกัน แต่ผลจากการวิเคราะห์ความถดถอยเชิงเเ้นของคำปัจจัยใหม่ทั้ง 4 ปัจจัย กับค่าละติจูด และลอง ติจูด แสดงถึงการเปลี่ยนแปลงของลักษษณลักษณะทางมอร์โฟเมตริกของผึ้งมิ้มเล็กในประเทศไทย กล่าวคือ ขนาดของผึ้งมิ้มเล็กจากภาคใต้ไปยังภาคเหนือจะมีขนาดเพิ่มขึ้น แต่ขนาดของผึ้งมิ้มเล็กจากภาคตะวันตกไป ภาคตะวันออกจะมีขนาดเล็กลง

ศึกษาความหลากหลายทางพันธุกรรมโดย 2 วิธี วิธีแรกโดยการดูรูปแบบของชิ้นส่วนของผลิตภัณฑ์ จากปฎิกิริยาลูกโช่โพลิเมอเรสหลังตัดดัวยเอึนไชม์ตัดจำเพาะ นำผลิตภัณฑ์พีซือาร์บางส่วนของยีน cytb ที่ได้ (520 คู่เบส) ไปตัดด้วยเอ็นไซม์ตัดจาเพาะ Dral และ Aไu พบความแปรผันทางพันธุกรรมของกลุ่มตัวอย่างผึ้งมิ้ม เล็กจากบริเวณต่างๆ เมื่อทำการตัดด้วย Aไu1 แบ่งผึ้งมิ้มเล็กเป็น 6 แฮปโปไไทป์ แต่เมื่อตัดด้วย Dral สามารถ แบ่งผึ้งมิ้มเล็กได้เป็น 3 เฮปโปไทป์ วิธีที่ 2 ทำการหาลำดับเบสบางส่วนของยีน cytb จากการวิเคราะห์ลำดับเบส ที่ได้ พบว่าผึ้งมิ้มเล็กจากบริเวณแผ่นดินใหญ่ของประเทศไทยมีดีเอ็นเอโพลืมอร์ฟิซึมต่ำกว่าตัวอย่างผึ้งจากบริเวณ เกาะภูเก็ตและเชียงใหม่ของประเทศไทย สร้างแผนภูมิต้นไม้แสดงความสัมพันธ์ทางวิวัฒนาการโดยใช้โปรแกรม เอ็นเจและยูืพีเอ็มเอ พบว่าสามารกแบ่งกลุมมี้งมิ้มเล็กในประเทศไทย ออกได้เป็น 2 กลุ่ม คือ กลุ่ม A ซึ่งพบได้ใน ตัวอย่างผึ้งมิ้มเล็ถจากแผ่นดินใหญ่ของประเทคไทย ส่วนกล่ำ B พทในต้วอย่างผึ้งจากจังหวัดภูเก็ต และจังหวัด เชียงใหม่
จุฬาลงกรณ์มหาวิทยาลัย

mาควิชา	ชีววิทยา
๓ขาวิชา	สัตววิทยา
ปีการศึกษา	2549

ลายมือชื่อนิสิต. ลายมือชื่ออาจารย์ที่ปรีกษา

KEY WORD: Apis andreniformis, genetic variation, cytb, nucleotide, phylogenetic tree

ATSALEK RATTANAWANNEE: ANALYSIS OF MORPHOMETRIC AND

GENETIC VARIATION OF SMALL DWARF HONEY BEES Apis andreniformis
Smith, 1858 IN THAILAND. THESIS ADVISOR: PROF. SIRIWAT WONGSIRI, Ph.D., THESIS CO-ADVISOR: ASST. PROF. CHANPEN CHANCHAO, Ph.D., 117 pp. ISBN 974-14-2018-8

Small dwarf honey bee, Apis andreniformis, is one of native Thai honey bees. Less data on morphometric and genetic variation of this species have been reported. In this investigation, thirty colonies of A. andreniformis were collected for morphometric analysis and 37 colonies were collected for genetic analysis. For morphometric analysis, 24 characters of worker bees were measured and analyzed. By using colony means for the $1^{\text {st }}$ factor analysis, 20 out of 24 morphometric characters were selected as new variable. For the $2^{\text {nd }}$ analysis, 20 morphometric characters could be grouped into 4 new factors. Due to graph plotting of factor scores, bees from Thailand and from Tenom, Malaysia belong into one group. In addition, a dendrogram generated from cluster analysis supports that bees from Thailand and Tenom, Malaysia are clumped into one group. However, result on linear regression analysis of factor scores against latitude and longitude shows clinal patterns in morphometric characters of A andreniformis in Thailand. The body size of bees from the south to the north increase but decreased in bees from the west to the east.

Genetic variation was determined into 2 means. First, genetic variation was analyzed by using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). After amplification of cytochrome oxidase subunit b (cytb), products of 520 bp were restricted by Dral and $A l u \mathrm{I}$. Genetic variation was observed. Six haplotypes were found after AluI digestion while 3 haplotypes were found after DraI digestion. Second, PCR products amplified by cytb were sequenced. Based on nucleotide analysis, DNA polymorphism among bees from mainland of Thailand is lower than that from Phuket Island and Chiang Mai. Phylogenetic trees were constructed by Neighbor-joining and UPGMA programs. Two different groups of A. andreniformis of Thailand are obtained from both trees. Bees in group A are from mainland while bees in group B are from Phuket Island and Chiang Mai.

จุหาลงกรณ์มหาวิทยาล้ย

Department	Biology
Field of study	Zoology
Academic year	2006

ACKNOWLEDGEMENTS

I would like to express my deep gratitude and appreciation to Prof. Dr. Siriwat Wongsiri, my advisor and Asst. Prof. Dr. Chanpen Chanchao, my co-advisor for their encouragements, valuable suggestions, advices, discussions, and helpful guidances throughout this research.

My appreciation is also expressed to Asst. Prof. Dr. Kumthorn Thirakhupt, Asst. Prof. Dr. Sureerat Deowanish, and Asst. Prof. Dr. Jessada Denduangboripant for serving as thesis committee.

Specially, I would like to thank Assoc. Prof. Chariya Lekprayoon for her supports and advices in various ways, especially for allowing me to work in her laboratory. In addition, I would like to thank Asst. Prof. Dr. Malinee Chutmongkonkul and Asst. Prof. Dr. Ajcharaporn Piumsomboon (Department of Marine Science, Chulalongkorn University) for laboratory services.

I sincerely thank members of Center of Excellent in Entomology: Bee Biology, Biodiversity of Insects and Mites, Chulalongkorn University for all of their help. Throughout my research, I have spent great time with Dr. Mananya Phiancharoen, Ms. Orawan Duangphakdee, Mr. Marut Faungarworn, Ms. Asra Mongkhonchaichana, Ms. Punnarai Wuthipanyarattanakun, Mrs. Porntip Preecha, Mrs Pantip Tanmuk, and Mrs Sunee Hoyukhan.

Furthermore, I would like to thank my best friends, Mr. Weerayut Charoensongsermkit, Ms. Wanwalee Wongkasemsun, and Ms. Korakat Lapthaweeshok for all of their help and warm relationship.

I would like to thank all members of CBCB laboratory for their help.
This research was financially supported by Center of Excellence in Biodiversity, Faculty of Science, Chulalongkorn University, under the Research Program on Conservation and Utilization of Biodiversity \# CEB_M_7_2005, Thailand Research Fund, grants \# MRG4780007 and RTA4580012, TRF/BIOTEC Special Program for Biodiversity Research and Training grant \# T_248010, Research grant of Graduate School of Chulalongkorn University, and Plant Genetics Conservation Project Under the Royal Initiative of Her Royal Highness Princess Maha Chakri Sirindhorn.

Finally, my greatest indebtedness is expressed to my, grand father, grand mother, Mr. Somchai Pansuk and Ms. Adcharaporn Rattanawannee, who always give me unlimited and warmest love, understanding, support, and encouragement throughout my life.

CONTENT

Page

THAI ABSTRACT iv
ENGLISH ABSTRACT v
ACKNOWLEDGMENTS vi
CONTENTS vii
LIST OF FIGURES ix
LIST OF TABLES xiii
ABBREVIATION xiv
CHAPTER I: INTRODUCTION. 1
CHAPTER II: LITERATURE REVIEWS 4
Taxonomy of A. andreniformis. 4
Biology and distribution of A. andreniformis Smith, 1858 4
Morphometry of Apis spp 7
Molecular marker for investigating variation in honey bees 9
CHAPTER III: MATERIALS AND METHODS 15
Morphometric analysis 15
Equipment 15
Chemicals 15
Collection of bee samples 16
Dissection 16
Making slides of bee body parts... $\ldots \ldots \ldots \ldots \ldots$. 17
Preparing slide. 17
จ99ค 9 Mounting slides $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ 19
Measurement. 20
Data analysis 26
Genetic analysis 28
Instruments 28
Inventory supplies 28
Chemicals 29
Page
Primers 29
Enzymes 29
Sample collection. 30
DNA extraction 30
Agarose gel electrophoresis. 31
Polymerase Chain Reaction (PCR) 31
Restriction Fragment Length Polymorphism (RFLP) 32
PCR product purification 32
DNA sequencing and phylogenetic analysis 33
CHAPTER IV: RESULTS 35
Morphometry 35
Factor analysis 35
Cluster analysis. 41
Clinal patterns in characteristics of A. andreniformis in Thailand. 41
Genetic variation analysis 49
DNA extraction. 49
PCR amplification. 50
Restriction analysis 52
Sequence analysis 59
Phylogenetic analysis 70
CHAPTER V: DISCUSSIONS 82
CHAPTER VI: CONCLUTIONS 88
REFERENCES 90
APPENDICES 95
BIOGRAPHY 117

LIST OF FIGURES

Page
Figure 1. Small dwarf honey bee worker, Apis andreniformis Smith, 1858 4
Figure 2. Nest of small dwarf honey bee, A. andreniformis in Thailand 5
Figure 3. Distribution of A. andreniformis in south-east Asia 6
Figure 4. Map of circular mitochondrial genome of A. mellifera 11
Figure 5. External morphology of honey bee 18
Figure 6. The right forewing of A. andreniformis worker 21
Figure 7. The right hindwing of A. andreniformis worker 21
Figure 8. The $3^{\text {rd }}$ tergite of A. andreniformis worker. 22
Figure 9. The $4^{\text {th }}$ tergite of A. andreniformis worker. 22
Figure 10. The $3^{\text {rd }}$ sternite of A. andreniformis worker 23
Figure 11. The $4^{\text {th }}$ sternite of A. andreniformis worker 23
Figure 12. The $6^{\text {th }}$ sternite of A. andreniformis worker 24
Figure 13. Antenna of A. andreniformis worker 24
Figure 14. Proboscis of A. andreniformis worker 25
Figure 15. Femur and tibia of right hindleg of A. andreniformis worker 25
Figure 16. Basitarsus of right hindleg of A. andreniformis worker 26
Figure 17. Map of Thailand and Tenom, Malaysia showing sampling sites of A.
andreniformis for morphometric analysis. 27Figure 18. Map of Thailand and Tenom, Malaysia showing sampling sites of A.andreniformis for genetic analysis34
Figure 19. Position of A. andreniformis samples in Thailand and Tenom, Malaysia on the factor axes derived from the factor analysis of morphometric analysis: ordinate: factor 1; abscissa: factor 2 38

Figure 20. Position of A. andreniformis samples in Thailand and Tenom, Malaysia on the factor axes derived from the factor analysis of morphometric analysis: ordinate: factor 1 ; abscissa: factor 338

Figure 21. Position of A. andreniformis samples in Thailand and Tenom, Malaysia on the factor axes derived from the factor analysis of morphometric analysis: ordinate: factor 1 ; abscissa: factor 4.39

Figure 22. Position of A. andreniformis samples in Thailand and Tenom, Malaysia on the factor axes derived from the factor analysis of morphometric analysis: ordinate: factor 2 ; abscissa: factor 339

Figure 23. Position of A. andreniformis samples in Thailand and Tenom, Malaysia on the factor axes derived from the factor analysis of morphometric analysis: ordinate: factor 2; abscissa: factor 440

Figure 24. Position of A. andreniformis samples in Thailand and Tenom, Malaysia on the factor axes derived from the factor analysis of morphometric analysis: ordinate: factor 3; abscissa: factor 440

Figure 25. Dendrogram constructed from a cluster analysis showing
A. andreniformis classified by collection localities.42

Figure 26. Dendrogram constructed from a cluster analysis showing
A. andreniformis based on north and south $12^{\circ} \mathrm{N}$ latitude.43

Figure 27. Geographic trends in morphometric characters of A. andreniformis
in Thailand and Tenom, Malaysia; abscissa: latitude, $\ell \cap G$ E. 9 ordinate: factor score 1 as derived from PCA44

Figure 28. Geographic trends in morphometric characters of A. andreniformis
in Thailand and Tenom, Malaysia; abscissa: latitude, ordinate: factor score 2 as derived from PCA44

Figure 29. Geographic trends in morphometric characters of A. andreniformis in Thailand and Tenom, Malaysia; abscissa: latitude,
ordinate: factor score 3 as derived from PCA.. 45

Figure 30. Geographic trends in morphometric characters of A. andreniformis in Thailand and Tenom, Malaysia; abscissa: latitude,
ordinate: factor score 4 as derived from PCA.. 45

Figure 31. Geographic trends in morphometric characters of A. andreniformis in Thailand and Tenom, Malaysia; abscissa: longitude, ordinate: factor score 1 as derived from PCA. 46

Figure 32. Geographic trends in morphometric characters of A. andreniformis in Thailand and Tenom, Malaysia; abscissa: longitude,
ordinate: factor score 2 as derived from PCA.. 46

Figure 33. Geographic trends in morphometric characters of A. andreniformis in Thailand and Tenom, Malaysia; abscissa: longitude,
ordinate: factor score 3 as derived from PCA.. 47

Figure 34. Geographic trends in morphometric characters of A. andreniformis in Thailand and Tenom, Malaysia; abscissa: longitude, ordinate: factor score 4 as derived from PCA.... .47
Figure 35. High MW DNA of A. andreniformis extracted from a thorax............... 49
Figure 36. PCR products of cytb on 1.5% agarose gel.......................................
Figure 37. PCR products of ND4 on 1.5\% agarose gel....................................... 51
Figure 38. Restriction patterns of the amplified cytb gene of A. andreniformis
\qquad
Figure 39. Restriction patterns of the amplified cytb gene of A. andreniformis
\qquad

Figure 40. Four colored electropherograms of cytb sequence of A. andreniformis .60

Figure 41. A 400 bp character matrix of 37 A. andreniformis samples based on partial cytb of mtDNA sequences61

Figure 42. Rooted phylogenetic tree inferred by neighbor-joining method..................... 71
Figure 43. A UPGMA dendrogram showing relationships of A. andreniformis population in Thailand and Tenom, Sabha, Malaysia calculated from genetic distance

LIST OF TABLES

Page

Table 1. Linear regression of geographic trends in morphometric characters of A. andreniformis from Thailand derived from principal component analysis48

Table 2. Percentages of base composition of cytb sequences of
A andreniformis 64

Table 3. The cytb sequence similarity (\%) based on pairwise comparisons among A. andreniformis from Thailand and Tenom, Malaysia.

Table 4. The cytb sequence divergence (\%) based on pairwise comparisons among A. andreniformis from Thailand and Tenom, Malaysia72

Teble 5. Means of sequence divergence (\%) between pair of major localities of A. andreniformis from Thailand and Tenom, Sabha, Malaysía.

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

ABBREVIATIONS

A, T, G, C	deoxy nucleotide triphosphate (dNTP) containing
	Adenine, Thymine, Cytosine, and Guanine, respectively
bp	base pair
${ }^{\circ} \mathrm{C}$	degree Celcius
DNA	deoxyribonucleic acid
cytb	Cytochrome oxidase subunit b
EDTA	Ethylene diamine tetra-acetic acid
HCl	hydrochloric acid
kb	kilobase
mg	milligram
min	minute
ml	milliliter
mM	millimolar
mtDNA	mitochondrial DNA
ND4	NADH dehydrogenase subunit 4
ng	nanogram
NJ	Neighbor Joining
PCR	Polymerase Chain Reaction
RFLP	Restriction Fragment Length Polymorphism
rpm	revolution per minute
sec	second
TEMED $\square^{\circ} \mathrm{N}, \mathrm{N}, \mathrm{N}, \mathrm{N}$ '-tetra methyl ethylene diamine	
	tris (hydroxyl methyl) aminomethane
QUPGMA	Unweighted Pair Group Method using Arithmetic averages
UV	ultraviolet
V	volt
$\mu \mathrm{g}$	microgram
$\mu \mathrm{l}$	microlitre
$\mu \mathrm{M}$	micromolar

CHAPTER I

INTRODUCTION

Honey bees are one of important economic insects because they give us useful products such as honey, wax, royal jelly, pollens, and bee venom. Honey is always used as an additive in many kinds of food and cosmetics. It is widely used in traditional medicine. Furthermore, bees play an important role as pollinators which can help increase economic crop yield. Beekeeping and use of honey bee products have a long history in Thailand (Wongsiri et al., 1989, Oldroyd and Wongsiri, 2006.).

Honey bees are eusocial insects. A social structure of colonies is composed of a single queen, several thousands of female workers, and a few hundreds of drones. A queen and female workers are both developed from fertilized eggs (diploid $2 \mathrm{n}=32$) while drones or males are hemizygotes (haploid individual) developed from unfertilized eggs (Wongsiri et al., 1989). A queen is the only fertile female and belongs to a very important caste in a colony. She is a mother of all members of the colony (Wongsiri et al., 1989). A queen can release queen pheromone from mandibular gland. The pheromone is composed of 9-oxodectans-2-enonic acid and 9-hydroxydec-2-enonic acid (Wongsiriet al., 1989). They can control social activities and inhibit development of worker's ovaries. Although workers are sterile, they have many obligations in the colony.b For example, during early stages, hypopharyngeal glands of nurse bees are fully active to synthesize royal jelly to feed young larvae and a queen. Next stage, they change to produce wax for building a comb and to clean the colony. At final stage, they serve as foragers those search for nectar and pollens back and act as guarders to defend the colony. Drones are fertile males which are emerged only in mating season (Okada, 1985; Wongsiri, 1988).

Nowadays, there are 9 Apis species which are recognized (Oldroyd and Wongsiri, 2006). The newly recognized species were classified into 3 groups (O'Toole and Raw, 1991). A. andreniformis Smith, 1858 and A. florea Fabricius, 1787 belong to the first group. Their nest is single, small, and free open comb. We always find it as a single comb around a single branch of a small tree. A. dorsata Fabricius, 1793 and A. laboriosa Smith, 1871 belong to the second group. They are the open-nesting and giant bee species. They always build a single comb under a horizontal and strong support such as a branch of a tree, a rock cliff. In addition, A. mellifera Linneaus, 1758, A. cerana Fabricius, 1798, A. nigrocincta Smith, 1861, A. koschevnikovi Buttel-Reepen, 1906, and A. nuluensis Tingek, Koeniger and Koeniger, 1996 belong to the last group. Their nests are the cavity-nesting type with multiple combs.

In Thailand, there are 5 Apis species which are A. dorsata, A. cerana, A. florea, A. andreniformis, and A. mellifera. First 4 species are native to Thailand but A. mellifera is introduced to the country. Only A. mellifera and A. cerana can be well managed in hives (Wongsiri et al., 1990 and 1996).
A. andreniformis, one of 4 native species in Thailand, is wild and smallest. It is widely distributed throughout tropical areas, especially in the southern part of China, India, Burma, Laos, Vietnam, Malaysia, Indonesia, and Philippines (Wongsiri

Due to wide geographical distribution, many different methods are used to investigate biological diversity of honey bees. Morphometrical method was first introduced to study honey bee diversity (Ruttner, 1988). Morphometry is the measurement of morphological structures of organisms and is analysed by statistics (Daly, 1985). Later, various molecular biology techniques have been used to study diversity of Apis species at DNA level. These techniques are Random Amplified

Polymorphic DNA (RAPD, Hunt and Page, 1995), Restriction Fragment Length Polymorphism (RFLP, Deowanish et al., 1996; De La Rua et al., 1998 and 2000; Sihanuntavong et al., 1999; Kandemir et al., 2000; Sittipraneed et al., 2001), Microsatellite (Oldroyd et al., 1996; Franck et al., 1998; Sittipraneed et al., 2001; De La Rua et al., 2001), and DNA sequencing (Cameron, 1993 ; Crozier and Crozier, 1993 ; De La Rua et al., 2000 ; Sittipraneed et al., 2001 ; Arias et al., 1996, 2005). DNA analysis is a direct approach to determine genetic variation among honeybee population.

Most researches on morphometric and genetic variation of honey bee have been conducted on A. mellifera while few data on native honeybee species in Thailand, especially on A. andreniformis have been reported. This rare species is one of important insect pollinators to agricultural production and maintenance of natural ecosystem (Deowanish et al., 2001). It is necessary to gain more data, especially on species distribution, habitat diversity, and variation among population.

In this study, we aim to determine the morphometric and genetic variation of A. andreniformis population in Thailand. Samples were collected from all over the country except the central and the northeastern parts of Thailand. Twenty four morphometric characters were measured. In addition, variation in partial sequence of Cytochrome oxidase subunit b (cytb) and NADH dehydrogenase subunit 4 (ND4) of mitochondrial DNA were studied by using PGR-RFLP and DNA sequencing analysis. Molecular phylogenetic relationship among A. andreniformis population in Thailand was analysed. The obtained result will provide information on basic biology, biodiversity, geographic variation, and genetic relationship among A. andreniformis population in Thailand. In addition, it may apply to conservation biology of A. andreniformis.

CHAPTER II

LITERATURE REVIEW

2.1 Taxonomy of Apis andreniformis

Taxonomy of A. andreniformis has been recognized as follows:
Kingdom Animalia

2.2 Biology and distribution of A. andreniformis Smith, 1858

Small dwarf honeybee, A. andreniformis, is a native wild species in Thailand
(Figure 1 and 2).

Figure 1. Small dwarf honey bee worker, A. andreniformis Smith, 1858
(http://drone.cyberbee.net/gallery/smallbees/andreniformis_onfinger).

Figure 2. Nest of small dwarf honey bee, A. andreniformis in Thailand. It shows a single comb hanging on a branch of a small tree.
A. andreniformis described in 1858 by Smith was recognized as the $2^{\text {nd }}$ dwarf honey bee species. Considering specific species characters, workers have black hairs on a hind tibia and dorsolateral surface of a hind basitarsus but workers of A. florea have white hairs instead (Rinderer et al., 1996). Due to morphology of an endophallus ánd a tibia of drones, A. andreniformis has recently been reconfirmed to be a separated species from its sympatric species, A. florea (Wu and Kuang, 1987; Wongsiri et al., 1996). In A. andreniformis worker, there is black pigment in congruence which makes the bees look the darkest among other bees. Different in color from other parts, a scutellum likely looks yellowish. In contrast, abdominal segments of a queen and a drone are all black (Wongsiri et al., 1996).

More biological data was provided by Rinderer et al. (1993). They reported that mating flights of drones from sympathetic A. andreniformis and A. florea were temporally separated. Furthermore, A. andreniformis virgin queen initiated mating flights between 12.33 and 12.50 p.m. but not in A. florea virgin queen (Koeniger et al., 2000). Considering a nest building, A. andreniformis builds a single-comb nest that its structure looks much different from that of A. florea as well (Rinderer, 1996).
A. andreniformis is widely distributed in tropical and sub tropical regions of Asia, especially in the southern part of China, India, Burma, Laos, Vietnam, Malaysia, Indonesia, and the Philippines (Figure 3). It is always found at coastal flats and near foothill areas (1100 m above sea level) to high mountain and forest areas at about 1600 m attitude (Wongsiri et al., 1996).

Figure 3. Distribution of A. andreniformis in southeast Asia (Wongsiri et al., 1996).

2.3 Morphometry of Apis spp.

Morphometrical method was first introduced to study diversity and variation of organisms including honey bees and other insects. Morphometry is the measurement of particular structures of organisms and analysed by statistics. In honey bee, the first morphometric study on an adequate scale with honey bees was carried out by Cochor in 1916. This author measured the total length of proboscis of A. mellifera among 6 geographic races. It presented that there is a gradual increase in proboscis length of bees collected from north to south plains along a line from the Baltic Sea to Caucasus (Ruttner, 1988). This was the starting point of the first chapter in morphometric research in honey bees.

For morphometric study, 2 below criteria must be considered:

1. Means of colony characters are used as variable parameters in statistical analysis but not characters of individual bees.
2. Numeric data, resulting from exact measurements and analyzed with statistical method, are used for classification (Ruttner, 1988).

Morimoto (1965) reported that there is a significant difference in total length of abdomen between A. mellifera ligustica and A. cerana cerana. Mattu and Verma (1983) investigated the morphometric variation of A. cerana indica in southwest of Himalayan region. They collected bees from various parts of Himalayan and Kashmir, India. A significant difference in a postmontumdength, pedicel of antenna length,and total length of antenna among bees from Himachal was reported but the significant difference was found only in postmentum length among bees from Kashmir. In addition, they found that total length of antenna and length of flagellum of bees from Kashmir is larger than of bees from Himachal. Furthermore, Crewe, Hepburn, and Moritz (1994) reported that 10 morphological characters were adequate
to identify and discriminate 2 races of southern African honey bees,
A. mellifera capensis and A. mellifera scutellata. They collected bees from 32 localities which were the subcontinent from the west coast to the east coast and were from Cape town in the south to the north of Johannesburg. Moreover, a comparison of A. andreniformis from southeastern Thailand and Palawan, the Philippines and A. florea from southeastern Thailand. They found that morphology of A. andreniformis is very different from that of sympatric A. florea. In addition, there is very few morphological difference of A. andreniformis between Thai and the Philippine population as well (Rinderer et al., 1996).

