THE EFFECT OF SURFACE TREATMENT ON SHEAR BOND STRENGTH OF RESIN-MATRIX CERAMICS AND DUAL-CURED RESIN CEMENT

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Prosthodontics Department of Prosthodontics FACULTY OF DENTISTRY Chulalongkorn University Academic Year 2019 Copyright of Chulalongkorn University

ผลของการปรับสภาพพื้นผิวต่อความแข็งแรงเฉือนของเรซินเมทริกซ์เซรามิกและเรซินซีเมนต์ ชนิดบ่มตัวสองแบบ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาทันตกรรมประดิษฐ์ ภาควิชาทันตกรรมประดิษฐ์ คณะทันตแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2562 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	THE EFFECT OF SURFACE TREATMENT ON SHEAR BOND
	STRENGTH OF RESIN-MATRIX CERAMICS AND DUAL-
	CURED RESIN CEMENT
Ву	Mr. Nuttapong Bunchuansakul
Field of Study	Prosthodontics
Thesis Advisor	Associate Professor Doctor NIYOM THAMRONGANANSKUL

Accepted by the FACULTY OF DENTISTRY, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master of Science

Dean of the FACULTY OF DENTISTRY (Assistant Professor Doctor SUCHIT POOLTHONG)

THESIS COMMITTEE

(Doctor Pornpen Siridamrong)

ณัฐพงศ์ บุญชวนสกุล : ผลของการปรับสภาพพื้นผิวต่อความแข็งแรงเฉือนของเรซิ นเมทริกซ์เซรามิกและเรซินซีเมนต์ ชนิดบ่มตัวสองแบบ. (THE EFFECT OF SURFACE TREATMENT ON SHEAR BOND STRENGTH OF RESIN– MATRIX CERAMICS AND DUAL–CURED RESIN CEMENT) อ.ที่ปรึกษาหลัก : รศ.ทพ. ดร.นิยม ธำรงค์อนันต์สกุล

้*วัตถุประสงค์*: การศึกษานี้มีวัตถุประสงค์เพื่อประเมินผลของการใช้สารปรับสภาพ พื้นผิวด้วยเททระไฮโดรฟูราน ร่วมกับไซเลน และสารยึดติด ต่อค่าแรงยึดของวัสดุเรซินเมท ริกซ์เซรามิกและเรซินซีเมนต์ *วิธีดำเนินการวิจัย* :นำวัสดุเรซินเมทริกซ์เซรามิกได้แก่ Enamic, Cerasmart, Shofu block HC มาตัดเป็นสี่เหลี่ยมจัตุรัสขนาด 6x6x2 มิลลิเมตร³ และจัดเข้า กลุ่มทั้ง 10 กลุ่มแบบสุ่มโดยแบ่งตามการปรับสภาพพื้นผิว ดังนี้ กลุ่มควบคุม(C), สารยึดติด (Ad),เททระไฮโดรฟูราน 1นาที (T1),ไซเลน/สารยึดติด (Si/Ad), เททระไฮโดรฟูราน1นาที/สาร ยึดติด(T1/Ad),เททระไฮโดรฟูราน1นาที/ไซเลน/สารยึดติด(T1/Si/Ad),เททระไฮโดรฟูราน2นาที/ ้ไซเลน/สารยึดติด(T2/Si/Ad),เททระไฮโดรฟูราน3นาที/ไซเลน/สารยึดติด(T3/Si/Ad),เททระ ้ไฮโดรฟูราน4นาที/ไซเลน/สารยึดติด(T4/Si/Ad),เททระไฮโดรฟูราน5นาที/ไซเลน/สารยึดติด (T5/Si/Ad) จากนั้นนำชิ้นงานไปแช่น้ำที่ 37องศาเซลเซียส เป็นเวลา 24 ชั่วโมง จากนั้นนำไป วัดค่าแรงยึดเฉือนแล้วน้ำผลของค่าแรงยึดของการทดสอบในแต่ละกลุ่มมาหาค่าเฉลี่ยและ ้ส่วนเบี่ยงเบนมาตรฐาน และทำการวิเคราะห์สถิติด้วยการวิเคราะห์ความแปรปรวนแบบสอง ทาง (Two-way ANOVA) ร่วมกับทดสอบความแตกต่างระหว่างค่าเฉลี่ยรายคู่ ของ Bonferroniที่ระดับความเชื่อมั่นร้อยละ 95 *ผลการศึกษา*:พบว่าในกลุ่มของเททระไฮโดรฟูราน 3นาที/ไซเลน/สารยึดติด(T3/Si/Ad) ให้ค่าแรงยึดเฉลี่ยสูงที่สุด(25.37 ± 4.73 MPa)อย่างมี ้นัยสำคัญเกือบทุกกลุ่ม ยกเว้นกลุ่มT4/Si/AdและT5/Si/Ad โดยที่ Enamic ให้ค่าแรงยึดเฉือน มากที่สุด 28.12 ± 5.45 MPa CerasmartและShofu block HC ตามลำดับ ความล้มเหลวแบบ ผสมพบเป็นส่วนใหญ่ในกลุ่มปรับผิวด้วยเททระไฮโดรฟูราน ร่วมกับไซเลน และสารยึดติด *สรุปผลการศึกษา*:การใช้สารปรับสภาพพื้นผิวด้วยเททระไฮโดรฟูราน ร่วมกับไซเลน และ สารยึดติด มีผลต่อค่าแรงยึดของวัสดุเรซินเมทริกซ์เซรามิกและเรซินซีเมนต์ สาขาวิชา ทันตกรรมประดิษฐ์ ลายมือชื่อนิสิต

2562	ลายมือชื่อ อ.ที่ปรึกษาหลัก

ป

การศึกษา

6175815332 : MAJOR PROSTHODONTICS

KEYWORD: Resin matrix ceramics, Tetrahydrofuran, Shear bond strength
Nuttapong Bunchuansakul : THE EFFECT OF SURFACE TREATMENT ON SHEAR
BOND STRENGTH OF RESIN–MATRIX CERAMICS AND DUAL–CURED RESIN
CEMENT. Advisor: Assoc. Prof. Dr. NIYOM THAMRONGANANSKUL

Objective: The purpose of this study was to evaluate the effect of Tetrahydrofuran (THF) on shear bond strength (SBS) between resin matrix ceramics (RMC) materials and resin cements. Methods: RMC materials (Enamic, Cerasmart, Shofu block HC) were cut into square piece of approximately $6 \times 6 \times 2$ mm³ and randomly divided into 10 groups following the surface treatment:no treatment(C),adhesive agent(Ad),THF1min(T1),silane/adhesive(Si/Ad),THF1min/adhesive(T1/Ad),THF1min/silane/ad hesive(T1/Si/Ad),THF2mins/silane/adhesive(T2/Si/Ad),THF3mins/silane/adhesive(T3/Si/Ad), THF4mins/silane/adhesive(T4/Si/Ad),THF5mins/silane/adhesive(T5/Si/Ad).Specimens were cemented to composite resin rod with resin cement and kept them in water at 37°C for 24 hours. The SBS measurements were tested with universal testing machine. Failure modes were examined by stereomicroscope. The SBS values were analyzed with twoway ANOVA and Bonferroni's post hoc tests ($\alpha = 0.05$). Results: The highest mean SBS for all RMC materials was found in group T3/Si/Ad (25.37 ± 4.73 MPa) significantly greater than almost all groups (p < 0.05), except for T4/Si/Ad and T5/Si/Ad.In addition, Enamic showed the highest SBS value (28.12 ± 5.45 MPa) followed by Cerasmart and Shofu block HC, respectively. Mixed failure was the most common found in THF with silane and adhesive agent groups. Conclusion: Tetrahydrofuran with silane and adhesive agent affected to bond strength of RMC materials and resin cements.

Field of Study:	Prosthodontics	Student's Signature
Academic Year:	2019	Advisor's Signature

ACKNOWLEDGEMENTS

This study was financially supported by a grant from Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.

Nuttapong Bunchuansakul

TABLE OF CONTENTS

Page
ABSTRACT (THAI)iii
ABSTRACT (ENGLISH) iv
ACKNOWLEDGEMENTSv
TABLE OF CONTENTS
Lists of tables
Lists of figures ix
Chapter Introduction
Background and rationale1
Research Objective2
Research Question
Research Hypothesis
Conceptual framework
Proposed Benefits
CHULALONGKORN UNIVERSITY
Research design
Location of the Experimental Database
Chapter II Literature Review4
2.1 Resin Matrix ceramics4
2.2 Tetrahydrofuran7
2.3 Shear Bond Strength8
Chapter III Research Methodology9

3.1 Materials and equipments
3.2 Experimental procedures11
Part I RMC Specimen preparation1
Part II Composite resin rods17
Part III Cementation
Part IV Shear bond strength19
Part V SEM2
3.3 Statistics analysis
Chapter IV Results
4.1 Shear Bond Strength
4.2 Failure Mode
4.3 SEM Analysis
Chapter V Discussion
5.1 Discussion25
5.2 Limitation
จุฬาลงกรณ์มหาวิทยาลัย 5.3 Conclusion
CHULALONGKORN UNIVERSITY REFERENCES
APPENDIX
VITA72

Lists of tables

Pag	e
Table 1 shows the classification of resin-matrix ceramic materials, manufacturers and	
their composition5	
Table 2 shows physical properties of Tetrahydrofuran (THF)7	
Table 3 shows materials were used in this study, manufacturers and composition,	
manufacturers, their composition and lot number	
Table 4 shows group, code and surface treatment details	
Table 5 shows mean shear bond strength values (MPa \pm SD) and number (%) of	
specimens according to failure mode29	
Table 6 shows mean of shear bond strength value classified by brand	

Lists of figures

Page
Figure 1 shows the steps of RMC specimen preparation11
Figure 2 shows schematic diagram of experimental procedure
Figure 3 shows the steps of adhesive agent applying
Figure 4 shows the steps of Tetrahydrofuran applying
Figure 5 shows the steps of silane applying16
Figure 6 shows composite resin rod preparation 17
Figure 7 shows the steps of specimen cementation
Figure 8 shows the universal testing machine with notched-edge shear bond strength
testing
Figure 9 shows the graphs of mean shear bond strength values of control and
experimental groups
Figure 10 shows the percentages of failure mode of control and experimental groups.
Figure 11 shows the SEM image at 2000x magnification of control group (Enamic)32
Figure 12 shows the SEM image at 2000x magnification of control group (Cerasmart).
Figure 13 shows the SEM image at 2000x magnification of control group (Shofu Block
HC)
Figure 14 shows the SEM image at 2000x magnification of THF 1-minute group
(Enamic)
Figure 15 shows the SEM image at 2000x magnification of THF 1-minute group
(Cerasmart)