Tilde et al. (2000) investigated the morphometric diversity of A. cerana in the Philippines by using 39 morphometric characters. They collected bees throughout the Philippine archipelago. They reported that bees from Palawan were unequivocally distinct and were separated from the others. Also, bees from the Philippine Islands still showed a high degree of variation. Bees from Luzon were obviously differed from those from Visayas and Mindanao. Moreover, among bees within Luzon, the bees from the highland were obviously differed from those from the lowland. They were considered into separated groups. The diversity of A. cerana was supported by Hepburn et al. (2001). They collected 3,704 A. cerana workers from 279 colonies. They were from 64 localities distributing randomly in southern Himalayan. This area is connected to Pakistan in the west and is connected to Myanmar in the east. Fifty five quantitative morphological characters were used. It revealed that there are 4 major morphoclusters of samples. Among 4 morphoclusters, 2 morphoclusters are further subdivided into 3 biometric subgroups. Morover, they found that bees from the west to the east decrease in size but bees from higher altitude are bigger in size.

In Thailand, Chaiyawong (2001) used 22 morphometric characters to investigate diversity of A. florea throughout of Thailand. It shows that they all belong into one group. Until present, analysis of morphometry is still used. Francoy et al. (2006) introduced a simple methodology to investigate morphometric diversity of A. mellifera (A. mellifera ligustica, A. mellifera carnica, and A. mellifera scutellata). In each subspecies, 50 workers were sampled. Five identified landmarks on forewing radial cell were taken a photo by digitalized image and were estimated by multivariated analysis. It presents that there are significant differences among these A. mellifera subspecies. In addition, it can be concluded that features measured in a single wing cell are sufficient to discriminate these racial honey bee groups.

2.4 Molecular marker for investigating variation in honey bees

DNA is genetic material found in all cells of living organisms and can be recovered. In general, DNA can be classified into 2 categories, chromosomal (nuclear) DNA and extrachromosomal (organelle) DNA. Nuclear DNA is located in nucleus of eukaryotic cell while organelle DNA is located in mitochondria and chloroplast. Alternatively, it is known as mitochondrial DNA (mtDNA) and chloroplast DNA, respectively. \llcorner Analysis of polymorphism at DNA level is considered to be adirect approach to investigate interspecific and intraspecific genetic variations. ©Mitochondrial DNA has been widely used in honey bees (Cornuet and Garnery, 1991). Like mtDNA in other organisms, honey bee mtDNA is circular and double stranded. The mtDNA molecules are generally about $16,000 \mathrm{bp}$. Also, there are 5-10 copies of mtDNA within each cell. The mitochondrial genome is composed of 13 protein coding genes, 2 ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs), and non-coding region containing an origin of replication (Figure 4). In addition,
protein coding genes are 3 subunits of cytochrome C oxidase (COI, COII, and COIII), 7 subunits of NADH dehydrogenase (ND1-6 and ND4L), cytochrome 6, and 2 subunits of ATP synthetase (ATPase6 and 8). Unlike nuclear DNA, mtDNA is maternally inherited without recombination (Singh et al., 1995). Basically, mutation rate of mtDNA is much more rapid than that of single-copy nuclear genes and it is not sensitive to environmental selection pressure (Franck et al., 2000). Hence, that makes mtDNA useful and efficient in studying genetic and phylogeographic variations among bee population (Franck et al., 2000; Garnery et al., 1993).

At present, various techniques in molecular biology have been used for this purpose such as Restriction Fragment Length Polymorphism (RFLP), DNA sequencing, etc (Hepburn and Radloff, 1998). DNA sequencing is a direct method and is a powerful technique to infer variation in DNA sequence while RFLP is an indirect method to infer DNA variation. RFLP is usually performed in a single gene or other easily isolated piece of DNA such as mtDNA. If there is a sequence difference among 2 or more individuals due to the change of a restricted site of endonuclease (restriction enzyme), different patterns of restriction fragments (DNA polymorphism) will be observed.
สถาบันวิทยบริการ

Figure 4. Map of circular mitochondrial genome of A. mellifera. It reveals 13 protein coding genes, 2 ribosomal RNA genes (rRNA), 22 transfer RNA genes (tRNA), and non-coding region (Crozier and Crozier, 1993).

Specific primers will be designed and used in Polymerase Chain Reaction (PCR) in order to amplify a target region. A reaction is composed of DNA template, oligonucleotide primers, deoxynucleotide triphosphates (dNTP), and DNA polymerase (normally, Taq DNA polymerase) in suitable buffer. PCR reaction contains 3 important steps: (1) double strand DNA is denatured at high temperature to generate a single stand (2) short oligonucleotide primers bind to a single strand complementary template at lower annealing temperature, and (3) the temperature is raised to synthesize a target sequence by primer extension. During amplification,
these 3 steps will be repeated several times (Hoy, 1994). Moreover, PCR-based techniques such as microsatellites, Random Amplified Polymorphic DNA (RAPD) are widely used to analyse DNA variation. Garnery et al. (1991) presented a phylogenetic relationship among A. florea, A. dorsata, A. cerana, and A. mellifera by using neighbor-joining and parsimony methods. The sequence of 5 ' end of COII was used. The result reveals that A. cerana and A. mellifera are closely related. In contrast, they are divergent and are separated from A. florea and A. dorsata. By PCR, Moritz et al. (1994) analyzed a variable region between COI and COII of A. mellifera distributed in the southern part of Africa along the $27^{\text {th }}$ latitude. They reported a novel mitotype of A. mellifera.

By determining mtDNA variation, Cornuet and Garnery (1991) categorized A. melifera into 3 major lineages: 1) African lineage (lineage A) including A. mellifera scutellata, A. mellifera capensis, A. mellifera intermissa, A. mellifera adansonii, and A. mellifera monticola; 2) mellifera lineage (lineage M) including A. mellifera ligustica and A. mellifera carnica, and 3) caucasic lineage (lineage C) including A. mellifera caucasica. In addition, Deowanish et al. (1996) examined mtDNA variation of A. cerana from Japan, Korea, Taiwan, Vietnam, Thailand, Nepal, and the Philippines by using RFLP technique. Ten restriction enzymes (HaeIII, HinfI, BclI, BgliI, EcoRI, EcoRV, HincII, HindIII, NdeI, and SpeI) were used. Bees can be classified into 6 groups which are dependent on different localities: 1) Japan; 2) Nepal,qVietnam, and the northern part to the central part of Thailand; 3) KoreaTsushima; 4) Taiwan; 5) Southern Thailand; and 6) the Philippines.

Instead of using many restriction enzymes, one restriction enzyme is also sufficient to use for a determination. For example, De La Rua, Serano, and Galian (1998) studied DraI restricted patterns of amplified $t R N A^{\text {leu }}-C O I I$ intergenic regions
in A. mellifera from fire Canary Island. They found 5 haplotypes of the African lineage (lineage A) and one of the west European lineage (lineage C). The A14 and A15 haplotypes were firstly described. Furthermore, Sihanuntavong et al. (1999) examined genetic variation and population difference of A. cerana in Thailand by DraI restriction analysis of amplified srRNA and lrRNA genes and intergenic COICOII region. They found 12 composite haplotypes. In addition, large genetic differences among A. cerana population from the northern part of Thailand and the peninsular Thailand were detected. For another example, Sittipraneed, Sihanuntavong, and Klinbunga (2001) examined genetic difference of A. cerana in Thailand by RFLP and DNA sequence analysis of amplified lrRNA gene. They found 4 haplotypes of A. cerana when considering DraI digested patterns. Haplotype A was found in the northern region, the northeastern region, and the central region whereas haplotyp B was from the peninsular Thailand, Phuket, and Samui Island. Haplotype C was counted as 47.06% of A. cerana. They were originated from Samui Island but not from other geographic regions. Haplotype D was also found in the northern part, the northeastern part, and the central part of Thailand but was found in low frequency.

Nanork (2001) determined genetic variation of A. florea from various parts of Thailand by PCR-RFLP. There is no variation in a region of $\operatorname{lr} R N A$ and $c y t b I-t R N A{ }^{\text {ser }}$. Two different haplotypes were found after Asel digestion of the intergenic COI-COII region. However, the different haplotype was detected from only one colony from Prachuab Kiri Khan province.

It has been reported that we can use morphometry together with DNA analysis to support each other in order to determine the variation. For example, Kandemir, Kence, and Kence (2000) used 6 enzyme systems to determine genetic variation and used 10 morphometric characters to determine variation in A. mellifera population in

Turkey. The result supports that both morphometric and electrophoretic variation are equally effective in discriminating honey bee population.

CHAPTER III

MATERIALS AND METHODS

2.1 Morphometric analysis

2.1.1 Equipment

- Stereomicroscope (Stemi DV4, Zeiss, Germany)
- Forceps with very fine tips
- Microscope slides (Sail bran, China)
- Incubator BM 400 (Memmert Gamb H, Germany)
- Stirrer/ hotplate, model: PC-320 (Corning, USA)
- Cover glasses (Menzel-glaser, Germany)
- Micrometer
- Brush-pen, No. 0
- Insect pins (the Shiga, Japan)
- Filter paper (4 mm), Whatman (Whatman international Ltd., England)
- 1.5 ml Microcentrifuge tube (Treff lab, Switzerland)
- Dissecting dish

- Gum arabic (Sigma, USA) σ
- Chloral hydrate (Fluka, Switzerland)
- Glycerine (BDH, England)
- Ethyl acetate (Merck, Germany)
- Ethanol (Merck, Germany)

2.1.3 Collection of bee samples

Apis andreniformis workers were collected from different localities in Thailand and Tenom, Malaysia. Twenty seven colonies were collected from 4 parts of Thailand which were from the northern part (5 colonies), the western part (8 colonies), the eastern part (8 colonies), and the southern part (6 colonies). In addition, 3 colonies were collected from Tenom, Malaysia. Localities and sampling details were shown in figure 16 and appendix II.

At least, 30 worker bees were collected from each colony and immediately anesthesized by ethyl acetate. Then, they would be preserved in $70 \%(\mathrm{v} / \mathrm{v})$ ethanol.

2.1.4 Dissection

Twenty bees from each colony were dissected. Each of them was put into a dissecting dish containing $70 \%(\mathrm{v} / \mathrm{v})$ ethanol in order to keep the bee soft and easy to dissect. Dissection was done under a stereo microscope. The used body parts were: antenna, proboscis, forewing, hindwing, hindleg, the $3^{\text {rd }}$ and the $4^{\text {th }}$ tergite (counted from a petiole), and the $3^{\text {rd }}$, the $4^{\text {th }}$, and the $6^{\text {th }}$ sternite. These characters are presented in figure 5 .

The right forewing and hindwing were pulled by firmly grasping at their attached point. It is important to be aware that wings should not be folded. Also, all required characters must be present. çd lld

A whole proboscis consisting of postmentum, mentum, and glossa was pulled by using forceps with very fine tips. Also, an antenna consisting of a scape and a flagellum was used.

In addition, a right hindleg was detached by pulling at a trochanter. After that, a basitarsus would be separated from tibia. The trochanter was also removed from femur which was still attached to tibia.

An abdomen was detached by pulling at a joint between a thorax and an abdomen. The $2^{\text {nd }}$ tergite was removed by inserting a very fine tip of forceps into a hold between the $2^{\text {nd }}$ and the $3^{\text {rd }}$ tergite. The $2^{\text {nd }}$ tergite was then griped and pulled. Later, the $3^{\text {rd }}$ and the $4^{\text {th }}$ tergites were pulled away from the rest and were separated from each other. Muscle and connective tissue attached to the $3^{\text {rd }}$ and the $4^{\text {th }}$ tergites were removed by using a small brush and forceps.

It is difficult to pull sternites because they are easily broken. In order to remove the $3^{\text {rd }}$ sternite, 2 pairs of forceps were used. One pair of forceps was used to pull a petiole from the $3^{\text {rd }}$ sternite while other pair of forceps was used to press the $3{ }^{\text {rd }}$ sternite. The $4^{\text {th }}$ and the $6^{\text {th }}$ sternites were also pulled off by using 2 pairs of forceps. After that, a small brush and forceps were used to make sternites clean.

2.1.5 Making slides of bee body parts

2.1.5.1 Preparing slide

All processes of making slide were done under a stereo microscope. Bee body parts were prepared into 4 sets as below:

Set 1: forewing, hindwing, the $3^{\text {rd }}$ sternite, and the $4^{\text {th }}$ sternite
Set 2: the $3^{\text {rd }}$ tergite, the $4^{\text {th }}$ tergite, and the $6^{\text {th }}$ sternite
Set 3: antenna and proboscis

Twenty slides and 80 cover glasses were required for 20 workers from one colony.

Figure 5. External morphology of honey bee (Dade, 1994):
(A) an abdomen showing the $3^{\text {rd }}$ and the $4^{\text {th }}$ tergites (count from the $99 / 9$ petiole), together with the $3^{\text {rd }}$, the $4^{\text {th }}$, and the $6^{\text {th }}$ sternites (count from
the petiole);
(B) a head showing an antenna and a proboscis;
(C) a right hindleg showing femur, tibia, and basitarsus; and
(D) a right forewing and a hindwing.

2.1.5.2 Mounting slides

2.1.5.2.1 Set 1

Hoyer's medium (Krantz, 1978) was dropped on a glass slide. The set 1 bee body parts were placed and set on the above medium drop. After that, a cover glass was placed and sealed on top. Try to avoid air bubbles while sealing.

2.1.5.2.2 Set 2

Set 2 body parts were placed on the Hoyer's medium drop on the same slide as in 2.1.5.2.1. Tergites must be kept unfolded. Then, it was sealed by a cover.

2.1.5.2.3 Set 3

Another drop of Hoyer's medium was put on the same slide as in 2.1.5.2.2. An antenna and a proboscis were placed. The same process of sealing was applied as mentioned before.

2.1.5.2.4 Set 4

The $4^{\text {th }}$ drop of Hoyer's medium was applied on the same slide from 2.1.5.2.4. A femur-tibia and basitarsus were placed on Hoyer drop. The same process of sealing was applied as mentioned before.

In order to point a location precisely, all body parts must be arranged into the same orientation and all requaired characters must be present. Next, the prepared slide was placed on a hot plate for a few minutes to eliminatedair bubbles repeatedly. Finally, a slide was incubated at $50^{\circ} \mathrm{C}$ for 2 weeks before measurement.

2.1.5.3 Measurement

Bee body parts were photographed by using Digital Photo Marker program. Pictures were saved as JPEG file. Then, 24 characters were measured by using Image-Pro express program. The used characters were:

1. Forewing length (FWL)
2. A line from the outermost end of radial cell to a sharp curve of the inner side of forewing (LFW)
3. Radial cell of fore wing length (RFWL)
4. Hindwing length (HWL)
5. Hindwing width (HWW)
6. The $3^{\text {rd }}$ tergite length (TG3L)
7. The $3^{\text {rd }}$ tergite width (TG3W)
8. The $4^{\text {th }}$ tergite length (TG4L)
9. The $4^{\text {th }}$ tergite width (TG4W)
10. The $3^{\text {rd }}$ sternite width (ST3W)
11. Length of wax mirror on $3^{\text {rd }}$ sternite (ST3WL)
12. Width of wax mirror on $3^{\text {rd }}$ sternite (ST3WW)
13. The $4^{\text {th }}$ stèrnite width (ST4W)
14. Length of wax mirror on $4^{\text {th }}$ sternite (ST4WL)

15. The $6^{\text {th }}$ sternite width (ST6W)
16. Length of wax mirror on $6^{\text {th }}$ sternite (ST6WL)
17. Total length of antenna (ANL)
18. Total length of proboscis (PBL)
19. Tibia width (TBW)
20. Tibia length (TBL)
21. Femur length (FML)
22. Basitarsus length (BSTL)
23. Basitarsus width (BSTW)

Figure 6. A right forewing of A. andreniformis worker. Forewing length (FWL), A line from the outermost end of radial cell to a sharp curve of the inner side of forewing (LFW), and radial cell of forewing length

Figure 7. A right hindwing of A. andreniformis worker. Hindwing length (HWL) and hindwing width (HWW) are indicated.

Figure 8. The $3^{\text {rd }}$ tergite of A. andreniformis worker. The $3^{\text {rd }}$ tergite length (TG3L) and the $3^{\text {rd }}$ tergite width (TG3W) are indicated.

Figure 9. The $4^{\text {th }}$ tergite of A. andreniformis worker. The $4^{\text {th }}$ tergite length (TG4L) and the $4^{\text {th }}$ tergite width (TG4W) are indicated.

Figure 10. The $3^{\text {rd }}$ sternite of A. andreniformis worker. The $3^{\text {rd }}$ sternite width (ST3W), length of wax mirror on the $3^{\text {rd }}$ sternite (ST3WL), and width of wax mirror on the $3^{\text {rd }}$ sternite (ST3WW) are indicated.

Figure 11. The $4^{\text {th }}$ sternite of A. andreniformis worker. The $4^{\text {th }}$ sternite width (ST4W), length of wax mirror on the $4^{\text {th }}$ sternite (ST4WL), and width of wax mirror on the $4^{\text {th }}$ sternite (ST4WW) are indicated.

Figure 12. The $6^{\text {th }}$ sternite of A. andreniformis worker. The $6^{\text {th }}$ sternite width (ST6W) and width of wax mirror on the $6^{\text {th }}$ sternite (ST6WW) are indicated.

Figure 13. An antenna of A. andreniformis worker. Total length of antenna
(ANL) is indicated.

Figure 14. A proboscis of A. andreniformis worker. Total length of proboscis (PBL) is indicated.

Figure 15. Femur and tibia of right hindleg of A. andreniformis worker. Tibia width (TBW), tibia length (TBL), and femur length (FML) are indicated.

Figure 16. Basitarsus of right hindleg of A. andreniformis worker. Basitarsus length (BSTE) and basitarsus width (BSTW) are indicated.

2.1.5.3 Data analysis

A statistic to perform a factor analysis on the colony means using 24 characters forall 600 bees collected from 4 parts of Thailand and Tenom, Malaysia was used. This method provides characters those haye larger loadings in various factors and allows the parsimonious reduction in the number of characters needed for further analysis. After that, cluster analysis (SPSS for windows 13.0) was used to investigate the relationship between groups. Finally, linear regression was used to explore clinal patterns in the characteristics of A. andreniformis samples in Thailand.

Figure 17. Map of Thailand and Tenom, Malaysia showing sampling sites for
A. andreniformis for morphometric analysis.

2.2 Genetic analysis

2.2.1 Instruments

- Autoclave, model: Conbraco, Conbraco Ind. Inc., USA
- Automatic micropipette P10, P20, P100, P200, and P1000 (Gilson-medical electronics, S.A., France)
- Freezer $\left(-20^{\circ} \mathrm{C}\right)$
- Horizontal gel electrophoresis apparatus, model: Mupid, Advance Co., Ltd., Japan
- High speed microcentrifuge, model: Centrifuge 5410 (Eppendorf, Germany)
- Magnetic stirrer, model: PC-320 (Corning, USA)
- Polaroid camera, model: direct screen instant camera DS 34 H-34
(Peca products, UK)
- Microincubator, model: M-36, Taitec, Japan
- Incubator, model: Memmert, Germany
- Microwave oven, model: Sharp carousel R7456 (Sharp, Thailand)
- PCR machine, model: GeneAmp ${ }^{\circledR}$ PCR system 9700
(Applied Biosystem, Singapore)
- Electronic UV transilluminator (Ultra ium Inc., USA)
- Vortex, model: MS I Minishaker (IKA-works, Inc., USA)

จฬาลงกรณ์มหาวิทยาลัย

2.2.2 Inventory Supplies

- Black and white pain film
- Filter paper Whatman 3 mm (Whatman international Ltd., England)
- Microcentrifuge tubes (0.5 and 1.5 ml)
- Pipette tips (10, 200, and $1000 \mu \mathrm{l}$)
- Thin-wall microcentrifuge tube (0.2 ml)
- Whatman laboratory sealing film (Whatman international Ltd., England)

2.2.3 Chemicals

- Absulute ethanol, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{M} . \mathrm{W} .=46.07$ (Merck, Germany)
- Acrylamide, M. W. = 71.08 (Promega, USA)
- Agarose (Research organics, USA)
- Boric acid (Research organics, USA)
- Ethidium bromide
- DNA ladder marker 100 bp (catalog \# SM0321), Fermentas Life Science
- DNA λ HindIII marker (catalog \# SM0101), Fermentas Life Science
- Ethylene diamine tetra-acetic acid (EDTA), $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{8}$, M. W. $=292.2$
(Serve feinbiochemica GmbH \& Co., USA)
-95% Ethyl alcohol, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$, M.W. $=46$, Thailand
- QIAquick ${ }^{\circledR}$ PCR purification kit (catalog \# 28104), Qiagen, Germany
- QIAamp ${ }^{\circledR}$ DNA mini kit (catalog \# 51304), Qiagen, Germany
- Sodium chloride, NaCl, M.W. $=$ 58.4, Merck, Germany
- TEMED, Promega, USA
- Tris-(Hydroxymrtyl)-aminomethane, $\mathrm{NH}_{2} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}$, M.W. $=121.14$,

2.2.4 Primers

- All oligonucleotides were synthesized at Bioservice unit of National Science and Technology Development Agency (NSTDA), Bangkok, Thailand.

2.2.5 Enzymes

- Restriction endonucleases
- DraI (catalog\# R0129S), Biolabs Inc., New England
- AluI (catalog\# R0137S), Biolabs Inc., New England

2.2.6 Sample collection

Adult workers of A. andreniformis from 37 colonies were collected from natural colonies throughout 4 parts of Thailand. In each colony, 10-15 bees were sampled. Furthermore, bees while foraging on flowers were sampled from 9 provinces all over Thailand. More A. andreniformis from Tenom, Sabah, Malaysia were obtained. Additional details of sample collections are shown in figure 17 and appendix II. Obtained honey bees were preserved in 95% ethanol and were stored at $4^{\circ} \mathrm{C}$ until DNA extraction.

2.2.7 DNA extraction

Genomic DNA was extracted from an individual thorax of adult worker bees by QIAamp ${ }^{\circledR}$ DNA mini kit (Qiagen). A thorax was cut by a pair of scissors in 180 $\mu \mathrm{l}$ of buffer ATL. Then, the tissue were cut into small pieces and mixed by $20 \mu \mathrm{l}$ of Proteinase K. It was mixed by vortex and was incubated at $56^{\circ} \mathrm{C}$ for at least 4 h . After quick spun, the mixture was added by 200μ l of buffer AL, vortexed for 15 sec, and incubated at $70^{\circ} \mathrm{C}$ for 10 min . After incubation, the mixture was added by absolute ethanol, vortexed for 15 sec , and quick spun. The mixture was transferred to a QIAamp ${ }^{\circledR}$ spin column which was later centrifuged at $8,000 \mathrm{rpm}$ for 1 min . Then, the column was removed to a new clean 2 ml collecting tube while flow through (FT) was discarded. Buffer AW1 of $500 \mu \mathrm{l}$ was added to the spin column which was later centrifuged at $8,000 \mathrm{rpm}$ for 1 min . The spin column was removed again to a clean 2 ml collecting tube and FT was discarded. Buffer AW2 of $500 \mu \mathrm{l}$
was added to the spin column which was later centrifuged at $14,000 \mathrm{rpm}$ for 3 min . After that, the spin column was placed into a 1.5 ml microcentrifuge tube and was added by $50 \mu \mathrm{l}$ of buffer AE. The spin column was incubated at RT for 2 min and centrifuge at $8,000 \mathrm{rpm}$ for 1 min . The elution containing genomic DNA was saved and stored at $-20^{\circ} \mathrm{C}$.

2.2.8 Agarose gel electrophoresis

In order to determine the quality of genomic DNA, 0.8% (w/v) agarose gel was prepared. The loading sample was mixed between $5 \mu \mathrm{l}$ of genomic DNA and 1 x loading dye (5 x loading dye: 25 mM Tris- HCl at $\mathrm{pH} 7.0,0.05 \%$ bromophenol blue, 150 mM EDTA, and 25\% glycerol). Also, λ Hind III marker (200 ng) was used as a standard marker. Electrophoresis was performed by using 1x TBE buffer (0.05 M Tris- HCl at $\mathrm{pH} 8.0,0.05 \mathrm{M}$ Boric acid, and 0.65 M EDTA) as running buffer at 100 V for 50 min . After that, the gel was stained with $10 \mu \mathrm{~g} / \mathrm{ml}$ ethidium bromide (EtBr) for 5 min and destained with $\mathrm{d}-\mathrm{H}_{2} \mathrm{O}$ for 20 min . Genomic DNA was visible under UV light and photographed.

2.2.9 Polymerase Chain Reaction (PCR)

Primers were designed from Cytochrome oxidase subunit b (cytb) [NC_001566] andNADH dehydrogenase subunit 4 (ND4) [NC_001566] of A. mellifera by using Primer 3 program (http://fokker.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi). Forward primers (ND4: 5'- AAAAG CTCAT GTTGA AGCT -3', cytb: 5’TGAAA TTTTG GATCA ATTCT TGG -3’) and reverse primers (ND4: 5’- TTTTA ACCAC GAAAT TATC -3’, cytb: 5’- TCCAA GAGGA TTAGA TGATC CAG -3’) were synthesized. PCR reaction was carried out in 1x PCR master mix (catalog\#

K0171, Fermentas Life Science), $2 \mu \mathrm{M}$ of each FW and RW primer, and genomic DNA (200 ng). PCR condition by ND4 amplification was as followed: $94^{\circ} \mathrm{C}$ for 2 min, 30 sec , followed by 35 cycles of $94^{\circ} \mathrm{C}$ for $1 \mathrm{~min} ; 58^{\circ} \mathrm{C}$ for 1 min ; and $72^{\circ} \mathrm{C}$ for 3 min , and a final extension step at $72^{\circ} \mathrm{C}$ for 10 min . Moreover, PCR condition by cytb amplification was submitted to an initial denaturation of $94^{\circ} \mathrm{C}$ for 2 min 30 sec , followed by 35 cycles of $94^{\circ} \mathrm{C}$ for $1 \mathrm{~min} ; 50^{\circ} \mathrm{C}$ for 1 min ; and $72^{\circ} \mathrm{C}$ for 3 min , and a final extension step at $72^{\circ} \mathrm{C}$ for 10 min . The PCR product was electrophoresed on 1.5% agarose gel at 100 V for 1 h .

2.2.10 Restriction Fragment Length Polymorphism (RFLP)

An amplified product was digested by DraI and AluI restriction endonuclease according to a manufacture's instruction. A reaction was carried out in $20 \mu \mathrm{l}$ containing 150 ng of PCR products, 1 x of recommended buffer, 5 units of restriction enzyme, and $\mathrm{d}-\mathrm{H}_{2} \mathrm{O}$. The mixture was incubated at $37^{\circ} \mathrm{C}$ for at least 1 h . Restriction fragments were separated on 8% acrylamide gel with TBE buffer (89 mM Tris- HCl at pH 8.0, 8.9 mM Boric acid, and 2.5 mM EDTA) at 100 V for about 1.5 h and silver stained

สถาบันวิทยบริการ

2.2.11 PCR product purification

Any contaminants in PCR mixture must be removed by purification before sequencing. Purification was performed by using a QIAquick ${ }^{\circledR}$ PCR purification kit. Five times volume of buffer PB were mixed with one volume of PCR product. The mixture was then transferred to a QIAquick ${ }^{\circledR}$ spin column which would be centrifuged at $13,000 \mathrm{rpm}$ for 1 min . Flow through (FT) was discarded. Buffer PE of $750 \mu \mathrm{l}$ was added to the column which would be centrifuged at $13,000 \mathrm{rpm}$ for 1 min . After that,

FT was discarded again. The column was centrifuged additionally at $13,000 \mathrm{rpm}$ for 1 min . The column was removed to a new 1.5 ml microcentrifuge tube. Buffer EB ($30 \mu \mathrm{l}$) was added to the center of the column. It was incubated at RT for 2 min and was centrifuged at $8,000 \mathrm{rpm}$ for 1 min .

2.2.12 DNA sequencing and phylogenetic analysis

PCR products amplified by cytb were sequenced by Bioservice unit (BSU). Then, partial DNA sequences were aligned initially by using the multiple sequence alignment program CLUSTAL X. The data were saved to NEXUS file formatted for further phylogenetic tree construction. Phylogenetic analyses were performed by using neighbor-joining (NJ) and UPGMA (PAUP*4.0b10) (Swofford, 2000). In order to investigate support for nodes estimated in a parsimony tree, bootstrap analysis with 100 replicates were undertaken by PAUP*4.0b10.

สถาบันวิทยบริการ

Figure 18. Map of Thailand and Tenom, Malaysia shows sampling sites for
A. andreniformis for genetic analysis.

CHAPETR IV

RESULTS

4.1 Morphometry

4.1.1 Factor analysis

A. andreniformis workers were collected from 4 parts (north, east, west, and south) of Thailand and Tenom, Malaysia. In each colony, factor analyses were performed by using means of each of 24 morphometric characters. After that, factor loadings would be obtained. Since only factor loading greater than 0.6 would be selected for further analysis, there are only qualified 20 morphometric characters as indicated below:

1. Forewing length (FWL)
2. A line from the outermost end of radial cell to a sharp curve of the inner side of forewing (LFW)
3. Forewing length of radial cell (RFWL)
4. Hindwing length (HWL)
5. Hindwing width (HWW)

6. The $3^{\text {rd }}$ tergite width (TG3W) The $4^{\text {th }}$ tergite length (TG4L)
7. The $4^{\text {th }}$ tergite width (TG4W)
8. The $3^{\text {rd }}$ sternite width (ST3W)
9. Length of wax mirror on the $3^{\text {rd }}$ sternite (ST3WL)
10. The $4^{\text {th }}$ sternite width (ST4W)
11. Width of wax mirror on the $4^{\text {th }}$ sternite (ST4WW)
12. The $6^{\text {th }}$ sternite width (ST6W)
13. Length of wax mirror on the $6^{\text {th }}$ sternite (ST6WW)
14. Total length of antenna (ANL)
15. Tibia width (TBW)
16. Tibia length (TBL)
17. Femur length (FML)
18. Basitarsus length (BSTL)

The $2^{\text {nd }}$ factor analysis using colony means of selected 20 morphometric characters can divide them into 4 groups. A group where variable belong to depends on factors with Eigen values greater than 0.6 and highest among other 3 groups. First factor was accounted for 38.98% of total variation and was mainly associated with body size (TG4L, TG4W, ST3W, ST3WL, ST4W, ST6W, and ST6WW), hindwing size (HWL and HWW), antenna length (ANL), and hindleg size (TBL, FML, and BSTL). The $2^{\text {nd }}$ factor was mainly associated with forewing size (FWL, LFW, and RFWL). This factor was accounted for 11.45% out of total variation. The $3^{\text {rd }}$ factor was mainly associated with the size of the $3^{\text {th }}$ tergite (TG3L and TG3W) and was accounted for 9.45% of total variation. Furthermore, the $4^{\text {th }}$ factor was accounted for 7.58% of total variation and was mainly associated with tibia width (TBW). These 4 factors were accounted for 67.47% of total variation.

Figure 19 to 24 show plots of 4 factor scores generated by principal component analysis (PCA). Bees were coded by 5 major collecting localities which are the northern part, the eastern part, the western part, and the southern part of Thailand and Tenom, Malaysia.

1. Figure 19 presents a plot of factor 1 (x-axis) versus factor 2 (y -axis). Principal components were obtained from colony means of 20
morphometric characters. All characters were measured from each bee. A graph shows one cluster of bees.
2. Figure 20 presents a plot of factor 1 (x-axis) versus factor 3 (y-axis). Principal components were obtained from colony means of 20 morphometric characters. All characters were measured from each bee. A graph shows one cluster of bees.
3. Figure 21 presents a plot of factor 1 (x-axis) versus factor 4 (y-axis). Principal components were obtained from colony means of 20 morphometric characters. All characters were measured from each bee. Due to the graph, 2 clusters of bees can be distinguished. First cluster contains bees from the northern part, the eastern part, and the western part of Thailand. Second cluster contains bees from the southern part of Thailand and Tenom, Malaysia. However, there is some overlap on each axis.
4. Figure 22 presents a plot of factor 2 (x-axis) versus factor 3 (y -axis). Principal components were obtained from colony means of 20 morphometric characters. All characters were measured from each bee. A graph shows one cluster of bees.
5. Figure 23 presents a plot of factor 2 (x-axis) versus factor 4 (y-axis). Principal components were obtained from colony means of 13 morphometric characters. All characters were measured from each bee.

A graph shows one cluster of bees.
6. Figure 24 presents a plot of factor 3 (x -axis) versus factor 4 (y -axis).

Principal components were obtained from colony means for 13 morphometric characters. All characters were measured from each bee.

A graph shows one cluster of bees.

Figure 19. Position of A. andreniformis in Thailand and Tenom, Malaysia. Factor axes were derived from factor analysis of morphometric analysis: ordinate; factor 1 and abscissa; factor 2.

Figure 20. Position of A. andreniformis in Thailand and Tenom, Malaysia. Factor axes were derived from factor analysis of morphometric analysis: ordinate; factor 1 and abscissa; factor 3.

Figure 21. Position of A. andreniformis in Thailand and Tenom, Malaysia. Factor axes were derived from factor analysis of morphometric analysis: ordinate; factor 1 and abscissa; factor 4.

Figure 22. Position of A. andreniformis in Thailand and Tenom, Malaysia. Factor axes were derived from factor analysis of morphometric analysis: ordinate; factor 2 and abscissa; factor 3.

Figure 23. Position of A. andreniformis in Thailand and Tenom, Malaysia. Factor axes were derived from factor analysis of morphometric analysis: ordinate; factor 2 and abscissa; factor 4.

Figure 24. Position of A. andreniformis in Thailand and Tenom, Malaysia. Factor axes were derived from factor analysis of morphometric analysis: ordinate; factor 3 and abscissa; factor 4.

4.1.2 Cluster analysis

Figure 25 shows a dendrogram constructed by a cluster analysis of the squeared euclidian distances between means of factor scores. The factor scores were from bees classified by collectable localities. In addition, figure 26 shows a dendrogram of bees grouped by main localities and based on the north and the south $12^{\circ} \mathrm{N}$ latitude of Thailand, respectively. All 2 dendrograms revealed that these A. andreniformis can be clustered into 2 groups. It indicates that 29 colonies were separated into the $1^{\text {st }}$ group while only 1 colony from Kanchanaburi was separated into the $2^{\text {nd }}$ group.

4.1.3 Clinal patterns in the characteristic of A. andreniformis in Thailand

To explore clinal patterns in the characteristics of A. andreniformis, factor scores were plotted against latitude and longitude. Gradual transitions of characters from the south to the north and the west to the east are indicated in the graph (figure 27-34). Result of linear regression analyses of factor scores against latitude and longitude are summarized in Table 1. A distinct and highly significant slope ($\mathrm{P} \leq 0.005$) is observed in latitude for both factor 1 and 4. In addition, the significance ($\mathrm{P} \leq 0.025$) is obvious for factor 2 . No significance for factor 3 is calculated. A significant slope ($\mathrm{P} \leq 0.005$) is observed in longitude for both factor 1 and 4 while there is no significance for factor 2 and 3. According to these results, HWL, HWW, TG4L, TG4W, ST3W, ST3WL, ST4W, ST6W, ST6WW, ANL, TBL, FML, BSTL, FWL, LFW, RFWL, and TBW of A. andreniformis increase in size from the south to the north of Thailand. Moreover, HWL, HWW, TG4L, TG4W, ST3W, ST3WL, ST4W, ST6W, ST6WW, ANL, TBL, FML, BSTL, TBW of these bees decrease in size from the west to the east of Thailand.

chanthaburi (9a04)
chanthaburi (9a05)
Trat (9a02)
chanthaburi (9a03)
chanthaburi (Se06)
chanthaburi (5 e08)
Kanchanaburi (9w05)
Kanchanaburi (9w11)
Phatchaburi (9w02)
Kanchanaburi (9w04)
Phetchaburi (9woi)
Kanchanaburi (9w07)
Tanom (Tn04
Trat (9001)
Kanchanaburi (9w09) chlang Mal (M01)
chlang Mal (M04)

chlang Mal (1003)
9urat Thani (905)
Phuket (903)
Chathaburi (9a07)
Phuket (904)
9urat Thani(906)
Phungnga (907)

chlang Mal (106)
Phuket (901)
Kanchanaburi (9k06)
Kanchanaburl (9r06)
σ
0
Figure 25. A dendrogram constructed by a cluster analysis. A. andreniformis is classified by collection localities.

Morth (9a04)
North (9a05)
North (9002)
Morth (9803)
North (9a06)
Morth (9800)
Morth (9w05)
North (9w11)
North (9w02)
North (9w04)
Morth (9w01)
Morth (9w07)
90uth (Tn04)
North (9a01)
North (9w0e)
North (no1)
Morth (M04)
Morth (M05)
North (M03)
90uth (905)
90uth (903)
North (9a07)
90uth (904)
90uth (906)
90uth (907)
90uth (TnO2)
90uth (Tn05)

North (N06)

90uth (901)

Morth (9m06)

Figure 26. A dendrogram constructed by a cluster analysis. A. andreniformis were classified into the north and the south by the north and the south $12^{\circ} \mathrm{N}$ latitude.

Figure 27. Geographic trends in morphometric characters of A. andreniformis in Thailand and Tenom, Malaysia: abscissa; latitude and ordinate; factor score 1 as derived from PCA. Value labels refer to major sampling localities.

Figure 28. Geographic trends in morphometric characters of A. andreniformis in Thailand and Tenom, Malaysia: abscissa; latitude and ordinate; factor score 2 as derived from PCA. Value labels refer to major sampling localities.

Figure 29. Geographic trends in morphometric characters of A. andreniformis in Thailand and Tenom, Malaysia: abscissa; latitude and ordinate; factor score 3 as derived from PCA. Value labels refer to major sampling localities.

Figure 30. Geographic trends in morphometric characters of A. andreniformis in Thailand and Tenom, Malaysia: abscissa; latitude and ordinate; factor score 4 as derived from PCA. Value labels refer to major sampling localities.

Figure 31. Geographic trends in morphometric characters of A. andreniformis in Thailand and Tenom, Malaysia: abscissa; longitude and ordinate; factor score 1 as derived from PCA. Value labels refer to major sampling localities.

Figure 32. Geographic trends in morphometric characters of A. andreniformis in Thailand and Tenom, Malaysia: abscissa; longitude and ordinate; factor score 2 as derived from PCA. Value labels refer to major sampling localities.

Figure 33. Geographic trends in morphometric characters of A. andreniformis in Thailand and Tenom, Malaysia: abscissa; longitude and ordinate; factor score 3 as derived from PCA. Value labels refer to major sampling localities.

Figure 34. Geographic trends in morphometric characters of A. andreniformis in Thailand and Tenom, Malaysia: abscissa; longitude and ordinate; factor score 4 as derived from PCA. Value labels refer to major sampling localities.

Table 1. Linear regression of geographic trends in morphometric characters of A. andreniformis from Thailand derived from principal component analysis.

Predictor	Dependent variable	R value	P Significance
Latitude	Factor 1	0.717	0.005
	Factor 2	0.096	0.025
	Factor 3	0.051	0.238
	Factor 4	0.199	0.005
	Factor 1	0.180	0.005
	Factor 2	0.002	0.972
	Factor 3	0.052	0.232
	Factor 4	0.224	0.005

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

4.2 Genetic variation analysis

4.2.1 DNA extraction

Genomic DNA of an A. andreniformis thorax (30 mg) was extracted by QIAamp ${ }^{\circledR}$ DNA mini kit (Qiagen). Good quality of genomic DNA is determined by sharp and high molecular weight (MW) band on agarose gel. High MW of genomic DNA (about 23 kb in length) is presented (figure 35). Concentration of extracted DNA was estimated by comparing an intensity to bands of λ Hind III DNA as standard marker on agarose gel. Usually, extracted DNA at about $25 \mathrm{ng} / \mu$ was obtained per 30 mg tissue.

Figure 35. High MW DNA of A. andreniformis extracted from thoraxes.
จ $9 /$ On 0.8% agarose gel electrophoresis and EtBr staining, Panes 1-6 indicate individual genomic DNA while lane M represents λ Hind III as standard DNA marker.

4.2.2 PCR amplification

PCR is a technique for in vitro DNA amplification of specific sequence by simultaneous primer extension of complementary stand of DNA. After electrophoresis on 1.0% agarose gel and EtBr staining, PCR product was visible under UV light. Size of the product was estimated by comparing to 100 bp DNA ladder. Due to primer design, expected PCR products amplified by ND4 and cytb primers were 540 bp and 520 bp , respectively. Under optimum condition as in Materials and Methods, only single band of 520 bp product was obtained by cytb amplification while double bands of PCR products (540 and $\sim 550 \mathrm{bp}$) were obtained by ND4 amplification (figures 36-37). Thus, PCR products by cytb were chosen for restriction and DNA analysis.

Figure 36. PCR products of cytb on 1.5% agarose gel. Lane 1 contains the product of bees from the north. Lanes 2 and 3 contain the products of bees from the east while lanes 4 and 5 contain the products of bees from the west. Furthermore, lane 6 contains the products of bees from Tenom, Malaysia. Lane M represents 100bp ladder as DNA marker.

Figure 37. PCR products of ND4 on 1.5% agarose gel. Lane 1 contains the product of bees from the north. Lanes 2 and 3 contain the products of bees from the east and the west. In addition, lane 4 contains the product of bees from Tenom, Malaysia. Lane M represents 100bp ladder as DNA marker -1) สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

4.2.3 Restriction analysis

The obtained DNA sequence after cytb amplification (at 400 bp) was digested by AluI and DraI restriction endonucleases. Restriction by AluI resulted in 6 different haplotypes (Figure 38). Haplotype 1 (H1) is from bees in Chaing Mai, Chantaburi, Trat, Kanchanaburi, Phetchaburi, Phuket, Pungnga, and Tenom, Malaysia while haplotype 2, 3, and $4(\mathrm{H} 2, \mathrm{H} 3$, and H 4$)$ is from bees in the southern part of Thailand which are Phuket Island and Surat Thani province, respectively. Moreover, haplotype 5 (H5) is from bee in Chiang Mai (the northern part of Thailand) and in Surat Thani (the southern part of Thailand). At last, haplotype 6 (H6) is found in Chiang Mai province.

Haplotype 2

10			40	50	0
ATCTCTACGT	TGTTGTCCTA	ATATTGATGT	TGCATTTTGA	TCAATTGCAA	ATATTATAAA
70	80	90	100	110	120
AGATATAAAT	TCAGGATGAT	TGTTTCGATC	AGTTCCTCCA	AdTGGAGGTT	CATTTTATTT
130	140	150	160	170	180
TTAATTGTA	TATACTCATA	TCCACGAAA	TATATTTTAT	ACCTCATTTA	AATTAAATAC

$9260 \approx 27019022809$ - 290010 TGTTCTTCCT TGAGGACAAA AATCATTTTG AGGAGCAACA GTTATTACAA ATTTATTATC $\begin{array}{llllll}\text { Q } & 310 & 320 & 330 & 350 & 350\end{array}$ AGCTGTTCCT CCTTTTGGAG AAACAGAAGC ACTCTGATTT CCAGGAGGAT TTTCTATTAA

```
\(\square\)
370
380
390
400
```

TAAAGCTGCT TTTGATCGAA TTGTTTCTAC TCATTTTG

Haplotype 3

10	20	30	40	50	60
atctatacat tattgtccta atattcatat tgcattttga tcanttacan atattatana					
70	80	90	100	10	120
Agatattact tcaggatgat tggttcgatt anttcatata antggagcte cgttttattt					
130	140	150	160	170	180
tttanttata tatattgata ttagacgana tatattttat anttcattta antadatag					
AGTATGAGGA ATTGGAATTT TAATTTTATT AATTTCTATG GCAGCTGCAC TTATAGGATA					

Haplotype 4

ATCTATACAT TATTGTCCTA ATATTCATAT TGCATTTTGA TCAATTACAA ATATTATAAA AGATATTCCT TCAGGATGAT TGGTTCGATT AATTCATATA AATGGAGCTT CATTTTATTT TTTAATTATA TATATTCATA TTACACGAAA TATATTTTAT AATTCATTTA AATTAAATAG $190200 \quad 210 \quad 220 \quad 230 \quad 240$ AGTATGAGGA ATTGGAATTT TAATTTTATT AATTTCTATG GCAGCTCCAC TTATAGGATA 250 TGTTCTTCCT GGAGGACA 260 TATCATTTTG 270

Haplotype 5

10	20	30	40	50	0
ATCTATACGT	TGTTGTCCTA	ATATTGATAT	TGCATTTTGA	TCAATTGCAA	ATATTATAAA
AGATATAACT	80	90	100	$\square 10$	120
	TCAGGATGAT	TGTTTCGATC	AGTTCCTATA	AATGGAGCTT	CATTTTATTT
$\begin{array}{r} 130 \\ \text { TTTAATTATA } \end{array}$	14	150	160	170	180
	TATATTCATA	GCTGACGAAA	TATATTTTAT	ACCTCATTTA	AATTCAATAG
$\begin{array}{r} 190 \\ \text { AGTATGAGGA } \end{array}$	200	210	220	230	240
	ATTGGAATTT	TAATTTTATT	AATTTCTATG	GCAGCAGCAT	TTATAGGATA
$\underset{\operatorname{TGTTCTTCCA}}{250}$	260	270	280	290	300
	TGAGGACAAA	TATCATATTG	AGGAGCAACA	GTTATTACAA	ATTTATTATC
$\frac{\square}{\mathrm{AGCTGTTCCT}}$	320	330	340	350	360
	TCTATTGGAG	ATACAGAAGT	TCTTTGAATT	TGAGGTGGAT	TTTCAATTAA
370	380	0	400		
TAATGCTGCT	TTAGATCGAT	TTGTTTCTAT	TCATTTTA		

Haplotype 6

Figure 38. Restriction patterns of the amplified cytb gene of A. andreniformis digested with AluI. Six mtDNA haplotypes of A. andreniformis were observed (H1, lanes 1-2; H2, lanes 3-4; H3, lanes 5-6; H4, lanes 7-8; H5, lanes 9-10; and H6, lanes 11-12). Lane M is 100 bp DNA ladder.

Three restriction patterns of amplified cytb of A. andreniformis in Thailand and Tenom, Malaysia after DraI digestion were observed (Figure 39). Haplotype 1 (H1) is from bees in Chaing Mai, Chantaburi, Trat, Kanchanaburi, Phetchaburi, Phuket, Pungnga, and Tenom, Malaysia while haplotype 2 (H2) is present in Chaing Mai, Chantaburi, Phetchaburi, Phuket Island, and Surat Thani. Moreover, haplotype $3(\mathrm{H})$ is only found in Chiang Mai province (the northern part of Thailand).

Haplotype 1

สถาบันวิทยบริการ
จุฬาลงกรณ์มหาวิทยาลัย

130	140	150	160	170	180
tata tatattgata ctccacgana tatattttat acctcattta anttcantag					
190	200	210	220	230	240
CGTATGAGGA ATTGGAATTT TAATTTTATT AATTTCTATG GCAGCTGCAC TTATAGGATA					
250	260	270	280	290	
TGTTCTTCCT GGAGGACAA					
310		330	340	350	360
ATCCT CCTTTTGGAG AAACAGAAGC ACTCTGATTT CCAGGAGGAT TTTCTATTA					

$370 \quad 380 \quad 400$ TAATGCTGCT TTTGATCGAA TTGTTTCGAC TCATTTTG

Haplotype 2

ATCTATACGT GGTTGTCCTA ATTTTGATGT TGCATTTTGA TCAATTGCAA ATATTATAAA AGATATAAAT TCAGGATGAC TGTGTCGATC AGTTCCTCCA AATGGAGCTA CATTTGATTT $\quad 120$
$130 \quad 140 \quad 150 \quad 160 \quad 170 \quad 180$ TTTAATTGTA TATACTCATA GCTCGCGAA TATATTTTAG ACCTCATGTA AATTCAATAC

1902002220230230 CGTATGAGGA ATTGGAATTT TAATTTTATT AATTTCTATG GCAGCTCCAC TTATAGGATA 250 260 $\quad 270$ 280 $\quad 290$ 290 TGTTCTTCCA GGAGGACAAA TATCATTTTG AGGAGCAACA GTTATTACAA ATTTATTATC V $/_{310} 6 \underbrace{}_{320} 00_{330}^{9} 190$ AGCTGTTCCT CCTTTTGGAG ATACAGAAGT TCTCTGACTT CCAGGAGGAT TTTCAATTAA

370380390400 420
TAATGCTGCT TTAGATCGAT TTGTTTCTAC TCATTTTA

Haplotype 3

Figure 39. Restriction patterns of the amplified cytb gene of A. andreniformis digested by Dra I. Three mtDNA haplotypes of A. andreniformis were observed (H1, lanes 1-3; H2, lanes 4-6; and H3, lanes 7-9). Lane M is 100 bp DNA ladder.

สถาบันวิทยบริการ

4.2.4 Sequence analysis

PCR products of cytb of A. andreniformis from all collecting localities in Thailand and Tenom, Sabha, Malaysia were purified and sequenced. The obtained sequence length ranged from 520 to 530 bp . They contain high A+T content with the average of 75.61% (Table 2). The data coincide to a previous report about the whole mtDNA of A. mellifera (Crozier and Crozier, 1993). More transitional and transversional events also occur in A. andreniformis and other organisms. The similarities in pair of these sequences are 86100\% (Table 3). Pairwise and multi-alignment sequence comparisons revealed nucleotide variation in the form of single base pair substitution. The substitutions can be counted for 73 nucleotide sites (18.25\%): 25 sites (34.25\%) were transition and 48 sites (65.75%) were transversion (Figure 42). The frequency of $\mathrm{A} \leftrightarrow \mathrm{G}$ and $\mathrm{T} \leftrightarrow \mathrm{C}$ transition were 15.07% and 1644%, respectively. Besides, the frequency of $A \leftrightarrow T, A \leftrightarrow C, G \leftrightarrow T$, and $G \leftrightarrow C$ transversion were $27.40 \%, 15.07 \%, 13.70 \%$, and 9.59%, respectively. The sequence divergence of these sequences is varied from 0-14.32\% (Table 4). The mean of sequence divergence among bees from Thailand is 5.70%. The means of sequence divergence within and between groups of bees are shown in Table 5. Considering bees in Thailand, the bees from the west and the east showed lower means of sequence divergence within group, 0.80% and 0.916%, respectively. However, higher mean of sequence divergence within group of bees from the south of Thailand (8.81%) is observed. The mean of sequence divergence between groups of the westem and the eastern Thailand is lower (0.96%) as in Table 5. It indicates that bees from both 2 regions are highly related to each other.

Figure 40. Four colored electropherogram of cytb sequence of A. andreniformis. Red peaks indicate Thymine (T). Green peaks show Adenine (A). Blue presents Cytocine (C) and black presents Guanine (G).