Figure 16 shows the SEM image at 2000x magnification of THF 1-minute group (Shofu
Block HC)
Figure 17 (A) shows the SEM image at 2000x magnification of THF 3-minute group
(Enamic) presented more irregularities and moderate white spot, (B) shows the EDX
image of silicon element (yellow circle)
Figure 18 (A) shows the SEM image at 2000x magnification of THF 3-minute group
(Cerasmart) presented more irregularities and moderate white spot, (B) shows the
EDX image of silicon element (yellow circle)
Figure 19 (A) shows the SEM image at 2000x magnification of THF 3-minute group
(Shofu Block HC) presented more irregularities and moderate white spot, (B) shows
the EDX image of silicon element (yellow circle)
Figure 20 shows the SEM image at 2000x magnification of THF 5-minute group
(Enamic)
Figure 21 shows SEM image at 2000x magnification of THF 5-minute group
(Cerasmart)
Figure 22 shows the SEM image at 2000x magnification of THF 5-minute group (Shofu

CHULALONGKORN UNIVERSITY

Chapter I Introduction

Background and rationale

One of the main purposes of restorative dentistry is to create functional and esthetic restorations. Ceramics are extensively used as indirect restorations due to their esthetic appearance, good fracture resistance and low wear rate.(1, 2) However, ceramics have limitations on success rates because of their toughness, brittleness, and potential to wear opposing teeth.(3, 4) Nowadays, not only esthetic expectations, but also chairside fabrication of restorations are necessary. As the results, computer-aided design/computer-aided manufacturing (CAD/CAM) technology is wildly used and different types of machinable materials such as ceramics, acrylic resins, and composite resins developed to complete the requirements.(3, 5, 6)Resin matrix ceramics (RMC) have been recently developed for CAD/CAM technology. RMC combines the benefits of composite resins, improved flexural properties and low abrasiveness, as well as color stability and durability of ceramics.(7, 8) Available commercial products of resin matrix ceramic materials include a polymer-infiltrated ceramic network (PICN) material (VITA ENAMIC), nanohybrid composite resin materials such as resin nanoceramic (Shofu Block HC, Lava Ultimate) and a nanoparticle-filled resin (Cerasmart). In addition, RMC have the ability to distribute stress due to modulus of elasticity near to dentine and the capacity of milling-adjusting which is more convenient and safes compared to glass matrix or polycrystalline ceramics.(3, 9.10)

The bond strength between cement and resin or ceramic CAD/CAM materials has a major role in providing the improvement of fracture resistance and keeping the marginal integrity of the restorations.(11, 12) To create a sufficient bond, mechanical or chemical pre-treatments are essential.(13, 14)Depending on the composition of the material, various surface treatment techniques such as silanization, silica coating (Co-jet), etching with hydrofluoric acid (HF) and sandblasting could be applied.(15-17) Many studies attempted to improve the bond strength of RMC materials to different resin cements by using different surface treatments. However, some methods of surface treatments are still inconclusive.(18-22)Tetrahydrofuran (THF) is an organic

solvent and it could be used as solvent in dental adhesive systems to form bond strength stability.(23) THF could also be used with silane for improving the shear bond strength of glass fiber post.(24) There is still not enough information on THF to be used as surface treatment for enhancing the bond strength between resin cement and RMC. Therefore, the purpose of this study was to evaluate the effect of THF on bond strength between RMC and dual cure resin cements. The null hypothesis is that surface treatment by using THF with silane and adhesive agent would not affect the shear bond strength of RMC to dual cure resin cement.

Research Objective

To evaluate the effect of THF on bond strength between RMC and dual cure resin cements.

Research Question

Would surface treatment by THF with silane and adhesive on Resin matrix ceramics using dual cure resin cement have an effect to shear bond strength?

Research Hypothesis

H 0: There is no difference of shear bond strength among Resin matrix ceramics with dual cure resin cement in surface treatment by using THF with silane and adhesive agent

H 1: There is difference of shear bond strength among Resin matrix ceramics with dual cure resin cement in surface treatment by using THF with silane and adhesive agent

Conceptual framework

To provide an appropriate surface treatment method for enhancing bond strength among Resin matrix ceramics with dual cure resin cement and better result in clinical performance.

Keywords

Resin matrix ceramics, Tetrahydrofuran, shear bond strength

Research design

Laboratory and experimental research

Location of the Experimental Database

Dental Material R&D Center, Faculty of Dentistry, Chulalongkorn University

Chapter II Literature Review

2.1 Resin Matrix ceramics

Resin-matrix ceramic materials can be divided into several groups from compositions such as PICN (polymer-infiltrated ceramic network e.g. Enamic, Vita) which have a dual network of ceramic and a polymer, zirconia-silica ceramic in a resin interpenetrating matrix (e.g. Shofu Block HC) that contain silica powder and zirconium silicate in ceramic contents and resin nanoceramic (e.g. Lava Ultimate).(9) However, the materials can be classified into 2 subclasses which are PICN materials and dispersed fillers which included Lava Ultimate, Shofu Block HC and Cerasmart into the same group is shown in Table 1.(25)

Material	Туре	Manufacturer	Composition
Vita Enamic	Polymer infiltrated Ceramic Network	Vita Zahnfabrik, , Germany	86 wt% feldspar ceramic, 14 wt% polymer,UDMA,TEGDMA
Cerasmart	Dispersed Fillers	GC Corp., Tokyo, Japan	Nanoparticle-filled resin containing 71 wt% silica and barium glass filler,UDMA
Shofu Block HC	Dispersed Fillers	Shofu Inc., Kyoto, Japan	Filler composition: 61%, incl. zirconium silicate, silicon dioxide, UDMA, TEGDMA
Lava Ultimate	Dispersed Fillers	3M ESPE เรณ์มหาวิทยาล IGKORN UNIVER	UDMA Silica (20 nm) +zirconia (4- 11 nm) + zirconia-silica clusters (0.6-10 µm) (79 wt%)

Table 1 shows the classification of resin-matrix ceramic materials, manufacturers and their composition.

Many studies have researched the bond strength between resin-matrix ceramic materials and different resin cements by different surface treatment. However, there is some method of surface treatments still have disagreement.

Elsaka et al.2014 found that using either HF acid etching or sandblasting with a silane for Enamic can increased bond strength significantly but Lava Ultimate, there was no different significantly value in any type of surface treatment(20). On the other hand, Peumans et al. revealed that both Lava Ultimate and Enamic were improved bond strength by pre-treatments with HF acid and silane. HF acid treatment in Enamic may cause by partial dissolved the polymer and glassy phases which possibly increased micromechanical retention surface then silane application can increase the surface wetting of bonding area consequent to better bond strength.(21) However, Cekic-Nagas et al. showed that treated with 10% HF acid gel did not have effect on bond strength value between resin cement and resin-matrix material which were Enamic, Lava Ultimate and Cerasmart.(18)

According to Frankenberger et al.(12) found that only sandblasting increased highest bond strength for Lava Ultimate whether use silane or not and HF had deleterious to strength value but for Enamic when using hydrofluoric acid etching followed by silane treatment showed the best strength value. Sandblasting is the method expected to increase bond strength by improving micromechanical interlocking, and increasing wettability and surface area. (16, 20) On the contrary, sandblasting to ceramics, does not seem to proper process for surface treatment. Because it may create microcracks in the ceramic surface and lead to premature failures also it effects internal and marginal adaptation.(16, 20, 26)

From the study of Yoshihara et al. revealed that sandblasting with silanization can improved the bond strength of the materials, but sandblasting created surface damage of Shofu Block HC and silane treatment cannot improve the bond strength for these material(22). Reymus M et al. (2019) found that using sandblasting and then treated surface materials with resin primer which have MMA produced more bond strength than use of silane primer in Cerasmart and Shofu Block HC.(27)

In actually, many studies try to improve the bond strength by different surface treatment but there is still have argument in some method of surface treatments for the resin-matrix ceramic materials. This aim of this study is finding that THF with bonding agent for use as surface treatment for enhancing the bond strength between Resin matrix ceramics and dual cure resin (RelyX U200).

2.2 Tetrahydrofuran

Tetrahydrofuran (THF) $(CH_2)_3CH_2O$ is an organic compound that is classified as heterocyclic compound, specifically a cyclic ether. It is a clear colorless liquid with an ethereal odor and low viscosity. It was use as solvent for many polymers such as polyvinyl chloride, unvulcanized rubber, vinyls, polymer coating, cellophane, protective coatings(30).

According to Fontes et al. (2009), used THF as solvent by mixing with HEMA and Phosphate for primer in etch-and-rinse system. The study revealed that after 6month aging acetone, THF, and THF/water-based primer can maintained bond strength on dentin (23). Further study from Fontes et al. (2013), found that the THF, acetone, or THF/water primer showed high and stable bond strength after 1-year aging. In addition, THF-based primer without water is the only group that having similar bond value between the times 24 h and 1 year. For toxicity, THF showed an intermediate cytotoxicity same as HEMA(28). In addition there is study showed that THF can be used as cleaning agent to enhance bond strength to glass-fiber post when compare to control.(24)

Molecular Weight	72.11 g/mol
Density	0.89 g/cm3 (20 °C)
Boiling point	65 - 66 °C (1013 hPa)
Melting Point	-108.5 ℃
pH value	7 - 8 (200 g/l, H₂O, 20 ℃)
Vapor pressure	173 hPa (20 °C)
LD50 Rat oral	2.3 mL/kg

Table 2 shows physical properties of Tetrahydrofuran (THF)

2.3 Shear Bond Strength

According to Phillips' Science of Dental Materials(29), the shear strength is the maximum stress between interfaces of two materials can withstand before failure by sliding or applied force parallel to interface. The shear strength reports value in MPa can calculated by the failure load (in Newtons) divided by the total bonded area (in mm²). From the following formula:

Chapter III Research Methodology

3.1 Materials and equipments

Equipments

1. Universal testing machine (SHIMADZU, EZ-S 500N model, Japan)

2.Additional silicone (putty type) Elite HD+ putty soft Zhermack, Italy

3.Glass slab

4.Paper hole puncher

5.Vernier caliper

6. Microbrush (Citisen Micro Applicator, Huanghua Promisee Dental, Hebei, China)

7.Gloves

8. Tissue paper

9.Cement spatula

10.Epoxy resin

11.Silicon carbide paper 300,600 grit

12. Polishing Machine (Minitech 233, Presi, Le Locle, Switzerland)

13.Low speed saw (Isomet 1000: Buehler, USA)

14. PVC mold ½ "

15.Adhesive tape(Scotch blue Painter's tape, 3M, St. Paul, MN, USA)

16.Light curing unit (Elipar Freelight 2 LED curing light, 3M ESPE, St. Paul, MN, USA)

17.Ultrasonic bath (VGT-1990, QTD, China)

Chulalongkorn University

Table 3 shows materials were used in this study, manufacturers and composition, manufacturers, their composition and lot number.