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

Chaing Mai 5 (N05)
Chaing Mai 6 (N06)
Phuket 2 (S02)
Phuket 4 (S04)
Phuket 1 (S01)
Chaing Mai 4 (N04)
Kanchanaburi 2 (SW05)
Surat Thani 2 (S06)
Tenom 2 (Tn02)
Phetchaburi 1 (SW01)
Tenom 5 (Tn05)
Tenom 3 (Tn03)
Tenom 6 (Tn06)
Phetchaburi 2 (SW02)
Chanthaburi 5 (SE07)
Chiang Mai 1 (N01)
Trat 2 (SE02)
Chiang Mai 2 (N02)
Kanchanaburi 3 (SW06)
Kanchanaburi 4 (SW07)
Surat Thani 1 (S05)
Kanchanaburi 1 (SW04)
Chanthaburi 6 (SE08)
Phetchaburi 3 (SW03)
Chanthaburi 1 (SE04)
Kanchanaburi 5 (SW08)
Trat 1 (SE01)
Chanthaburi 3 (SE05)
Chiang Mai 7 (N07)
Pungnga 1 (S07)
Tenom 4 (Tn04)
Kanchanaburi 6 (SW09)

Phuket 3 (S03)
Clustal Co

Nakhon Ratchasima (E01)ATCTATACAT TATTGTCCTA ATCTTGATAT TGCATTTTGA TCAATTACAA
Chanthaburi 4 (SE06) ATCTATACAT TATTGTCCTA ATATTGATAT TGCATTTTGA TCAATTACAA
Chanthaburi 1 (SE03) ATCTATACAT TATTGTCCTA ATCTTGATAT TGCATTTTGA TCAATTACAA
Chanthaburi 7 (SE09) ATCTATACAT TATTGTCCTA ATCTTGATAT TGCATTTTGA TCAATTACAA
ATCTATACGT TGTTGTCCTA ATATTGATAT TGCATTTTGA TCAATTGCAA ATCTATACGT GGTTGTCCTA ATTTTGATGT TGCATTTTGA TCAATTGCAA ATCTCTACAT TATTGTCCTA ATATTGATGT TGCATTTTGA TCAATTGCAA ATCTCTACGT TGTTGTCCTA ATATTGATAT TGCATTTTGA TCAATTGCAA ATCTCTACAT GATTGTCCTA ATATTGATAT TGCATTTTGA TCAATTGCAA ATCTCTACGT TGTTGTCCTA ATATTGATAT TGCATTTTGA TCAATTGCAA atctatacat tattgtccta atcttgatat tgcattttga tcaittacaa ATCTATACAT TATTGTCCTA ATATTCATAT TGCATTTTGA TCAATTACAA ATCTATACAT TATTGTCCTA ATATTGATAT TGCATTTTGA TCAATTACAA ATCTATACAT TATTGTCCTA ATCTTGATAT TGCATTTTGA TCAATTACAA ATCTATACAT TATTGTCCTA ATCTTGATAT TGCATTTTGA TCAATTACAA ATCTATACAT TATTGTCCTA ATCTTGATAT TGCATTTTGA TCAATTACAA ATCTATACAT TATTGTCCTA ATATTGATAT TGCATTTTGA TCAATTACAA ATCTATACAT TATTGTCCTA ATCTTGATAT TGCATTTTGA TCAATTACAA ATCTATACAT TATTGTCCTA ATATTGATAT TGCATTTTGA TCAATTACAA ATCTATACAT TATTGTCCTA ATCTTGATAT TGCATTTTGA TCAATTACAA ATCTATACAT TATTGTCCTA ATCTTGATAT TGCATTTTGA TCAATTACAA ATCTATACAT TATTGTCCTA ATATTCATAT TGCATTTTGA TCAATTACAA ATCTATACAT TATTGTCCTA ATCTTGATAT TGCATTTTGA TCAATTACAA ATCTATACAT TATTGTCCTA ATCTTGATAT TGCATTTTGA TCAATTACAA ATCTATACAT TATTGTCCTA ATATTGATAT TGCATTTTGA TCAATTACAA atctatacat tattgtccta atcttgatat tgcattttga tcanttacaa ATCTATACAT TATTGTCCTA ATATTGATAT TGCATTTTGA TCAATTACAA ATCTATACAT TATTGTCCTA ATCTTGATAT TGCATTTTGA TCAATTACAA ATCTATACAT TATTGTCCTA ATCTTGATAT TGCATTTTGA TCAATTACAA ATCTATACGT TGTTGTCCTA ATATTGATAT TGCATTTTGA TCAATTGCAA ATCTATACAT TATTGTCCTA ATATTGATAT TGCATTTTGA TCAATTACAA ATCTATACAT TATTGTCCTA ATCTTGATAT TGCATTTTGA TCAATTACAA ATCTCTACGT TGTTGTCCTA ATATTGATGT TGCATTTTGA TCAATTGCAA **** *********** ** ** ** *

Figure 41. A 400 bp character matrix of 37 A. andreniformis based on partial cytb
of mtDNA sequences. Bee code is based on minor collecting localities. Asterisks * indicate that all samples provide nucleotide identity.

Chaing Mai 5 (N05)
Chaing Mai 6 (N06)
Phuket 2 (S02)
Phuket 4 (S04)
Phuket 1 (S01)
Chaing Mai 4 (N04)
Kanchanaburi 2 (SW05)
Surat Thani 2 (S06)
Tenom 2 (Tn02)
Phetchaburi 1 (SW01)
Tenom 5 (Tn05)
Tenom 3 (Tn03)
Tenom 6 (Tn06)
Phetchaburi 2 (SW02)
Chanthaburi 5 (SE07)
Chiang Mai 1 (N01)
Trat 2 (SE02)
Chiang Mai 2 (N02)
Kanchanaburi 3 (SW06)
Kanchanaburi 4 (SW07)
Surat Thani 1 (S05)
Kanchanaburi 1 (SW04)
Chanthaburi 6 (SE08)
Phetchaburi 3 (SW03)
Chanthaburi 2 (SE04)
Kanchanaburi 5 (SW08)
Trat 1 (SE01)
Chanthaburi 3 (SE05)
Chiang Mai 7 (N07)
Pungnga 1 (S07)
Tenom 4 (Tn04)
Kanchanaburi 6 (SW09)
Nakhon Ratchasima(E01)
Chanthaburi 4 (SE06)
Chanthaburi 1 (SE03)
Chanthaburi 7 (SE09)
Phuket 3 (S03)
Clustal Co

ATATTATAAA AGATATAAAT TCAGGATGAT TGTTTCGATT AGTTCATATA ATATTATAAA AGATATAAAT TCAGGATGAC TGTGTCGATC AGTTCCTCCA ATATTATAAA TGATATTCCT TCTGGATGAT TGTGTCGATT AGTTCCTCCA ATATTATAAA AGATATAAAT TCAGGATGAT TGTTTCGATC AGTTCCTCCA ATATTATAAA AGATATAACT TCTGGATGAT TGTTTCGATC AATTCCTATA ATATTATAAA AGATATAAAT TCAGGATGAT TGTTTCGATT AGTTCCTCCA atattataan agatatanat tcaggatgat tgtttcgatt aattcatata ATATTATAAA AGATATTACT TCAGGATGAT TGGTTCGATT AATTCATATA atattatana agatatanat tcaggatgat tgittcgatt aittcatata ATATTATAAA AGATATAAAT TCAGGATGAT TGGTTCGATT AATTCATATA atattatana agatatanat tcaggatgat tgtttcgatt aattcatata ATATTATAAA AGATATAAAT TCAGGATGAT TATTTCGATT AATTCATATA ATATTATAAA AGATATAAAT TCAGGATGAT TGTTTCGATT AATTCATATA ATATTATAAA AGATATAAAT TCAGGATGAT TGTTTCGATT AATTCATATA atattataan agatataant tcaggatgat tgtttcgatt aattcatata ATATTATAAA AGATATAAAT TCAGGATGAT TGTTTCGATT AATTCATATA atattataal agatataant tcaggatgat tgtttcgatt aattcatata ATATTATAAA AGATATTCCT TCAGGATGAT TGGTTCGATT AATTCATATA ATATTATAAA AGATATAAAT TCAGGATGAT TGTTTCGATT AATTCATATA ATATTATAAA AGATATAAAT TCAGGATGAT TATTTCGATT AATTCATATA ATATTATAAA AGATATAAAT TCAGGATGAT TGTTTCGATT AATTCATATA ATATTATAAA AGATATAAAT TCAGGATGAT TGTTTCGATT AATTCATATA ATATTATAAA AGATATAAAT TCAGGATGAT TGTTTCGATT AATTCATATA atattatana agatatanat tcaggatgat tgtttcgatt aattcatata ATATTATAAA AGATATAAAT TCAGGATGAT TGTTTCGATT AATTCATATA ATATTATAAA AGATATAACT TCAGGATGAT TGTTTCGATC AGTTCCTATA ATATTATAAA AGATATAAAT TCAGGATGAT TGTTTCGATT AATTCATATA ATATTATAAA AGATATAAAT TCAGGATGAT TGTTTCGATT AATTCATATA ATATTATAAA AGATATAAAT TCAGGATGAT TGTTTCGATT AATTCATATA ATATTATAAA AGATATAAAT TCAGGATGAT TATTTCGATT AATTCATATA ATATTATAAA AGATATAAAT TCAGGATGAT TATTTCGATT AATTCATATA atattataaa agatataant tcaggatgat tatttcgatt aattcatata atattataan agatatanat tcaggatgat tatttcgatt aattcatata ATATTATAAA AGATATAAAT TCAGGATGAT TGTTTCGATC AGTTCCTCCA ********** ***** * ** ****** * ***** * *** * *

Figure 41. (continued)

Chaing Mai 5 (N05)
Chaing Mai 6 (N06)
Phuket 2 (S02)
Phuket 4 (S04)
Phuket 1 (S01)
Chaing Mai 4 (N04)
Kanchanaburi 2 (SW05)
Surat Thani 2 (S06)
Tenom 2 (Tn02)
Phetchaburi 1 (SW01)
Tenom 5 (Tn05)
Tenom 3 (Tn03)
Tenom 6 (Tn06)
Phetchaburi 2 (SW02)
Chanthaburi 5 (SE07)
Chiang Mai 1 (N01)
Trat 2 (SE02)
Chiang Mai 2 (N02)
Kanchanaburi 3 (SW06)
Kanchanaburi 4 (SW07)
Surat Thani 1 (S05)
Kanchanaburi 1 (SW04)
Chanthaburi 6 (SE08)
Phetchaburi 3 (SW03)
Chanthaburi 2 (SE04)
Kanchanaburi 5 (SW08)
Trat 1 (SE01)
Chanthaburi 3 (SE05)
Chiang Mai 7 (N07)
Pungnga 1 (S07)
Tenom 4 (Tn04)
Kanchanaburi 6 (SW09)
Nakhon Ratchasima(E01)
Chanthaburi 4 (SE06)
Chanthaburi 1 (SE03)
Chanthaburi 7 (SE09)
Phuket 3 (S03)
Clustal Co

AATGGAGCTT CATTTTTATTT TTTAATTATA TATATTCATA TTAGGCGAAA AATGGAGCTA CATTTGATTT TTTAATTGTA TATACTCATA GCTCGCGAAA AATGGAGGTA CATTTTATTT TTTAATTATA TATATTGATA CTCCACGAAA AATGGAGGTT CATTTGATTT TTTAATTGTA TATACTCATA CTCCACGAAA AATGGAGCTT CATTTTATTT TTTAATTATA TATATTCATA CTCCACGAAA AATGGAGCTT CATTTTTATTT TTTAATTATA TATACTCATA GCTCACGAAA AATGGAGCTT CATTTTATTT TTTAATTATA TATATTCATA TTAGACGAAA AATGGAGCTT CGTTTTATTT TTTAATTATA TATATTGATA TTAGACGAAA AATGGAGCTT CATTCTATTT TTTAATTATA TATATTCATA TTAGACGAAA AATGGAGCTT CATTTTATTT TTTAATTATA TATATTCATA TTACACGAAA AATGGAGCTT CATTCTATTT TTTAATTATA TATATTCATA TTAGACGAAA AATGGAGCTT CATTCTATTT TTTAATTATA TATATTCATA TTAGACGAAA AATGGAGCTT CATTCTATTT TTTAATTATA TATATTCATA TTAGACGAAA AATGGAGCTT CATTTTATTT TTTAATTATA TATATTCATA TTAGACGAAA AATGGAGCTT CATTTTTATTT TTTAATTATA TATATTCATA TTAGACGAAA AATGGAGCTT CATTTTATTT TTTAATTATA TATATTCATA TTAGACGAAA AATGGAGCTT CATTTTATTT TTTAATTATA TATATTCATA TTACACGAAA AATGGAGCTT CATTTTTATTT TTTAATTATA TATATTCATA TTAGACGAAA AATGGAGCTT CATTTTATTT TTTAATTATA TATATTCATA TTAGACGAAA AATGGAGCTT CATTTTATTT TTTAATTATA TATATTCATA TTAGACGAAA AATGGAGCTT CATTTTTATTT TTTAATTATA TATATTCATA TTAGACGAAA AATGGAGCTT CATTTTATTT TTTAATTATA TATATTCATA TTAGACGAAA AATGGAGCTT CATTTTTATTT TTTAATTATA TATATTCATA TTAGACGAAA AATGGAGCTT CATTTTATTT TTTAATTATA TATATTCATA TTAGACGAAA AATGGAGCTT CATTTTATTT TTTAATTATA TATATTCATA GCTGACGAAA AATGGAGCTT CATTTTTATTT TTTAATTATA TATATTCATA TTAGACGAAA AATGGAGCTT CATTCTATTT TTTAATTATA TATATTCATA TTAGACGAAA AATGGAGCTT CATTTTATTT TTTAATTATA TATATTCATA TTAGACGAAA AATGGAGCTT CATTTTATTT TTTAATTATA TATATTCATA TTAGACGAAA AATGGAGCTT CATTTTATTT TTTAATTATA TATATTCATA TTAGACGAAA AATGGAGCTT CATTTTTATTT TTTAATTATA TATATTCATA TTAGACGAAA AATGGAGCTT CATTTTTATTT TTTAATTATA TATATTCATA TTAGACGAAA AATGGAGGTT CATTTTATTT TTTAATTGTA TATACTCATA CTCCACGAAA ******* * * ** **** ******* ** **** * ***

Figure 41. (continued)

TATATTTTAT AACTCATGTA AATTCAATAG AGTATGAGGA ATTGGAATTT TATATTTTAG ACCTCATGTA AATTCAATAC CGTATGAGGA ATTGGAATTT TATATTTTAT ACCTCATTTA AATTCAATAG CGTATGAGGA ATTGGAATTT TATATTTTAG ACTTCATTTA AATTAAATAC CGTATGAGGA ATTGGAATTT TATATTTTAT ACCTCATTTA AATTCAATAG CGTATGAGGA ATTGGAATTT TATATTTTAG AATTCATGTA AATTCAATAC AGTATGAGGA AGTGGAATTT TATATTTTAT AATTCATTTA AATTAAATAG AGTATGAGGA ATTGGAATTT TATATTTTAT AATTCATTTA AATTAAATAG AGTATGAGGA ATTGGAATTT TATATTTTAT AATTCATTTA AATTAAATAG AGTATGAGGA ATTGGAATTT TATATTTTAT AATCCATTTA AATTAAATAG AGTATGAGGA ATTGGAATTT TATATTTTAT AATTCATTTA AATTAAATAG AGTATGAGGA ATTGGAATTT TATATTTTAT AATTCATTTA AATTAAATAG AGTATGAGGA ATTGGAATTT TATATTTTAA AATTCATTTA AATTAAATAG AGTATGAGGA ATTGGAATTT TATATTTTAT ACCTCATTTA AATTCAATAG AGTATGAGGA ATTGGAATTT TATATTTTAT AATTCATTTA AATTAAATAG AGTATGAGGA ATTGGAATTT TATATTTTAT AATTCATTTA AATTAAATAG AGTATGAGGA ATTGGAATTT TATATTTTAT AATTCATTTA AATTAAATAG AGTATGAGGA ATTGGAATTT)TATATTTTAT AATTCATTTA AATTAAATAG AGTATGAGGA ATTGGAATTT TATATTTTAT ACCTCATTTA AATTAAATAC CGTATGAGGA ATTGGAATTT ********* * *** ** **** **** ********* ********

Phuket 3 (S03)
Clustal Co

Figure 41. (continued)

$$
\begin{gathered}
\text { สถาบันวิทยบริการ } \\
\text { จุฬาลงกรณ์มหาวิทยาลัย }
\end{gathered}
$$

Chaing Mai 5 (N05)
Chaing Mai 6 (N06)
Phuket 2 (S02)
Phuket 4 (S04)
Phuket 1 (S01)
Chaing Mai 4 (N04)
Kanchanaburi 2 (SW05)
Surat Thani 2 (S06)
Tenom 2 (Tn02)
Phetchaburi 1 (SW01)
Tenom 5 (Tn05)
Tenom 3 (Tn03)
Tenom 6 (Tn06)
Phetchaburi 2 (SW02)
Chanthaburi 5 (SE07)
Chiang Mai 1 (N01)
Trat 2 (SE02)
Chiang Mai 2 (N02)
Kanchanaburi 3 (SW06)
Kanchanaburi 4 (SW07)
Surat Thani 1 (S05)
Kanchanaburi 1 (SW04)
Chanthaburi 6 (SE08)
Phetchaburi 3 (SW03)
Chanthaburi 2 (SE04)
Kanchanaburi 5 (SW08)
Trat 1 (SE01)
Chanthaburi 3 (SE05)
Chiang Mai 7 (N07)
Pungnga 1 (S07)
Tenom 4 (Tn04)
Kanchanaburi 6 (SW09)
Chanthaburi 4 (SE06) TAATTTTATT AATTTCTATG GCAGCACCAT TTATAGGATA TGTTCTTCCA
Chanthaburi 1 (SE03) TAATTTTATT AATTTCTATG GCAGCAGCAT TTATAGGATA TGTTCTTCCA
Chanthaburi 7 (SE09) TAATTTTATT AATTTCTATG GCAGCAGCAT TTATAGGATA TGTTCTTCCA
Phuket 3 ($\mathbf{S 0 3)}$ TAATTTTATT AATTTCTATG GCAGCTCCAC TTATAGGATA TGTTCTTCCT
Clustal Co
TAATTTTATT AATTTCTATG GCAGCAGCAT TTATAGGATA TGTTCTTCCA TAATTTTATT AATTTCTATG GCAGCTCCAC TTATAGGATA TGTTCTTCCA TAATTTTATT AATTTCTATG GCAGCTGCAC TTATAGGATA TGTTCTTCCT TAATTTTATT AATTTCTATG GCAGCTCCAC TTATAGGATA TGTTCTTCCT TAATTTTATT AATTTCTATG GCAGCACCAT TTATAGGATA TGTTCTTCCA TAATTTTATT AATTTCTATG GCAGCTCCAT TTATAGGATA TGTTCTTCCA TAATTTTATT AATTTCTATG GCAGCAGCAT TTATAGGATA TGTTCTTCCA TAATTTTATT AATTTCTATG GCAGCTGCAC TTATAGGATA TGTTCTTCCA TAATTTTATT AATTTCTATG GCAGCAGCAT TTATAGGTTA TGTTCTTCCA TAATTTTATT AATTTCTATG GCAGCACCAT TTATAGGATA TGTTCTTCCA TAATTTTATT AATTTCTATG GCAGCAGCAT TTATAGGTTA TGTTCTTCCA TAATTTTATT AATTTCTATG GCAGCAGCAT TTATAGGTTA TGTTCTTCCA
TAATTTTATT AATTTCTATG GCAGCAGCAT TTATAGGTTA TGTTCTTCCA
TAATTTTATT AATTTCTATG GCAGCAGCAT TTATAGGATA TGTTCTTCCA
TAATTTTATT AATTTCTATG GCAGCAGCAT TTATAGGATA TGTTCTTCCA TAATTTTATT AATTTCTATG GCAGCAGCAT TTATAGGATA TGTTCTTCCA TAATTTTATT AATTTCTATG GCAGCAGCAT TTATAGGATA TGTTCTTCCA TAATTTTATT AATTTCTATG GCAGCAGCAT TTATAGGATA TGTTCTTCCA TAATTTTATT AATTTCTATG GCAGCAGCAT TTATAGGATA TGTTCTTCCA TAATTTTATT AATTTCTATG GCAGCAGCAT TTATAGGATA TGTTCTTCCA TAATTTTATT AATTTCTATG GCAGCTCCAC TTATAGGATA TGTTCTTCCT TAATTTTATT AATTTCTATG GCAGCAGCAT TTATAGGATA TGTTCTTCCA TAATTTTATT AATTTCTATG GCAGCAGCAT TTATAGGTTA TGTTCTTCCA AATTTTATT AATTTCTATG GCAGCAGCAT TTATAGGATA TGTTCTTCCA TAATTTTATT AATTTCTATG GCAGCAGCAT TTATAGGATA TGTTCTTCCA $\star * * * * * * * * * * * * * * * * * * *$

Figure 41. (continued)

$$
\begin{gathered}
\text { สถาบันวิทยบริการ } \\
\text { จุฬาลงกรณ์มหาวิทยาลัย }
\end{gathered}
$$

Chaing Mai 5 (N05)
Chaing Mai 6 (N06)
Phuket 2 (S02)
Phuket 4 (S04)
Phuket 1 (S01)
Chaing Mai 4 (N04)
Kanchanaburi 2 (SW05)
Surat Thani 2 (S06)
Tenom 2 (Tn02)
Phetchaburi 1 (SW01)
Tenom 5 (Tn05)
Tenom 3 (Tn03)
Tenom 6 (Tn06)
Phetchaburi 2 (SW02)
Chanthaburi 5 (SE07)
Chiang Mai 1 (N01)
Trat 2 (SE02)
Chiang Mai 2 (N02)
Kanchanaburi 3 (SW06)
Kanchanaburi 4 (SW07)
Surat Thani 1 (S05)
Kanchanaburi 1 (SW04)
Chanthaburi 6 (SE08)
Phetchaburi 3 (SW03)
Chanthaburi 2 (SE04)
Kanchanaburi 5 (SW08)
Trat 1 (SE01)
Chanthaburi 3 (SE05)
Chiang Mai 7 (N07)
Pungnga 1 (S07)
Tenom 4 (Tn04)
Kanchanaburi 6 (SW09)

Phuket 3 (S03)
Clustal Co

Nakhon Ratchasima(01)T
Natchasima(E01)TGAGGACAAA TATCATATTG AGGAGCAACA GTTATTACAA ATTTATTATC
Chanthaburi 4 (SE06) TGAGGACAAA TATCATATTG AGGAGCAACA GTTATTACAA ATTTATTATC
Chanthaburi 1 (SE03) TGAGGACAAA TATCATATTG AGGAGCAACA GTTATTACAA ATTTATTATC
Chanthaburi 7 (SE09) TGAGGACAAA TATCATATTG AGGAGCAACA GTTATTACAA ATTTATTATC
TGAGGACAAA TATCATATTG AGGAGCAACA GTTATTACAA ATTTATTATC GGAGGACAAA TATCATTTTG AGGAGCAACA GTTATTACAA ATTTATTATC GGAGGACAAA AATCATTTTG AGGAGCAACA GTTATTACAA ATTTATTATC GGAGGACAAA AATCATTTTG AGGAGCAACA GTTATTACAA ATTTATTATC TGAGGACAAA TATCATATTG AGGAGCAACA GTTATTACAA ATTTATTATC TGAGGACAAA TATCATTTTG AGGAGCAACA GTTATTACAA ATTTATTATC TGAGGACAAA TATCATATTG AGGAGCAACA GTTATTACAA ATTTATTATC GGAGGACAAA TATCATTTTG AGGAGCAACA GTTATTACAA ATTTATTATC TGAGGACAAA TATCATATTG AGGAGCAACA GTTATTACAA ATTTATTATC TGAGGACAAA AATCATTTTG AGGAGCAACA GTTATTACAA ATTTATTATC

Figure 41. (continued)

$$
\begin{aligned}
& \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \\
& 310 \quad 320 \quad 330 \quad 340 \quad 350
\end{aligned}
$$

Chaing Mai 5 (N05)
Chaing Mai 6 (N06)
Phuket 2 (S02)
Phuket 4 (S04)
Phuket 1 (S01)
Chaing Mai 4 (N04)
Kanchanaburi 2 (SW05)
Surat Thani 2 (S06)
Tenom 2 (Tn02)
Phetchaburi 1 (SW01)
Tenom 5 (Tn05)
Tenom 3 (Tn03)
Tenom 6 (Tn06)
Phetchaburi 2 (SW02)
Chanthaburi 5 (SE07)
Chiang Mai 1 (N01)
Trat 2 (SE02)
Chiang Mai 2 (N02)
Kanchanaburi 3 (SW06)
Kanchanaburi 4 (SW07)
Surat Thani 1 (S05)
Kanchanaburi 1 (SW04)
Chanthaburi 6 (SE08)
Phetchaburi 3 (SW03)
Chanthaburi 2 (SE04)
Kanchanaburi 5 (SW08)
Trat 1 (SE01)
Chanthaburi 3 (SE05)
Chiang Mai 7 (N07)
Pungnga 1 (S07)
Tenom 4 (Tn04)
Kanchanaburi 6 (SW09)
Nakhon Ratchasima(E01)
Chanthaburi 4 (SE06)

Phuket 3 (S03)
Clustal Co

Chanthaburi 1 (SE03) AGCTATTCCT TATATTGGAG AAACAGTAGT TCTTTGAATT CGAGGTGGAT
Chanthaburi 7 (SE09) AGCTATTCCT TATATTGGAG ATACAGTAGT TCTTTGAATT CGAGGTGGAT
AGCTATTCCT TATATTGGAG ATACAGTAGT TCTTTGAATT TGAGGTGGAT AGCTGTTCCT CCTTTTGGAG ATACAGAAGT TCTCTGACTT CCAGGAGGAT AGCTGATCCT CCTTTTGGAG AAACAGAAGC ACTCTGATTT CCAGGAGGAT AGCTGTTCCT CCTTTTGGAG AAACAGAAGC ACTCTGATTT CCAGGAGGAT AGCTATTCCT TCTTTTGGAG ATACAGAAGT TCTTTGACTT TCAGGCGGAT AGCTGTTCCT CCTTTTGGAG ATACAGAAGT TCTCTGACTT TCAGGTGGAT AGCTATTCCT TATATTGGAG ATACAGTAGT TCTTTGAATT TGAGGTGGAT AGCTAATCCT CATATTGGAG AAACAGTAGT TCCTTGCATT CGAGGTGGAT AGCTATTCCT TATATTGGGG ATACAGTAGT TCTTTGAATT TGAGGTGGAT AGCTATTCCT CATATTGGAG ATACAGTAGT TCCTTGCATT CGAGGTGGAT AGCTATTCCT TATATTGGGG ATACAGTAGT TCTTTGAATT TGAGGTGGAT AGCTATTCCT TATATTGGGG ATACAGTAGT TCTTTGAATT TGAGGTGGAT AGCTATTCCT TATATTGGGG ATACAGTAGT TCTTTGAATT TGAGGTGGAT AGCTATTCCT TATATTGGAG ATACAGTAGT TCTTTGAATT TGAGGTGGAT AGCTATTCCT TATATTGGAG ATACAGTAGT TCTTTGAATT CGAGGGGGAT AGCTATTCCT TATATTGGAG ATACAGTAGT TCTTTGAATT TGAGGTGGAT AGCTGATCCT CCTTTTGGAG AAACAGAAGC TCCAAGCATT CGAGGTGGAT AGCTATTCCT TATATTGGAG ATACAGTAGT TCTTTGAATT TGAGGTGGAT AGCTATTCCT TATATTGGAG ATACAGTAGT TCTTTGAATT CGAGGGGGAT AGCTATTCCT TATATTGGAG ATACAGTAGT TCTTTGAATT TGAGGTGGAT AGCTGTTCCT TCTATTGGAG ATACAGAAGT TCTTTGAATT TGAGGTGGAT AGCTATTCCT TATATTGGAG ATACAGTAGT TCTTTGCATT CGAGGTGGAT AGCTATTCCT TATATTGGGG ATACAGTAGT TCTTTGAATT TGAGGTGGAT AGCTATTCCT TATATTGGAG AAACAGTAGT TCTTTGAATT TGAGGGGGAT AGCTATTCCT TATATTGGAG ATACAGTAGT TCTTTGAATT CGAGGTGGAT AGCTATTCCT CATATTGGAG AAACAGTAGT TCTTTGCATT CGAGGTGGAT AGCTGTTCCT CCTTTTGGAG AAACAGAAGC ACTCTGATTT CCAGGAGGAT **** **** * **** * * ****** * * ** *** ****

Figure 41.

Chaing Mai 5 (N05)
Chaing Mai 6 (N06)
Phuket 2 (S02)
Phuket 4 (S04)
Phuket 1 (S01)
Chaing Mai 4 (N04)
Kanchanaburi 2 (SW05)
Surat Thani 2 (S06)
Tenom 2 (Tn02)
Phetchaburi 1 (SW01)
Tenom 5 (Tn05)
Tenom 3 (Tn03)
Tenom 6 (Tn06)
Phetchaburi 2 (SW02)
Chanthaburi 5 (SE07)
Chiang Mai 1 (N01)
Trat 2 (SE02)
Chiang Mai 2 (N02)
Kanchanaburi 3 (SW06)
Kanchanaburi 4 (SW07)
Surat Thani 1 (S05)
Kanchanaburi 1 (SW04)
Chanthaburi 6 (SE08)
Phetchaburi 3 (SW03)
Chanthaburi 2 (SE04)
Kanchanaburi 5 (SW08)
Trat 1 (SE01)
Chanthaburi 3 (SE05)
Chiang Mai 7 (N07)
Pungnga 1 (S07)
Tenom 4 (Tn04)
Kanchanaburi 6 (SW09)
Nakhon Ratchasima (E01)
Chanthaburi 4 (SE06)

Phuket 3 (S03)
Clustal Co

Chanthaburi 1 (SE03) TTTCAATTAA TAATGCTACT TTAAATCGAT TTTTTTCTAT TCATTTTA
Chanthaburi 7 (SE09) TTTCAATTAA TAATGCTACT TTAAATCGAT TTTTTTCTAT TCATTTTA
....|....||....||....||.....||.... TTTCAATTAA TAATGCTACT TTAAATCGAT TTTTTTCTAT TCATTTTA tTTCAATTAA TAATGCTGCT TTAGATCGAT TTGTTTCTAC TCATTTTA TTTCTATTAA TAATGCTGCT TTTGATCGAA TTGTTTCGAC TCATTTTG TTTCTATTAA TAAAGCTGCT TTTGATCGAA TTGTTTCCAC TCATTTTG TTTCTATTAA TAATGCTGCT TTAAATCGAA TTGTTTCGAT TCATTTTA tTTCTATTAA TAAAGCTGCT TTAGATCGAA TTGTTTCTAT TCATTTTA TTTCAATTAA TAATGCTACT TTAAATCGAT TTTTTTCTAT TCATTTTA TTTCAATTAA TAATGCTACT GTGATTCGAA TTGTTTCTAT TCATTTTG TTTCAATTAA TAATGCTACT TTAAATCGAT TTTTTTCTAT TCATTTTA TTTCAATTAA TAATGCTACT TTGAATCGAT TTTTTTCTAT TCATTTTG TTTCAATTAA TAATGCTACT TTAAATCGAT TTTTTTCTAT TCATTTTA TTTCAATTAA TAATGCTACT GTAAATCGAT TTTTTTCTAT TCATTTTA TTTCAATTAA TAATGCTACT TTAAATCGAT TTTTTTCTAT TCATTTTA TTTCTATTAA TAAAGCTGCT GTGATTCGAA TTGTTTCCAC TCATTTTG TTTCAATTAA TAATGCTACT TTAAATCGAT TTTTTTCTAT TCATTTTA TTTCAATTAA TAATGCTACT GTAAATCGAT TTTTTTCTAT TCATTTTA TTTCAATTAA TAATGCTACT TTAAATCGAT TTTTTTCTAT TCATTTTA TTTCAATTAA TAATGCTGCT TTAGATCGAT TTGTTTCTAT TCATTTTA TTTCAATTAA TAATGCTGCT TTAAATCGAT TTGTTTCTAT TCATTTTA TTTCAATTAA TAATGCTACT TTAAATCGAT TTTTTTCTAT TCATTTTA TTTCAATTAA TAATGCTACT TTAAATCGAT TTTTTTCTAT TCATTTTA TTTCAATTAA TAATGCTACT GTAAATCGAT TTTTTTCTAT TCATTTTA TTTCTATTAA TAAAGCTGCT TTTGATCGAA TTGTTTCTAC TCATTTTG ***** *** *** ** * **** ** **** * *****

Figure 41. (continued)

Table 2. Percentages of base composition of cytb sequences of A. andreniformis samples.

Samples	A	C	G	T
Chiang Mai 1 (N01)	34.4	9.8	12.8	43
Chiang Mai 2 (N02)	34.4	9.8	12.8	43
Chiang Mai 4 (N04)	30.6	13.6	14.8	41
Chiang Mai 5 (N05)	32.9	10.3	14.3	42.5
Chiang Mai 6 (N06)	29.7	15.3	16.3	38.7
Chiang Mai 7 (N07)	31.4	11.8	15.1	41.7
Trat 1(Se01)	34.2	10	12.8	43
Trat 2 (Se02)	34.2	10	12.8	43
Chanthaburi 1 (Se03)	34.7	10.3	12.6	42.4
Chanthaburi 2 (Se04)	34.2	10	12.8	43
Chanthaburi 3 (Se05)	34.2	10	12.8	43
Chanthaburi 4 (Se06)	34.4	10.8	12.8	42
Chanthaburi 5 (Se07)	34.4	10.3	13.1	42.2
Chanthaburi 6 (Se08)	34.4	10.3	13.1	42.2
Chanthaburi 7 (Se09)	34.4	10.3	12.6	42.7
Phetchaburi 1 (Sw01)	33.7	11.5	13.1	41.7
Phetchaburi 2 (Sw02)	34.2	10	12.8	43
Phetchaburi 3 (Sw03)	34.4	10.3	13.1	42.2
Kanchanaburi 1 (Sw04)	34.2	10	12.8	43
Kanchanaburi 2 (Sw05)	34.2	10	12.8	43
Kanchanaburi 3 (Sw06)	34.2	10	12.8	43
Kanchanaburi 4 (Sw07)	34.2	10	12.8	43
Kanchanaburi 5 (Sw08)	34.4	9.8	12.8	43
Kanchanaburi 6 (Sw09)	34.4	10	13.1	42.5
Phuket 1 (S01)	31.4	13.8	13.3	41.5
Phuket 2 (S02)	29.7	14.6	15.8	39.9
Phuket 3 (S03)	30.1	15.1	15.1	39.7
Phuket 4 (S04) ©	30.4	15	15.6	39
Surat Thani 1 (S05) $9 \sim 9$	32.4	10	12.8	43
Surat Thani 2 (S06)	33.2	11.3	14.3	41.2
Pungnga 1 (S07)	33.9	10.3	13.3	42.5
Tenom, Malaysia2 (Tn02)	33.9	10	13.1	43
Tenom, Malaysia 3 (Tn03)	33.9	10	13.1	43
Tenom, Malaysia 4 (Tn04)	33.7	10.3	13.1	42.9
Tenom, Malaysia 5 (Tn05)	33.9	10	13.1	43
Tenom, Malaysia 6 (Tn06)	33.9	10.3	13.1	42.7
Means	33.35	10.97	13.42	42.2

4.2.5 Phylogenetic analysis

Partial cytb sequences of A. andreniformis in Thailand (the north, the west, the east, and the south) and in Tenom, Sabha, Malaysia were used for phylogenetic analysis. Phylogenetic trees were constructed by using neighbor-joining (NJ) and unweighted pairgroup method using arithmetic averages (UPGMA). Both trees showed the same topology (Figure 42 and 43). Twenty three mitochondrial DNA haplotypes among 37 colonies of A. andreniformis were identified. According to the trees, 2 major groups of these bees can be distinguished. The $1^{\text {st }}$ major group (Group A) is composed of bees from all major collecting localities whiles the $2^{\text {nd }}$ major group (Group B) is composed of bees from the north (Chiang Mai 4, 6, and 7) and the south (Phuket) of Thailand (Figure 42 and 43). However, higher variation of sequences is found in the $2^{\text {nd }}$ major group. The $1^{\text {st }}$ major group can be divided into 5 subgroups. The $1^{\text {st }}$ subgroup is mainly composed of bees from the west and the east of Thailand. The $2^{\text {nd }}$ subgroup is composed of bees from the northeast, the east and the west of Thailand. The $3^{\text {rd }}$ subgroup is composed of bees from Tenom, Sabha, Malaysia. The $4^{\text {th }}$ subgroup is composed of bees from the north (Chiang Mai 1 and 2) and the west (Phetchaburi 3 and Kanchanaburi 5) of Thailand. The $5^{\text {th }}$ subgroup is composed of bees from all parts of Thailand and higher variation within this group was observed (Figure 42 and 43). From the above data, it reveals that bees from the west and the east of Thailand and Tenom, Malaysia show low variation within and between groups, especially bees from the west and the east of Thailand. e . el

Figure 42. A rooted phylogenetic tree inferred by neighbor-joining method.
Confidence probabilities are shown on the branches.

Figure 43. A UPGMA dendrogram. The relationship of A. andreniformis population in Thailand and Tenom, Sabha, Malaysia was calculated from genetic distance.

Table 3. The similarity between pair of sequences (\%) of cytb of
A. andreniformis samples from Thailand and Tenom, Malaysia (see Table 2 for abbreviated names)

Sample code	N01	N02	N04	N05	N06	N07	Sw01	Sw02	Sw03	Sw04
N01	-	-	-	-	-	-	-	-	-	-
N02	100	-	-	-	-	-	-	-	-	-
N04	91	91	-	-	-	-	-	-	-	-
N05	97	97	92	-	-	-	-	-	-	-
N06	87	87	94	89	-	-	-	-	-	-
N07	95	95	93	96	92	-	-	-	-	-
Sw01	97	97	90	95	87	92	-	-	-	-
Sw02	99	99	90	97	87	94	97	-	-	-
Sw03	100	100	91	97	87	95	97	99	-	-
Sw04	99	99	90	97	87	94	97	100	99	-
Sw05	99	99	90	97	87	94	97	100	99	100
Sw06	99	99	90	97	87	94	97	100	99	100
Sw07	99	99	90	97	87	94	97	100	99	100
Sw08	100	100	91	97	87	95	97	99	100	99
Sw09	99	99	90	97	87	94	96	99	99	99
E01	98	98	90	96	87	94	96	99	98	99
Se01	99	99	90	97	87	94	97	100	99	100
Se02	99	99	90	97	87	94	97	100	99	100
Se03	98	98	90	96	87	94	96	99	98	99
Se04	99	99	90	97	87	94	97	100	99	100
Se05	99	99	90	97	87	94	97	100	99	100
Se06	97	97	90	95	87	92	98	97	97	97
Se07	98	98	89	+ 96	87	93	96	98	98	98
Se08	98	98	89	96	87	93	96	98	98	98
Se09	99	99	90	97	87	94	97	99	99	99
S01	93	93	92	92	90	94	91	93	93	93
S02	86	86	89	86	90	89	-86	86	86	86
S03	87	87	93	88	93	90	88	87	87	87
S04	87	87	93	87	93	89	87	87	87	87
S05	90	90	-89	88	86	89	92	90	90	90
S06	94	$\bigcirc 94$	988	92	85	91	95	$\bigcirc 94$	94	94
S07	98	- 98	91	- 96	-88	95	97	- 98	98	98
Tn02	99	99	90	97	87	94	96	98	- 99	98
Tn03	$\bigcirc 99$	99	90	97	87	$\bigcirc 94$	- 96	98	099	98
Tn04	98	98	90	96	87	94	96	99	98	99
Tn05 ${ }^{\text {a }}$	99	99	90	97	87	94	96	98	99	98
Tn06	98	98	90	96	87	93	96	98	98	98
A. florea	87	87	82	87	81	87	85	87	87	87

Table 3. (continued)

Sample Code	Sw05	Sw06	Sw07	Sw08	Sw09	E01	Se01	Se02	Se03	Se04
N01	-	-	-	-	-	-	-	-	-	-
N02	-	-	-	-	-	-	-	-	-	-
N04	-	-	-	-	-	-	-	-	-	-
N05	-	-	-	-	-	-	-	-	-	-
N06	-	-	-	-	-	-	-	-	-	-
N07	-	-	-	-	-	-	-	-	-	-
Sw01	-	-	-		-	-	-	-	-	-
Sw02	-	-	-	-	-	-	-	-	-	-
Sw03	-	-	-	-	-	-	-	-	-	-
Sw04	-	-	-	-	-	-	-	-	-	-
Sw05	-	-	-	-		-	-	-	-	-
Sw06	100	-	-	-	-	-	-	-	-	-
Sw07	100	100		-	-	-	-	-	-	-
Sw08	99	99	99	-	-	-	-	-	-	-
Sw09	99	99	99	99	-	-	-	-	-	-
E01	99	99	99	98	98	-	-	-	-	-
Se01	100	100	100	99	99	99	-	-	-	-
Se02	100	100	100	99	99	99	100	-	-	-
Se03	99	99	99	99	99	99	99	99	-	-
Se04	100	100	100	99	99	99	100	100	99	-
Se05	100	100	100	97	99	99	100	100	99	100
Se06	97	97	97	98	97	97	97	97	98	97
Se07	98	98	98	98	98	99	98	98	99	98
Se08	98	98	98	99	98	99	98	98	99	98
Se09	99	99	99	93	98	99	99	99	99	99
S01	93	93	93	86	92	92	93	93	92	93
S02	86	86	86	87	86	86	86	86	86	86
S03	87	87	87	87	87	87	87	87	87	87
S04	87	87	87	90	87	86	87	87	87	87
S05	90	90	90	94	90	90	90	90	90	90
S06	94	94	94	98	94	94	94	94	94	94
S07	98	98	98	98	98	98	98	98	98	98
Tn02	98	$\bigcirc 98$	9 98	9/99	988	-98	98	98	98	98
Tn03	- 98	98	98	99	98	98	98	98	98	98
Tn04	99	99	99	$\bigcirc 98$	98	98	99	$\bigcirc 99$	98	99
Tn05	$\bigcirc 98$	098	~ 98	099	0.98	\bigcirc	\bigcirc	98	98	98
Tn06	98	- 98	d 98	98	98	98	C 98	98	98	98
A. florea	87	87	87	87	86	87	87	87	87	87

Table 3. (continued)

Sample code	Se05	Se06	Se07	Se08	Se09	S01	S02	S03	S04	S05
N01	-	-	-	-	-	-	-	-	-	-
N02	-	-	-	-	-	-	-	-	-	-
N04	-	-	-	-	-	-	-	-	-	-
N05	-	-	-	-	-	-	-	-	-	-
N06	-	-	-	-	-	-	-	-	-	-
N07	-	-	-	-	-	-	-	-	-	-
Sw01	-	-	-	-	-	-	-	-	-	-
Sw02	-	-	-	-	-	-	-	-	-	-
Sw03	-	-	-	-	-	-	-	-	-	-
Sw04	-	-	-	-	-	-	-	-	-	-
Sw05	-	-	-	-	-	-	-	-	-	-
Sw06	-	-	-	-	-	-	-	-	-	-
Sw07	-	-	-	-	-	-	-	-	-	-
Sw08	-	-	-	-	-	-	-	-	-	-
Sw09	-	-	-	-	-	-	-	-	-	-
E01	-	-	-	-	-	-	-	-	-	-
Se01	-	-	-	-	-	-	-	-	-	-
Se02	-	-	-	-	-	-	-	-	-	-
Se03	-	-	-	-	-	-	-	-	-	-
Se04	-	-	-	-	-	-	-	-	-	-
Se05	-	-	-	-2	-	-	-	-	-	-
Se06	97	-	-	-	-	-	-	-	-	-
Se07	98	97	-	-	-	-	-	-	-	-
Se08	98	97	100	-	-	-	-	-	-	-
Se09	99	97	99	99	-	-	-	-	-	-
S01	93	92	92	92	92	-	-	-	-	-
S02	86	87	86	86	86	91	-	-	-	-
S03	87	-88	87	87	87	91	-94	-	-	-
S04	87	-88	86	86	90	90	94	98	-	-
S05	90	92	90	90	94	89	90	89	90	-
S06	94	96	-94	94	98	89	88	87	86	94
S07	98	97	98	98	-98	-93	87	-88	87	91
Tn02	98	-96	-97	97	98	92	86	-87	86	90
Tn03	98	96	97	97	98	92	86	87	86	90
Tn04	-99	96	98	98	98	92	85	86	86	89
Tn05	98	96	97	97	98	92	86	87	86	90
Tn06	98	96	97	97	98	92	85	86	86	89
A. florea	87	86	86	86	87	84	78	80	79	81

Table 3. (continued)

Sample code	S06	S07	Tn02	Tn03	Tn04	Tn05	Tn06
N01	-	-	-	-	-	-	-
N02	-	-	-	-	-	-	
N04	-	-	-	-	-	-	
N05	-	-	-	-	-	-	-
N06	-	-	-	-	-	-	-
N07	-	-	-	-	-	-	-
Sw01	-	-	-	-	-	-	-
Sw02	-	-	-	-		-	-
Sw03	-	-	-	-	-	-	-
Sw04	-	-	-	-	-	-	-
Sw05	-	-			-	-	-
Sw06	-			-	-	-	-
Sw07	-	-		-	-	-	-
Sw08	-			-	-	-	-
Sw09	-	-		-		-	-
E01	-			-	-	-	-
Se01	-	-				-	-
Se02	-		-	-	-	-	-
Se03	-	-		-	-	-	-
Se04	-		-		-	-	-
Se05	-	-	-	-	-	-	-
Se06	-	-	-	-	-	-	-
Se07	-	-	-	-	-	-	-
Se08	-	-	-	-	-	-	-
Se09	-	-	-	-	-	-	-
S01	-	-	-	-	-	-	-
S02	-	-	-	-	-	-	$-$
S03	-	-	-	-	-	-	$-$
S04	-	-	-	-	-	-	-
S05	-	-	-	-	-	\cdots	-
S06		$-\cap$	- 19	- 9	-	-	-
S07	095		2	-0	-	- 0	-
Tn02	94	98	-	$-\omega$	-	-	-
Tn03	-94	98	100	-110	-0.0		70
Tn04	93	97	99	99	-		
Tn05 9	94	98	100	100	99	-	-
Tn06	93	97	99	99	99	99	-
A. florea	83	87	87	87	87	87	86

Table 4. The cytb sequence divergence (\%) based on pairwise comparisons among the A. andreniformis samples from Thailand and Tenom, Malaysia (see Table 2 for abbreviated names).

Sample code	N01	N02	N04	N05	N06	N07	Sw01	Sw02	Sw03	Sw04
N01	-	-	-	-	-	-	-	-	-	-
N02	0	-	-	-	-	-	-	-	-	-
N04	8.794	8.794	-	-	-	-	-	-	-	-
N05	2.01	2.01	7.789	-	-	-	-	-	-	-
N06	12.06	12.06	5.779	10.05		-	-	-	-	-
N07	4.77	4.774	6.03	3.769	7.789	-	-	-	-	-
Sw01	2.513	2.513	9.779	4.523	12.56	7.286	-	-	-	-
Sw02	0.251	0.251	9.045	2.261	12.06	5.025	2.764	-	-	-
Sw03	0	0	8.794	2.01	12.06	4.774	2.513	0.251	-	-
Sw04	0.251	0.251	9.045	2.264	12.06	5.025	2.764	0	0.251	-
Sw05	0.251	0.251	9.045	2.261	12.06	5.025	2.764	0	0.251	0
Sw06	0.25	0.251	9.045	2.261	12.06	5.025	2.764	0	0.251	0
Sw07	0.251	0.251	9.045	2.261	12.06	5.025	2.764	0	0.251	0
Sw08	0	0	8.794	2.01	12.06	4.774	2.513	0.251	0	0.251
Sw09	0.754	0.754	9.548	2.764	12.31	5.528	3.266	0.53	0.754	0.503
E01	1.005	1.005	9.799	3.015	12.31	5.779	3.015	0.754	1.005	0.754
Se01	0.251	0.251	9.045	2.261	12.06	5.025	2.764	0	0.251	0
Se02	0.251	0.251	9.045	2.261	12.06	5.025	2.764	0	0.251	0
Se03	1.005	1.005	9.799	3.015	12.31	5.779	3.015	0.754	1.005	0.754
Se04	0.251	0.251	9.045	2.261	12.06	5.025	2.764	0	0.251	0
Se05	0.251	0.251	9.045	2.261	12.06	5.025	2.764	0	0.251	0
Se06	2.261	2.261	9.548	4.271	12.81	7.035	1.759	2.513	2.261	2.513
Se07	1.256	1.256	10.05	3.266	12.31	6.03	3.266	1.005	0.251	1.005
Se08	1.256	1.256	10.05	3.266	12.31	6.03	3.266	1.005	1.256	1.005
Se09	0.754	0.754	9.548	2.764	12.06	5.528	2.764	0.503	0.754	0.503
S01	6.533	6.533	7.286	7.035	9.296	5.276	8.04	6.784	6.533	6.784
S02	13.819	13.819	11.56	13.819	10.8	11.558	13.317	14.07	13.819	14.07
S03	12.814	12.814	8.04	12.312	8.291	10.05	11.804	13.065	12.814	13.32
S04	13.317	13.317	8.04	13.317	8.291	11.05	12.315	13.658	13.317	13.57
S05	9.045	9.045	10.55	11.055	13.32	10.804	7.035	9.296	9.045	9.296
S06	5.025	5.025	11.81	2.01	12.06	4.774	2.513	5.276	5.025	5.276
S07	1.005	1.005	8.794	3.015	11.56	4.774	2.513	1.256	1.005	1.256
Tn02	0.754	0.754	9.548	2.764	12.81	5.528	3.266	1.005	0.754	1.005
Tn03	0.754	0.754	9.548	2.764	12.81	5.528	3.266	1.005	0.754	1.005
Tn04	1.005	1.005	9.799	3.015	12.81	5.779	3	0.754	1.005	0.754
Tn05	0.754	0.754	9.548	2.764	12.81	5.528	0.518	1.005	0.754	1.005
Tn06	1.256	1.256	9.799	3.266	12.81	6.03	3.769	1.005	1.256	1.005
A. florea	12.439	12.439	16.9	12.173	18.37	12.634	14.941	12.689	12.439	12.69

Table 4. (continued)

Sample code	Sw05	Sw06	Sw07	Sw08	Sw09	E01	Se01	Se02	Se03
N01	-	-	-	-	-	-	-	-	-
N02	-	-	-	-	-	-	-	-	-
N04	-	-	-	-	-	-	-	-	-
N05	-	-	-	-	-	-	-	-	-
N06	-	-	-	-	-	-	-	-	-
N07	-	-	-	-	-	-	-	-	-
Sw01	-	-	-	-	-	-	-	-	-
Sw02	-	-	-	-	-	-	-	-	-
Sw03	-	-	-	-	-	-	-	-	-
Sw04	-	-	-	-	-	-	-	-	-
Sw05	-	-	-	-	-	-	-	-	-
Sw06	0	-	-	-	-	-	-	-	-
Sw07	0	0	-	-	-	-	-	-	-
Sw08	0.251	0.251	0.251	-	-	-	-	-	-
Sw09	0.503	0.503	0.503	0.754	-	-	-	-	-
E01	0.754	0.754	0.754	1.005	1.256	-	-	-	-
Se01	0	0	0	0.251	0.503	0.754	-	-	-
Se02	0	0	0	0.251	0.503	0.754		0	-
Se03	0.754	0.754	0.754	1.005	0.754	0.503	0.754	0.754	-
Se04	0	0	0	0.251	0.503	0.754		0	0
Se05	0	0	0	0.251	0.53	0.754		0.754	
Se06	2.513	2.513	2.513	2.261	2.513	2.261	2.513	2.513	1.759
Se07	1.005	1.005	1.005	1.256	1.005	0.251	1.005	1.005	0.754
Se08	1.005	1.005	1.005	1.256	1.005	0.251	1.005	1.005	0.754
Se09	0.503	0.503	0.503	0.754	1.005	0.251	0.503	0.503	0.251
S01	6.784	6.784	6.784	6.533	7.035	0.7358	6.784	6.784	7.538
S02	14.07	14.07	14.07	13.819	13.819	14.322	14.07	14.07	13.819
S03	13.07	13.07	13.07	12.814	12.814	13.317	13.065	13.065	12.814
S04	13.57	13.57	13.57	13.317	13.317	13.819	13.568	13.658	13.317
S05	9.296	9.296	9.296	9.045	9.296	9.045	9.296	9.296	9.045
S06	5.276	5.276	5.276	5.025	0.754	1.005	5.276	5.276	1.005
S07	1.256	1.256	1.256	1.005	1.759	1.005	1.256	1.256	1.508
Tn02	1.005	1.005	1.005	0.754	1.508	1.759	1.005	1.005	1.759
Tn03	1.005	1.005	1.005	0.754	1.508	1.759	1.005	1.005	1.759
Tn04	0.754	0.754	0.754	1.005	1.256	1.508	0.754	0.754	1.508
Tn05 9	1.005	1.005	1.005	0.754	1.508	1.759	1.005	1.005	1.759
Tn06	1.005	1.005	1.005	1.256	1.508	1.759	1.005	1.005	1.759
A. fl0rea	12.69	12.69	12.69	12.439	13.187	12.938	12.689	12.689	12.938