Material	Composition	Manufacturer	Lot No.
Vita Enamic (VE)	86 wt% feldspar ceramic,	Vita Zahnfabrik H.	071601
	14 wt% polymer,UDMA,TEGDMA	Rauter, Bad	
		Sackingen,	
		Germany	
Cerasmart (CS)	Nanoparticle-filled resin containing 71	GC Corp., Tokyo,	1706151
	<u>wt%</u> silica and barium glass filler,UDMA	Japan	
Shofu Block HC (HC)	Filler composition: 61%, incl. zirconium	Shofu Inc., Kyoto,	77671
	silicate, silicon dioxide, UDMA, TEGDMA	Japan	
Filtok 7250	Bis-GMA, UDMA, TEGDMA, and Bis-EMA	3M ESPE, St. Paul,	42424
FILLER 2000	resins and filler	MN, USA	
One Coat Bond SL	HEMA,UDMA,GDMA amorphous silicic	Coltene/Whaleden	179850
		t GmbH, Langenau,	
		Germany	
Monobond N	Alcohol solution of silane methacrylate,	Ivoclar Vivadent,	43243
primer	phosphoric acid methacrylate and	Schaan,	
	sulphide methacrylate	Liechtenstein	
Tetrahydrofuran	Tetrahydrofuran 99.5 %	Loba Chemie	LM04671
	GHULALONGKORN UNIVERSITY	Pvt Ltd.,	706
		Mumbai,	
		Maharashtra,	
		India	
RelyX U200	Multifunctional phosphoric acid	3M Deutschland	4819681
	methacrylates, dimethacrylates, acetate,	GmbH, Neuss,	
	initiator/stabilizer, powdered glass, silica,	Germany	
	substituted pyrimidine, calcium		
	hydroxide, peroxide compound,		
	pigments		

3.2 Experimental procedures

Part I RMC Specimen preparation

Three different resin matrix ceramics materials were used in this study. Manufacturers and compositions of the materials are presented in Table 1. The RMC materials were cut with a diamond disk (Slow speed cutting machine, Model Isomet, Buehler, IL, USA) under cooling water to a square piece ($6 \times 6 \times 2 \text{ mm}^3$). The specimens were embedded in polyvinyl chloride pipe (PVC) diameter 0.5 inch with epoxy resin. After the epoxy resin reached its final setting time, the mounted specimens were polished using a polishing machine (Minitech 233, Presi, Le Locle, Switzerland) with 300 and 600-grit silicon carbide abrasive paper, respectively. The specimens were then ultrasonically cleaned in distilled water for 5 minutes, and air-dried for 15 sec are shown in Figure 1.

Figure 1 shows the steps of RMC specimen preparation.

Using G power program (following formula) calculated to estimate the sample size and power of this study. The data that calculated from the previously pilot study which calculate sample size (n) is 10 for each group.

Compare two means (use mean and standard deviation

$$n \geq \frac{\left(Z_{1-\alpha_{2}}+Z_{1-\beta}\right)^{2} \left(\sigma_{1}^{2}+\sigma_{2}^{2}/r\right)}{\left(\mu_{1}-\mu_{2}\right)^{2}}$$

The specimens of each RMC were randomly divided into 10 groups and each group was subdivided into 3 subgroups (n=10) according to surface modification methods are shown in Figure 2 schematic diagram. The surface modification details are shown in Table 4 and the flowchart steps of applying chemical agents are shown in Fig 3-5 For the THF groups, lead sheets had been punched as a square shape size 5x5 mm², to limit the area of applying agent, then removed after finishing this treatment steps are shown in Figure 4.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Figure 2 shows schematic diagram of experimental procedure.

Table 4 shows group, code and surface treatment details.

Group	Code	Surface Treatment details
1	С	No Surface treatment (Control)
2	Ad	Two microliters of bonding agent (One Coat Bond SL, Coltene/Whaledent GmbH,
		Langenau, Germany) were applied to the specimen surface using micropipette
		(Eppendorf AG, Hamburg, Germany) and rubbed with a disposable microbrush
		(Citisen Micro Applicator, Huanghua Promisee Dental, Hebei, China) for 10 sec The
		excess bonding agent was removed with a new disposable microbrush, gently air-
		dried for 20 sec and light activated for 40 sec.
3	Τ1	Two drops of THF were applied to the specimen surface and left undisturbed for
		1 min, gently air-dried 10 sec.
4	Si/Ad	Two microliters of monobond N were applied to the specimen surface and rubbed
		with a disposable microbrush for 10 sec and left undisturbed for 1 min, gently air-
		dried for 20 sec. The bonding was applied as described in group 2.
5	T1/Ad	THF was applied as described in group 4 and the bonding agent was the applied as
		described in group 2.
6	T1/Si/Ad	THF was applied as described in group 4 and the monobond N and the bonding
		agent was the applied as described in group 4, respectively.
7	T2/Si/Ad	Two drops of THF were applied to the specimen surface for 2 times. Each round
		was left undisturbed for 1 min. After the THF application, the treated surface was
		air-dried for 10 seconds. The monobond N and bonding agent were applied as
		described in group 4, respectively.
8	T3/Si/Ad	Two drops of THF were applied to the specimen surface for 3 times. Each round
		was left undisturbed for 1 min. After the THF application, the treated surface was
		air-dried for 10 seconds. The monobond N and bonding agent were applied as
		described in group 4, respectively.
9	T4/Si/Ad	Two drops of THF were applied to the specimen surface for 4 times. Each round
		was left undisturbed for 1 min. After the THF application, the treated surface was
		air-dried for 10 seconds. The monobond N and bonding agent were applied as
		described in group 4, respectively.
10	T5/Si/Ad	Two drops of THF were applied to the specimen surface for 5 times. Each round
		was left undisturbed for 1 min. After the THF application, the treated surface was
		air-dried for 10 seconds. The monobond N and bonding agent were applied as
		described in group 4, respectively.

2 **µ**l of One Coat Bond by micropipette

surface rubbed with a disposable microbursh for 10s

a new disposable microbrush, gently air-dried for 20 sec

THF groups, were limitedCalculate2 drops of THF were applied toarea by lead sheets werethe specimen surface and leftpunched as square shapeundisturbed for 1-5 minssize 5x5 mm,

gently air-dried 10 s, then removed the lead sheet after finishing this treatment steps.

Figure 4 shows the steps of Tetrahydrofuran applying.

for 1 min

Figure 5 shows the steps of silane applying.

To control the bonding area, an 80-micron thick single-sided adhesive tape (Scotch blue Painter's tape, 3M, St. Paul, MN, USA) was cut into a square shape with a size of 5x5 mm². A 3-mm diameter hole was made in the center of the adhesive tape using a hole- puncher. The adhesive tape was firmly placed and attached to the specimen surfaces, this procedure was performed before cementation.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Part II Composite resin rods

Three hundred composite resin rods were prepared using a custom-made silicone mold (4 mm diameter \times 4 mm height). Composite resin Filtek Z 350, 3M ESPE) was condensed with a hand instrument in 2-mm incremental layers and light-polymerized for 40 seconds. (1000 mW/cm2, Elipar Freelight 2 LED curing light, 3M ESPE, St. Paul, MN, USA). The ends of composite resin rods were blasted with 50-micron alumina is shown in Figure 6.

Part III Cementation

Composite resin rods were bonded to the treated specimens with dual-cure resin cement (RelyX U200,3M Deutschland GmbH, Neuss, Germany) by light-polymerization. Luting was performed under constant weight of 1,000 g applied to the composite rod during the bonding procedure for 10 seconds at room temperature. The cement was activated by a light-curing unit at the 4 proximal sides and the top surface, 20 seconds each. The bonded specimens were kept in 37°C distilled water for 24 hours in an incubator (Contherm 160M, Contherm Scientific Ltd,Korokoro, Lower Hutt, New Zealand) according to ISO/TS 11405 to allow for post-polymerization is shown in Figure 7.

Figure 7 shows the steps of specimen cementation.

Part IV Shear bond strength

The bonded specimens were test with the notched-edge shear bond strength test applied from ISO 29022:2013 using a universal testing machine (Shimadzu, EZ-S 500N model, Japan). The specimen was placed in a metal sample holder, notched-edge shear blade was mounted on the universal testing machine and placed over the composite rod on the aligned specimen as show Figure 8. The blade was positioned precisely over the composite resin rod and force fitted without premature contact to ensure that the load was applied directly to the composite resin rod at a crosshead speed of 1.0 mm/min until failure occurred. Shear bond strength values were calculated in megapascals (MPa) by dividing the maximum load at failure (N) with the bonding area (mm²). Subsequently, the failure modes were investigated under a stereomicroscope (Olympus Stereo Microscopes, SZ61, Japan) at a magnification of x40. The failure modes were classified into the following categories: adhesive failure at the cement–materials interface, cohesive failure within the luting cement, cohesive failure in RMC materials and the mixed failure.

Figure 8 shows the universal testing machine with notched-edge shear bond strength testing.