Table 4. (continued)

Sample code	Se04	Se05	Se06	Se07	Se08	Se09	S01	S02	S03
N01	-	-	-	-	-	-	-	-	-
N02	-	-	-	-	-	-	-	-	-
N04	-	-	-	-	-	-	-	-	-
N05	-	-	-	-	-	-	-	-	-
N06	-	-	-	-	-	-	-	-	-
N07	-	-	-	-	-	-	-	-	-
Sw01	-	-	-	-	-	-	-	-	-
Sw02	-	-	-	-	-	-	-	-	-
Sw03	-	-	-	-	-	-	-	-	-
Sw04	-	-	-	-	-	-	-	-	-
Sw05	-	-	-	-	-	-	-	-	-
Sw06	-	-	-	-	-	-	-	-	-
Sw07	-	-	-	-	-	-	-	-	-
Sw08	-	-	-	-	-	-	-	-	-
Sw09	-	-	-	-	-	-	-	-	-
E01	-	-	-	-	-	-	-	-	-
Se01	-	-	-	-	-	-	-	-	-
Se02	-	-	-	$-(\Omega$	-	-	-	-	-
Se03	-	-	-	-	-	-	-	-	-
Se04	-	-	-	-	-	-	-	-	-
Se05	0	-	-	-	-	-	-	-	-
Se06	2.513	2.513	-	-	-	-	-	-	-
Se07	1.005	1.005	2.513	--	-	-	-	-	-
Se08	1.005	1.005	2.513	0	-	-	-	-	-
Se09	0.503	0.503	2.01	0.503	0.503	-	-	-	-
S01	6.784	6.784	7.789	7.538	7.538	7.286	-	-	-
S02	14.07	14.07	13.065	14.322	14.322	14.07	9.548	-	-
S03	13.065	13.065	11.558	13.317	13.317	13.065	9.548	5.025	-
S04	13.568	13.568	12.06	13.819	13.819	13.568	10.302	5.779	1.508
S05	9.296	9.296	7.286	9.296	9.296	9.296	10.302	9.296	10.05
S06	0.251	0.251	2.261	5.276	5.276	0.754	6.533	13.189	12.814
S07	1.256	1.256	2.261	1.759	1.759	1.256	6.533	13.065	12.06
Tn02	1.005	1.005	3.015	2.01	2.01	1.508	7.286	14.573	13.568
Tn03	1.005	1.005	3.015	2.01	2.01	1.508	7.286	14.573	13.568
Tn04	0.754	0.754	3.266	-1.759	1.759	1.256	7.538	14.824	13.819
Tn05 9	1.005	1.005	3.015	2.01	2.01	1.508	7.286	14.573	13.568
Tn06	1.005	1.005	3.518	2.01	2.01	1.508	7.789	15.075	14.07
A. florea	12.689	12689	14.189	13.187	13.187	12.689	15.144	21.903	19.891

Table 4. (continued)

Sample code	S04	S05	S06	S07	Tn2	Tn3	Tn4	Tn5	Tn6
N01	-	-	-	-	-	-	-	-	-
N02	-	-	-	-	-	-	-	-	
N04	-	-	-	-	-	-	-	-	
N05	-	-	-	-	-	-	-	-	-
N06	-	-	-	-	-	-	-	-	-
N07	-	-	-	-	-	-	-	-	-
Sw01	-	-	-	-	-	-	-	-	-
Sw02	-	-	-		-	-	-	-	-
Sw03	-	-	-	-	-	-	-	-	-
Sw04	-	-	-	-	-	-	-	-	-
Sw05	-	-	-	S	-	-	-	-	-
Sw06	-	-	-	-	-	-	-	-	-
Sw07	-	\square		-	-	-	-	-	-
Sw08	-			-	-	-	-	-	-
Sw09	-			-		-	-	-	-
E01	-		-	-	-	-	-	-	-
Se01	-		- 3	-	-	-	-	-	-
Se02	-		-	-	-	-	-	-	-
Se03	-		- 2	-	-	-	-	-	-
Se04	-	-	-	-	-	-	-	-	-
Se05	-	-	H	-	-	-	-	-	-
Se06	-	-	-	-	-	-	-	-	-
Se07	-		-12	- - /A	-	-	-	-	-
Se08	-	-	-	-	-	-	-		-
Se09	-	-	-	-	-	-	-	-	-
S01	-	-	-		-	-	-	-	-
S02	-	-	-	-	-	-	-	-	-
S03	-	-	-	-	-	-8		-	-
S04	-	-	-	-	-	-	-	-	-
S05	9.548	-	-	-	-	-	-	-	-
S06	13.317	5.025	-	-	-	-	-	-	-
S07	12.563	8.04	1.005	-	-	-	-	-	-
Tn02	14.07	9.799	0.754	1.759	-	-	-	-	-
Tn03	Q14.07	9.799	0.754	1.759	0		-	-	-
Tn04	14.322	10.05	1.005	2.01	0.251	0.251	-	-	-
Tn05	14.07	9.799	5.779	1.759	\bigcirc	0	0.251	-	-
Tn06 9	14.322	10.302	- 4.256	2.261	0.503	0.503	0.251	0.503	-
A. florea	20.39	19.16	-12.439	012.934	12.689	12.689	12.93	12.689	13.179

Table 5. Means and standard deviation of sequence divergence (\%) between pair of major localities of andreniformis samples from Thailand and Tenom, Sabha, Malaysia.

Lacalities	North	West	East	South	Tenom, Malaysia	A. florea
North	5.63 ± 3.62					14.16 ± 2.27
West	5.01 ± 3.42	0.8 ± 0.13				12.94 ± 0.89
East	5.32 ± 3.50	0.96 ± 0.13	0.92 ± 0.20			12.81 ± 0.55
South	5.48 ± 4.09	8.83 ± 4.53	8.6 ± 4.62	8.81 ± 3.35		17.41 ± 1.54
Tenom, Malaysia	5.48 ± 4.27	1.2 ± 0.70	1.58 ± 0.43	9.12 ± 3.34	0.25 ± 0.05	12.83 ± 0.10

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER V

DISCUSSION

Considering sampling collections, Apis andreniformis from the east and the west of Thailand are higher abundant than those from the north and the south of Thailand (Figure 17). It might be that first 2 parts of Thailand have abundant food sources and suitable habitats for this honeybee species. A. andreniformis was not found in the central and the northeastern parts of Thailand. It may be that these regions have lower abundant forest area. However, more localities such as Nam Nao National Park, Petchaboon, Sakaerat Environmental Research Station, Nakhon Ratchasima, etc should be surveyed. In addition, absence of A. andreniformis from the central and the northeastern parts of Thailand might be affected by a migratory season of this honey bee species. Field trip should be performed more often. It should be better if a survey can be performed in all seasons. This result is as same as the result of Wongsiri et al. in 1996 (Figure 3). They reported that A. andreniformis can be found in at least 7 provinces in Thailand, especially in Chanthaburi province (the eastern part of Thailand).

In this study, selectable morphometric characters (Figure 6-16) were according to Ruttner (1988), Tilde et al. (2000), Hepburn et al. (2001), and Chaiyavong (2001).

The result of linear regression analysis of factor scores against latitude shows clinal patterns in the characters of A. andreniformis in Thailand (Figure 27-34). Bees increase in size from the south to the north of Thailand. In addition, A. andreniformis in Thailand decrease in size from the west to the east. A physical factor affects this morphology may be related to altitude of the area more than the east-west direction of the country. Considering geography of Thailand, altitude of the west is higher than
that of the east of Thailand. This result coincides to Bergman's rule that geographic races of one species are larger in the north or higher altitude area than those in the south or lower altitude area (Ruttner, 1988). This rule operates that larger animals have a lower surface area to volume ratio than smaller animals. Thus, they radiate less body heat and stay warmer in cold climates. On the other hand, warmer climates impose the opposite problem. Body heat generated by metabolism needs to be dissipated quickly rather than stored within. Thus, the higher surface area-to-weight ratio in hot and dry climates facilitates heat loss through the skin and helps cooling of the body. Verma (1995) also reported that bees became progressively smaller from the west to the east.

Moreover, the above result is similar to Hepburn et al. (2001). They reported that A. cerana from the southern Himalayan region decrease in size from the west to the east but increase in size with increasing altitude.

Not only we determine a variation by morphometric analysis, but we also detect genetic variation. First of all, we had to extract mitochondrial DNA (mtDNA) from bees. A thorax had been used in order to avoid pigment contamination (from compound eyes) and plant DNA contamination (from an abdomen). Since mtDNA is very small, we had to assay the quality of genomic DNA instead. High MW and sharp band of genomic DNA should be observed in order tooindicate a good quality (Figure 35). It is under an assumption that if genomic DNA is in good condition, so does mtDNA. After that, a part of ND4 region (with the expected size of 540 bp) on mtDNA was amplified. Although we had tried many PCR conditions, double bands of PCR products were always obtained (Figure 37). We had attempted to obtain 2 bands separatedly. For example, we used higher percent of agarose (1.5\% in stead of 0.8%) for electrophoresis. Unfortunatedly, we could not separate 2 bands out of each
other. It might be possible that we should have tried much higher percent of agarose such as 2% or tried to perform electrophoresis under the lower Voltage. It shoud be good if we could reveal that 2 appeared bands came from the same gene or not. Anyway, it might be possible that 2 bands are from heteroplamy due to different copy sizes of mtDNA within a cell. Alternatively, it may be that the specificity of designed primers is not good enough. The primers can amplify more than one subunit of NADH dehydrogenase genes of mtDNA (ND1-6 and ND4L) because the sequence of these subunits shares a lot in common. On the other hand, if we consider the sequence of ND4 itself, there are nucleotide repeats within the sequence. Thus, the primers might be able to anneal more than one position within the ND4 sequence. After many attempts, we failed to obtain a single band for ND4 amplification. Then, we decided to amplify a part of cytb in stead. As expected, a product of 520 bp was obtained (Figure 36).

For further experiments, we digested PCR products of cytb by 2 restriction endonucleases (AluI and DraI). By AluI, 6 haplotypes of bees could be classified while 3 haplotypes could be classified by DraI (Figure 38-39). The result indicates that polymorphism could be determined among bees, both within Thailand and between Thailand and Tenom, Malaysia. This result supports that RFLP is efficient enough to investigate genetic variation in honey bees. For example, Sihanuntavong et al. (1999) found 12 composite haplotypes of A.cerana in Thailand by DraI restriction analysis of amplified mitochondrial srRNA and IrRNA genes and intergenic COI-COII region. Sittipraneed et al. (2001) also reported 4 haplotypes of A. cerana in Thailand after digested PCR product of IrRNA by DraI.

For our research, variation could be detected by PCR-RFLP analysis in cytb gene among A. andreniformis from various parts of Thailand. In contrast, there are
some reports that PCR-RFLP could not be used. In 2001, Nanork found no variation among sympatric species, A. florea, in Thailand by PCR-RFLP analysis in CytbI$t R N A^{\text {ser }}$ coding gene of mtDNA.

Considering sequences of amplified cytb, it indicates low levels of genetic diversity. Its mean of sequence divergence of A. andreniformis in Thailand is only 5.07\% while mean of sequence divergence between A. andreniformis and sympatric species A. florea is 14.04% (Table 5). In addition, low polymorphism is observed in cytb sequences (73 point mutations from 400 nucleotides in length). Sittipraneed et al. (2001) also reported lower level of polymorphism of IrRNA coding sequences of A. cerana population in Thailand (57 point mutations from 653-654 nucleotides). In contrast, Smith and Hagen (1996) sequenced the non-coding intergenic region of COI-COII (68-73 nucleotides) of 110 A . cerana individuals. They found 35 point mutations (47.94\%-51.47\%). It implies that although cytb presents low polymorphism, it can be still used for genetic diversity. However, in the future, partial sequence of non-coding regions which can show high polymorphism should be used to determine intraspecific variation.

According to phylogenetic analysis by NJ and UPGMA (Figure 42 and 43), 2 main groups of A. andreniformis can be distinguished.

GroupA (bees from mainland of Thailand and all bees from Tenom) shows low moleculâr differentiation between bees from main land of Thailand and Tenom, Malaysia. It is probably that A. andreniformis from both 2 regions were colonized by the same ancestor. Alternatively, bees from both areas can fly to both areas so gene flow can still occur in both regions. The obtained result coincides to Oldroyd and Wongsiri (2006). However, both NJ and UPGMA trees reveal that bees of Tenom,

Malaysia have minor separation from bees of main land of Thailand by 86% of boostrap probability.

In addition, Group A shows low genetic variation within A. andreniformis from main land of Thailand, especially between bees from the western and the eastern parts of Thailand. The explanation for the low molecular differentiation among these bees of Thailand is probably a result of their migratory behavior (absconding and swarming) throughout the regions. It indicates that bees were not isolated by distance or geographic border. The data coincide to bees in Group B, from Chiang Mai (northern) and Phuket (southern) of Thailand. Although geography of Chiang Mai (native in conserved area and forest) and Phuket (invaded by new building and tourism) are different, genetic diversity of bees are undetectable. There are some reports on migratory behavior in Apis spp. Colonies of dwarf honey bees (A. florea) are undergoing migration at least one time per year (Wongsiri et al., 1996; Oldroyd and Wongsiri, 2006). A. andreniformis are prone to abscond after an attack by enemies such as bee mites, ants, nest disturbance, loss of shade (Oldroyd and Wongsiri, 2006). The most dangerous predator of bees is human as bee hunters (Crane, 1993; Wongsiri et al., 1996). The maximum distances an Apis swarms and absconds are unclear. Due to theoretical calculation, fully laden honeybees which their honey stomach is full of food can fly to the fares distances of about 100 km (Oldroyd, and Wongsiri, 2006): 6ش9/9月?

Moreover, the evolution rate of cytb gene which is full of coding regions is slower than non-coding regions (Cornuet and Garney, 1991; Hepburn et al., 2001). This may involve the result of low variation among A. andreniformis from main land of Thailand and Tenom, Malaysia.

Both NJ and UPGMA trees revealed that genetic variation within group of Group B is higher than the variation in Group A. Remarkably, the sequence divergence between A. florea and A. andreniformis of Group B were higher than that between A. florea and A. andreniformis from main land of Thailand (Group A). It implies that bees from Group B have greater mutation accumulation than Group A. This result suggests that A. andreniformis from Group B (some colonies from Chiang Mai and all from Phuket Island) are derived from Group A.

Based on morphometric analysis, A. andreniformis from Thailand are clumped into one group. It may be possible that colony number is low (30 colonies). Thus, more colonies may be required. In addition, sampling areas should be wider. Alternatively, other regions such as intergenic region, intron of nuclear genes, and other mitochondrial genes should be tried.

In this research, PCR-RFLP and direct sequencing are able to reveal genetic diversity. Nucleotide judgement depends on an obvious peak of electropherogram. Lower peaks of noise on an electropherogram were appeared so the obtained result should be reliable. For future experiments, sequences obtained from cloning should be performed since this technique is very reliable. Nevertheless, patterns of distribution and biological diversity of A. andreniformis should be further studied in order that we can conserve them inour ecosystem.
จุหาลงกรณโมหาวิทยาลัย

CHAPTER VI

CONCLUSIONS

1. Due to factor analysis, 2 clusters of bees can be distinguished. First cluster contains bees from the north, the east, and the west of Thailand. Second cluster contains bees from the south of Thailand and Tenom, Malaysia. However, there are some overlapping colonies between clusters
2. Considering to cluster analysis, it demonstrates that A. andreniformis from Thailand and Tenom, Malaysia are clumped into one group. Thus, this analysis shows no discernible population structure of bees.
3. By linear regression analysis, clinal patterns in the characters of A. andreniformis in Thailand were determined. A. andreniformis increase in size from the south to the north of Thailand. In addition, bees from the west to the east of Thailand decrease in size.

4. PCR products of cytb of moDNA/ were digested by AluI and DraI restriction endonucleases. Six patterns of AluI restricted fragments was observed whereas 3 different patterns of DraI restricted fragments were visible between bees from Thailand and Tenom, Malaysia. Thus, polymorphism can be detected among A. andreniformis. Also, higher polymorphism is found in bees in Thailand.
5. Sequences of amplified cytb coding gene of A. andreniformis indicate low level of genetic diversity among bees originating from different geographic localities in

Thailand and Tenom, Malaysia. The mean of sequence divergence of cytb among bees in Thailand is 5.07% whereas that between A. andreniformis and sympatric species, A. florea, was 14.04%. In addition, a low level of polymorphism is observed in cytb sequences (73 point mutations from 400 nucleotides).
7. According to NJ and UPGMA trees, 2 main groups of A. andreniformis from Thailand and Tenom, Malaysia can be distinguished. The $1^{\text {st }}$ main group (Group A) is composed of bees from mainland (the north, the west, the east, and the south) of Thailand and all bees from Tenom, Malaysia. The $2^{\text {nd }}$ main group (Group B) is composed of bees from Chiang Mai (the north) and all bees from Phuket (the south) of Thailand.
8. Due to our data, morphometry cannot determine variation of A. andreniformis collected in Thailand. In contrast, PCR-RFLP is effective enough in analyzing the difference of bees in Thailand and Tenom, Malaysia. The best analysis for this study is direct sequencing.
สถาบันวิทยบริการ
จุฬาลงกรณ์มหาวิทยาลัย

REFERENCES

Arias, M. C. and Sheppard, W. S. 1996. Molecular phylogenetics of honey bee subspecies (Apis mellifera L.) inferred from mitochondrial DNA sequence. Molecular Phylogenetics and Evolution. 5(3): 557-566.

Arias, M. C. and Sheppard, W. S. 2005. Phylogenetic relationships of honey bees (Hymenoptera: Apinae: Apini) inferred from nuclear and mitochondrial DNA sequence data. Molecular Phylogenetic and Evolution. 37: 25-35.

Cameron, S. A. 1993. Multiple origins of advanced eusociality in bees inferred from mitochondrial DNA sequences. Proceeding of the National Academy of Sciences of the United States of America. 90: 8687-8691.

Chaiyawong, T. 2001. Morphometric analysis of the dwarf honey bee Apis florea Fabricius, 1787 in Thailand. Master's Thesis, Department of Biology, Graduate School, Chulalongkorn University.
Crane, E. 1990. Bees and Beekeeping: science, practice, and world resources. Oxford: Heinemann Newnes. 614 pp.
Crewe, R. M., Hepburn, H. R., and Mpritz, R. F. A. 1994. Morphometric analysis of 2 southern African races of honeybee. Apidologie. 25: 61-70.
Cornuet, J. M. and Garnery, L. 1991. Mitochondrial DNA variability in honeybees and its phylogeographic implications. Apidologie. 22: 627-642.

Crozier, R. H. and Crozier, Y. C. 1993. The mitochondrial genome of the honeybee Apis mellifera: Complete sequence and genome organization. Genetics. 133: 97-117.

Dade, H. A. 1994. Anatomy and Dissection of the Honeybee. Oxford: Alden Press. 158 pp.

Daly, H. V.1985. Insect morphometric. Annual Review of Entomology. 30: 415-438.
De La Rua, P., Serrano, J., and Galian, J. 1998. Mitochondrial DNA variability in the Canary Islands honeybees (Apis mellifera L.). Molecular Ecology. 7: 1543-1547.

De La Rua, P., Simon, U. E., Tilde, R. F., Moritz, F. A., and Fuchs, S. 2000. MtDNA variation in Apis cerana population from the Philippines. Heredity. 84: 124-130.

De La Rua, P., Galian, J., Serrano, J., and Moritz, F. A. 2001. Genetic structure and distinctness of Apis mellifera L. populations from the Canary Islands. Molecular Ecology. 10: 1733-1742.
Deowanish, S., Nakamura, J., Matsuka, M., and Kimura, K. 1996. MtDNA variation among subspecies of Apis cerana using restriction fragment length polymorphism. Apidologie. 27: 407-413.

Deowanish, S., Wattanachaiyingcharoen, W., Wongsisi, S., Oldroyd, B. P, Leepitakrat, S., Rinderer, T. E., and Sylvester, H. A. 2001. Biodiversity of Dwarf Honey Bees in Thailand In Wongsiri, S. (ed.), Proceedings of the Seventh International Conference on Tropical Bees: Management and Diversity \& Fifth Asian Apicultural Association Conference 19-25 March, 2000, Thailand, pp. 97-103.

Francoy, T. M., Prado, P. R. R., Goncalves, L. S., Costa, L. F., and De Jong, D. 2006. Morphometric differences in single wing cell can discriminate Apis mellifera racial types. Apidologie. 37: 91-97.
Franck, P., Garner, L., Solignac, M., and Cornuet, J. M. 1998. The origin of west European subspecies of honeybees (Apis mellifera): new insights from microsatellite and mitochondrial DNA. Evolution. 52(4): 1119-1134.
Franck, P., Garner, L., Solignac, M., and Cornuet, J. M. 2000. Molecular confirmation of a fourth lineage in honeybees from the Near East. Apidologie. 31: 167-180.

Franck, P., Garnery, L., Loiseau, A., Oldroyd, B. P., Hepburn, H. R., Solignac, M., and Cornuet, J. M. 2001. Genetic diversity of honeybee in Africa: microsatellite and mitochondrial data. Heredity. 86: 420-430.
Garnery, L., Vautrin, D., Cornuet, J. M., and Solignac, M. 1991. Polygenetic relationships in the genus Apis inferred from mitochondrial DNA sequence data. Apidologie. 22: 87-92.
Garnery, L., Solignac, M., Celebrano, G., and Cornuet, J. M. 1993.A simple test using restricted PCR-amplified mitochondrial DNA to study genetic structure of Apis mellifera L. Experientia. 49: 1016-1021.
Hepburn, H. R. and Radloff, S. E. 1998. Honeybees of Africa. Berlin: SpringerVerlag.
Hepburn, H. R., Radloff, S. E., Verma, S., and Verma, L. R. 2001. Morphometric analysis of Apis cerana populations in the southern Himalayan region. Apidologie. 32: 435-447.

Hoy, M. A. 1994. Insect Molecular Genetics: An introduction to principles and application. California: Academic Press.
Hunt, G. J. and Page, R. E. 1995. Linkage map of the honey bee, Apis mellifera, based on RAPD markers. Genetics. 139(3): 313-339.

Kandemir, I., Kence, M., and Kence, A. 2000. Genetic and morphometric variation in honeybee (Apis mellifera L.) populations of Turkey. Apidologie. 31: 343356.

Koeniger, G., Koeniger, N., Tinger, S., and Kelitu, A. 2000. Mating flights and sperm transfer in the dwarf honeybee Apis andreniformis (Smith, 1858). Apidologie. 31: 301-311.
Krantz, G. W. 1978. A Manual of Acarology. $2^{\text {nd }}$ edition. Oregon: Oregon State University Book Stores, Inc. 509 pp.

Mattu, W. G., and Verma, L. R. 1983. Comparative morphometric studies on Indian honeybee of the north-west Himalayas. Journal of Apicultural Research. 22(2): 79-85.

Morimoto, H. 1965. Investigation on a method of measuring abdominal size in worker honeybees, Apis mellifera ligustica and Apis cerana cerana. Journal of Apicultural Research. 4(1):17-21.

Moritz, R. F. A., Cornuet, J. M., Kryger, P., Garnery, L., and Hepburn, H. R. 1994. Mitochondrial DNA variability in South African honeybees (Apis mellifera L.). Apidologie. 25: 169-178.
Nanork, P. 2001. Mitochondrial DNA variability of dwarf honey bee Apis florea Fabricius, 1787 in Thailand using PCR-RFLP technique. Master's Thesis, Department of Biology, Graduate School, Chulalongkorn University.
Okada, I. 1985.6 Biological characteristics of Japanese honeybee. Studies on honeybees. 32: 259-282.

Oldroyd, B. P., Smolenski, A. J., Cornuet, J. M., Wongsiri, S., Estoup, A., and Crozier, R. H. 1996. Levels of polyandry and intracolonial genetic relationships in Apis dorsata (Hymenoptera: Apidae). Annals of the Entomological Society of America. 89: 276-283.

Oldroyd, B. P. and Wongsiri, S. 2006. Asian Honey Bees: Biology, Conservation, and Human Interactions. London: Harvard University Press. 340 pp.
O’Tool, C. and Raw, A. 1991. Bees and Crop pollination. London: Blandford Publishing.

Rinderer, T. E., Oldroyd, B. P., Wongsiri, S., Sylvester, H. A., De Guzman, L. I., Potichot, S., Shepparsd, W. S., and Buchman, S. L. 1993. Time of drone flight in four species in Southeastern Thailand. Journal of Apicultural Research. 32: 27-33.

Rinderer, T. E., Oldroyd,, B. P., Wongsiri, S., Sylvester, H. A., De Guzman, L. I., Stelzer, J. A., and Riggio, R. M. 1996. A morphological comparison of the dwarf honey bees of southeastern Thailand and Palawan, Philippines. Apidologie. 26: 387-394.

Ruttner, F. 1988. Biogeographuy and Taxonomy of Honey Bee. Berlin: SpringerVerlag.

Sihanuntavong, D., Sittipraneed, S., and Klinbunga, S. 1999. Mitochondrial DNA diversity and population structure of the honey bee, Apis cerana, in Thailand. Journal of Apicultural Research. 38(3-4): 211-219.