Part V SEM

The specimens from each RMC material in the control group and the group applying THF for 1 minute, THF for 3 minutes and THF for 5 minutes were evaluated with scanning electron microscope (SEM) analysis (FEI Quanta 250) at ×2000 magnification. For the group with THF application for 3 minutes specimens were analyzed by Energy Dispersive X-ray Spectroscopy (EDX) point-measurements. Specimens in group No.1-10 were not investigated by SEM.

3.3 Statistics analysis

The bond strength values were analyzed by two-way analysis of variance (ANOVA) to determine the significant differences between the surface treatment methods and the different types of RMC at significance level of 0.05 with post hoc comparisons by Bonferroni tests (IBM SPSS Statics for Windows, Version 22.0. Armonk, NY, USA)

Chapter IV Results

4.1 Shear Bond Strength

The SBS are presented in table 5 and Figure 9. Most of the groups showed that the SBS significantly greater than the C group (p < .05), except for the T1 group. Also, Si/Ad group presented significantly higher SBS than group C, Ad, T1, T1/Ad (p < .05), but still lower than T1/Si/Ad, T2/Si/Ad, T3/Si/Ad, T4/Si/Ad and T5/Si/Ad group. For T1/Si/Ad, T2/Si/Ad, T3/Si/Ad, T4/Si/Ad and T5/Si/Ad group. 17.44 -28.12 MPa, which were significantly higher than Ad and Si/Ad groups (p < .05).

The mean SBS value were increased when the time of THF application were increased till 3 minutes ,then decreased at 4 and 5 minutes following : T1/Si/Ad (18.58 \pm 5.24 MPa), T2/Si/Ad (20.20 \pm 5.66 MPa), T3/Si/Ad (25.37 \pm 4.73 MPa), T4/Si/Ad (22.78 \pm 3.37 MPa) T5/Si/Ad (22.04 \pm 6.06 MPa). The highest SBS was found in group T3/Si/Ad but there was no significant difference when compared to T4/Si/Ad and T5/Si/Ad groups.

From the results in table 5, the control group showed Enamic (8.54 ± 1.56 MPa) had significant difference and the highest value followed by Cerasmart (3.89 ± 2.02 MPa) and Shofu Block HC (2.11 ± 1.22 MPa) respectively.

The adhesive agent group (Ad) revealed Enamic (11.29 \pm 1.27 MPa) had the highest value followed by Cerasmart (9.15 \pm 1.32 MPa) and Shofu Block HC (7.79 \pm 2.12 MPa) respectively, but there was no significant difference.

The THF 1-minute applied group (T1) presented Enamic (6.22 ± 1.38 MPa) had the highest value followed by Cerasmart (2.44 ± 1.52 MPa) and Shofu Block HC (1.89 ± 1.42 MPa) respectively, there was significant difference between Enamic and Shofu Block HC.

The silane with adhesive agent (Si/Ad) group showed Enamic (18.48 \pm 4.21 MPa) had significant difference and the highest value followed by Cerasmart (14.1 \pm 2.70 MPa) and Shofu Block HC (12.58 \pm 2.56 MPa) respectively.

The THF 1-minute with adhesive agent group (T1/Ad) presented Cerasmart (10.21 \pm 2.21 MPa) had the highest value followed by Enamic (9.69 \pm 1.95 MPa) and Shofu Block HC (9.57 \pm 3.59MPa) respectively, but there was no significant difference.

The THF 1-minute with adhesive agent and silane group (T1/Si/Ad) group revealed Enamic (20.36 \pm 5.40 MPa) had the highest value followed by Cerasmart (17.94 \pm 5.81 MPa) and Shofu Block HC (17.44 \pm 4.50 MPa) respectively, but there was no significant difference.

The THF 2-minute with adhesive agent and silane group (T2/Si/Ad) group present Shofu Block HC (21.90 \pm 7.91MPa) had the highest value followed by Enamic (20.67 \pm 3.36MPa) and Cerasmart (18.04 \pm 4.54 MPa) respectively, but there was no significant difference.

The THF 3-minute with adhesive agent and silane group (T3/Si/Ad) group which had the highest mean SBS value indicated Enamic (28.12 ± 5.45 MPa) had the highest value followed by Cerasmart (24.69 ± 3.87 MPa) and Shofu Block HC (23.31 ± 3.68 MPa) respectively, there was significant difference between Enamic and Shofu Block HC.

The THF 4-minute with adhesive agent and silane group (T4/Si/Ad) group presented Enamic (23.98 \pm 3.84MPa) had the highest value followed by Cerasmart (22.65 \pm 4.00 MPa) and Shofu Block HC (21.63 \pm 1.68 MPa) respectively, but there was no significant difference.

The THF 5-minute with adhesive agent and silane group (T5/Si/Ad) group showed Enamic (22.62 \pm 5.70 MPa) had the highest value followed by Cerasmart (22.13 \pm 5.86 MPa) and Shofu Block HC (21.38 \pm 7.12 MPa) respectively, but there was no significant difference.

The comparison of mean SBS among brands of RMC from table 6 demonstrated that VE showed the highest SBS (16.99 \pm 8.01 MPa) followed by CS (14.52 \pm 8.31 MPa) and HC (13.96 \pm 8.88 MPa), respectively. The significant difference was founded in VE with CS and HC groups but there was no significant difference between CS and HC groups.

The two-way ANOVA analysis revealed that the shear bond strength values were significantly influenced by The RMC materials, the surface treatment methods, and the interaction between the RMC materials and surface treatment methods. ($p = .001, .001, .222, F = 118.96, 16.91, 1.25, \eta_p^2 = .80, .11, .08$, respectively) Moreover, RMC had a moderate effect size while surface treatment methods and interaction

between the RMC materials and the surface treatment methods had a small effect size,(Cohen, 1992)(30).

4.2 Failure Mode

The frequencies of the failure modes observed are presented table 5 and Figure 10. Adhesive failure pattern was the most common failure mode found in C, Ad, T1, T1/Ad group. Mixed failure was also the most common failure mode showed in Si/Ad, T1/Si/Ad, T2/Si/Ad, T3/Si/Ad, T4/Si/Ad and T5/Si/Ad.

4.3 SEM Analysis

The SEM image at 2000x magnification in Figure.11-22 showed the different surface morphology of three RMC brands between the control and the THF groups. The specimen's surface treated with THF (Figure 14-22) presented more irregularities and white spot than the control group (Figure 11-13). The surface of the THF for 3-minute group presented more inorganic particle surface when compare with other groups. From the results of SEM/EDX in Figure 17-19 THF for 3 minutes (yellow circle) groups presented the majority of the inorganic particle was silicon element.

From the SEM/EDX image results, showed the different surface of the THF for 3-minute group (Figure 17-19) had more moderate irregularities and inorganic particle which was silicon element, corresponded to shear bond strength value in table 5 that T3/Si/Ad group showed the highest value when compare to other groups.

For the SEM in control group (Figure 11-13) presented low irregularities and white spot when compare to THF group which related to lower shear bond strength value in table 5.THF 1 minute (Figure 14-16) and THF 5-minute (Figure 20-22) groups presented mild irregularities and white spot which related to shear bond strength value in table 5,the T1/Si/Ad and T5/Si/Ad had higher shear bond strength than control group but still lower than T3/Si/Ad.

Chapter V Discussion

5.1 Discussion

The purpose of the present study was to determine the effect of surface treatment by using THF with silane and adhesive agent to three different RMC using dual-cured resin cement in term of shear bond strength. From previous studies, THF could be used as solvent in dental adhesive systems. THF not only showed increased bond strength stability and had an intermediate cytotoxicity close to HEMA but also increased bond strength value to glass fiber post by applied with silane.(11, 23, 28) In the present study, THF with silane and adhesive agent could be used as pre-treatment for improvement of shear bond strength to different RMC. Thus, the null hypothesis was rejected.

THF is an organic compound that is classified as heterocyclic compound, specifically a cyclic ether. THF is used as solvent for many polymers such as polyvinyl chloride, unvulcanized rubber , vinyls, polymer coating, cellophane, protective coatings.(31) According to Inoue and Hayashi study THF was used as the solvent to find that the residual Bis-GMA in resin composite(32). Väkiparta M et al found residual monomers, Bis-GMA and TEGDMA, in fiber-reinforced composites by using THF.(33) RMC materials combined two phases of materials; polymer matrix and condensed filled ceramics particles.(7, 9) Thus, the increased bond strength between RMC and the resin cement of present study could be explained by the fact that THF dissolves partial polymer part at the surface of material. Consequently, the surface of material shows more inorganic part (silica as shows in SEM/EDX results in Figure 17-19) which reacts and promotes adhesion by applying silane. In addition, the THF-3 minute groups were analyzed by EDX point-measurements and revealed moderate irregularities and inorganic particle related to the highest shear bond strength was found in group T3/Si/Ad (Table5).

The silane-coupling-agent acts as bifunctional monomer and adhesion promoter in silica-containing materials. There have been studies describing that silane-coupling-agent reacts to inorganic fillers exposed on surface of material. The other functional monomeric ends molecules of silane can react with the methacrylate groups of the adhesive resin and the integrated polymer parts of RMC
materials.(34, 35) The primer in bonding also increased efficiency to bond the CAD/CAM composite blocks.(11, 36, 37) In addition, the use of methacrylatecontaining primer combine with a silane-coupling agent increased the bond strength. Another explanation of adhesion mechanism is due to methacrylate monomers of the adhesive agent penetrating to the resin matrix of materials and polymerize to form the interpenetrating network.(27, 36) All explanations correspond to the results of this present study that using THF with silane and adhesive agent shows better improvement of the shear bond strength of RMC In addition, Enamic has the highest bond strength value of RMC in the present study (Table 6). This could result from the difference in the percentage of inorganic component and microstructure, correspond to previous study(38) found that silanization effect to Enamic more than other CAD/CAM composite blocks. In addition, inorganic part and microstructure of RMC affected to silanization.(38)

Mixed failure is correlated with the improved bond strength but adhesive failure means lower bond strength(34), which corresponds with the results in Fig.8 that the mixed failure was predominant type found in THF with silane and adhesive agent. Adhesive failure was commonly found in other groups. But the Si/Ad group mostly found mixed failure due to chemical reaction from silane.

Many surface treatment methods for the RMC materials were observed from previous studies(18-22), chemical and mechanical methods were often used to increased bond strength value. The chemical pre-treatment method which used HF and silane as chemical agents can improve bond strength. HF acid treatment in Enamic caused by partial dissolved the glassy phases and polymer which created microporosities and micromechanical retention surface. Silane application can increase the surface wetting of bonding area and improve a chemical bond to the resin cement and better bond strength as a consequence.(21) However, Cekic-Nagas et al.(18) showed that RMC treated with 10% HF acid gel did not have an effect on bond strength value between resin cement and RMC. In addition, HF acid causes irritation to tissue and considerable health hazard because of toxicity and volatility.(39) Due to, the controversial effects of HF acid to the bond strength of RMC, the surface treatment protocol by HF was not used in this study.

Sandblasting is the mechanical method which use to increase bond strength by improving micromechanical interlocking, and increasing wettability and surface area. (16, 20) However, there is study found that sandblasting to ceramics should be avoid because the materials occurred huge volume loss.(40) Also, Yoshihara et al. revealed that sandblasting created surface damage of Shofu Block HC and silane treatment cannot improve the bond strength for these material. Thus, Tekçe et al. stated that surface sandblasting for 60 seconds showed lower micro-tensile bond strength value when compared with shorter time of duration for Enamic.(41) However, sandblasting to RMC seem still have controversy for surface treatment because it may create microcracks in the surface and lead to premature failures also it effects internal and marginal adaptation.(16, 20, 26) As the results, there are no definite conclusion whether chemical or mechanical surface pre-treatment method is more appropriate for RMC materials.

Self-adhesive resin cement was chosen in this study because self-adhesive resin cement such as RelyX U200 is dual-cured resin cement, easy to use and has the improved mechanical and bonding properties in one step. Moreover, etching, priming and bonding are not necessary for this cement type and self-adhesive resin cement is mostly used in the dental practice.(42)

5.2 Limitation

จุฬาลงกรณมหาวทยาลย

Due to the limitation of this study shear bond strength was used in the present study because shear test is convenient to prepare specimen and a simple test process. However, shear test could not interpret interface failure as good as mini-dumbbell test.(43) In addition, the test was performed 24 hours after cementation which should have further investigation for increasing time storage, thermo-cycling or vary other resin cement systems.

5.3 Conclusion

THF could be as pre-treatment with silane and adhesive agent. This study showed the improvement of shear bond strength of RMC. Mixed failure pattern was most common failure mode in group of THF with silane and adhesive agent. Among RMC groups, Enamic showed the highest value of bond strength when compared with other materials.

	Vita Enamic		Cerasmart		Shofu Block HC		Total
Group	Mean SBS ± SD	Failure mode AF/CR/CM/MF	Mean SBS ± SD	Failure mode AF/CR/CM/MF	Mean SBS ± SD	Failure mode AF/CR/CM/MF	
С	8.54 ± 1.56	100 / 0 / 0 / 0	3.89 ± 2.02A	100 / 0 / 0 / 0	2.11 ± 1.22A	100 / 0 / 0 / 0	4.84 ± 3.17a
Ad	11.29 ± 1.27A	80 / 0 / 0 / 20	9.15 ± 1.32A	80 / 0 / 10 / 10	7.79 ± 2.12A	100 / 0 / 0 / 0	9.41 ± 2.14b
T1	6.22 ± 1.38A	100 / 0 / 0 / 0	2.44 ± 1.52AB	100 / 0 / 0 / 0	1.89 ± 1.42B	100 / 0 / 0 / 0	3.52 ± 2.40a
Si/Ad	18.48 ± 4.21	0 / 20 / 50 /30	14.10 ± 2.70A	40 / 0/ 10 / 50	12.58 ± 2.56A	40 / 0 / 0 / 60	15.05 ± 4.03
T1/Ad	9.69 ± 1.95A	80 / 10 / 0 / 10	10.21 ± 2.21A	90 / 0 / 0 / 10	9.57 ± 3.59A	80 / 10 / 0 / 10	9.82 ± 2.60b
T1/Si/Ad	20.36 ± 5.40A	0 / 10 / 40 / 50	17.94 ± 5.81A	40 / 0 / 30 / 30	17.44 ± 4.50A	30 / 0 / 40 / 30	18.58 ± 5.24c
T2/Si/Ad	20.67 ± 3.36A	10 / 0 / 20 / 70	18.04 ± 4.54A	20 / 0 / 20 / 60	21.90 ± 7.91A	20 / 0 / 10 / 70	20.20 ± 5.66cd
T3/Si/Ad	28.12 ± 5.45A	0 / 0 / 30 / 70	24.69 ± 3.87AB	20 / 0 / 10 / 70	23.31 ± 3.68B	30 / 0 / 20 / 50	25.37 ± 4.73e
T4/Si/Ad	23.98 ± 3.84A	0 / 0 / 40 / 60	22.65 ± 4.00A	10 / 0 / 20 / 70	21.63 ± 1.68A	30 / 0 / 10 / 60	22.78 ± 3.37de
T5/Si/Ad	22.62 ± 5.70A	0 / 0 / 30 / 70	22.13 ± 5.86A	20 / 0 / 10 / 70	21.38 ± 7.12A	10 / 0 / 20 / 70	22.04 ± 6.06de

Table 5 shows mean shear bond strength values (MPa \pm SD) and number (%) of specimens according to failure mode.

Mean values represented with same superscript uppercase letters (row) or lowercase letters (column) are not significantly to Bonferroni multiple comparison test (p>0.05).Percentage of failure mode [AF : adhesive failure at the cement–materials interface / CR : cohesive failure within the luting cement / CM: cohesive failure in RMC materials / MF : mixed failure].

Table 6 shows mean of shear bond strength value classified by brand.

Brand	Mean ± SD (MPa)
VE	$16.99^{A} \pm 8.01$
HC	13.96 ^B ± 8.88
CS	$14.52^{B} \pm 8.31$

brand and Intervention mean score

Figure 9 shows the graphs of mean shear bond strength values of control and experimental groups.

Figure 10 shows the percentages of failure mode of control and experimental groups.

Figure 11 shows the SEM image at 2000x magnification of control group (Enamic).

Figure 12 shows the SEM image at 2000x magnification of control group (Cerasmart).

Figure 13 shows the SEM image at 2000x magnification of control group (Shofu Block HC).

CHULALONGKORN UNIVERSITY Figure 14 shows the SEM image at 2000x magnification of THF 1-minute group (Enamic).

Figure 15 shows the SEM image at 2000x magnification of THF 1-minute group (Cerasmart).

Figure 16 shows the SEM image at 2000x magnification of THF 1-minute group (Shofu Block HC).

Figure 17 (A) shows the SEM image at 2000x magnification of THF 3-minute group (Enamic) presented more irregularities and moderate white spot, (B) shows the EDX image of silicon element (yellow circle).

Figure 18 (A) shows the SEM image at 2000x magnification of THF 3-minute group (Cerasmart) presented more irregularities and moderate white spot, (B) shows the EDX image of silicon element (yellow circle).

Figure 19 (A) shows the SEM image at 2000x magnification of THF 3-minute group (Shofu Block HC) presented more irregularities and moderate white spot, (B) shows the EDX image of silicon element (yellow circle).

Figure 20 shows the SEM image at 2000x magnification of THF 5-minute group (Enamic).

Figure 21 shows SEM image at 2000x magnification of THF 5-minute group (Cerasmart).

Chulalongkorn University

Figure 22 shows the SEM image at 2000x magnification of THF 5-minute group (Shofu Block HC).

REFERENCES

1. Kois DE, Isvilanonda V, Chaiyabutr Y, Kois JC. Evaluation of fracture resistance and failure risks of posterior partial coverage restorations. Journal of esthetic and restorative dentistry. 2013;25(2):110–22.

2. Zahran M, El-Mowafy O, Tam L, Watson PA, Finer Y. Fracture strength and fatigue resistance of all-ceramic molar crowns manufactured with CAD/CAM technology. Journal of prosthodontics. 2008;17(5):370–7.

3. Awada A, Nathanson D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. The journal of prosthetic dentistry. 2015;114(4):587–93.

4. Sripetchdanond J, Leevailoj C. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: an in vitro study. The journal of prosthetic dentistry. 2014;112(5):1141–50.

5. Stawarczyk B, Trottmann A, Hammerle CH, Ozcan M. Adhesion of veneering resins to polymethylmethacrylate-based CAD/CAM polymers after various surface conditioning methods. Acta odontologica candinavica. 2013;71(5):1142–8.

6. Giordano R. Materials for chairside CAD/CAM-produced restorations. Journal of the american dental association. 2006;137 Suppl:14s-21s.

7. Coldea A, Swain MV, Thiel N. Mechanical properties of polymer-infiltratedceramic-network materials. Academy of dental materials. 2013;29(4):419–26.

8. Schlichting LH, Maia HP, Baratieri LN, Magne P. Novel-design ultra-thin CAD/CAM composite resin and ceramic occlusal veneers for the treatment of severe dental erosion. The journal of prosthetic dentistry. 2011;105(4):217–26.

9. Gracis S, Thompson VP, Ferencz JL, Silva NR, Bonfante EA. A new classification system for all-ceramic and ceramic-like restorative materials. The international journal of prosthodontics. 2015;28(3):227–35.

10. Lauvahutanon S, Takahashi H, Shiozawa M, Iwasaki N, Asakawa Y, Oki M, et al. Mechanical properties of composite resin blocks for CAD/CAM. Dental materials journal. 2014;33(5):705–10. 11. El Zohairy AA, De Gee AJ, Mohsen MM, Feilzer AJ. Microtensile bond strength testing of luting cements to prefabricated CAD/CAM ceramic and composite blocks. Academy of dental materials. 2003;19(7):575–83.

12. Frankenberger R, Lohbauer U, Taschner M, Petschelt A, Nikolaenko SA. Adhesive luting revisited: influence of adhesive, temporary cement, cavity cleaning, and curing mode on internal dentin bond strength. The journal of adhesive dentistry. 2007;9 Suppl 2:269–73.

13. Dos Santos VH, Griza S, de Moraes RR, Faria ESAL. Bond strength of selfadhesive resin cements to composite submitted to different surface pretreatments. Restorative dentistry & endodontics. 2014;39(1):12–6.