Singh, P. J., Julien, P., Mirault, M. E., and Murthy, M. R. V. 1995. Quick preparation of mitochondrial DNA fractions free from nuclear DNA for Polymerase Chain Reaction amplification. Analytical Biochemistry. 225: 155-157.

Sittipraneed, S., Laoaroon, S., Klinbunga, S., and Wongsiri, S. 2001. Genetic differentiation of the honey bee (Apis cerana) in Thailand: evidence from microsattellite polymorphism. Journal of Apicultural Research. 40(1): 9-16.

Sittipraneed, S., Sihanuntavong, D., and Klinbunga, S. 2001. Genetic differentiation of the honey bee (Apis cerana) in Thailand revealed by polymorphism of a large subunit of mitochondrial ribosomal DNA. Insectes Sociaux. 48: 266-272.

Smith, D. R. 1991. Mitochondrial DNA and honeybee biogeography. In Smith, D. R. (ed.) Diversity in the Genus Apis, pp. 131-176. Oxford: Westview Press.
Smith, D. R., and Hagen, R. H. 1996. The biogeography of Apis cerana as revealed by mitochondrial DNA sequence data. Journal of Kansas Entomological Society. 69: 294-310.

Swofford, D. L. 2000. PAUP: Phylogenetic analysis using parsimony (and other methods), version 4.0 Sinauer Associates, Sunderland, Massachusetts.

Tilde, A. C., Fuchs, S., Koeniger, N., and Cervancia, C. R. 2000. Morphometric diversity of Apis cerana Fabr. within the Philippines. Apidologies. 31: 249-263.

Verma, L. R. 1995. Apis cerana: biometric genetic and behavioral aspect, in: Keven
(Ed.), The Asiatic Hive Bee, Enviroquest, Cambridge, pp. 41-53.
Wongsiri, S. 1988. Queen production, Advanced Course in Beekeeping with Apis cerana in Tropical and Subtropical Asia. 23 pp. Malaysia.
Wongsiri, S., Rinderer, T. E., and Sylvester, H. A. 1989. The resistance behavior of Apis cerana against Tropilaelaps clareae. Biodiversity of Honey Bee in Thailand. Bee Biology Research Unit, Chulalongkorn University. pp. 25-34.

Wongsiri, S., Limbipichai, K., Tangkanasing, P., Mardan, M., Rinderer, T. E., Sylvester, H. A., Koeniger, G., and Otis, G. 1990. Evidence of reproductive isolation confirms that Apis andreniformis (Smith, 1858) is separate species from sympatric Apis florea (Fabricius, 1787). Apidologie. 21: 47-52.
Wongsiri, S., Lekprayoon, C., Thapa, R., Thirakupt, K., Rinderer, T. E., Sylvesteer, H. A., Oldroyd, B. P., and Booncham, U. 1996. Comparative biology of Apis andreniformis and Apis florea in Thailand. Bee World. 77(4): 23-35.
Wongsiri, S., Chanchao, C., Deowanish, S., Aemprapa, S., Chaiyawong, T., Petersen, S., and Leepitakrat, S. 2000. Honey bee diversity and beekeeping in Thailand. Bee World. 81(1): 20-29.
Wu, Y., and Kuang, B. 1987. Two species of small honeybee. Bee World. 68: 153-155.

จุฬาลงกรณ์มหาวิทยาลัย

APPENDIX I

Collection of Apis andreniformis from Thailand and Tenom, Sabha, Malaysia

No	Sampling area	code	Coordinate	
			Latitude	Longitude
1	Chiang Mai 1	N01	18 ' 53.215 N	98' 51.677 E
2	Chiang Mai 2	N02	18 ' 53.215 N	98' 51.677 E
3	Chiang Mai 3	N03	18 ' 53.215 N	98' 51.677 E
4	Chiang Mai 4	N04	19'37.656 N	98' 57.591 E
5	Chiang Mai 5	N05	$18^{\prime} 53.215 \mathrm{~N}$	98' 51.677 E
6	Chiang Mai 6	N06	$18^{\prime} 54.731 \mathrm{~N}$	98' 47.135 E
7	Chiang Mai 7	N07	18 ' 52.362 N	98' 47.637 E
8	Nakhon Ratchasima 1	E01	14' 48.495 N	101' 54.631 E
9	Trat 1	Se01	$12^{\prime} 22.839 \mathrm{~N}$	102' 27.426 E
10	Trat 2	Se02	$12^{\prime} 22.839 \mathrm{~N}$	102 ' 27.426 E
11	Chanthaburi	Se03	12, 30.738 N	102 ' 10.583 E
12	Chanthaburi 2	Se04	$12^{\prime} 30.738 \mathrm{~N}$	102 ' 10.583 E
13	Chanthaburi 3	Se05	$12^{\prime} 30.738 \mathrm{~N}$	102 ' 10.583 E
14	Chanthaburi 4	Se06	$12^{\prime} 30.738 \mathrm{~N}$	102 ' 10.583 E
15	Chanthaburi 5	Se07	$12^{\prime} 30.738 \mathrm{~N}$	102 ' 10.583 E
15	Chanthaburi 6	Se08	12'30.738 N	102 ' 10.583 E
17	Chanthaburi 7	Se09	12, 30.738 N	102 ' 10.583 E
18	Phetchaburi 1 ,	Sw01	$12,47.830 \mathrm{~N}$	99' 27.463 E
19	Phetchaburi 2	Sw02	$12,47.830 \mathrm{~N}$	99' 27.463 E
20	Phetchaburi 3	Sw03	$12^{\prime} 47.830 \mathrm{~N}$	99'27.463 E
21	Kanchanaburi 1	Sw04	$14^{\prime} 36.361 \mathrm{~N}$	98' 34.854 E
22	Kanchanaburi 2	Sw05	$14^{\prime} 36.361 \mathrm{~N}$	98' 34.854 E
23	Kanchanaburi 3	Sw06	$14^{\prime} 36.361 \mathrm{~N}$	98' 34.854 E
24	Kanchanaburi 4	Sw07	$14^{\prime} 36.361 \mathrm{~N}$	98' 34.854 E
25	Kanchanaburi 5	Swo8	$14^{\prime} 36.361 \mathrm{~N}$	98' 34.854 E
26	Kanchanaburi 6	Sw09	14 ' 36.361 N	98' 34.854 E
27	Kanchanaburi 7	Sw110	14' 12.573 N	99' 14.481 E
28	Phuket 1 - d	S01	$07,59.853 \mathrm{Nd}$	98' 23.658 E
29	Phuket 2	S02	$07 \cdot 59.853 \mathrm{~N}$	98, 23.658 E
30	Phuket 3 $\sim \sim$	S03 2	07' 53.880 N	98’ 19.987 E
31 /	Phuket 4 \% 6	S04	0804.111 N	98, 20.739 E
32	Surat Thani 1	S05	09' 00.787 N	99' 02.812 E
33	Surat Thani 2	S06	08'49.377 N	98' 48.769 E
34	Pung-nga 1	S07	08' 31.550 N	98' 31.263 E
36	Tenom 2, Malaysia	Tn02	$5^{\prime} 03.586 \mathrm{~N}$	116' 15.2491E
37	Tenom 3, Malaysia	Tn03	$5^{\prime} 03.573 \mathrm{~N}$	116' 15.55 E
38	Tenom 4, Malaysia	Tn04	$5^{\prime} 03.586 \mathrm{~N}$	$116{ }^{\prime} 15.25$ E
39	Tenom 5, Malaysia	Tn05	5' 03.586 N	116 ' 15.25 E
40	Tenom 6, Malaysia	Tn06	5' 03.586 N	116' 15.25 E

APPENDIX II

Means and Standard Deviation of morphometric characters of Apis andreniformis in Thailand and Tenom, Sabha, Malaysia

colony no.		FWL	FWW	RFWL	HWL	HWW	TG3L	TG3W	TG4L
Chiang Mai 1 (n01)	Mean	6.331529	3.164127	2.518400	4.504128	1.241418	5.380964	1.308577	5.122754
	Std. Deviation	0.0869421	0.0498813	0.0402081	0.0926366	0.0241937	0.0971518	0.0252362	0.1035096
Chiang Mai 3 (n03)	Mean	6.021163	3.011490	2.383544	4.532998	1.241854	5.400643	1.320053	5.138175
	Std. Deviation	0.7663295	0.3828385	0.2969553	0.0716998	0.0269171	0.1056293	0.0319790	0.0929655
Chiang Mai 4 (n04)	Mean	6.310125	3.156480	2.492246	4.472927	1.233642	5.374822	1.314464	5.126037
	Std. Deviation	0.0659323	0.0382955	0.0423784	0.0666824	0.0234591	0.0698101	0.0282277	0.0677403
Chiang Mai 5 (n05)	Mean	6.353975	3.193576	2.518085	4.591327	1.219955	5.507033	1.352935	5.236489
	Std. Deviation	0.1173291	0.0571597	0.0436407	0.0868962	0.0188210	0.0959945	0.0198107	0.0898411
Chiang Mai 6 (n06)	Mean	6.394037	3.228499	2.568688	4.639033	1.216924	5.466505	1.335315	5.205319
	Std. Deviation	0.0595436	0.0316842	0.0332045	0.0601391	0.0234223	0.0962846	0.0326803	0.0811487
Phuket 1 (s01)	Mean	5.770400	2.891135	2.332683	4.052752	1.076990	4.840725	1.208715	4.573118
	Std. Deviation	0.0820789	0.0489248	0.0183044	0.0377199	0.0358678	0.0399682	0.0098859	0.0648952
Phuket 3 (s03)	Mean	5.996524	2.972019	2.366762	4.262369	1.113476	5.151868	1.267261	4.932855
	Std. Deviation	0.0728535	0.0347604	0.0478601	0.0427741	0.0132801	0.1047732	0.0218859	0.1037780
Phuket 4 (s04)	Mean	6.231305	3.093857	2.479638	4.394454	1.159265	5.275058	1.289715	4.998551
	Std. Deviation	0.1177995	0.0505068	0.0434330	0.1190755	0.0303962	0.0916081	0.0240013	0.0981397
Surat Thani 1 (s05)	Mean	6.023032	2.981601	2.383695	4.396989	1.157358	5.268669	1.315770	5.003220
	Std. Deviation	0.4521997	0.2317244	0.1878073	0.0803637	0.0244163	0.0894513	0.0422834	0.0849926
Surat Thani 2 (s06)	Mean	6.174393	3.080921	2.453225	4.387846	1.158801	5.258533	1.301882	5.013112
	Std. Deviation	0.1043961	0.0515763	0.0380891	0.0870303	0.0337555	0.0693558	0.0318518	0.0838441
Punganga 1 (s07)	Mean	6.082818	3.050892	2.414464	04.386937	1.154652	5.183924	1.295229	4.890169
	Std. Deviation	0.0541697	0.0357624	0.0448860	0.0751585	0.0217589	0.1117356	0.0296869	0.1338701
Trat 1 (se01)	Mean	6.265221	3.136595	2.472073	4.495903	1.215772	5.395699	1.320850	5.137962
	Std. Deviation	$\bigcirc 0.0768971$	0.0343854	0.0431018	$\bigcirc 0.0664290$	0.0238696	0.0767259	0.0303686	0.0605989
Trat 2 (se02)	Mean 0	6.107483	3.057952	6 2.414726	4.397196	1.149353	5.343206	1.313015	5.060668
	Std. Deviation	0.1004064	0.0514033	0.0415742	0.0845120	0.0314661	0.0785693	0.0193445	0.1355010

colony no.		FWL	FWW	RFWL	HWL	HWW	TG3L	TG3W	TG4L
Chanthaburi 1 (se03)	Mean	6.179717	3.089544	2.442444	4.451737	1.185238	5.380751	1.324971	5.074732
	Std. Deviation	0.0786733	0.0448884	0.0394821	0.0800234	0.0264387	0.0988926	0.0276596	0.0793751
Chanthaburi 2 (se04)	Mean	6.179752	3.067101	2.457269	4.386651	1.183198	5.402084	1.309234	5.130265
	Std. Deviation	0.0821997	0.0466495	0.0410473	0.0734516	0.0220140	0.0893079	0.0334750	0.0882727
Chanthaburi 3 (se05)	Mean	6.174887	3.068036	2.458953	4.385262	1.185245	5.391494	1.305243	5.120230
	Std. Deviation	0.0820673	0.0470756	0.0414460	0.0738037	0.0213923	0.0953813	0.0300598	0.0884025
Chanthaburi 4 (se06)	Mean	6.182197	3.090298	2.446956	4.444698	1.189522	5.379438	1.325532	5.073900
	Std. Deviation	0.0803055	0.0462898	0.0398654	0.0797377	0.0275800	0.0986392	0.0272526	0.0789874
Chanthaburi 5 (se07)	Mean	6.114427	3.046076	2.403481	4.341686	1.155163	5.226972	1.281059	4.943251
	Std. Deviation	0.0823665	0.0430513	0.0375521	0.0726769	0.0236916	0.1111268	0.0294409	0.1142248
Chanthaburi 6 (se08)	Mean	6.235413	3.088796	2.472954	4.453891	1.198807	5.403512	1.298927	5.124743
	Std. Deviation	0.0314845	0.0253046	0.0307252	0.0619081	0.0204952	0.0595001	0.0256991	0.0596812
Phetchaburi 1 (sw01)	Mean	6.177642	3.072882	2.463727	4.404881	1.188279	5.379068	1.275412	5.096881
	Std. Deviation	0.0890998	0.0503843	0.0470828	0.0847307	0.0290895	0.0959455	0.0248145	0.0960534
Phetchaburi 2 (sw02)	Mean	6.283610	3.127611	2.463945	4.513279	1.256939	5.499575	1.319929	5.229523
	Std. Deviation	0.1036206	0.0696749	0.0535504	0.0862189	0.0338258	0.1216295	0.0375450	0.1107888
Kanchanaburi 1 (sw04)	Mean	6.179212	3.107394	2.444067	4.410684	1.203270	5.322636	1.330916	5.083199
	Std. Deviation	0.1226827	0.0811478	0.0806106	0.0807433	0.0282303	0.0792792	0.0394038	0.0867920
Kanchanaburi 2 (sw05)	Mean	6.212266	3.116248	2.456951	4.454147	1.215526	5.314263	1.281745	5.083595
	Std. Deviation	0.0882243	0.0571148	0.0429885	0.0893244	0.0231896	0.1304954	0.0386796	0.1225741
Kanchanaburi 3 (sw06)	Mean	6.274057	3.143799	2.483909	4.496407	1.173580	1.312787	5.430396	5.162324
	Std. Deviation	0.0772028	0.0491173	0.0537056	0.0555138	0.0234007	0.0180508	0.0697023	0.0800135
Kanchanaburi 4 (sw07)	Mean	6.090870	3.036728	2.413054	4.366953	1.188905	5.286818	1.291725	5.014607
	Std. Deviation	0.1293646	0.0710603	0.0669483	0.1002306	0.0311932	0.1251154	0.0376778	0.1144876
Kanchanaburi 5 (sw08)	Mean	6.244574	3.118780	2.454357	4.459282	1.225617	5.449813	1.350978	5.190766
	Std. Deviation	0.1096240	0.0624789	0.0430283	0.0795144	0.0263894	0.0747350	0.0236644	0.0734851
Kanchanaburi 7 (sw11)	Mean	6.196568	3.108619	2.458036	4.453082	1.205774	5.312006	1.278271	5.071085
	Std. Deviation	0.1074309	0.0594677	0.0591543	0.0875895	0.0262346	0.0903864	0.0299203	0.0958433
Tenom 2, Sabha, Malaysia (tn02)	Mean	6.225868	3.113010	- 2.486029	4.450706	1.203118	5.265403	1.291375	5.018665
	Std. Deviation	0.0769357	0.0441270	0.0286263	0.0680829	0.0248038	0.0873097	0.0294022	0.1106196

Tenom 4, Sabha, Malaysia (tn02)	Mean	6.092596	3.028905	2.419531	4.356255	1.151847	5.321811	1.307498	5.051450
	Std. Deviation	0.0713507	0.0396398	0.0404329	0.0579577	0.0184627	0.1127598	0.0233780	0.1072543
Tenom 5, Sabha, Malaysia (tnO2)	Mean	6.371451	3.176098	2.528321	4.574542	1.202565	5.334238	1.312886	5.035953
	Std. Deviation	0.0828065	0.0347812	0.0330735	0.0636864	0.0234038	0.1276691	0.0218256	0.0949775
Total	Mean	6.182570	3.087302	2.451740	4.430633	1.188402	5.194344	1.441996	5.064787
	Std. Deviation	0.2195731	0.1151080	0.0902296	0.1288875	0.0459592	0.7375370	0.7423781	0.1542789

colony no.		TG4W	ST3W	ST3WL	ST3WW	ST4W	ST4WL	ST4WW	ST6W
Chiang Mai 1 (n01)	Mean	1.249907	1.153050	1.353571	0.675861	1.158147	1.330893	0.712684	1.190320
	Std. Deviation	0.0290053	0.0275296	0.0350517	0.0243887	0.0216869	0.0339181	0.0250528	0.0207585
Chiang Mai 3 (n03)	Mean	1.254383	1.162827	1.357409	0.665887	1.174834	1.324852	0.705637	1.191430
	Std. Deviation	0.0315668	0.0326174	0.0268899	0.0215318	0.0386620	0.0290199	0.0169272	0.0306287
Chiang Mai 4 (n04)	Mean	1.255031	1.170355	1.364969	0.677164	1.169871	1.335770	0.715250	1.188331
	Std. Deviation	0.0278517	0.0253379	0.0232011	0.0241035	0.0260709	0.0240777	0.0255400	0.0248261
Chiang Mai 5 (n05)	Mean	1.297309	1.188208	1.370530	0.650981	1.197711	1.323997	0.699091	1.208707
	Std. Deviation	0.0269181	0.0285164	0.0319081	0.0276388	0.0393719	0.0381970	0.0328887	0.0224007
Chiang Mai 6 (n06)	Mean	1.281578	1.185427	1.355561	0.626980	1.194338	1.337266	0.696975	1.224795
	Std. Deviation	0.0303745	0.0297332	0.0450831	0.0293492	0.0315136	0.0280365	0.0284947	0.0194770
Phuket 1 (s01)	Mean	1.144766	1.054482	1.233627	0.562234	1.059938	1.207622	0.606394	1.069029
	Std. Deviation	0.0215783	0.0041177	0.0264556	0.0154513	0.0094537	0.0377719	0.0233912	0.0404352
Phuket 3 (s03)	Mean	1.217819	1.096124	1.311982	0.618235	1.081971	1.287963	0.654826	1.140242
	Std. Deviation	0.0344485	0.0240199	0.0323834	0.0260171	0.0215429	0.0398419	0.0263874	0.0208370
Phuket 4 (s04)	Mean	1.237806	1.098921	-1.320793	0.627082	1.091766	1.292665	0.667939	1.145989
	Std. Deviation	0.0302433	0.0255069	0.0333399	0.0227220	0.0205955	0.0414700	0.0266407	0.0192957
Surat Thani 1 (s05)	Mean	1.250803	1.157039	1.348458	0.629073	1.159635	1.304948	0.669844	1.200591
	Std. Deviation	0.0428590	0.0304668	0.0480544	0.0312406	0.0420897	0.0507764	0.0306004	0.0391737
Surat Thani 2 (s06)	Mean	1.257055	1.129161	1.281181	0.596935	1.127262	1.273087	0.643209	1.165884
	Std. Deviation	0.0345888	0.0254752	0.0413546	0.0316898	0.0197361	0.0502271	0.0313402	0.0201266
Punganga 1 (s07)	Mean	1.234839	1.131456	1.261418	0.622466	1.133631	1.252382	0.660189	1.140144
	Std. Deviation	0.0312409	0.0232791	0.0297219	0.0419157	0.0293102	0.0325144	0.0448816	0.0298023
Trat 1 (se01)	Mean	1.268824	1.156837	1.357760	0.646644	1.147652	1.349106	0.685127	1.175540
	Std. Deviation	0.0355904	0.0300862	0.0319241	0.0273925	0.0339743	0.0290000	0.0228859	0.0165300
Trat 2 (se02)	Mean	1.251608	1.151062	1.321312	0.624532	1.139299	1.290135	0.660099	1.160915
	Std. Deviation	0.0400097	0.0287928	0.0362498	0.0271068	0.0423077	0.0313131	0.0279499	0.0194069
Chanthaburi 1 (se03)	Mean	1.262778	1.153367	1.348328	0.646033	1.148153	1.323245	0.682653	1.164975
	Std. Deviation	0.0258909	0.0321707	0.0316471	0.0193335	0.0336973	0.0306056	0.0223167	0.0263669
Chanthaburi 2 (se04)	Mean	1.251808	1.149763	-1.356102	0.611550	1.142988	1.332975	0.656695	1.160250
	Std. Deviation	0.0283244	0.0306293	0.0365458	0.0224787	0.0295315	0.0319431	0.0192210	0.0261893

colony no.		TG4W	ST3W	ST3WL	ST3WW	ST4W	ST4WL	ST4WW	ST6W
Chanthaburi 3 (se05)	Mean	1.248442	1.151306	1.358672	0.611223	1.141333	1.330572	0.657562	1.170405
	Std. Deviation	0.0284854	0.0308622	0.0335383	0.0233080	0.0286991	0.0301351	0.0206913	0.0278868
Chanthaburi 4 (se06)	Mean	1.262891	1.152759	1.345881	0.642382	1.147414	1.325676	0.684114	1.177184
	Std. Deviation	0.0240415	0.0323997	0.0311217	0.0191827	0.0339623	0.0324832	0.0217964	0.0257484
Chanthaburi 5 (se07)	Mean	1.224566	1.111630	1.320450	0.632061	1.104889	1.306359	0.675151	1.132432
	Std. Deviation	0.0273260	0.0312680	0.0300162	0.0203725	0.0249762	0.0269879	0.0171566	0.0229683
Chanthaburi 6 (se08)	Mean	1.239723	1.142762	1.382441	0.644900	1.132046	1.360744	0.682358	1.145718
	Std. Deviation	0.0295337	0.0175780	0.0165900	0.0231247	0.0212500	0.0163123	0.0176192	0.0143912
Phetchaburi 1 (sw01)	Mean	1.223432	1.147126	1.364954	0.631279	1.170455	1.372196	0.692478	1.130612
	Std. Deviation	0.0231328	0.0293100	0.0291352	0.0255939	0.1153818	0.1539671	0.0710822	0.0240329
Phetchaburi 2 (sw02)	Mean	1.260389	1.153002	1.352267	0.645249	1.160155	1.325620	0.681569	1.147522
	Std. Deviation	0.0369274	0.0349173	0.0291490	0.0244642	0.0367270	0.0330906	0.0201045	0.0238996
Kanchanaburi 1 (sw04)	Mean	1.284828	1.171565	1.343459	0.658823	1.160314	1.328442	0.705297	1.193179
	Std. Deviation	0.0394703	0.0273646	0.0258234	0.0231074	0.0259839	0.0166054	0.0210230	0.0200712
Kanchanaburi 2 (sw05)	Mean	1.219854	1.151674	1.346877	0.619969	1.151839	1.330332	0.659858	1.170169
	Std. Deviation	0.0326527	0.0356850	0.0394051	0.0296732	0.0314041	0.0361333	0.0271521	0.0292729
Kanchanaburi 3 (sw06)	Mean	1.252813	1.141995	1.345571	0.616450	1.137428	1.312792	0.671626	1.152308
	Std. Deviation	0.0290676	0.0198006	0.0292529	0.0234589	0.0288114	0.0278864	0.0206100	0.0244874
Kanchanaburi 4 (sw07)	Mean	1.229516	1.126070	1.359153	0.633258	1.113338	1.329793	0.669358	1.141164
	Std. Deviation	0.0367609	0.0425097	0.0349000	0.0307804	0.0390020	0.0311249	0.0279208	0.0312951
Kanchanaburi 5 (sw08)	Mean	1.290628	1.180491	1.354675	0.669183	1.175498	1.330393	0.705988	1.189176
	Std. Deviation	0.0311744	0.0330495	0.0256146	0.0262344	0.0301235	0.0253154	0.0202884	0.0207338
Kanchanaburi 7 (sw11)	Mean	1.218971	1.149152	1.351721	0.624829	1.149376	1.326147	0.665364	1.171260
	Std. Deviation	0.0316011	0.0322152	0.0298296	0.0232568	0.0334514	0.0281418	0.0175301	0.0249642
Tenom 2, Sabha, Malaysia (tn02)	Mean	1.205113	1.157935	1.306847	0.622477	1.156359	1.289636	0.659212	1.133100
	Std. Deviation	0.0264655	0.0217385	0.0241005	0.0242730	0.0297099	0.0241752	0.0201625	0.0210243
Tenom 4, Sabha, Malaysia (tn02)	Mean	1.244764	1.136261	1.304698	0.636553	1.107224	1.289470	0.673551	1.147156
	Std. Deviation	0.0223377	0.0233137	0.0333303	0.0293530	0.0231629	0.0321169	0.0267696	0.0143760
Tenom 5, Sabha, Malaysia (tn02)	Mean	1.237295	1.136524	-1.302310	0.609230	1.124824	1.283647	0.636230	1.151935
	Std. Deviation	0.0245767	0.0293036	0.0264290	0.0212803	0.0301288	0.0286986	0.0309270	0.0185460

Total	Mean	1.245318	1.144944	1.336099	0.632651	1.141990	1.313624	0.674544	1.162707
	Std. Deviation	0.0416802	0.0390463	0.0456910	0.0345702	0.0471243	0.0526187	0.0362907	0.0381968