14. Elsaka SE. Effect of surface treatments on the bonding strength of self-adhesive resin cements to zirconia ceramics. Quintessence international. 2013;44(6):407.

15. Blatz MB, Sadan A, Kern M. Resin-ceramic bonding: a review of the literature. The journal of prosthetic dentistry. 2003;89(3):268–74.

16. Spitznagel FA, Horvath SD, Guess PC, Blatz MB. Resin bond to indirect composite and new ceramic/polymer materials: a review of the literature. Journal of esthetic and restorative dentistry. 2014;26(6):382–93.

17. Stawarczyk B, Stich N, Eichberger M, Edelhoff D, Roos M, Gernet W, et al. Longterm tensile bond strength of differently cemented nanocomposite CAD/CAM crowns on dentin abutment. Academy of dental materials. 2014;30(3):334–42.

18. Cekic-Nagas I, Ergun G, Egilmez F, Vallittu PK, Lassila LV. Micro-shear bond strength of different resin cements to ceramic/glass-polymer CAD-CAM block materials. Journal of prosthodontic research. 2016;60(4):265-73.

19. Celik E, Sahin SC, Dede DO. Shear Bond Strength of Nanohybrid Composite to the Resin Matrix Ceramics After Different Surface Treatments. Photomedicine and laser surgery. 2018;36(8):424–30.

20. Elsaka SE. Bond strength of novel CAD/CAM restorative materials to self-adhesive resin cement: the effect of surface treatments. The journal of adhesive dentistry. 2014;16(6):531-40.

21. Peumans M, Valjakova EB, De Munck J, Mishevska CB, Van Meerbeek B. Bonding Effectiveness of Luting Composites to Different CAD/CAM Materials. The journal of adhesive dentistry. 2016;18(4):289–302.

22. Yoshihara K, Nagaoka N, Maruo Y, Nishigawa G, Irie M, Yoshida Y, et al. Sandblasting may damage the surface of composite CAD-CAM blocks. Academy of dental materials. 2017;33(3):e124-e35.

23. Fontes ST, Ogliari FA, Lima GS, Bueno M, Schneider LF, Piva E. Tetrahydrofuran as alternative solvent in dental adhesive systems. Academy of dental materials. 2009;25(12):1503–8.

24. Goncalves AP, Ogliari Ade O, Jardim Pdos S, Moraes RR. Chemical cleaning agents and bonding to glass–fiber posts. Brazilian oral research. 2013;27(1):70–2.

25. Mainjot AK, Dupont NM, Oudkerk JC, Dewael TY, Sadoun MJ. From Artisanal to CAD-CAM Blocks: State of the Art of Indirect Composites. Journal of dental research. 2016;95(5):487–95.

26. Campos F, Almeida C, Rippe M, Melo Rd, Valandro L, Bottino M. Resin Bonding to a Hybrid Ceramic: Effects of Surface Treatments and Aging. Operative dentistry. 2016;41(2):171–8.

27. Reymus M, Roos M, Eichberger M, Edelhoff D, Hickel R, Stawarczyk B. Bonding to new CAD/CAM resin composites: influence of air abrasion and conditioning agents as pretreatment strategy. Clinical oral investigations. 2019;23(2):529–38.

28. Fontes ST, Fernandez MR, Ogliari FA, de Carvalho RV, de Moraes RR, Pinto MB, et al. Tetrahydrofuran as solvent in dental adhesives: cytotoxicity and dentin bond stability. Clinical oral investigations. 2013;17(1):237–42.

29. Anusavice KJ. Mechanical Properties of Dental Materials. In: Anusavice KJ, Shen C, Rawls HR, editors. Phillips' Science of Dental Materials. 12thed. St. Louis, Mo: Elsevier/Saunders, 2013:474–51.

30. Cohen J. Statistical Power Analysis. Current Directions in Psychological Science. 1992;1(3):98-101.

31. National Center for Biotechnology Information. PubChem Database. Tetrahydrofuran C. Tetrahydrofuran 2020 https://pubchem.ncbi.nlm.nih.gov/compound/ Tetrahydrofuran.

32. Inoue K, Hayashi I. Residual monomer (Bis–GMA) of composite resins. Journal of oral rehabilitation. 1982;9(6):493–7.

33. Väkiparta M, Puska M, Vallittu PK. Residual monomers and degree of conversion of partially bioresorbable fiber-reinforced composite. Acta biomaterialia. 2006;2(1):29–37.

34. Elsaka SE. Repair bond strength of resin composite to a novel CAD/CAM hybrid ceramic using different repair systems. Dental materials journal. 2015;34(2):161–7.

35. Ozcan M, Vallittu PK. Effect of surface conditioning methods on the bond strength of luting cement to ceramics. Academy of dental materials. 2003;19(8):725–31.

36. Shinohara A, Taira Y, Sakihara M, Sawase T. Effects of three silane primers and five adhesive agents on the bond strength of composite material for a computer-aided design and manufacturing system. Journal of applied oral science. 2018;26:e20170342.

37. Shinagawa J, Inoue G, Nikaido T, Ikeda M, Burrow MF, Tagami J. Early bond strengths of 4–META/MMA–TBB resin cements to CAD/CAM resin composite. Dental materials journal. 2019;38(1):28–32.

38. Yano HT, Ikeda H, Nagamatsu Y, Masaki C, Hosokawa R, Shimizu H. Correlation between microstructure of CAD/CAM composites and the silanization effect on adhesive bonding. Journal of the mechanical behavior of biomedical materials. 2020;101:103441.

39. Bajraktarova–Valjakova E, Korunoska–Stevkovska V, Georgieva S, Ivanovski K, Bajraktarova–Misevska C, Mijoska A, et al. Hydrofluoric Acid: Burns and Systemic Toxicity, Protective Measures, Immediate and Hospital Medical Treatment. *Journal* of medical sciences. 2018;6(11):2257–69.

40. Kern M, Thompson VP. Sandblasting and silica coating of a glass-infiltrated alumina ceramic: volume loss, morphology, and changes in the surface composition. The journal of prosthetic dentistry. 1994;71(5):453–61.

41. Tekce N, Tuncer S, Demirci M. The effect of sandblasting duration on the bond durability of dual-cure adhesive cement to CAD/CAM resin restoratives. The journal of *advanced prosthodontics*. 2018;10(3):211–7.

42. Manso AP, Carvalho RM. Dental Cements for Luting and Bonding Restorations: Self–Adhesive Resin Cements. Dental clinics of north america. 2017;61(4):821–34.

43. Nakabayashi N. Importance of mini-dumbbell specimen to access tensile strength of restored dentine: historical background and the future perspective in dentistry. Journal of dentistry. 2004;32(6):431–42.

APPENDIX

Chulalongkorn University

Table 7 Descriptive Statistics

Dependent Variable: Bond Strength

			Std.	
Intervention	brand	Mean	Deviation	Ν
Control	Enamic	8.5360	1.56070	10
	Shofu	2.1170	1.21985	10
	Cerasmart	3.8930	2.02016	10
	Total	4.8487	3.17187	30
Adhesive	Enamic	11.2870	1.27059	10
	Shofu	7.7910	2.12049	10
	Cerasmart	9.1480	1.31975	10
	Total	9.4087	2.13996	30
THF1M	Enamic	6.2220	1.37600	10
	Shofu	1.8880	1.42031	10
	Cerasmart	2.4380	1.52420	10
	Total	3.5160	2.40297	30
THF1M+Adhesive	Enamic	9.6860	1.95052	10
	Shofu	9.5710	3.58896	10
	Cerasmart	10.2080	2.20946	10
	Total	9.8217	2.60243	30
Silane+ Adhesive	Enamic	18.4820	4.20703	10
	Shofu	12.5770	2.56727	10

	Cerasmart	14.1040	2.69980	10
	Total	15.0543	4.03477	30
THF1M+Silane+Adhesive	Enamic	20.3560	5.39711	10
	Shofu	17.4400	4.50239	10
	Cerasmart	17.9430	5.81549	10
	Total	18.5797	5.24430	30
THF2M+Silane+Adhesive	Enamic	20.6680	3.36349	10
	Shofu	21.8990	7.91424	10
	Cerasmart	18.0400	4.53693	10
	Total	20.2023	5.65838	30
THF3M+Silane+Adhesive	Enamic	28.1220	5.45276	10
	Shofu	23.3100	3.68422	10
	Cerasmart	24.6920	3.87430	10
	Total	25.3747	4.72562	30
THF4M+Silane+Adhesive	Enamic	23.9790	3.84042	10
	Shofu	21.6360	1.67588	10
	Cerasmart	22.6500	4.00156	10
	Total	22.7550	3.37201	30
THF5M+Silane+Adhesive	Enamic	22.6230	5.69931	10
	Shofu	21.3780	7.12317	10
	Cerasmart	22.1320	5.85509	10
	Total	22.0443	6.06118	30

Total	Enamic	16.9961	8.01036	100
	Shofu	13.9607	8.88468	100
	Cerasmart	14.5248	8.31313	100
	Total	15.1605	8.48573	300

Table 8 Levene's Test of Equality of Error Variances^a

Dependent Variable: Bond Strength

F	df1	df2	Sig.	
5.178	29	270	.000	

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a. Design: Intercept + Intervention + brand + Intervention * brand

UNULALUNUKUNN UNIVENJII I

Dependent Variable: Bond Strength

	Type III Sum		Mean		-	Partial Eta
Source	of Squares	df	Square	F	Sig.	Squared
Corrected Model	17368.842 ^a	29	598.926	38.859	.000	.807
Intercept	68952.531	1	68952.531	4473.764	.000	.943
Intervention	16500.896	9	1833.433	118.956	.000	.799
brand	521.306	2	260.653	16.912	.000	.111
Intervention * brand	346.640	18	19.258	1.249	.222	.077
Error	4161.414	270	15.413			
Total	90482.788	300				
Corrected Total	21530.256	299				

a. R Squared = .807 (Adjusted R Squared = .786)

Table 10 Estimates : Intervention

Dependent Variable: Bond Strength

			95% Confidence Interval		
Intervention	Mean	Std. Error	Lower Bound	Upper Bound	
Control	4.849	.717	3.438	6.260	
Adhesive	9.409	.717	7.998	10.820	
THF1M	3.516	.717	2.105	4.927	
THF1M+Adhesive	9.822	.717	8.411	11.233	
Silane+ Adhesive	15.054	.717	13.643	16.465	
THF1M+Silane+Adhesive	18.580	.717	17.169	19.991	
THF2M+Silane+Adhesive	20.202	.717	18.791	21.613	
THF3M+Silane+Adhesive	25.375	.717	23.964	26.786	
THF4M+Silane+Adhesive	22.755	.717	21.344	24.166	
THF5M+Silane+Adhesive	22.044	.717	20.633	23.455	

Table 11 Pairwise Comparisons

Dependent Variable: Bond Strength

		Mean			95% Cc Inter Diffe	onfidence val for rence ^b
(I) Intervention	(1) Intervention	Differen	Std.	Sig b	Lower	Upper
		CE (I-J)		צוכ.	Dound	Dound
Control	Adhesive	-4.560*	1.014	.000	-7.901	-1.219
	THF1M	1.333	1.014	1.000	-2.009	4.674
	THF1M+Adhesive	-4.973*	1.014	.000	-8.314	-1.632
	Silane+ Adhesive	-10.206*	1.014	.000	- 13.547	-6.864
	THF1M+Silane+Adhes ive	-13.731*	1.014	.000	- 17.072	-10.390
	THF2M+Silane+Adhes ive	-15.354*	1.014	.000	- 18.695	-12.012
	THF3M+Silane+Adhes ive	-20.526*	1.014	.000	- 23.867	-17.185
	THF4M+Silane+Adhes ive	-17.906*	1.014	.000	- 21.248	-14.565
	THF5M+Silane+Adhes ive	-17.196*	1.014	.000	- 20.537	-13.854

Adhesive	Control	4.560*	1.014	.000	1.219	7.901
	THF1M	5.893*	1.014	.000	2.551	9.234
	THF1M+Adhesive	413	1.014	1.000	-3.754	2.928
	Silane+ Adhesive	-5.646*	1.014	.000	-8.987	-2.304
	THF1M+Silane+Adhes ive	-9.171*	1.014	.000	- 12.512	-5.830
	THF2M+Silane+Adhes ive	-10.794*	1.014	.000	- 14.135	-7.452
	THF3M+Silane+Adhes ive	-15.966*	1.014	.000	- 19.307	-12.625
	THF4M+Silane+Adhes ive	-13.346*	1.014	.000	- 16.688	-10.005
	THF5M+Silane+Adhes ive	-12.636*	1.014	.000	- 15.977	-9.294
THF1M	Control	-1.333	1.014	1.000	-4.674	2.009
	Adhesive	-5.893*	1.014	.000	-9.234	-2.551
	THF1M+Adhesive	-6.306*	1.014	.000	-9.647	-2.964
	Silane+ Adhesive	-11.538*	1.014	.000	- 14.880	-8.197
	THF1M+Silane+Adhes ive	-15.064*	1.014	.000	- 18.405	-11.722
	THF2M+Silane+Adhes ive	-16.686*	1.014	.000	- 20.028	-13.345

	THF3M+Silane+Adhes ive	-21.859*	1.014	.000	- 25.200	-18.517
	THF4M+Silane+Adhes ive	-19.239*	1.014	.000	- 22.580	-15.898
	THF5M+Silane+Adhes ive	-18.528*	1.014	.000	- 21.870	-15.187
THF1M+Adhesive	Control	4.973*	1.014	.000	1.632	8.314
	Adhesive	.413	1.014	1.000	-2.928	3.754
	THF1M	6.306*	1.014	.000	2.964	9.647
	Silane+ Adhesive	-5.233*	1.014	.000	-8.574	-1.891
	THF1M+Silane+Adhes ive	-8.758 [*]	1.014	.000	- 12.099	-5.417
	THF2M+Silane+Adhes ive	-10.381*	1.014	.000	- 13.722	-7.039
	THF3M+Silane+Adhes ive	-15.553 [*]	1.014	.000	- 18.894	-12.212
	THF4M+Silane+Adhes ive	-12.933*	1.014	.000	- 16.275	-9.592
	THF5M+Silane+Adhes ive	-12.223*	1.014	.000	- 15.564	-8.881
Silane+ Adhesive	Control	10.206*	1.014	.000	6.864	13.547
	Adhesive	5.646*	1.014	.000	2.304	8.987
	THF1M	11.538*	1.014	.000	8.197	14.880
	THF1M+Adhesive	5.233*	1.014	.000	1.891	8.574

	THF1M+Silane+Adhes ive	-3.525*	1.014	.027	-6.867	184
	THF2M+Silane+Adhes ive	-5.148*	1.014	.000	-8.489	-1.807
	THF3M+Silane+Adhes ive	-10.320*	1.014	.000	- 13.662	-6.979
	THF4M+Silane+Adhes ive	-7.701*	1.014	.000	- 11.042	-4.359
	THF5M+Silane+Adhes ive	-6.990*	1.014	.000	- 10.331	-3.649
THF1M+Silane+Adhe	Control	13.731*	1.014	.000	10.390	17.072
sive	Adhesive	9.171*	1.014	.000	5.830	12.512
	THF1M	15.064*	1.014	.000	11.722	18.405
	THF1M+Adhesive	8.758*	1.014	.000	5.417	12.099
	Silane+ Adhesive	3.525*	1.014	.027	.184	6.867
	THF2M+Silane+Adhes ive	-1.623	1.014	1.000	-4.964	1.719
	THF3M+Silane+Adhes ive	-6.795*	1.014	.000	- 10.136	-3.454
	THF4M+Silane+Adhes ive	-4.175*	1.014	.002	-7.517	834
	THF5M+Silane+Adhes ive	-3.465*	1.014	.033	-6.806	123
THF2M+Silane+Adhe	Control	15.354*	1.014	.000	12.012	18.695

sive	Adhesive	10.794*	1.014	.000	7.452	14.135
	THF1M	16.686*	1.014	.000	13.345	20.028
	THF1M+Adhesive	10.381*	1.014	.000	7.039	13.722
	Silane+ Adhesive	5.148*	1.014	.000	1.807	8.489
	THF1M+Silane+Adhes ive	1.623	1.014	1.000	-1.719	4.964
	THF3M+Silane+Adhes ive	-5.172*	1.014	.000	-8.514	-1.831
	THF4M+Silane+Adhes ive	-2.553	1.014	.557	-5.894	.789
	THF5M+Silane+Adhes ive	-1.842	1.014	1.000	-5.183	1.499
THF3M+Silane+Adhe	Control	20.526*	1.014	.000	17.185	23.867
THF3M+Silane+Adhe sive	Control Adhesive	20.526 [*] 15.966 [*]	1.014 1.014	.000. .000	17.185 12.625	23.867 19.307
THF3M+Silane+Adhe sive	Control Adhesive THF1M	20.526 [*] 15.966 [*] 21.859 [*]	1.014 1.014 1.014	.000 .000 .000	17.185 12.625 18.517	23.867 19.307 25.200
THF3M+Silane+Adhe sive	Control Adhesive THF1M THF1M+Adhesive	20.526 [*] 15.966 [*] 21.859 [*] 15.553 [*]	1.014 1.014 1.014 1.014	.000. .000. .000.	17.185 12.625 18.517 12.212	23.867 19.307 25.200 18.894
THF3M+Silane+Adhe sive	Control Adhesive THF1M THF1M+Adhesive Silane+ Adhesive	20.526* 15.966* 21.859* 15.553* 10.320*	1.014 1.014 1.014 1.014 1.014	.000. 000. 000. 000.	17.185 12.625 18.517 12.212 6.979	23.867 19.307 25.200 18.894 13.662
THF3M+Silane+Adhe sive	Control Adhesive THF1M THF1M+Adhesive Silane+ Adhesive THF1M+Silane+Adhes ive	20.526* 15.966* 21.859* 15.553* 10.320* 6.795*	1.014 1.014 1.014 1.014 1.014 1.014	.000 .000 .000 .000 .000	17.185 12.625 18.517 12.212 6.979 3.454	23.867 19.307 25.200 18.894 13.662 10.136
THF3M+Silane+Adhe sive	Control Adhesive THF1M THF1M+Adhesive Silane+ Adhesive THF1M+Silane+Adhes ive THF2M+Silane+Adhes ive	20.526* 15.966* 21.859* 15.553* 10.320* 6.795* 5.172*	1.014 1.014 1.014 1.014 1.014 1.014 1.014	.000 .000 .000 .000 .000	17.185 12.625 18.517 12.212 6.979 3.454 1.831	23.867 19.307 25.200 18.894 13.662 10.136 8.514

	THF5M+Silane+Adhes ive	3.330	1.014	.052	011	6.672
THF4M+Silane+Adhe	Control	17.906*	1.014	.000	14.565	21.248
sive	Adhesive	13.346*	1.014	.000	10.005	16.688
	THF1M	19.239*	1.014	.000	15.898	22.580
	THF1M+Adhesive	12.933*	1.014	.000	9.592	16.275
	Silane+ Adhesive	7.701*	1.014	.000	4.359	11.042
	THF1M+Silane+Adhes ive	4.175*	1.014	.002	.834	7.517
	THF2M+Silane+Adhes ive	2.553	1.014	.557	789	5.894
	THF3M+Silane+Adhes ive	-2.620	1.014	.463	-5.961	.722
	THF5M+Silane+Adhes ive	.711	1.014	1.000	-2.631	4.052
THF5M+Silane+Adhe sive	Control	17.196*	1.014	.000	13.854	20.537
	Adhesive	12.636*	1.014	.000	9.294	15.977
	THF1M	18.528*	1.014	.000	15.187	21.870
	THF1M+Adhesive	12.223*	1.014	.000	8.881	15.564
	Silane+ Adhesive	6.990*	1.014	.000	3.649	10.331
	THF1M+Silane+Adhes ive	3.465*	1.014	.033	.123	6.806
THF2M+Silane+Adhes ive	1.842	1.014	1.000	-1.499	5.183	
---------------------------	--------	-------	-------	--------	-------	
THF3M+Silane+Adhes ive	-3.330	1.014	.052	-6.672	.011	
THF4M+Silane+Adhes ive	711	1.014	1.000	-4.052	2.631	

Based on estimated marginal means

- *. The mean difference is significant at the
- b. Adjustment for multiple comparisons: Bonferroni.