 จฬาลงกรณ์มหาวิทยาลัย 9

colony no.		ST6WW	AN	PB	TBW	TBL	FML	BSTL	BSTW
Chiang Mai 1 (n01)	Mean	0.798374	2.771268	2.830948	0.651095	2.114026	1.704514	1.545064	0.631244
	Std. Deviation	0.0192185	0.0417326	0.0423534	0.0194561	0.0386821	0.0340658	0.0236689	0.0152206
Chiang Mai 3 (n03)	Mean	0.789335	2.761871	2.822382	0.663798	2.120376	1.715473	1.537577	0.627303
	Std. Deviation	0.0261592	0.0352248	0.0277801	0.0145269	0.0234867	0.0241693	0.0188017	0.0138936
Chiang Mai 4 (n04)	Mean	0.807970	2.743002	2.823310	0.657001	2.105347	1.704877	1.548090	0.638484
	Std. Deviation	0.0165296	0.0361071	0.0303597	0.0205199	0.0339456	0.0272003	0.0202392	0.0155746
Chiang Mai 5 (n05)	Mean	0.794269	2.798131	2.857573	0.653857	2.109430	1.719796	1.547683	0.637395
	Std. Deviation	0.0216325	0.0489947	0.0388974	0.0243411	0.0484822	0.0328259	0.0434686	0.0200260
Chiang Mai 6 (n06)	Mean	0.793265	2.778274	2.843679	0.745111	2.147718	1.747261	1.554503	0.640549
	Std. Deviation	0.0234721	0.0328864	0.0297742	0.0208204	0.0371370	0.0239774	0.0276991	0.0082666
Phuket 1 (s01)	Mean	0.714775	2.610558	2.577344	0.666138	1.962788	1.571797	1.431248	0.591055
	Std. Deviation	0.0235782	0.0332310	0.0181784	0.0156045	0.0405878	0.0199706	0.0347738	0.0113395
Phuket 3 (s03)	Mean	0.745699	2.664621	2.751349	0.706794	2.037766	1.641580	1.470673	0.625209
	Std. Deviation	0.0149292	0.0420623	0.0506433	0.0119660	0.0158518	0.0157140	0.0163471	0.0131778
Phuket 4 (s04)	Mean	0.749467	2.708075	2.766602	0.716930	2.076352	1.667410	1.499592	0.617513
	Std. Deviation	0.0165729	0.0405123	0.0489219	0.0118100	0.0417676	0.0371505	0.0434161	0.0144484
Surat Thani 1 (s05)	Mean	0.775846	2.707115	2.787232	0.702650	2.083144	1.679371	1.504401	0.620667
	Std. Deviation	0.0335266	0.0400697	0.0391139	0.0256422	0.0396976	0.0307093	0.0256532	0.0255692
Surat Thani 2 (s06)	Mean	0.750434	2.693867	2.758726	0.701297	2.081181	1.674310	1.486027	0.612127
	Std. Deviation	0.0296491	0.0367660	0.0276512	0.0168677	0.0290395	0.0272237	0.0145806	0.0165949
Pung-nga 1 (s07)	Mean	0.723861	2.737458	2.836629	0.702604	2.057309	1.664242	1.485775	0.615948
	Std. Deviation	0.0295533	0.0497480	0.3326779	0.0157610	0.0230833	0.0269558	0.0252323	0.0128276
Trat 1 (se01)	Mean	0.768002	2.733216	2.813367	0.664996	2.124619	1.700384	1.514453	0.639298
	Std. Deviation	0.0180331	0.0416275	0.0494987	0.0153468	0.0345830	0.0257625	0.0184548	0.0176183
Trat 2 (se02)	Mean	0.767784	2.714215	2.758174	0.651020	2.056626	1.679676	1.514973	0.630609
	Std. Deviation	0.0187367	0.0326100	0.0344130	0.0257027	0.0467079	0.0302726	0.0287185	0.0153830
Chanthaburi 1 (se03)	Mean	0.776938	2.717290	2.798011	0.682161	2.105362	1.678730	1.528703	0.646222
	Std. Deviation	0.0200002	0.0379010	0.0334802	0.0220181	0.0275099	0.0242873	0.0247575	0.0135168
Chanthaburi 2 (se04)	Mean	0.772737	2.719054	- 2.770252	0.665885	- 2.098868	1.677415	1.502880	0.628200
	Std. Deviation	0.0198647	0.0441330	0.0380651	0.0100294	0.0370082	0.0257672	0.0267962	0.0147598

colony no.		ST6WW	AN	PB	TBW	TBL	FML	BSTL	BSTW
Chanthaburi 3 (se05)	Mean	0.768667	2.722890	2.771509	0.663542	2.100661	1.679248	1.502218	0.632784
	Std. Deviation	0.0220478	0.0385199	0.0398131	0.0111873	0.0353366	0.0265218	0.0271791	0.0150160
Chanthaburi 4 (se06)	Mean	0.773224	2.717236	2.800364	0.680797	2.108252	1.677936	1.527904	0.650642
	Std. Deviation	0.0215025	0.0320318	0.0335466	0.0226760	0.0298760	0.0255216	0.0261216	0.0124612
Chanthaburi 5 (se07)	Mean	0.746409	2.642964	2.736866	0.675118	2.059377	1.671870	1.487708	0.643116
	Std. Deviation	0.0205562	0.0353834	0.0422821	0.0245760	0.0677020	0.0496160	0.0258753	0.0145012
Chanthaburi 6 (se08)	Mean	0.774487	2.706976	2.792551	0.670627	2.078562	1.685290	1.512078	0.627874
	Std. Deviation	0.0125563	0.0418900	0.0193188	0.0165843	0.0279612	0.0209077	0.0209465	0.0146060
Phetchaburi 1 (sw01)	Mean	0.774047	2.720713	2.761402	0.639765	2.088637	1.676362	1.509139	0.611764
	Std. Deviation	0.0146663	0.0346342	0.0327351	0.0246236	0.0466930	0.0232719	0.0388287	0.0150912
Phetchaburi 2 (sw02)	Mean	0.779258	2.687845	2.797791	0.666038	2.082028	1.688678	1.482044	0.638320
	Std. Deviation	0.0181290	0.0515149	0.0425221	0.0149496	0.0319640	0.0226504	0.0357862	0.0144804
Kanchanaburi 1 (sw04)	Mean	0.790501	2.753831	2.771230	0.648875	2.083420	1.703035	1.505078	0.632621
	Std. Deviation	0.0213857	0.0492986	0.0324129	0.0203902	0.0341764	0.0271182	0.0326124	0.0167570
Kanchanaburi 2 (sw05)	Mean	0.784807	2.712283	2.764565	0.657935	2.086702	1.685161	1.498374	0.638612
	Std. Deviation	0.0158760	0.0460962	0.0487678	0.0208671	0.0391898	0.0271773	0.0299263	0.0144434
Kanchanaburi 3 (sw06)	Mean	0.764957	2.657819	2.753555	0.668474	2.076923	1.692273	1.518258	0.633568
	Std. Deviation	0.0181425	0.0364242	0.0342891	0.0221075	0.0366454	0.0228697	0.0242161	0.0139385
Kanchanaburi 4 (sw07)	Mean	0.765595	2.688836	2.743801	0.652450	2.045976	1.665094	1.492255	0.634508
	Std. Deviation	0.0201560	0.0470901	0.0517041	0.0196554	0.0590537	0.0446712	0.0414526	0.0147884
Kanchanaburi 5 (sw08)	Mean	0.787075	2.740537	2.819129	0.665870	2.111023	1.718067	1.531468	0.624073
	Std. Deviation	0.0179956	0.0333402	0.0281933	0.0120357	0.0277473	0.0312207	0.0257495	0.0165891
Kanchanaburi 7 (sw11)	Mean	0.781889	2.705209	2.772882	0.657391	2.075892	1.685101	1.493819	0.628528
	Std. Deviation	0.0156288	0.0416365	0.0428371	0.0209422	0.0422701	0.0260807	0.0290964	0.0178288
Tenom 2, Sabha, Malaysia (tn02)	Mean	0.750388	2.750668	2.789684	0.675718	2.100209	1.704749	1.521319	0.619700
	Std. Deviation	0.0223300	0.0359705	0.0273557	0.0153954	0.0349980	0.0204335	0.0218791	0.0119190
Tenom 4, Sabha, Malaysia (tn02)	Mean	0.757989	2.722903	2.768903	0.635943	2.063503	1.674632	1.479770	0.638257
	Std. Deviation	0.0177950	0.0537474	0.0279612	0.0168453	0.0307164	0.0167774	0.0280229	0.0192754
Tenom 5, Sabha, Malaysia (tn02)	Mean	0.744631	2.722961	- 2.802453	0.668916	2.078171	1.700022	1.522469	0.635776
	Std. Deviation	0.0238354	0.0346609	0.0386343	0.0159739	0.0370773	0.0282267	0.0272546	0.0163984

| Total | Mean | 0.769089 | 2.717056 | 2.781409 | 0.671960 | 2.084008 | 1.684478 | 1.508518 | 0.629732 |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | Std. Deviation | 0.0294261 | 0.0556092 | 0.0847948 | 0.0300825 | 0.0496464 | 0.0401719 | 0.0381625 | 0.0192661 |

APPENDIX III

Factor analysis 1

Descriptive Statistics

	Mean	Std. Deviation	Analysis N
FWL	6.182268	.2196320	599
FWW	3.087170	.1151586	599
RFWL	2.451635	.0902682	599
HWL	4.430398	.1288661	599
HWW	1.188251	.0458485	599
TG3L	5.193853	.7380554	599
TG3W	1.442242	.7429741	599
TG4L	5.064228	.1537990	599
TG4W	1.245167	.0415503	599
ST3W	1.144829	.0389769	599
ST3WL	1.336025	.0456932	599
ST3WW	.632582	.0345582	599
ST4W	1.141922	.0471347	599
ST4WL	1.313554	.0526350	599
ST4WW	.674502	.0363062	599
ST6W	1.162707	.0381968	599
ST6WW	.769023	.0294052	599
AN	2.717241	.0554697	599
PB	2.781431	.0848640	599
TBW	.671943	.0301048	599
TBL	2.083990	.0496859	599
FML	1.684505	.0402001	599
BSTL	1.508590	.0381535	599
BSTW	.629732	.0192822	599

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measurement of Sampling Adequacy.		.863
Bartlett's Test of Sphericity	Approx. Chi-Square	11980.183
	df	276
	Sig.	.000

Component Matrix (a)

			Component		
		2	3	4	5
FWL	. 599	647	. 350	-. 241	. 055
FWW	. 611	653	. 345	-. 228	. 051
RFWL	. 537	.669	. 392	-. 227	. 112
HWL	. 769	. 141	. 007	. 125	-. 141
HWW	. 749	-. 053	. 037	-. 107	-. 218
TG3L	. 161	-. 600	14. 752	-. 112	-. 032
TG3W	. 026	- $\quad .593$	-1018 -780	. 114	. 003
TG4L	. 780	. 025	-. 173	. 049	-. 186
TG4W	. 643	-. 029	-. 099	. 155	-. 192
ST3W	. 730	- -.134	-. 070	-. 058	-. 001
ST3WL	. 624	(1-165	-. 250	-. 302	-. 088
ST3WW	(1) . 583	-. 272	-. 110	-. 267	-. 104
ST4W	- . 662	-. 195	-. 136	-. 074	. 443
ST4WL	- . 563	-. 223	-. 248	-. 303	. 374
ST4WW	. 632	-. 247	-. 213	-. 254	. 368
ST6W	- 713	-. 088	. 010	. 134	-. 020
ST6WW	. 658	-. 128	-. 106	-. 213	-. 097
AN	$\bigcirc 607$	- 0.193	- 1.219	- $\quad .141$	-. 064
PB 6	6.524	-. 108	. 079	. 205	-. 110
TBW	. 014	. 133	. 208	. 682	. 368
TBL ${ }^{\text {O/n }}$	\bigcirc	$\approx-.061$	0044	$\bigcirc 0.471$	$\bigcirc 166$
FML	6.739	d 6.001	. 002	d. 411	6.097
BSTL	. 689	-. 028	-. 074	. 266	-. 031
BSTW	. 415	. 037	-. 060	. 178	-. 462

Extraction Method: Principal Component Analysis. a 5 components extracted.

Rotated Component Matrix(a)

	Component				
	1	2	3	4	5
FWL	. 403	. 893	-. 039	-. 006	. 001
FWW	. 416	. 893	-. 049	. 003	-. 006
RFWL	. 330	. 918	-. 020	. 047	. 022
HWL	. 757	. 234	-. 079	. 057	-. 100
HWW	- . 743	. 162	. 086	-. 194	-. 039
TG3L	- . 160	-. 034	. 968	-. 017	. 015
TG3W	. 028	. 055	-. 984	-. 003	-. 008
TG4L	. 799	. 082	-. 151	-. 086	-. 042
TG4W	. 684	. 007	-. 074	. 010	-. 111
ST3W	. 721	. 056	. 035	-. 084	. 166
ST3WL	. 620	7- $\quad .009$	-. 063	-. 375	. 219
ST3WW	. 591	--. 048	. 106	-. 336	. 180
ST4W	. 602	. 026	013	. 092	. 570
ST4WL	. 500	-101. 0.006	-. 033	-. 162	. 618
ST4WW	. 575	1.0. -.008	. 004	-. 119	. 601
ST6W	. 720	2. 059	. 049	. 092	. 044
ST6WW	. 648	. 066	. 023	-. 267	. 141
AN	. 621	. 044	. 278	. 111	-. 031
PB	. 558	2) $\quad .004$. 106	. 122	-. 096
TBW	. 013	. 025	. 004	. 812	-. 027
TBL	. 690	-. 002	. 016	. 474	. 051
FML	. 754	. 052	-. 042	. 389	. 020
BSTL	. 717	. 014	-. 070	. 185	-. 017
BSTW	. 495	-. 022	-. 084	-. 082	-. 404

Extraction Method: Principal Component Analysis. Rotation Method: Quartimax with Kaiser Normalization. a Rotation converged in 5 iterations.

Total Variance Explained

APPENDIX IV

Factor analysis 2

Descriptive Statistics

	Mean	Std. Deviation	Analysis N
FWL	6.182268	.2196320	599
FWW	3.087170	.1151586	599
RFWL	2.451635	.0902682	599
HWL	4.430398	.1288661	599
HWW	1.188251	.0458485	599
TG3L	5.193853	.7380554	599
TG3W	1.442242	.7429741	599
TG4L	5.064228	.1537990	599
TG4W	1.245167	.0415503	599
ST3W	1.144829	.0389769	599
ST3WL	1.336025	.0456932	599
ST4W	1.141922	.0471347	599
ST4WL	1.313554	.0526350	599
ST6W	1.162707	.0381968	599
ST6WW	.769023	.0294052	599
AN	2.717241	.0554697	599
TBW	.671943	.0301048	599
TBL	2.083990	.0496859	599
FML	1.684505	.0402001	599
BSTL	1.508590	.0381535	599

สถาบนวิทยบริการ

จฬาลงกรณ์มหาวิทยาลัย

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measurement of Sampling Adequacy.		.847
Bartlett's Test of Sphericity	Approx. Chi-Square	10755.129
	df	190
	Sig.	.000

Component Matrix (a)

		Component		
		2	3	4
FWL	. 634	$7 \quad .592$. 441	-. 107
FWW	. 644	-. 600	. 435	-. 096
RFWL	. 577	.611	. 484	-. 072
HWL	. 783	Wind. 081	-. 034	. 070
HWW	. 749	-<.093	. 015	-. 185
TG3L	. 146	-21-. 686	. 689	-. 065
TG3W	. 039	. 673	-. 724	. 051
TG4L	. 784	-. 008	-. 204	-. 029
TG4W	. 643	- 5	-. 145	. 123
ST3W	. 723	-. 146	-. 103	- -.088
ST3WL	. 606	-. 138	-. 229	-. 389
ST4W	. 652	-. 198	-. 151	-. 087
ST4WL	. 541	-. 189	-. 213	-. 350
ST6W	. 720	-. 146	-. 051	. 103
ST6WW	-. 656	-. 143	-. 107	-. 281
AN	. 608	$\square 0.262$.144	$\bigcirc .118$
TBW	. 029	. 055	. 113	. 779
TBL	. 680	-. 145	-. 062	. 471
FML	.748	-. 076	-. 088	. 402
BSTL	. 687	-. 080	-. 135	¢. 212

Extraction Method: Principal Component Analysis. a 4 components extracted.

Rotated Component Matrix (a)

	Component			
	1	2		3
FWL	.398	.895	-.035	-.002
FWW	.407	.898	-.045	.008
RFWL	.331	.914	-.018	.039
HWL	.742	.251	-.071	.082
HWW	.730	.178	.096	-.174
TG3L	.146	-.030	.974	-.009
TG3W	.042	.053	-.988	-.007
TG4L	.793	.096	-.134	-.042
TG4W	.660	.032	-.066	.110
ST3W	.742	.047	.034	-.097
ST3WL	.645	-.018	-.049	-.412
ST4W	.694	-.040	.031	-.107
ST4WL	.592	-.069	-.008	-.376
ST6W	.732	.053	.062	.099
ST6WW	.674	.053	.041	-.289
AN	.612	.054	.281	.131
TBW	.011	.017	.000	.790
TBL	.704	-.012	.028	.461
FML	.758	.051	-.031	.395
BSTL	.707	.026	-.053	.199

Extraction Method: Principal Component Analysis. Rotation Method: Quartimax with Kaiser Normalization. a Rotation converged in 4 iterations.

สถาบนวิทยบริการ

Total Variance Explained

Component	Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
	Total	\% of Variance	Cumulative \%	Total	\% of Variance	Cumulative \%	Total	\% of Variance	Cumulative \%
1	7.798	38.988	38.988	7.798	38.988	38.988	7.337	36.684	36.684
2	2.290	11.449	50.437	2.290	11.449	50.437	2.570	12.852	49.537
3	1.890	9.452	59.889	1.890	9.452	59.889	2.059	10.297	59.833
4	1.516	7.582	67.470	1.516	7.582	67.470	1.527	7.637	67.470
5	. 905	4.523	71.993						
6	. 849	4.246	76.238						
7	. 737	3.687	79.926						
8	. 704	3.518	83.443		N				
9	. 591	2.953	86.397						
10	. 545	2.725	89.121						
11	. 527	2.637	91.758						
12	. 462	2.312	94.070						
13	. 298	1.492	95.562						
14	. 244	1.222	96.784						
15	. 214	1.069	97.853						
16	. 186	. 931	98.785						
17	. 145	. 725	99.510						
18	. 058	. 290	99.800						
19	. 029	. 147	99.946						
20	. 011	. 054	100.000	Q1	ล	-			

Extraction Method: Principal Component Analysis.

APPENDIX V

Mean of factor scores

colony no.	REGR factor score 1 for analysis 1	REGR factor score 2 for analysis	REGR factor score 3 for analysis 1	REGR factor score 4 for analysis 1
n01	. 7901486	. 4912336	. 3147471	-. 3612460
n03	. 9924785	-1.1113372	. 2050679	. 0113150
n04	. 8668384	. 2499932	. 2192735	-. 5262388
n05	1.3463805	. 3765633	. 2684753	-. 1910327
n06	1.4437190	. 6563601	. 2182196	1.8474238
s01	-3.3270039	- -. 4407604	. 1615301	-. 2250985
s03	-1.3227059	-. 5362242	. 0635068	. 5424396
s04	-. 7233123	. 5027513	. 1780801	1.0774555
s05	. 1113983	-. 9823683	. 0966849	. 5142701
s06	-. 5792349	. 2047515	. 1499753	1.0978312
s07	-. 9502184	-. 0092295	. 2769424	1.3202157
se01	. 5678868	\% . 1417838	1661173	-. 0678915
se02	-. 2028193	--2891698	. 1431509	-. 2336990
se03	. 2695015	-14-. 1751006	. 1358193	. 1854657
se04	. 1301114	-1. 1436962	. 1835827	-. 3293594
se05	. 1469230	1-65-1465889	. 2010736	-. 3137510
se06	. 2902073	- 1605654	. 1491391	. 2073576
se07	${ }^{-.} 9074163$	-. 0994619	. 0285666	. 0385225
se08	. 1788704	. 1002374	.1319490	-. 6445474
sw01	. 1247908	-. 1132173	. 2080487	-1.2014428
sw02	. 3192301	. 3192024	. 1835135	-. 6552399
sw04	. 5509125	-. 2068321	. 2163770	-. 5074589
sw05	. 1614656	ص. 1439118	ص. 2196292	-. 6416267
sw06	\%.0461517	- 2751908	. 3210686	-. 0477211
sw07	-. 4286385	-. 2686204	. 1294246	-. 9644454
sw08	. 9439244	-. 1858662	$1570787 .$	- -.0439238
sw11 9	6. 0662657	d. 6.1358842	. 2030805	6-.6938303
tn02 9	-. 1206113	. 3758850	. 2893016	. 6030118
tn04	-. 5622607	-. 2065295	. 2181750	-. 3967579
tn05	-. 2070216	1.1177796	. 2137142	. 5672406

APPENDIX VI

A. Reagent preparation

Agarose gel electrophoresis

1) $1 \%(w / v)$ agarose gel

- agarose	0.3	g
$-1 \times$ TBE buffer	30	ml

2) 1x Tris Boric EDTA buffer (TBE buffer), pH 8.0

- Tris aminomethane (50 mM)

108 g

- Boric acid (50 mM)
- EDTA (0.65 mM)
50.4 g
7.44 g

Adjust pH to be 8.0 and quantitate volume to be $1,000 \mathrm{ml}$.

Polyacrylamide gel electrophoresis (PAGE)

1) $8 \%(\mathrm{v} / \mathrm{v})$ polyacrylamide gel

- 30\% acrylamide solution (29.2\% Bio-rad ${ }^{\circledR}$ acrylamide monomer: 0.8% bis-
acrylamide)
$-10 x$ TBE buffer (1x)
-10% APS $\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}\right](3 \%)$
4.8 ml
1.2 ml
$240 \quad \mu \mathrm{l}$ $15 \mu \mathrm{l}$ 17.7 ml

2) $5 x$ loading dye

- 1 M Tris-Hcl, pH $6.8(0.312 \mathrm{M})$	0.6 ml
- Glycerol $(50 \% \mathrm{v} / \mathrm{v})$	5.0 ml

$-10 \%(w / v)$ SDS	2.0 ml
- 2-Mercaptoethanol	0.5 ml
-1% Bromophenol blue	0.1 g
$-\mathrm{d}-\mathrm{H}_{2} \mathrm{O}$	0.9 ml

One part of sample buffer was added to four parts of sample. The mixture was heated for 5 min in boiling water before loading to the gel.
3) Silver staining

1. Fix a gel in $40 \%(\mathrm{v} / \mathrm{v})$ methanol and $10 \%(\mathrm{v} / \mathrm{v})$ acetic acid for 12 min or until loading dye is disappeared.
2. Rinse a gel with $\mathrm{d}-\mathrm{H}_{2} \mathrm{O}$.
3. Soak a gel 1 M nitric acid for 5 min and discard solution.
4. Soak a gel in $\mathrm{d}-\mathrm{H}_{2} \mathrm{O}$ for 4 min and discard solution.
5. Soak a gel in 0.2% (w/v) fresh prepared silver nitrate solution for 16 min .
6. Rinse a gel shortly with $\mathrm{d}-\mathrm{H}_{2} \mathrm{O}$.
7. Soak a gel in developer solution [3\% (w/v) Sodium carbonate and 40\%(v/v) Formaldehyde] until products are visible. Then, discard the solution.
8. Soak a gel in stop solution (0.1 M citric acid or $20 \%(\mathrm{v} / \mathrm{v}$) acetic acid for 3 min . Then, discard solution.

9. Wrap a gel with cellophane, air dry overnight, and kept at RT.

BIOGRAPHY

Mr. Atsalek Rattanawannee was born on December 29, 1979 in Kalasin province, Thailand. He finished his secondary school level from Baukhoaw School in 1998, Kalasin province. After that, he got a Bachelor's Degree in Biology from Department of Biology, Faculty of Science, Chulalongkorn University in 2001. At present, he is a graduate candidate in Master's Degree in Zoology, Department of Biology, Faculty of Science, Chulalongkorn University.

Presentation:

Klakasikorn, A., Chanchao, C., and Wongsiri, S. 2005. Biodiversity of stingless bee (Trigona spp.) and dwarf honeybee (Apis andreniformis) in Thailand. Abstract. The $10^{\text {th }}$ Biological Sciences Graduate Congress, National University of Singapore, Singapore. 80.
Klakasikorn, A., Chanchao, C., and Wongsiri, S. 2006. Genetic variation of small dwarf honeybee (Apis andreniformis Smith, 1858) in Thailand and Tenom, Malaysia by using PCR-RFLP technique. Abstract. The KMITL International Conference on Science and Applied Science 2006, Bangkok, Thailand. 30.

Klakasikorn, A., Chanchao, C., and Wongsiri, S. 2006. Genetic variation of small dwarf honeybee (Apis andreniformis Smith, 1858) in Thailand and Tenom, Malaysia by using PCR-RFLP technique. Abstract. The $14^{\text {th }}$ Faculty of Science Congress, Chulalongkorn University, Bangkok, Thailand. 120.

Rattanawannee, A., Chanchao, C., and Wongsiri, S. 2006. Genetic variation of small dwarf honeybee Apis andreniformis in Thailand and Tenom, Malaysia revealed by polymorphism of Cytochrome b. Abstract. The Beekeeping Workshop: Bee Biology, Bee Products and Their Application, 2006, Mahasarakham University, Mahasarakham, Thailand. 6.

Rattanawannee, A., Chanchao, C., and Wongsiri, S. 2006. Genetic variation of Apis andreniformis in Thailand. Abstract. The XV Congress IUSSI Proceedings 2006, Washington, DC, USA. 174.
จันทร์เพ็ญ จันทร์เจ้า และอัศเลข รัตนวรรณี. 2006. มารู้จักผึ้งมิ้มเล็กกันเถอะ. จุลสารชมรมคณะปฏิบัติงาน วิทยากร โครงการอนุรักษ์พันธุกรรมพืชอันเนื่องมาจากพระราชดำริ สมเด็จพระเทพรัตนราชสุดาฯ สยามบรมราชกุมารี (อพ. สธ.) ปีที่ 2 . ฉบับที่ $1 / 2549$. ฉบับออนไลน์.