Table 12 Univariate Tests

Dependent Variable: Bond Strength

	Sum of					Partial Eta
	Squares	df	Mean Square	F	Sig.	Squared
Contrast	16500.896	9	1833.433	118.956	.000	.799
Error	4161.414	270	15.413			

The F tests the effect of Intervention. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

Table 13 Pairwise Comparisons

Dependent Variable: Bond Strength

		Mean			95% Confidence Interval for Difference ^b	
		Difference (I-	Std.		Lower	
(I) brand	(J) brand))	Error	Sig. ^b	Bound	Upper Bound
Enamic	Shofu	3.035*	.555	.000	1.698	4.373
	Cerasmart	2.471*	.555	.000	1.134	3.809
Shofu	Enamic	-3.035*	.555	.000	-4.373	-1.698
	Cerasmart	564	.555	.932	-1.902	.773
Cerasmart	Enamic	-2.471*	.555	.000	-3.809	-1.134
	Shofu	.564	.555	.932	773	1.902

Based on estimated marginal means

- *. The mean difference is significant at the
- b. Adjustment for multiple comparisons: Bonferroni.

Table 14 Univariate Tests

Dependent Variable: Bond Strength

	Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Contrast	521.306	2	260.653	16.912	.000	.111
Error	4161.414	270	15.413			

The F tests the effect of brand. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

Dependent Variable: Bond Strength

			95% Confidence Interval			
brand	Mean	Std. Error	Lower Bound	Upper Bound		
Enamic	16.996	.393	16.223	17.769		
Shofu	13.961	.393	13.188	14.734		
Cerasmart	14.525	.393	13.752	15.298		

Table 16 Pairwise Comparisons

Dependent Variable: Bond Strength

	-	Mean			95% Confidence Interval for Difference ^b	
		Difference	Std.		Lower	Upper
(I) brand	(J) brand	(L-I)	Error	Sig. ^b	Bound	Bound
Enamic	Shofu	3.035 [*]	.555	.000	1.698	4.373
	Cerasmart	2.471*	.555	.000	1.134	3.809
Shofu	Enamic	-3.035*	.555	.000	-4.373	-1.698
	Cerasmart	564	.555	.932	-1.902	.773
Cerasmart	Enamic	-2.471*	.555	.000	-3.809	-1.134
	Shofu	.564	.555	.932	773	1.902

Based on estimated marginal means

*. The mean difference is significant at the

b. Adjustment for multiple comparisons: Bonferroni.

Table 17 Estimates Intervention * brand

Dependent Variable: Bond Strength

				95% Confidence Interval		
Intervention	brand	Mean	Std. Error	Lower Bound	Upper Bound	
Control	Enamic	8.536	1.241	6.092	10.980	
	Shofu	2.117	1.241	327	4.561	
	Cerasmart	3.893	1.241	1.449	6.337	
Adhesive	Enamic	11.287	1.241	8.843	13.731	
	Shofu	7.791	1.241	5.347	10.235	
	Cerasmart	9.148	1.241	6.704	11.592	
THF1M	Enamic	6.222	1.241	3.778	8.666	
	Shofu	1.888	1.241	556	4.332	
	Cerasmart	2.438	1.241	006	4.882	
THF1M+Adhesive	Enamic	9.686	1.241	7.242	12.130	
	Shofu	9.571	1.241	7.127	12.015	
	Cerasmart	10.208	1.241	7.764	12.652	
Silane+ Adhesive	Enamic	18.482	1.241	16.038	20.926	
	Shofu	12.577	1.241	10.133	15.021	
	Cerasmart	14.104	1.241	11.660	16.548	
THF1M+Silane+Ad	Enamic	20.356	1.241	17.912	22.800	

hesive	Shofu	17.440	1.241	14.996	19.884
	Cerasmart	17.943	1.241	15.499	20.387
THF2M+Silane+Ad	Enamic	20.668	1.241	18.224	23.112
hesive	Shofu	21.899	1.241	19.455	24.343
	Cerasmart	18.040	1.241	15.596	20.484
THF3M+Silane+Ad hesive	Enamic	28.122	1.241	25.678	30.566
	Shofu	23.310	1.241	20.866	25.754
	Cerasmart	24.692	1.241	22.248	27.136
THF4M+Silane+Ad	Enamic	23.979	1.241	21.535	26.423
hesive	Shofu	21.636	1.241	19.192	24.080
	Cerasmart	22.650	1.241	20.206	25.094
THF5M+Silane+Ad	Enamic	22.623	1.241	20.179	25.067
hesive	Shofu	21.378	1.241	18.934	23.822
	Cerasmart	22.132	1.241	19.688	24.576

Chulalongkorn University

Table 18 Univariate Tests

Dependent Variable: Bond Strength

	Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Contrast	521.306	2	260.653	16.912	.000	.111
Error	4161.414	270	15.413			

The F tests the effect of brand. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

Table 19 Pairwise Comparisons

Dependent Variable: Bond Strength

						95% Co	onfidence
						Inter	val for
			Mean			Diffe	rence ^b
			Differen	Std.		Lower	Upper
Intervention	(I) brand	(J) brand	ce (I-J)	Error	Sig. ^b	Bound	Bound
Control	Enamic	Shofu	6.419 [*]	1.756	.001	2.190	10.648
		Cerasmart	4.643*	1.756	.026	.414	8.872
	Shofu	Enamic	- 6.4.121 9*	1.756	.001	- 10.648	-2.190
		Cerasmart	-1.776	1.756	.938	-6.005	2.453
	Cerasmart	Enamic	-4.643*	1.756	.026	-8.872	414
		Shofu	1.776	1.756	.938	-2.453	6.005

Adhesive	Enamic	Shofu	3.496	1.756	.142	733	7.725
		Cerasmart	2.139	1.756	.673	-2.090	6.368
	Shofu	Enamic	-3.496	1.756	.142	-7.725	.733
		Cerasmart	-1.357	1.756	1.000	-5.586	2.872
	Cerasmart	Enamic	-2.139	1.756	.673	-6.368	2.090
		Shofu	1.357	1.756	1.000	-2.872	5.586
THF1M	Enamic	Shofu	4.334*	1.756	.043	.105	8.563
		Cerasmart	3.784	1.756	.096	445	8.013
	Shofu	Enamic	-4.334*	1.756	.043	-8.563	105
		Cerasmart	550	1.756	1.000	-4.779	3.679
	Cerasmart	Enamic	-3.784	1.756	.096	-8.013	.445
		Shofu	.550	1.756	1.000	-3.679	4.779
THF1M+Adhesive	Enamic	Shofu	.115	1.756	1.000	-4.114	4.344
		Cerasmart	522	1.756	1.000	-4.751	3.707
	Shofu	Enamic	115	1.756	1.000	-4.344	4.114
		Cerasmart	637	1.756	1.000	-4.866	3.592
	Cerasmart	Enamic	.522	1.756	1.000	-3.707	4.751
		Shofu	.637	1.756	1.000	-3.592	4.866
Silane+ Adhesive	Enamic	Shofu	5.905*	1.756	.003	1.676	10.134
		Cerasmart	4.378 [*]	1.756	.040	.149	8.607
	Shofu	Enamic	-5.905*	1.756	.003	- 10.134	-1.676
		Cerasmart	-1.527	1.756	1.000	-5.756	2.702
	Cerasmart	Enamic	-4.378*	1.756	.040	-8.607	149

		Shofu	1.527	1.756	1.000	-2.702	5.756
THF1M+Silane+Adh	Enamic	Shofu	2.916	1.756	.294	-1.313	7.145
esive		Cerasmart	2.413	1.756	.511	-1.816	6.642
	Shofu	Enamic	-2.916	1.756	.294	-7.145	1.313
		Cerasmart	503	1.756	1.000	-4.732	3.726
	Cerasmart	Enamic	-2.413	1.756	.511	-6.642	1.816
		Shofu	.503	1.756	1.000	-3.726	4.732
THF2M+Silane+Adh	Enamic	Shofu	-1.231	1.756	1.000	-5.460	2.998
esive		Cerasmart	2.628	1.756	.407	-1.601	6.857
	Shofu	Enamic	1.231	1.756	1.000	-2.998	5.460
		Cerasmart	3.859	1.756	.086	370	8.088
	Cerasmart	Enamic	-2.628	1.756	.407	-6.857	1.601
		Shofu	-3.859	1.756	.086	-8.088	.370
THF3M+Silane+Adh	Enamic	Shofu	4.812 [*]	1.756	.020	.583	9.041
esive		Cerasmart	3.430	1.756	.155	799	7.659
	Shofu	Enamic	-4.812*	1.756	.020	-9.041	583
		Cerasmart	-1.382	1.756	1.000	-5.611	2.847
	Cerasmart	Enamic	-3.430	1.756	.155	-7.659	.799
		Shofu	1.382	1.756	1.000	-2.847	5.611
THF4M+Silane+Adh	Enamic	Shofu	2.343	1.756	.549	-1.886	6.572
esive		Cerasmart	1.329	1.756	1.000	-2.900	5.558
	Shofu	Enamic	-2.343	1.756	.549	-6.572	1.886
		Cerasmart	-1.014	1.756	1.000	-5.243	3.215
	Cerasmart	Enamic	-1.329	1.756	1.000	-5.558	2.900

		Shofu	1.014	1.756	1.000	-3.215	5.243
THF5M+Silane+Adh esive	Enamic	Shofu	1.245	1.756	1.000	-2.984	5.474
		Cerasmart	.491	1.756	1.000	-3.738	4.720
	Shofu	Enamic	-1.245	1.756	1.000	-5.474	2.984
		Cerasmart	754	1.756	1.000	-4.983	3.475
	Cerasmart	Enamic	491	1.756	1.000	-4.720	3.738
		Shofu	.754	1.756	1.000	-3.475	4.983

Based on estimated marginal means

- *. The mean difference is significant at the
- b. Adjustment for multiple comparisons: Bonferroni.

VITA

NAME

Nuttapong Bunchuansakul

DATE OF BIRTH 9 Sep 1991

PLACE OF BIRTH Bangkok

INSTITUTIONS ATTENDED Chulalongkorn University

HOME ADDRESS

615 Rama 4 Rongmuang Pathumwan Bangkok

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University